SAS® 9.4 Output Delivery System: Advanced Topics, Third Edition
Contents

About This Book .. vii

PART 1 Advanced PROC DOCUMENT Topics 1

Chapter 1 / Restructuring Output with PROC DOCUMENT ... 3
 Overview .. 3
 Viewing an ODS Document in the Documents Window .. 3
 Viewing the Contents of an ODS Document ... 4
 Using the Documents Window Pop-up Menu ... 7

Chapter 2 / Using WHERE Expressions in PROC DOCUMENT ... 19
 Overview .. 19
 WHERE Expression Syntax .. 19

Chapter 3 / Working with Output Objects and Table Templates .. 27
 Overview .. 27
 Displaying the Template Used by Output Objects ... 27

PART 2 ODS and Cascading Style Sheets 35

Chapter 4 / Introduction to Cascading Style Sheets .. 37
 Overview .. 37
 Terminology ... 39

Chapter 5 / Working with the ODS Document Object Model .. 43
 ODS Document Object Model (DOM) Structure .. 43
 Tips and Things to Remember .. 45

Chapter 6 / Using Style Selectors .. 47
 Overview .. 47
 Class Selectors .. 48
 Element Selectors .. 48
 Universal Selector .. 49
 Pseudo-Class Selectors ... 49
 ID Selectors .. 50
 Attribute Selectors .. 50
 Combinators .. 51
 Using a Single Style Selector Type per Rule Set ... 52
 Using Multiple Style Selector Types per Rule Set ... 53
 Tips for Working with Style Selectors ... 54
Contents

Chapter 7 / SAS Dynamic Property Values
- SAS Dynamic Property Values .. 55

Chapter 8 / Resources and Examples
- Common Industry-Standard Style Properties 59
- Documentation Resources and Websites 71

PART 3 Report Writing Interface

Chapter 9 / Introduction to the Report Writing Interface
- Overview .. 107
- Terminology ... 108
- Types of Methods .. 109
- ODS Output Object Creation .. 115

Chapter 10 / Reference and Examples
- ODS Output Object Creation .. 118
- Types of Methods .. 119
- Statements and Methods by Category 125
- Dictionary .. 127
- Examples: ... 195

Chapter 11 / Concepts
- RWI Basics .. 247
- DATA Step Processing .. 247
- Object-Oriented Concepts ... 248

PART 4 ODS Styles Reference

Chapter 12 / Overview
- Understanding Styles, Style Elements, and Style Attributes 257
- Using Styles with Base SAS Procedures 263

Chapter 13 / Style Templates
- Viewing ODS Styles Supplied by SAS 265
- Program for Viewing Multiple Styles 267
- Table of Suggested ODS Styles .. 268
- ODS Styles Gallery ... 271

Chapter 14 / Style Elements
- ODS Style Elements ... 335
- Style Elements Affecting Template-Based Graphics 345
- Style Elements Affecting Device-Based Graphics 354

Chapter 15 / Style Attributes
- Overview .. 363
- Style Attributes Tables .. 364
- Style Attributes Detailed Information 388
- Style Attributes Values ... 423
Appendixes 429

Appendix 1 / Example Programs

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating the DistrData Data Set</td>
<td>431</td>
</tr>
<tr>
<td>Creating the Univ ODS Document</td>
<td>431</td>
</tr>
</tbody>
</table>
About This Book

Lua License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language elements. These conventions enable you to easily identify the components of SAS syntax. The conventions can be divided into these parts:

- syntax components
Syntax Components

The components of the syntax for most language elements include a keyword and arguments. For some language elements, only a keyword is necessary. For other language elements, the keyword is followed by an equal sign (=). The syntax for arguments has multiple forms in order to demonstrate the syntax of multiple arguments, with and without punctuation.

keyword
- specifies the name of the SAS language element that you use when you write your program. Keyword is a literal that is usually the first word in the syntax. In a CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

```
CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>
```

In this example, the first two words of the CALL routine are the keywords:

```
CALL RANBIN(seed, n, p, x)
```

The syntax of some SAS statements consists of a single keyword without arguments:

```
DO;
... SAS code ...
END;
```

Some system options require that one of two keyword values be specified:

```
DUPLEX | NODUPLEX
```

Some procedure statements have multiple keywords throughout the statement syntax:

```
CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <, column-2, ...>)
```

argument
- specifies a numeric or character constant, variable, or expression. Arguments follow the keyword or an equal sign after the keyword. The arguments are used by SAS to process the language element. Arguments can be required or optional. In the syntax, optional arguments are enclosed in angle brackets (< >).
In this example, *string* and *position* follow the keyword CHAR. These arguments are required arguments for the CHAR function:

CHAR (*string*, *position*)

Each argument has a value. In this example of SAS code, the argument *string* has a value of 'summer', and the argument *position* has a value of 4:

```
x=char('summer', 4);
```

In this example, *string* and *substring* are required arguments, whereas *modifiers* and *startpos* are optional.

FIND(*string*, *substring* <, *modifiers* <, *startpos*>)

syntax(s)
specifies that one argument is required and that multiple arguments are allowed. Separate arguments with a space. Punctuation, such as a comma (,) is not required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING *character(s)*;

<**LITERAL_ARGUMENT**> *argument-1* <<**LITERAL_ARGUMENT**> *argument-2* ... >
specifies that one argument is required and that a literal argument can be associated with the argument. You can specify multiple literals and argument pairs. No punctuation is required between the literal and argument pairs. The ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <**DESCENDING**> *variable-1* <<**DESCENDING**> *variable-2* ...>;

argument-1 <**options**> <*argument-2* <**options**> ...>specifies that one argument is required and that one or more options can be associated with the argument. You can specify multiple arguments and associated options. No punctuation is required between the argument and the option. The ellipsis (...) indicates that additional arguments with an associated option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of multiple arguments:

PICTURE *name* <(**format-options**)>
<**value-range-set-1** <(**picture-1-options**)>
<**value-range-set-2** <(**picture-2-options**)> ...>>;

argument-1 = *value-1* <*argument-2* = *value-2* ...>
specifies that the argument must be assigned a value and that you can specify multiple arguments. The ellipsis (...) indicates that additional arguments are allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL *variable-1* = *label-1* <*variable-2* = *label-2* ...>;

argument-1 , *argument-2*, ...
specifies that one argument is required and that you can specify multiple arguments that are separated by a comma or other punctuation. The ellipsis (...) indicates a continuation of the arguments, separated by a comma. Both forms are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (**provider-1**: **domain-1** <, **provider-2**: **domain-2**, ...>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, ...>

Note: In most cases, example code in SAS documentation is written in lowercase with a monospace font. You can use uppercase, lowercase, or mixed case in the code that you write.

Style Conventions

The style conventions that are used in documenting SAS syntax include uppercase bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this example, the keyword ERROR is written in uppercase bold:

```
ERROR <message>;
```

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH, CATALOG, and XML:

```
CMPMODEL=BOTH | CATALOG | XML |
```

italic
identifies arguments or values that you supply. Items in italic represent user-supplied values that are either one of the following:

- nonliteral arguments. In this example of the LINK statement, the argument `label` is a user-supplied value and therefore appears in italic:

```
LINK label;
```

- nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is assigned the variable `default-format`:

```
FORMAT variable(s) <format > <DEFAULT = default-format>;
```

Special Characters

The syntax of SAS language elements can contain the following special characters:

- `=`

an equal sign identifies a value for a literal in some language elements such as system options.

 In this example of the MAPS system option, the equal sign sets the value of MAPS:
MAPS=location-of-maps

angle brackets identify optional arguments. A required argument is not enclosed in angle brackets.
In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

| a vertical bar indicates that you can choose one value from a group of values. Values that are separated by the vertical bar are mutually exclusive.
In this example of the CMPMODEL= system option, you can choose only one of the arguments:

CMPMODEL=BOTH | CATALOG | XML

| an ellipsis indicates that the argument can be repeated. If an argument and the ellipsis are enclosed in angle brackets, then the argument is optional. The repeated argument must contain punctuation if it appears before or after the argument.
In this example of the CAT function, multiple item arguments are allowed, and they must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks must have a value that is also enclosed in single or double quotation marks.
In this example of the FOOTNOTE statement, the argument text is enclosed in quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

| a semicolon indicates the end of a statement or CALL routine.
In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and External Files

Many SAS statements and other language elements refer to SAS libraries and external files. You can choose whether to make the reference through a logical name (a libref or fileref) or use the physical filename enclosed in quotation marks.
If you use a logical name, you typically have a choice of using a SAS statement (LIBNAME or FILENAME) or the operating environment’s control language to make the reference. Several methods of referring to SAS libraries and external files are available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized phrase *file-specification*. In the examples that use SAS libraries, SAS documentation uses the italicized phrase *SAS-library* enclosed in quotation marks:

```sas
infile file-specification obs = 100;
libname libref 'SAS-library';
```
PART 1
Advanced PROC DOCUMENT Topics

Chapter 1
Restructuring Output with PROC DOCUMENT 3

Chapter 2
Using WHERE Expressions in PROC DOCUMENT 19

Chapter 3
Working with Output Objects and Table Templates 27
Overview

The DOCUMENT procedure enables you to restructure your report in unique ways. You can rename or create folders, include or exclude output objects, and rename output objects. Restructuring your report is one way to create a customized table of contents for destinations such as HTML and PDF. You can use the Documents window or PROC DOCUMENT syntax to modify your output.

Viewing an ODS Document in the Documents Window

To view the Documents window, submit this command in the command bar:

```
odsdocuments
```

The following display shows the Documents window that contains the ODS document named `Sasuser.Univ`. In the display, notice that `Sasuser.Univ` contains several directory levels. The `Exponential_x` directory contains the `Exp` output object. When you double-click an output object, such as `Exp`, that output object is replayed in the Results window to all open destinations.
A Documents window contains these items:

entry
 is an output object, link, or directory.

Note: Only output objects of the type Document are displayed in the Documents window.

directory
 is a grouping of ODS document entries.

link
 is a symbolic link from one specified output object to another output object.

Note: Within the Documents window, a link is called a shortcut.

ODS document
 is the name of an ODS document.

Viewing the Contents of an ODS Document

After you have created a document with the ODS DOCUMENT statement, you can use PROC DOCUMENT to view the contents of your document. You can rearrange, duplicate, or remove output from the results of a procedure or a database query without invoking the procedures from the original report. The first step is to view your document's contents by using the LIST statement. The LIST statement enables you to look at the object list and folder structure within the ODS document. The following code creates a list of all levels of the document Work.Prddoc:

```
proc document name=work.prddoc;
   list / levels=all;
run;
quit;
```
The LIST statement can be used to list what is in an entire document or just one of the entries. For more information about the LIST statement, see “LIST Statement” in SAS Output Delivery System: Procedures Guide.

In the following display, every folder icon in the Results window corresponds to an item with a type of "Dir" in the LIST statement output. Every table created by a procedure corresponds to an item with a type of "Table" in the LIST statement output.
Figure 1.2 PROC DOCUMENT List Output Compared to Results Window

<table>
<thead>
<tr>
<th>Obs</th>
<th>Path</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\Tabulate#1</td>
<td>Dir</td>
</tr>
<tr>
<td>2</td>
<td>\Tabulate#1\ByGroup1#1</td>
<td>Dir</td>
</tr>
<tr>
<td>3</td>
<td>\Tabulate#1\ByGroup1#1\Report#1</td>
<td>Dir</td>
</tr>
<tr>
<td>4</td>
<td>\Tabulate#1\ByGroup1#1\Report#1\Table#1</td>
<td>Table</td>
</tr>
<tr>
<td>5</td>
<td>\Tabulate#1\ByGroup2#1</td>
<td>Dir</td>
</tr>
<tr>
<td>6</td>
<td>\Tabulate#1\ByGroup2#1\Report#1</td>
<td>Dir</td>
</tr>
<tr>
<td>7</td>
<td>\Tabulate#1\ByGroup2#1\Report#1\Table#1</td>
<td>Table</td>
</tr>
<tr>
<td>8</td>
<td>\Tabulate#1\ByGroup3#1</td>
<td>Dir</td>
</tr>
<tr>
<td>9</td>
<td>\Tabulate#1\ByGroup3#1\Report#1</td>
<td>Dir</td>
</tr>
<tr>
<td>10</td>
<td>\Tabulate#1\ByGroup3#1\Report#1\Table#1</td>
<td>Table</td>
</tr>
<tr>
<td>11</td>
<td>\Univariate#1</td>
<td>Dir</td>
</tr>
<tr>
<td>12</td>
<td>\Univariate#1\ByGroup1#1</td>
<td>Dir</td>
</tr>
<tr>
<td>13</td>
<td>\Univariate#1\ByGroup1#1\ACTUAL#1</td>
<td>Dir</td>
</tr>
<tr>
<td>14</td>
<td>\Univariate#1\ByGroup1#1\ACTUAL#1\ExtremeObs#1</td>
<td>Table</td>
</tr>
<tr>
<td>15</td>
<td>\Univariate#1\ByGroup2#1</td>
<td>Dir</td>
</tr>
<tr>
<td>16</td>
<td>\Univariate#1\ByGroup2#1\ACTUAL#1</td>
<td>Dir</td>
</tr>
<tr>
<td>17</td>
<td>\Univariate#1\ByGroup2#1\ACTUAL#1\ExtremeObs#1</td>
<td>Table</td>
</tr>
<tr>
<td>18</td>
<td>\Univariate#1\ByGroup3#1</td>
<td>Dir</td>
</tr>
<tr>
<td>19</td>
<td>\Univariate#1\ByGroup3#1\ACTUAL#1</td>
<td>Dir</td>
</tr>
<tr>
<td>20</td>
<td>\Univariate#1\ByGroup3#1\ACTUAL#1\ExtremeObs#1</td>
<td>Table</td>
</tr>
</tbody>
</table>
Using the Documents Window Pop-up Menu

The Documents window has a pop-up menu with features that are also available through batch processing. You can create a new, modified ODS document by using the Documents window. This enables you to change the table of contents in the PDF and HTML destination.

To create a new document, follow these steps:

1. Type `odsdocuments` in the command bar. The Documents window appears.

2. Create a new ODS document by right-clicking the Documents folder at the top of the Documents window and selecting **New Document** from the menu.

3. When the New Document window appears, select a library to store the new document and provide a name for the document (NEWPRD, for example). Then click **OK**.

 ![Figure 1.3 Naming a New Document](image)

4. Create a folder in the new document by right-clicking the folder that represents the new document and selecting **New Folder**.

5. Enter the country and the description in the New Folder window, and then select **OK**. If a **Description** value is provided, that value is used for the folder name. Note that in the following figure, United States is used as the folder name, not USA.
The folder with all three countries is shown here. Even though the folders are expanded, they have no objects, so there is nothing to show in the expanded view.

You can either copy and paste or drag and drop from the original document store (Work.Prddoc) to the new document, Work.Newprd.
You can also rename the output objects. Right-click the output object that you want to rename, and select **Rename** from the menu.

In the following figure, each “Table 1” has been renamed “Predicted Sales”, which is the value entered in the **Description** field.
The following figure shows the final structure of the Work.Newprd document.

Figure 1.8 The Work.Newprd Document

To replay the entire document, right-click the document and select **Open As** from the drop-down menu.

When the Open As window appears, select a destination, such as PDF (highlighted), and then click **OK**. You can select multiple destinations by pressing the Ctrl key and selecting the destinations that you want.

Figure 1.9 Selecting Destinations

Much of what can be done in this interactive mode to rearrange and rename output objects can be done with PROC DOCUMENT syntax. The PROC DOCUMENT syntax actually parallels the process that you go through in the interactive window. This means that study of the interactive Document window enhances your
understanding of the PROC DOCUMENT syntax for accomplishing the same end results.

Although this is an easy way to create a document, if you replay your original procedure steps, you have to repeat the restructuring process. You can use the corresponding PROC DOCUMENT code to re-create your document, or you can use links to output objects to create your document. For an example of a method that uses links to output objects to restructure your output, see “Creating Custom Output with Links” on page 14.

Examples:

Example 1: Restructuring Output

Features:

- PROC DOCUMENT statements
 - DOC
 - DIR
 - COPY TO
 - MAKE
 - PROC DOCUMENT
 - REPLAY
 - SETLABEL
- ODS PDF statement
- ODS DOCUMENT statement
- ODS SELECT statement

Details

PROC DOCUMENT allows you to create a new, modified ODS document in the Documents window or in a SAS program. You can use PROC DOCUMENT syntax to accomplish the same tasks shown in the section “Using the Documents Window Pop-up Menu” on page 7. Using the Documents window is useful when you have a few documents that you need to create and replay. However, if you use SAS Enterprise Guide or SAS Studio (which do not have the Documents window) or you want to create an ODS document store as part of nightly production processing, then the PROC DOCUMENT syntax enables you to accomplish these creation, management, and replay tasks. The following SAS program corresponds to the actions that were done in the Documents window.

The following code creates the ODS document Work.Prddoc, which we are working with. The ODS SELECT statement specifies that only the output ExtremeObs (which is one of the output objects created by PROC UNIVARIATE) is added to the document. All of the output objects created by PROC TABULATE are added to the document.

```sas
ods html close;
proc sort data=sashelp.prdsale out=prdsale;
  by Country;
run;
ods document name=work.prddoc{write};
proc tabulate data=prdsale;
```
Program

ods html close;
proc document;
 doc name=Work.Newprd(WRITE);
 dir \
 make USA;
 setlabel USA 'United States';
 copy \Work.Prddoc\Univariate#1\ByGroup3#1\ACTUAL#1\ExtremeObs#1 TO USA#1;
 copy \Work.Prddoc\Tabulate#1\ByGroup3#1\Report#1\Table#1 TO USA#1;
 setlabel USA#1\Table#1 'Predicted Sales';

 make Germany;
 setlabel Germany 'Germany';
 copy \Work.Prddoc\Univariate#1\ByGroup2#1\ACTUAL#1\ExtremeObs#1 TO Germany#1;
 copy \Work.Prddoc\Tabulate#1\ByGroup2#1\Report#1\Table#1 TO Germany#1;
 setlabel Germany#1\Table#1 'Predicted Sales';

 make Canada;
 setlabel Canada 'Canada';
 copy \Work.Prddoc\Univariate#1\ByGroup1#1\ACTUAL#1\ExtremeObs#1 TO Canada#1;
 copy \Work.Prddoc\Tabulate#1\ByGroup1#1\Report#1\Table#1 TO Canada#1;
 setlabel Canada#1\Table#1 'Predicted Sales';
quit;
ods pdf file='CustomPrd.pdf' contents=yes;
proc document name=work.Newprd;
 replay;
run;
quit;
ods _all_ close;
Program Description

Close the HTML destination. The HTML destination is open by default. Closing the HTML destination saves system resources.

ods html close;

Create the ODS document Newprd. The DOC statement with the WRITE option specified creates a new document in the Work directory.

proc document;
 doc name=Work.Newprd(WRITE);
 dir \;
end;

Create a new folder and copy output objects into it. The MAKE statement creates the folder "USA". The SETLABEL statement specifies the text of the label. The COPY TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.

make USA;
setlabel USA 'United States';
copy \Work.Prddoc\Univariate#1\ByGroup3#1\ACTUAL#1\ExtremObs#1 TO USA#1;
copy \Work.Prddoc\Tabulate#1\ByGroup3#1\Report#1\Table#1 TO USA#1;
setlabel USA#1\Table#1 'Predicted Sales';

Create a new folder and copy output objects into it. The MAKE statement creates the folder "Germany". The SETLABEL statement specifies the text of the label. The COPY TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.

make Germany;
setlabel Germany 'Germany';
copy \Work.Prddoc\Univariate#1\ByGroup2#1\ACTUAL#1\ExtremObs#1 TO Germany#1;
copy \Work.Prddoc\Tabulate#1\ByGroup2#1\Report#1\Table#1 TO Germany#1;
setlabel Germany#1\Table#1 'Predicted Sales';

Create a new folder and copy output objects into it. The MAKE statement creates the folder "Canada". The SETLABEL statement specifies the text of the label. The COPY TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.

make Canada;
setlabel Canada 'Canada';
copy \Work.Prddoc\Univariate#1\ByGroup1#1\ACTUAL#1\ExtremObs#1 TO Canada#1;
copy \Work.Prddoc\Tabulate#1\ByGroup1#1\Report#1\Table#1 TO Canada#1;
setlabel Canada#1\Table#1 'Predicted Sales';

End the DOCUMENT procedure.
quit;

Specify the PDF destination and replay the document. The ODS PDF statement opens the PDF destination and creates the output file. The REPLAY statement in the PROC DOCUMENT step replays the document Newprd to the PDF destination.

ods pdf file='CustomPrd.pdf' contents=yes;
proc document name=work.Newprd;
replay;
run;
quit;
ods _all_ close;

PDF Output

Output 1.1 Original PDF Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
</tbody>
</table>

Output 1.2 PDF Table of Contents After the Output Has Been Modified

Example 2: Creating Custom Output with Links

Features:
- PROC DOCUMENT statements
 - DOC
 - DIR
 - LINK TO
 - MAKE
 - PROC DOCUMENT
 - REPLAY
 - SETLABEL
- ODS PDF statement
- ODS DOCUMENT statement
- ODS SELECT statement
Details

The following example creates a new document with links to the output objects in the original document. You have to create the custom structure with links only once, and then you can replay the document any number of times. This prevents you from having to make the custom structure every time you run SAS.

In the example “Restructuring Output” on page 11, you learned how to rearrange output with the Documents window. However, you can accomplish the same modifications by using links in a new document.

The following code creates the ODS document Work.Prddoc, which we are working with.

```sas
ods listing close;
proc sort data=sashelp.prdsale out=prdsale;
    by Country;
run;
ods document name=work.prddoc(write);
proc tabulate data=prdsale;
    by Country;
    var predict;
    class prodtype;
    table prodtype all,
          predict*(min mean max);
run;
ods select ExtremeObs;
proc univariate data=prdsale;
    by Country;
    var actual;
run;
ods document close;
```

Program

```sas
ods html cose;
proc document;
    doc name=Work.NewprdLinks(WRITE);
    dir \\
    make USA;
    setlabel USA 'United States';
    link \Work.Prddoc\Univariate#1\ByGroup3#1\ACTUAL#1\ExtremeObs#1 TO USA#1;
    link \Work.Prddoc\Tabulate#1\ByGroup3#1\Report#1\Table#1 TO USA#1;
    setlabel USA#1\Table#1 'Predicted Sales';

    make Germany;
    setlabel Germany 'Germany';
    link \Work.Prddoc\Univariate#1\ByGroup2#1\ACTUAL#1\ExtremeObs#1 TO Germany#1;
    link \Work.Prddoc\Tabulate#1\ByGroup2#1\Report#1\Table#1 TO Germany#1;
    setlabel Germany#1\Table#1 'Predicted Sales';
```
make Canada;
setlabel Canada 'Canada';
link \Work.Prddoc\Univariate#1\ByGroup1#1\ACTUAL#1\ExtremeObs#1 TO Canada#1;
link \Work.Prddoc\Tabulate#1\ByGroup1#1\Report#1\Table#1 TO Canada#1;
setlabel Canada#1\Table#1 'Predicted Sales';
quit;
ods pdf file='CustomPrdLinks.pdf' contents=yes;
proc document name=work.NewprdLinks;
 replay;
 run;
 quit;

Program Description

Close the HTML destination. The HTML destination is open by default. Closing the HTML destination saves system resources.
ods html cose;

Create the ODS document NewprdLinks. The DOC statement with the WRITE option specified creates a new document in the Work directory.
proc document;
 doc name=Work.NewprdLinks(WRITE);
 dir \;

Create a new folder and create links to the original output objects. The MAKE statement creates the folder "USA". The SETLABEL statement specifies the text of the label. The LINK TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.
make USA;
setlabel USA 'United States';
link \Work.Prddoc\Univariate#1\ByGroup3#1\ACTUAL#1\ExtremeObs#1 TO USA#1;
link \Work.Prddoc\Tabulate#1\ByGroup3#1\Report#1\Table#1 TO USA#1;
setlabel USA#1\Table#1 'Predicted Sales';

Create a new folder and create links to the original output objects. The MAKE statement creates the folder "Germany". The SETLABEL statement specifies the text of the label. The LINK TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.
make Germany;
setlabel Germany 'Germany';
link \Work.Prddoc\Univariate#1\ByGroup2#1\ACTUAL#1\ExtremeObs#1 TO Germany#1;
link \Work.Prddoc\Tabulate#1\ByGroup2#1\Report#1\Table#1 TO Germany#1;
setlabel Germany#1\Table#1 'Predicted Sales';

Create a new folder and create links to the original output objects. The MAKE statement creates the folder "Canada". The SETLABEL statement specifies the text of the label. The LINK TO statements copy the output objects ExtremeObs#1 and Table#1 to the new folder.
make Canada;
setlabel Canada 'Canada';
link \Work.Prddoc\Univariate#1\ByGroup1#1\ACTUAL#1\ExtremeObs#1 TO Canada#1;
link \Work.Prddoc\Tabulate#1\ByGroup1#1\Report#1\Table#1 TO Canada#1;
setlabel Canada#1\Table#1 'Predicted Sales';

End the DOCUMENT procedure.
quit;

Specify the PDF destination and replay the document. The ODS PDF statement opens the PDF destination and creates the output file. The REPLAY statement in the PROC DOCUMENT step replays the document NewprdLinks to the PDF destination.

ods pdf file='CustomPrdLinks.pdf' contents=yes;
proc document name=work.NewprdLinks;
 replay;
run;
quit;

Document Window Structure

In the Documents window, the following icon indicates that the output object is a link to an output object:

Output 1.3 ODS Document Newprdlinks Shown in the Documents Window

PDF Output

The PDF table of contents and output is exactly the same as in "Restructuring Output" on page 11.
Chapter 1 / Restructuring Output with PROC DOCUMENT

Output 1.4 Original PDF Table of Contents

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Tabulate Procedure</td>
</tr>
<tr>
<td>Country=Canada</td>
</tr>
<tr>
<td>Cross-tabular summary report</td>
</tr>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>Country=Germany</td>
</tr>
<tr>
<td>Cross-tabular summary report</td>
</tr>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>Country=USA</td>
</tr>
<tr>
<td>Cross-tabular summary report</td>
</tr>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>The Univariate Procedure</td>
</tr>
<tr>
<td>Country=Canada</td>
</tr>
<tr>
<td>ACTUAL</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Country=Germany</td>
</tr>
<tr>
<td>ACTUAL</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Country=USA</td>
</tr>
<tr>
<td>ACTUAL</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
</tbody>
</table>

Output 1.5 PDF Table of Contents After the Output Has Been Modified

<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>Predicted Sales</td>
</tr>
</tbody>
</table>
Using WHERE Expressions in PROC DOCUMENT

Overview

WHERE expressions in PROC DOCUMENT statements enable you to conditionally perform actions on objects within the document. For example, you can use a WHERE expression with a subsetting variable to help you find common metadata values in ODS documents. You can also use WHERE expressions to only print output objects with specific BY variable values.

WHERE Expression Syntax

WHERE expressions can be used in the following PROC DOCUMENT statements:

- COPY TO
- DELETE
- LINK
- LIST
- MOVE TO
- REPLAY

For complete documentation about WHERE expressions with any of the preceding statements, see the statement documentation in “DOCUMENT Procedure” in SAS Output Delivery System: Procedures Guide.

Document paths can be followed by a WHERE clause to further subset the objects matched by a path. The general form of WHERE clause usage is shown below:
conditiously selects a subset of entries in an ODS document.

where-expression

is an arithmetic or logical expression that consists of a sequence of operators and operands.

operand

is one of the following:

- **constant**

is a fixed value such as a date literal, a value, or a BY variable value.

- **SAS function**

 For information about SAS functions, see *SAS Functions and CALL Routines: Reference*.

- **subsetting variable**

is a special type of *WHERE* expression operand used by the DOCUMENT procedure to help you find common metadata values in ODS documents. Variables available in a *WHERE* clause are listed in the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| _CDATE_ | Creation date of the item | The following MOVE TO statement moves all entries of the type 'Graph' with a creation date of 16JUL2004 to the Monthly directory in Work.MyDoc:

 move "^(where=(_type_ = 'Graph' and _cdate_ = '16JUL2004'd))

 to \ work.mydoc\monthly;

 run; |
| _CDATETIME_ | Creation datetime of the item | The following COPY TO statement copies all entries with a creation datetime of May 1, 2003, at 9:30 to the Monthly directory of Work.MyDoc:

 copy "^(where=(_cdatetime_ = '01may04:9:30:00'dt))

 to \work.mydoc\monthly;

 run; |
| _CTIME_ | Creation time of the item | The following DELETE statement deletes all entries with a creation time of 9:25:19 PM:

 delete "^(where=(_ctime_ = '9:25:19pm't));

 run; |
| _LABEL_ | Item label | The following LIST statement lists all tables containing the label 'Type III Model' within the GLM procedure:

 list glm(where=(_type_ = 'table' and _label_ ? 'Type III Model'));

 run; |
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| _LABELPATH_ | Labels of all entries in the path | The following LIST statement lists all items containing “Fit Statistics” in the label path:
`list gml(where=(labelpath_ ? "Fit Statistics") / levels=all;
run; |
| _MAX_ | The last observation | The following REPLAY statement replays all observations except the last observation:
`replay class(where=(_obs_ < _max_)); |
| _MDATE_ | Modification date of the item | The following MOVE TO statement moves all entries of the type 'Graph' with a modification date of 16JUL2004 to the Monthly directory of Work.MyDoc:
`move ^(where=(_type_ = 'Graph' and _mdate_ = '16JUL2004'd))
to \work.mydoc\monthly;
run; |
| _MDATETIME_ | Modification datetime of the item | The following REPLAY statement replays all entries with a modification datetime of May 1, 2003, at 9:30:
`replay ^(where=(_mdatetime_ = '01may04:9:30:00'dt));
run; |
| _MIN_ | The first observation | The following REPLAY statement replays all observations except the first observation:
`replay class(where=(_obs_ > _min_)); |
| _MTIME_ | Modification time of the item | The following COPY TO statement copies all entries with a modification time of 9:25:19 PM to the Monthly directory of Work.MyDoc:
`copy ^(where=(_mtime_ = '9:25:19pm't))
to \work.mydoc\monthly;
run; |
| _NAME_ | Item name | The following DELETE statement deletes all entries that contain the name “stemleng” within the GLM procedure:
`delete glm(where=(_name_ ? 'stemleng')); |
| _OBS_ | The current observation number in an output object | The following REPLAY statement replays all but the first ten observations:
`replay class(where=(_obs_ > 10}) |
| observation-number | The observation number to be replayed | The following REPLAY statement replays the first, third, fifth, seventh, and ninth observations:
`replay class(where=(_obs_ in (1,3,5,7,9))); |
| observation-variable | The name of an observation | The following REPLAY statement replays all observations where the variable Weight is greater than 100:
`replay class(where=(weight>100)); |
Table 2.2 Comparison Operators

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Mnemonic Equivalent</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>EQ</td>
<td>Equal to</td>
</tr>
<tr>
<td>^= or ~= or ~ or <></td>
<td>NE</td>
<td>Not equal to</td>
</tr>
<tr>
<td>></td>
<td>GT</td>
<td>Greater than</td>
</tr>
<tr>
<td><</td>
<td>LT</td>
<td>Less than</td>
</tr>
<tr>
<td>>=</td>
<td>GE</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td><=</td>
<td>LE</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>IN</td>
<td></td>
<td>Equal to one from a list of values</td>
</tr>
</tbody>
</table>
Example: Opening and Listing ODS Documents Using WHERE Expressions

Features:
- PROC DOCUMENT statements
- PROC DOCUMENT
- LIST statement
- REPLAY statement
- ODS PDF statement
- ODS DOCUMENT statement
- PROC UNIVARIATE

Note: See “Creating the Univ ODS Document” on page 431 for the SAS code that creates the Univ ODS document.

Details

This example shows you how to do these tasks:
- Open an ODS document
- Replay a table and send the output to the LISTING and PDF destinations
- List specific entries in an ODS document by using WHERE expressions
- List the details of a specified entry
- Replay an ODS document to a PDF file

Program

```sas
options nodate nonumber;
ods pdf file='your_file.pdf';
proc document name=univ;
list ^ (where=(_type_ = 'Graph' or _type_ = 'Table')) / levels=all;
replay univariate#1\Normal_x#1\Histogram#1\Histogram#1;
list \Work.Univ\Univariate#2\Exponential_x#1\Histogram#1\Exponential#1\FitQuantiles#1
   / details;
replay \Work.Univ\Univariate#2\Exponential_x#1\Histogram#1\Exponential#1\FitQuantiles#1
run;
quit;
ods pdf close;
```

Program Description

Set the SAS system options. The NODATE option suppresses the display of the date and time in the output. The NONUMBER option suppresses the printing of page numbers.
options nodate nonumber;

Specify that you want to replay the output to a PDF file. The ODS PDF statement opens the PDF file that contains the replayed histogram. The FILE= statement sends all output objects to the external file that you specify. HTML output is created by default.

ods pdf file='your_file.pdf';

Open the ODS document Work.Univ. The PROC DOCUMENT statement with the NAME= option specified opens the ODS document Work.Univ for updates. WORK.Univ was created in the example “Navigating the directory and Listing the Entries”.

proc document name=univ;

List the entries that are associated with the current document and replay a histogram. By using a WHERE expression, the LIST statement lists only entries that are graphs or tables. The LEVELS=ALL option specifies that detailed information about all levels be shown. The ^ symbol represents the current directory. The REPLAY statement replays the Histogram#1 entry to all open ODS destinations.

list ^ (where=(_type_ = 'Graph' or _type_ = 'Table')) / levels=all;
replay univariate#1\Normal_x#1\Histogram#1\Histogram#1;

List the details of the FitQuantiles table, and replay the FitQuantiles table. The LIST statement with the DETAILS option specifies the listing of the properties of the entry FitQuantiles table. The REPLAY statement replays FITQUANTILES to open destinations.

list \Work.Univ\Univariate#2\Exponential_x#1\Histogram#1\Exponential#1\FitQuantiles#1 / details;
replay \Work.Univ\Univariate#2\Exponential_x#1\Histogram#1\Exponential#1\FitQuantiles#1;
run;

Terminate the DOCUMENT procedure and close the PDF destination. Specify the QUIT statement to terminate the DOCUMENT procedure. If you omit QUIT, then you cannot view DOCUMENT procedure output. The ODS PDF CLOSE statement closes the PDF destination and all the files that are associated with it. If you do not close the destination, then you cannot view the files.

quit;
ods pdf close;

Output

This display is page 1 of the ODS document Work.Univ that was sent to the PDF destination. You can browse the output by clicking the bookmarks.
Output 2.1 List of the Graphs and Tables Found in Work.Univ, Viewed in Acrobat Reader

Output 2.2 Replayed Normal Distribution Histogram
Chapter 2 / Using WHERE Expressions in PROC DOCUMENT

Output 2.3 Details of the FitQuantiles#1 Table

Output 2.4 Replayed FitQuantiles#1 Table
Overview

PROC DOCUMENT enables you to view information about the output objects that are stored in a document. When a document is created, a reference to the template that output objects use is created. Templates are stored in an ODS document only when you use PROC PRINT, PROC REPORT, PROC TABULATE, or the ODS Graphics procedures. PROC DOCUMENT enables you to view specific information about the output objects’ template in your document. You can then use this information to further customize your output by specifying the template that you want to use.

Displaying the Template Used by Output Objects

You can use the OBTEMPL statement to display the template of an output object. The OBTEMPL statement has the following form:

```
OBTEMPL output-object;
```

`output-object` specifies the pathname of the output object.

By viewing the output object’s table template, you can view the name of the table template that is used for your output and the table attributes that are used to customize the output. For graphics, you can view the name of the graphic template that is used for a graphic. It is important to know the name of the default table template so that you can create a customized version. You can use either the TEMPLATE procedure or the ODSTABLE procedure to customize table templates.
For more information about the TEMPLATE procedure and the ODSTABLE procedure, see *SAS Output Delivery System: Procedures Guide*.

Example: Using PROC DOCUMENT to Work with Table Templates

Features:

- PROC DOCUMENT statements
 - DIR
 - LIST statement
 - MAKE
 - OBTEMPL
 - PROC DOCUMENT
 - REPLAY
 - SETLABEL
- ODS DOCUMENT statement
- PROC ODSTABLE
- PROC SQL
- PROC TEMPLATE statements
 - DELETE
 - CELLSTYLE AS

Details

In this example, the PROC SQL steps create two tables. The following output shows the default output for the PROC SQL steps:

Output 3.1 Default PROC SQL Output

```plaintext
Cars with City MPG Greater Than 40

<table>
<thead>
<tr>
<th>Make</th>
<th>Model</th>
<th>MPG (City)</th>
<th>MPG (Highway)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda</td>
<td>Civic Hybrid 4dr manual (gas/electric)</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>Honda</td>
<td>Insight 2dr (gas/electric)</td>
<td>60</td>
<td>66</td>
</tr>
<tr>
<td>Honda</td>
<td>Civic HX 2dr</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>Toyota</td>
<td>Prius 4dr (gas/electric)</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>Toyota</td>
<td>Echo 2dr manual</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>Honda</td>
<td>Echo 2dr</td>
<td>35</td>
<td>43</td>
</tr>
</tbody>
</table>
```
Suppose that you want to modify the look of these tables. You can use PROC ODSTABLE to create customized table templates. You can then use PROC DOCUMENT to apply the customized table templates to your output objects. You can even create two different table templates with PROC ODSTABLE and apply each one to a different output object with PROC DOCUMENT.

Create the ODS Document and List the Output Objects

```sql
ods document name=SqlTempl(write);
proc sql;
title "Cars with City MPG Greater Than 25";
select Make, Model, MPG_City, MPG_Highway
from sashelp.cars
where MPG_City >25;
run;
quit;
proc sql;
title "Cars with City MPG Greater Than 40";
select Make, Model, MPG_City, MPG_Highway
from sashelp.cars
where MPG_Highway >40;
run;
quit;
ods document close;
title;
proc document name=SqlTempl;
list / levels=all;
run;
quit;
```
In order to create a customized version of the output object’s table template with PROC DOCUMENT, you need to know the table template name. It is also helpful to see the SAS code that creates the default table template, so that you can customize the attributes.

Create the ODS document and the procedure output. The ODS DOCUMENT statement creates the document named SqlTempl. The SqlTempl document contains references to the PROC SQL output objects that the program creates.

```sas
ods document name=SqlTempl(write);
proc sql;
title "Cars with City MPG Greater Than 25";
    select Make, Model, MPG_City, MPG_Highway
    from sashelp.cars
    where MPG_City >25;
run;
quit;
proc sql;
title "Cars with City MPG Greater Than 40";
    select Make, Model, MPG_City, MPG_Highway
    from sashelp.cars
    where MPG_Highway >40;
run;
quit;
ods document close;
```

List the output objects. The PROC DOCUMENT procedure step that includes the LIST statement prints a listing of the paths for all of the output objects.

```sas
title;
proc document name=SqlTempl;
    list / levels=all;
run;
quit;
```

Output 3.3 Listing of the SqlTempl Document.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Path</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\SQL#1</td>
<td>Dir</td>
</tr>
<tr>
<td>2</td>
<td>\SQL#1\SQL_Results#1</td>
<td>Table</td>
</tr>
<tr>
<td>3</td>
<td>\SQL#2</td>
<td>Dir</td>
</tr>
<tr>
<td>4</td>
<td>\SQL#2\SQL_Results#1</td>
<td>Table</td>
</tr>
</tbody>
</table>
View the Table Templates

View the table template associated with the two tables. By using the preceding LISTING statement, we know that the paths to the output objects that are tables are `\SQL#1\SQL_Results#1` and `\SQL#2\SQL_Results#1`. The OBTEMPL statement specifies that PROC DOCUMENT prints the contents of the output object’s table template to the open destination, which is the HTML destination in this example.

```plaintext
proc document name=SqlTempl;
    obtempl \SQL#1\SQL_Results#1;
    obtempl \SQL#2\SQL_Results#1;
run;
quit;
```

The name of the table template that is used for the PROC SQL output is `Base.SQL`. Both output objects use this table template because it is the default table template for all PROC SQL output. The entire code for the table template is written to the Results Viewer window.

Output 3.4 SQL Table Template Program Code

Create Two Custom Table Templates

```plaintext
proc odstable name=Base.SQL store=mystore;
    cellstyle
        _DATANAME_ = "MPG_City" and _val_ gt (40) as {background=orange},
        mod(_row_,2) as {Background=Honeydew};
run;

proc odstable name=Base.SQL;
    cellstyle _DATANAME_ = "MPG_Highway" and _val_ gt (50) as {background=orange},
        mod(_row_,2) as {Background=Honeydew};
run;
```
Program Description

The following program creates two table templates, both named Base.SQL. The name Base.SQL is used because that is the table template name that PROC DOCUMENT is looking for. However, one instance of Base.SQL is stored in the default template store Sasuser.Templat, and the other is stored in the template store Work.Mystore. You can use the STORE= option in the REPLAY statement to replay two output objects and use a different table template for each one, even though the template name is the same.

Create a custom table template in a new item store. PROC ODSTABLE creates a custom table template. You must give the new template the same name as the default table template, Base.SQL. However, this template is now applied to every table created by SAS that uses the table name Base.SQL, unless it is overridden by another template created by PROC TEMPLATE or PROC ODSTABLE, removed with the DELETE statement, or manually removed from the item store. The STORE= option creates the item store Work.MyStore that contains the new table template.

```sas
proc odstable name=Base.SQL store=mystore;
  cellstyle
    _DATANAME_ = "MPG_City" and _val_ gt (40) as {background=orange},
    mod(_row_,2) as {Background=Honeydew};
run;
```

Create a second, different, custom table template in the Sasuser item store. Use PROC ODSTABLE to create a custom table template with the same name as the first table template. You must give the new template the same name as the default table template, Base.SQL. This template is applied to every table created by SAS that uses the table name Base.SQL, unless it is overridden by another template created by PROC TEMPLATE or PROC ODSTABLE, removed with the DELETE statement, or manually removed from the item store. However, because the STORE= option is not specified in the PROC ODSTABLE statement, the template is stored in the default location, which is Sasuser.Templat. Because these two new templates are stored in different locations, you can apply a different template to each output object.

```sas
proc odstable name=Base.SQL;
  cellstyle _DATANAME_ = "MPG_Highway" and _val_ gt (50) as {background=orange},
    mod(_row_,2) as {Background=Honeydew};
run;
```

Work.Mystore and Sasuser.Templat Item Stores
Replay the output objects. The REPLAY statement replays the output objects SQL_Results#1 and SQL_Results#2. The STORE= option specifies that the procedure use the template from the template store Mystore. If the STORE= option is not specified, then the Sasuser.Templat item store is used by default.

```
proc document name=sqlTempl;
  replay \SQL#2\SQL_Results#1, \SQL#1\SQL_Results#1(store=mystore);
run;
quit;
```

Output 3.5 Output Using the Table Template from Work.Mystore

<table>
<thead>
<tr>
<th>Make</th>
<th>Model</th>
<th>MPG (City)</th>
<th>MPG (Highway)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevrolet</td>
<td>Aveo 4dr</td>
<td>28.000000</td>
<td>34.000000</td>
</tr>
<tr>
<td>Chevrolet</td>
<td>Aveo LS 4dr hatch</td>
<td>28.000000</td>
<td>34.000000</td>
</tr>
<tr>
<td>Chevrolet</td>
<td>Cavalier 2dr</td>
<td>26.000000</td>
<td>37.000000</td>
</tr>
<tr>
<td>Chevrolet</td>
<td>Cavalier 4dr</td>
<td>26.000000</td>
<td>37.000000</td>
</tr>
<tr>
<td>Chevrolet</td>
<td>Cavalier LS 2dr</td>
<td>26.000000</td>
<td>37.000000</td>
</tr>
<tr>
<td>Dodge</td>
<td>Neon SE 4dr</td>
<td>29.000000</td>
<td>36.000000</td>
</tr>
<tr>
<td>Dodge</td>
<td>Neon SXT 4dr</td>
<td>29.000000</td>
<td>36.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus ZX3 2dr hatch</td>
<td>26.000000</td>
<td>33.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus LX 4dr</td>
<td>27.000000</td>
<td>36.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus SE 4dr</td>
<td>26.000000</td>
<td>33.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus ZX5 5dr</td>
<td>26.000000</td>
<td>33.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus ZTW</td>
<td>26.000000</td>
<td>33.000000</td>
</tr>
<tr>
<td>Honda</td>
<td>Civic Hybrid 4dr manual (gas/electric)</td>
<td>46.000000</td>
<td>51.000000</td>
</tr>
<tr>
<td>Honda</td>
<td>Insight 2dr (gas/electric)</td>
<td>60.000000</td>
<td>66.000000</td>
</tr>
<tr>
<td>Honda</td>
<td>Civic DX 2dr</td>
<td>32.000000</td>
<td>38.000000</td>
</tr>
<tr>
<td>Ford</td>
<td>Explorer 4dr</td>
<td>36.000000</td>
<td>47.000000</td>
</tr>
</tbody>
</table>
Delete the table templates. The DELETE statements delete the template Base.SQL from the Sasuser.Templat template store and the template Base.SQL from the Work.Mystore template store. Because Base.SQL is the default table template for all PROC SQL output, if you do not delete the custom templates, all of your PROC SQL output will have the customized template applied to it.

```
proc template;
  delete Base.SQL;
  delete Base.SQL / store=mystore;
run;
```
PART 2

ODS and Cascading Style Sheets

Chapter 4
Introduction to Cascading Style Sheets ... 37

Chapter 5
Working with the ODS Document Object Model 43

Chapter 6
Using Style Selectors ... 47

Chapter 7
SAS Dynamic Property Values ... 55

Chapter 8
Resources and Examples ... 59
Introduction to Cascading Style Sheets

Overview

Cascading style sheets (CSS) is a style sheet language that you can use with ODS to control the look and formatting of ODS output. A cascading style sheet is an external file that contains label-value pairs that describe the visual aspects of output, such as fonts, colors, borders, and so on. You can then apply the CSS to your ODS output. The CSS language that you can use with ODS is based on the standard CSS syntax that can be found on the internet at http://www.w3.org/Style/CSS/. However, with ODS, you can apply CSS to all third-party formatted destinations except PowerPoint.

You can use CSS as an alternative to PROC TEMPLATE styles. Unlike PROC TEMPLATE styles, CSS enables you to apply custom styles based on column names, BY group names, BY group variables, and anchor names. Using CSS with ODS gives you greater flexibility in customizing your ODS reports.

Using CSS with ODS enables you to use the power of CSS style selectors with the internal data querying capabilities of PROC TEMPLATE styles. You can create custom output by defining your own external cascading style sheet file to apply to your ODS output. To use CSS with ODS, it is recommended that you perform the following steps:

1. Look at the ODS document object model (ODS DOM) to determine what elements and attributes exist so that you can construct your CSS selectors to address those areas. You can view the ODS DOM with the ODS TRACE DOM statement or with the DOM option on almost any ODS destination statement.

2. Create an external CSS file using standard CSS syntax.

3. Apply the CSS file to your ODS output with the CSSSTYLE= option in almost any ODS destination statement. The style sheet is interpreted by SAS instead of by the web browser.

In the following example, the style sheet "MyCss.css" is applied to PDF, RTF, and HTML output.
ods pdf cssstyle='MyCss.css';
ods rtf cssstyle='MyCss.css';
ods html cssstyle='MyCss.css';
proc print data=sashelp.class(obs=3);
run;
ods _all_ close;

Figure 4.1 Default HTML Output

Actual Product Sales (Default Output)

<table>
<thead>
<tr>
<th>Region by Division and Type</th>
<th>Product type</th>
<th>Total Actual Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FURNITURE</td>
<td>OFFICE</td>
</tr>
<tr>
<td></td>
<td>Actual Sales</td>
<td>Actual Sales</td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td>Sum</td>
</tr>
<tr>
<td>Region</td>
<td>Division</td>
<td>CONSUMER</td>
</tr>
<tr>
<td>EAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONSUMER</td>
<td>$72,570</td>
</tr>
<tr>
<td></td>
<td>EDUCATION</td>
<td>$73,901</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$146,471</td>
</tr>
<tr>
<td>WEST</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONSUMER</td>
<td>$76,209</td>
</tr>
<tr>
<td></td>
<td>EDUCATION</td>
<td>$67,945</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$144,154</td>
</tr>
<tr>
<td>Total</td>
<td>Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONSUMER</td>
<td>$148,779</td>
</tr>
<tr>
<td></td>
<td>EDUCATION</td>
<td>$141,846</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$290,625</td>
</tr>
</tbody>
</table>
Terminology

Before you start working with cascading style sheets, you should be familiar with the following terminology.

cascading style sheet (CSS)

is a set of specifications that control the look and formatting of ODS output. You can use a CSS file to specify fonts, sizes, and colors of the text in ODS reports. A CSS file is external to SAS and contains a collection of rule sets, style properties, declaration blocks, and CSS selectors.

The easiest way to apply a CSS to your ODS report is by using the CSSSTYLE= option on almost any ODS destination statement. The CSSSTYLE= option is valid for all ODS destination statements except ODS LISTING, ODS OUTPUT, and ODS POWERPOINT. For information about ODS destination statements, see “Dictionary of ODS Language Statements” in SAS Output Delivery System: User’s Guide.

You can also use the STYLESHEET= option in the ODS HTML statement or the IMPORT statement in PROC TEMPLATE to apply a CSS to your output. For information about the ODS HTML statement, see “ODS HTML Statement” in SAS Output Delivery System: User’s Guide. For information about the IMPORT statement, see “IMPORT Statement” in SAS Output Delivery System: Procedures Guide.
combinator

is an operator used between selectors to create more complex selectors that depend on sibling-descendant relationships in the ODS document object model.

CSS rule set

is a combination of one or more CSS style selectors and one CSS declaration block. There are usually multiple rule sets within a CSS file. The following code is an example of one rule set that consists of one style selector named .SYSTEMTITLE and one declaration block. The declaration block contains three style properties.

```
.SYSTEMTITLE
{
  font-family: arial, helvetica, sans-serif;
  color: red;
  border: 1px solid black;
}
```

The following code is an example of one rule set that consists of five style selectors that are separated by commas. There is one declaration block that contains one style property.

```
.body, .systemtitle, .header, .rowheader, .data
{
  font-family: arial, sans-serif;
}
```

ODS document object model (DOM)

is an in-memory representation of the ODS report structure. Use the ODS TRACE DOM statement or the DOM option to view the DOM for any ODS report. The DOM option is valid for all ODS destination statements except ODS LISTING and ODS OUTPUT.

DOM element

is a component of an ODS report that has been parsed into the ODS document object model. Elements are written with a start element and an end element, with the content in between. For example, a paragraph is represented by the `<P>` element, and would be written as the following:

```
<P>This is a paragraph.</P>
```

style selector

is one or more character strings that identifies the part of the output that the declaration block affects. You can specify one or more style selectors for each declaration block. Multiple style selectors are separated by commas. There are different types of style selectors. For detailed information about style selectors, see Chapter 6, “Using Style Selectors,” on page 47.

In the rule set below, there is one style selector named .SYSTEMTITLE and one declaration block that contains three style properties.

```
.SYSTEMTITLE
{
  font-family: arial, helvetica, sans-serif;
  color: red;
  border: 1px solid black;
}
```

The following code is an example of one rule set that consists of five style selectors that are separated by commas. There is one declaration block that contains one style property.
CSS declaration block

CSS declaration block is one or more style properties, enclosed in braces, that affect specific areas of ODS output. The following code is an example of one declaration block that contains three style properties.

```css
{
  font-family: arial, helvetica, sans-serif;
  color: red;
  border: 1px solid black;
}
```

Style property

Style property is a visual property, such as color, font properties, and line characteristics, that is defined in a cascading style sheet file with a reserved name and value. Style properties are collectively referenced by a declaration block within a cascading style sheet. Style properties are separated by semi-colons.

In the following code, FONT-FAMILY, COLOR, and BORDER are style properties.

```css
font-family: arial, helvetica, sans-serif;
color: red;
border: 1px solid black;
```
ODS Document Object Model (DOM) Structure

The ODS document object model (DOM) is the in-memory representation of an ODS report. You can use the DOM to dynamically access and update the content, structure, and style of ODS output. By viewing the DOM, you can determine what elements and attributes exist so that you can construct your CSS selectors to access those areas. To view the DOM for a destination, use the DOM option in any ODS destination statement except ODS LISTING and ODS OUTPUT. You can also specify the DOM option in the ODS TRACE statement.

For example, the ODS TRACE DOM statement in the following code writes the trace record to the SAS log. The trace record includes the DOM for the PDF output.

```sas
ods html close;
ods trace dom;
ods pdf file="myFile.PDF";
proc report data=sashelp.class(obs=1);
   column name;
run;
ods pdf close;
ods trace off;
```

You can also use the DOM option in the ODS destination statement to write the DOM to the SAS log or to an external file.

```sas
ods html close;
ods pdf file="myFile.PDF" dom;
proc report data=sashelp.class(obs=1);
   column name;
run;
ods pdf close;
```
Example Code 5.1 SAS Log Output

```sas
ods html close;
ods pdf file="myFile.PDF" dom;
<DOCTYPE html>
<html>
<head>
  <title>ODS PDF DOM</title>
  <link rel="stylesheet" href="style.css">
</head>
<body dest="pdf" class="body">
  proc report data=sashelp.class(obs=1);
  column name;
  run;

  <section id="idx" class="oo" data-name="procreporttable" label="detailed and/or summarized report" proc="report" output="report">
    <h1 class="systemtitle">
    </h1>
    <p class="systemtitle">Comparison of City and Highway Miles Per Gallon</p>
    <table class="table">
      <colgroup>
        <col type="char">
      </colgroup>
      <thead>
        <tr>
          <th class="header" index="1">Name</th>
        </tr>
      </thead>
      <tbody>
        <tr>
          <td class="data" type="char" unformatted-type="char" index="1" name="_c1_">
            Alfred
          </td>
        </tr>
      </tbody>
    </table>
  </section>

  ... more log output ...

  NOTE: There were 1 observations read from the data set SASHELP.CLASS.
  NOTE: PROCEDURE REPORT used (Total process time):
        real time           0.90 seconds
        cpu time            0.28 seconds

  ods pdf close;
  <toc class="contentprocname">
  </div>
  <toc class="contentfolder">
  </div>
  <toc class="contentitem">
  </div>
  </body>
</html>
```

1 The type of DOM is written in the `<TITLE>` elements at the beginning of the trace record (in this case, “ODS PDF DOM”).

2 `<SECTION id="idx" class="oo" data-name="procreporttable" label="detailed and/or summarized report" proc="report" output="report">` is the entire DOM element. `SECTION` is the element name.
id="idx" is an id= attribute and value pair.

class="oo" is a class= attribute and value pair.

The following are standard DOM element attributes and value pairs:

- data-name="procreporttable"
- label="detailed and/or summarized report"
- proc="report"
- output="report"

Tips and Things to Remember

The following tips can help you when working with ODS DOMs.

- It is recommended that you open one destination at a time when working with an ODS DOM. All of the trace information is written to the log, so if you have multiple destinations open, their DOMs are intermingled. This makes it harder to know what elements of the DOM correspond with specific destinations.

- You can use the DOM option on any ODS destination statement except ODS LISTING and ODS OUTPUT.

- If you use the ODS TRACE DOM statement, then use the ODS TRACE OFF statement after you close the ODS destination. This prevents your SAS log from filling up with trace information that you do not need.

- Each destination might have different DOMs. You must account for the differences in your CSS file.

- The DOM for all destinations resembles HTML markup so that standard CSS tools can be used to help analyze and apply styles to any destination.

- The type of DOM created is written in the title section of the DOM at the beginning of the trace record.
Overview

Style selectors identify the area of your report that you want to customize. Style selectors are similar to WHERE expressions in that they conditionally match a part of your ODS DOM. There are many ways to use style selectors. You can specify a simple style selector that matches an element name, or a complex selector that matches a pattern of inheritance between elements. Before you create your style selectors, you should be familiar with the ODS document object model (DOM) and the parts of a DOM element. For complete documentation about the ODS DOM, see Chapter 5, “Working with the ODS Document Object Model,” on page 43.

For industry-standard information about style selectors, see CSS Selectors.

The following is a typical DOM element about style.

```
<SECTION id="idx" class="oo" data-name="procreporttable"
  label="detailed and/or summarized report" proc="report" output="report">
```

The DOM element has these parts:

1. `<SECTION id="idx" class="oo" data-name="procreporttable" label="detailed and/or summarized report" proc="report" output="report">` is the entire DOM element. `<SECTION>` is the element name.

2. `id="idx"` is an `id` attribute and value pair.
3 class="oo" is a class= attribute and value pair.

4 The following are standard DOM element attribute and value pairs:

- data-name="procreporttable"
- label="detailed and/or summarized report"
- proc="report"
- output="report"

Class Selectors

Class selectors are style selectors that select elements based on the value of the class= attribute in the markup of an ODS report. Class selectors must have a period (.) preceding the class name. For example, in the following rule set, the class style selector is .SYSTEMTITLE.

```css
.systemtitle
{
    font-family: arial, helvetica, sans-serif;
    color: red;
    border: 1px solid black;
}
```

The class selector .SYSTEMTITLE applies to the following markup elements:

- `<p class="systemtitle">The SAS System</p>`
- `<p class="focused systemtitle large">The SAS System</p>`

However, the class selector .SYSTEMTITLE does not apply to the following markup elements:

- `<p>The SAS System</p>`
- `<p class="footer">The SAS System</p>`
- `<p class="system title">The SAS System</p>`

Element Selectors

Element selectors are style selectors that select DOM elements based on the element name. For example, the following rule set selects elements with the name P:

```css
p {color:green}
```

All of the following HTML markup examples use the `<p>` element. The declaration block {color:green} would be applied to them.

- `<p class="systemtitle">The SAS System</p>`
- `<p class="focused systemtitle large">The SAS System</p>`
- `<p>The SAS System</p>`
- `<p class="footer">The SAS System</p>`
Universal Selector

The universal selector is a style selector that is a wildcard. It can match any element name. The syntax for the universal selector is an asterisk (*).

Pseudo-Class Selectors

Pseudo-class selectors are style selectors that select elements based on the relationships between DOM elements. Pseudo-classes are represented by the pseudo-class name prefixed with a colon (:). The following are examples of some ways that you can use pseudo-class selectors.

- select the first and last child of a parent element
- select a specific child based on its positional index in the parent element
- select an element by position of a particular element name

<table>
<thead>
<tr>
<th>Pseudo-class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:root</td>
<td>Selects the top-level element in the DOM.</td>
</tr>
<tr>
<td>:first-child</td>
<td>Selects the first element within the parent.</td>
</tr>
<tr>
<td>:first-of-type</td>
<td>Selects the first element of that type (that is, same element name) in the parent.</td>
</tr>
<tr>
<td>:marker</td>
<td>Selects a list item bullet in printer output.</td>
</tr>
<tr>
<td>:nth-child(an+b)</td>
<td>Selects an element based on the equation $an+b$. This equation selects every ath element starting with element at position b. The equation can be replaced with the keywords even or odd for the simple case of alternating the selection.</td>
</tr>
<tr>
<td>:nth-of-type(an+b)</td>
<td>Selects the :nth-child, except that only the same elements of the same type are used in the calculation.</td>
</tr>
<tr>
<td>:empty</td>
<td>Selects one or more empty elements. This only applies to elements that have been specified as empty by the procedure.</td>
</tr>
<tr>
<td>:before</td>
<td>Inserts content before the element.</td>
</tr>
</tbody>
</table>
Pseudo-class | Description
--- | ---
:after | Inserts content after the element.
:not(...) | Selects an element if the selector within the argument is not true.

* This is a special case that is used the same way as the PRETEXT, PREIMAGE, POSTTEXT, and POSTIMAGE style attributes.

For an example that uses pseudo-class selectors to change the style of table cells, see “Applying Styles to Table Cells” on page 85. For an example that uses pseudo-class selectors to change the style of lists, see “Applying Styles to Lists” on page 78.

ID Selectors

ID selectors are style selectors that select elements based on the id= attribute of a DOM element. The ID must be unique within a DOM and only one can be specified in the id= attribute. ID selectors are indicated by a “#” prefix. The following is a CSS rule set with an ID selector:

```css
#idx1 { font-style: italic }
```

The rule set matches the following element:

```html
<section id="idx1"><p>The SAS System</p></section>
```

Attribute Selectors

Attribute selectors select DOM elements with the specified attribute. ID selectors and class selectors are special case attribute selectors. Attribute selectors use the following syntax to select attributes:

```html
[attribute operator "value"]
```

- **operator**
 - specifies the operator.
 - **operator** allows partial matches.

Table 6.2 Operators That Can Be Used with Attribute Selectors

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Matches the entire attribute value.</td>
</tr>
<tr>
<td>^=</td>
<td>Matches the beginning of an attribute value.</td>
</tr>
<tr>
<td>Operator</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>=$</td>
<td>Matches the end of an attribute value.</td>
</tr>
<tr>
<td>*=</td>
<td>Matches any substring in an attribute value.</td>
</tr>
<tr>
<td>-=</td>
<td>Matches any space-separated word in an attribute value. This operator can be used to emulate the class selector.</td>
</tr>
<tr>
<td></td>
<td>=</td>
</tr>
</tbody>
</table>

Combinators

Combinators are characters that select an element based partially on its context within another element. This is done by combining selectors using one of the following characters:

" " (space)
indicates that the selector to the left must match an element anywhere in the parentage of the currently selected element.

Example
The following selector selects all elements with the class="header" attribute and an ancestor with the id="idx1" attribute.

```
#IDX1 .header
```

> selects elements that are a direct descendent of the specified element.

Example
Suppose that you have two nested tables where the outer `<TABLE>` element contains a class="table" attribute and the inner `<TABLE>` element contains a class="stacked" attribute.

```
<table cellspacing="2" cellpadding="2" border="0">
<tr>
    <th></th>
    <th></th>
</tr>
<tr>
    <td></td>
    <td></td>
</tr>
<table cellspacing="2" cellpadding="2" border="0">
<tr>
    <th></th>
    <th></th>
</tr>
```
You only want to customize the <TH> elements of the outer table. You can use the following direct descendant combinator to customize only the outer table <TH> elements:

```
.table > tr > th
```

You can use the following selector to customize only the inner table <TH> elements:

```
.table > * > tr > * > .stacked > tr > th
```

~

selects elements that have another sibling anywhere within the parent.

Example

To select any <TD> element that also has a <TH> element sibling anywhere within the DOM, you can use the following selector.

```
th ~ td
```

This selector selects both <TD> elements in the last row of the HTML table.

+

selects elements that have a specified element immediately preceding them.

Example

To select any <TD> element that also has a <TH> element sibling anywhere within the DOM, you can use the following selector.

```
th + td
```

This selector selects both <TD> elements in the last row of the HTML table.

For an example that uses combinators, see "Applying Styles to Table Cells" on page 85.

Using a Single Style Selector Type per Rule Set

You can specify a single style selector for each rule set. The following code contains two DOM elements taken from the same DOM. The first table element creates a container for the system titles. The second table element creates the table for the output.

```
<table class="systitleandfootercontainer">
  ...
</table>
```

```
<table class="table">
  ...
</table>
```

The following table shows some example of selectors, the complete rule set, and results.
Using Multiple Style Selector Types per Rule Set

You can specify multiple selector types for one rule set. The following code contains one DOM element, a `<SECTION>` element. Any of the selectors in the following table select this element.

```html
...more elements...

<SECTION id="idx" class="oo" data-name="report" label="table 1" proc="tabulate" output="table" contents-label="table 1" data-label="table 1">
...more elements...
```

<table>
<thead>
<tr>
<th>Selector Type</th>
<th>Selector</th>
<th>Rule Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element and class</td>
<td>section.oo</td>
<td>section.oo {background-color: yellow; }</td>
</tr>
<tr>
<td>Element, attribute, and class</td>
<td>section .oo[contents-label="table-1"]</td>
<td>section[contents-label="table-1"].oo {background-color: yellow; }</td>
</tr>
<tr>
<td>Element and class attribute</td>
<td>section[class="oo"]</td>
<td>section[class="oo"] {background-color: yellow; }</td>
</tr>
<tr>
<td>Class attribute and attribute</td>
<td>[class="oo"][data-label="table 1"]</td>
<td>[class="oo"][data-label="table 1"] {background-color: yellow; }</td>
</tr>
<tr>
<td>Class and partial ID attribute match</td>
<td>.oo[data-label="=table"]</td>
<td>.oo[data-label="=table"] {background-color: yellow; }</td>
</tr>
<tr>
<td>Universal selector (matches every element)</td>
<td>*</td>
<td>*(background-color: yellow;)</td>
</tr>
</tbody>
</table>
Tips for Working with Style Selectors

- Selector types can be combined to form more complex selectors.
- Style properties in later rule sets take precedence over those in earlier rule sets.
- It is recommended that you start simply, use a boilerplate, and add on from there.
- ID and class selectors are special cases of attribute selectors and can be specified with the attribute selector syntax. However, it is more efficient to use the dedicated syntax for ID and class selectors.
- ID and class selectors cannot do partial matches. If you want to select ID or class attributes based on partial matches, use the general attribute selector syntax.
- If you want all `<SECTION>` elements to have a specific style, you would use the element type selector. However, if you want to select a specific `<SECTION>` element that contains the `id="idx1"` attribute, then you could use the ID selector `id="idx1"`.
- When specifying multiple selector types, specify element type selectors first. There is no syntactical prefix for element selectors, so they should be specified first.
- Attribute selectors are not as efficient as other types of selectors. It is a good practice to prefix an attribute selector with an element name selector, class name selector, or ID selector.
The following dynamic functions can be specified as the value of any CSS style property.

SYMGET('macro-variable')

specifies that the value of the *macro-variable* is used as the value of the style property.

macro-variable

is the name of a macro variable. The name can refer to a new or existing macro variable.

Example "Using Dynamic Property Values" on page 95

RESOLVE(¯o-variable) | (%macro)

specifies that the value of the ¯o-variable is used as the value of the style property.

¯o-variable

is the name of a macro variable preceded by an ampersand (&). The name can refer to a new or existing macro variable.

%macro

is a character expression that produces a text expression for resolution by the SAS macro facility.

Example "Using Dynamic Property Values" on page 95

FORMAT(SAS-format)

specifies that a SAS-format is used as the value of the style property.

Example "Using Dynamic Property Values" on page 95

EXPRESSION('expression')

specifies that the result of expression is used as the value of the style property. The EXPRESSION function in the following style property uses red and black font colors when the _DATANAME_ built-in variable is equal to 'type'.

```{  
  color: expression("choosec(_dataname_ = 'type')+1, 'red', 'black")
}  ```
In the preceding code, the components of the expression are the following:

- **CHOOSEC** is a SAS function that returns a character value that represents the results of choosing from a list of arguments.
- **_DATANAME_** is the data column name.
- ‘type’ is the value of _DATANAME_.
- red, black are the font colors to use if the expression is true.

**expression**
is a section of programming code that is evaluated for each item that contains a numeric variable.

**expression** has this form:

```
expression-1 <comparison-operator expression-n>
```

**expression** is an arithmetic or logical programming code that consists of a sequence of operators and operands. An operator is a symbol that requests a comparison, logical operation, or arithmetic calculation. An operand is one of the following:

- **constant** is a fixed value such as the name of a column or symbols that are declared in a DYNAMIC, MVAR, or NMVAR statement in the current template.
- **SAS function** specifies a SAS function. For information about SAS functions, see [SAS Functions and CALL Routines: Reference](#).
- **built-in variable** is a special type of WHERE expression operand that helps you find common values in table or column templates. Built-in variables are one or more of the following:

  - **_COLUMN_** is a column number. Column numbering begins with 1.
  - **_DATANAME_** is a data column name.
  - **_DATATYPE_** is the data type of the column variable. The data type is either numeric ("num") or character ("char").
  - **_LABEL_** is a column label.
  - **_ROW_** is a row number. Row numbering begins with 1.
  - **_STYLE_** is a style element name.
  - **_VAL_** is the data value of a cell.
Tip: Use _VAL_ to represent the value of the current column.

**comparison-operator**

compares a variable with a value or with another variable. The following table lists the comparison operators:

**Table 7.1 Comparison Operators**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Mnemonic Equivalent</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>EQ</td>
<td>Equal to</td>
</tr>
<tr>
<td>^= or ~= or ^= or &lt;&gt;</td>
<td>NE</td>
<td>Not equal to</td>
</tr>
<tr>
<td>&gt;</td>
<td>GT</td>
<td>Greater than</td>
</tr>
<tr>
<td>&lt;</td>
<td>LT</td>
<td>Less than</td>
</tr>
<tr>
<td>&gt;=</td>
<td>GE</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>&lt;=</td>
<td>LE</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>IN</td>
<td></td>
<td>Equal to one or more from a list of values</td>
</tr>
</tbody>
</table>

**See** You can use any expression that can be used in the WHERE= data set option. For information about expressions that you can use in the WHERE= data set option, see the WHERE= data set option in *SAS Data Set Options: Reference* and the section on WHERE-Expression Processing in *SAS Language Reference: Concepts*. 
Common Industry-Standard Style Properties

The following style properties are commonly used in CSS. However, a complete list of style properties can be found at W3C Cascading Style Sheets Home Page.

**BACKGROUND:** `<color> <background-attachment> <background-position> <background-repeat> <URL("url")>`

specifies background attributes.

The `BACKGROUND:` property in the following code specifies the following background attributes:

- red background color
- the background image "Sas.gif"
- the image is not repeated
- the image is fixed
- the image is centered

```
body
{
 background: red url('sas.gif') no-repeat fixed center;
}
```

**color**

is a keyword or numerical value that specifies a color. For industry-standard documentation, see [http://www.w3.org/wiki/CSS/Properties/color](http://www.w3.org/wiki/CSS/Properties/color) or [http://www.w3.org/TR/CSS2/syndata.html#value-def-color](http://www.w3.org/TR/CSS2/syndata.html#value-def-color). You can represent a color in one of the following formats:

**hexadecimal**

is a six-digit, three-byte hexadecimal number used to represent colors.
RGB
is a red/green/blue value.

RGBA
is a red/green/blue/alpha value.

HSL
is a hue/saturation/lightness value.

HSLA
is a hue/saturation/light/alpha value.

**background-attachment**
specifies whether a background image is fixed or scrolls with the rest of the page. *background-attachment* can be one of the following:

**SCROLL**
specifies that the background image scrolls with the page.

**FIXED**
specifies that the background image does not scroll with the page.

**Default** SCROLL

**background-position**
specifies the position of the background images. *background-position* can be one of the following:

**keyword**
specifies a keyword as the position of the background image. *keyword* can be one of the following:

- CENTER
- LEFT
- RIGHT
- TOP
- BOTTOM

**x% y%**
specifies percent (%) values for the horizontal and vertical position of the image.

**x%** specifies the horizontal position followed by a % sign.

**y%** specifies the vertical position followed by a % sign.

**Tip** The top left corner is 0% 0%. The right bottom corner is 100% 100%. If you specify only one value, the other value is 50%.

**x-unit y-unit**
specifies fixed values for the horizontal and vertical position of the image.

**x-unit** specifies the horizontal position followed by a unit of measure.

**y-unit** specifies the vertical position followed by a unit of measure.

*Table 8.1* Units of Measure for Dimension

<table>
<thead>
<tr>
<th>cm</th>
<th>Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>em</td>
<td>Standard typesetting measurement unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>Standard typesetting measurement unit for height</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pc</td>
<td>Picas</td>
</tr>
<tr>
<td>pt</td>
<td>A printer's point</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>

**Default**: 0% 0%

**Tip**: The background image is placed according to the `background-position` property. If no `background-position` is specified, the image is always placed at the element's top left corner.

**background-repeat**
specifies how to repeat the background images. `background-repeat` can be one of the following:

- **REPEAT**
specifies that the background image is repeated both vertically and horizontally.

- **REPEAT-X**
specifies that the background image is repeated horizontally.

- **REPEAT-Y**
specifies that the background image is repeated vertically.

- **NO-REPEAT**
specifies that the background-image is not repeated.

**Default**: REPEAT

**url**
is a reference to an external resource.

**Requirement**: `url` must be enclosed in quotation marks and parenthesis.

**BACKGROUND-COLOR**: `color`
specifies the background color.

**color**
is a keyword or numerical value that specifies a color. For industry-standard documentation, see [http://www.w3.org/wiki/CSS/Properties/color](http://www.w3.org/wiki/CSS/Properties/color) or [http://www.w3.org/TR/CSS2/syndata.html#value-def-color](http://www.w3.org/TR/CSS2/syndata.html#value-def-color). You can represent a color in one of the following formats:

- **hexadecimal**
is a six-digit, three-byte hexadecimal number used to represent colors.

- **RGB**
is a red/green/blue value.
RGBA
is a red/green/blue/alpha value.

HSL
is a hue/saturation/lightness value.

HSLA
is a hue/saturation/light/alpha value.

BACKGROUND-IMAGE: URL("url")
specifies a background image.

url is a reference to an external resource.

Requirement url must be enclosed in quotation marks and parenthesis.

BORDER-side-COLOR: color
specifies the border color of the specified side.

color
is a keyword or numerical value that specifies a color. For industry-standard
documentation, see http://www.w3.org/wiki/CSS/Properties/color or http://
www.w3.org/TR/CSS2/syndata.html#value-def-color. You can represent a
color in one of the following formats:

hexadecimal
is a six-digit, three-byte hexadecimal number used to represent colors.

RGB
is a red/green/blue value.

RGBA
is a red/green/blue/alpha value.

HSL
is a hue/saturation/lightness value.

HSLA
is a hue/saturation/light/alpha value.

side
specifies the side of a cell or table.

side is one of the following:

- TOP
- BOTTOM
- RIGHT
- LEFT

BORDER-COLOR: color-1 <, ..., color-4 >
specifies the color of one or more borders.

color
is a keyword or numerical value that specifies a color. For industry-standard
documentation, see http://www.w3.org/wiki/CSS/Properties/color or http://
www.w3.org/TR/CSS2/syndata.html#value-def-color. You can represent a
color in one of the following formats:

hexadecimal
is a six-digit, three-byte hexadecimal number used to represent colors.
RGB
is a red/green/blue value.

RGBA
is a red/green/blue/alpha value.

HSL
is a hue/saturation/lightness value.

HSLA
is a hue/saturation/light/alpha value.

The order in which you specify the colors determines the color applied to each side.

Table 8.2 Border Color Results by Order

<table>
<thead>
<tr>
<th>Example</th>
<th>Order</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{border-color:red;}</code></td>
<td>All four sides</td>
<td>Red</td>
</tr>
<tr>
<td><code>{border-color:red purple;}</code></td>
<td>Top and bottom</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td>Purple</td>
</tr>
<tr>
<td><code>{border-color:red purple orange;}</code></td>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td>Purple</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Orange</td>
</tr>
<tr>
<td><code>{border-color:red purple orange yellow;}</code></td>
<td>Top</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>Purple</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

**BORDER-side-STYLE:** *line-style*

specifies the border style of the specified side.

*line-style*

specifies the line style. *line-style* is one of the following:

- DASHED
- INSET
- DOTTED
- NONE
- DOUBLE
- OUTSET
- GROOVE
- RIDGE
- HIDDEN
- SOLID

*side*

specifies one side of a cell or table.

*side* is one of the following:

- TOP
- BOTTOM
- RIGHT
- LEFT
BORDER-STYLE: line-style-1 <, ..., line-style-4 >
specifies the border style of one or more borders.

\[ \text{line-style} \]

specifies the line style. line-style is one of the following:

- DASHED
- DOTTED
- DOUBLE
- GROOVE
- HIDDEN
- INSET
- NONE
- OUTSET
- RIDGE
- SOLID

The order in which you specify the style determines the style applied to each side.

Table 8.3  Border Style Results by Order

<table>
<thead>
<tr>
<th>Example</th>
<th>Order</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>{border-style: double;}</td>
<td>All four sides</td>
<td>Double</td>
</tr>
<tr>
<td>{border-style: solid double;}</td>
<td>Top and bottom</td>
<td>Solid Double</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td></td>
</tr>
<tr>
<td>{border-style: none double solid;}</td>
<td>Top</td>
<td>None Double</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Solid</td>
</tr>
<tr>
<td>{border-style: none double solid none;}</td>
<td>Top</td>
<td>None Double</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>Double</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>Solid</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>None</td>
</tr>
</tbody>
</table>

BORDER-side-WIDTH: fixed-value
specifies the border width of the specified side.

\[ \text{side} \]

is one of the following

- TOP
- BOTTOM
- RIGHT
- LEFT

\[ \text{fixed-value} \]

is a number followed by one of the following units of measure:

Table 8.4  Units of Measure for fixed values

<table>
<thead>
<tr>
<th>cm</th>
<th>Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>em</td>
<td>Standard typesetting measurement unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>Standard typesetting measurement unit for height</td>
</tr>
</tbody>
</table>
### Table 8.5 Units of Measure for fixed values

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>em</td>
<td>Standard typesetting measurement unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>Standard typesetting measurement unit for height</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pc</td>
<td>Picas</td>
</tr>
<tr>
<td>pt</td>
<td>A printer's point</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>

Restriction: `fixed-value` must be followed by a unit of measure.

**BORDER-WIDTH:** `fixed-value-1 <, ..., fixed-value-4 >`

specifies the border width of one or more borders.

- `fixed-value` is a number followed by one of the following units of measure:

The order in which you specify the widths determines the width applied to each side.

**Table 8.6 Border Width Results by Order**

<table>
<thead>
<tr>
<th>Example</th>
<th>Order</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{border-width:3mm;}</code></td>
<td>All four sides</td>
<td>3mm</td>
</tr>
<tr>
<td><code>{border-width:3mm 6mm;}</code></td>
<td>Top and bottom</td>
<td>3mm</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td>6mm</td>
</tr>
</tbody>
</table>
Example | Order | Result
---|---|---
{border-width:3mm 6mm 9mm;} | Top | 3mm  
| | Right and left | 6mm  
| | Bottom | 9mm

{border-width:3mm 6mm 9mm 12mm;} | Top | 3mm  
| | Right | 6mm  
| | Bottom | 9mm  
| | Left | 12mm

**BORDER-SPACING:** *fixed-value*

specifies the length between table cells.

*fixed-value* is a number followed by one of the following units of measure:

<table>
<thead>
<tr>
<th>Units of Measure for fixed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
</tr>
<tr>
<td>em</td>
</tr>
<tr>
<td>ex</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>pc</td>
</tr>
<tr>
<td>pt</td>
</tr>
<tr>
<td>px</td>
</tr>
</tbody>
</table>

**Restriction**  
*fixed-value* must be followed by a unit of measure.

**COLOR:** *color*

specifies the font color.

*color* is a keyword or numerical value that specifies a color. For industry-standard documentation, see [http://www.w3.org/wiki/CSS/Properties/color](http://www.w3.org/wiki/CSS/Properties/color) or [http://www.w3.org/TR/CSS2/syndata.html#value-def-color](http://www.w3.org/TR/CSS2/syndata.html#value-def-color). You can represent a color in one of the following formats:

- **hexadecimal** is a six-digit, three-byte hexadecimal number used to represent colors.
- **RGB** is a red/green/blue value.
- **RGBA** is a red/green/blue/alpha value.
HSL
  is a hue/saturation/lightness value.

HSLA
  is a hue/saturation/light/alpha value.

**FONT-FAMILY:** "font-1", "font-2", ...

specifies one or more fonts to use in an element. If you supply multiple fonts, then the destination device uses the first one that is installed on the system.

*font*
  specifies the name of the font.

ODS can use TrueType fonts. All Universal Printers and many SAS/GRAPH devices use the FreeType library to render TrueType fonts for output in all of the operating environments that SAS software supports. In addition to SAS Monospace and SAS Monospace Bold, 21 new TrueType fonts are made available when you install SAS:

- five Latin fonts compatible with Microsoft
- eight multilingual Unicode fonts
- eight monolingual Asian fonts

For more information about the TrueType fonts, see “Using Fonts with Universal Printers and SAS/GRAPH Devices” in SAS Language Reference: Concepts.

**Requirements**

You must separate multiple fonts with commas.

You must enclose font in quotation marks if the font name contains a space, such as "Times New Roman".

**Tip**

If you specify more than one font, then the destination device uses the first one that is installed on the system.

**FONT-SIZE:** fixed-value | percentage

specifies the font size as a fixed value or percent.

*fixed-value*
  is a number followed by one of the following units of measure:

| Table 8.8 Units of Measure for fixed values |
|--------------------------|------------------------|
| cm | Centimeters |
| em | Standard typesetting measurement unit for width |
| ex | Standard typesetting measurement unit for height |
| in | Inches |
| mm | Millimeters |
| pc | Picas |
| pt | A printer's point |
| px | Pixels |
Restriction fixed-value must be followed by a unit of measure.

**percentage**
specifies the percentage of the containing element value followed by a percent (%) sign.

Restriction percentage must be followed by a percent sign (%).

**FONT-STYLE: ITALIC | OBLIQUE | NORMAL**
specifies the font style for an element.

**FONT-WEIGHT: BOLD | NORMAL**
specifies the thickness of the character outlines relative to their height.

**FONT: <"font-style"> <"font-variant"> <"font-weight"> <"font-size"> / <"line-height"> <"font-family">**
specifies a list of font attributes.

**font-style**
specifies the font style for an element. font-style can be one of the following:
- ITALIC
- OBLIQUE
- NORMAL

Requirement font-style must be enclosed in quotation marks.

**font-variant**
specifies whether the text is displayed in a small caps font. font-variant can be one of the following:

NORMAl
specifies the text is displayed in the normal font.

SMALL-CAPS
specifies that the text is displayed in a small caps font. A small caps font is a font where all lowercase letters have been converted to uppercase letters.

Default NORMAL

Requirement font-variant must be enclosed in quotation marks.

**font-weight**
specifies the thickness of the character outlines relative to their height. font-weight can be one of the following:
- BOLD
- NORMAL

Requirement font-weight must be enclosed in quotation marks.

**font-size**
specifies the font size as a fixed value or percentage.

Requirement font-size must be enclosed in quotation marks.

See "FONT-SIZE: fixed-value | percentage " on page 67
**line-height**
speifies the minimal height of line boxes within the element.

Requirement *line-height* must be enclosed in quotation marks.

**font-family**
specifies a font name.

Requirement *font-family* must be enclosed in quotation marks if the font family name contains a space.

See “FONTPHAMILY: "font-1"<, "font-2", …>" on page 67

Restriction Font size, line height, and font family must be specified in the following order: *font-size*, *line-height*, *font-family*.

**PADDING:** *padding-1* <, ..., *padding-4* >
specifies the amount of white space between the content of the element and the border. You can specify up to four values. *padding* can be specified as a fixed value or a percentage.

**fixed-value**
is a number followed by one of the following units of measure:

<table>
<thead>
<tr>
<th>Table 8.9 Units of Measure for fixed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
</tr>
<tr>
<td>em</td>
</tr>
<tr>
<td>ex</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>pc</td>
</tr>
<tr>
<td>pt</td>
</tr>
<tr>
<td>px</td>
</tr>
</tbody>
</table>

Restriction *fixed-value* must be followed by a unit of measure.

**percentage**
specifies the percentage of the containing element value followed by a percent (%) sign.

Restriction *percentage* must be followed by a percent sign (%).

The order in which you specify the values determines the padding applied to each side.
### Table 8.10  Padding Results by Order

<table>
<thead>
<tr>
<th>Example</th>
<th>Order</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{padding:20px;}</code></td>
<td>All four sides</td>
<td>20px</td>
</tr>
<tr>
<td><code>{padding:5px 10px;}</code></td>
<td>Top and bottom</td>
<td>5px</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td>10px</td>
</tr>
<tr>
<td><code>{padding:5px 10px 20px;}</code></td>
<td>Top</td>
<td>5px</td>
</tr>
<tr>
<td></td>
<td>Right and left</td>
<td>10px</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>20px</td>
</tr>
<tr>
<td><code>{padding:5px 10px 15px 20px;}</code></td>
<td>Top</td>
<td>5px</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>10px</td>
</tr>
<tr>
<td></td>
<td>Bottom</td>
<td>15px</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>20px</td>
</tr>
</tbody>
</table>

**PADDING-side: fixed-value | percentage**

specifies the amount of white space between the content of the element and the border.

**side**

specifies one side of a table or cell.

**side** is one of the following:

- TOP
- BOTTOM
- RIGHT
- LEFT

**fixed-value**

is a number followed by one of the following units of measure:

### Table 8.11  Units of Measure for fixed values

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>em</td>
<td>Standard typesetting measurement unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>Standard typesetting measurement unit for height</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pc</td>
<td>Picas</td>
</tr>
<tr>
<td>pt</td>
<td>A printer's point</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>
Restriction fixed-value must be followed by a unit of measure.

**percentage**

specifies the percentage of the containing element value followed by a percent (%) sign.

Restriction percentage must be followed by a percent sign (%).

---

### Documentation Resources and Websites

**Using ODS with CSS:**


**Industry-standard CSS documentation:**

- [W3C Cascading Style Sheets Home Page](http://www.w3.org Style Sheets)
- [www.w3.org Information about colors](http://www.w3.org Color Schemes)
- [www.w3.org Information about style selectors](http://www.w3.org Style Selectors)

**ODS TRACE statement:**

For complete information about the ODS TRACE statement, see “ODS TRACE Statement” in *SAS Output Delivery System: Procedures Guide*.

### Examples:

#### Example 1: Using Colors and Class Selectors to Highlight Output Areas

**Features:**

- CSSSTYLE= option
- DOM option
- ODS HTML CLOSE statement
- ODS PDF statement
- Industry-standard CSS style selectors
  - Class selectors
  - Attribute selectors
- Industry-standard CSS style properties
Details

When using CSS styles and the DOM, it is helpful to use colors or patterns to help you see the area of your output that is affected by your style selectors. The following example uses colors and class selectors to highlight the areas of the output that each class selector corresponds to.

View the ODS Document Object Model (DOM) for PDF Output

```sas
options nodate nonumber obs=25;
ods html close;
ods pdf notoc file="myoutput.pdf" dom;

title "Comparison of City and Highway Miles Per Gallon";
title2 "Default Output";
proc print data=sashelp.cars;
 var make model type Origin MPG_City MPG_Highway;
run;
ods pdf close;
```

Program Description

Before you create your CSS file, you can view the ODS document object model for your output. You can use the DOM to decide what elements to use to customize areas of your output. For documentation about the ODS DOM, see Chapter 5, “Working with the ODS Document Object Model,” on page 43.

Close the HTML destination and set the SAS system options. The HTML destination is open by default. If you do not want to create HTML output, close the HTML destination. Closing the HTML destination saves system resources.

```sas
options nodate nonumber obs=25;
ods html close;
```

Create PDF output and view the DOM. The ODS PDF statement creates the PDF output. The DOM option specifies that the DOM is written to the SAS log.

```sas
ods pdf notoc file="myoutput.pdf" dom;
```

Create PROC PRINT output and close the PDF destination.

```sas
title "Comparison of City and Highway Miles Per Gallon";
title2 "Default Output";
```
Example 1: Using Colors and Class Selectors to Highlight Output Areas

```sas
proc print data=sashelp.cars;
 var make model type Origin MPG_City MPG_Highway;
run;

ods pdf close;
```

PDF DOM Viewed in the SAS Log

The following SAS log output contains the ODS DOM for the PDF output.
Example Code 8.1  SAS Log Output

```sas
options nodate nonumber obs=25;
ods html close;ods pdf nobookmarklist nobookmarkgen file="myoutput.pdf" dom;
NOTE: Writing ODS PDF output to DISK destination "your-path\myoutput.pdf", printer "PDF".
<!DOCTYPE html>
<html>
<head>
<title>ODS PDF DOM</title>
<link rel="stylesheet" href="style.css">
</head>
<body dest="pdf" class="body">
<title>Comparison of City and Highway Miles Per Gallon</title>
proc print data=sashelp.cars;
 var make model type Origin MPG_City MPG_Highway;
run;
</body>
</html>
```
The `<TITLE>` element contains text that tells you the DOM type. In this case, the DOM is PDF.

2. The `<BODY>` element that contains the class="body" attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is .BODY. All of the elements that contain the attribute class="body" have the style properties applied to them, unless they are overridden by a following rule set.

3. The `<H1>` element that contains the class="systemtitle" attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is .SYSTEMTITLE. All of the elements that contain the attribute class="systemtitle" have the style properties applied to them, unless they are overridden by a following rule set.

4. The `<H1>` element that contains the class="systemtitle2" attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is .SYSTEMTITLE2. All of the elements that contain the attribute class="systemtitle2" have the style properties applied to them, unless they are overridden by a following rule set.

5. The `<TABLE>` element is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the element style selector that is used to reference this element is TABLE. Notice that because this is an element selector, there is no period before the element name. All of the `<TABLE>` elements have the style properties applied to them, unless they are overridden by a following rule set.

6. The `<TH>` element that contains the class="header" attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is .HEADER. All of the elements that contain the attribute class="header" have the style properties applied to them, unless they are overridden by a following rule set.
The `<TH>` element that contains the `data-name="obs"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[DATA-NAME="OBS"]`. All of the elements that contain the attribute `data-name="obs"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TD>` element that contains the `class="data"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.DATA`. All of the elements that contain the attribute `class="data"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TH>` element that contains the `unformatted-type="char"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[UNFORMATTED-TYPE="CHAR"]`. All of the elements that contain the attribute `unformatted-type="char"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TH>` element that contains the `name="mpg_city"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[NAME="MPG_CITY"]`. All of the elements that contain the attribute `name="mpg_city"` have the style properties applied to them, unless they are overridden by a following rule set.

---

Create the Cascading Style Sheet

The following is industry-standard CSS syntax that is based on the ODS HTML DOM. It is saved in an external file named ColorMapCss.css.

```css
.body {
 background-color: #f0f9e8;
}

.systemtitle {
 background-color: #43a2ca;
 color: white;
}

.systemtitle2 {
 background-color: white;
}

table {
 background-color: white;
}

.header {
 background-color: #a8ddb5;
}

[data-name="obs"] {
 background-color: #7bccc4;
}
```
Apply the CSS to PDF Output

options nodate nonumber obs=25; 
ods html close;  
ods pdf notoc file="myoutput.pdf"  
   cssstyle="your-file-path\ColorMapCss.css"; 

   title "Comparison of City and Highway Miles Per Gallon";  
   title2 "Colors Added by CSS"; 
   proc print data=sashelp.cars;  
   var make model type Origin MPG_City MPG_Highway;  
   run;  
   ods pdf close; 

Program Description

After you have created your CSS, you can apply it to your PDF output by using the CSSSTYLE= option in the ODS PDF statement.

Close the HTML destination and set the SAS system options. The HTML destination is open by default. If you do not want to create HTML output, close the HTML destination. Closing the HTML destination saves system resources.

   options nodate nonumber obs=25;  
   ods html close;  

Create PDF output and apply the CSS file. The ODS PDF statement creates the PDF output. The CSSSTYLE= option specifies that the style sheet ColorMapCss.css is applied to your output.

   ods pdf notoc file="myoutput.pdf"  
   cssstyle="your-file-path\ColorMapCss.css";  

Create PROC PRINT output and close the PDF destination.
title "Comparison of City and Highway Miles Per Gallon";
title2 "Colors Added by CSS";

proc print data=sashelp.cars;
  var make model type Origin MPG_City MPG_Highway;
run;

ods pdf close;

Output 8.1 PDF Output with Style Sheet Applied

The background color and font color for the first title is set by the .SYSTEMTITLE selector.

The background color for the second title is set by the .SYSTEMTITLE2 selector.

The background color for the header is set by the [TYPE='Char'] selector.

The background color for the Mpg_City column is set by [NAME='Mpg_City'] selector.

The background color for the data cells is set by the .DATA selector.

The font color for the table is set by the [TYPE='Char'] selector.

The white background color is set by the TABLE selector.

The background color and font color for the Obs column is set by the [DATA-NAME='Obs'] selector.

The report background color is set by the .BODY selector.

Example 2: Applying Styles to Lists

Features:
- CSSSTYLE= option
- DOM option
- ODS HTML CLOSE statement
- ODS PDF statement
- Industry-standard CSS style selectors
Class selectors
Pseudo-class selectors

Industry-standard CSS style properties
COLOR:
FONT-WEIGHT:
FONT-SIZE:
LIST-STYLE-TYPE:

ODSLIST Procedure

Details
The following example shows you how to create a CSS that changes the style of list markers and list items. This example uses class selectors and pseudo-class selectors.

Class selectors are style selectors that select elements based on the value of the class attribute in the element. Class selectors must have a period (.) preceding the class name. In this example, we use class selectors to change appearance of the content of the list items.

Pseudo-class selectors are style selectors that select elements based on the relationships between DOM elements. Pseudo-classes are represented by the pseudo-class name prefixed with a colon (:). In this example, we use pseudo-class selectors to change appearance of the marker of the list items.

Create Your Cascading Style Sheet

The following is industry-standard CSS syntax that is based on the ODS PDF DOM. It is saved in an external file named listStyle.css.

```css
.listitem, .listitem li::marker{
 color: #7bccc4;
 font-weight:bold;
 font-size:large;
 list-style-type: circle;
}

.listitem2, .listitem2 li::marker{
 color: #43a2ca;
 font-size:medium;
 list-style-type: decimal;
}

.listitem3, .listitem3 li::marker{
 color: #0868ac;
 list-style-type: circle;
}
```

View the ODS Document Model

```odl
ods html close;
```
options nodate nonumber;
title "Applying Styles to PDF Output";
ods pdf dom file="listStyle.pdf" ;
proc odslist;
  item;
    p ' Topics For This Week';
    list ;
    item ;
      p ' Fraud' ;
      list ;
      item 'Consumer Fraud' / value=1 ;
      item 'Business Fraud';
    end;
  end;
  item ' Customer Intelligence' ;
  item ' Social Media';
  item ' Data Mining';
  item ' High-Performance Computing';
  item ' Risk';
  item ' Data Management';
end;
end;
run;

title;
proc odslist;
  item;
    p ' Topics For Today';
    list ;
    item ' Customer Intelligence';
    item ' Social Media';
    item ' Data Mining';
  end;
end;
run;

---

**Program Description**

Before you create your CSS file, you can view the ODS document object model for your output. You can use the DOM to decide what elements to use to customize areas of your output. For documentation about the ODS DOM, see Chapter 5, “Working with the ODS Document Object Model,” on page 43.

**Close the HTML destination, set the system options, and specify a title.**

ods html close;
options nodate nonumber;
title "Applying Styles to PDF Output";

**Write the DOM for your output to the SAS log.** The DOM option in the ODS PDF statement specifies that the DOM is written to the SAS log.

ods pdf dom file="listStyle.pdf" ;
Create the PROC ODSLIST output.

```sas
proc odslist;
 item;
 p 'Topics For This Week';
 list ;
 item ;
 p 'Fraud';
 list ;
 item 'Consumer Fraud' / value=1 ;
 item 'Business Fraud';
 end;
 end;
 item 'Customer Intelligence' ;
 item 'Social Media';
 item 'Data Mining';
 item 'High-Performance Computing';
 item 'Risk';
 item 'Data Management';
 end;
end;
run;
```

```sas
title;
proc odslist;
 item;
 p 'Topics For Today';
 list ;
 item 'Customer Intelligence';
 item 'Social Media';
 item 'Data Mining';
 end;
end;
run;
```

PDF DOM Viewed in the SAS Log

The following partial SAS log output contains the ODS DOM for the PDF output.
proc odslist;
item;
p ' Topics For This Week';
list;
item;
p ' Fraud';
list;
item 'Consumer Fraud' / value=1;
item 'Business Fraud';
end;
end;
item ' Customer Intelligence' ;
item ' Social Media';
item ' Data Mining';
item ' High-Performance Computing';
item ' Risk';
item ' Data Management';
end;
end;
run;

Applying Styles to PDF Output

Topics For This Week

Fraud

...more log output...
1. The `<LI>` element that contains the `class="listitem"` attribute is used in the preceding CSS to change the style properties of the list item contents for the highest-level list items. In the preceding CSS, the class selector that is used to reference this element is `.listitem`.

2. The `<LI::MARKER>` element that contains the `class="listitem1"` attribute is used in the preceding CSS to change the style properties of the list marker for the highest level list items. In the preceding CSS, the pseudo-style selector that is used to reference this element is `.listitem li::marker`.

3. The `<LI>` element that contains the `class="listitem2"` attribute is used in the preceding CSS to change the style properties of the list item contents for the second level list items. In the preceding CSS, the class selector that is used to reference this element is `.listitem2`.

4. The `<LI::MARKER>` element that contains the `class="listitem2"` attribute is used in the preceding CSS to change the style properties of the list marker for the second level list items. In the preceding CSS, the pseudo-style selector that is used to reference this element is `.listitem2 li::marker`.

5. The `<LI>` element that contains the `class="listitem3"` attribute is used in the preceding CSS to change the style properties of the list item contents for the third level list items. In the preceding CSS, the class selector that is used to reference this element is `.listitem3`.

6. The `<LI::MARKER>` element that contains the `class="listitem3"` attribute is used in the preceding CSS to change the style properties of the list marker for the third level list items. In the preceding CSS, the pseudo-style selector that is used to reference this element is `.listitem3 li::marker`.

---

**Apply the CSS File to Your Output**

```plaintext
ods html close;
options nodate nonumber;
title "Applying Styles to PDF Output";
ods pdf file="listStyle.pdf" cssstyle='your-path\listStyle.css';

proc odslist;
 item;
 p ' Topics For This Week';
 list ;
 item ;
 p ' Fraud' ;
 list ;
 item 'Consumer Fraud' / value=1 ;
 item 'Business Fraud';
 end;
 end;

 item ' Customer Intelligence' ;
 item ' Social Media';
 item ' Data Mining';
 item ' High-Performance Computing';
 item ' Risk';
```
Program Description

After you have created your CSS, you can apply it to your PDF output by using the CSSSTYLE= option in the ODS PDF statement.

Close the HTML destination, set the system options, and specify a title.

ods html close;
options nodate nonumber;
title "Applying Styles to PDF Output";

Apply your CSS file to the output. The CSSSTYLE= option in the ODS PDF statement applies the CSS to your PDF output.

ods pdf file="listStyle.pdf" cssstyle='your-path\listStyle.css';

Create the PROC ODSLIST output.

proc odslist;
  item;
  p ' Topics For This Week';
  list ;
  item ' Fraud';
  list ;
    item 'Consumer Fraud' / value=1 ;
    item 'Business Fraud';
  end;
  end;

  item ' Customer Intelligence' ;
  item ' Social Media';
  item ' Data Mining';
  item ' High-Performance Computing';
  item ' Risk';
  item ' Data Management';
end;
end;
run;

title;
proc odslist;
item;
  p ' Topics For Today';
  list ;
  item ' Customer Intelligence';
  item ' Social Media';
  item ' Data Mining';
end;
end;
run;

Output 8.2  PROC ODSLIST Output with CSS Applied

* Topics For This Week
  1. Fraud
      * Consumer Fraud
      * Business Fraud
  2. Customer Intelligence
  3. Social Media
  4. Data Mining
  5. High-Performance Computing
  6. Risk
  7. Data Management

* Topics For Today
  1. Customer Intelligence
  2. Social Media
  3. Data Mining

Example 3: Applying Styles to Table Cells

Features:  CSSSTYLE= option
ODS HTML statement
DOM option
Industry-standard CSS style selectors
  Class selectors
  Pseudo-class selectors
Industry-standard CSS style properties
  BACKGROUND-COLOR:
  BORDER:
  COLOR:
  FONT-FAMILY:
  FONT-WEIGHT:
The following example shows you how to create a CSS by looking at the DOM and selecting elements. This example uses class selectors and pseudo-class selectors.

Class selectors are style selectors that select elements based on the value of the `class` attribute in the element. Class selectors must have a period (.) preceding the class name.

Pseudo-class selectors are style selectors that select elements based on the relationships between DOM elements. Pseudo-classes are represented by the pseudo-class name prefixed with a colon (:). In this example, we use pseudo-class selectors to change the background color of the Total rows to red and the font color to white.

The pseudo-class element used in this example has the following form:

```
table tbody tr:nth-child(9) > *,
```

The spaces between `TABLE`, `TBODY`, and `TR:NTH-CHILD(9)` are descendant combinators. They specify that SAS looks at the content within any `<TR>` element that is within a `<TBODY>` element that is within a `<TABLE>` element. The section `TR:NTH-CHILD(9) > *` specifies that the 9th child of all of the `<TR>` elements is selected. For information about combinators, see “Combinators” on page 51. For information about pseudo-class selectors, see “Pseudo-Class Selectors” on page 49.

---

**View the ODS Document Model**

```plaintext
ods html file="MyHtmlFile.html" dom;

proc sort data=sashelp.prdsale out=prdsale;
 by Country;
run;

 title 'Actual Product Sales';
 title2 '(Custom Style Sheet Applied)';

proc tabulate data=prdsale;
 class region division prodtype;
 var actual;
 keylabel all='Total';
 table (region all)*(division all),
 (prodtype all)*(actual*f=dollar10.) /
 miss= [label='Missing']
 box=[label='Region by Division and Type'];
run;
ods _all_ close;
ods html;
```
Program Description

Before you create your CSS file, you can view the ODS document object model for your output. You can use the DOM to decide what elements to use to customize areas of your output. For documentation about the ODS DOM, see Chapter 5, “Working with the ODS Document Object Model,” on page 43.

Write the DOM for your output to the SAS log. The DOM option in the ODS HTML statement specifies that the DOM is written to the SAS log.

```sas
ods html file="MyHtmlFile.html" dom;
```

Create the PROC TABULATE output.

```sas
proc sort data=sashelp.prdsale out=prdsale;
 by Country;
run;

title 'Actual Product Sales';
title2 '(Custom Style Sheet Applied)';

proc tabulate data=prdsale;
class region division prodtype;
var actual;
keylabel all='Total';
table (region all)*(division all),
 (prodtype all)*(actual*f=dollar10.) /
 misstext=[label='Missing']
 box=[label='Region by Division and Type'];
run;

ods _all_ close;
ods html;
```

HTML DOM Viewed in the SAS Log

The following SAS log output contains the ODS DOM for the HTML output.
Example Code 8.2  SAS Log Output

```sas
ods html file="MyHtmlFile.html" dom;
NOTE: Writing HTML Body file: MyHtmlFile.html
<!DOCTYPE html>
<html>
<head>
<title>ODS HTML4 DOM</title>
<link rel="stylesheet" href="style.css">
</head>
<body dest="html4" class="body">
... more log output ...
</body>
</html>
```

... more log output ...

```sas
<section id="idx" class="oo" data-name="report"
 label="table 1" proc="tabulate"
 output="table" contents-label="table 1" data-label="table 1">
 <h1 class="systemtitle">
 </h1>
 <h1 class="systemtitle2">
 </h1>
 <table class="systitleandfootercontainer">
 <colgroup>
 <col>
 </colgroup>
 <tr>
 <td class="systemtitle">Actual Product Sales</td>
 </tr>
 <tr>
 <td class="systemtitle2">(Custom Style Sheet Applied)</td>
 </tr>
 </table>
</section>
```

... more log output ...

Chapter 8 / Resources and Examples
<table>
<thead>
<tr>
<th>Region by Division and Type</th>
<th>Product Type</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FURNITURE</td>
<td>Actual Sales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actual Sales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sum</td>
<td></td>
</tr>
</tbody>
</table>
The `<TITLE>` element contains text that tells you the DOM type. In this case, the DOM is HTML4.

The `<BODY>` element that contains the `class="body"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.BODY`. All of the elements that contain the attribute `class="body"` have the style properties applied to them, unless they are overridden by a following rule set.
3. The `<H1>` element that contains the `class="systemtitle"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.SYSTEMTITLE`. All of the elements that contain the attribute `class="systemtitle"` have the style properties applied to them, unless they are overridden by a following rule set.

4. This `<TABLE>` element corresponds to the `<TABLE>` element style selector in the preceding rule set.

You can use the following rule set to change the color of specific cells in this table to red:

```css
table tbody tr:nth-child(9) > *,
table tbody tr:nth-child(10) > *,
table tbody tr:nth-child(11) > *,
table tbody tr:nth-child(12) > *
{
 background-color: red;
 color: white;
}
```

5. The `<TH>` element that contains the `class="header"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `.HEADER`. All of the elements that contain the attribute `class="header"` have the style properties applied to them, unless they are overridden by a following rule set.

6. The `<TH>` element that contains the `class="rowheader"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.ROWHEADER`. All of the elements that contain the attribute `class="rowheader"` have the style properties applied to them, unless they are overridden by a following rule set.

7. The `<TD>` element that contains the `class="data"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.DATA`. All of the elements that contain the attribute `class="data"` have the style properties applied to them, unless they are overridden by a following rule set.

---

Create Your Cascading Style Sheet

```css
.body, .systemtitle, .header, .rowheader, .data {
 font-family: arial, sans-serif;
}

.body{
 color: black;
 background-color: gray;
}

.table, .header, .rowheader, .data {
 border: 1px solid #6699FF;
 padding: 5px 10px;
 font-family: arial, sans-serif;
```
Program Description

The following is industry-standard CSS syntax that is based on the ODS HTML DOM. It is saved in an external file named MyCss.css.

```
.font-weight: bold;
}

.systemtitle, .header, .rowheader {
 font-weight: bold;
 background-color: white;
}

.header, .rowheader {
 background-color: #FFFFCC;
}

.data {
 background-color: #99CCFF;
}

.header, .rowheader, .data {
 padding: 5px 10px;
}

table tbody tr:nth-child(9) > *,
table tbody tr:nth-child(10) > *,
table tbody tr:nth-child(11) > *,
table tbody tr:nth-child(12) > * {
 background-color: red;
 color: white;
}
```
Select specific cells in the output to have a red background. The following style selectors set the background and font color of the cells in the 9th, 10th, 11th, and 12th rows in the section of the output controlled by the `<TBODY>` element.

```
table tbody tr:nth-child(9) > *,
table tbody tr:nth-child(10) > *,
table tbody tr:nth-child(11) > *,
table tbody tr:nth-child(12) > *
{
 background-color: red;
 color:white;
}
```

### Apply the CSS File to Your Output

```
ods html file="MyHtmlFile.html" cssstyle='your-file-path/MyCss.css';

proc sort data=sashelp.prdsale out=prdsale;
 by Country;
run;

title 'Actual Product Sales';
title2 '(Custom Style Sheet Applied)';

proc tabulate data=prdsale;
 class region division prodtype;
 var actual;
 keylabel all='Total';
 table (region all)*(division all),
 (prodtype all)*(actual*f=dollar10.) /
 misstext=[label='Missing']
 box=[label='Region by Division and Type'];
run;

ods _all_ close;
ods html;
```
Program Description

After you have created your CSS, you can apply it to your HTML output by using the CSSSTYLE= option in the ODS HTML statement.

**Apply your CSS file to the output.** The CSSSTYLE= option in the ODS HTML statement specifies that the file MyCss.css is applied to your output.

```html
ods html file="MyHtmlFile.html" cssstyle='your-file-path/MyCss.css';
```

Create the PROC TABULATE output.

```sas
proc sort data=sashelp.prdsale out=prdsale;
 by Country;
run;

title 'Actual Product Sales';
title2 '(Custom Style Sheet Applied)';

proc tabulate data=prdsale;
 class region division prodtype;
 var actual;
 keylabel all='Total';
 table (region all)*(division all),
 (prodtype all)*(actual*f=dollar10.) /
 misstext=[label='Missing']
 box=[label='Region by Division and Type'];
run;

ods _all_ close;
ods html;
```
Example 4: Using Dynamic Property Values

Features:
- CSSSTYLE= option
- ODS PDF statement
- DOM option
  - Industry-standard CSS style selectors
    - Class selectors
    - Attribute selectors
  - Industry-standard CSS style properties
    - BACKGROUND-COLOR:
    - BORDER-WIDTH:
    - COLOR:
    - FONT-SIZE:
    - FONT-WEIGHT:
    - PADDING:
    - TEXT-ALIGN:
- SAS dynamic variable values
  - FORMAT
  - RESOLVE
  - SYMGET
Details

With ODS and CSS styles, you can use SAS dynamic variables to specify expressions, macro variables, and SAS functions. The following example uses dynamic variables to customize PDF output. For complete documentation about the SAS macro language, see *SAS Macro Language: Reference*. For complete documentation about PROC FORMAT, see *Base SAS Procedures Guide*.

The following CSS rule sets are saved in an external file named MpgStyle.css.

```css
.body {
 background-color: lightblue;
}

.systemtitle, .systemtitle2 {
 background-color: darkblue;
 color: white;
 font-size: 12pt;
 font-weight:bold;
}

.table {
 background-color: white;
}

.header {
 font-size: 10pt;
 font-weight:bold;
 color: blue;
 background-color: gold;
}

.rowheader {
 background-color: purple;
 color: white;
}

.data {
 background-color: beige;
}

.header, .rowheader, .data {
 border-width: 1px;
 padding=10px;
 text-align: center;
}

[name*="city"] { /*1*/
 color: symget('color');
 font-size: resolve('%mpgC');
 background-color: format('mpgC.');
}

[name*="highway"] { /*2*/
 color: symget('color');
 font-size: resolve('%mpgH');
 background-color: format('mpgH.');
}
```
The SYMGET property value resolves the macro variable COLOR. The RESOLVE property value resolves the macro %mpgC. The FORMAT property value resolves the mpgC. format.

The SYMGET property value resolves the macro variable COLOR. The RESOLVE property value resolves the macro %mpgH. The FORMAT property value resolves the mpgH. format.

---

**View the ODS Document Object Model (DOM) for PDF Output**

```plaintext
options nodate nonumber obs=25;
ods html close;
%let color = black;
%macro mpgC;
 %if &_val_ >=25 %then 15pt;
 %else 5pt;
%mend;
%macro mpgH;
 %if &_val_ >=40 %then 15pt;
 %else 5pt;
%mend;
proc format;
 value mpgC 25-108 ='#b1f100';
 value mpgH 41-118 ='yellow';
run;
proc sort data=sashelp.cars out=cars;
 by descending make;
run;
ods pdf notoc file="myoutput.pdf" dom;

title "City MPG=25-108 Shaded in Green with Large Font"
title2 "Highway MPG=41-118 Shaded in Yellow with Large Font"
proc print data=cars label;
 var make model type Origin MPG_City MPG_Highway;
run;
ods pdf close;
```

**Program Description**

Before you create your CSS file, you can view the ODS document object model for your output. You can use the DOM to decide what elements to use to customize areas of your output. For documentation about the ODS DOM, see Chapter 5, “Working with the ODS Document Object Model,” on page 43.
Close the HTML destination and set the SAS system options. The HTML destination is open by default. If you do not want to create HTML output, close the HTML destination. Closing the HTML destination saves system resources.

```sas
options nodate nonumber obs=25;
ods html close;
```

Create the macro variable COLOR. The `%LET` macro statement creates the macro variable COLOR and assigns it the color black.

```sas
%let color = black;
```

Create the macros `%mpgC` and `%mpgH`. The `%MACRO` macro statement creates the macros `%mpgC` and `%mpgH`. The built-in variable `_VAL_` is the data value of the current cell. The macro `%mpgC` changes the font to 15pt if the value of `_VAL_` is greater than or equal to 25. The macro `%mpgH` changes the font to 15pt if the value of `_VAL_` is greater than or equal to 40.

```sas
%macro mpgC;
 %if &_val_ >=25 %then 15pt;
 %else 5pt;
%mend;

%macro mpgH;
 %if &_val_ >=40 %then 15pt;
 %else 5pt;
%mend;
```

Create the `mpgC` and `mpgH` formats. PROC FORMAT creates the `mpgC` and `mpgH` formats. The format `mpgC` changes the color to #b1f100 if the value of the cell is between 25 and 108. The format `mpgH` changes the color to yellow if the value of the cell is between 45 and 118.

```sas
proc format;
 value mpgC 25-108 ='#b1f100';
 value mpgH 41-118 ='yellow';
run;
```

Sort the data.

```sas
proc sort data=sashelp.cars out=cars;
 by descending make;
run;
```

Create PDF output and view the DOM. The ODS PDF statement creates the PDF output. The DOM option specifies that the DOM is written to the SAS log.

```sas
ods pdf notoc file="myoutput.pdf" dom;
```

Specify the titles, create PROC PRINT output, and close the PDF destination.

```sas
proc print data=cars label;
 var make model type Origin MPG_City MPG_Highway;
run;
ods pdf close;
```
PDF DOM Viewed in the SAS Log

The following SAS log output contains the ODS DOM for the PDF output.

Example Code 8.3  SAS Log Output

...more log output...

```html
<html>
<head>
 <title>ODS PDF DOM</title>
 <link rel="stylesheet" href="style.css">
</head>
<body dest="pdf" class="body">

 title "City MPG=25-108 Shaded in Green with Large Font";
 title2 "Highway MPG=41-118 Shaded in Yellow with Large Font";
 proc print data=cars label;
 var make model type Origin MPG_City MPG_Highway;
 run;
 proc print output="print" contents="label=work.cars" proc="print" output="print" contents="label=work.cars"

 <h1 class="systemtitle">City MPG=25-108 Shaded in Green with Large Font</h1>
 <p class="systemtitle">Highway MPG=41-118 Shaded in Yellow with Large Font</p>
 <table class="table">
 <thead>
 <tr><th class="header" name="obs">Obs</th>
 <th class="header" name="make">Make</th>
 <th class="header" name="model">Model</th>
 <th class="header" name="origin">Origin</th>
 <th class="header" name="mpg_city">City MPG</th>
 <th class="header" name="mpg_highway">Highway MPG</th></tr>
 </thead>
 </table>
</body>
</html>
```
<table>
<thead>
<tr>
<th>obs</th>
<th>make</th>
<th>model</th>
<th>type</th>
<th>origin</th>
<th>mpg_city</th>
<th>mpg_highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...more log output...

1. The `<TITLE>` element contains text that tells you the DOM type. In this case, the DOM is PDF.

2. The `<BODY>` element that contains the `class="body"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.BODY`. All of the elements that contain the attribute `class="body"` have the style properties applied to them, unless they are overridden by a following rule set.

3. The `<H1>` element that contains the `class="systemtitle"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.SYSTEMTITLE`. All of the elements that contain the attribute `class="systemtitle"` have the style properties applied to them, unless they are overridden by a following rule set.

4. The `<H1>` element that contains the `class="systemtitle2"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.SYSTEMTITLE2`. All of the elements that contain the attribute `class="systemtitle2"` have the style properties applied to them, unless they are overridden by a following rule set.
The `<TABLE>` element is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the element style selector that is used to reference this element is `.TABLE`. All of the `<TABLE>` elements have the style properties applied to them, unless they are overridden by a following rule set.

The `<TH>` element that contains the `class="header"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `.HEADER`. All of the elements that contain the attribute `class="header"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TH>` element that contains the `data-name="obs"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[DATA-NAME="OBS"]`. All of the elements that contain the attribute `data-name="obs"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TH>` element that contains the `class="rowheader"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `.ROWHEADER`. All of the elements that contain the attribute `class="rowheader"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TD>` element that contains the `class="data"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the class style selector that is used to reference this element is `.DATA`. All of the elements that contain the attribute `class="data"` have the style properties applied to them, unless they are overridden by a following rule set.

The `<TD>` element that contains the `name="mpg_city"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[NAME*="CITY"]`. The `*=` combinator specifies that the value of the attribute `name=` should end with the text string `CITY`. Elements that match this criteria have the style properties applied to them, unless they are overridden by a following rule set.

The `<TD>` element that contains the `name="mpg_highway"` attribute is used in the preceding CSS to change the style properties of the part of the output that the element corresponds to. In the preceding CSS, the attribute style selector that is used to reference this element is `[NAME*="HIGHWAY"]`. The `*=` combinator specifies that the value of the attribute `name=` should end with the text string `HIGHWAY`. Elements that match this criteria have the style properties applied to them, unless they are overridden by a following rule set.

---

**Apply the CSS to PDF Output**

```latex
options nodate nonumber;
ods html close;

$let color = black;
```
Program Description

After you have created your CSS, you can apply it to your PDF output by using the CSSSTYLE= option in the ODS PDF statement.

Close the HTML destination and set the SAS system options. The HTML destination is open by default. If you do not want to create HTML output, close the HTML destination. Closing the HTML destination saves system resources.

options nodate nonumber;
ods html close;

Create the macro variable COLOR. The %LET macro statement creates the macro variable COLOR and assigns it the color black.

%let color = black;

Create the macros %mpgC and %mpgH. The %MACRO macro statement creates the macros %mpgC and %mpgH. The built-in variable _VAL_ contains the data value of the current cell. The macro %mpgC changes the font to 15pt if the value of _VAL_ is greater than or equal to 25. The macro %mpgH changes the font to 15pt if the value of _VAL_ is greater than or equal to 40.

%macro mpgC;
   %if &_val_ >=25 %then 15pt;
   %else 5pt;
%mend;
%macro mpgH;
   %if &_val_ >=40 %then 15pt;
   %else 5pt;
%mend;
Create the mpgC. and mpgH. formats. PROC FORMAT creates the mpgC. and mpgH. formats. The format mpgC. changes the color to #b1f100 if the value of the cell is between 25 and 108. The format mpgH. changes the color to yellow if the value of the cell is between 45 and 118.

```sas
proc format;
 value mpgC 25-108 ='#b1f100';
 value mpgH 41-118 ='yellow';
run;
```

Sort the data.

```sas
proc sort data=sashelp.cars out=cars;
 by descending make;
run;
```

Create PDF output and specify the CSS file to be applied. The ODS PDF statement creates the PDF output. The CSSSTYLE= option specifies that the CSS file MpgStyle.css is applied to the output.

```sas
ods pdf nobookmarklist nobookmarkgen file="myoutput.pdf"
 cssstyle="MpgStyle.css";
```

Specify the titles, create PROC PRINT output, and close the PDF destination.

```sas
title "City MPG=25-108 Shaded in Green with Large Font";
title2 "Highway MPG=41-118 Shaded in Yellow with Large Font";

proc print data=cars label;
 var make model type Origin MPG_City MPG_Highway;
run;
ods pdf close;
```
### Default PDF Output

#### Output 8.4 PDF Output with CSS Applied

<table>
<thead>
<tr>
<th>#</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>MPG (City)</th>
<th>MPG (Highway)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volvo</td>
<td>XC90 T6</td>
<td>SUV</td>
<td>Europe</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Volvo</td>
<td>S40 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Volvo</td>
<td>S60 2.5 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Volvo</td>
<td>S80 T6 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Volvo</td>
<td>S80 R 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Volvo</td>
<td>S80 2.9 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Volvo</td>
<td>S80 2.5T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Volvo</td>
<td>C70 LFT convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>Volvo</td>
<td>C70 HFT convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Volvo</td>
<td>S80 T6 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>Volvo</td>
<td>V40</td>
<td>Wagon</td>
<td>Europe</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Volvo</td>
<td>XC70</td>
<td>Wagon</td>
<td>Europe</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Volkswagen</td>
<td>Touran V6</td>
<td>SUV</td>
<td>Europe</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>Volkswagen</td>
<td>Golf GLS 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Volkswagen</td>
<td>GTI 1.8T 2dr hatch</td>
<td>Sedan</td>
<td>Europe</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>Volkswagen</td>
<td>Jetta GLS TDI 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>Volkswagen</td>
<td>New Beetle GLS 1.8T 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Volkswagen</td>
<td>Jetta GLI VR6 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>Volkswagen</td>
<td>New Beetle GLS convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Volkswagen</td>
<td>Passat GLS 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>Volkswagen</td>
<td>Passat GLX V6 4MOTION 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>Volkswagen</td>
<td>Passat V6 4MOTION 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>Volkswagen</td>
<td>Phaeton 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>Volkswagen</td>
<td>Phaeton W12 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>Volkswagen</td>
<td>Jetta GL</td>
<td>Wagon</td>
<td>Europe</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>Volkswagen</td>
<td>Passat GLS 1.8T</td>
<td>Wagon</td>
<td>Europe</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>27</td>
<td>Volkswagen</td>
<td>Passat V6</td>
<td>Wagon</td>
<td>Europe</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>28</td>
<td>Toyota</td>
<td>Prius 4dr (gas/electric)</td>
<td>Hybrid</td>
<td>Asia</td>
<td>59</td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td>Toyota</td>
<td>Sequoia SE5</td>
<td>SUV</td>
<td>Asia</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>Toyota</td>
<td>4Runner SR5 V6</td>
<td>SUV</td>
<td>Asia</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>31</td>
<td>Toyota</td>
<td>Highlander V6</td>
<td>SUV</td>
<td>Asia</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>32</td>
<td>Toyota</td>
<td>Land Cruiser</td>
<td>SUV</td>
<td>Asia</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>33</td>
<td>Toyota</td>
<td>RAV4</td>
<td>SUV</td>
<td>Asia</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>34</td>
<td>Toyota</td>
<td>Corolla CE 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>35</td>
<td>Toyota</td>
<td>Corolla S 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>36</td>
<td>Toyota</td>
<td>Corolla LE 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>37</td>
<td>Toyota</td>
<td>Echo 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>
PART 3

Report Writing Interface

Chapter 9
Introduction to the Report Writing Interface .............................................. 107

Chapter 10
Reference and Examples ................................................................. 117

Chapter 11
Concepts ...................................................................................... 247
Introduction to the Report Writing Interface

Overview

The traditional method for creating a custom report without creating a data set is called DATA _NULL_ report writing. With the ODS Report Writing Interface (RWI), you can create highly customized reports in an object-oriented language that is fully integrated with ODS. The ODS RWI does the following:

- fully embraces ODS features such as proportional fonts, trafficlighting, colors, images, and Unicode characters, while at the same time providing pixel-perfect placement capabilities
- takes advantage of the programming features that the DATA step offers, such as conditional logic, formatting capabilities, BY-group processing, and arrays
- uses an object-oriented language that provides you with flexibility and control so that even the most rigid reporting requirements can be met easily
- provides the following accessibility features:
  - add alternate text to images or mark images as decorative
  - add descriptions to layout regions
  - add captions to tables
For more information about creating accessible output with ODS, see Creating Accessible SAS® 9.4 Output Using ODS and ODS Graphics.

## Terminology

**cell**
- a collection of data, text, or images that can span multiple rows or columns.

**cell padding**
- the thickness on each of the four sides of the cell.

**cell spacing**
- the thickness of the spacing between cells.

**dimension**
- a positive numeric value followed by an optional unit of measure. A number without a unit of measure is interpreted as pixels.

**TIP** It is not recommended that you size things in pixels because of adverse dependencies on resolution that can differ between destinations.

**class**
- a template for an object. A class includes data that describes the object’s characteristics (such as attributes or instance variables), as well as the operations (methods) that the object can perform.

**column**
- the vertical dimension of a 2-D arrangement (a collection of cells in the vertical dimension).

**footnote**
- descriptive text that appears at the bottom of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time. Footnotes can be specified inside regions, but only the footnotes that have changed will be displayed.

**instance**
- the run-time initialization of the class object attributes and methods.

**layout container**
- an area that contains a collection of regions. Layouts can contain only regions. Layouts can have a fixed size (such as width=3in and height=4in) or can be dynamically sized to accommodate the regions.

**method**
- in object-oriented methodology, is an operation that is defined for a class and which can be executed by an object that is created from that class.

**object**
- any entity that can be manipulated by the commands of a programming language. Examples are values, variables, functions, and data structures.

**region container**
- an area that contains output (such as text, tables, or images), or nested layout containers. Regions can also have a fixed size, or might be dynamically sized to accommodate the collection of output. Regions cannot contain titles.
row
is the horizontal dimension of a 2-D arrangement (a collection of cells in the horizontal dimension).

title
is descriptive text that appears at the top of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time. Regions cannot contain titles.
table
is a 2-D arrangement of information that is traditionally displayed so that similar categories or classes of information are displayed in a structured manner (a collection of rows).

Types of Methods

Overview of Report Writing Methods

There are various methods that make up the ODS Report Writing Interface. They can be organized into the following types:

- general purpose methods
- layout methods
- media methods
- page methods
- table methods
- text methods

CAUTION! Not all destinations support the same set of features, and therefore some methods might have restrictions in some destinations.

General Purpose Methods

General purpose methods can be used to create URLs, insert images and lines into your output, or delete class instances.

Here are the general purpose methods:

- “DELETE Method” on page 139
- “HREF Method” on page 155
- “LINE Method” on page 170
Layout Methods

Concepts

Layout methods control the placement of output on a page. There are two groups of layout methods, absolute and gridded. Layout containers can be nested, and gridded and absolute layouts can be used together. These terms frequently appear in layout documentation:

- **dimension unit** is a nonnegative number followed by an optional unit of measure. A number without a unit of measure is interpreted as pixels. It is not recommended that you size things in pixels because of adverse dependencies on resolution that can differ between destinations.

- **footnote** is descriptive text that appears at the bottom of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time. Footnotes can be specified inside regions, but only the footnotes that have changed will be displayed.

- **layout container** is an area that contains a collection of regions. Layouts can contain only regions. Layouts can have a fixed size (like width=3in and height=4in) or can be dynamically sized to accommodate the regions.

- **region container** is an area that contains output (like text, tables, images), or nested layout containers. Regions can also have a fixed size, or can be dynamically sized to accommodate the collection of output. Regions cannot contain titles.

- **title** is descriptive text that appears at the top of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time.
Gridded Layout Methods

Gridded layout methods enable you to arrange output in a two-dimensional gridded structure, such as a spreadsheet or piece of graph paper. Gridded layout is a simple, powerful tool for arranging output and managing output on one or more pages. Gridded layouts enable you to do the following:

- enforce automatic alignment of respective grid cells
- continue onto the next page if necessary
- dynamically compute the size of a grid cell

Here are the gridded layout methods:

- "LAYOUT_GRIDDED Method" on page 163
- "LAYOUT_END Method" on page 170
- "REGION Method: Gridded" on page 179
Absolute Layout Methods

Absolute layout methods enable you to specify the exact location of a layout and region container on a page. This method is very precise. Each container must be explicitly placed to ensure no overlap. Absolute layouts are restricted to a single page. If the output is too large to fit in the fixed-size container, the output is discarded, and you receive a blank region and a warning in your log. Absolute layouts are suitable for static types of output, as in the following situations:

- placing output in a specific location on a pre-printed form
- creating cover pages
- precisely placing output in a nested region container

Absolute layouts are valid in printer family destinations only.

The following example uses absolute layout methods:

- “Creating a Cover Page with the LAYOUT_ABSOLUTE Method” on page 241

Here are the absolute layout methods:

- “LAYOUT_ABSOLUTE Method” on page 160
- “LAYOUT_END Method” on page 170
- “REGION Method: Absolute” on page 175

---

Media Methods

Media methods create audio and video files for HTML5 or EPUB output, or insert images into your output.

- “VIDEO Method” on page 191
- “AUDIO Method” on page 129
- “IMAGE Method” on page 158

---

Page Methods

Page methods control characteristics of the entire page. You can start a new page or modify an existing title or footnote. The TITLE and FOOTNOTE methods enable you to incorporate a particular data value into your title or footnote. These methods work similarly to the global TITLE and FOOTNOTE statements available outside of the DATA step.

The following example uses the PAGE method:

- “Create One By-Group Table on a Page” on page 227

The following are page methods:

- “PAGE Method” on page 175
- “TITLE Method” on page 188
## Table Methods

Table methods create tabular output that consists of row headings, column headings, and data values in a structured format. The ODS Report Writing Interface provides the ability to create tabular output a single cell at a time while still providing formatting capabilities. These terms frequently appear in tabular output documentation:

- **cell**
  - is a collection of data, text, or images that can span multiple rows or columns.

- **cell padding**
  - is the thickness on each of the four sides of the cell.

- **cell spacing**
  - is the thickness of the spacing between cells.

- **dimension unit**
  - is a nonnegative number followed by an optional unit of measure. A number without a unit of measure is interpreted as pixels. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

- **column**
  - is the vertical dimension of a 2-D arrangement (a collection of cells in the vertical dimension).

- **row**
  - is the horizontal dimension of a 2-D arrangement (a collection of cells in the horizontal dimension).

- **table**
  - is a 2-D arrangement of information that is traditionally displayed so that similar categories or classes of information are displayed in a structured manner (a collection of rows).
The following graphic illustrates the table sections that the RWI can create and modify:

The following examples use table and table section methods:

- “Creating a Simple Table” on page 217
- “Formatting Cells with the Textdecoration Style Attribute ” on page 219
- “Creating a Table with Row and Column Spanning” on page 223
- “Create One By-Group Table on a Page” on page 227

The following methods are table section methods:

- “BODY_START Method” on page 132
- “BODY_END Method” on page 133
- “FOOT_START Method” on page 139
- “FOOT_END Method” on page 141
- “HEAD_START Method” on page 153
- “HEAD_END Method” on page 155

The following methods are table methods:

- “TABLE_START Method” on page 186
- “TABLE_END Method” on page 186
- “ROW_START Method” on page 184
- “ROW_END Method” on page 183
- “CELL_START Method” on page 134
- “CELL_END Method” on page 139
- “FORMAT_CELL Method” on page 141
Text Methods

Text methods enable you to produce high-quality formatted text. The text-formatting features can be used whether your text is static or being provided from a data source.

- “Customizing Text with Style Attributes” on page 198
- “Creating a Flyer with Text Methods” on page 206
- “Working with BY Groups and IF-THEN Processing” on page 214

The following methods are text methods:

- “FORMAT_TEXT Method” on page 147
- “NOTE Method” on page 172

ODS Output Object Creation

The Basics

To use an ODS object in your SAS program, you must declare and create (instantiate) the object. The DATA step component interface provides a mechanism for accessing predefined component objects from within the DATA step. For more information about the predefined DATA step component objects, see “Using DATA Step Component Objects” in SAS Language Reference: Concepts.

Declaring and Instantiating an ODS Output Object

The ODS Report Writing Interface uses the DECLARE statement to declare and instantiate an ODS Output Object. For example, in the following line of code, the DECLARE statement declares and instantiates an ODS object and assigns it to the object reference obj:

```sas
declare odsout obj();
```

The local variable (obj) communicates with the ODS system and remains active throughout the entire DATA step. As the body of the DATA step is executed once for each input observation during the execution phase, the local object variable (obj) needs to be initialized only once for the duration of the DATA step. This can be done using _N_ as follows.

```sas
if _N_ = 1 then do;
 declare odsout obj();
end;
```
The following two-step process is an alternative way of declaring and instantiating an ODS object.

```plaintext
declare odsout obj;
obj= _new_ (odsout);
```

The DECLARE statement without ( ) specified creates a local variable for use in the DATA step, but it remains undefined until the `obj = _new_ odsout;` statement is executed. After you declare the new ODS object with the DECLARE statement, use the _NEW_ operator to instantiate the object.
Reference and Examples

ODS Output Object Creation

Types of Methods

ODS Output Object Creation
The Basics ........................................... 118
Declaring and Instantiating an ODS Output Object ........................................... 118

Types of Methods
Overview of Report Writing Methods ........................................... 119
General Purpose Methods ........................................... 119
Layout Methods ........................................... 119
Media Methods ........................................... 119
Page Methods ........................................... 119
Table Methods ........................................... 119
Text Methods ........................................... 119

Statements and Methods by Category

Dictionary
DECLARE Statement: ODS Object ........................................... 127
_NEW_Operator: ODS Object ........................................... 128
AUDIO Method ........................................... 129
BODY_START Method ........................................... 132
BODY_END Method ........................................... 133
CELL_START Method ........................................... 134
CELL_END Method ........................................... 139
DELETE Method ........................................... 139
FOOT_START Method ........................................... 139
FOOT_END Method ........................................... 141
FORMAT_CELL Method ........................................... 141
FORMAT_TEXT Method ........................................... 147
FOOTNOTE Method ........................................... 150
HEAD_START Method ........................................... 153
HEAD_END Method ........................................... 155
HREF Method ........................................... 155
IMAGE Method ........................................... 158
LAYOUT_ABSOLUTE Method ........................................... 160
LAYOUT_GRIDDED Method ........................................... 163
LAYOUT_END Method ........................................... 170
LINE Method ........................................... 170
NOTE Method ........................................... 172
PAGE Method ........................................... 175
REGION Method: Absolute ........................................... 175
REGION Method: Gridded ........................................... 179
ROW_END Method ........................................... 183
ROW_START Method ........................................... 184
TABLE_END Method ........................................... 186
ODS Output Object Creation

The Basics

To use an ODS object in your SAS program, you must declare and create (instantiate) the object. The DATA step component interface provides a mechanism for accessing predefined component objects from within the DATA step. For more information about the predefined DATA step component objects, see "Using DATA Step Component Objects" in SAS Language Reference: Concepts.

Declaring and Instantiating an ODS Output Object

The ODS Report Writing Interface uses the DECLARE statement to declare and instantiate an ODS Output Object. For example, in the following line of code, the DECLARE statement declares and instantiates an ODS object and assigns it to the object reference obj:

```
declare odsout obj();
```

The local variable (obj) communicates with the ODS system and remains active throughout the entire DATA step. As the body of the DATA step is executed once for each input observation during the execution phase, the local object variable (obj) needs to be initialized only once for the duration of the DATA step. This can be done using _N_ as follows.

```
if _N_ = 1 then do;
 declare odsout obj();
```

The following two-step process is an alternative way of declaring and instantiating an ODS object.

```
declare odsout obj;
obj= _new_ (odsout);
```

The DECLARE statement without ( ) specified creates a local variable for use in the DATA step, but it remains undefined until the `obj = _new_ odsout;` statement is executed. After you declare the new ODS object with the DECLARE statement, use the _NEW_ operator to instantiate the object.

---

**Types of Methods**

**Overview of Report Writing Methods**

There are various methods that make up the ODS Report Writing Interface. They can be organized into the following types:

- general purpose methods
- layout methods
- media methods
- page methods
- table methods
- text methods

**CAUTION!** Not all destinations support the same set of features, and therefore some methods might have restrictions in some destinations.

**General Purpose Methods**

General purpose methods can be used to create URLs, insert images and lines into your output, or delete class instances.

Here are the general purpose methods:

- “DELETE Method” on page 139
- “HREF Method” on page 155
- “LINE Method” on page 170
Layout Methods

Concepts

Layout methods control the placement of output on a page. There are two groups of layout methods, absolute and gridded. Layout containers can be nested, and gridded and absolute layouts can be used together. These terms frequently appear in layout documentation:

dimension unit
is a nonnegative number followed by an optional unit of measure. A number without a unit of measure is interpreted as pixels. It is not recommended that you size things in pixels because of adverse dependencies on resolution that can differ between destinations.

footnote
is descriptive text that appears at the bottom of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time. Footnotes can be specified inside regions, but only the footnotes that have changed will be displayed.

layout container
is an area that contains a collection of regions. Layouts can contain only regions. Layouts can have a fixed size (like width=3in and height=4in) or can be dynamically sized to accommodate the regions.

region container
is an area that contains output (like text, tables, images), or nested layout containers. Regions can also have a fixed size, or can be dynamically sized to accommodate the collection of output. Regions cannot contain titles.

title
is descriptive text that appears at the top of your output. Title and footnote processing is always done before any output is produced on the physical page. This is often referred to as page initialization time.
Gridded Layout Methods

Gridded layout methods enable you to arrange output in a two-dimensional gridded structure, such as a spreadsheet or piece of graph paper. Gridded layout is a simple, powerful tool for arranging output and managing output on one or more pages. Gridded layouts enable you to do the following:

- enforce automatic alignment of respective grid cells
- continue onto the next page if necessary
- dynamically compute the size of a grid cell

Here are the gridded layout methods:

- "LAYOUT_GRIDDED Method" on page 163
- "LAYOUT_END Method" on page 170
- "REGION Method: Gridded" on page 179
Absolute Layout Methods

Absolute layout methods enable you to specify the exact location of a layout and region container on a page. This method is very precise. Each container must be explicitly placed to ensure no overlap. Absolute layouts are restricted to a single page. If the output is too large to fit in the fixed-size container, the output is discarded, and you receive a blank region and a warning in your log. Absolute layouts are suitable for static types of output, as in the following situations:

- placing output in a specific location on a pre-printed form
- creating cover pages
- precisely placing output in a nested region container

Absolute layouts are valid in printer family destinations only.

The following example uses absolute layout methods:

- “Creating a Cover Page with the LAYOUT_ABSOLUTE Method” on page 241

Here are the absolute layout methods:

- “LAYOUT_ABSOLUTE Method” on page 160
- “LAYOUT_END Method” on page 170
- “REGION Method: Absolute” on page 175

Media Methods

Media methods create audio and video files for HTML5 or EPUB output, or insert images into your output.

- “VIDEO Method” on page 191
- “AUDIO Method” on page 129
- “IMAGE Method” on page 158

Page Methods

Page methods control characteristics of the entire page. You can start a new page or modify an existing title or footnote. The TITLE and FOOTNOTE methods enable you to incorporate a particular data value into your title or footnote. These methods work similarly to the global TITLE and FOOTNOTE statements available outside of the DATA step.

The following example uses the PAGE method:

- “Create One By-Group Table on a Page” on page 227

The following are page methods:

- “PAGE Method” on page 175
- “TITLE Method” on page 188
Table Methods

Table methods create tabular output that consists of row headings, column headings, and data values in a structured format. The ODS Report Writing Interface provides the ability to create tabular output a single cell at a time while still providing formatting capabilities. These terms frequently appear in tabular output documentation:

- **cell**: is a collection of data, text, or images that can span multiple rows or columns.
- **cell padding**: is the thickness on each of the four sides of the cell.
- **cell spacing**: is the thickness of the spacing between cells.
- **dimension unit**: is a nonnegative number followed by an optional unit of measure. A number without a unit of measure is interpreted as pixels. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.
- **column**: is the vertical dimension of a 2-D arrangement (a collection of cells in the vertical dimension).
- **row**: is the horizontal dimension of a 2-D arrangement (a collection of cells in the horizontal dimension).
- **table**: is a 2-D arrangement of information that is traditionally displayed so that similar categories or classes of information are displayed in a structured manner (a collection of rows).
The following graphic illustrates the table sections that the RWI can create and modify:

The following examples use table and table section methods:
- “Creating a Simple Table” on page 217
- “Formatting Cells with the Textdecoration Style Attribute” on page 219
- “Creating a Table with Row and Column Spanning” on page 223
- “Create One By-Group Table on a Page” on page 227

The following methods are table section methods:
- “BODY_START Method” on page 132
- “BODY_END Method” on page 133
- “FOOT_START Method” on page 139
- “FOOT_END Method” on page 141
- “HEAD_START Method” on page 153
- “HEAD_END Method” on page 155

The following methods are table methods:
- “TABLE_START Method” on page 186
- “TABLE_END Method” on page 186
- “ROW_START Method” on page 184
- “ROW_END Method” on page 183
- “CELL_START Method” on page 134
- “CELL_END Method” on page 139
- “FORMAT_CELL Method” on page 141
Text Methods

Text methods enable you to produce high-quality formatted text. The text-formatting features can be used whether your text is static or being provided from a data source.

- “Customizing Text with Style Attributes” on page 198
- “Creating a Flyer with Text Methods” on page 206
- “Working with BY Groups and IF-THEN Processing” on page 214

The following methods are text methods:

- “FORMAT_TEXT Method” on page 147
- “NOTE Method” on page 172

Statements and Methods by Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Language Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose</td>
<td>DELETE Method (p. 139)</td>
<td>Deletes an instance of a class.</td>
</tr>
<tr>
<td></td>
<td>HREF Method (p. 155)</td>
<td>Creates a link.</td>
</tr>
<tr>
<td></td>
<td>IMAGE Method (p. 158)</td>
<td>Inserts an image into all open output destinations.</td>
</tr>
<tr>
<td></td>
<td>LINE Method (p. 170)</td>
<td>Inserts a horizontal rule (line) across the page.</td>
</tr>
<tr>
<td>Layout: Absolute</td>
<td>LAYOUT_ABSOLUTE Method (p. 160)</td>
<td>Creates an absolute layout container. The LAYOUT_ABSOLUTE method enables you to specify the exact location on a page for your regions and is limited to one page of layout.</td>
</tr>
<tr>
<td></td>
<td>LAYOUT_END Method (p. 170)</td>
<td>Ends a gridded or absolute layout block.</td>
</tr>
<tr>
<td></td>
<td>REGION Method: Absolute (p. 175)</td>
<td>Creates a region container for absolute layouts.</td>
</tr>
<tr>
<td>Layout: Gridded</td>
<td>LAYOUT/GridDED Method (p. 163)</td>
<td>Creates a gridded layout container. The LAYOUT/GridDED method enables you to arrange output in a two-dimensional gridded structure such as a spreadsheet or a piece of graph paper.</td>
</tr>
<tr>
<td></td>
<td>LAYOUT_END Method (p. 170)</td>
<td>Ends a gridded or absolute layout block.</td>
</tr>
<tr>
<td></td>
<td>REGION Method: Gridded (p. 179)</td>
<td>Creates a region container for gridded layouts.</td>
</tr>
<tr>
<td>Category</td>
<td>Language Elements</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Media</td>
<td>AUDIO Method (p. 129)</td>
<td>Embeds audio into HTML5 or EPUB output.</td>
</tr>
<tr>
<td></td>
<td>VIDEO Method (p. 191)</td>
<td>Embeds video into HTML5 or EPUB output.</td>
</tr>
<tr>
<td>Page</td>
<td>FOOTNOTE Method (p. 150)</td>
<td>Adds a footnote to the page.</td>
</tr>
<tr>
<td></td>
<td>PAGE Method (p. 175)</td>
<td>Creates a page break.</td>
</tr>
<tr>
<td></td>
<td>TITLE Method (p. 188)</td>
<td>Adds a title to a page.</td>
</tr>
<tr>
<td>Statement</td>
<td>DECLARE Statement: ODS Object (p. 127)</td>
<td>Declares an ODS object and creates an instance of and initializes data for an ODS object.</td>
</tr>
<tr>
<td></td>
<td><em>NEW</em> Operator: ODS Object (p. 128)</td>
<td>Creates an instance of an ODS object.</td>
</tr>
<tr>
<td>Table</td>
<td>BODY_START Method (p. 132)</td>
<td>Specifies the start of the body section of the table.</td>
</tr>
<tr>
<td></td>
<td>BODY_END Method (p. 133)</td>
<td>Specifies the end of the body section of the table.</td>
</tr>
<tr>
<td></td>
<td>CELL_START Method (p. 134)</td>
<td>Specifies the start of a cell.</td>
</tr>
<tr>
<td></td>
<td>CELL_END Method (p. 139)</td>
<td>Specifies the end of a cell.</td>
</tr>
<tr>
<td></td>
<td>FOOT_START Method (p. 139)</td>
<td>Specifies the start of the footer section of a table.</td>
</tr>
<tr>
<td></td>
<td>FOOT_END Method (p. 141)</td>
<td>Specifies the end of the footer section of a table.</td>
</tr>
<tr>
<td></td>
<td>FORMAT_CELL Method (p. 141)</td>
<td>Formats the contents of a cell.</td>
</tr>
<tr>
<td></td>
<td>HEAD_START Method (p. 153)</td>
<td>Specifies the start of the header section of a table.</td>
</tr>
<tr>
<td></td>
<td>HEAD_END Method (p. 155)</td>
<td>Specifies the end of the header section of a table.</td>
</tr>
<tr>
<td></td>
<td>ROW_END Method (p. 183)</td>
<td>Specifies the end of a row.</td>
</tr>
<tr>
<td></td>
<td>ROW_START Method (p. 184)</td>
<td>Specifies the beginning of a row.</td>
</tr>
<tr>
<td></td>
<td>TABLE_END Method (p. 186)</td>
<td>Specifies the end of a table.</td>
</tr>
<tr>
<td></td>
<td>TABLE_START Method (p. 186)</td>
<td>Specifies the start of a table.</td>
</tr>
<tr>
<td>Text</td>
<td>FORMAT_TEXT Method (p. 147)</td>
<td>Writes text to the active output destination(s).</td>
</tr>
<tr>
<td></td>
<td>NOTE Method (p. 172)</td>
<td>Writes a note to the active output destination(s).</td>
</tr>
</tbody>
</table>
DECLARE Statement: ODS Object

Declares an ODS object and creates an instance of and initializes data for an ODS object.

Valid in: DATA step
Category: Statement
Alias: DCL
Example: declare odsout obj();
Examples: “Customizing Text with Style Attributes” on page 198
“Creating a Flyer with Text Methods” on page 206
“Using a Variable Name to Display Data” on page 212
“Working with BY Groups and IF-THEN Processing” on page 214
“Creating a Simple Table” on page 217
“Formatting Cells with the Textdecoration Style Attribute ” on page 219
“Creating a Table with Row and Column Spanning” on page 223
“Create One By-Group Table on a Page” on page 227
“Creating a Cover Page with the LAYOUT_ABSOLUTE Method” on page 241

Syntax

```
DECLARE ODSOUT object-reference () ;
```

Required Arguments

**ODSOUT**
is the class name.

**object-reference**
specifies the object reference name for the ODS object.

<table>
<thead>
<tr>
<th>Length</th>
<th>1-32</th>
</tr>
</thead>
</table>

**Restrictions**

*object-reference* must start with a letter or an underscore (_) followed by a combination of letters, numbers, and underscores

*object-reference* cannot contain blanks or special characters except for an underscore.

The maximum length of the *object-reference* is 32 characters

() instantiates the ODS object. As an alternative to the two-step process of using the DECLARE statement and the _NEW_ operator to declare and instantiate an ODS object, you can use the DECLARE statement to declare and instantiate the
ODS object in one step. For example, in the following line of code, the DECLARE statement declares and instantiates an ODS object and assigns it to the object reference obj:

```sas
declare odsout obj();
```

Details

The Basics

To use an ODS object in your SAS program, you must declare and create (instantiate) the object. The DATA step component interface provides a mechanism for accessing predefined component objects from within the DATA step. For more information about the predefined DATA step component objects, see “Using DATA Step Component Objects” in *SAS Language Reference: Concepts*.

Declaring and Instantiating an ODS Output Object

The ODS Report Writing Interface uses the DECLARE statement to declare and instantiate an ODS Output Object. For example, in the following line of code, the DECLARE statement declares and instantiates an ODS object and assigns it to the object reference obj:

```sas
declare odsout obj();
```

The local variable (obj) communicates with the ODS system and remains active throughout the entire DATA step. As the body of the DATA step is executed once for each input observation during the execution phase, the local object variable (obj) needs to be initialized only once for the duration of the DATA step. This can be done using _N_ as follows.

```sas
if _N_ = 1 then do;
 declare odsout obj();
end;
```

The following two-step process is an alternative way of declaring and instantiating an ODS object.

```sas
declare odsout obj;
obj= _new_ (odsout);
```

The DECLARE statement without () specified creates a local variable for use in the DATA step, but it remains undefined until the `obj = _new_ odsout;` statement is executed. After you declare the new ODS object with the DECLARE statement, use the _NEW_ operator to instantiate the object.

### _NEW_ Operator: ODS Object

* Creates an instance of an ODS object.

**Valid in:**
- DATA step

**Category:**
- Statement

**Applies to:**
- ODS object
Syntax

\[ \text{object-reference} = \_\text{NEW}_{\_} (\text{ODSOUT}); \]

Required Arguments

\textbf{object-reference}

- Specifies the object reference name for the ODS object.
- Length: 1-32
- Restrictions:
  - \textit{object-reference} must start with a letter or an underscore (_)
  - followed by a combination of letters, numbers, and underscores
  - \textit{object-reference} cannot contain blanks or special characters except for an underscore.
  - The maximum length of the \textit{object-reference} is 32 characters

\textbf{ODSOUT}

- Is the class name.

Comparisons

As an alternative to the two-step process of using the DECLARE statement and the \_\text{NEW}_{\_} operator to declare and instantiate an ODS object, you can use the DECLARE statement to declare and instantiate the ODS object in one step. For example, in the following line of code, the DECLARE statement declares and instantiates an ODS object and assigns it to the object reference \textit{obj}:

\begin{verbatim}
declare odsout obj();
\end{verbatim}

\textbf{AUDIO Method}

Embeds audio into HTML5 or EPUB output.

Valid in: DATA step

Category: Media

Restriction: The AUDIO method can only be used with the ODS HTML5, ODS EPUB, and ODS EPUB3 statements.


Example:

\begin{verbatim}
ods html5 file="audio.html";

data _null_;
dcl odsout obj();
obj.audio( file: "filepath-here.mp3",
    type: "mp3",
    audio_method: "AUDIO",
    audio_type: "mp3" );
\end{verbatim}
Example:

For a complete example using the Audio method, see “Adding Audio to HTML5 Output” on page 200.

Syntax

```
AUDIO (FILE: 'path' | 'FILEREF:fileref'
<, TYPE: 'audio-type',><audio-control-option-1><audio-control-option-2, ...>);
```

Required Argument

**FILE: 'path' | 'FILEREF:fileref'**

specifies the path of the audio to insert into HTML5 or EPUB output.

- **path**
  
is the path to an external audio file. path can be a URL or a filename with a fully qualified path.

  **Requirement**  
  *path* must be enclosed in quotation marks.

- **FILEREF:fileref**
  
is a file reference that has been assigned to an external file.

  To use a FILEREF with the AUDIO method, you must use the URL option in the FILENAME statement, and then specify the fileref with the FILEREF: identifier.

  **Requirement**  
  *FILEREF:fileref* must be enclosed in quotation marks.

See

For information about using the URL access method, see “FILENAME Statement: URL Access Method” in SAS Global Statements: Reference.

Example

```
filename AudFile url "url-path.mp3";
obj.audio(file: "FILEREF:AudFile", type:mp3);
```

Tips

- To display multiple audio files, you must use separate AUDIO methods.

  To specify multiple format of the same audio file, you can use multiple FILE: arguments. The browser will then play the first file in the list that is a type that it supports. This enables you to support multiple browsers with one AUDIO method.

Optional Arguments

**TYPE: 'audio-type'**

specifies the audio type. If the TYPE: option is not specified, then the browser will determine the file type. All other options will then default to browser-determined values.

Most browsers support one or more of the following audio types:
Table 10.1 Supported Audio Types for Browsers

<table>
<thead>
<tr>
<th>Browser</th>
<th>Audio Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Explorer</td>
<td>MP3</td>
</tr>
<tr>
<td>Chrome</td>
<td>MP3, Wav, Ogg</td>
</tr>
<tr>
<td>Firefox</td>
<td>MP3, Wav, Ogg</td>
</tr>
<tr>
<td>Safari</td>
<td>MP3, Wav</td>
</tr>
<tr>
<td>Opera</td>
<td>MP3, Wav, Ogg</td>
</tr>
</tbody>
</table>

**Requirement** If TYPE is specified, it must be specified before the next FILE option is specified.

**PRELOAD:** 'AUTO' | 'NONE' | 'METADATA'

specifies how the audio file loads in a browser.

- **AUTO** load the audio file as soon as the page loads
- **NONE** load the audio file when user presses the play button
- **METADATA** load information about the audio file when the page loads, but not the audio itself.

**Default** AUTO

**AUTOPLAY:** 'OFF' | 'ON'

specifies when the audio begins playing.

- **OFF** start playing the audio when the play button is pushed.
  - **Alias** NO
- **ON** start playing the audio immediately when the page loads.
  - **Alias** YES

**Default** OFF

**LOOP:** 'OFF' | 'ON'

specifies whether the audio is continuously replayed.

- **OFF** play the audio once.
  - **Alias** NO
ON
start replaying the audio immediately after it ends.

Alias    YES
Default   OFF

MUTED: 'OFF' | 'ON'
controls whether the audio is muted.

OFF
the audio is on when the file starts playing.

Alias    NO

ON
the audio is off when the file starts playing.

Alias    YES
Default   OFF

Restriction  The MUTED: option is not supported in Internet Explorer 9 or earlier.

BODY_START Method
Specifies the start of the body section of the table.

Valid in:     DATA step
Category:     Table
Requirement:  The BODY_START method must be used with the BODY_END method.
Tip:          Specifying the TYPE argument in the ROW_START method is an alternate approach to using the BODY_START method.
See:          For information about terminology and concepts used to create tables, see "Terminology" on page 108.

Example:

```javascript
obj.table_start();
obj.body_start();
obj.row_start();
 obj.format_cell(data: 'A single cell table');
obj.row_end();
obj.body_end();
obj.table_end();
```

Syntax

```
BODY_START(<option-1>,<option-2, ...>);
```
Optional Arguments

**STYLE_ATTR:** `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-attribute** specifies a style attribute.

**Requirement**
You must enclose `style-attribute` in quotation marks.

**See**
For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

**STYLE_ELEM:** `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-element** specifies a style element.

**Default**
The default style element for the BODY_START methods is Body.

**Requirement**
You must enclose `style-element` in quotation marks.

**See**
For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

---

**BODY_END Method**

Specifies the end of the body section of the table.

**Valid in:** DATA step

**Category:** Table

**Requirement:** The BODY_END method must be used with the BODY_START method.

**See:** For information about terminology and concepts used to create tables, see “Terminology” on page 108.

**Example:**
```javascript
obj.table_start();
obj.body_start();
obj.row_start();
obj.format_cell(data: 'A single cell table');
obj.row_end();
obj.body_end();
obj.table_end();
```
Syntax

```plaintext
CELL_START(<option-1><.option-2, ...>);
```

Optional Arguments

- **COLUMNSPAN**: `number | numeric-variable`
  - Specifies the number of grid columns that the cell will occupy. The COLUMNSPAN argument enables you to combine adjacent cells.
  - `number` is a positive numeric value.
  - `numeric-variable` is the name of a numeric variable from the input data set.
  - Default: 1
  - Example: `exmpl.cell_start(column_span:3);`

- **DATA**: `<string> | number | character-variable | numeric-variable>
  - Specifies the data to display.
  - `string` specifies a text string.
  - `number` specifies a numeric value.
**character-variable** specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

**numeric-variable** specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

**Requirement** You must enclose string in quotation marks.

**Example**
```
obj.cell_start(data: 'Specifies Text.');
```

**FORMAT: `<character-variable | string>`**
specifies the format to be applied to the data argument.

**character-variable** specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

**string-variable** specifies the name of a user-defined format or a format supplied by SAS.

**Default** If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

**Requirement** You must enclose string in quotation marks.

**Example**
```
exmpl.cell_start(data: sex, column_span: 4, format: '$gender.');
```

**HEIGHT: ‘dimension’**
specifies the vertical width of the cell.

**dimension** is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimeters</td>
</tr>
<tr>
<td>em</td>
<td>standard typesetting measurements unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>standard typesetting measurements unit for height</td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>px</td>
<td>pixels</td>
</tr>
<tr>
<td>pt</td>
<td>a printer’s point</td>
</tr>
</tbody>
</table>

**Default** If you omit the HEIGHT argument, the default is the maximum vertical space needed to display the output contained in the cell.

**Restriction** The height is restricted by the dimensions of the cell.

**Requirement** dimension must be enclosed in quotation marks.

**INHIBIT: (‘B’ | ‘L’ | ‘R’ | ‘T’ | ‘X’)**
specifies the sides of the cell that will not be displayed.
Valid values:

B  specifies not to draw the bottom border. Specifying the B value is ineffective if the destination already drew the rule on the top of the previous cell.
L  specifies not to draw the left border. Specifying the L value is ineffective if the destination already drew that rule on the right of the previous cell.
R  specifies not to draw the right border.
T  specifies not to draw the top border. Specifying the T value is ineffective if the destination already drew a rule at the bottom of the previous row.
X  specifies not to draw the contents of the cell, only the background of the cell. Specifying the X value on one of two cells that are using the B or R values is helpful.

Restrictions

The INHIBIT argument is not supported by the HTML destination.

The values for the INHIBIT argument must be enclosed in quotation marks.

**INLINE_ATTR:** `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

*character-variable* specifies the name of a variable from the input data set.
*style-attribute* specifies a style attribute.

**Requirement**

You must enclose *style-attribute* in quotation marks.

**See**

For a list of style attributes, see Chapter 15, "Style Attributes," on page 363.

**Example**

```plaintext
exmpl.cell_start (data: 'Make this text red', inline_attr: 'color=red',
data: 'and this bold', inline_attr: 'font_weight=bold',
data: ' and use a 16pt font', inline_attr: 'font_size=16pt');
```

**INLINE_ELEM:** `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

*character-variable* specifies the name of a variable from the input data set.
*style-element* specifies a style element.

**Default**

The default style element for the CELL_START method is Text.

**Requirement**

You must enclose *style-element* in quotation marks.

**See**

For a list of style elements, see Chapter 14, "Style Elements," on page 335.
**JUST:** 'C' | 'L' | 'R' | char-variable

specifies the horizontal justification for the data value.

- **C** specifies center justification.
- **L** specifies left justification.
- **R** specifies right justification.
- **char-variable** specifies the name of a character variable from the input data set.

**Default**

- C

**Requirement**

You must enclose C, L, and R in quotation marks.

**ROW_SPAN:** number | numeric variable

specifies the number of rows that the cell will occupy. The ROW_SPAN argument enables you to combine adjacent cells.

- **number** is a positive numeric value.
- **numeric-variable** is the name of a numeric variable from the input data set.

**Default**

- 1

**Example**

```
 exempl.cell_start(row_span: 3);
```

**SPLIT:** <character-variable> | 'string'>

specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

- **character-variable** is the name of a character variable from the input data set. The character variable’s value resolves to the character.
- **string** is one or more characters.

**STYLE_ATTR:** <character-variable> | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-attribute** specifies a style attribute.

**Requirement**

You must enclose style-attribute in quotation marks.

**See**

For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.
**STYLE_ELEM:** `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

*character-variable* specifies the name of a variable from the input data set.
*style-element* specifies a style element.

**Default**
The default style element for the CELL_START method is Text.

**Requirement**
You must enclose *style-element* in quotation marks.

**See**
For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

---

**VJUST:** `<'B' | 'M' | 'T' | character-variable>'`

specifies the vertical justification for the data value.

*B* specifies bottom justification
*M* specifies middle justification
*T* specifies top justification

*char-variable* specifies the name of a character variable from the input data set.

**Default**
‘T’

**Requirement**
You must enclose B, M, and T in quotation marks.

---

**URL:** `'URL-path'`

specifies the fully qualified URL path.

**Example**
```
obj.cell_start(data: "Link to SAS Support",
 url: "http://support.sas.com");
```

---

**WIDTH:** `'dimension'`

specifies the horizontal width of the cell.

*dimension*

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

*cm* centimeters
*em* standard typesetting measurements unit for width
*ex* standard typesetting measurements unit for height
*in* inches
*mm* millimeters
*px* pixels
*pt* a printer’s point
If you omit the WIDTH argument, the default is the maximum horizontal space needed to display the output contained in the cell.

The width is restricted by the dimensions of the cell.

*dimension* must be enclosed in quotation marks.

### CELL_END Method

Specifies the end of a cell.

**Valid in:** DATA step

**Category:** Table

**Requirement:** The CELL_END method must be used with the CELL_START method.

**See:** For information about terminology and concepts used to create tables, see “Terminology” on page 108.

**Example:**

```plaintext
obj.table_start();
obj.row_start();
obj.cell_start();
 obj.format_text(data: 'A single cell table');
 obj.cell_end();
 obj.row_end();
obj.table_end();
```

**Syntax**

```plaintext
CELL_END();
```

### DELETE Method

Deletes an instance of a class.

**Valid in:** DATA step

**Category:** General Purpose

**Syntax**

```plaintext
DELETE();
```

### FOOT_START Method

Specifies the start of the footer section of a table.

**Valid in:** DATA step
Category: Table

Requirement: The FOOT_START method must be used with the FOOT_END method.

Tip: Specifying the TYPE argument with the ROW_START method is an alternate approach to using the FOOT_START method.

See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Example:

```javascript
obj.table_start();
 obj.foot_start();
 obj.row_start();
 obj.cell_start();
 obj.format_text(data: 'A single cell table');
 obj.cell_end();
 obj.row_end();
 obj.foot_end();
obj.table_end();
```

Syntax

```javascript
FOOT_START(<option-1>,<option-2,...>);
```

Optional Arguments

**STYLE_ATTR: **<character-variable | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-attribute** specifies a style attribute.

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

**STYLE_ELEM: **<character-variable | 'style-element'>

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-element** specifies a style element.

Default The default style element for the FOOT_START method is Footer.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.
FOOT_END Method

Specifies the end of the footer section of a table.

Valid in: DATA step
Category: Table
Requirement: The FOOT_END method must be used with the FOOT_START method.
See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Example:

```javascript
obj.table_start();
 obj.foot_start();
 obj.row_start();
 obj.cell_start();
 obj.format_text(data: 'A single cell table');
 obj.cell_end();
 obj.row_end();
 obj.foot_end();
obj.table_end();
```

Syntax

```
FOOT_END();
```

FORMAT_CELL Method

Formats the contents of a cell.

Valid in: DATA step
Category: Table
Interaction: When using the Report Writing Interface with the ODS destination for Excel, the `TAGATTR=` Style Attribute on page 418 is needed to pass Excel formats instead of the `FORMAT` parameter within the FORMAT_CELL Method.
See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Examples:

```javascript
obj.table_start();
 obj.row_start();
 obj.format_cell(data: 'This is a single cell',
 style_elem: 'Header');
 obj.row_end();
obj.table_end();
```

The following example creates a row with two separate cells.

```javascript
obj.table_start();
 obj.row_start();
 obj.format_cell(data: 'Cell 1');
```
Syntax

FORMAT_CELL(DATA: 'displayed-data' <, option-1><, option-2, ...>);

Required Argument

DATA: <'string' | number | character-variable | numeric-variable>

specifies the data to display.

'string' specifies a text string.

number specifies a numeric value.

character-variable specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

numeric-variable specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose string in quotation marks.

Example

```javascript
obj.format_cell(data: 'This text is the contents of a cell.');
```

Optional Arguments

COLUMN_SPAN: number | numeric-variable

specifies the number of columns that the cells will occupy. The COLUMN_SPAN argument enables you to combine adjacent cells.

number is a positive numeric value.

numeric-variable is the name of a numeric variable from the input data set.

Default 1

Example

```javascript
obj.format_cell(data: 'This is a spanning cell',
 column_span: 2,
 style_elem: 'Header');
```

FORMAT: <character-variable | 'string'>

specifies the format to be applied to the data argument.
**character-variable** specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

**string-variable** specifies the name of a user-defined format or a format supplied by SAS.

**Default** If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

**Requirement** You must enclose **string** in quotation marks.

**Example**
```
exmpl.format_cell(data: bmi, format: '8.2');
```

**HEIGHT: 'dimension'**

specifies the vertical width of the cell.

**dimension**

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- **cm** centimeters
- **em** standard typesetting measurements unit for width
- **ex** standard typesetting measurements unit for height
- **in** inches
- **mm** millimeters
- **px** pixels
- **pt** a printer’s point

**Requirement** **dimension** must be enclosed in quotation marks.

**INHIBIT: ('B' | 'L' | 'R' | 'T' | 'X')**

specifies the sides of the cell that will not be displayed.

**Valid values:**

- **B** specifies not to draw the bottom border. Specifying the B value is ineffective if the destination already drew the rule on the top of the previous cell.
- **L** specifies not to draw the left border. Specifying the L value is ineffective if the destination already drew that rule on the right of the previous cell.
- **R** specifies not to draw the right border.
- **T** specifies not to draw the top border. Specifying the T value is ineffective if the destination already drew a rule at the bottom of the previous row.
- **X** specifies not to draw the contents of the cell, only the background of the cell. Specifying the X value on one of two cells that are using the B or R values is helpful

**Restrictions** The INHIBIT argument is not supported by the HTML destination.
values for the INHIBIT argument must be enclosed in quotation marks.

**INLINE_ATTR: `<character-variable | 'style-attribute'>`**

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINEATTR argument apply only to the preceding DATA argument.

*character-variable* specifies the name of a variable from the input data set.

*style-attribute* specifies a style attribute.

**Requirement**

You must enclose *style-attribute* in quotation marks.

**See**

For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

**Example**

```javascript
exmpl.format_cell(
data: 'Make this text red',
inline_attr: 'color=red',
data: 'and this bold',
inline_attr: 'font_weight=bold',
data: 'and use a 16pt font',
inline_attr: 'font_size=16pt');
```

**INLINE_ELEM: `<character-variable | 'style-element'>`**

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

*character-variable* specifies the name of a variable from the input data set.

*style-element* specifies a style element.

**Default**

The default style element for the FORMAT_CELL method is Text.

**Requirement**

You must enclose *style-element* in quotation marks.

**See**

For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

**Example**

```javascript
exmpl.format_cell(
data: 'This text is formatted using the
INLINE_ELEM argument and the Output
Style Element.',
inline_elem: 'Output',
data: 'The INLINE_ELEM argument applies
only to the preceding text.');
```

**JUST: ‘C’ | ‘L’ | ‘R’ | char-variable**

specifies the horizontal justification for the data value.

*C* specifies center justification.

*L* specifies left justification.

*R* specifies right justification.

*char-variable* specifies the name of a character variable from the input data set.
Default: C

Requirement: You must enclose C, L, and R in quotation marks.

**ROW_SPAN:** `<number | numeric-variable>`
specifies the number of rows that the cell will occupy. The ROW_SPAN argument enables you to combine adjacent cells in a layout.

- **number**: is a positive numeric value.
- **numeric-variable**: is the name of a numeric variable from the input data set.

Default: 1

Example:
```javascript
exmpl.format_cell(data: 'Name', row_span: 3, vjust: 'B');
```

**SPLIT:** `<character-variable | 'string'>`
specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

- **character-variable**: is the name of a character variable from the input data set. The character variable’s value resolves to the character.
- **string**: is one or more characters.

**STYLE_ATTR:** `<character-variable | 'style-attribute'>`
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- **character-variable**: specifies the name of a variable from the input data set.
- **style-attribute**: specifies a style attribute.

Requirement: You must enclose **style-attribute** in quotation marks.

See: For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example:
```javascript
exmpl.format_cell(data: 'With the STYLE_ATTR argument, ',
 style_attr: 'color=red',
 data: 'the style attribute applies to all text.');
```

**STYLE_ELEM:** `<character-variable | 'style-element'>`
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- **character-variable**: specifies the name of a variable from the input data set.
- **style-element**: specifies a style element.

Default: The default style element for the FORMAT_CELL method is Text.
Requirement You must enclose \textit{style-element} in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

Example ```javascript
exmpl.format_cell(data: 'This text is formatted using STYLE_ELEM and the SystemTitle Style Element.',
                    style_elem: 'SystemTitle',
                    data: 'The STYLE_ELEM argument applies to the entire method.');
``` TYPE: \texttt{H}

specifies that the cell class is a row header. This option helps make reports accessible for people with a wide range of abilities.

ODS destination PDF, HTML5, and HTML

\textbf{VJUST: <B | 'M' | 'T' | character-variable>}

specifies the vertical justification for the data value.

- \texttt{B} specifies bottom justification
- \texttt{M} specifies middle justification
- \texttt{T} specifies top justification
- \texttt{character-variable} specifies the name of a character variable from the input data set.

Default \texttt{'T}

Requirement You must enclose \texttt{B}, \texttt{M}, and \texttt{T} in quotation marks.

Example ```javascript
exmpl.format_cell(data: 'Name', row_span: 3, vjust: 'B');
``` URL: \texttt{'URL-path'}

specifies the fully qualified URL path.

Example ```javascript
obj.format_cell(data: "Link to SAS Support",
                url: "http://support.sas.com");
``` WIDTH: \texttt{'dimension'}

specifies the horizontal width of the cell.

\texttt{dimension}

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- \texttt{cm} centimeters
- \texttt{em} standard typesetting measurements unit for width
- \texttt{ex} standard typesetting measurements unit for height
- \texttt{in} inches
- \texttt{mm} millimeters
Requirement: *dimension* must be enclosed in quotation marks.

FORMAT_TEXT Method

Writes text to the active output destination(s).

Valid in: DATA step

Category: Text

Example:

```plaintext
obj.format_text(data: strip(street),
    style_attr: 'font_style=italic
    font_size=12pt
    font_weight=bold
    color=cbdbbb2e0');
```

Examples:

- “Customizing Text with Style Attributes” on page 198
- “Creating a Flyer with Text Methods” on page 206
- “Using a Variable Name to Display Data” on page 212
- “Working with BY Groups and IF-THEN Processing” on page 214

Syntax

```plaintext
FORMAT_TEXT(DATA:'displayed-data' <,option-1><,option-2, ...>);
```

Required Argument

DATA: `<string | number | character-variable | numeric-variable>`

specifies the data to display.

- `'string'` specifies a text string.
- `number` specifies a numeric value.
- `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
- `numeric-variable` specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose *string* in quotation marks.

Examples

The following code displays the specified text to active output destinations.

```plaintext
obj.format_text(data: 'Display this text to active output destinations.');
```
The following code specifies that the value of the variable Name is displayed to active output destinations.

```
obj.format_text(data: name);
```

Optional Arguments

FORMAT: <character-variable | 'string'>

specifies the format to be applied to the data argument.

- `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
- `string-variable` specifies the name of a user-defined format or a format supplied by SAS.

Default

If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

Requirement

You must enclose `string` in quotation marks.

Example

```
exmpl.format_text(data: bmi, format: '8.2');
```

INLINE_ATTR: <character-variable | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

- `character-variable` specifies the name of a variable from the input data set.
- `style-attribute` specifies a style attribute.

Requirement

You must enclose `style-attribute` in quotation marks.

See

For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example

```
exmpl.format_text(data: 'Make this text red',
                   inline_attr: 'color=red',
                   data: 'and this bold',
                   inline_attr: 'font_weight=bold',
                   data: ' and use a 16pt font',
                   inline_attr: 'font_size=16pt');
```

INLINE_ELEM: <character-variable | 'style-element'>

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

- `character-variable` specifies the name of a variable from the input data set.
- `style-element` specifies a style element.

Default

The default style element for the FORMAT_TEXT method is UserText.

Requirement

You must enclose `style-element` in quotation marks.
JUST: 'C' | 'L' | 'R' | char-variable

Specifies the horizontal justification for the data value.

<table>
<thead>
<tr>
<th>Justification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>specifies center justification.</td>
</tr>
<tr>
<td>L</td>
<td>specifies left justification.</td>
</tr>
<tr>
<td>R</td>
<td>specifies right justification.</td>
</tr>
<tr>
<td>char-variable</td>
<td>specifies the name of a character variable from the input data set.</td>
</tr>
</tbody>
</table>

Default

L

Requirement

You must enclose C, L, and R in quotation marks.

SPLIT: <character-variable | 'string'>

Specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

character-variable is the name of a character variable from the input data set.

string is one or more characters.

Example

```javascript
obj.format_text(data: 'Line 1#Line 2', split: '#');
```

STYLE_ATTR: <character-variable | 'style-attribute'>

Specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

character-variable specifies the name of a variable from the input data set.

style-attribute specifies a style attribute.

Requirement

You must enclose style-attribute in quotation marks.

See

For a list of style attributes, see Chapter 15, "Style Attributes," on page 363.

Example

```javascript
exmpl.format_text(data: 'With the STYLE_ATTR argument, ',
style_attr: 'color=red',
data: 'the style attribute applies to all text.');
```
STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-element** specifies a style element.

Default
The default style element for the FORMAT_TEXT method is UserText.

Requirement
You must enclose *style-element* in quotation marks.

See
For a list of style elements, see Chapter 14, "Style Elements," on page 335.

Example
```java
exmpl.format_text(data: 'This text is formatted using STYLE_ELEM and the SystemTitle Style Element.',
                  style_elem: 'SystemTitle',
                  data: 'The STYLE_ELEM argument applies to the entire method.');
```

VJUST: `<B | 'M' | 'T' | character-variable>`

specifies the vertical justification for the data value.

- **B** specifies bottom justification
- **M** specifies middle justification
- **T** specifies top justification
- **char-variable** specifies the name of a character variable from the input data set.

Default
'T'

Requirement
You must enclose B, M, and T in quotation marks.

URL: `'URL-path'`

specifies the fully qualified URL path.

Example
```java
obj.format_text(data: "Link to SAS Support",
                url: "http://support.sas.com");
```

FOOTNOTE Method

Adds a footnote to the page.

Category: Page

Example: The following example left-justifies the footnote:

```java
obj.footnote(data: 'Left Justified Footnote',
             vjust: 'B');
```
Syntax

`FOOTNOTE(DATA: 'displayed-data' <option-1><option-2, ...>);`

Required Argument

DATA: `<string | number | character-variable | numeric-variable>`

- Specifies the data to display.
 - `'string'` specifies a text string.
 - `number` specifies a numeric value.
 - `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
 - `numeric-variable` specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose string in quotation marks.

Example

```javascript
obj.footnote(data: 'Here is a Footnote.');
```

Optional Arguments

CLEAR: `line-number`

Clears the footnote on the line number specified.

- `line-number` is the line number.
- **Range** 1–10

Example

```javascript
The following example clears the previous footnote.
obj.footnote(data: 'Here is a footnote', start: 1, clear: 1);
```

FORMAT: `<character-variable | string>`

- Specifies the format to be applied to the data argument.
 - `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
 - `string-variable` specifies the name of a user-defined format or a format supplied by SAS.

Default If the data is numeric and no format has been specified, then the data value is formatted using the BEST format.

Requirement You must enclose string in quotation marks.

Example

```javascript
exmpl.footnote(data: date, format: 'date9.');
```
INLINE_ATTR: `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

character-variable specifies the name of a variable from the input data set.

style-attribute specifies a style attribute.

Requirement You must enclose *style-attribute* in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example

```javascript
exmpl.footnote {data: 'Make this text red',
  inline_attr: 'color=red',
  data: 'and this bold',
  inline_attr: 'font_weight=bold',
  data: ' and use a 16pt font',
  inline_attr: 'font_size=16pt');
```

INLINE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

character-variable specifies the name of a variable from the input data set.

‘style-element’ specifies a style element.

Requirement You must enclose *style-element* in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

Example

```javascript
exmpl.footnote {data: 'This text is formatted using the
  INLINE_ELEM argument and the Output
  Style Element.',
  inline_elem: 'Output',
  data: 'The INLINE_ELEM argument applies
  only to the preceding text.');
```

SPLIT: `<character-variable | 'string'>`

specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

character-variable is the name of a character variable from the input data set. The character variable’s value resolves to the character.

string is one or more characters.

START: *line-number*

specifies the line the footnote will be displayed on.

line-number is the line number.

Range 1–10
Example

The following example starts the footnote on line number 2.

```plaintext
obj.footnote(data: 'Here is a footnote',
            start: 2);
```

STYLE_ATTR: `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-attribute` specifies a style attribute.

Requirement

You must enclose `style-attribute` in quotation marks.

See

For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example

```plaintext
exmpl.footnote(data: 'With the STYLE_ATTR argument, ',
                style_attr: 'color=red',
                data: 'the style attribute applies to all text.');
```

STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-element` specifies a style element.

Default

The default style element for the FOOTNOTE method is SystemFooter.

Requirement

You must enclose `style-element` in quotation marks.

See

For a list of style elements, see Chapter 14, "Style Elements," on page 335.

Example

```plaintext
exmpl.footnote(data: 'This text is formatted using STYLE_ELEM and the SystemTitle Style Element.',
                style_elem: 'SystemTitle',
                data: 'The STYLE_ELEM argument applies to the entire method.');
```

HEAD_START Method

Specifies the start of the header section of a table.

Valid in: DATA step

Category: Table
Requirement: The HEAD_START method must be used with the HEAD_END method.

Tip: Specifying the TYPE: argument with the ROW_START method is an alternative to using the HEAD_START method.

See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Example:

```javascript
obj.table_start();
  obj.head_start();
  obj.row_start();
  obj.format_cell(data: 'A single cell table');
  obj.row_end();
  obj.head_end();
obj.table_end();
```

Examples: “Creating a Simple Table” on page 217
“Creating a Table with Row and Column Spanning” on page 223

Syntax

```
HEAD_START(<option-1>,<option-2, ...>);
```

Optional Arguments

STYLE_ATTR: <character-variable | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-attribute` specifies a style attribute.

Requirement You must enclose `style-attribute` in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: <character-variable | 'style-element'>

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-element` specifies a style element.

Default The default style element for the HEAD_START method is Header.

Requirement You must enclose `style-element` in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.
HEAD_END Method
Specifies the end of the header section of a table.
Valid in: DATA step
Category: Table
Requirement: The HEAD_END method is always used with the HEAD_START method.
See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.
Example:
```javascript
obj.table_start();
  obj.head_start();
  obj.row_start();
  obj.format_cell(data: 'A single cell table');
  obj.row_end();
  obj.head_end();
obj.table_end();
```
Examples:
“Creating a Simple Table” on page 217
“Creating a Table with Row and Column Spanning” on page 223

Syntax
```
HEAD_END();
```

HREF Method
Creates a link.
Valid in: DATA step
Category: General Purpose
Example: `exmpl.href(data: 'Link to SAS Support',
 url: 'http://support.sas.com',
 format:'$upcase10.');`

Syntax
```
HREF (DATA: 'displayed-data', URL:'data-path' <,option-1> <,option-2, ...>);
```
Required Arguments
```
DATA: <'string' | number | character-variable | numeric-variable>
specifies the data to display.

'string' specifies a text string.
```
number specifies a numeric value.

class variable specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

numeric variable specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose string in quotation marks.

Example

```javascript
obj.href(data: 'Link to SAS Support',
         url: 'http://support.sas.com');
```

URL: 'URL-path'
specifies the fully qualified URL path.

Example

```javascript
obj.href(data: "Link to SAS Support",
         url: "http://support.sas.com");
```

Optional Arguments

FORMAT: `<character-variable | 'string'>`
specifies the format to be applied to the data argument.

<table>
<thead>
<tr>
<th>character-variable</th>
<th>specifies the name of a character variable. The value of the character variable from the input data set is written to the output.</th>
</tr>
</thead>
<tbody>
<tr>
<td>string-variable</td>
<td>specifies the name of a user-defined format or a format supplied by SAS.</td>
</tr>
</tbody>
</table>

Default If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

Requirement You must enclose string in quotation marks.

Example

```javascript
exmpl.href(data: 'Link to SAS Support',
            url: 'http://support.sas.com',
            format: '$upcase10.');
```

INLINE_ATTR: `<character-variable | 'style-attribute'>`
specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

<table>
<thead>
<tr>
<th>character-variable</th>
<th>specifies the name of a variable from the input data set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>style-attribute</td>
<td>specifies a style attribute.</td>
</tr>
</tbody>
</table>

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example

```javascript
exmpl.href(data: 'Link to SAS Support',
            url: 'http://support.sas.com',
            format: '$upcase10.');
```
INLINE_ELEM: `<character-variable | 'style-element'>
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

`character-variable` specifies the name of a variable from the input data set.
`'style-element'` specifies a style element.

Default: The default style element for the HREF method is Text.

Requirement: You must enclose `style-element` in quotation marks.

See: For a list of style elements, see Chapter 14, "Style Elements," on page 335.

JUST: `C | 'L' | 'R' | char-variable
specifies the horizontal justification for the data value.

C specifies center justification.
L specifies left justification.
R specifies right justification.
`char-variable` specifies the name of a character variable from the input data set.

Default: C

Requirement: You must enclose C, L, and R in quotation marks.

SPLIT: `<character-variable | 'string'>
specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

`character-variable` is the name of a character variable from the input data set. The character variable’s value resolves to the character.
`string` is one or more characters.

STYLE_ATTR: `<character-variable | 'style-attribute'>
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

`character-variable` specifies the name of a variable from the input data set.
`style-attribute` specifies a style attribute.

Requirement: You must enclose `style-attribute` in quotation marks.

See: For a list of style attributes, see Chapter 15, "Style Attributes," on page 363.
STYLE_ELEM: `<character-variable | 'style-element'>`
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

`character-variable` specifies the name of a variable from the input data set.

`style-element` specifies a style element.

Default
The default style element for the HREF method is Text.

Requirement
You must enclose `style-element` in quotation marks.

See
For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

VJUST: `<B | 'M' | 'T' | character-variable>`
specifies the vertical justification for the data value.

B specifies bottom justification
M specifies middle justification
T specifies top justification
`char-variable` specifies the name of a character variable from the input data set.

Default
’T’

Requirement
You must enclose B, M, and T in quotation marks.

Example
`obj.href(data: 'Link to SAS Support',
 url: 'http://support.sas.com'), vjust='m';`

IMAGE Method
Inserts an image into all open output destinations.

Valid in:
DATA step

Category:
General Purpose

Example:
`obj.image(file: 'star.jpg');`

Syntax
IMAGE (FILE:"fileref" | "filename"<,option-1> <,option-2, ...>);

Required Argument
FILE:"fileref" | "filename"
inserts an image into all open output destinations.

`filename` is the name of an external image file.
is a file reference that has been assigned to an external file. Use the FILENAME statement to assign a fileref.

Requirements: `fileref` | `filename` must be enclosed in quotation marks.

See: For information about the FILENAME statement, see SAS DATA Step Statements: Reference.

Example: `obj.image(file: 'c:\image.jpg');`

Optional Arguments

DESCRIPTION: `<text-string>`

Specifies alternate text for images. This option helps make reports accessible for people with a wide range of abilities. For accessibility, the text should convey the meaning of the output. The alternate text will be read by assistive technology such as a screen reader. If an empty text string is specified, then the image is ignored by screen readers.

Alias: DESC

Example: `obj.image(file: "./high_price.png", description: "High price");`

STYLE_ATTR: `<character-variable | style-attribute>`

Specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- character-variable: specifies the name of a variable from the input data set.
- style-attribute: specifies a style attribute.

Requirements: You must enclose `style-attribute` in quotation marks.

See: For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | style-element>`

Specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- character-variable: specifies the name of a variable from the input data set.
- style-element: specifies a style element.

Default: The default style element for the IMAGE method is Text.

Requirements: You must enclose `style-element` in quotation marks.

See: For a list of style elements, see Chapter 14, “Style Elements,” on page 335.
LAYOUT_ABSOLUTE Method

Creates an absolute layout container. The LAYOUT_ABSOLUTE method enables you to specify the exact location on a page for your regions and is limited to one page of layout.

Valid in: DATA step
Category: Layout: Absolute
Requirement: The LAYOUT_ABSOLUTE method must be used with the LAYOUT_END method.
ODS destination: Absolute layout methods are valid in PRINTER destinations only.

Example:

```
trt.layout_absolute();
trt.region(y: '5in');
    trt.format_text(data: 'Executive Prospectus', just: 'c',
        style_attr:'font_size=36pt color=cxbbb2e0');
trt.layout_end();
```

Example: “Creating a Cover Page with the LAYOUT_ABSOLUTE Method” on page 241

Syntax

```
LAYOUT_ABSOLUTE(<option-1><option-2, ...>);
```

Optional Arguments

DESCRIPTION:<text-string>

specifies descriptions for layouts. This option helps make reports accessible for people with a wide range of abilities. For accessibility, the text should describe the function of the layout. The alternate text will be read by assistive technology such as a screen reader.

Valid in PDF and HTML5
Alias DESC

Example

```
obj.layout_absolute(description: "Section one");
```

HEIGHT: dimension

specifies the vertical height of the layout container. The height specified by the HEIGHT argument begins at the point specified by the Y argument and extends down.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
in inches
mm millimeters
px pixels
pt a printer’s point

Default If omitted, the HEIGHT argument defaults to the maximum vertical space available on the page.

Requirement dimension must be enclosed in quotation marks.

Example obj.layout_absolute(height: '10in');

STYLE_ATTR: <character-variable | 'style-attribute'>
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

character-variable specifies the name of a variable from the input data set.
style-attribute specifies a style attribute.

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: <character-variable | 'style-element'>
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

character-variable specifies the name of a variable from the input data set.
style-element specifies a style element.

Default The default style element for the LAYOUT_ABSOLUTE method is LayoutContainer.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

WIDTH: ‘dimension’
specifies the horizontal width of the layout container. The width specified by the WIDTH argument begins at the point specified by the X argument and extends to the right.

dimension is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

cm centimeters
em standard typesetting measurements unit for width
ex standard typesetting measurements unit for height
in inches
mm millimeters
px pixels
pt a printer’s point

Default If omitted, the WIDTH argument defaults to the maximum horizontal space available on the page.

Requirement dimension must be enclosed in quotation marks.

Example obj.layout_absolute(width: '5in');

X: ‘dimension’
specifies the horizontal starting point for the layout container. By default, the starting point for a layout is the top left corner, underneath any specified titles. If there are no titles, then the default is the corner that is set up by the top and left page margin. The position for the top left corner is x=0 | y=0. An X argument specification moves the starting point to the right. That will then be the new horizontal starting point for the layout container. The width specified by the WIDTH argument begins at the point specified by the X argument and extends to the right.

dimension
is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

cm centimeters
em standard typesetting measurements unit for width
ex standard typesetting measurements unit for height
in inches
mm millimeters
px pixels
pt a printer’s point

Default By default, the starting point for a layout is the top left corner. The position for the top left corner is x=0 | y=0.

Requirement dimension must be enclosed in quotation marks.

Example obs.layout_absolute(y: '3in', x: '3in');

Y: ‘dimension’
specifies the vertical starting point for the layout container. By default, the starting point for a layout is the top left corner, underneath any specified titles. If there are no titles, then the default is the corner that is set up by the top and left page margin. The position for the top left corner is x=0 | y=0. A Y argument specification moves the starting point down. That will then be the new vertical
starting point for the layout container. The height specified by the HEIGHT argument begins at the point specified by the Y argument and extends down.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Default

By default, the starting point for a layout is the top left corner. The position for the top left corner is x=0 | y=0.

Requirement

dimension must be enclosed in quotation marks.

Example

```plaintext
obs.layout_absolute(y: '3in', x: '3in');
```

Details

Absolute layouts are limited to a single page of output. If the output is too large to fit in the fixed-size container, the output is discarded or partially displayed, and you receive a warning in your log.

If you want to create output on two or more pages, you must close the LAYOUT_ABSOLUTE method block on the first page and create a new LAYOUT_ABSOLUTE method block on each successive page. If you do not want to start a new DATA step, you can use the PAGE method.

```plaintext
obj.layout_end();
obj.page();
obj.layout_absolute();
```

LAYOUT_GRIDDED Method

Creates a gridded layout container. The LAYOUT_GRIDDED method enables you to arrange output in a two-dimensional gridded structure such as a spreadsheet or a piece of graph paper.

Valid in: DATA step

Category: Layout: Gridded

Requirement: The LAYOUT_GRIDDED method must be used with the LAYOUT_END method.

ODS destination: Gridded layout methods are valid in the HTML and PRINTER destinations only.
See: For information about terminology and concepts about layout methods, see “Terminology” on page 108.

Example:

```javascript
obj.layout_gridded(columns: 3, row_gutter: '1mm', column_gutter: '1mm');
obj.region();
obj.format_text(data: '25', style_attr: 'color=cxbbb2e0 font_size=72pt');
obj.region();
obj.format_text(data: '%$*', split: '\*\*',
  style_attr: "color=cxbbb2e0 font_size=32pt");
obj.region();
obj.format_text(data: 'Now *through* March 25', split: '\*\*',
  style_attr: 'color=cxbbb2e0 font_size=10pt');
obj.layout_end();
```

Syntax

`LAYOUT_GRIDDED(<option-1><option-2, ...>);`

Optional Arguments

COLUMNS: *number | numeric variable*

- *number* is a positive numeric value.
- *numeric-variable* is the name of a numeric variable from the input data set.

Default 1

Example

```javascript
obj.layout_gridded(columns: 3, column_widths: '1in',
  column_widths: '2in', column_widths: '3in');
```

COLUMN_GUTTER: *dimension*

- specifies the horizontal space between each column.

 dimension

 - is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

 The following units of measure are valid:

 - cm centimeters
 - em standard typesetting measurements unit for width
 - ex standard typesetting measurements unit for height
 - in inches
 - mm millimeters
 - px pixels
 - pt a printer’s point

Requirement *dimension* must be enclosed in quotation marks.

Example

```javascript
obj.layout_gridded(columns: 3, row_gutter: '1mm',
  column_gutter: '1mm');
```
COLUMN_WIDTHS: 'dimension'
specifies the column width. If you have multiple columns, specify a comma-delimited list of COLUMN_WIDTHS arguments. Each COLUMN_WIDTHS argument corresponds to a column in the order in which it is specified. For example, the following code would result in three columns. Column one would be one inch, column 2 would be two inches, and column three would be three inches.

```javascript
obj.layout_gridded(columns: 3, column_widths:'1in', column_widths:'2in', column_widths:'3in');
```

You can use the COLUMN_WIDTHS argument only when the COLUMNS argument is specified also.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Restrictions
The number of column widths specified must match the number of columns specified, or a warning will be produced, and the argument will be ignored.

You can only use the COLUMN_WIDTHS argument when the COLUMNS argument is specified also.

Requirement

dimension must be enclosed in quotation marks.

DESCRIPTION:<text-string>

Valid in PDF and HTML5

Alias DESC

Example

```javascript
obj.layout_gridded( columns: 2, description: "Name column");
```

HEIGHT: 'dimension'
specifies the vertical height of the layout container. The height specified by the HEIGHT argument begins at the point specified by the Y argument and extends down.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:
cm centimeters
em standard typesetting measurements unit for width
ex standard typesetting measurements unit for height
in inches
mm millimeters
px pixels
pt a printer's point

Default If omitted, the HEIGHT argument defaults to the maximum vertical space needed to display all regions.

Requirement dimension must be enclosed in quotation marks.

Example obj.layout_gridded({x: '3.8in', height: '4in'});

ORDER_TYPE: <'COLUMN' | 'ROW'>
populates the grid by rows or columns.

COLUMN_MAJOR
specifies that the gridded layout first populates all regions in the first column before moving on the next column.

Example obj.layout_gridded(order_type: 'column_major');

ROW_MAJOR
specifies that the gridded layout first populates all regions in the row before moving on the next row.

Example obj.layout_gridded(order_type: 'row_major');

Default ROW_MAJOR

Restriction ORDER_TYPE is valid only in PRINTER destinations.

ROWS: number | numeric variable
specifies the fixed number of rows in the gridded layout.

number is a positive numeric value.
numeric-variable is the name of a numeric variable from the input data set.

Default If omitted, the ROWS argument defaults to the maximum number of regions created in the vertical direction. If there are two columns, then the number of rows is half of the number of regions.

Example obj.layout_gridded(rows: 3);

ROW_GUTTER: 'dimension'
specifies the vertical space between each row.

dimension is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:
Requirement
dimension must be enclosed in quotation marks.

Example
```
obj.layout_gridded(
columns: 3, row_gutter: '1mm',
    column_gutter: '1mm');
```

ROW_HEIGHTS: 'dimension'

specifies the height of each row. If you have multiple rows, specify a comma-delimited list of ROW_HEIGHTS arguments. Each ROW_HEIGHTS argument corresponds to a row in the order in which it is specified. For example, the following code would result in three rows. Row one would be one inch, row 2 would be two inches, and row three would be three inches.

```
obj.layout_gridded(rows: 3, row_heights:'1in',
    row_heights:'2in', row_heights:'3in');
```

You can use the ROW_HEIGHTS argument only when the ROWS argument is specified also.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimeters</td>
</tr>
<tr>
<td>em</td>
<td>standard typesetting measurements unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>standard typesetting measurements unit for height</td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>px</td>
<td>pixels</td>
</tr>
<tr>
<td>pt</td>
<td>a printer’s point</td>
</tr>
</tbody>
</table>

Restrictions
The number of row heights must match the number of rows specified or else a warning will be produced, and the option will be ignored.

You can specify the ROW_HEIGHTS argument only if the ROWS argument is also specified.

STYLE_ATTR: <character-variable | 'style-attribute'>
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.
character-variable specifies the name of a variable from the input data set.

style-attribute specifies a style attribute.

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

character-variable specifies the name of a variable from the input data set.

style-element specifies a style element.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

WIDTH: `'dimension'`

specifies the horizontal width of the layout container. The width specified by the WIDTH argument begins at the point specified by the X argument and extends to the right.

dimension is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Default If omitted, the WIDTH argument defaults to the maximum horizontal space needed to display all regions.

Requirement dimension must be enclosed in quotation marks.

Example

```javascript
obj.layout_gridded(x: '3.8in', width: '2in',
height: '4in');
```

X: `'dimension'`

specifies the horizontal starting point for the layout container. When using the X argument, the starting point for a layout is the top left corner, underneath the title.
The position for the top left corner is $x=0 \mid y=0$. An X argument specification moves the starting point to the left. That will be the new horizontal starting point for the layout container. The width specified by the $WIDTH$ argument begins at the point specified by the X argument and extends to the right.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Default

By default, a gridded layout container is centered on the page.

Restriction

The X argument is valid only in PRINTER destinations.

Requirement

$dimension$ must be enclosed in quotation marks.

Example

```javascript
obj.layout_gridded(x: '3.8in', width: '2in',
                    height: '4in');
```

Y: ‘dimension’

specifies the vertical starting point for the layout container. When using the Y argument, the starting point for a layout is the top left corner, underneath the title. The position for the top left corner is $x=0 \mid y=0$. A Y argument specification moves the starting point down. That will be the new vertical starting point for the layout container. The height specified by the $HEIGHT$ argument begins at the point specified by the Y argument and extends down.

dimension

is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Default

By default, a gridded layout container is centered on the page.
Restriction The Y argument is valid only in PRINTER destinations.

Requirement *dimension* must be enclosed in quotation marks.

Comparisons
Gridded layouts can span any number of pages and are valid for PRINTER and HTML destinations only.

LAYOUT_END Method

Ends a gridded or absolute layout block.

Valid in: DATA step

Categories: Layout: Absolute
 Layout: Gridded

Requirement: The LAYOUT_END method must be used with the LAYOUT_GRIDDED or LAYOUT_ABSOLUTE method.

See: For information about terminology and concepts about layout methods, see “Terminology” on page 108.

Syntax

```
LAYOUT_END();
```

LINE Method

Inserts a horizontal rule (line) across the page.

Valid in: DATA step

Category: General Purpose

Restriction: A line cannot be drawn within a table. The LINE method cannot be specified between the TABLE_START and TABLE_END methods.

Example: `obj.line();`

Syntax

```
LINE(<option-1><,option-2, ...>);
```
Optional Arguments

STYLE_ATTR: `<character-variable | 'style-attribute'>`
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

character-variable specifies the name of a variable from the input data set.
style-attribute specifies a style attribute.

Requirement You must enclose *style-attribute* in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | 'style-element'>`
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

character-variable specifies the name of a variable from the input data set.
style-element specifies a style element.

Default The default style element for the LINE method is Text.

Requirement You must enclose *style-element* in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

SIZE: `dimension`
specifies the thickness of the line.

dimension is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- **cm** centimeters
- **em** standard typesetting measurements unit for width
- **ex** standard typesetting measurements unit for height
- **in** inches
- **mm** millimeters
- **px** pixels
- **pt** a printer’s point

Restriction The SIZE argument is only valid for PRINTER destinations.

Requirement *dimension* must be enclosed in quotation marks.

Example `obj.line(size: '1mm');`
NOTE Method

Writes a note to the active output destination(s).

Valid in: DATA step

Category: Text

Example:

```javascript
obj.note(data: strip(street),
    style_attr: 'font_style=italic
                font_size=12pt
                font_weight=bold
                color=cxbbb2e0');
```

Examples:

- “Customizing Text with Style Attributes” on page 198
- “Creating a Flyer with Text Methods” on page 206
- “Using a Variable Name to Display Data” on page 212
- “Working with BY Groups and IF-THEN Processing” on page 214

Syntax

```
NOTE(DATA:'displayed-data' <,option-1><,option-2, ...>);
```

Required Argument

DATA: `<string> | number | character-variable | numeric-variable` specifies the data to display.

- `'string'` specifies a text string.
- `number` specifies a numeric value.
- `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
- `numeric-variable` specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose `string` in quotation marks.

Example

```javascript
obj.note(data: 'Here is a note.');
```

Optional Arguments

FORMAT: `<character-variable | 'string'>` specifies the format to be applied to the data argument.

- `character-variable` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.
string-variable specifies the name of a user-defined format or a format supplied by SAS.

Default If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

Requirement You must enclose string in quotation marks.

Example `exmpl.note(data: exdate, format: 'date9.');`

INLINE_ATTR: `<character-variable> | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

- **character-variable** specifies the name of a variable from the input data set.
- **style-attribute** specifies a style attribute.

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, "Style Attributes," on page 363.

Example
```
exmpl.note(data: 'Make this text red',
            inline_attr: 'color=red',
            data: 'and this bold',
            inline_attr: 'font_weight=bold',
            data: ' and use a 16pt font',
            inline_attr: 'font_size=16pt');
```

INLINE_ELEM: `<character-variable> | 'style-element'>

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element specified by the INLINE_ELEM argument applies only to the preceding DATA argument.

- **character-variable** specifies the name of a variable from the input data set.
- **'style-element'** specifies a style element.

Default The default style element for the NOTE method is Note.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, "Style Elements," on page 335.

Example
```
exmpl.note(data: 'This text is formatted using the INLINE_ELEM argument and the Output Style Element.',
            inline_elem: 'Output',
            data: 'The INLINE_ELEM argument applies only to the preceding text.');
```

JUST: ‘C’ | ‘L’ | ‘R’ | char-variable

specifies the horizontal justification for the data value.

- **C** specifies center justification.
L specifies left justification.
R specifies right justification.

\textit{char-variable} specifies the name of a character variable from the input data set.

\textbf{Default} C

\textbf{Requirement} You must enclose C, L, and R in quotation marks.

\textbf{SPLIT:} \texttt{<character-variable | 'string'>}
specifies the split character to be applied to the data value. A new line will be started when it reaches the specified split character, and will continue on the next line. The split character itself is not part of the data value.

\textit{character-variable} is the name of a character variable from the input data set. The character variable's value resolves to the character.

\textit{string} is one or more characters.

\textbf{Example} \texttt{obj.note(data: 'Line 1#Line 2', split: '#');}

\textbf{STYLE_ATTR:} \texttt{<character-variable | 'style-attribute'>}
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

\textit{character-variable} specifies the name of a variable from the input data set.

\textit{style-attribute} specifies a style attribute.

\textbf{Requirement} You must enclose \textit{style-attribute} in quotation marks.

\textbf{See} For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

\textbf{Example} \texttt{exmpl.note(data: 'With the STYLE_ATTR argument, ',
 style_attr: 'color=red',
 data: 'the style attribute applies to all text.');}

\textbf{STYLE_ELEM:} \texttt{<character-variable | 'style-element'>}
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

\textit{character-variable} specifies the name of a variable from the input data set.

\textit{style-element} specifies a style element.

\textbf{Default} The default style element for the NOTE method is Note.

\textbf{Requirement} You must enclose \textit{style-element} in quotation marks.

\textbf{See} For a list of style elements, see Chapter 14, “Style Elements,” on page 335.
Example: `exmpl.note(data: 'This text is formatted using the STYLE_ELEM and the SystemTitle Style Element.',
 style_elem: 'SystemTitle',
 data: 'The STYLE_ELEM argument applies to the entire method.');</summary>

VJUST: `<B | M | T | character-variable>`

Specifies the vertical justification for the data value.

- **B** specifies bottom justification
- **M** specifies middle justification
- **T** specifies top justification
- **character-variable** specifies the name of a character variable from the input data set.

Default: `'T'`

Requirement: You must enclose B, M, and T in quotation marks.

Example:
```
exmpl.note(data: 'Here is a note.',
    style_attr: '3in', vjust: 'B');
```

URL: `'URL-path'`

Specifies the fully qualified URL path.

Example:
```
obj.note(data: "Link to SAS Support",
    url: "http://support.sas.com");
```

PAGE Method

Creates a page break.

Valid in: DATA step
Category: Page

Syntax

```
PAGE();
```

REGION Method: Absolute

Creates a region container for absolute layouts.

Valid in: DATA step
Category: Layout: Absolute

ODS destination: Absolute layout methods are valid in PRINTER destinations only.
Tip: Region containers can overlap. If you specify regions without any width or height arguments, the two region will overlap.

Example:
```
trt.layout_absolute();
trt.region(y: '5in');
trt.format_text(data: 'Executive Prospectus', just: 'c',
                 style_attr: 'font_size=36pt color=cxbbb2e0');
trt.layout_end();
```

Example: “Creating a Cover Page with the LAYOUT_ABSOLUTE Method” on page 241

Syntax
```
REGION(<option-1>,<option-2>, ...);
```

Optional Arguments

DESCRIPTION: `<text-string>`
specifies descriptions for regions. This option helps make reports accessible for people with a wide range of abilities. For accessibility, the text should describe the function of the region. The alternate text will be read by assistive technology such as a screen reader.

- **Valid in**: HTML5
- **Alias**: DESC
- **Example**: `obj.region(description: "Company goals");`

HEIGHT: `'dimension'`
specifies the vertical width of the region.

- **dimension**: is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimeters</td>
</tr>
<tr>
<td>em</td>
<td>standard typesetting measurements unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>standard typesetting measurements unit for height</td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>px</td>
<td>pixels</td>
</tr>
<tr>
<td>pt</td>
<td>a printer’s point</td>
</tr>
</tbody>
</table>

- **Default**: The default height is all of the available space in the container.
- **Restrictions**: The height is restricted by the dimensions of the layout.

The sum of all region heights cannot exceed the vertical dimension of the layout.
Requirement: `dimension` must be enclosed in quotation marks.

Example: `obj.region(height: '4in');`

STYLE_ATTR: `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where `STYLE_ATTR` is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-attribute` specifies a style attribute.

Requirement: You must enclose `style-attribute` in quotation marks.

See: For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where `STYLE_ELEM` is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-element` specifies a style element.

Default: The default style element for the REGION, method is `layoutRegion`.

Requirement: You must enclose `style-element` in quotation marks.

See: For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

WIDTH: `'dimension'`

specifies the horizontal width of the region.

- `dimension` is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- `cm` centimeters
- `em` standard typesetting measurements unit for width
- `ex` standard typesetting measurements unit for height
- `in` inches
- `mm` millimeters
- `px` pixels
- `pt` a printer’s point

Default: The default width is all of the available space in the container.
Restriction The width is restricted by the dimensions of the layout.

Requirement *dimension* must be enclosed in quotation marks.

Example `obj.region(width: '5in');`

X: 'dimension'
specifies the horizontal start position of the region on a page.

dimension
is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- **cm** centimeters
- **em** standard typesetting measurements unit for width
- **ex** standard typesetting measurements unit for height
- **in** inches
- **mm** millimeters
- **px** pixels
- **pt** a printer’s point

Default 0

Requirement *dimension* must be enclosed in quotation marks.

Example `obs.region(y: '3in', x: '3in');`

Y: 'dimension'
specifies the vertical start position of the region on a page.

dimension
is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- **cm** centimeters
- **em** standard typesetting measurements unit for width
- **ex** standard typesetting measurements unit for height
- **in** inches
- **mm** millimeters
- **px** pixels
- **pt** a printer’s point

Default 0

Requirement *dimension* must be enclosed in quotation marks.

Example `obs.region(y: '3in', x: '3in');`
Details

A region container is an area that contains output such as text, tables, and images. Region containers can be nested and can overlap. If you use regions without any width or height arguments specified, the two region will overlap. The REGION method must be used within a LAYOUT_ABSOLUTE method block or a LAYOUT_GRIDDED method block.

The following graphic illustrates the layout sections that the RWI can create and modify:

Output 10.1 Layout Sections

REGION Method: Gridded

Creates a region container for gridded layouts.

Valid in: DATA step

Category: Layout: Gridded

ODS destination: Gridded layout methods are valid in the HTML and PRINTER destinations only.

See: For information about terminology and concepts about layout methods, see “Terminology” on page 108.

Example:

```r
obj.layout_gridded(columns: 2);
obj.region(width: '3.25in');

obj.format_text(data: strip(street),
   style_attr: 'font_size=14pt width=100pct just=left');
obj.format_text(data: strip(city) || ', ' || state || ' ' || zip,
```
Syntax

```
REGION(<option-1><,option-2, ...>);
```

Optional Arguments

COLUMN: number | numeric-variable

specifies the current grid column position in the gridded layout. The GRIDDED_LAYOUT method automatically tracks the current grid column position, and the position is incremented for every REGION method.

- `number` is a positive numeric value.
- `numeric-variable` is the name of a numeric variable from the input data set.

Restrictions

After you have skipped a grid column, you cannot go back to it. Only specify the COLUMN argument in the REGION method if the COLUMNS argument in the LAYOUT_GRIDDED method is also specified.

Tip

The COLUMN argument is useful when you want to skip regions in the gridded layout.

Example

```
exmpl.region(column:5, column_span: 3);
```

COLUMN_SPAN: number | numeric-variable

specifies the number of grid columns that the region will occupy. The COLUMN_SPAN argument enables you to combine adjacent grid columns in a gridded layout.

- `number` is a positive numeric value.
- `numeric-variable` is the name of a numeric variable from the input data set.

Default

1

Example

```
exmpl.region(column:5, column_span: 3);
```

DESCRIPTION:

specifies descriptions for regions. This option helps make reports accessible for people with a wide range of abilities. For accessibility, the text should describe the function of the region. The alternate text will be read by assistive technology such as a screen reader.

Valid in

HTML5

Alias

DESC
Example: `obj.region(description: "Company goals");`

HEIGHT: 'dimension'
specifies the vertical width of the region.

`dimension` is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- **cm** centimeters
- **em** standard typesetting measurements unit for width
- **ex** standard typesetting measurements unit for height
- **in** inches
- **mm** millimeters
- **px** pixels
- **pt** a printer's point

Default
If you omit the HEIGHT argument, the default is the maximum vertical space needed to display the output contained in the region.

Restrictions
The height is restricted by the dimensions of the layout.

The sum of all region heights cannot exceed the vertical dimension of the layout.

Requirement
`dimension` must be enclosed in quotation marks.

Example: `obj.region(height: '4in');`

ROW: number | numeric variable
specifies the current grid row position in the gridded layout. The GRIDDED_LAYOUT method automatically tracks the current row position, and the position is incremented for every REGION method.

- **number** is a positive numeric value.
- **numeric-variable** is the name of a numeric variable from the input data set.

Restriction
After you have skipped a grid row, you cannot go back to it.

Tip
The ROW argument is useful when you want to skip regions in the gridded layout.

Example: `exmpl.region(row: 5, row_span: 3);`

ROW_SPAN: number | numeric variable
specifies the number of grid rows that the region will occupy. The ROW_SPAN argument enables you to combine adjacent grid rows in a gridded layout.

- **number** is a positive numeric value.
- **numeric-variable** is the name of a numeric variable from the input data set.
STYLE_ATTR: `<character-variable | 'style-attribute'>`
specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

`character-variable` specifies the name of a variable from the input data set.

`style-attribute` specifies a style attribute.

Requirement You must enclose `style-attribute` in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | 'style-element'>`
specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

`character-variable` specifies the name of a variable from the input data set.

`style-element` specifies a style element.

Default The default style element for the REGION method is Text.

Requirement You must enclose `style-element` in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

WIDTH: `dimension`
specifies the horizontal width of the region.

`dimension` is a nonnegative number followed by an optional unit of measure. It is not recommended that you use pixels because of adverse dependencies on resolution that can differ between destinations.

The following units of measure are valid:

- cm centimeters
- em standard typesetting measurements unit for width
- ex standard typesetting measurements unit for height
- in inches
- mm millimeters
- px pixels
- pt a printer’s point

Default If you omit the WIDTH argument, the default is the maximum horizontal space needed to display the output contained in the region.
Restrictions
The width is restricted by the dimensions of the layout.
The sum of all region widths cannot exceed the width of the layout container.

Requirement
dimension must be enclosed in quotation marks.

Example
```
obj.region(width: '3.25in');
```

Details
A region container is an area that contains output such as text, tables, and images. Region containers can be nested. The REGION method must be used within a LAYOUT_ABSOLUTE method block or a LAYOUT_GRIDDED method block.

The following graphic illustrates the layout sections that the RWI can create and modify:

Output 10.2 Layout Sections

ROW_END Method

Specifies the end of a row.

Valid in: DATA step
Category: Table
Requirement: The ROW_END method is always used with the ROW_START method.
ROW_START Method

Specifies the beginning of a row.

Syntax

ROW_START(<option-1>, <option-2>, ...);

ROW_END Method

Specifies the beginning of a row.

Syntax

ROW_END();
Optional Arguments

ROW: index-number

specifies the row index. The table keeps track of its current row index, allowing you to skip blank rows. After a row is skipped, you cannot go back to it.

index-number is a positive numeric value.

STYLE_ATTR: <character-variable | 'style-attribute'>

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

character-variable specifies the name of a variable from the input data set.

style-attribute specifies a style attribute.

Requirement

You must enclose *style-attribute* in quotation marks.

See

For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: <character-variable | 'style-element'>

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

character-variable specifies the name of a variable from the input data set.

style-element specifies a style element.

Requirement

You must enclose *style-element* in quotation marks.

See

For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

TYPE: 'B' | 'F' | 'H'

identifies the table sections.

B

specifies the body(data) section

Alias

D

F

specifies the footer section.

H

specifies the header section.

Default

B

Tip

Depending on the type that you choose, specifying the TYPE argument is an alternative to specifying the BODY_START, HEAD_START, or FOOT_START statements (with their respective END statements).
TABLE_END Method

Specifies the end of a table.

Valid in: DATA step
Category: Table
Requirement: The TABLE_END method is always used with the TABLE_START method.
See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Example:

```javascript
obj.table_start();
obj.head_start();
obj.row_start();
obj.format_cell(data: 'A single cell table');
obj.row_end();
obj.head_end();
obj.table_end();
```

Examples:

“Creating a Simple Table” on page 217
“Formatting Cells with the TextDecoration Style Attribute ” on page 219
“Creating a Table with Row and Column Spanning” on page 223
“Create One By-Group Table on a Page” on page 227

Syntax
```
TABLE_END();
```

TABLE_START Method

Specifies the start of a table.

Valid in: DATA step
Category: Table
Requirement: The TABLE_START method must be used with the TABLE_END method.
Tip: After you start a table, you should continue using the table methods exclusively until you close the table.
See: For information about terminology and concepts used to create tables, see “Terminology” on page 108.

Example:

```javascript
obj.table_start();
obj.head_start();
obj.row_start();
obj.format_cell(data: 'A single cell table');
obj.row_end();
obj.head_end();
```
Examples:

"Creating a Simple Table" on page 217
"Formatting Cells with the Textdecoration Style Attribute" on page 219
"Creating a Table with Row and Column Spanning" on page 223
"Create One By-Group Table on a Page" on page 227

Syntax

TABLE_START(<option-1>,<option-2,...>);

Optional Arguments

CAPTION: ’string’

specifies a caption text string to add before each table.

When the ACCESSIBLETABLE system option is specified, the caption is visually displayed with the table. If the ACCESSIBLETABLE system option is off, the CAPTION is not displayed.

Note This feature applies to SAS 9.4M6 and to later releases.

DESCRIPTION:<’text-string’>

specifies descriptions for tables. This option helps make reports accessible for people with a wide range of abilities. For accessibility, the text should describe the function of the table. The alternate text will be read by assistive technology such as a screen reader.

Alias DESC

Example

obj.table_start(name: "RWI_TABLE",
 label: "Accessible Table using Report Writing Interface",
 description: "Company sales");

JUST:’C’ | ’L’ | ’R’ | char-variable

specifies the horizontal justification for the entire table.

C specifies center justification.
L specifies left justification.
R specifies right justification.
char-variable specifies the name of a character variable from the input data set.

Default C

Requirement You must enclose C, L, and R in quotation marks.

LABEL: ’text’

specifies the label of the table that will be used in the table of contents and the DMS Results window.

NAME: ’text’

specifies the name of the table that will be used in the table of contents and the DMS Results window.
STYLE_ATTR: `<character-variable | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The specified style attributes then apply to all of the text specified in the method, no matter where STYLE_ATTR is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-attribute** specifies a style attribute.

Requirement You must enclose `style-attribute` in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- **character-variable** specifies the name of a variable from the input data set.
- **style-element** specifies a style element.

Default The default style element for the TABLE_START method is Table.

Requirement You must enclose `style-element` in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

TITLE Method

Adds a title to a page.

- **Valid in:** DATA step
- **Category:** Page
- **Examples:**

  ```
  obj.title(data: 'Here is a new title');
  
  The following example left-justifies the title:
  
  obj.title (data: 'Left Justified Title',
      style_attr: 'just=left');
  ```

Syntax

```
TITLE( [DATA: 'displayed-data' <,option-1><,option-2, ...>);
```

Required Argument

DATA: `<string` | number | character-variable | numeric-variable`

specifies the data to display.

- `'string'` specifies a text string.
TITLE Method

number specifies a numeric value.

class-\(\text{variable}\) specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

class-\(\text{variable}\) specifies the name of a numeric variable. The value of the numeric variable from the input data set is written to the output.

Requirement You must enclose string in quotation marks.

Example

```camelot
obj.title(data: 'Here is a Title');
```

Optional Arguments

CLEAR: `line-number`

clears the title on the specified line.

`line-number` is the line number.

Range 1–10

Example

The following example clears the 'The SAS System' default title:

```camelot
obj.title(start: 1, clear: 1);
```

FORMAT: `<\text{character-variable} | 'string'>`

specifies the format to be applied to the data argument.

`character-\(\text{variable}\)` specifies the name of a character variable. The value of the character variable from the input data set is written to the output.

`string-\(\text{variable}\)` specifies the name of a user-defined format or a format supplied by SAS.

Default If the data is numeric and no format has been specified, then the data value is formatted using the BEST. format.

Requirement You must enclose string in quotation marks.

Example

```camelot
exmpl.title(data: clubpoints, format: 'comma8.');
```

INLINE_ATTR: `<\text{character-variable} | 'style-attribute'>`

specifies the style attributes to override those defined in the selected style element. The style attributes specified by the INLINE_ATTR argument apply only to the preceding DATA argument.

`character-\(\text{variable}\)` specifies the name of a variable from the input data set.

`style-\(\text{attribute}\)` specifies a style attribute.

Requirement You must enclose style-\(\text{attribute}\) in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.
Example exempl.title (data: 'Make this text red',
inline_attr: 'color=red',
data: 'and this bold',
inline_attr: 'font_weight=bold',
data: 'and use a 16pt font',
inline_attr: 'font_size=16pt');

INLINE_ELEM: <character-variable | 'style-element'>
specifies the style element that contains the collection of style attributes to be
applied to the data value. The style element specified by the INLINE_ELEM
argument applies only to the preceding DATA argument.

character-variable specifies the name of a variable from the input data set.

'style-element' specifies a style element.

Default The default style element for the TITLE method is SystemTitle.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, "Style Elements," on page 335.

Example exempl.title(data: 'This text is formatted using the
INLINE_ELEM argument and the Output
Style Element.',
inline_elem: 'Output',
data: 'The INLINE_ELEM argument applies
only to the preceding text.');

START: line-number
specifies the line the title will be displayed on.

line-number is the line number.

Range 1–10

Example obj.title(data: 'This is the Third Title', start: 3);

SPLIT: <character-variable | 'string'>
specifies the split character to be applied to the data value. A new line will be
started when it reaches the specified split character, and will continue on the
next line. The split character itself is not part of the data value.

character-variable is the name of a character variable from the input data
set. The character variable’s value resolves to the character.

string is one or more characters.

STYLE_ATTR: <character-variable | 'style-attribute'>
specifies the style attributes to override those defined in the selected style
element. The specified style attributes then apply to all of the text specified in the
method, no matter where STYLE_ATTR is specified within the method.

character-variable specifies the name of a variable from the input data set.

style-attribute specifies a style attribute.
VIDEO Method

Embeds video into HTML5 or EPUB output.

Valid in: DATA step
Category: Media
Restriction: The VIDEO method can only be used with the ODS HTML5 statement.
Example:

```sas
ods html5 file='video.html';

data _null_;
dcl odsout obj();
obj.video(
    file: 'filepath-here.mp4',
);```

Requirement You must enclose style-attribute in quotation marks.

See For a list of style attributes, see Chapter 15, “Style Attributes,” on page 363.

Example

```sas
exmpl.title(data: 'With the STYLE_ATTR argument, ',
 style_attr: 'color=red',
 data: 'the style attribute applies to all text.');```

STYLE_ELEM: `<character-variable | 'style-element'>`

specifies the style element that contains the collection of style attributes to be applied to the data value. The style element then applies to all of the text specified in the method, no matter where STYLE_ELEM is specified within the method.

- `character-variable` specifies the name of a variable from the input data set.
- `style-element` specifies a style element.

Default The default style element for the TITLE method is SystemTitle.

Requirement You must enclose style-element in quotation marks.

See For a list of style elements, see Chapter 14, “Style Elements,” on page 335.

Example

```sas
exmpl.title(data: 'This text is formatted using STYLE_ELEM and the SystemTitle Style Element.',
    style_elem: 'UserText',
    data: 'The STYLE_ELEM argument applies to the entire method.');```
Example: For a complete example using the VIDEO method, see “Adding a Video to HTML5 Output” on page 203.

Syntax

```plaintext
VIDEO (FILE: 'path' | FILEREFFileref
<, TYPE: file-type, ><video-control-option-1><,video-control-option-2, ...>);
```

Required Argument

**FILE: 'path' | FILEREFFileref**

specifies the path of the video to insert into HTML5 or EPUB output.

*path*

is the path to an external video file. *path* can be a URL or a filename with a fully qualified path.

**Requirement**

*path* must be enclosed in quotation marks.

**Example**

```plaintext
type: 'mp4');
```

**FILEREFFileref**

is a file reference that has been assigned to an external file.

To use a FILEREFF with the VIDEO method, you must use the URL option in the FILENAME statement, and then specify the fileref with the FILEREFF: identifier.

**Requirement**

FILEREFFileref must be enclosed in quotation marks.

**See**


**Example**

```plaintext
filename VidFile url 'http://channel.sas.com/vod/videos/2012/11598_Overview_Final_SASCOM640x360.mp4';
obj.video(file: 'fileref:VidFile',
type: 'mp4');
```

**Tips**

A best practice is to always specify the TYPE: option with the FILE: option. If the TYPE: option is not specified, then the browser will determine the file type. All other options will then default to browser-determined values.
To display multiple video players, you must use separate VIDEO methods.

To specify multiple format of the same video file, you can use multiple FILE: arguments. The browser will then play the first file in the list that is a type that it supports. This enables you to support multiple browsers with one VIDEO method.

Optional Arguments

**TYPE: 'video-type'**
specifies the video type. If the TYPE: option is not specified, then the browser will determine the file type. All other options will then default to browser-determined values.

Most browsers support one or more of the following video types:

- MP4
- OGG
- WEBM

<table>
<thead>
<tr>
<th>Table 10.2</th>
<th>Supported Video Types for Browsers</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Browser</strong></td>
<td><strong>Video Type</strong></td>
</tr>
<tr>
<td>Internet Explorer</td>
<td>MP4</td>
</tr>
<tr>
<td>Chrome</td>
<td>MP4, WebM, Ogg</td>
</tr>
<tr>
<td>Firefox</td>
<td>MP4, WebM, Ogg</td>
</tr>
<tr>
<td>Safari</td>
<td>MP4</td>
</tr>
<tr>
<td>Opera 25</td>
<td>MP4, WebM, Ogg</td>
</tr>
</tbody>
</table>

**Requirement**
If TYPE is specified, it must be specified before the next FILE is specified.

**WIDTH: 'dimension'**
specifies the width of the video.

dimension is a nonnegative number followed by an optional unit of measure. dimension can be specified in pixels (px) or inches (in). If no unit is specified, pixels are assumed.

**HEIGHT: 'dimension'**
specifies the height of the video.

dimension is a nonnegative number followed by an optional unit of measure. dimension can be specified in pixels (px) or inches (in). If no unit is specified, pixels are assumed.

**PRELOAD:** 'AUTO' | 'NONE' | 'METADATA'
specifies how the video loads in a browser.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>load the video data as soon as the page loads.</td>
</tr>
<tr>
<td>NONE</td>
<td>load the video data when user presses the play button.</td>
</tr>
<tr>
<td>METADATA</td>
<td>load information about the video file when the page loads, but not the video itself.</td>
</tr>
</tbody>
</table>

**Default** AUTO

**AUTOPLAY:** 'OFF' | 'ON'

specifies when the video will begin playing.

- **OFF**
  - start playing the video when the play button is pushed.
  - **Alias** NO

- **ON**
  - start playing the video immediately when the page loads.
  - **Alias** YES

**Default** OFF

**POSTER:** *path*

specifies the location of a still image to use if the video cannot be found.

**LOOP:** 'OFF' | 'ON'

specifies whether the video is continuously replayed.

- **OFF**
  - play the video once.
  - **Alias** NO

- **ON**
  - start replaying the video immediately after it ends.
  - **Alias** YES

**Default** OFF

**MUTED:** 'OFF' | 'ON'

controls whether the audio is muted.

- **OFF**
  - the audio is on when the video starts playing.
  - **Alias** NO

- **ON**
  - the audio is off when the video starts playing.
  - **Alias** YES

**Default** OFF

**Restriction** The MUTED option is not supported in Internet Explorer 9 or earlier.
Examples:

Example 1: Adding Unformatted Text to Your Output

Features:

- DECLARE statement
- Methods
  - FORMAT_TEXT
  - NOTE
- Arguments
  - DATA

Details

This example demonstrates how to add simple, unformatted text to your output by using the NOTE method and the FORMAT_TEXT method.

Program

```sas
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="UnformatText.html";
title "Using the DATA Argument";
data _null_;
dcl odsout obj();

 obj.format_text(data: "This text is displayed with the FORMAT_TEXT method.");
 obj.note(data: "This text is displayed with the NOTE method.");
run;
ods html close;
ods html; /* Not required in SAS Studio */
```

Program Description

Create a file reference for the output and set the ODS options, and specify a title. The current working directory is specified in this example.

```
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="UnformatText.html";
```

Begin the DATA _NULL_ statement and declare the local variable **Obj**. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns **Obj** as the variable that identifies the object. The DECLARE statement also creates an instance.
title "Using the DATA Argument";
data _null_
  dcl odsout obj();

Add a note and text. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The NOTE method with the DATA argument specified adds a note to all open destinations.

obj.format_text(data: "This text is displayed with the FORMAT_TEXT method.");
obj.note(data: "This text is displayed with the NOTE method.");
run;

Close the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

ods html close;
ods html; /* Not required in SAS Studio */

Output 10.3  Output with Text and Note Added

Example 2: Customizing Text By Using Style Elements

Features:
DECREASE statement
Arguments
  DATA
  STYLE_ELEM
  INLINE_ELEM

Details
This example demonstrates how to use style elements to customize text. A style element is a named collection of style attributes that apply to a particular part of the output. For more information about style elements and style attributes, see Chapter 12, “Overview,” on page 257.

The STYLE_ELEM argument customizes all of the text specified by the FORMAT_TEXT argument. The INLINE_ELEM argument applies the style element to the preceding text only. You can also use STYLE_ELEM and INLINE_ELEM with the NOTE attribute.

Program

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="StyleElemText.html";
title "Using the STYLE_ELEM and INLINE_ELEM Arguments";
data _null_;  
dcl odsout obj();

obj.format_text(data: "This text is formatted by using the STYLE_ELEM argument together with the SystemTitle Style Element.",  
style_elem: "SystemTitle",  
data: "The STYLE_ELEM argument applies to all of the text specified by the FORMAT_TEXT method.");

obj.format_text(data: "This text is formatted using the INLINE_ELEM argument together with the SystemTitle Style Element.",  
inline_elem: "SystemTitle",  
data: "The INLINE_ELEM argument applies only to the preceding text.");

ods html close;
ods html; /* Not required in SAS Studio */

Program Description

Create a file reference for the output and set the ODS options. The current working directory is specified in this example.

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="StyleElemText.html";

Begin the DATA Null step and declare the local variable Obj. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the variable that identifies the object. The DECLARE statement also creates an instance.

title "Using the STYLE_ELEM and INLINE_ELEM Arguments";
data _null_;  
dcl odsout obj();

Apply the style element SystemTitle to all of the text specified by this FORMAT_TEXT method. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The STYLE_ELEM argument specifies that the style element SystemTitle is used to format the text. The SystemTitle style element applies to all of the text specified in this method, no matter where STYLE_ELEM is specified within the method.

obj.format_text(data: "This text is formatted by using the STYLE_ELEM argument together with the SystemTitle Style Element.",  
style_elem: "SystemTitle",  
data: "The STYLE_ELEM argument applies to all of the text specified by the FORMAT_TEXT method.");

Apply the style element SystemTitle to part of the text specified by this FORMAT_TEXT method. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The INLINE_ELEM argument specifies that the style element SystemTitle is used to format the text. The SystemTitle style element applies only to the text specified by the DATA argument that directly precedes the INLINE_ELEM argument.

obj.format_text(data: "This text is formatted using the INLINE_ELEM argument
Example 3: Customizing Text with Style Attributes

Features:
- DECLARE statement
- Methods
  - FORMAT_TEXT
- Arguments
  - DATA
  - STYLE_ATTR
  - INLINE_ATTR

Details

This example demonstrates how to use style attributes to customize text and notes. A style attribute is a visual property, such as color, font properties, and line characteristics, that is defined in ODS with a reserved name and value. Style attributes are collectively referenced by a style element within a style template. For more information about style elements and style attributes, see Chapter 12, “Overview,” on page 257.

The STYLE_ATTR argument customizes all of the text specified by the FORMAT_TEXT argument. The INLINE_ATTR argument applies the style attribute to the preceding text only.

Program

```sas
filename rwiOut ".";
ods html close;
ods html close;
ods html path=rwiOut file="StyleAttrText.html";
title "Using the INLINE_ATTR and STYLE_ATTR Arguments";
data _null_;
dcl odsout obj();
```
Example 3: Customizing Text with Style Attributes

obj.format_text(data: "With the STYLE_ATTR argument, ",
        style_attr: "color=#0000FF",
        data: "the style attribute applies to all of the text.");

obj.note(data: "With the INLINE_ATTR argument, you could make this text red, ",
        inline_attr: "color=#800000",
        data: "and this text bold, ",
        inline_attr: "font_weight=bold",
        data: "and use a 16pt font. ",
        inline_attr: "font_size=16pt");

Program Description

Create a file reference for the output and set the ODS options. The current working directory is specified in this example.

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="StyleAttrText.html";

Begin the DATA Null step and declare the local variable Obj. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the variable that identifies the object. The DECLARE statement also creates an instance.

title "Using the INLINE_ATTR and STYLE_ATTR Arguments";
data _null_;
dcl odsout obj();

Format all of the text. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The STYLE_ATTR argument specifies that the following style attributes are used to format the text. The style attributes apply to all of the text specified in this method, no matter where STYLE_ATTR is specified within the method.

obj.format_text(data: "With the STYLE_ATTR argument, ",
        style_attr: "color=#0000FF",
        data: "the style attribute applies to all of the text.");

Format different parts of the text. The NOTE method with the DATA argument specified adds a note to all open destinations. The INLINE_ATTR argument specifies that the following style attributes are used to format the text. The style attributes apply only to the preceding DATA argument value.

obj.note(data: "With the INLINE_ATTR argument, you could make this text red, ",
        inline_attr: "color=#800000",
        data: "and this text bold, ",
        inline_attr: "font_weight=bold",
        data: "and use a 16pt font. ",
        inline_attr: "font_size=16pt");

run;
Close the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

ods html close;
ods html; /* Not required in SAS Studio */

Output 10.5  Customized Text

Using the INLINE_ATTR and STYLE_ATTR Arguments

With the STYLE_ATTR argument the style attribute applies to all of the text

With the INLINE_ATTR argument, you could make this text red, and this text bold, and use a 16pt font.

Example 4: Adding Audio to HTML5 Output

Features:  DECLARE statement

Methods
FOOTNOTE
FORMAT_TEXT
NOTE
AUDIO

Text arguments
DATA
STYLE_ATTR
INLINE_ATTR

Audio arguments
AUTOPLAY
FILE
LOOP
PRELOAD
TYPE

Details

This example demonstrates the following:

- using the AUDIO method to add an audio file to your output
- using the FORMAT_TEXT method to add text to your output
- using the NOTE method to add a note to your output
- using the FOOTNOTE method to add a footnote to your output
- using style elements to format your text
- using style attributes to format your text

Program

filename rwiOut ";
filename **AudFile** "file-path\SAS02_Orchestral30.mp3";
ods html close;
ods html5 path=rwiOut file="AudioTest.html";
title "Adding Audio to HTML5 Output";
data _null_;  
dcl odsout obj();
  obj.format_text(data: "You can embed Video and Audio into your output.",  
style_elem: "SystemTitle");
  obj.note(data: "However, only in the ",  
inline_attr: "font_weight=bold",  
data: "ODS HTML5 or EPUB",  
inline_attr: "color=#800000",  
data: "Destinations.",  
inline_attr: "font_weight=bold");

  obj.audio(file:"fileref:AudFile",  
type: "mp3",  
 preload: "auto",  
 autoplay: "off",  
 loop: "no"  
);

  obj.footnote(data: 'You can also output to different browsers using  
the URL access method for the FILENAME Statement. Each browser supports  
different file types.',  
style_attr: 'just=center  color=#800000 fontsize=12pt');
run;
ods html5 close;
ods html; /* Not required in SAS Studio */

---

**Program Description**

**Create a file reference for the output.** The current working directory is specified in this example.

```
filename rwiOut ".";
```

**Assign a fileref to your audio file.** The FILENAME statements assigns a fileref to identify the location of an audio file.

```
filename **AudFile** "file-path\SAS02_Orchestral30.mp3";
```

**Open the HTML5 destination and specify a title.** The HTML destination is open by default. The ODS HTML CLOSE statement closes the HTML destination to conserve resources.

```
ods html close;
ods html5 path=rwiOut file="AudioTest.html";
title "Adding Audio to HTML5 Output";
```

**Begin the DATA Null step and declare the local variable Obj.** The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the
variable that identifies the object. The DECLARE statement also creates an
instance.

    data _null_;
    dcl odsout obj();

Add formatted text. The FORMAT_TEXT method with the DATA argument
specified adds text to all open destinations. The STYLE_ELEM argument specifies
that the SystemTitle style element is used to format the text.

    obj.format_text(data: "You can embed Video and Audio into your output.",
                    style_elem: "SystemTitle");

Add a note. The NOTE method with the DATA argument specified adds a note to all
open destinations. The INLINE_ATTR argument specifies that the following style
attributes are used to format the text. The style attributes apply only to the preceding
DATA argument value.

    obj.note(data: "However, only in the ",
             data: "ODS HTML5 or EPUB",
             inline_attr: "font_weight=bold",
             data: "Destinations.",
             inline_attr: "color=#800000",
             data: "Dest.");

Add an audio file to your output using a fileref. You must use the fileref as the
value of the FILEREF identifier. The audio arguments that follow control the
behavior of the audio file.

    obj.audio(file: "fileref: AudFile",
              type: "mp3",
              preload: "auto",
              autoplay: "off",
              loop: "no" );

Add a footnote. The FOOTNOTE method with the DATA argument specified adds
a note to all open destinations. The STYLE_ATTR argument specifies that the
following style attributes are used to format the text. The style attributes apply to all
of the text specified in this method, no matter where STYLE_ATTR is specified
within the method.

    obj.footnote(data: 'You can also output to different browsers using
                  the URL access method for the FILENAME Statement. Each browser supports
different file types.',
                  style_attr: 'just=center  color=#800000  fontsize=12pt');
    run;

Close the HTML5 destination. It is a best practice to reopen the HTML destination
after you have closed all of the open destinations.

    ods html5 close;
    ods html; /* Not required in SAS Studio */
Example 5: Adding a Video to HTML5 Output

Features:

- **DECLARE statement**

Methods

- FOOTNOTE
- FORMAT_TEXT
- NOTE
- VIDEO

Text arguments

- DATA
- STYLE_ATTR
- INLINE_ATTR

Video arguments

- AUTOPLAY
- FILE
- HEIGHT
- LOOP
- POSTER
- PRELOAD
- TYPE
- WIDTH

Details

This example demonstrates the following:

- using the VIDEO method to add a video to your output
- using the FORMAT_TEXT method to add text to your output
- using the NOTE method to add a note to your output
- using the FOOTNOTE method to add a footnote to your output
- using style elements to format your text
- using style attributes to format your text

Program

```rwi
filename rwiOut "c:\temp";
ods html close;
```
ods html5 path=rwiOut file="your-file.html";
title "Adding a Video to HTML5 Output";
data _null_;  
dcl odsout obj();
  obj.format_text(data: "You can embed Video and Audio into your output.",
                  style_elem: "SystemTitle");
  obj.note(data: "However, only in the",
           inline_attr: "font_weight=bold",
           data: "ODS HTML5",
           inline_attr: "color=#800000",
           data: "Destination.",
           inline_attr: "font_weight=bold");
            type: "mp4",
            width: "640",
            height: "480",
            preload: "auto",
            autoplay: "yes",
            loop: "on" );
  obj.footnote(data: 'Browsers support different file types.',
               style_attr: 'just=center color=#800000 fontsize=12pt');
run;
ods html5 close;
ods html; /* Not required in SAS Studio */

---

Program Description

**Create a file reference for the output.** The temp directory is specified in this example. You can change the path to any output directory that you choose.

```
filename rwiOut "c:\temp";
```

**Open the HTML5 destination and specify a title.** The HTML destination is open by default. The ODS HTML CLOSE statement closes the HTML destination to conserve resources.

```
ods html close;
ods html5 path=rwiOut file="your-file.html";
title "Adding a Video to HTML5 Output";
```

**Begin the DATA Null step and declare the local variable Obj.** The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the variable that identifies the object. The DECLARE statement also creates an instance.

```
data _null_;
dcl odsout obj();
```
Add formatted text. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The STYLE_ELEM argument specifies that the SystemTitle style element is used to format the text.

```plaintext
obj.format_text(data: "You can embed Video and Audio into your output.",
 style_elem: "SystemTitle");
```

Add a note. The NOTE method with the DATA argument specified adds a note to all open destinations. The INLINE_ATTR argument specifies that the following style attributes are used to format the text. The style attributes apply only to the preceding DATA argument value.

```plaintext
obj.note(data: "However, only in the ",
 inline_attr: "font_weight=bold",
 data: "ODS HTML5 ",
 inline_attr: "color=#800000",
 data: "Destination.",
 inline_attr: "font_weight=bold");
```

Add the video file. The VIDEO method adds the video file that is specified by the FILE: argument. The video arguments that follow control the behavior and look of the video file.

```plaintext
 2012/11598_Overview_Final_SASCOM640x360.mp4",
 type: "mp4",
 width: "640",
 height: "480",
 preload: "auto",
 autoplay: "yes",
 poster: "//www.sas.com/content/dam/SAS/en_us/image/
 sas-com/company/sas-the-power-to-know.jpg",
 loop: "on");
```

Add a footnote. The FOOTNOTE method with the DATA argument specified adds a note to all open destinations. The STYLE_ATTR argument specifies that the following style attributes are used to format the text. The style attributes apply to all of the text specified in this method, no matter where STYLE_ATTR is specified within the method.

```plaintext
obj.footnote(data: 'Browsers support different file types.',
 style_attr: 'just=center color=#800000 fontsize=12pt');
run;
```

Close the HTML5 destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```plaintext
ods html5 close;
ods html; /* Not required in SAS Studio */
```
Example 6: Creating a Flyer with Text Methods

Features:

- DECLARE statement
- Text Methods
  - FORMAT_TEXT
  - NOTE
- FOOTNOTE statement
- IF-THEN statement
- ODS ESCAPECHAR statement
- ODS PDF statement
- TITLE statement
Details
The following example creates a company flyer using text methods only. You can use text methods to add text, images, and notes. You can also customize your text with style attributes and organize your text with IF-THEN processing.

Program

ods html close;
optsion nodate nonumber;
ods escapechar="-";
optsion paperize=(6in 4in);

data brand;
    length tagline $24 description $128;
    input tagline $24. / description $128.;
datalines;
Our Mission
To deliver quality sporting and outdoor equipment for all seasons at the most affordable prices.
Our Vision
To transform the way the world purchases sporting and outdoor equipment.
Our Values
Customer focused, Swift and Agile, Innovative, Trustworthy
Our Goal
To grow sales by 15% annually while also improving profit margin through innovative thinking.
;
run;

ods pdf file="text.pdf" notoc;
title "~{style [width=100pct background=cx494068
    color=cxbbb2e0 font_size=24pt just=left] Our Company}";

footnote "~{style [font_size=10pt color=cxbbb2e0]
    Created with the ODS Report Writing Interface.}";

data _null_;  
set brand end=eof;

if _n_ = 1 then do;
declare odsout obj();
obj.note(data: "Our Brand...",
    style_attr: "font_style=italic
    font_size=12pt
    font_weight=bold
    color=cxbbb2e0",
    just: "L");
end;

obj.format_text(data: tagline,
    style_attr: "background=cx494068
    color=cxbbb2e0"
Set the SAS system options and define a representative character to be used with inline styles. The ODS HTML destination is open by default. If you are not creating HTML output, close the HTML destination to conserve system resources.

```sas
ods html close;
opts nodate nonumber;
opts escapechar="~";
opts paper=(6in 4in);
```

Create the input data set.

```sas
data brand;
 length tagline $24 description $128;
in tagline $24. / description $128.;
datalines;

Our Mission
To deliver quality sporting and outdoor equipment for all seasons at the most affordable prices.

Our Vision
To transform the way the world purchases sporting and outdoor equipment.

Our Values
Customer focused, Swift and Agile, Innovative, Trustworthy

Our Goal
To grow sales by 15% annually while also improving profit margin through innovative thinking.

run;
```

Open the PDF destination and specify titles and footnotes using inline styles.

```sas
ods pdf file="text.pdf" notoc;
title "-{style [width=100pct background=cx494068
 color=cxbbb2e0 font_size=24pt just=left] Our Company}"
```
Begin the DATA step and specify the actions to execute on the first observation. The statements and methods between the following IF-THEN statement and the END statement are executed only once on the first observation. The local object variable Obj needs to be initialized only once for the duration of the DATA step. The DCL statement declares the ODS object and assigns it to the local variable Obj. The DCL statement also creates a run-time instance of Obj. The NOTE method adds an image and text to the top of the output.

```plaintext
data _null_;
set brand end=eof;

if _n_ = 1 then do;
declare odsout obj();
obj.note(data: "Our Brand...",
 style_attr: "font_style=italic
 font_size=12pt
 font_weight=bold
 color=cbxb2e0",
 just: "L");
end;
```

Add the input data. The FORMAT_TEXT method adds and formats the text. The FORMAT_TEXT methods are not surrounded by any conditional logic, so they are executed for each observation in the input data set. The values specified by the DATA argument are not in quotation marks. They are used to reference variable names in the input data set. The values of these variables are displayed in the output.

```plaintext
obj.format_text(data: tagline,
 style_attr: "background=cx494068
 color=cbxb2e0
 font_size=12pt
 font_style=italic
 width=2.5in",
 just: "C");

obj.format_text(data: description,
 style_attr: "background=cbxb2e0
 font_style=italic
 font_size=8pt
 width=2.5in",
 just: "C");
```

Use the FORMAT_TEXT method with IF-THEN processing. This FORMAT_TEXT method adds a blank line at the bottom of your output, and is executed for all but the last observation. By specifying the FORMAT_TEXT method within the IF THEN statement block, the method is executed for all but the last observation.

```plaintext
if eof ne 1 then
 obj.format_text(data: ",",
 style_attr: "height=1mm");
run;
```
Close all open destinations and open the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```sas
ods all close;
ods html; /* Not required in SAS Studio */
```

**Output 10.8  Flyer Created with the Text Methods**

---

**Example 7: Adding Text to Observations in a Data Set**

**Features:**

- `DECLARE` statement
- Methods
  - `FORMAT_TEXT`
  - `NOTE`

**Method Arguments**

- `DATA`

**Details**

This example demonstrates how to add text to each observation in a data set.

**Program**

```sas
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="TextString.html";
title "Using the FORMAT_TEXT and NOTE Methods to Display Text";
data _null_;
 set sashelp.class ;
 if (_n_ eq 1) then do;
```
dcl odsout obj();
end;

obj.format_text(data: "Text Displayed with the FORMAT_TEXT method and the DATA argument.");
obj.note(data: "Text Displayed with the NOTE method and the DATA argument.");
run;
ods html close;
ods html; /* Not required in SAS Studio */

Program Description

Create a file reference for the output and set the ODS options The current working directory is specified in this example.

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="TextString.html";

Begin the DATA Null step and declare the local variable Obj. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the variable that identifies the object. The DECLARE statement also creates an instance. The SET statement reads the observations from the Sashelp.Class data set.

title "Using the FORMAT_TEXT and NOTE Methods to Display Text";
data _null_
  set sashelp.class ;
  if (_n_ eq 1) then do;
    dcl odsout obj();
  end;

Display text. The FORMAT_TEXT method with the DATA argument specified adds text to all open destinations. The NOTE method with the DATA argument specified adds a note to all open destinations.

obj.format_text(data: "Text Displayed with the FORMAT_TEXT method and the DATA argument.");
obj.note(data: "Text Displayed with the NOTE method and the DATA argument.");
run;

Close the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

ods html close;
ods html; /* Not required in SAS Studio */

The FORMAT_TEXT and NOTE methods are executed once for each observation in the Sashelp.Class data set. Because text is specified with the DATA argument, the text is written out once for each observation, and no data values are displayed.
Example 8: Using a Variable Name to Display Data

Features:
- DECLARE statement
- Methods
  - FORMAT_TEXT
- Method Arguments
  - DATA

Details
This example demonstrates using a variable name to add data from an input data set to your output.

Program

```plaintext
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="VarText.html";
title "Using a Variable Name to Display Data";
data _null_;
 set sashelp.class ;
```
if (_n_ eq 1) then do;
  dcl odsout obj();
end;

title "Using a Variable Name to Display Data";
data _null_;   
  set sashelp.class ;
  if (_n_ eq 1) then do;
    dcl odsout obj();
  end;

obj.format_text(data: name, data: weight);
run;
ods html close;
ods html; /* Not required in SAS Studio */

Program Description

Create a file reference for the output and set the ODS options. The current working directory is specified in this example.

```sas
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="VarText.html";
```

Begin the DATA Null step and declare the local variable Obj. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Obj as the variable that identifies the object. The DECLARE statement also creates an instance. The SET statement reads the observations from the Sashelp.Class data set.

```sas
title "Using a Variable Name to Display Data";
data _null_;
 set sashelp.class ;
 if (_n_ eq 1) then do;
 dcl odsout obj();
 end;
```

Specify the DATA set variables to use. Each DATA argument in the FORMAT_TEXT method specifies a variable from the Sashelp.Class data set. The FORMAT_TEXT method is executed once for each iteration of the data set and the values of the variables Name and Weight are written to the output.

```sas
obj.format_text(data: name, data: weight);
run;
```

Close the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```sas
ods html close;
ods html; /* Not required in SAS Studio */
```

Variable Names Displayed in Output

When you use a variable name with the FORMAT_TEXT or NOTE methods, the variable value for each observation is added to your output.
Example 9: Working with BY Groups and IF-THEN Processing

Features:

DECLARE statement

Methods

FORMAT_TEXT

NOTE

Arguments

DATA

STYLE_ELEM

STYLE_ATTR

INLINE_ELEM

INLINE_ATTR

IF-THEN statement

BY statement

Details

This example demonstrates the following:

- grouping data with BY groups
- using IF-THEN processing to organize your output
- adding a note to your output

Program

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="ByEx.html";

title "Using BY Groups and IF-THEN Processing";
proc sort data=sashelp.class out=class;
by sex;
run;

data _null_
set work.class;
by sex;
if _N_ = 1 then do;
dcl odsout obj();
end;
if first.sex then do;
obj.format_text(data: sex);
obj.format_text(data: "This text is added for each first observation
of a By Group using IF-THEN Processing ",
ine_line_attr: "font_weight=bold",
data: "The INLINE_ATTR argument is used to
format part of the text.");
end;
obj.format_text(data: name);
if last.sex then do;
obj.note(data: "This note is added at the end of each BY group with
the NOTE method and IF-THEN Processing.");
end;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Program Description

Create a file reference for the output and set the ODS options. The current
working directory is specified in this example.

filename rwiOut ".";
ods html close;
ods html path=rwiOut file="ByEx.html";

Sort the data set. PROC SORT sorts the data by the variable Sex.

title "Using BY Groups and IF-THEN Processing";
proc sort data=sashelp.class out=class;
    by sex;
run;

Specify the BY group. The BY statement specifies the BY variable.

data _null_
set work.class;
by sex;

Declare and instantiate the variable Obj. Because the body of the DATA step is
executed once for each input observation during the execution phase, the local
object variable Obj should be initialized only once for the duration of the DATA step.
This can be done using _N_ as follows.

if _N_ = 1 then do;
dcl odsout obj();
end;

**Use IF-THEN processing to specify the placement of data.** To add text to the top of each BY group, use the IF-THEN statement to specify that the two `FORMAT_TEXT` methods execute only once, for the first observation of each BY group. The `INLINE_ATTR` argument formats the preceding text.

```sas
if first.sex then do;
 obj.format_text(data: sex);
 obj.format_text(data: "This text is added for each first observation of a By Group using IF-THEN Processing ",
 inline_attr: "font_weight=bold",
 data: "The INLINE_ATTR argument is used to format part of the text.");
end;
```

**Specify the character variable to write data from.** this line is executed once for each observation in the BY group

```sas
obj.format_text(data: name);
```

**Use the NOTE method with IF-THEN processing to add a note to the end of each BY group.** Use the IF THEN statement to specify that the NOTE method executes once, after the last observation in each BY group.

```sas
if last.sex then do;
 obj.note(data: "This note is added at the end of each BY group with the NOTE method and IF-THEN Processing.");
end;
run;
```

**Close the HTML destination.** It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```sas
ods html close;
ods html; /* Not required in SAS Studio */
```
Example 10: Creating a Simple Table

Features:
- DECLARE statement

Methods:
- FORMAT_CELL
- ROW_END
- ROW_START
- TABLE_END
- TABLE_START

Method Arguments:
- DATA
- STYLE_ATTR

Details

This example demonstrates the following:

- creating a simple table with an input data set
- formatting cells with style attributes
- using IF-THEN processing to organize your output
options obs=10;
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="ByEx.html";

title "Cars By Make and Model";
data _null_; 
  set sashelp.cars end=eof;

  if _n_ = 1 then do;
    dcl odsout obj();
    obj.table_start();
  end;

  obj.row_start();
    obj.format_cell(data: make, style_attr: "color=red");
    obj.format_cell(data: model, style_attr: "color=blue");
  obj.row_end();

  if eof then do;
    obj.table_end();
  end;
run;

ods html close;
ods html; /* Not required in SAS Studio */

---

**Program Description**

Create a file reference for the output and set the ODS options. The current working directory is specified in this example.

```sas
options obs=10;
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="ByEx.html";
```

Begin the DATA step and specify the actions to execute on the first observation. The statements and methods between the following IF-THEN statement and the END statement are executed only once on the first iteration of the DATA step. The local object variable Obj needs to be initialized only once for the duration of the DATA step. The DCL statement declares the ODS object and assigns it to the local variable Obj. The DCL statement also creates a run-time instance of Obj. The TABLE_START method begins the table. The DCL statement and the TABLE_START method are executed once on the first iteration of the DATA step.

```sas
 title "Cars By Make and Model";
 data _null_;
 set sashelp.cars end=eof;
```
if _n_ = 1 then do;
dcl odsout obj();
    obj.table_start();
end;

Create a row. The ROW_START method creates a table row. The FORMAT_CELL method adds data to the cells in the row. The DATA argument with a variable specified writes out the variable value of Make and Model for each observation. The STYLE_ATTR argument specifies that the data uses the Color style attribute. The ROW_START method and the FORMAT_CELL method are executed once for each observation. For each observation, a new row with two cells is added to the table.

    obj.row_start();
    obj.format_cell(data: make, style_attr: "color=red");
    obj.format_cell(data: model, style_attr: "color=blue");
    obj.row_end();

End the table. The last IF-THEN processing loop specifies that the TABLE_END method is executed after the last observation adds a row to table. The TABLE_END method ends the table.

if eof then do;
    obj.table_end();
end;
run;

Close and reopen the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

ods html close;
ods html; /* Not required in SAS Studio */

Cars by Make and Model

<table>
<thead>
<tr>
<th>Make</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acura</td>
<td>MDX</td>
</tr>
<tr>
<td>Acura</td>
<td>RSX Type S 2dr</td>
</tr>
<tr>
<td>Acura</td>
<td>TSX 4dr</td>
</tr>
<tr>
<td>Acura</td>
<td>TL 4dr</td>
</tr>
<tr>
<td>Acura</td>
<td>3.5 RL 4dr</td>
</tr>
<tr>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
</tr>
<tr>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
</tr>
<tr>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
</tr>
<tr>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
</tr>
<tr>
<td>Audi</td>
<td>A4 3.0 4dr</td>
</tr>
</tbody>
</table>

Example 11: Formatting Cells with the Textdecoration Style Attribute
Methods

- FORMAT_CELL
- ROW_END
- ROW_START
- TABLE_END
- TABLE_START

Method Attributes

- DATA
- LABEL
- STYLE_ATTR

IF-THEN statement

ODS HTML statement

ODS PDF statement

SET statement

Details

This example demonstrates the following:

- creating a table with the TABLE_START and ROW_START methods
- formatting cells with the FORMAT_CELL method
- adding lines over, under, and through text with the TEXTDECORATION style attribute

The TextDecoration style attribute does not appear the same in all destinations.

Program

```plaintext
options obs=10;
filename rwiOut ".";
ods html close;

options nodate nonumber;
ods html path=rwiOut file="textdecoration.html";
ods pdf file="your-path/textdecoration.pdf";
title "Using the TextDecoration Style Attribute";
data _null_;
set sashelp.class end=eof;
if _n_ = 1 then do;
dcl odsout obj();
 obj.table_start(label: "Text Decoration Test");
end;
obj.row_start();
 obj.format_cell(data: age,
 style_attr: "textdecoration=overline");
 obj.format_cell(data: height,
 style_attr: "textdecoration=underline");
 obj.format_cell(data: weight,
 style_attr: "textdecoration=line_through");
 obj.format_cell(data: name);
```
Program Description

Create a file reference for the output and specify a title. The current working directory is specified in this example.

```sas
options obs=10;
filename rwiOut ".";
ods html close;
```

Specify the ODS destinations and filenames for the output.

```sas
options nodate nonumber;
ods html path=rwiOut file="textdecoration.html";
ods pdf file="/your-path/textdecoration.pdf";
title "Using the TextDecoration Style Attribute";
```

Begin the DATA step and specify the actions to execute on the first iteration. The statements and methods between the following IF-THEN statement and the END statement are executed only once on the first iteration of the DATA step. The local object variable Obj needs to be initialized only once for the duration of the DATA step. The DCL statement declares the ODS object and assigns it to the local variable Obj. The DCL statement also creates a run-time instance of Obj. The TABLE_START method begins the table. The LABEL argument specifies the label of that will be used in the table of contents and the DMS Results window. The DCL statement and the TABLE_START method are executed once on the first iteration of the DATA step.

```sas
data _null_
 set sashelp.class end=eof;
 if _n_ = 1 then do;
 dcl odsout obj();
 obj.table_start(label: "Text Decoration Test");
 end;
```

Create rows. The ROW_START method creates a table row. The FORMAT_CELL method adds data to the cells in the row. The DATA argument with a variable specified writes out the variable value of each observation. The STYLE_ATTR argument specifies that the data use the TEXTDECOaration style attribute. The ROW_START – ROW_END method block is executed once for each observation. For each observation, a new row with four cells is added to the table.

```sas
obj.row_start();
obj.format_cell(data: age,
 style_attr: "textdecoration=overline");
obj.format_cell(data: height,
 style_attr: "textdecoration=underline");
obj.format_cell(data: weight,
```
End the table. The last IF-THEN processing loop specifies that the TABLE_END method is executed after the last observation. The TABLE_END method ends the table.

```
if eof then do;
 obj.table_end();
end;
run;
```

Close the open destinations. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```
ods _all_ close;
ods html; /* Not required in SAS Studio */
```

Output 10.11 Customized HTML Output

Using the TextDecoration Style Attribute

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>69</td>
<td>442.6</td>
<td>Alfred</td>
</tr>
<tr>
<td>13</td>
<td>56.5</td>
<td>84</td>
<td>Alice</td>
</tr>
<tr>
<td>13</td>
<td>65.3</td>
<td>88</td>
<td>Barbara</td>
</tr>
<tr>
<td>14</td>
<td>62.8</td>
<td>492.6</td>
<td>Carol</td>
</tr>
<tr>
<td>14</td>
<td>63.5</td>
<td>442.5</td>
<td>Henry</td>
</tr>
<tr>
<td>12</td>
<td>57.3</td>
<td>83</td>
<td>James</td>
</tr>
<tr>
<td>12</td>
<td>59.0</td>
<td>84.5</td>
<td>Jane</td>
</tr>
<tr>
<td>15</td>
<td>62.5</td>
<td>442.5</td>
<td>Janet</td>
</tr>
<tr>
<td>13</td>
<td>62.5</td>
<td>84</td>
<td>Jeffrey</td>
</tr>
<tr>
<td>12</td>
<td>59</td>
<td>59.5</td>
<td>John</td>
</tr>
</tbody>
</table>
### Example 12: Creating a Table with Row and Column Spanning

#### Features:
- DECLARE statement
- Table methods:
  - FORMAT_CELL
  - HEADER_END
  - HEADER_START
  - ROW_END
  - ROW_START
  - TABLE_END
  - TABLE_START
- BY statement
- IF-THEN statement
- PROC FORMAT
- PROC SORT
- SET statement

#### Details
The following program creates a table with the following features:
- header section
- spanned columns
- spanned rows
- BY groups

<table>
<thead>
<tr>
<th></th>
<th>T4</th>
<th>T3</th>
<th>T3</th>
<th>T4</th>
<th>T4</th>
<th>T2</th>
<th>T2</th>
<th>T5</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62.8</td>
<td>63.5</td>
<td>65.3</td>
<td>62.8</td>
<td>65.3</td>
<td>57.3</td>
<td>59.8</td>
<td>62.5</td>
<td>62.5</td>
<td>59</td>
</tr>
<tr>
<td>Age</td>
<td>402.5</td>
<td>102.5</td>
<td>98</td>
<td>112.5</td>
<td>102.5</td>
<td>89</td>
<td>84.5</td>
<td>112.5</td>
<td>84</td>
<td>99.5</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
</tr>
</tbody>
</table>
options obs=10;
filename rwiOut ".";
ods html close;
ods html path=rwiOut file="MyEx.html";
title "Table Using Column and Row Spanning";
title2 "Two Tables, One for Females and One for Males";

proc format;
  value $gender
      F = "Females"
      M = "Males"
    ;
run;

proc sort data=sashelp.class out=class;
  by sex;
run;

data _null_;
  set class;
  by sex;
  if _N_ = 1 then do;
    dcl odsout obj();
  end;
  if first.sex then do;
    obj.table_start();
    obj.head_start();
      obj.row_start();
        obj.format_cell(data: "Name", row_span: 3, vjust: "B");
        obj.format_cell(data: sex, column_span: 4, format: "$gender.");
      obj.row_end();
    obj.row_start();
      obj.format_cell(data: "Age", row_span: 2, vjust: "B");
      obj.format_cell(data: "Vitals", column_span: 3);
    obj.row_end();
  obj.row_start();
      obj.format_cell(data: "Height");
      obj.format_cell(data: "Weight");
      obj.format_cell(data: "BMI");
    obj.row_end();
  obj.head_end();
end;

bmi = ( weight / ( height * height ) ) * 703;

obj.row_start();
  obj.format_cell(data: name);
  obj.format_cell(data: age);
  obj.format_cell(data: height);
  obj.format_cell(data: weight);
  obj.format_cell(data: bmi, format: "8.2");
obj.row_end();
if last.sex then do;
   obj.table_end();
end;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Program Description

Create a file reference for the output, set the ODS options, and specify titles. The current working directory is specified in this example.

   options obs=10;
   filename rwiOut ".";
   ods html close;
   ods html path=rwiOut file="MyEx.html";
   title "Table Using Column and Row Spanning";
   title2 "Two Tables, One for Females and One for Males";

Create a custom format for the BY variable.

   proc format;
      value $gender
         F = "Females"
         M = "Males"
      ;
   run;

Sort the data set. PROC SORT sorts the data by the variable Sex.

   proc sort data=sashelp.class out=class;
      by sex;
   run;

Begin the DATA step, sort the data set, and specify the actions to execute on the first iteration of the DATA step. The statements and methods between the following IF-THEN statement and the END statement are executed only once on the first iteration. The local object variable Obj needs to be initialized only once for the duration of the DATA step. The DCL statement declares the ODS object and assigns it to the local variable Obj. The DCL statement also creates a run-time instance of Obj.

   data _null_;
      set class;
      by sex;

      if _N_ = 1 then do;
         dcl odsout obj();
      end;

Begin the table and header section for each BY group. The TABLE_START method begins the table. The TABLE_START method is executed once at the first observation for each BY group. The HEAD_START method begins the header section.

   if first.sex then do;
      obj.table_start();
Create the first row of the header. The ROW_START method begins the first row of the header. The FORMAT_CELL methods format the cells. The DATA argument on the first FORMAT_CELL method adds the text 'Name' to the first cell of the row, and spans the first three rows. The VJUST argument places the text at the bottom of the cell. The DATA argument on the second FORMAT_CELL argument adds the value of the variable Sex to the second cell in the first row. The value of the variable is used because there are no quotation marks around the variable name. The COLUMN_SPAN argument spans the columns for the variable Sex, and the FORMAT argument applies the custom format $gender. The ROW_END method ends the row.

Create the second row of the header. The ROW_START method begins the second row of the header. The FORMAT_CELL methods format each cell. The first FORMAT_CELL method adds the text 'Age' to the second cell. The ROW_SPAN argument spans the cell over two rows. The VJUST argument places the text at the bottom of the cell. The second FORMAT_CELL method add the text 'Vitals' to the second cell row. The COLUMN_SPAN argument spans three cells for the text "Vitals". The ROW_END method ends the row.

Create the third row of the header. The ROW_START method begins the third row of the header. The FORMAT_CELL methods with the DATA argument specified adds the text Height, Weight, and BMI to the third, fourth, and fifth cell. The ROW_END method ends the row.

End the header and the IF-THEN block. The HEAD_END method ends the header section of the table. The END statement ends the IF-THEN block. All of the statements between the first IF-THEN statement and the END statement are executed once, for the first iteration of each BY group only.

Calculate the BMI for each observation. The new variable BMI is calculated for every observation in the data set.

Create the body of the table. The block of methods that creates the row is executed once for each observation. The value of the variable is used because there are no quotation marks around the variable name.
obj.format_cell(data: height);
obj.format_cell(data: weight);
obj.format_cell(data: bmi, format: "8.2");
obj.row_end();

End the table. The TABLE_END method should be executed once for the last observation of each BY group. By specifying the TABLE_END method with the IF LAST THEN statement, the method is executed once on the last observation of the BY group.

if last.sex then do;
  obj.table_end();
end;
run;

Close the HTML destination. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

ods html close;
ods html; /* Not required in SAS Studio */

Output 10.13  Creating a Table with Cell Spanning and BY Groups

Example 13: Create One By-Group Table on a Page

Features:
- DECLARE statement
- Table Methods
  TABLE_END
  TABLE_START
  ROW_END
  ROW_START
  FORMAT_CELL
The following program creates the following features:

- output separated into BY groups
- one BY group table per page
- spanned columns

``` SAS
options nodate nonumber;
filename rwiOut ".";
ods html close;
ods html path=rwiOut file "Cars.html";
ods pdf file="your-file-path/Cars.pdf";
ods escapechar="^";
proc sort data=sashelp.cars out=cars;
 by make model type;
 where upcase(make) in ("AUDI","BMW","VOLKSWAGEN");
run;

data _null_
 set cars end=done;
 by make;
 if _N_ = 1 then do;
 declare odsout tbl();
 end;
 if first.make then do;
 tbl.title(data: "Cars by Make and Model");
 tbl.table_start();
 tbl.row_start();
 tbl.format_cell(data: "Car Models made by " || strip(make),
 style_attr: "just=left font_weight=bold",
 column_span: 6);
 tbl.row_end();
 tbl.row_start();
 tbl.format_cell(data: " ", inhibit: "LR",
 style_attr: "just=left font_weight=bold",
 column_span: 6);
 end;
```
Example 13: Create One By-Group Table on a Page

Program Description

Create a file reference for the HTML output, set the ODS options, and specify titles. The current working directory is specified in this example.

```
options nodate nonumber;
filename rwiOut ".";
ods html close;
```

Open the ODS destinations and define a representative character to be used for inline styles.

```
ods html path=rwiOut file "Cars.html";
ods pdf file="your-file-path/Cars.pdf";
ods escapechar="^";
```

Sort the input data set by make and model.

```
proc sort data=sashelp.cars out=cars;
 by make model type;
 where upcase(make) in ("AUDI","BMW","VOLKSWAGEN");
run;
```
Begin the DATA step and specify the actions to execute on the first iteration of the DATA step. The statements and methods between the following IF-THEN statement and the END statement are executed only once on the first iteration of the DATA step. The local object variable Tbl should be initialized only once for the duration of the DATA step. The DCL statement declares the ODS object and assigns it to the local variable Tbl. The DCL statement also creates a run-time instance of Tbl. It is important to use conditional processing carefully when you are using the PAGE method. The END=DONE option in the SET statement, together with the IF-THEN statement in the last code block, ensures that there is not a blank page with just a title after the last observation. The END option creates and names the temporary variable Done that contains an end-of-file indicator. The variable, which is initialized to zero, is set to 1 when SET reads the last observation of the last data set listed.

```sas
data _null_
set cars end=done
by make;
if _N_ = 1 then do;
declare odsout tbl();
end;
```

Use IF-THEN processing to specify the placement of data. To add text to the top of each BY group, use conditional processing and table methods. The first ROW_START block adds the text "Car Models made by Volkswagen" and spans the columns. The second ROW_START block creates a blank row, and the third ROW_START block adds the headers Model, Type, HP, MPG (City), MPG (Highway), and MSRP. These statements are executed once for the first observation of a BY group only, because of the conditional processing.

```sas
if first.make then do;
tbl.title(data: "Cars by Make and Model");
tbl.table_start();
tbl.row_start();
tbl.format_cell(data: "Car Models made by " || strip(make),
style_attr: "just=left font_weight=bold",
column_span: 6);
tbl.row_end();

tbl.row_start();
tbl.format_cell(data: " ", inhibit: "LR",
column_span: 6);
tbl.row_end();

tbl.row_start();
tbl.format_cell(data: "Model");
tbl.format_cell(data: "Type");
tbl.format_cell(data: "HP");
tbl.format_cell(data: "MPG*(City)", split: "*");
tbl.format_cell(data: "MPG*(Highway)", split: "**");
tbl.format_cell(data: "MSRP");
tbl.row_end();
end;
```

Display the input data. The ROW_START method block creates a row that uses the value of the variable specified by the DATA argument. Because there is no IF-
THEN processing, the methods are executed for every observation in the input data set.

```
tbl.row_start();
 tbl.format_cell(data: model);
 tbl.format_cell(data: type);
 tbl.format_cell(data: horsepower);
 tbl.format_cell(data: MPG_city);
 tbl.format_cell(data: MPG_Highway);
 tbl.format_cell(data: msrp);
tbl.row_end();
```

Use the TABLE_END statement with IF-THEN processing to end the table and create a page for each BY group. The TABLE_END method ends the table, and the PAGE method forces a new page for each BY group. The IF-NOT DONE statement block specifies that the PAGE method is not executed again after the end of the data set.

```
if last.make then do;
 tbl.table_end();
 if not done then do;
 tbl.page();
 end;
end;
run;
```

Close the open destinations. It is a best practice to reopen the HTML destination after you have closed all of the open destinations.

```
ods _all_ close;
ods html; /* Not required in SAS Studio */
```

Output Using IF-THEN

You should use the PAGE method with additional IF-THEN processing in the SET statement and in the last IF-THEN statement block. When you do this, the PAGE method will not be executed after the end of the data set. There will be no extraneous page after the last page of output. If you do not use the END= option in the SET statement, along with the IF-THEN statement block at the end with the page method, then there is an extra page with a title after the last full page of output.
## Cars by Make and Model

Car Models made by Volkswagen

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>HP</th>
<th>MPG (City)</th>
<th>MPG (Highway)</th>
<th>MSRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTI 1.8T 2dr hatch</td>
<td>Sedan</td>
<td>180</td>
<td>24</td>
<td>31</td>
<td>13825</td>
</tr>
<tr>
<td>Golf GLS 4dr</td>
<td>Sedan</td>
<td>115</td>
<td>24</td>
<td>31</td>
<td>18715</td>
</tr>
<tr>
<td>Jetta GL</td>
<td>Wagon</td>
<td>115</td>
<td>24</td>
<td>30</td>
<td>19005</td>
</tr>
<tr>
<td>Jetta GLI VR6 4dr</td>
<td>Sedan</td>
<td>200</td>
<td>21</td>
<td>30</td>
<td>23785</td>
</tr>
<tr>
<td>Jetta GLS TDI 4dr</td>
<td>Sedan</td>
<td>100</td>
<td>38</td>
<td>46</td>
<td>21055</td>
</tr>
<tr>
<td>New Beetle GLS 1.8T 2dr</td>
<td>Sedan</td>
<td>150</td>
<td>24</td>
<td>31</td>
<td>21055</td>
</tr>
<tr>
<td>New Beetle GLS convertible 2dr</td>
<td>Sedan</td>
<td>115</td>
<td>24</td>
<td>30</td>
<td>23215</td>
</tr>
<tr>
<td>Passat GLS 1.8T</td>
<td>Wagon</td>
<td>170</td>
<td>22</td>
<td>31</td>
<td>24955</td>
</tr>
<tr>
<td>Passat GLS 4dr</td>
<td>Sedan</td>
<td>170</td>
<td>22</td>
<td>31</td>
<td>23955</td>
</tr>
<tr>
<td>Passat GLX V6 4MOTION 4dr</td>
<td>Sedan</td>
<td>190</td>
<td>19</td>
<td>26</td>
<td>33180</td>
</tr>
<tr>
<td>Passat W8</td>
<td>Wagon</td>
<td>270</td>
<td>18</td>
<td>25</td>
<td>40235</td>
</tr>
<tr>
<td>Passat W8 4MOTION 4dr</td>
<td>Sedan</td>
<td>270</td>
<td>18</td>
<td>25</td>
<td>39235</td>
</tr>
<tr>
<td>Phaeton 4dr</td>
<td>Sedan</td>
<td>335</td>
<td>18</td>
<td>22</td>
<td>65000</td>
</tr>
<tr>
<td>Phaeton W12 4dr</td>
<td>Sedan</td>
<td>420</td>
<td>12</td>
<td>19</td>
<td>75000</td>
</tr>
<tr>
<td>Touareg V6</td>
<td>SUV</td>
<td>220</td>
<td>15</td>
<td>20</td>
<td>35515</td>
</tr>
</tbody>
</table>
Example 14: Using Colors to Understand Absolute Layout

Features:

DECLARE statement

Absolute Layout Methods

LAYOUT_ABSOLUTE
LAYOUT_END
REGION

Text Method

FORMAT_TEXT

Details

With absolute layout, the order that your regions are specified is critical. The regions are laid down in the order in which they are specified, beginning with the top of the program. In the following example, region 2 is laid down first, then region 3, then region 4, and last region 5, like pieces of paper. If you do not specify your X and Y options carefully, regions can overlap each other.

For example, in the following code, regions 2 and 3 are overlaid by regions 4 and 5. Some of the red color from region 4 is showing, even though region 5 is specified last. This is because region 4 begins two inches from the top of the page, and
region 5 begins seven inches from the top of the page. All of the regions lie on top of the purple background (1), which is specified by the template Orionbackground.

Program 1

ods html close;
options nodate nonumber;
title;
opts escapechar="-";
footnote "-{style [font_size=10pt just=right color=cxbbb2e0]
Provided to you by SAS 9.4 and ODS Absolute Layout features.}";
proc template;                                           /* 1 */
define style Styles.Orionbackground;
    parent=Styles.Printer;
    style body /
        background=cx494068;
end;
run;
ods pdf file="your-file-path/Color3.pdf" style=Styles.Orionbackground notoc;
data _null_;
dcl odsout trt();
trt.layout_absolute();
    trt.region(y: "5in", style_attr:backgroundcolor=orange);                    /* 2 */
        trt.format_text(data: "Executive Prospectus",
            just: "c",
            style_attr:font_size=36pt color=cxbbb2e0);
    trt.region(y: "3in", x: "3in", style_attr:backgroundcolor=yellow);         /* 3 */
        trt.format_text(data: "Sports & Outdoors",
            style_attr:color=cxbbb2e0 font_size=28pt);
    trt.region(y: "2in", style_attr:backgroundcolor=red);                     /* 4 */
        trt.format_text(data: "Orion Star", just: "c",
            style_attr:color=cxbbb2e0 just=center font_size=72pt);
    trt.region(y: "7in", style_attr:backgroundcolor=blue);                    /* 5 */
        trt.format_text(data: "For years 1999 through 2002",
            just: "c",
            style_attr:font_size=20pt color=cxbbb2e0);
trt.layout_end();
run;

ods _all_ close;
In this program, regions 3 and 4 overlap each other. You can fix this by changing the X and Y values, or by simply changing the order that the regions are specified in.

```sas
ods html close;
options nodate nonumber;
title;
ods escapechar="-";
footnote "-{style [font_size=10pt just=right color=cbbbb2e0]}
```
Provided to you by SAS 9.4 and ODS Absolute Layout features.}*

```sas
proc template;
 define style Styles.Orionbackground;
 parent=Styles.Printer;
 style body /
 background=cx494068;
 end;
run;
ods pdf file="your-file-path/Color2.pdf"
 style=Styles.Orionbackground
 notoc;
data _null_
 dcl odsout trt();
trt.layout_absolute();
 trt.region(y: "2in", style_attr:"backgroundcolor=red"); /*2*/
 trt.format_text(data: "Orion Star", just: "c",
 style_attr: "color=cxbbb2e0 just=center font_size=72pt");
 trt.region(y: "5in", style_attr:"backgroundcolor=orange"); /*3*/
 trt.format_text(data: "Executive Prospectus",
 just: "c",
 style_attr:"font_size=36pt color=cxbbb2e0");
 trt.region(y: "3in", x: "3in", style_attr:"backgroundcolor=yellow"); /*4*/
 trt.format_text(data: "Sports & Outdoors",
 style_attr:"color=cxbbb2e0 font_size=28pt");
 trt.region(y: "7in", style_attr:"backgroundcolor=blue"); /*5*/
 trt.format_text(data: "For years 1999 through 2002",
 just: "c",
 style_attr:"font_size=20pt color=cxbbb2e0");
trt.layout_end();
run;
ods pdf close;
```
Program 3

With the regions specified in the correct order, all of the text is visible. You can then remove the region colors for your final output.

```r
ods html close;
options nodate nonumber;
title;
ods escapechar="-";
footnote "-{style [font_size=10pt just=right color=cbbbb2e0]}
```
Provided to you by SAS 9.4 and ODS Absolute Layout features.}*
proc template; /*1*/
define style Styles.Orionbackground;
    parent=Styles.Printer;
    style body /
        background=cx494068;
    end;
run;
ods pdf file="your-file-path/Color1.pdf"
    style=Styles.Orionbackground
    notoc;
data _null_ ;
dcl odsout trt();
trt.layout_absolute();
trt.region(y: "2in", style_attr:"backgroundcolor=red"); /*2*/
    trt.format_text(data: "Orion Star", just: "c",
        style_attr: "color=cxbbb2e0
            just=center
            font_size=72pt");

trt.region(y: "3in", x: "3in", style_attr:"backgroundcolor=yellow"); /*3*/
    trt.format_text(data: "Sports & Outdoors",
        style_attr: "color=cxbbb2e0 font_size=28pt");

trt.region(y: "5in", style_attr:"backgroundcolor=orange"); /*4*/
    trt.format_text(data: "Executive Prospectus",
        just: "c",
        style_attr: "font_size=36pt color=cxbbb2e0");

trt.region(y: "7in", style_attr:"backgroundcolor=blue"); /*5*/
    trt.format_text(data: "For years 1999 through 2002",
        just: "c",
        style_attr: "font_size=20pt color=cxbbb2e0");

trt.layout_end();
run;
ods pdf close;
Program 4

Remove the region colors for your final output.

```sas
ods html close;
options nodate nonumber;
title;
ods escapechar="~";
footnote "-{style [font_size=10pt just=right color=cxbbb2e0]
Provided to you by SAS 9.4 and ODS Absolute Layout features.}";
proc template;
```
define style Styles.Orionbackground;
parent=Styles.Printer;
style body /
background=cx494068;
end;
run;
ods pdf file="your-file-path/Complete.pdf" style=Styles.Orionbackground notoc;
data _null_; dcl odsout trt();
trt.layout_absolute();
  trt.region(y: "2in");
    trt.format_text(data: "Orion Star", just: "c",
                      style_attr: "color=cxbbb2e0 just=center font_size=72pt");
  trt.region(y: "3in", x: "3in");
    trt.format_text(data: "Sports & Outdoors",
                     style_attr:"color=cxbbb2e0 font_size=28pt");
  trt.region(y: "5in");
    trt.format_text(data: "Executive Prospectus",
                     just: "c",
                     style_attr:"font_size=36pt color=cxbbb2e0");
  trt.region(y: "7in");
    trt.format_text(data: "For years 1999 through 2002",
                     just: "c",
                     style_attr:"font_size=20pt color=cxbbb2e0");
trt.layout_end();
run;
ods pdf close;
Example 15: Creating a Cover Page with the LAYOUT_ABSOLUTE Method

Features:

- **DECLARE statement**
- Absolute Layout Methods
  - LAYOUT_ABSOLUTE
  - LAYOUT_END
  - REGION
- Text Method
  - FORMAT_TEXT
Details

The following example uses absolute layout methods to create a cover letter. Absolute layouts are useful to create one-page output. The output creates one layout container that contains four regions.

Program

ods html close;
options nodate nonumber;
title;
ods escapechar="~";
footnote "~{style [font_size=10pt
   just=right color=cxbbb2e0]~{Provided to you by SAS 9.4 and ODS Absolute Layout features.}}";

proc template;
define style Styles.Orionbackground;
    parent=Styles.Printer;
    style body /
        background=cx494068;
    end;
run;
ods pdf file="your-file-path/ExecutiveSummary.pdf" style=Styles.Orionbackground notoc;

data _null_;
dcl odsout trt();

trt.layout_absolute();

trt.region(y: "2in");
    trt.format_text(data: "Orion Star", just: "c",
        style_attr: "color=cxbbb2e0 just=center font_size=72pt");

trt.region(y: "3in", x: "3in");
    trt.format_text(data: "Sports & Outdoors",
        style_attr:"color=cxbbb2e0 font_size=28pt");

trt.region(y: "5in");
    trt.format_text(data: "Executive Prospectus",
        just: "c",
        style_attr:"font_size=36pt color=cxbbb2e0");

trt.region(y: "7in");
    trt.format_text(data: "For years 1999 through 2002",
        just: "c",
        style_attr:"font_size=20pt color=cxbbb2e0");

trt.layout_end();
run;
Program Description

Close the HTML destination and set the SAS system options. The HTML destination is open by default. Absolute layouts are valid only in PRINTER destinations. Closing the HTML destination saves system resources.

ods html close;
options nodate nonumber;
title;

Define a representative character to be used with inline styles, and specify a footnote.

ods escapechar="-";
footnote "-{style [font_size=10pt
  just=right color=cxbbb2e0]
  Provided to you by SAS 9.4 and ODS Absolute Layout features.}";

Create a style template for the output and open the PDF destination. The PROC TEMPLATE step creates the style Styles.Orionbackground to apply to the entire output.

proc template;
  define style Styles.Orionbackground;
  parent=Styles.Printer;
  style body /
    background=cx494068;
  end;
run;
ods pdf file="your-file-path/ExecutiveSummary.pdf" style=Styles.Orionbackground notoc;

Begin the DATA Null step and declare the local variable Trt. The DATA _NULL_ statement begins the DATA step. The DECLARE statement assigns Trt as the variable that identifies the object. The DECLARE statement also creates an instance.

data _null_
  dcl odsout trt();

Begin the absolute layout. The LAYOUT_ABSOLUTE method begins an absolute layout container.

trt.layout_absolute();

Create the body of the cover page. Each REGION method creates a region within the layout container. The X argument specifies the horizontal start position for each region. The Y argument specifies the vertical start position of the layout. The FORMAT_TEXT arguments display and format the text inside each region.

trt.region(y: "2in");
  trt.format_text(data: "Orion Star", just: "c",
    style_attr: "color=cxbbb2e0 just=center font_size=72pt");

trt.region(y: "3in", x: "3in");
End the layout. The LAYOUT_END method ends the layout. The ODS PDF CLOSE statement closes the PDF destination.

```r
trt.layout_end();
run;

ods pdf close;
```
Output 10.20  Cover Page Created with the LAYOUT_ABSOLUTE Method

Orion Star
Sports & Outdoors

Executive Prospectus

For years 1999 through 2002
Concepts

**RWI Basics** .......................................................... 247
**DATA Step Processing** ........................................ 247
**Object-Oriented Concepts** ........................................ 248
  Overview ....................................................... 248
  DATA Step and the Report Writing Interface .............. 248
  Using BY Groups .............................................. 252

**RWI Basics**

The RWI enables you to create and manipulate predefined ODS objects in a DATA step. ODS objects are data elements that consist of attributes, methods, and operators. Attributes are the properties that specify the information that is associated with an object. Methods define the operations that an object can perform. You use the DATA step object dot syntax to access the component object's attributes and methods. You can use the RWI's object-oriented functionality to create highly specialized reports. The RWI is available for PRINTER and HTML destinations.

**DATA Step Processing**

DATA step processing has two distinct phases: the compilation phase and the execution phase. The compilation phase checks for syntax of the SAS statements and then compiles them, creating the input buffer, program data vector, and descriptor information.

The execution phase is executed once for each input observation that is being processed. The execution phase is further broken down into three categories: the initialization, the observation loop, and the termination processing. These three phases are particularly important to the Report Writing Interface.

When writing a custom report, you often have a heading section at the top, a summary section at the end, and probably a data-centric section in the middle. You can organize your ODS report writing code into each of these respective sections so that they are conditionally executed.
Object-Oriented Concepts

Overview

Objects are data structures combined with the associated processing routines. The new ODS object-oriented features in DATA_NULL_report writing use the object-oriented programming technique. The basic concepts of object-oriented programming are object, class, instance, and method.

The following DATA step is the simplest program that you can run with the RWI.

```
data _null_;
declare odsout obj();
obj.format_text(data: 'Input data added with the FORMAT_TEXT method and the DATA argument.');
... more methods ...
run;```

1 Instantiation takes place with the DECLARE statement. An instance is the actual object created at run time. To create an instance, use the NEW statement with the DECLARE statement, or the DECLARE statement by itself.

2 ODSOUT is the class. ODSOUT is declared by the DECLARE statement. A class is a blueprint or template that describes how the output should look.

3 obj is the local variable. It is the name that identifies the object.

4 FORMAT_TEXT is a method. A method is the object’s application programming interface. A method can be called only by its own object. To call a method, use the object name followed by a dot. For example:

```
obj.format_text(data: 'Input Data added with the FORMAT_TEXT Method and the DATA argument');```

5 DATA is an argument. It specifies input data for a method.

DATA Step and the Report Writing Interface

By default, when you specify a method with the RWI, the method or methods execute for every observation in the data set. In the following example, the FORMAT_TEXT method writes the text specified by the DATA argument for each observation in the Class data set. The variable object obj is also initialized once for each observation.

```
data _null_;```
set sashelp.class;
declare odsout obj();
obj.format_text(data: 'Text added with the FORMAT_TEXT method and the DATA argument.');
run;

Output 11.1 Displaying Text String with the FORMAT_TEXT Method

You can specify multiple methods. Both methods are called for each observation.

data _null_;
set sashelp.class;
declare odsout obj();
obj.format_text(data: 'Text added with the FORMAT_TEXT method and the DATA argument.');
obj.format_text(data: 'Text added with the FORMAT_TEXT method and the DATA argument.');
run;
Output 11.2 Displaying the Value of a Variable Using the FORMAT_TEXT Method

If you specify a variable name from the Class data set, the FORMAT_TEXT method writes out the name of the variable for each observation. In the following example, Name and Sex are variables from Sashelp.Class.

data _null_
 set sashelp.class;
 declare odsout obj();
 obj.format_text(data: name, data: sex);
run;
You can use the execution phase to organize your output. The object variable obj should be initialized only once for the duration of the DATA step (initialization execution phase). Therefore, the variable obj should be instantiated on the first observation of the observation execution loop. You can also specify any methods that you want to execute only on the first observation. Use IF-THEN processing to write out the text where you want it. In the following example, on the first observation, the DECLARE statement and the FORMAT_TEXT method that specifies a text string are executed. The FORMAT_TEXT method that specifies a variable name is then executed for each observation.

```
data _null_;  
  set sashelp.class; 
  
  if _N_ = 1 then do;  
    declare odsout obj();  
    obj.format_text(data: 'The following names and weights are pulled in from the Class data set:');  
  end;  
  
  obj.format_text(data: name, data: weight);  
run;```
Using BY Groups

BY-group processing allows the program to take advantage of additional data-driven built-in logic. The DATA step identifies the beginning and ending of each BY group by creating additional temporary variables: FIRST.<variable> and LAST.<variable>. During the observation loop processing, on the first observation of a BY group, the value of FIRST.<variable> is set to 1. During the observation loop processing, on the last observation of a BY group, LAST.<variable> is set to 1.

```sas
proc sort data=sashelp.class out=class;
 by sex;
run;

data _null_;
 set work.class;
 by sex;

 if _N_ = 1 then do;
 declare odsout obj();
 end;

 if first.sex then do;
 obj.format_text(data: sex);
 end;

 obj.format_text(data: name);

 if last.sex then do;
```
Output 11.5  Using By Groups

Using By-Groups

F
Alice
Barbara
Carol
Jane
Janet
Joyce
Judy
Louise
Mary

M
Alfred
Henry
James
Jeffrey
John
Philip
Robert
Ronald
Thomas
William
Understanding Styles, Style Elements, and Style Attributes

The appearance of SAS output is controlled by ODS style templates (ODS styles). ODS styles are produced from compiled STYLE templates written in PROC TEMPLATE style syntax. An ODS style template is a collection of style elements that provides specific visual attributes for your SAS output.

- A style element is a named collection of style attributes that apply to a particular part of the output. Each area of ODS output has a style element name that is associated with it. The style element name specifies where the style attributes are applied. For example, a style element might contain instructions for the presentation of column headings or for the presentation of the data inside the cells. Style elements might also specify default colors and fonts for output that uses the style.

- A style attribute is a visual property, such as color, font properties, and line characteristics, that is defined in ODS with a reserved name and value. Style attributes are collectively referenced by a style element within a style template. Each style attribute specifies a value for one aspect of the presentation. For example, the BACKGROUNDCOLOR= attribute specifies the color for the background of an HTML table or for a colored table in printed output. The FONTCOLOR= attribute specifies whether to use a Roman font or an italic font.

Note: Because styles control the presentation of the data, they have no effect on output objects that go to the LISTING, DOCUMENT, or OUTPUT destination.

Available styles are in the SASHELP.TMPLMST item store. In SAS Enterprise Guide, the list of style sheets is shown by the Style Wizard. In batch mode or SAS Studio, you can display the list of available style templates by using the LIST statement in PROC TEMPLATE:

```
proc template;
 list styles / store=sashelp.tmplmst;
run;
```

For complete information about viewing ODS styles, see “Viewing ODS Styles Supplied by SAS” on page 265.
By default, HTML 4 output uses the HTMLBlue style template and HTML 5 output uses the HTMLEncore style template. To help you become familiar with styles, style elements, and style attributes, look at the relationship between them.

You can use the SOURCE statement in PROC TEMPLATE to display the structure of a style template. The following code prints the structure of the HTMLBlue style template to the SAS log:

```sas
proc template;
 source styles.HTMLBlue;
run;
```

The following figure illustrates the structure of a style. The figure shows the relationship between the style, the style elements, and the style attributes.
Figure 12.1  Diagram of the HtmlBlue Style

The following list corresponds to the numbered items in the preceding figure:

1 Styles.HtmlBlue is the style. Styles describe how to display presentation aspects (color, font, font size, and so on) of the SAS output. A style determines the overall appearance of the ODS documents that use it. The default style for HTML output is HtmlBlue. Each style consists of style elements.

```sas
proc template;
 define style Styles.HTMLBlue;
 parent = styles.statistical;
 class GraphColors /
 gblockheader = cxcfcd5de
 gphasebox = cxb99999
 gphasebox = cxdbe6f2
 gzonec = cxb8b8b8
 gzonec = cxc073e6e
 gzoneb = cxcdd3e3e
 gzoneb = cxd7e6f3
 gzonea = cxe3edfe
 gconramp3cend = cx9bc1c0
 gconramp3cneutral = cxe22222
 gconramp3cstart = cxe03eac
 gramp3cend = cxd05555
 gramp3cneutral = cxfafaf8
 gramp3cstart = cxe67ff7
 gcontrollim = cxe8fffe
 gcontrollim = cxBF7D99
 gruntest = cxeaf3ff
 gcruntest = cxf4d4d4
 gcclipping = cxff9999
 gcclipping = cxc1c1c1;

 class Header /
 bordercolor = cxb0b7bb
 backgroundcolor = cxe6df9f
 color = cxi12277;

 class Footer /
 bordercolor = cxb0b7bb
 backgroundcolor = cxe6df9f
 color = cxi12277;

 class RowHeader /
 bordercolor = cxb0b7bb
 backgroundcolor = cxe6df9f
 color = cxi12277;

 class RowFooter /
 bordercolor = cxb0b7bb
 backgroundcolor = cxe6df9f
 color = cxi12277;

 class Table /
 cellpadding = 5;

 class Graph /
 attrpriority = "Color";

 class GraphFit2 /
 linestyle = 1;

 class GraphClipping /
 markersymbol = "circlefilled";

 end;
run;
*** END OF TEXT ***
```
You can create new styles with the "DEFINE STYLE Statement" in SAS Output Delivery System: Procedures Guide. New styles can be created independently or from an existing style. You can use "PARENT= Statement" in SAS Output Delivery System: Procedures Guide to create a new style from an existing style. For complete documentation about ODS styles, see Chapter 13, "Style Templates," on page 265.

Header and Footer are examples of style elements. A style element is a collection of style attributes that apply to a particular part of the output for a SAS program. For example, a style element might contain instructions for the presentation of column headings or for the presentation of the data inside table cells. Style elements might also specify default colors and fonts for output that uses the style. Style elements exist inside styles and consist of one or more style attributes. Style elements can be user-defined or supplied by SAS. User-defined style elements can be created by the "STYLE Statement" in SAS Output Delivery System: Procedures Guide.

Note: For a list of the default style elements used for HTML and markup languages and their inheritance, see Chapter 14, "Style Elements," on page 335.

BORDERCOLOR=, BACKGROUNDCOLOR=, and COLOR= are examples of style attributes. Style attributes specify a value for one aspect of the area of the output that its style element applies to. For example, the COLOR= attribute specifies the value cx112277 for the font color. For a list of style attributes supplied by SAS, see Chapter 15, "Style Attributes," on page 363.

Style attributes can be referenced with style references. See "style-reference" on page 427 for more information about style references.

The following table shows commonly used style attributes that you can set with the STYLE= option in PROC PRINT, PROC TABULATE, and PROC REPORT. Most of these attributes apply to parts of the table other than cells (for example, table borders and the lines between columns and rows). Note that not all attributes are valid in all destinations. For more information about these style attributes, their valid values, and their applicable destinations, see "Style Attributes Tables" on page 364.

Table 12.1 Style Attributes for PROC REPORT, PROC TABULATE, and PROC PRINT

<table>
<thead>
<tr>
<th>Attribute</th>
<th>PROC REPORT STATEMENT REPORT Area</th>
<th>PROC REPORT Areas: CALLDEF, COLUMN, HEADER, LINES, SUMMARY</th>
<th>PROC TABULATE STATEMENT TABLE</th>
<th>PROC TABULATE STATEMENTS VAR, CLASS, BOX, CLASSLEV, KEYWORD</th>
<th>PROC PRINT TABLE location</th>
<th>PROC PRINT: all locations other than TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKGROUNDCOLOR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BACKGROUNDIMAGE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BORDERBOTTOMCOLOR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BORDERBOTTOMSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Attribute</td>
<td>PROC REPORT STATEMENT REPORT Area</td>
<td>PROC REPORT Areas: CALLDEF, COLUMN, HEADER, LINES, SUMMARY</td>
<td>PROC TABULATE STATEMENT TABLE</td>
<td>PROC TABULATE STATEMENTS VAR, CLASS, BOX, CLASSLEV, KEYWORD</td>
<td>PROC PRINT location</td>
<td>PROC PRINT: all locations other than TABLE</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------------------------------</td>
<td>---------------------</td>
<td>------------------------------------------</td>
</tr>
<tr>
<td>BORDERBOTTOMWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BORDERLEFTCOLOR=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERLEFTSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERLEFTWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERCOLOR=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BORDERCOLORLIGHT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BORDERCOLORRIGHT=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERRIGHTSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERRIGHTWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERTOPCOLOR=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERTOPSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERTOPWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORDERWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CELLPADDING=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELLCSPACING=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELLWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLASS=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>COLOR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLYOVER=</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FONT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FONTFAMILY=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Attribute</td>
<td>PROC REPORT STATEMENT REPORT Area</td>
<td>PROC REPORT Areas: CALLDEF, COLUMN, HEADER, LINES, SUMMARY</td>
<td>PROC TABULATE STATEMENT TABLE</td>
<td>PROC TABULATE STATEMENTS VAR, CLASS, BOX, CLASSLEV, KEYWORD</td>
<td>PROC PRINT: all locations other than TABLE</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>----------------------------------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------------------------------</td>
<td>---------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>FONTSIZE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FONTSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FONTWEIGHT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FONTWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FRAME=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HEIGHT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HREFTARGET=</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HTMLSTYLE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NOBREAKSPACE=**</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OUTPUTWIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>POSTHTML=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>POSTIMAGE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>POSTTEXT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PREHTML=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PREIMAGE=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PRETEXT=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PROTECTSPECIALCHARS=</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RULES=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TAGATTR=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TEXTALIGN=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>URL=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VERTICALALIGN=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WIDTH=</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* When you use these attributes in this location, they affect only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the foreground color or the font for the text that appears in the table, you must set the corresponding attribute in a location that affects the cells rather than the table. For complete documentation about style attributes and their values, see Chapter 15, “Style Attributes,” on page 363.

** To help prevent unexpected wrapping of long text strings when using PROC REPORT with the ODS RTF destination, set NOBREAKSPACE=OFF in a location that affects the LINE statement. The NOBREAKSPACE=OFF attribute must be set in the PROC REPORT code either on the LINE statement or on the PROC REPORT statement where style(lines) is specified.
Most Base SAS procedures that support ODS use one or more table templates to produce output objects. These table templates include templates for table elements: columns, headers, and footers. Each table element can specify the use of one or more style elements for various parts of the output. These style elements cannot be specified within the syntax of the procedure, but you can use customized styles for the ODS destinations that you use. For more information about customizing tables and styles, see “TEMPLATE Procedure: Creating a Style Template” in SAS Output Delivery System: Procedures Guide.

The Base SAS reporting procedures, PROC PRINT, PROC REPORT, and PROC TABULATE, enable you to quickly analyze your data and organize it into easy-to-read tables. You can use the STYLE= option with these procedure statements to modify the appearance of your report. The STYLE= option enables you to make changes in sections of output without changing the default style for all of the output. You can customize specific sections of procedure output by specifying the STYLE= option in specific statements within the procedure.
Viewing ODS Styles Supplied by SAS

Over fifty ODS styles are available for use with ODS. To view the names of all of the style templates that are shipped with SAS, submit the following program. The style templates are all located in the Styles folder by default.

```
proc template;
 path sashelp.tmplmst;
 list styles;
run;
```
Figure 13.1  Styles Supplied by SAS

To view the source code of a specified style, submit the following code:

```sas
proc template;
 source styles.style-name;
run;
```

**Example Code 13.1  Partial Source Code for the HTMLBlue Style**

```sas
9 proc template;
10 source styles.htmlBlue;
define style Styles.htmlBlue;
 parent = styles.statistical;
 class GraphColors /
 'gndata12' = cxECE8C4
 'gndata11' = cxDBD8F8
 'gndata10' = cxC6E4BF
 'gndata9' = cxE6CEAD
 'gndata8' = cxE5C1D4
 'gndata7' = cxDBC7E7
 'gndata6' = cxDDDEB5
 'gndata5' = cxDBD7E3
 'gndata4' = cxD5C6B4
 'gndata3' = cxB7D4D3
 'gndata2' = cxB7B3B4
 'gndata1' = cxBBC2DC
 'gndata' = cxC8C9CB
```
Program for Viewing Multiple Styles

267

Note: If you are using SAS Studio, you do not need to specify the STYLE= option.
You can go to Preferences ð Results and change the style from the drop-down list
for your selected destination.

Program for Viewing Multiple Styles
This program creates a sample report in HTML, PDF, and RTF of every style
supplied by SAS. The output appears in your working directory. Although you can
apply most SAS styles to any destination, SAS supplies one or more styles that are
optimized to work with the output the destination creates. For a table of suggested
ODS styles for each destination, see Table 13.1 on page 268.
The table Gallery is created and is used in a subsequent DATA step to generate a
list of each style for each destination. The destination link is a hyperlink.
ods _all_ close;
proc template;
define table gallery;
column libname memname style
define libname ;
blank_dups=on;
end;
define links;
header = 'Samples';
compute as '<a href="' ||
'<a href="' ||
'<a href="' ||
end;
end;
run;

links;

trim(style) ||'.html">HTML</a> ' ||
trim(style) ||'.pdf">PDF</a> ' ||
trim(style) ||'.rtf">RTF</a>';

The DATA step creates an index of all available styles supplied by SAS from the
template store Sashelp.Tmplmst.
ods html file="index.html";
title "Index of all styles";
data _null_;
set sashelp.vstyle(where=(libname="SASHELP"));
file print ods=(template='Gallery');
put _ods_;
run;
ods html close;

The ODS destination statements create the output. You can add additional
destinations by specifying the following statement for each destination: ods
destination file="&style..destination‑extension" style=&style;
%macro generateods();
options nodate;
ods html file="&style..html" style=&style;
ods pdf file="&style..pdf" style=&style;
ods rtf file="&style..rtf" style=&style;
title "Style is: &style";


The ODS NOPTITLE statement removes the procedure title.

ods noptitle;

The ODS SELECT statement selects the Variables table for the gallery.

ods select variables;
   proc contents data=sashelp.class;
   run;
   ods _all_ close;
   %mend;

The ODS NORESULTS statement prevents an entry in the results window for each of the subsequent PROC CONTENTS steps that are generated.

ods noresults;

This DATA step creates a sample of each style.

data _null_;  
   set sashelp.vstyle(where=(libname="SASHELP");
   call symputx('style', style);
   call execute('%generateods');
   run;

The ODS RESULTS and ODS PREFERENCES statements set the ODS options back to defaults.

ods results;
ods preferences;

---

Table of Suggested ODS Styles

With ODS, you can use any style with any output destination. However, for each destination, SAS supplies one or more styles that are optimized to work with the output the destination creates.

*Table 13.1  Recommended Styles for ODS Destinations*

<table>
<thead>
<tr>
<th>Destination</th>
<th>Recommended Styles</th>
<th>Default Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPUB</td>
<td>Daisy</td>
<td>Daisy</td>
</tr>
<tr>
<td></td>
<td>Moonflower</td>
<td></td>
</tr>
<tr>
<td>ODS destination for Excel</td>
<td>Excel</td>
<td>Excel</td>
</tr>
<tr>
<td>Destination</td>
<td>Recommended Styles</td>
<td>Default Style</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>------------------------------------------------------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Printer family of statements</td>
<td>FancyPrinter&lt;br&gt;FestivalPrinter&lt;br&gt;GrayscalePrinter&lt;br&gt;MeadowPrinter&lt;br&gt;MonoChromePrinter&lt;br&gt;Monospace&lt;br&gt;NormalPrinter&lt;br&gt;Pearl&lt;br&gt;Printer&lt;br&gt;Sapphire&lt;br&gt;SasDocPrinter&lt;br&gt;SeasidePrinter</td>
<td>Pearl</td>
</tr>
<tr>
<td>RTF</td>
<td>RTF</td>
<td>RTF</td>
</tr>
<tr>
<td>TAGSETS.RTF</td>
<td>RTF</td>
<td>RTF</td>
</tr>
<tr>
<td>ODS destination for PowerPoint</td>
<td>PowerPointDark&lt;br&gt;PowerPointLight</td>
<td>PowerPointLight</td>
</tr>
<tr>
<td>LISTING</td>
<td>Listing</td>
<td>Listing</td>
</tr>
<tr>
<td>Destination</td>
<td>Recommended Styles</td>
<td>Default Style</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>HTML</td>
<td>Analysis</td>
<td>HTMLBlue</td>
</tr>
<tr>
<td></td>
<td>BarrettsBlue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BlockPrint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dove</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dtree</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDefault</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festival</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gantt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HighContrast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTMLEncore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal1a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal2a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Journal3a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meadow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Netdraw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NoFontDefault</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ocean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plateau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raven</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SasWeb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seaside</td>
<td></td>
</tr>
<tr>
<td></td>
<td>StatDoc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistical</td>
<td></td>
</tr>
<tr>
<td>TAGSETS.EXCELP</td>
<td>Default</td>
<td>Default</td>
</tr>
</tbody>
</table>

* The Moonflower style for ODS EPUB is designed for nighttime or low-light reading.

**Note:** Starting with SAS 9.4M5, the BlockPrint ODS style is deprecated. Existing SAS programs that use the BlockPrint style will still function, but the BlockPrint style no longer appears in the list of available styles.
ODS Styles Gallery

EPUB Daisy Style

*Output 13.1  EPUB Book Title Page*
Chapter 13 / Style Templates

The GLM Procedure

Class Level Information
Class Levels Values

Drug 3 A D F

Number of Observations Read 30
Number of Observations Used 30

The GLM Procedure

Dependent Variable: PostTreatment

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td>2</td>
<td>280.0000000</td>
<td>140.0000000</td>
<td>8.84</td>
<td>0.0013</td>
</tr>
<tr>
<td>Pre-Treatment</td>
<td></td>
<td>577.6974030</td>
<td>577.6974030</td>
<td>34.85</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Pre-Treatment*Drug</td>
<td>2</td>
<td>19.649651</td>
<td>9.822222</td>
<td>0.55</td>
<td>0.9926</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td>2</td>
<td>280.0000000</td>
<td>140.0000000</td>
<td>8.84</td>
<td>0.0013</td>
</tr>
<tr>
<td>Pre-Treatment</td>
<td></td>
<td>564.9670283</td>
<td>564.9670283</td>
<td>34.08</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Pre-Treatment*Drug</td>
<td>2</td>
<td>19.649651</td>
<td>9.822222</td>
<td>0.55</td>
<td>0.9926</td>
</tr>
</tbody>
</table>
You can view and modify the default HTML style by selecting **Tools** → **Options** → **Preferences** from the menu at the top of the main SAS window. Then open the **Results** tab. You can change the style by selecting a style from the **Style** drop-down menu. The settings in your Preferences window persist until you explicitly change them. The following display shows the **Results** tab with the new HTML style specified:

**Note:** If you are using SAS Studio, you do not need to specify the **STYLE=** option. You can go to **Preferences** → **Results** and change the style from the drop-down list for your selected destination.
Figure 13.2 Changing the HTML Style with the Preferences Window
Figure 13.3  Changing the HTML Style with SAS Studio

Output 13.5  Analysis Style: Table
Output 13.6  Analysis Style: Graphs

![Graphs showing sales data for different regions and items]

![Graph showing scatter plot with regression line and confidence limits]

- **Output 13.6** Analysis Style: Graphs

- **Graphs** showing sales data for different regions and items.

- **Graph** showing scatter plot with regression line and confidence limits.
Output 13.7  BarrettBlue Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.8  BarretttsBlue Style: Graphs
### Output 13.9  BlockPrint Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
The following style is recommended for generating accessible output when used with the ODS HTML5 destination.
### Output 13.11  Daisy Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$346.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>

The following style is recommended for generating accessible output when used with the ODS HTML5 destination.
Output 13.12  Daisy Style: Graphs

![Graphs showing sales data for different regions and items over two periods: Predicted Sales and Actual Sales.](image)

![Graph showing the relationship between height and weight with confidence and prediction limits.](image)
### Output 13.13  Default Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.14  Default Style: Graphs

![Graphs showing sales for different regions and product categories](image-url)

![Graph showing the relationship between height and weight](image-url)
Output 13.15  Dove Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$488.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.16  Dove Style: Graphs

![Bar charts for BED, CHAIR, DESK, SOFA, and TABLE showing sales in different regions (EAST and WEST).]

![Scatter plot showing the relationship between height and weight with 95% confidence and prediction limits.]

Legend:
- Blue line: Predicted Sales
- Red line: Actual Sales
- 95% Confidence Limits
- 95% Prediction Limits
- Regression line
Output 13.17  Diree Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.18  Dtree Style: Graphs

---

**Bar Graphs for Sales by Region**

- **BED**
  - EAST: $10,000
  - WEST: $12,000

- **CHAIR**
  - EAST: $15,000
  - WEST: $14,000

- **DESK**
  - EAST: $18,000
  - WEST: $16,000

- **SOFA**
  - EAST: $13,000
  - WEST: $11,000

- **TABLE**
  - EAST: $16,000
  - WEST: $17,000

**Legend:**
- Predicted Sales
- Actual Sales

---

**Scatter Plot for Weight vs. Height**

- **Weight**
  - 25, 50, 75, 100

- **Height**
  - 50, 55, 60, 65, 70

**Graph Elements:**
- 95% Confidence Limits
- 95% Prediction Limits
- Regression Line

---

---
<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.20  EGDefault Style: Graphs

```
<table>
<thead>
<tr>
<th>Region</th>
<th>BED</th>
<th>CHAIR</th>
<th>DESK</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- **Predicted Sales**
- **Actual Sales**

![Graph showing sales comparison between regions]

![Graph showing relationship between height and weight]

- **95% Confidence Limits**
- **95% Prediction Limits**
- **Regression Line**
Output 13.21  Festival Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$584.00</td>
</tr>
</tbody>
</table>
Output 13.22  Festival Style: Graphs

The graphs show sales data for different furniture items categorized by region (East and West) for beds, chairs, desks, sofas, and tables. The data is presented in a bar chart format with sales amounts ranging from $0 to $20,000. The predicted sales are indicated by a blue line, while the actual sales are shown by the bars.

The second graph is a scatter plot showing the relationship between height and weight. The 95% confidence limits, 95% prediction limits, and regression line are marked.
### Output 13.23  Gantt Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.24  Gantt Style: Graphs
### Output 13.25  Harvest Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$488.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$812.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.26  Harvest Style: Graphs

The following style is suitable for generating accessible output when used with the ODS HTML5 destination.
The following style is suitable for generating accessible output when used with the ODS HTML5 destination.
HTMLBlue is the default style for the HTML output in the SAS Windowing Environment and SAS Studio.
<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
In SAS 9.4M5, the HTMLEncore style uses the new Avenir Next for SAS fonts. For more information, see “TrueType Fonts Supplied by SAS” in SAS Language Reference: Concepts.
### Output 13.31  HTMLEncore: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$525.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$645.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.32  HTMLEncore: Graphs 1
Output 13.33  Journal Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$825.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$856.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$488.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$812.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.34  Journal Style: Graphs

[Bar charts showing sales data for different regions (East, West) and items (Bed, Chair, Desk, Sofa, Table).]

[Scatter plot showing the relationship between height and weight with confidence and prediction limits.]
Output 13.35  Meadow Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$856.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$488.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.36  Meadow Style: Graphs

- **BED**
- **CHAIR**
- **DESK**

- **SOFA**
- **TABLE**

- **Sales**
  - $0
  - $5,000
  - $10,000
  - $15,000
  - $20,000

- **Region**
  - EAST
  - WEST

- **Predicted Sales**
- **Actual Sales**

---

- **Weight**
  - 25
  - 50
  - 75
  - 100
  - 125
  - 150

- **Height**
  - 50
  - 55
  - 60
  - 65
  - 70

- **95% Confidence Limits**
- **95% Prediction Limits**
- **Regression**
Output 13.37  Minimal Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.38  Minimal Style: Graphs

### Minimal Style: Graphs

#### Bar Charts

- **BED**
- **CHAIR**
- **DESK**
- **SOFA**
- **TABLE**

<table>
<thead>
<tr>
<th>Region</th>
<th>EAST</th>
<th>WEST</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BED</strong></td>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
<tr>
<td><strong>CHAIR</strong></td>
<td><img src="image3.png" alt="Graph" /></td>
<td><img src="image4.png" alt="Graph" /></td>
</tr>
<tr>
<td><strong>DESK</strong></td>
<td><img src="image5.png" alt="Graph" /></td>
<td><img src="image6.png" alt="Graph" /></td>
</tr>
<tr>
<td><strong>SOFA</strong></td>
<td><img src="image7.png" alt="Graph" /></td>
<td><img src="image8.png" alt="Graph" /></td>
</tr>
<tr>
<td><strong>TABLE</strong></td>
<td><img src="image9.png" alt="Graph" /></td>
<td><img src="image10.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

**Legend:**
- Predicted Sales
- Actual Sales

#### Scatter Plot

- **Height** vs **Weight**

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image11.png" alt="Graph" /></td>
<td><img src="image12.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

**Legend:**
- 95% Confidence Limits
- 95% Prediction Limits
- Regression
Output 13.39  Netdraw and NoFontDefault Styles: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.40  Netdraw and NoFontDefault Styles: Graphs

![Graphs showing sales by region and predicted vs. actual values.](image1.png)

![Graph showing weight vs. height with trend line and confidence limits.](image2.png)
<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.42  Normal Style: Graphs

![Graphs showing sales data for different regions and product types]

![Graph showing the relationship between height and weight with confidence and prediction limits]

- **Predicted Sales** vs. **Actual Sales**
- **95% Confidence Limits** vs. **95% Prediction Limits** vs. **Regression**
**Output 13.43  Ocean Style: Table**

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.44  Ocean Style: Graphs

[Graphs showing sales data for different regions, with predicted and actual sales depicted.]

[Graph showing a scatter plot with height and weight, including confidence and prediction intervals.]
Output 13.45  Plateau Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$856.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.46   Plateau Style: Graphs
### Output 13.47  Raven Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$584.00</td>
</tr>
<tr>
<td>Obs</td>
<td>PRODUCT</td>
<td>REGION</td>
<td>ACTUAL</td>
<td>PREDICT</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.50  SasWeb Style: Graphs

![Bar charts and line graphs showing sales data by region (East and West) for BED, CHAIR, DESK, CUPA, and TABLE.](image)

![Scatter plot with regression line and confidence intervals showing weight and height data.](image)
Output 13.51  Seaside Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$808.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$488.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.52  Seaside Style: Graphs

[Graph of sales for different regions (East and West) for Bed, Chair, Desk, Sofa, Table, showing predicted and actual sales.]

[Graph showing weight vs. height with 95% confidence limits and 95% prediction limits, regression line.]
Output 13.53  StatDoc Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$584.00</td>
</tr>
</tbody>
</table>
**Output 13.55**  Statistical Style: Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>PRODUCT</th>
<th>REGION</th>
<th>ACTUAL</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOFA</td>
<td>EAST</td>
<td>$925.00</td>
<td>$850.00</td>
</tr>
<tr>
<td>2</td>
<td>SOFA</td>
<td>EAST</td>
<td>$999.00</td>
<td>$297.00</td>
</tr>
<tr>
<td>3</td>
<td>SOFA</td>
<td>EAST</td>
<td>$608.00</td>
<td>$846.00</td>
</tr>
<tr>
<td>4</td>
<td>SOFA</td>
<td>EAST</td>
<td>$642.00</td>
<td>$533.00</td>
</tr>
<tr>
<td>5</td>
<td>SOFA</td>
<td>EAST</td>
<td>$656.00</td>
<td>$646.00</td>
</tr>
<tr>
<td>6</td>
<td>SOFA</td>
<td>EAST</td>
<td>$948.00</td>
<td>$486.00</td>
</tr>
<tr>
<td>7</td>
<td>SOFA</td>
<td>EAST</td>
<td>$612.00</td>
<td>$717.00</td>
</tr>
<tr>
<td>8</td>
<td>SOFA</td>
<td>EAST</td>
<td>$114.00</td>
<td>$564.00</td>
</tr>
</tbody>
</table>
Output 13.56  Statistical Style: Graphs

[Bar graphs showing sales for different regions and commodities]

[Scatter plot illustrating the relationship between weight and height with 95% confidence and prediction limits]
Printer Styles

Output 13.57  FancyPrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,306</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,306</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>

Output 13.58  FestivalPrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,306</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,306</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>
### Output 13.59  GrayscalePrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>

### Output 13.60  MeadowPrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>
### Output 13.61  MonoChromePrinter Style

#### MonoChromePrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S</td>
<td>2dr</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>

### Output 13.62  Monospace Style

#### Monospace Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S</td>
<td>2dr</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>
Pearl is the default style for PRINTER output.

Output 13.63  NormalPrinter Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,259</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Nav 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,500</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,500</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,045</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,760</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,289</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,900</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>

Output 13.64  Pearl Style

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,259</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Nav 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,500</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A4 1.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,500</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,045</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,760</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,289</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,900</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>
### Output 13.65  Sapphire Style

**Sapphire Style**

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A41.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>

### Output 13.66  SasDocPrinter Style

**SasDocPrinter Style**

<table>
<thead>
<tr>
<th>Obs</th>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>$33,337</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>RSX Type S 2dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$21,761</td>
</tr>
<tr>
<td>3</td>
<td>Acura</td>
<td>TSX 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$24,647</td>
</tr>
<tr>
<td>4</td>
<td>Acura</td>
<td>TL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$30,299</td>
</tr>
<tr>
<td>5</td>
<td>Acura</td>
<td>3.5 RL 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$39,014</td>
</tr>
<tr>
<td>6</td>
<td>Acura</td>
<td>3.5 RL w/Navigation 4dr</td>
<td>Sedan</td>
<td>Asia</td>
<td>$41,100</td>
</tr>
<tr>
<td>7</td>
<td>Acura</td>
<td>NSX coupe 2dr manual S</td>
<td>Sports</td>
<td>Asia</td>
<td>$79,978</td>
</tr>
<tr>
<td>8</td>
<td>Audi</td>
<td>A4 1.8T 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$23,508</td>
</tr>
<tr>
<td>9</td>
<td>Audi</td>
<td>A41.8T convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$32,506</td>
</tr>
<tr>
<td>10</td>
<td>Audi</td>
<td>A4 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$28,846</td>
</tr>
<tr>
<td>11</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr manual</td>
<td>Sedan</td>
<td>Europe</td>
<td>$30,366</td>
</tr>
<tr>
<td>12</td>
<td>Audi</td>
<td>A4 3.0 Quattro 4dr auto</td>
<td>Sedan</td>
<td>Europe</td>
<td>$31,388</td>
</tr>
<tr>
<td>13</td>
<td>Audi</td>
<td>A6 3.0 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$33,129</td>
</tr>
<tr>
<td>14</td>
<td>Audi</td>
<td>A6 3.0 Quattro 4dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$35,992</td>
</tr>
<tr>
<td>15</td>
<td>Audi</td>
<td>A4 3.0 convertible 2dr</td>
<td>Sedan</td>
<td>Europe</td>
<td>$38,325</td>
</tr>
</tbody>
</table>
styles for the ods destination for powerpoint

powerpointlight is the default style for output created by the ods destination for powerpoint.
Style for the ODS Destination for Excel

Output 13.70 Excel Style

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>Year=1993</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td><strong>Total</strong></td>
<td><strong>Total</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Region</strong></td>
<td><strong>Division</strong></td>
<td><strong>Product type</strong></td>
<td><strong>Predicted</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Sales</strong></td>
</tr>
<tr>
<td></td>
<td>EAST</td>
<td>CONSUMER</td>
<td>FURNITURE</td>
<td>$11,081</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFFICE</td>
<td>$21,939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EDUCATION</td>
<td>FURNITURE</td>
<td>$12,972</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFFICE</td>
<td>$16,434</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Total</td>
<td></td>
<td>$62,426</td>
</tr>
<tr>
<td></td>
<td>WEST</td>
<td>CONSUMER</td>
<td>FURNITURE</td>
<td>$10,286</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFFICE</td>
<td>$16,042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EDUCATION</td>
<td>FURNITURE</td>
<td>$12,816</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFFICE</td>
<td>$17,759</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Total</td>
<td></td>
<td>$56,903</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Grand Total</strong></td>
<td></td>
<td><strong>Total Sales</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$119,329</td>
</tr>
</tbody>
</table>
ODS Style Elements

Overview

The following tables lists all the style elements available for ODS style definitions. The tables provides a brief description of each style element and indicates the style elements from which it inherits its attributes.

Abstract style elements are not explicitly used in the ODS output. They are used for inheritance purposes only. Because of this, abstract styles do not appear in the output of destinations that generate a style sheet.
### Style Elements Affecting Documents

**Table 14.1  Style Elements Affecting Documents**

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
</table>
| Document      | Controls the various document bodies. This generally includes things like the page background color and page margins.  
**Note:** This is an abstract style element. | Container |
| Body          | Controls the Body file. The Body file is created by the BODY= option in any ODS Markup Family Destination. | Document |
| Frame         | Controls the Frame file for HTML. The Frame file is created by the FRAME= option in any ODS Markup Family Destination. | Document |
| Contents      | Controls the Contents file. The Contents file is created by the CONTENTS= option in any ODS Markup Family Destination. | Document |
| Pages         | Controls the Page file. The Pages file is created by the PAGE= option in any ODS Markup Family Destination. | Document |

### Style Elements Affecting Tables of Contents

**Table 14.2  Style Elements Affecting Tables of Contents and Tables of Pages**

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>Controls the Contents file</td>
<td>Document</td>
</tr>
</tbody>
</table>
| IndexItem     | Controls list items and folders for Contents and Pages  
**Note:** This is an abstract style element. | Container |
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContentFolder</td>
<td>Controls the folders in the Contents file</td>
<td>IndexItem</td>
</tr>
<tr>
<td>ByContentFolder</td>
<td>Controls the bygroup folders in the Contents file</td>
<td>ContentFolder</td>
</tr>
<tr>
<td>ContentItem</td>
<td>Controls the items in the Contents file</td>
<td>IndexItem</td>
</tr>
<tr>
<td>Index</td>
<td>Controls miscellaneous Contents and Pages components</td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>IndexProcName</td>
<td>Controls the PROC name in the Contents and Pages files</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>ContentProcName</td>
<td>Controls the PROC name in the Contents file</td>
<td>IndexProcName</td>
</tr>
<tr>
<td>ContentProcLabel</td>
<td>Controls the PROC label in the Contents file</td>
<td>ContentProcName</td>
</tr>
<tr>
<td>IndexAction</td>
<td>Determines what happens on mouse-over events for folders and items (HTML only)</td>
<td>IndexItem</td>
</tr>
<tr>
<td>FolderAction</td>
<td>Determines what happens on mouse-over events for folders (HTML only)</td>
<td>IndexAction</td>
</tr>
<tr>
<td>IndexTitle</td>
<td>Controls the title of Contents and Pages files</td>
<td>Index</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>ContentTitle</td>
<td>Controls the title of the Contents file.</td>
<td>IndexTitle</td>
</tr>
</tbody>
</table>

**Style Elements Affecting Pages**

The PAGE= option in applicable MARKUP family destinations creates the page file. See PAGE= option.
Table 14.3  Style Elements Affecting Pages

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pages</td>
<td>Controls the Page file. The Pages file is created by the PAGE= option.</td>
<td>Document</td>
</tr>
<tr>
<td>Date</td>
<td>Controls how date fields look</td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td>Note: This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>PagesDate</td>
<td>Controls the date in the Pages file</td>
<td>Date</td>
</tr>
<tr>
<td>PagesTitle</td>
<td>Controls the title of the Pages file</td>
<td>IndexTitle</td>
</tr>
<tr>
<td>PagesItem</td>
<td>Controls the leafnode item in the Pages file</td>
<td>IndexItem</td>
</tr>
<tr>
<td>PagesProcName</td>
<td>Controls the proc name in the Pages file</td>
<td>IndexProcName</td>
</tr>
<tr>
<td>PagesProcLabel</td>
<td>Controls the proc label in the Pages file</td>
<td>PagesProcName</td>
</tr>
</tbody>
</table>

Style Elements Affecting Frames

The FRAME= option in ODS MARKUP destinations creates the frame file. See FRAME= option.

Table 14.4  Style Elements Affecting Frame

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>Controls the Frame file for HTML</td>
<td>Document</td>
</tr>
</tbody>
</table>

Style Elements Affecting the Body File

The BODY style element inherits from the DOCUMENT style element. The BODY= option in applicable Markup Family destinations creates the body file. See BODY= option.

The following style elements affect the body of an HTML document:

- Tables on page 339
## Style Elements Affecting Tables

**Table 14.5  Style Elements Affecting Data Cells in Tables**

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Default style for data cells</td>
<td>Cell</td>
</tr>
<tr>
<td>Cell</td>
<td>Controls data, header, and footer cells</td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td><em>Note:</em> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>DataFixed</td>
<td>Default style for data cells that request a fixed font</td>
<td>Data</td>
</tr>
<tr>
<td>DataEmpty</td>
<td>Controls empty data cells</td>
<td>Data</td>
</tr>
<tr>
<td>DataEmphasis</td>
<td>Controls emphasized data cells</td>
<td>Data</td>
</tr>
<tr>
<td>DataEmphasisFixed</td>
<td>Controls emphasized data cells that request a fixed font</td>
<td>DataEmphasis</td>
</tr>
<tr>
<td>DataStrong</td>
<td>Controls strong (more emphasized) data cells</td>
<td>Data</td>
</tr>
<tr>
<td>DataStrongFixed</td>
<td>Controls strong (more emphasized) data cells that request a fixed font</td>
<td>DataStrong</td>
</tr>
</tbody>
</table>

**Table 14.6  Style Elements Affecting Header Cells**

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>Controls the headers of a table</td>
<td>HeadersAndFooters</td>
</tr>
<tr>
<td>HeaderFixed</td>
<td>Controls the header of a table that request a fixed font</td>
<td>Header</td>
</tr>
<tr>
<td>HeaderEmphasis</td>
<td>Controls emphasized table header cells that request a fixed font</td>
<td>Header</td>
</tr>
<tr>
<td>Style Element</td>
<td>Description</td>
<td>Inherits from</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>HeaderEmphasisFixed</td>
<td>Controls emphasized table header cells that request a fixed font</td>
<td>HeaderEmphasis</td>
</tr>
<tr>
<td>HeaderStrong</td>
<td>Controls strong (more emphasized) table header cells</td>
<td>Header</td>
</tr>
<tr>
<td>HeaderStrongFixed</td>
<td>Controls strong (more emphasized) table header cells</td>
<td>HeaderStrong</td>
</tr>
<tr>
<td>HeaderEmpty</td>
<td>Controls empty table header cells</td>
<td>Header</td>
</tr>
<tr>
<td>RowHeader</td>
<td>Controls row headers</td>
<td>Header</td>
</tr>
<tr>
<td>RowHeaderFixed</td>
<td>Controls row headers that request a fixed font</td>
<td>RowHeader</td>
</tr>
<tr>
<td>RowHeaderEmpty</td>
<td>Controls empty row headers</td>
<td>RowHeader</td>
</tr>
<tr>
<td>RowHeaderEmphasis</td>
<td>Controls emphasized row headers</td>
<td>RowHeader</td>
</tr>
<tr>
<td>RowHeaderEmphasisFixed</td>
<td>Controls emphasized row headers that request a fixed font</td>
<td>RowHeaderEmphasis</td>
</tr>
<tr>
<td>RowHeaderStrong</td>
<td>Controls strong (more emphasized) row headers</td>
<td>RowHeader</td>
</tr>
<tr>
<td>RowHeaderStrongFixed</td>
<td>Controls strong (more emphasized) row headers that request a fixed font</td>
<td>RowHeaderStrong</td>
</tr>
</tbody>
</table>

Table 14.7  Style Elements Affecting Footer Cells

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Footer</td>
<td>Controls table footers</td>
<td>HeadersAndFooters</td>
</tr>
<tr>
<td>FooterFixed</td>
<td>Controls table footers that request a fixed font</td>
<td>Footer</td>
</tr>
<tr>
<td>FooterEmpty</td>
<td>Controls empty table footers</td>
<td>Footer</td>
</tr>
<tr>
<td>FooterEmphasis</td>
<td>Controls emphasized table footers</td>
<td>Footer</td>
</tr>
<tr>
<td>FooterEmphasisFixed</td>
<td>Controls emphasized table footers that request a fixed font</td>
<td>FooterEmphasis</td>
</tr>
</tbody>
</table>
### Table 14.8 Elements affecting Text

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>BodyDate</td>
<td>Controls the date field in the Body file</td>
<td>ContentsDate</td>
</tr>
<tr>
<td>SASDate</td>
<td>Controls the date field in the Body file when SASDATE option is in effect. This Element is valid only in the ODS destination for PowerPoint.</td>
<td>BodyDate</td>
</tr>
<tr>
<td>pageNo</td>
<td>Controls page numbers for paginated destinations (RTF, TAGSETS.RTF, Printer, PowerPoint)</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>Style Element</td>
<td>Description</td>
<td>Inherits from</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>SysTitleAndFooterContainer</td>
<td>Controls the container for system page title and system page footer. This element is usually used to add borders around a title.</td>
<td>Container</td>
</tr>
<tr>
<td>TitlesAndFooters</td>
<td>Controls system page title text and system page footer text</td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>SystemTitle</td>
<td>Controls system title text</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>SystemTitle2-10</td>
<td>Controls SystemTitle text for the corresponding SystemTitle&lt;em&gt;n&lt;/em&gt; value. For example, SystemTitle3 controls SystemTitle3 text.</td>
<td>SystemTitle-SystemTitle9</td>
</tr>
<tr>
<td>SystemFooter</td>
<td>Controls system footer text</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>SystemFooter2-10</td>
<td>Controls SystemFooter text for the corresponding SystemFooter&lt;em&gt;n&lt;/em&gt; value. For example, SystemFooter3 controls SystemFooter3 text.</td>
<td>SystemFooter-SystemFooter9</td>
</tr>
<tr>
<td>BylineContainer</td>
<td>Controls the container for the byline. This is generally used to add borders to a byline.</td>
<td>Container</td>
</tr>
<tr>
<td>Byline</td>
<td>Controls byline text</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>Parskip</td>
<td>Controls space between tables in RTF output</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>ProcTitle</td>
<td>Controls procedure title text</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>ProcTitleFixed</td>
<td>Controls procedure title text that requests a fixed font</td>
<td>ProcTitle</td>
</tr>
<tr>
<td>UserText</td>
<td>Controls the ODS TEXT= style</td>
<td>Note</td>
</tr>
<tr>
<td>PrePage</td>
<td>Controls the ODS RTF/MEASURED PREPAGE= style</td>
<td>Note</td>
</tr>
<tr>
<td>Note</td>
<td>Controls the container for note banners and note contents</td>
<td>Container</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This is an abstract style element.</td>
<td></td>
</tr>
<tr>
<td>Style Element</td>
<td>Description</td>
<td>Inherits from</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NoteBanner</td>
<td>Controls the banner for Note</td>
<td>Note</td>
</tr>
<tr>
<td>NoteContent</td>
<td>Controls the contents for Note</td>
<td>Note</td>
</tr>
<tr>
<td>NoteContentFixed</td>
<td>Controls the contents for Note. Fixed font.</td>
<td>NoteContent</td>
</tr>
<tr>
<td>WarnBanner</td>
<td>Controls the banner for Warnings</td>
<td>Note</td>
</tr>
<tr>
<td>WarnContent</td>
<td>Controls the contents of Warnings</td>
<td>Note</td>
</tr>
<tr>
<td>WarnContentFixed</td>
<td>Controls the contents for Warnings. Fixed font.</td>
<td>WarnContent</td>
</tr>
<tr>
<td>ErrorBanner</td>
<td>Controls the banner for Errors</td>
<td>Note</td>
</tr>
<tr>
<td>ErrorContent</td>
<td>Controls the contents of Errors</td>
<td>Note</td>
</tr>
<tr>
<td>ErrorContentFixed</td>
<td>Controls the contents for Errors. Fixed font.</td>
<td>ErrorContent</td>
</tr>
<tr>
<td>FatalBanner</td>
<td>Controls the banner for Fatal</td>
<td>Note</td>
</tr>
<tr>
<td>FatalContent</td>
<td>Controls the contents of Fatal</td>
<td>Note</td>
</tr>
<tr>
<td>FatalContentFixed</td>
<td>Controls the contents for Fatal. Fixed font.</td>
<td>FatalContent</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Controls paragraphs in text</td>
<td>Container</td>
</tr>
<tr>
<td>Heading1-Heading10</td>
<td>Controls Heading text for the corresponding Headingn value. For example, Heading2 controls the Heading2 text.</td>
<td>NormalText</td>
</tr>
<tr>
<td>List</td>
<td>Controls both unordered and ordered lists</td>
<td>Container</td>
</tr>
<tr>
<td>List2-List10</td>
<td>Controls nested bulleted lists at the corresponding Listn level. For example, List3 controls the third level bulleted list.</td>
<td>List/List9</td>
</tr>
<tr>
<td>ListItem</td>
<td>Controls bulleted list items</td>
<td>Container</td>
</tr>
<tr>
<td>Style Element</td>
<td>Description</td>
<td>Inherits from</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ListItem2-ListItem10</td>
<td>Controls the nested bulleted list items at the corresponding ListItem level. For example, ListItem3 controls the third level bulleted list item.</td>
<td>ListItem-ListItem9</td>
</tr>
<tr>
<td>Pagebreak</td>
<td>Controls page breaks in the text</td>
<td>No inheritance</td>
</tr>
<tr>
<td>LineContent</td>
<td>Controls the text generated by the LINE statement in PROC REPORT</td>
<td>No inheritance</td>
</tr>
<tr>
<td>Link</td>
<td>Controls the color of unvisited link text</td>
<td>No inheritance</td>
</tr>
<tr>
<td>ActiveLink</td>
<td>Controls the color of active (clicked) link text</td>
<td>No inheritance</td>
</tr>
<tr>
<td>FocusLink</td>
<td>Controls the color of the link-focus indicator</td>
<td>No inheritance</td>
</tr>
<tr>
<td></td>
<td><strong>Accessibility note:</strong> For an example that uses the FocusLink style element, see Enhancing the Appearance of the Link-Focus Indicator.</td>
<td></td>
</tr>
<tr>
<td>VisitedLink</td>
<td>Controls the color of visited link text</td>
<td>No inheritance</td>
</tr>
</tbody>
</table>

**Style Elements Affecting Layout**

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>LayoutContainer</td>
<td>Container for Layout</td>
<td>No inheritance</td>
</tr>
<tr>
<td>LayoutRegion</td>
<td>Region style for Layout cells</td>
<td>LayoutContainer</td>
</tr>
</tbody>
</table>

**Note:** Layouts and regions are created by the ODS LAYOUT and ODS REGION statements. See ODS LAYOUT ABSOLUTE Statement, and ODS REGION Statement, Absolute
Style Elements Affecting Graphs

For more information about Style Elements that affect graphs, see “Style Elements for Use with ODS Graphics” in SAS ODS Graphics: Procedures Guide.

Miscellaneous Elements

Table 14.10  Miscellaneous Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Description</th>
<th>Inherits from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
<td>Controls all container-oriented elements</td>
<td></td>
</tr>
<tr>
<td>Continued</td>
<td>Controls continued flag when a table breaks across a page (paginated destinations only)</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>ExtendedPage</td>
<td>Displays a message when the page does not fit (Printer only)</td>
<td>TitlesAndFooters</td>
</tr>
<tr>
<td>StartUpFunction</td>
<td>This is a Javascript function that is added to the HTML output. Any Javascript code in the TAGATTR= attribute is executed when the page is loaded.</td>
<td>No inheritance</td>
</tr>
<tr>
<td>ShutDownFunction</td>
<td>Controls the Shut-Down function. This is a Javascript function that is added to the HTML output. Any Javascript code in the TAGATTR= attribute is executed when the page is exited.</td>
<td>No inheritance</td>
</tr>
<tr>
<td>UserText</td>
<td>Controls the ODS TEXT= style</td>
<td>Note</td>
</tr>
</tbody>
</table>

Style Elements Affecting Template-Based Graphics

The following style elements affect template-based graphics and can be specified by Graph Template Language appearance options or used in styles. Template-based graphics include all ODS Graphics output where a compiled ODS template of type
STATGRAPH is used to produce graphical output. Supplied templates are stored in SasHELP.Tmplmst. SAS/GRAPH device drivers and some global statements such as SYMBOL, PATTERN, AXIS, and LEGEND have no effect. Common ODS Graphics procedures that produce template-based graphics are SGPLOT, SGPANEL, SGSCATTER, and SGRENDER in addition to many SAS/STAT, SAS/ETS, and SAS/QC procedures. ODS graphics always produce output as image files and use the ODS GRAPHICS statement to control the graphical environment.

Certain style elements were created to be used with specific plots or graphs. For example, the style element GraphFit2 is best used to modify secondary fit lines. The style element GraphConfidence2 was created to modify secondary confidence bands. The table below lists each style element, the portion of the graph that it affects, or was created to use with, and the default attribute values. Attribute values can be changed with PROC TEMPLATE, as stated above.

For complete documentation on the style attributes that can be specified in each style element, see “About Style Attributes” in SAS Output Delivery System: Procedures Guide.

### Table 14.11  Graph Style Elements: General Graph Appearance

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAnnoLine</td>
<td>Annotation lines and arrows, and outlines for closed annotation</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td>shapes such as circles and squares.</td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphAnnoShape</td>
<td>Fill for closed annotation shapes such as circles and squares, and</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td>the default annotation marker in ODS Graphics Editor.</td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphAnnoText</td>
<td>Annotation text</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes*</td>
</tr>
<tr>
<td>GraphAxisLines</td>
<td>X-, Y-, and Z-axis lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphBackground</td>
<td>Background of the graph</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphBorderLines</td>
<td>Border line around the graph and around the graph legend</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphDataText</td>
<td>Text font and color for point and line labels</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes*</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>GraphFootnoteText</td>
<td>Text font and color for footnote(s)</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayOpts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphHeaderBackground</td>
<td>Background color of the cell headers in a data-driven lattice or data-driven panel graph</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphLabelText</td>
<td>Text font and color for axis labels and legend titles</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes</td>
</tr>
<tr>
<td>GraphLegendBackground</td>
<td>Background color of the legend</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>GraphMinorGridLines</td>
<td>Appearance of the horizontal and vertical minor grid lines.</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayOpts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphOutlines</td>
<td>Outline properties for fill areas such as bars, pie slices, box plots, ellipses, and histograms</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphReference</td>
<td>Horizontal and vertical reference lines and drop lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphTitleText</td>
<td>Text font and color for title(s)</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes</td>
</tr>
<tr>
<td>GraphUnicodeText</td>
<td>Text font for Unicode values</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orfont-attributes</td>
</tr>
<tr>
<td>GraphValueText</td>
<td>Text font and color for axis tick values and legend values</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Font</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or font-attributes</td>
</tr>
</tbody>
</table>
### Style Elements Affecting Graphical Data Representation

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphWalls</td>
<td>Vertical wall(s) bounded by axes</td>
<td>Color, ContrastColor, FrameBorder, LineStyle, LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Font-attributes can be one or more of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.*</td>
</tr>
<tr>
<td>GraphBoxMean</td>
<td>Marker for mean</td>
<td>ContrastColor, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphBoxMedian</td>
<td>Line for median</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphBoxWhisker</td>
<td>Box whiskers and serifs</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConfidence</td>
<td>Primary confidence lines and bands, colors for bands and lines</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol, Transparency</td>
</tr>
<tr>
<td>GraphConfidence2</td>
<td>Secondary confidence lines and bands, color for bands and contrast color for lines</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol, Transparency</td>
</tr>
<tr>
<td>GraphConnectLine</td>
<td>Line for connecting boxes or bars</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphCutLine</td>
<td>Cutline attributes for a dendogram</td>
<td>Color, LineStyle</td>
</tr>
</tbody>
</table>

*Table 14.12 Style Elements Affecting Graphical Data Representation*
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items, colors for filled areas, markers, and lines</td>
<td>Color, ContrastColor, EndColor, LineStyle, LineThickness, NeutralColor, MarkerSymbol, MarkerSize, StartColor</td>
</tr>
<tr>
<td>GraphError</td>
<td>Error line or error bar fill, ContrastColor for lines, Color for bar fill</td>
<td>CapStyle, Color, ContrastColor, LineStyle, Transparency</td>
</tr>
<tr>
<td>GraphFit</td>
<td>Primary fit lines such as a normal density curve</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphFit2</td>
<td>Secondary fit lines such as a kernel density curve</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphFinal</td>
<td>Final data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphInitial</td>
<td>Initial data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>GraphMissing</td>
<td>Properties for graph items representing missing values</td>
<td>Color, ContrastColor, FillPattern*, LineStyle, LineThickness, MarkerSymbol, MarkerSize, Transparency</td>
</tr>
<tr>
<td>GraphOther</td>
<td>Other data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphOverflow</td>
<td>Overflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphOutlier</td>
<td>Outlier data for the graph</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphPrediction</td>
<td>Prediction lines</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol, Transparency</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>GraphPredictionLimits</td>
<td>Fills for prediction limits</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol, Transparency</td>
</tr>
<tr>
<td>GraphSelection</td>
<td>For interactive graphs, visual properties of selected item. Color for selected fill area, ContrastColor for selected marker or line.</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphUnderflow</td>
<td>Underflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>ThreeColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>EndColor, NeutralColor, StartColor</td>
</tr>
<tr>
<td>ThreeColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>EndColor, NeutralColor, StartColor</td>
</tr>
<tr>
<td>TwoColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>EndColor, StartColor</td>
</tr>
<tr>
<td>TwoColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>EndColor, StartColor</td>
</tr>
</tbody>
</table>

* Attribute FillPattern is available in style element GraphMissing starting with SAS 9.4M5.
Table 14.13  Graphical Style Elements: Data Related (Grouped)

<table>
<thead>
<tr>
<th>Style Elements</th>
<th>Portion of Graph Affected</th>
<th>Attributes Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphData1</td>
<td>Primitives related to the first seven grouped data items. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, FillPattern*</td>
</tr>
<tr>
<td>GraphData2</td>
<td></td>
<td>LineStyle, MarkerSymbol</td>
</tr>
<tr>
<td>GraphData3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData8</td>
<td>Primitives related to the 8th through 11th grouped data items.</td>
<td>Color, ContrastColor, FillPattern*, LineStyle, MarkerSymbol**</td>
</tr>
<tr>
<td>GraphData9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData12</td>
<td>Primitives related to the 12th grouped data item.</td>
<td>Color, ContrastColor, FillPattern*, MarkerSymbol**</td>
</tr>
<tr>
<td>GraphData13***</td>
<td>Primitives related to the 13th through 15th grouped data items.</td>
<td>FillPattern*, MarkerSymbol</td>
</tr>
<tr>
<td>GraphData14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Prior to SAS 9.4M5, style attribute FillPattern is available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles. Starting with SAS 9.4M5, style attribute FillPattern in GraphData1–GraphData11 is also available with the DEFAULT ODS style and all styles that are derived from it.

** Style attribute MarkerSymbol in these style elements is defined for styles JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER only.

*** Style elements GraphData13–GraphData15 are available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles.

Table 14.14  Display Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAltBlock</td>
<td>Alternate fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gablock&quot;)</td>
</tr>
<tr>
<td>GraphBand</td>
<td>Display options for confidence bands</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillopattern outline&quot; *</td>
</tr>
<tr>
<td>GraphBar</td>
<td>Display options for bar charts</td>
<td>DisplayOpts</td>
<td>&quot;Connect fill fillopattern outline&quot;</td>
</tr>
<tr>
<td>GraphBlock</td>
<td>Fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gblock&quot;)</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
<td>Possible Values</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>GraphBox</td>
<td>Display options for box plots</td>
<td>DisplayOpts</td>
<td>&quot;Caps connect fill fillpattern mean median notches outliers&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Serif&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Mean&quot;</td>
</tr>
<tr>
<td>GraphContour</td>
<td>Display options for contours</td>
<td>DisplayOpts</td>
<td>&quot;LabeledLineGradient&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GraphColors('gramp3cend')</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GraphColors('gramp3cneutral')</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GraphColors('gramp3cstart')</td>
</tr>
<tr>
<td>GraphEllipse</td>
<td>Display options for confidence ellipses</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td>GraphHighLow</td>
<td>Display options for high-low plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td>GraphHistogram</td>
<td>Display options for histograms</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td>GraphPolygon</td>
<td>Display options for polygon plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill fillpattern outline&quot;</td>
</tr>
<tr>
<td>GraphSkins</td>
<td>Display skins</td>
<td>DataSkin</td>
<td>&quot;Crisp&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Gloss&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Matte&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;None&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Pressed&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KpiSkin</td>
<td>&quot;Basic&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Modern&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;None&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Onyx&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Satin&quot;</td>
</tr>
</tbody>
</table>

* Display option FillPattern is available starting with [SAS 9.4M5](https://support.sas.com/documentation/9.4/).  
** Style elements GraphHighLow and GraphPolygon are valid starting with [SAS 9.4M5](https://support.sas.com/documentation/9.4/).
Style Elements Affecting Device-Based Graphics

Device-based graphics are all SAS/GRAPH output where there is a user-specified or default device (DEVICE= option) that controls certain aspects of the graphical output. Supplied device drivers are stored in the Sashelp.Devices catalog. Examples of device drivers are SASPRTC, GIF, WIN, ACTIVEX, PDF, and SVG. Common SAS/GRAPH procedures that produce device-based graphics are GPLOT, GCHART, and GMAP. Most device-based graphics produce a GRSEG catalog entry as output and use the GOPTIONS statement to control the graphical environment.

For complete documentation on the style attributes that can be specified in each style element, see “About Style Attributes” in SAS Output Delivery System: Procedures Guide.

Note: These style elements affect device-based graphics only when the GSTYLE system option is in effect (this is the default for SAS 9.2). If the NOGSTYLE system option is specified, graphs do not use any style information. For more information about the GSTYLE system option, see SAS System Options: Reference.

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DropShadowStyle</td>
<td>Used with text types</td>
<td>Color</td>
</tr>
<tr>
<td>Graph</td>
<td>Graph size and outer border</td>
<td>OutputWidth</td>
</tr>
<tr>
<td></td>
<td>appearance</td>
<td>OutputHeight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BorderColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BorderWidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CellPadding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CellSpacing</td>
</tr>
<tr>
<td>GraphAxisLines</td>
<td>X, Y, and Z-axis lines</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphBackground</td>
<td>Background of the graph</td>
<td>Transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BackgroundColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BackgroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VerticalAlign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TextAlign</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>GraphBorderLines</td>
<td>Border around graph wall, legend border, borders to complete axis frame</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphCharts</td>
<td>All charts within the graph</td>
<td>Transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BackgroundColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BackgroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VerticalAlign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TextAlign</td>
</tr>
<tr>
<td>GraphDataText</td>
<td>Text font and color for point and line labels</td>
<td>Font or font-attributes’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphFloor</td>
<td>3-D floor</td>
<td>BackgroundColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BackgroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VerticalAlign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TextAlign</td>
</tr>
<tr>
<td>GraphFootnoteText</td>
<td>Text font and color for footnotes</td>
<td>Font or font-attributes’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>displayopts</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>displayopts</td>
</tr>
<tr>
<td>GraphLegendBackground</td>
<td>Background color of the legend</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transparency</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>GraphOutlines</td>
<td>Outline properties for fill areas such as bars, pie slices, and box plots.</td>
<td>Color, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphTitle1Text</td>
<td>Text font and color for the first title</td>
<td>Font or font-attributes, Color</td>
</tr>
<tr>
<td>GraphTitleText</td>
<td>Text font and color for titles subsequent to the first title</td>
<td>Font or font-attributes, Color</td>
</tr>
<tr>
<td>GraphValueText</td>
<td>Text font and color for axis tick values and legend values</td>
<td>Font or font-attributes, Color</td>
</tr>
<tr>
<td>GraphWalls</td>
<td>Vertical walls bounded by axes</td>
<td>Transparency, BackColor, Gradient_Direction, StartColor, EndColor, BackgroundImage, Image</td>
</tr>
</tbody>
</table>

*Font-attributes* can be one of the following: FONTFAMILY=, FONTSIZE=, FontSTYLE=, FONTWEIGHT=.

Table 14.16 Style Elements Affecting Device-Based Non-Grouped Graphical Data Representation

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Default Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphCutLine</td>
<td>Cutline attributes for a dendogram</td>
<td>Color, LineStyle</td>
</tr>
<tr>
<td>GraphFinal</td>
<td>Final data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphInitial</td>
<td>Initial data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
</tbody>
</table>

Chapter 14 / Style Elements
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Default Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphOther</td>
<td>Other data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphOverflow</td>
<td>Overflow data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphUnderflow</td>
<td>Underflow data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>ThreeColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>ThreeColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>TwoColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, EndColor</td>
</tr>
<tr>
<td>TwoColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, EndColor</td>
</tr>
</tbody>
</table>
### Table 14.17  Style Elements Affecting Device-Based Grouped Graphical Data Representation

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Default Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphData1</td>
<td>Primitives related to 1st grouped data items. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>GraphData2</td>
<td>Primitives related to 2nd grouped data items</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>GraphData3</td>
<td>Primitives related to 3rd grouped data items</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Default Attributes</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>GraphData4</td>
<td>Primitives related to 4th grouped data items</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>GraphData5</td>
<td>Primitives related to 5th grouped data items</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>GraphData6</td>
<td>Primitives related to 6th grouped data items</td>
<td>BackGroundImage, ContrastColor, Color, EndColor, Gradient_Direction, Image, LineStyle, LineThickness, MarkerSize, MarkerSymbol, StartColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Default Attributes</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>GraphData7</td>
<td>Primitives related to 7th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>GraphData8</td>
<td>Primitives related to 8th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>GraphData9</td>
<td>Primitives related to 9th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Default Attributes</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>GraphData10</td>
<td>Primitives related to 10th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>GraphData11</td>
<td>Primitives related to 11th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
<tr>
<td>GraphData12</td>
<td>Primitives related to 12th grouped data items</td>
<td>BackGroundImage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EndColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gradient_Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>StartColor</td>
</tr>
</tbody>
</table>
Overview

Style attributes influence the characteristics of individual cells, tables, documents, graphs, and HTML frames. Style attributes exist within style elements and are specified by the `STYLE` statement or the `CLASS` statement. The default value for an attribute depends on the style that is in use. For information about styles, style elements, and style attributes, see "Understanding Styles, Style Elements, and Style Attributes" in SAS Output Delivery System: Procedures Guide. For information about using style attributes with ODS Statistical Graphics, see the chapter on controlling the appearance of your graphics in SAS Graph Template Language: User's Guide.

Style attributes can be supplied by SAS or user-defined. Style attributes can be referenced with a style reference. See "Understanding Style References" in SAS Output Delivery System: Procedures Guide and "style-reference" on page 427 for more information.

The implementation of an attribute depends on the ODS destination that formats the output. When creating HTML output, the implementation of an attribute depends on the browser that is used. For information about viewing the attributes in a style, see "Viewing the Contents of a Style" in SAS Output Delivery System: Procedures Guide.
For a list of the values that style attributes can specify, see Chapter 15, “Style Attributes,” on page 363. For a list of style elements that you can specify style attributes in, see Chapter 14, “Style Elements,” on page 335.

### Style Attributes Tables

#### Overview

For usage information about these style attributes, such as aliases, restrictions, and examples, see “Style Attributes Detailed Information” on page 388.

#### EPUB Destination

The EPUB destination includes the following ODS statements:

- ODS EPUB Statement
- ODS EPUB2 Statement
- ODS EPUB3 Statement

**Table 15.1  Tables**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify whether the border is collapsed or separated</td>
<td>“BORDERCOLLAPSE=COLLAPSE</td>
</tr>
<tr>
<td>Specify the text to show in a data tip for various reporting elements, including tables and table cells.</td>
<td>“FLYOVER=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify an ID for the table or table cell</td>
<td>“HTMLID=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the minimum number of lines of text that must appear in a paragraph before it is forced to move to another page</td>
<td>“NOBREAKSPACE=ON</td>
</tr>
<tr>
<td>Specify the number of lines of text that must appear at the top of a page if a paragraph is separated by a page break</td>
<td>“WIDTH=dimension ”</td>
</tr>
</tbody>
</table>
Table 15.2  Documents

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the minimum number of lines of text that must appear in a</td>
<td>“ORPHAN=integer”</td>
</tr>
<tr>
<td>paragraph before it is forced to move to another page</td>
<td></td>
</tr>
<tr>
<td>Specify the number of lines of text that must appear at the top</td>
<td>“WINDOW=integer”</td>
</tr>
<tr>
<td>of a page if a paragraph is separated by a page break</td>
<td></td>
</tr>
</tbody>
</table>

Excel Destination

The ODS destination for Excel includes the ODS EXCEL Statement.

Table 15.3  Graphs

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs.</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>In many cases, italic and slant map to the same font.</td>
<td></td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Change the visual presentation of the text</td>
<td>“TEXTDECORATION=presentation–options”</td>
</tr>
<tr>
<td>Specify the number of spaces that the first line of output is</td>
<td>“TEXTINDENT=n”</td>
</tr>
<tr>
<td>indented</td>
<td></td>
</tr>
</tbody>
</table>

Table 15.4  Document

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in table</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>cells and HTML documents</td>
<td></td>
</tr>
<tr>
<td>Specify the string to use for the bullets in the contents file</td>
<td>“LISTSTYLETYPE=bullet-type”</td>
</tr>
<tr>
<td>Specify how to handle space characters in table cells</td>
<td>“NOBREAKSPACE=ON</td>
</tr>
<tr>
<td>Specify how less-than signs (&lt;), greater-than signs (&gt;) and</td>
<td>“PROTECTSPECIALCHARS=ON</td>
</tr>
<tr>
<td>ampersands (&amp;) are interpreted in table cells</td>
<td></td>
</tr>
</tbody>
</table>
### Table 15.5  Tables

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in table cells</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>and HTML documents</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the background of tables, table cells,</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>or graphs</td>
<td></td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=”string””</td>
</tr>
<tr>
<td>Specify the color of the bottom border of the table</td>
<td>“BORDERBOTTOMCOLOR=color”&quot;</td>
</tr>
<tr>
<td>Specify the line style of the bottom border of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom border of a table or table cell</td>
<td>“BORDERBOTTOMWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>border is just one color</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the left border of a table</td>
<td>“BORDERLEFTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the left border of the specified table</td>
<td>“BORDERLEFTSTYLE=line-style”</td>
</tr>
<tr>
<td>cell</td>
<td></td>
</tr>
<tr>
<td>Specify the width of the left border of the table</td>
<td>“BORDERLEFTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the right border of the table</td>
<td>“BORDERRIGHTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the right border of the selected cell</td>
<td>“BORDERRIGHTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the right border of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the border style of one or more borders</td>
<td>“BORDERSTYLE=line-style-1 &lt;, ..., line-style-4 &gt;”</td>
</tr>
<tr>
<td>Specify the color of the top border of a table or table cell</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the top border of the specified table</td>
<td>“BORDERTOPSTYLE=line-style”</td>
</tr>
<tr>
<td>cell</td>
<td></td>
</tr>
<tr>
<td>Specify the width of the top border of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the width of the border of the table</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Specify the text to show in a data tip for table cells</td>
<td>“FLYOVER=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify text to place after the table cell or table</td>
<td>“POSTTEXT=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify text to place before the table cell or table</td>
<td>“PRETEXT=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify how less-than signs (&lt;), greater-than signs (&gt;), and ampersands (&amp;) are interpreted in table cells</td>
<td>“PROTECTSPECIALCHARS=ON</td>
</tr>
<tr>
<td>Specify how to handle space characters in table cells</td>
<td>“NOBREAKSPACE=ON</td>
</tr>
<tr>
<td>Specify a string which contains one or more of the following: format, formula, mergeacross, rotate, hidden, wrap</td>
<td>“TAGATTR=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Change the visual presentation of the text</td>
<td>“TEXTDECORATION=presentation–options”</td>
</tr>
<tr>
<td>Specify the number of spaces that the first line of output is indented</td>
<td>“TEXTINDENT=n”</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
<tr>
<td>Specify a URL to link to from various reporting elements, including table cells</td>
<td>“URL=&quot;uniform-resource-locator&quot;”</td>
</tr>
<tr>
<td>Specify the width of a table cell, table, line, or a graph</td>
<td>“WIDTH=dimension ”</td>
</tr>
</tbody>
</table>
### HTML5 Destination

HTML5 belongs to the markup family of destinations. The following table contains all the style attributes for the markup family and the style attributes that are specific to ODS HTML5.

**Table 15.6  Output and Text**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify whether an image is repeated horizontally, vertically, both, or not repeated</td>
<td>“BACKGROUNDREPEAT=option”</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>“HEIGHT=dimension ”</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
</tbody>
</table>

**Table 15.7  HTML Document**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Specify whether to put a scroll bar in the frame that references the body file</td>
<td>“BODYSROLLBAR=YES</td>
</tr>
<tr>
<td>Specify the width of the frame that displays the body file in the HTML frame file</td>
<td>“BODYSIZE=dimension</td>
</tr>
<tr>
<td>Specify whether to put a scroll bar in the frames in the frame file that display the contents and the page files</td>
<td>“CONTENTSCROLLBAR=YES</td>
</tr>
<tr>
<td>Specify whether to put a border around the frame for an HTML file that uses frames</td>
<td>“FRAMEBORDER=ON</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>“HEIGHT=dimension ”</td>
</tr>
<tr>
<td>Specify whether to make the entry in the table of contents a link to the body file</td>
<td>“LISTENTRYANCHOR=ON</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------</td>
</tr>
<tr>
<td>Specify a path or URL to an image file to be used as the bullet for list items.</td>
<td>“LISTSTYLEIMAGE=string”</td>
</tr>
<tr>
<td>Specify the bottom margin for the HTML document</td>
<td>“MARGINBOTTOM=dimension”</td>
</tr>
<tr>
<td>Specify the left margin for the HTML document</td>
<td>“MARGINLEFT=dimension”</td>
</tr>
<tr>
<td>Specify the right margin for the HTML document</td>
<td>“MARGINRIGHT=dimension”</td>
</tr>
<tr>
<td>Specify the top margin for the HTML document</td>
<td>“MARGINTOP=dimension”</td>
</tr>
<tr>
<td>Specify the color of the link-focus indicator outline</td>
<td>“OUTLINECOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the link-focus indicator outline</td>
<td>“OUTLINESTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the line width of the link-focus indicator outline</td>
<td>“OUTLINEWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify HTML to place at page breaks in an HTML document</td>
<td>“PAGEBREAKHTML=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the width of a table cell, table, line, or a graph</td>
<td>“WIDTH=dimension”</td>
</tr>
</tbody>
</table>

**Table 15.8  Tables**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in table cells and HTML documents</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Specify whether an image is repeated horizontally, vertically, both, or not repeated</td>
<td>“BACKGROUNDREPEAT=option”</td>
</tr>
<tr>
<td>Specify the color of the bottom border of the table</td>
<td>“BORDERBOTTOMCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the bottom border of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom border of the table</td>
<td>“BORDERBOTTOMWIDTH=dimension”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------</td>
</tr>
<tr>
<td>Specify whether the border is collapsed or separated</td>
<td>“BORDERCOLLAPSE=COLLAPSE</td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the border is just one color</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>Specify the lighter color to use in a border that uses two colors to create a three-dimensional effect</td>
<td>“BORDERCOLORLIGHT=color”</td>
</tr>
<tr>
<td>Specify the color of the left border of a table</td>
<td>“BORDERLEFTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the left border of the specified table cell</td>
<td>“BORDERLEFTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the left border of the table</td>
<td>“BORDERLEFTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the right border of the table</td>
<td>“BORDERRIGHTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the right border of the selected cell</td>
<td>“BORDERRIGHTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the right border of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the thickness of the spacing between cells in a table</td>
<td>“BORDERSPACING=dimension”</td>
</tr>
<tr>
<td>Specify the border style of one or more borders</td>
<td>“BORDERSTYLE=line-style-1 &lt;, ..., line-style-4 &gt;”</td>
</tr>
<tr>
<td>Specify the color of the top border of the table</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the top border of the specified table cell</td>
<td>“BORDERTOPSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the top border of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the width of the border of the table</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the content in a table cell</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>Specify whether the is collapsed or separated</td>
<td>“BORDERCOLLAPSE=COLLAPSE</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>&quot;FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>&quot;FONTWEIGHT=weight&quot;</td>
</tr>
<tr>
<td>Specify the text to show in a data tip for various reporting elements, including tables and table cells.</td>
<td>&quot;FLYOVER=&quot;string&quot;&quot;</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>&quot;HEIGHT=dimension&quot;</td>
</tr>
<tr>
<td>Specify the window or frame in which to open the target of the link</td>
<td>&quot;HREFTARGET=&quot;target&quot;&quot;</td>
</tr>
<tr>
<td>Specify individual attributes and values for a table or table cell in an HTML document</td>
<td>&quot;HTMLSTYLE=&quot;string&quot;&quot;</td>
</tr>
<tr>
<td>Specify the color of the left of a table</td>
<td>&quot;BORDERLEFTCOLOR=color&quot;</td>
</tr>
<tr>
<td>Specify the amount of white space between the content of the table cell and the border</td>
<td>&quot;PADDING=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the bottom of the content of the table cell</td>
<td>&quot;PADDINGBOTTOM=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the left side of the content of the table cell</td>
<td>&quot;PADDINGLEFT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the right side of the content of the table cell</td>
<td>&quot;PADDINGRIGHT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the top of the content of the table cell</td>
<td>&quot;PADDINGTOP=dimension</td>
</tr>
<tr>
<td>Specify the HTML code to place after the table or table cell</td>
<td>&quot;POSTHTML=&quot;string&quot;&quot;</td>
</tr>
<tr>
<td>Specify an image to place before the table or table cell</td>
<td>&quot;POSTIMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify text to place after the table cell or table</td>
<td>&quot;POSTTEXT=&quot;string&quot;&quot;</td>
</tr>
<tr>
<td>Specify the HTML code to place before the table or table cell</td>
<td>&quot;PREHTML=&quot;string&quot;&quot;</td>
</tr>
<tr>
<td>Specify an image to place before the table or table cell</td>
<td>&quot;PREIMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify text to place before the table cell or table</td>
<td>&quot;PRETEXT=&quot;string&quot;&quot;</td>
</tr>
</tbody>
</table>
HTML4 Destination

HTML4 belongs to the markup family of destinations. The following table contains all the style attributes for the markup family and the style attributes that are specific to ODS HTML4.

<table>
<thead>
<tr>
<th>Table 15.9  HTML Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Specify the color that a link in an HTML document changes to after you click it, but before the browser opens that file</td>
</tr>
<tr>
<td>Specify whether to put a scroll bar in the frame that references the body file</td>
</tr>
<tr>
<td>Specify the width of the frame that displays the body file in the HTML frame file</td>
</tr>
<tr>
<td>Specify whether to put a scroll bar in the frames in the frame file that display the contents and the page files</td>
</tr>
<tr>
<td>Task</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the width of the frames in the frame file that display the</td>
</tr>
<tr>
<td>contents and the page files</td>
</tr>
<tr>
<td>Specify the value of the content type for pages in an HTML</td>
</tr>
<tr>
<td>document that is sent directly to a web server rather than to a file</td>
</tr>
<tr>
<td>Specify the entire doctype declaration for the HTML document</td>
</tr>
<tr>
<td>Specify whether to put a border around the frame for an HTML file</td>
</tr>
<tr>
<td>that uses frames</td>
</tr>
<tr>
<td>Specify the color of the link-focus indicator outline</td>
</tr>
<tr>
<td>Specify whether to make the entry in the table of contents a link</td>
</tr>
<tr>
<td>to the body file</td>
</tr>
<tr>
<td>Specify the color for the links in an HTML document that have</td>
</tr>
<tr>
<td>not yet been visited</td>
</tr>
<tr>
<td>Specify HTML to place at page breaks in an HTML document</td>
</tr>
<tr>
<td>Specify the color for links that have been visited in an HTML</td>
</tr>
<tr>
<td>document</td>
</tr>
<tr>
<td>Specify whether to make the image that is specified by</td>
</tr>
<tr>
<td>BACKGROUNDIMAGE= into a &quot;watermark &quot;</td>
</tr>
</tbody>
</table>

Table 15.10  Tables

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the thickness of the spacing between cells in a table</td>
<td>“BORDERSPACING=dimension”</td>
</tr>
<tr>
<td>Specify whether the border is collapsed or separated</td>
<td>“BORDERCOLLAPSE=COLLAPSE</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>content in a table cell</td>
<td></td>
</tr>
<tr>
<td>Specify an ID for the table or table cell</td>
<td>“HTMLID=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the amount of white space between the content of the table</td>
<td>“PADDING=dimension</td>
</tr>
<tr>
<td>cell and the border</td>
<td></td>
</tr>
<tr>
<td>Specify text to insert in the HTML</td>
<td>“TAGATTR=&quot;string&quot;”</td>
</tr>
</tbody>
</table>
The markup family of destinations includes the following ODS statements:

- ODS CSVALL Statement
- ODS HTML3 Statement
- ODS HTML Statement
- ODS CHTML Statement
- ODS PHTML Statement

Table 15.11  Document

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify whether styles used in an HTML document are used in CSS style files</td>
<td>“ABSTRACT=ON</td>
</tr>
</tbody>
</table>

Table 15.12  Output and Text

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the alternate colors for maps</td>
<td>“CONTRASTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the entire doctype declaration for the HTML document</td>
<td>“DOCTYPE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Place a rule of the specified width into the space around the text (or entire cell if there is no text) in a table where white space would otherwise appear</td>
<td>“FILLRULEWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the text to show in a data tip for the table cell</td>
<td>“FLYOVER=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify a font definition to use in tables, table cells, and graphs</td>
<td>“FONT=font-definition”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;””</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Specify the font width of tables, table cells, and graphs compared</td>
<td>“FONTWIDTH=relative-width”</td>
</tr>
<tr>
<td>to the width of the usual design of the table, table cell, or graph</td>
<td></td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML</td>
<td>“HEIGHT=dimension”</td>
</tr>
<tr>
<td>document 1</td>
<td></td>
</tr>
<tr>
<td>Specify the image to appear in a graph</td>
<td>“IMAGE=external-file”</td>
</tr>
<tr>
<td>Specify the start fill color for a graph</td>
<td>“STARTCOLOR=color”</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Specify a transparency level for graphs</td>
<td>“TRANSPARENCY=dimension”</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
<tr>
<td>Specify the width of a table cell, table, line, or a graph</td>
<td>“WIDTH=dimension”</td>
</tr>
</tbody>
</table>

**Table 15.13  Tables**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in an HTML</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>document</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells,</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>or graphs</td>
<td></td>
</tr>
<tr>
<td>Specify whether an image is repeated horizontally, vertically, both,</td>
<td>“BACKGROUNDREPEAT=option”</td>
</tr>
<tr>
<td>or not repeated</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>border is just one color</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the bottom of the table</td>
<td>“BORDERBOTTOMCOLOR=color ”</td>
</tr>
<tr>
<td>Specify the line style of the bottom of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom of the table</td>
<td>“BORDERBOTTOMWIDTH=dimension ”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>content in a table cell</td>
<td></td>
</tr>
<tr>
<td>Specify the name of the style sheet class to use in an HTML document</td>
<td>“CLASS=&quot;string””</td>
</tr>
<tr>
<td>for the table or table cell</td>
<td></td>
</tr>
<tr>
<td>Specify the darker color to use in a that uses two colors to create</td>
<td>“BORDERCOLORDARK=color”</td>
</tr>
<tr>
<td>a three-dimensional effect</td>
<td></td>
</tr>
<tr>
<td>Specify the lighter color to use in a that uses two colors to create</td>
<td>“BORDERCOLORLIGHT=color”</td>
</tr>
<tr>
<td>a three-dimensional effect</td>
<td></td>
</tr>
<tr>
<td>Specify the window or frame in which to open the target of the link</td>
<td>“HREFTARGET=&quot;target&quot;”</td>
</tr>
<tr>
<td>Specify an ID for the table or table cell</td>
<td>“HTMLID=&quot;string””</td>
</tr>
<tr>
<td>Specify the color of the left of a table</td>
<td>“BORDERLEFTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the left of the specified table cell</td>
<td>“BORDERLEFTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the left of the table</td>
<td>“BORDERLEFTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the right of the table</td>
<td>“BORDERRIGHTCOLOR=color ”</td>
</tr>
<tr>
<td>Specify the line style of the right of the selected cell</td>
<td>“BORDERRIGHTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the right of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the thickness of the spacing between cells in a table</td>
<td>“BORDERSPACING=dimension”</td>
</tr>
<tr>
<td>Specify the style of one or more sides of a table</td>
<td>“BORDERSTYLE=line-style-1 &lt;, ..., line-style-4 &gt;”</td>
</tr>
<tr>
<td>Specify the color of the top of the table</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the top of the specified table cell</td>
<td>“BORDERTOPSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the top of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the width of the table border</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
</tbody>
</table>
PowerPoint Destination

The ODS destination for PowerPoint includes the ODS POWERPOINT Statement.

**Table 15.14  Output and Text**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string””</td>
</tr>
<tr>
<td>Specify whether an image is repeated horizontally, vertically, both, or not repeated</td>
<td>“BACKGROUNDREPEAT=option”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;””</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
</tbody>
</table>

**Table 15.15  Document**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in table cells and HTML documents</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>Specify the string to use for the bullets in the contents file</td>
<td>“LISTSTYLETYPE=bullet-type”</td>
</tr>
<tr>
<td>Specify the left margin for the PowerPoint slide</td>
<td>“MARGINLEFT=dimension”</td>
</tr>
<tr>
<td>Specify the right margin for the PowerPoint slide</td>
<td>“MARGINRIGHT=dimension”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=”string””</td>
</tr>
<tr>
<td>Specify whether an image is repeated horizontally, vertically, both, or not repeated</td>
<td>“BACKGROUNDREPEAT=option”</td>
</tr>
<tr>
<td>Specify the color of the bottom border of the table</td>
<td>“BORDERBOTTOMCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the bottom border of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=-line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom border of the table</td>
<td>“BORDERBOTTOMWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the border is just one color</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>Specify the color of the left border of a table</td>
<td>“BORDERLEFTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the left border of the specified table cell</td>
<td>“BORDERLEFTSTYLE= -line-style”</td>
</tr>
<tr>
<td>Specify the width of the left border of the table</td>
<td>“BORDERLEFTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the right border of the table</td>
<td>“BORDERRIGHTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the right border of the selected cell</td>
<td>“BORDERRIGHTSTYLE= -line-style”</td>
</tr>
<tr>
<td>Specify the width of the right border of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the top border of the table</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the top border of the specified table cell</td>
<td>“BORDERTOPSTYLE= -line-style”</td>
</tr>
<tr>
<td>Specify the width of the top border of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the width of the border of the table</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the content in a table cell</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the color of the foreground in tables, table cells, or graphs, which is primarily the color of text</td>
<td>“COLOR=color”</td>
</tr>
<tr>
<td>Specify the hyperlink to show in a data tip for tables and table cells</td>
<td>“FLYOVER=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the type of frame to use on a table</td>
<td>“FRAME=frame-type”</td>
</tr>
<tr>
<td>Specify the amount of white space on the bottom of the content of the table cell</td>
<td>“PADDINGBOTTOM=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the left side of the content of the table cell</td>
<td>“PADDINGLEFT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the right side of the content of the table cell</td>
<td>“PADDINGRIGHT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the top of the content of the table cell</td>
<td>“PADDINGTOP=dimension</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Change the visual presentation of the text</td>
<td>“TEXTDECORATION=presentation–options”</td>
</tr>
<tr>
<td>Specify the number of spaces that the first line of output is indented</td>
<td>“TEXTINDENT=n”</td>
</tr>
<tr>
<td>Specify a URL to link to from various reporting elements, including table cells in individual cells</td>
<td>“URL=&quot;uniform-resource-locator&quot;”</td>
</tr>
<tr>
<td>Specify vertical justification in individual cells</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
</tbody>
</table>

Printer Family of Destinations

The printer family of destinations includes the following ODS statements:
Table 15.17  Output and Text

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Specify the color of the foreground in tables, table cells, or graphs, which is primarily the color of text</td>
<td>“COLOR=color”</td>
</tr>
<tr>
<td>Specify the alternate colors for maps</td>
<td>“CONTRASTCOLOR=color”</td>
</tr>
<tr>
<td>Specify a font definition to use in tables, table cells, and graphs</td>
<td>“FONT=font-definition”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the font width of tables, table cells, and graphs compared to the width of the usual design of the table, table cell, or graph</td>
<td>“FONTWIDTH=relative-width”</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>“HEIGHT=dimension ”</td>
</tr>
<tr>
<td>Specify the image to appear in a graph</td>
<td>“IMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
</tbody>
</table>
| Specify vertical justification                                     | “VERTICALALIGN=BOTTOM | MIDDLE | TOP ”
**Table 15.18  Document**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place a rule of the specified width into the space around the text (or entire cell if there is no text) in a table where white space would otherwise appear</td>
<td>“FILLRULEWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color for the links in an HTML document that have not yet been visited</td>
<td>“LINKCOLOR=color”</td>
</tr>
<tr>
<td>Specify the string to use for the bullets in the contents file</td>
<td>“LISTSTYLETYPE=bullet-type”</td>
</tr>
<tr>
<td>Specify the bottom margin for the HTML document</td>
<td>“MARGINBOTTOM=dimension”</td>
</tr>
<tr>
<td>Specify the left margin for the HTML document</td>
<td>“MARGINLEFT=dimension”</td>
</tr>
<tr>
<td>Specify the right margin for the HTML document</td>
<td>“MARGINRIGHT=dimension”</td>
</tr>
<tr>
<td>Specify the top margin for the HTML document</td>
<td>“MARGINTOP=dimension”</td>
</tr>
</tbody>
</table>

**Table 15.19  Tables**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how to handle leading spaces and line breaks in an HTML document</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Specify the color of the bottom of the table</td>
<td>“BORDERBOTTOMCOLOR=color ”</td>
</tr>
<tr>
<td>Specify the line style of the bottom of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom of the table</td>
<td>“BORDERBOTTOMWIDTH=dimension “</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the content in a table cell</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>Specify the color of the foreground in tables, table cells, or graphs, which is primarily the color of text</td>
<td>“COLOR=color”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the border is just one color</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>Specify the text to show in a data tip for the table cell</td>
<td>“FLYOVER=&quot;string“”</td>
</tr>
<tr>
<td>Specify a font definition to use in tables, table cells, and graphs</td>
<td>“FONT=font-definition”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;““</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the font width of tables, table cells, and graphs compared to the width of the usual design of the table, table cell, or graph</td>
<td>“FONTWIDTH=relative-width”</td>
</tr>
<tr>
<td>Specify the type of frame to use on a table</td>
<td>“FRAME=frame-type”</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>“HEIGHT=dimension”</td>
</tr>
<tr>
<td>Specify how to handle space characters in table cells</td>
<td>“NOBREAKSPACE=ON</td>
</tr>
<tr>
<td>Specify the amount of white space on the bottom of the content of the table cell</td>
<td>“PADDINGBOTTOM=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the left side of the content of the table cell</td>
<td>“PADDINGLEFT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the right side of the content of the table cell</td>
<td>“PADDINGRIGHT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the top of the content of the table cell</td>
<td>“PADDINTOP=dimension</td>
</tr>
<tr>
<td>Specify text to place after the table cell or table</td>
<td>“POSTTEXT=&quot;string“”</td>
</tr>
<tr>
<td>Specify an image to place before the table or table cell</td>
<td>“PREIMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify text to place before the table cell or table</td>
<td>“PRETEXT=&quot;string“”</td>
</tr>
</tbody>
</table>
### Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify how less-than signs (&lt;), greater-than signs (&gt;) and ampersands (&amp;) are interpreted in table cells</td>
<td>“PROTECTSPECIALCHARS=ON</td>
</tr>
<tr>
<td>Specify the width of the right of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the types of rules to use in tables</td>
<td>“RULES=rule-type”</td>
</tr>
<tr>
<td>Specify the thickness of the spacing between cells in a table</td>
<td>“BORDERSPACING=dimension”</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Change the visual presentation of the text</td>
<td>“TEXTDECORATION=presentation–options”</td>
</tr>
<tr>
<td>Specify the number of spaces that the first line of output is indented</td>
<td>“TEXTINDENT=n”</td>
</tr>
<tr>
<td>Specify the color of the top of the table</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the width of the top of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify a URL to link to from various reporting elements, including table cells</td>
<td>“URL=&quot;uniform-resource-locator”</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
<tr>
<td>Specify the width of the table border</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
</tbody>
</table>

### RTF Family of Destinations

The RTF family of destinations includes the following statements:

- **ODS RTF Statement**
- **ODS TAGSETS.RTF Statement**

**Table 15.20  Output and Text**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells, or graphs</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the color of the foreground in tables, table cells, or graphs, which is primarily the color of text</td>
<td>“COLOR=color”</td>
</tr>
<tr>
<td>Specify the alternate colors for maps</td>
<td>“CONTRASTCOLOR=color”</td>
</tr>
<tr>
<td>Specify a font definition to use in tables, table cells, and graphs</td>
<td>“FONT=font-definition”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the font width of tables, table cells, and graphs compared to the width of the usual design of the table, table cell, or graph</td>
<td>“FONTWIDTH=relative-width”</td>
</tr>
<tr>
<td>Specify the image to appear in a graph</td>
<td>“IMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Specify how to evenly distribute text</td>
<td>“TEXTJUSTIFY=INTER_WORD</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
</tbody>
</table>

**Table 15.21 Document**

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the color for the links in an HTML document that have not yet been visited</td>
<td>“LINKCOLOR=color”</td>
</tr>
<tr>
<td>Specify the bottom margin for the HTML document</td>
<td>“MARGINBOTTOM=dimension”</td>
</tr>
<tr>
<td>Specify the left margin for the HTML document</td>
<td>“MARGINLEFT=dimension”</td>
</tr>
<tr>
<td>Specify the right margin for the HTML document</td>
<td>“MARGINRIGHT=dimension”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the top margin for the HTML document</td>
<td>“MARGINTOP=dimension”</td>
</tr>
<tr>
<td>Table 15.22 Table</td>
<td></td>
</tr>
<tr>
<td><strong>Task</strong></td>
<td><strong>Attribute</strong></td>
</tr>
<tr>
<td>Specify how to handle leading spaces and line breaks in an HTML</td>
<td>“ASIS=ON</td>
</tr>
<tr>
<td>document</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the background of tables, table cells, or graphs</td>
<td>“BACKGROUNDCOLOR=color”</td>
</tr>
<tr>
<td>Specify an image to use as the background</td>
<td>“BACKGROUNDIMAGE=&quot;string&quot;”</td>
</tr>
<tr>
<td>Specify the position of the background of the tables, table cells,</td>
<td>“BACKGROUNDPOSITION=position”</td>
</tr>
<tr>
<td>or graphs</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the bottom border of the table</td>
<td>“BORDERBOTTOMCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the bottom border of the selected cell</td>
<td>“BORDERBOTTOMSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the bottom border of the table</td>
<td>“BORDERBOTTOMWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify whether the border is collapsed or separated</td>
<td>“BORDERCOLLAPSE=COLLAPSE</td>
</tr>
<tr>
<td>Specify the color of the border in a table or table cell if the</td>
<td>“BORDERCOLOR=color”</td>
</tr>
<tr>
<td>border is just one color</td>
<td></td>
</tr>
<tr>
<td>Specify the color of the left border of a table</td>
<td>“BORDERLEFTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the left border of the specified table</td>
<td>“BORDERLEFTSTYLE=line-style”</td>
</tr>
<tr>
<td>cell</td>
<td></td>
</tr>
<tr>
<td>Specify the width of the left border of the table</td>
<td>“BORDERLEFTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the color of the right border of the table</td>
<td>“BORDERRIGHTCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the right border of the selected cell</td>
<td>“BORDERRIGHTSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the right border of the table</td>
<td>“BORDERRIGHTWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the thickness of the spacing between cells in a table</td>
<td>“BORDERSPACING=dimension”</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Specify the border style of one or more borders</td>
<td>“BORDERSTYLE=line-style-1 &lt;, ..., line-style-4 &gt;”</td>
</tr>
<tr>
<td>Specify the color of the top border of the table</td>
<td>“BORDERTOPCOLOR=color”</td>
</tr>
<tr>
<td>Specify the line style of the top border of the specified table cell</td>
<td>“BORDERTOPSTYLE=line-style”</td>
</tr>
<tr>
<td>Specify the width of the top border of the table</td>
<td>“BORDERTOPWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the width of the border of the table</td>
<td>“BORDERWIDTH=dimension”</td>
</tr>
<tr>
<td>Specify the amount of white space on each of the four sides of the content in a table cell</td>
<td>“CELLPADDING=dimension</td>
</tr>
<tr>
<td>Specify the color of the foreground in tables, table cells, or graphs, which is primarily the color of text</td>
<td>“COLOR=color”</td>
</tr>
<tr>
<td>Specify a font definition to use in tables, table cells, and graphs</td>
<td>“FONT=font-definition”</td>
</tr>
<tr>
<td>Specify the font to use in table cells and graphs</td>
<td>“FONTFAMILY=&quot;string-1&lt;…, string-n&gt;&quot;”</td>
</tr>
<tr>
<td>Specify the size of the font for tables, table cells, and graphs</td>
<td>“FONTSIZE=dimension</td>
</tr>
<tr>
<td>Specify the style of the font for tables, table cells, and graphs</td>
<td>“FONTSTYLE=ITALIC</td>
</tr>
<tr>
<td>Specify the font weight of tables, table cells, and graphs</td>
<td>“FONTWEIGHT=weight”</td>
</tr>
<tr>
<td>Specify the font width of tables, table cells, and graphs compared to the width of the usual design of the table, table cell, or graph</td>
<td>“FONTWIDTH=relative-width”</td>
</tr>
<tr>
<td>Specify the type of frame to use on a table</td>
<td>“FRAME=frame-type”</td>
</tr>
<tr>
<td>Specify the height of a table cell, graph, or graphics in an HTML document</td>
<td>“HEIGHT=dimension ”</td>
</tr>
<tr>
<td>Specify how to handle space characters in table cells</td>
<td>“NOBREAKSPACE=ON</td>
</tr>
<tr>
<td>Specify the amount of white space between the content of the table cell and the border</td>
<td>“PADDING=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the bottom of the content of the table cell</td>
<td>“PADDINGBOTTOM=dimension</td>
</tr>
<tr>
<td>Task</td>
<td>Attribute</td>
</tr>
<tr>
<td>---------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Specify the amount of white space on the left side of the content of the table cell</td>
<td>“PADDINGLEFT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the right side of the content of the table cell</td>
<td>“PADDINGRIGHT=dimension</td>
</tr>
<tr>
<td>Specify the amount of white space on the top of the content of the table cell</td>
<td>“PADDINGTOP=dimension</td>
</tr>
<tr>
<td>Specify text to place after the table cell or table</td>
<td>“POSTTEXT=&quot;string””</td>
</tr>
<tr>
<td>Specify an image to place before the table or table cell</td>
<td>“PREIMAGE=&quot;external-file&quot;</td>
</tr>
<tr>
<td>Specify text to place before the table cell or table</td>
<td>“PRETEXT=&quot;string””</td>
</tr>
<tr>
<td>Specify how less-than signs (&lt;), greater-than signs (&gt;), and ampersands (&amp;) are interpreted in table cells</td>
<td>“PROTECTSPECIALCHARS=ON</td>
</tr>
<tr>
<td>Specify the types of rules to use in tables</td>
<td>“RULES=rule-type”</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
<tr>
<td>Change the visual presentation of the text</td>
<td>“TEXTDECORATION=presentation–options”</td>
</tr>
<tr>
<td>Specify the number of spaces that the first line of output is indented</td>
<td>“TEXTINDENT=n”</td>
</tr>
<tr>
<td>Specify a URL to link to from various reporting elements, including table cells</td>
<td>“URL=&quot;uniform-resource-locator””</td>
</tr>
<tr>
<td>Specify vertical justification</td>
<td>“VERTICALALIGN=BOTTOM</td>
</tr>
<tr>
<td>Specify the width of a table cell, table, line, or a graph</td>
<td>“WIDTH=dimension ”</td>
</tr>
</tbody>
</table>

Word Destination (Preproduction)

The ODS destination for Word includes the ODS WORD Statement.
Table 15.23 Document

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the type of bullet to use for lists and the contents file. ODS uses bullets in the contents file.</td>
<td>LISTSTYLETYPE=</td>
</tr>
</tbody>
</table>

Table 15.24 Output and Text

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify that the words are evenly distributed across the page</td>
<td>TEXTJUSTIFY=INTER_WORD</td>
</tr>
<tr>
<td>Specify justification in tables, table cells, and graphs</td>
<td>“TEXTALIGN=alignment”</td>
</tr>
</tbody>
</table>

Table 15.25 Tables

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify the hyperlink to show in a data tip for tables and table cells</td>
<td>“FLYOVER=&quot;string&quot;”</td>
</tr>
</tbody>
</table>

Style Attributes Detailed Information

To quickly locate style attributes that are valid in your destination, see the Style Attributes Tables on page 364.

**ABSTRACT=ON | OFF**

specifies whether styles used in an HTML document are used in CSS style files.

- **ON** specifies that styles are not used in CSS style files.
- **OFF** specifies that styles are used in CSS style files.

Valid in Markup family destinations, ODS HTML5 destination, and the ODS EPUB destination

**ACTIVELINKCOLOR=color**

specifies the color that a link in an HTML document changes to after you click it, but before the browser opens that file.

Valid in Markup family destinations

See color style attribute value on page 423
ASIS=ON | OFF  
specifies how to handle leading spaces and line breaks in an HTML document.

ON  
prints text with leading spaces and line breaks, in the same manner as the LISTING output.

OFF  
trims leading spaces and ignores line breaks.

Valid in Markup family, PowerPoint, and Excel

Default OFF

Tip Specify the ASIS= style attribute within the DATA style element to prevent the compressing of blank characters in table cells.

BACKGROUNDCOLOR=\textit{color}  
specifies the color of the background of the tables, table cells, or graphs.

Valid in Markup family, printer family, Excel, PowerPoint, and RTF destinations

Alias BACKGROUND=

Interaction The CBACK= option in the SAS/GRAPH GOPTIONS statement overrides the BACKGROUNDCOLOR= attribute.

Tip Generally, the background color of the table cell overrides the background color of the table. You see the background color for the table only as the space between table cells (see “BORDERSPACING=\textit{dimension}” on page 395).

See color style attribute value on page 423

Examples

“Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

BACKGROUNDIMAGE=\textit{"string"}  
specifies an image in a table, table cell, or graph to use as the background. Viewers can tile or stretch the image as the background for the HTML table or graph that the procedure creates. For graphs, the specified image is stretched.

\textit{string}  
is the name of a GIF, JPEG, or PNG file. Use a simple filename, a complete path, or a URL. However, the most versatile approach is to use a simple filename and to place all image files in the local directory.

Valid in Markup family, Excel, printer family, TAGSETS.RTF, and PowerPoint destinations

Interactions The BACKGROUNDIMAGE= attribute is overridden by the IBACK= and IMAGESTYLE=FIT options in the SAS/GRAPH GOPTIONS statement.

When you apply BACKGROUNDIMAGE= to a cell using the Report Writing Interface, the image adjusts to the size of the cell.
BACKGROUNDPOSITION\=\texttt{position} specifies the position of the background of the tables, table cells, or graphs. \textit{position} can be one of the following:

- BOTTOM
- BOTTOM\_CENTER
- BOTTOM\_LEFT
- BOTTOM\_RIGHT
- CENTER
- CENTER\_BOTTOM
- CENTER\_CENTER
- CENTER\_LEFT
- CENTER\_RIGHT
- CENTER\_TOP
- LEFT
- LEFT\_BOTTOM
- LEFT\_CENTER
- LEFT\_TOP
- RIGHT
- RIGHT\_BOTTOM
- RIGHT\_CENTER
- RIGHT\_TOP
- TOP
- TOP\_CENTER
- TOP\_LEFT
- TOP\_RIGHT

Valid in Markup family, printer family, and RTF destinations

Default \texttt{TOP\_LEFT}

BACKGROUNDREPEAT\=\texttt{option} specifies whether an image is repeated horizontally, vertically, both, or not repeated. \textit{option} can be one of the following:

- NO\_REPEAT
  specifies that the image is not repeated.
- REPEAT
  specifies that the image is repeated both horizontally and vertically.
- REPEAT\_X
  specifies that the image is repeated horizontally.
- REPEAT\_Y
  specifies that the image is repeated vertically.
Valid in Markup family and PowerPoint destinations

Restriction The BACKGROUNDREPEAT= attribute is valid in most markup family destinations.

**BODYSROLLBAR=**YES | NO | AUTO

specifies whether to put a scroll bar in the frame that references the body file.

YES
places a scroll bar in the frame that references the body file.

NO
specifies not to put a scroll bar in the frame that references the body file.

AUTO
places a scroll bar in the frame that references the body file only if needed.

Valid in Markup family destinations

Tip Typically, BODYSROLLBAR= is set to AUTO.

**BODYSIZE=**dimension | dimension% | *

specifies the width of the frame that displays the body file in the HTML frame file.

dimension
is a nonnegative number or the width of the frame specified as a percentage of the entire display.

*
specifies to use whatever space is left after displaying the content and page files as specified by the CONTENTSIZE= attribute.

Valid in Markup family destinations

Tip If dimension is a nonnegative number, then the unit of measure is pixels.

See dimension attribute value on page 425

For information about the HTML files that ODS creates, see “HTML Links and References Produced by the HTML Destination ” in SAS Output Delivery System: User’s Guide.

**BORDERBOTTOMCOLOR=**color
specifies the color of the bottom border of a table or table cell.

Valid in Markup family, printer family, PowerPoint, Excel, RTF, and Measured RTF destinations

Tip You might also need to specify a BORDERBOTTOMWIDTH= attribute to override the style in the ODS destination.

See color style attribute value on page 423

**BORDERBOTTOMSTYLE=**line-style
specifies the line style of the bottom border of the specified table cell.

line-style can be one of the following:

- DASHED
BORDERBOTTOMWIDTH=\textit{dimension}

specifies the width of the bottom border of a table or table cell.

For the ODS destination for Excel, when you specify the following dimensions, the thickness of the border appears as follows:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Border Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 3pt</td>
<td>Thin</td>
</tr>
<tr>
<td>3pt, but less than 5pt</td>
<td>Medium</td>
</tr>
<tr>
<td>5pt or more</td>
<td>Thick</td>
</tr>
</tbody>
</table>

Valid in Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

Tip You might also need to specify the BORDERBOTTOMWIDTH= attribute to override the style in the ODS destination.

BORDERCOLLAPSE=\texttt{COLLAPSE} | \texttt{SEPARATE}

specifies whether the border is collapsed or separated.

Default \texttt{SEPARATE}

BORDERCOLOR=\textit{color}

specifies the border color of a table or table cell. The color is applied to all four borders.

Valid in Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

See \textit{color style attribute value on page 423}

BORDERCOLORDARK=\textit{color}

in a table or table cell, specifies the darker color to use in a border that uses two colors to create a three-dimensional effect.

Valid in Markup family and printer family destinations
Interaction

The BORDERCOLORDARK style attribute is ignored in HTML4 output because it is not part of the HTML4 standard. To create a color border in the HTML4 output, use the BORDERCOLOR= style attribute.

See

color style attribute value on page 423

Example

“Defining a Table and Graph Style” in SAS Output Delivery System: Procedures Guide

**BORDERCOLORLIGHT=**`color`

in a table or table cell, specifies the lighter color to use in a border that uses two colors to create a three-dimensional effect.

Valid in

Markup family and printer family destinations

Interaction

The BORDERCOLORLIGHT style attribute is ignored in the creation of HTML4 output because it is not part of the HTML4 standard. To create a color border in HTML4 output, use the BORDERCOLOR= style attribute.

See

color style attribute value on page 423

Example

“Defining a Table and Graph Style” in SAS Output Delivery System: Procedures Guide

**BORDERLEFTCOLOR=**`color`

specifies the color of the left border of the table.

Valid in

Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

Tip

You might also need to specify the BORDERLEFTWIDTH= attribute to override the style in the ODS destination.

See

color style attribute value on page 423

**BORDERLEFTSTYLE=**`line-style`

specifies the line style of the left border of the specified table cell.

*line-style*

can be one of the following:

- DASHED
- DOTTED
- DOUBLE
- GROOVE
- HIDDEN
- INSET
- OUTSET
- RIDGE
- SOLID
Valid in Markup family, Excel, PowerPoint, RTF, and Measured RTF destinations

<table>
<thead>
<tr>
<th>Tip</th>
<th>You might also need to specify the BORDERLEFTWIDTH= attribute to override the style in the ODS destination.</th>
</tr>
</thead>
</table>

**BORDERLEFTWIDTH=** *dimension*

specifies the width of the left border of a table or table cell.

Valid in Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

See *dimension attribute value on page 425*

**BORDERRIGHTCOLOR=** *color*

specifies the color of the right border of a table or table cell.

Valid in Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

Tip You might also need to specify the BORDERRIGHTWIDTH= attribute to override the style in the ODS destination.

See *color style attribute value on page 423*

**BORDERRIGHTSTYLE=** *line-style*

specifies the line style of the right border of the selected cell.

*line-style*
can be one of the following:

- DASHED
- DOTTED
- DOUBLE
- GROOVE
- HIDDEN
- INSET
- OUTSET
- RIDGE
- SOLID

Valid in Markup family, Excel, PowerPoint, RTF, and Measured RTF destinations

Tip You might also need to specify the BORDERRIGHTWIDTH= attribute to override the style in the ODS destination.

**BORDERRIGHTWIDTH=** *dimension*

specifies the width of the right border of the table.

Valid in Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

See *dimension attribute value on page 425*
**BORDERSPACING=** *dimension*

specifies the vertical and horizontal thickness of the spacing between cells in a table.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, RTF, and printer family destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>CELLSPACING=</td>
</tr>
<tr>
<td>Default</td>
<td>0</td>
</tr>
<tr>
<td>Interaction</td>
<td>If BORDERWIDTH= is nonzero, and if the background color of the table cells contrasts with the background color of the table, then the color of the table cell spacing is determined by the table's background.</td>
</tr>
</tbody>
</table>

See dimension attribute value on page 425

Examples

“Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

**BORDERSTYLE=** *line-style-1 <, ..., line-style-4 >*

specifies the border style of one or more borders.

*line-style*

is one of the following:

- DASHED
- DOTTED
- DOUBLE
- GROOVE
- HIDDEN
- INSET
- NONE
- OUTSET
- RIDGE
- SOLID

The order in which you specify the style determines the style applied to each side.

**Table 15.26  BORDERSTYLE= Option Precedence**

<table>
<thead>
<tr>
<th>Example</th>
<th>Order</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>borderstyle= double;</td>
<td>All four sides</td>
<td>Double</td>
</tr>
<tr>
<td>borderstyle= solid double;</td>
<td>Top and bottom Right and left</td>
<td>Solid Double</td>
</tr>
</tbody>
</table>
Example | Order | Result
--- | --- | ---
borderstyle= none double solid; | Top | None
Right and left | Double
Bottom | Solid
borderstyle= none double solid none; | Top | None
Right | Double
Bottom | Solid
Left | None

Valid in: Markup family, Excel, RTF, and Measured RTF destinations

**BORDERTOPCOLOR=** *color*
specifies the color of the top border of a table or table cell.

Valid in: Markup family, printer family, RTF, PowerPoint, Excel, and Measured RTF destinations

Tip: Specify the BORDERTOPWIDTH= attribute to override the style in the ODS destination.

See: color style attribute value on page 423

**BORDERTOPSTYLE=** *line-style*
specifies the line style of the top border of the specified table cell.

*line-style*
can be one of the following:
- DASHED
- DOTTED
- DOUBLE
- GROOVE
- HIDDEN
- INSET
- OUTSET
- RIDGE
- SOLID

Valid in: Markup family, Excel, PowerPoint, RTF, and Measured RTF destinations

Restriction: For the RTF destination, specify the BORDERTOPSTYLE= attribute in conjunction with the BORDERTOPWIDTH= attribute to ensure that the style of the top border is the style that you specified.

Tip: You might also need to specify the BORDERTOPWIDTH= attribute to override the style in the ODS destination.
**BORDERTOPWIDTH=** *dimension*

specifies the width of the top border of the table or table cell.

Valid in  Markup family, Excel, PowerPoint, printer family, RTF, and Measured RTF destinations

See  dimension attribute value on page 425

**BORDERWIDTH=** *dimension*

specifies the width of the table borders. The value of BORDERWIDTH= is applied to all four borders.

Valid in  Markup family, Excel, PowerPoint, RTF, and printer family destinations

Tip  Typically, when BORDERWIDTH=0, the ODS destination sets RULES=NONE (see the discussion about “RULES=rule-type” on page 417) and FRAME=VOID (see the discussion about “FRAME=frame-type” on page 406).

See  dimension attribute value on page 425

Examples

“Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

**CAPSTYLE=** *line-shape*

specifies the shape of the line at the end of a box whisker. *line-shape* can be one of the following:

- "BRACKET"
- "LINE"
- "NONE"
- "SERIF"

Requirement  You must enclose *line-shape* in quotation marks.

**CELLPADDING=** *dimension* | *dimension*%

specifies the amount of white space on each of the four sides of the content in a table cell.

*dimension*  is a nonnegative number or the amount of white space on each of the four sides of the text in a table cell specified as a percentage of the table.

Valid in  Markup family other than HTML5, PowerPoint, printer family, and the RTF destinations

Restrictions  CELLPADDING= is not valid in the HTML5 destination. All padding is done on the table cells.

In the ODS Destination for PowerPoint, the cellpadding dimension cannot go below 5 pt.

See  dimension attribute value on page 425
CLASS="string"

specifies the name of the style sheet class to use in an HTML document for the table or table cell.

Valid in  Markup family

Alias  HTMLCLASS=

See  string attribute value on page 427

COLOR=color

specifies the color of the foreground in tables, table cells, or graphs, which is primarily the color of text.

Valid in  Markup family, printer family, PowerPoint, and RTF destinations

Alias  FOREGROUND=

Interaction  The COLOR= attribute is overridden by the CBACK= option in the SAS/GRAPH GOPTIONS statement.

See  color style attribute value on page 423

Examples

"Creating a Stand-Alone Style” in SAS Output Delivery System: Procedures Guide

CONNECT=connect-line-type

specifies the characteristics of a box plot connect line. connect-line-type can be one of the following:

- "MAX"
- "MEAN"
- "MEDIAN"
- "MIN"
- "Q1"
- "Q3"

Requirement  You must enclose connect-line-type in quotation marks.

CONTENTSCROLLBAR=|AUTO

specifies whether to put a scroll bar in the frames in the frame file that display the contents and the page files. (For information about the HTML files that ODS creates, see “HTML Links and References Produced by the HTML Destination” in SAS Output Delivery System: User’s Guide.)

YES  places a scroll bar in the frames in the frame file that display the contents and the page files.

NO  specifies not to put a scroll bar in the frames in the frame file that display the contents and the page files.
AUTO
specifies that the browser put a scroll bar on the table of contents frame only if the content in that panel is big enough to require scrolling.

Valid in Markup family destinations

Tip Typically, CONTENTSCROLLBAR= is set to AUTO.

See For information about the HTML files that ODS creates, see “HTML Links and References Produced by the HTML Destination” in SAS Output Delivery System: User’s Guide.

CONTENT=html-code
specifies the HTML code for page breaks.

html-code
is a string of html code that defines page breaks.

Valid in HTML5 and EPUB destinations

Example The following example is from Styles.Daisy:

```html
content = '<div class="pagebreak" style="text-align: center;
page-break-before: avoid;
page-break-after: always"> </div>'
```

CONTENTSIZE=dimension | dimension % | *
specifies the width of the frames in the frame file that display the contents and the page files.

dimension
is a nonnegative number or the width of the frames specified as a percentage of the entire display.

*
specifies to use whatever space is left after displaying the body file as specified by the BODYSIZE= attribute.

Valid in Markup family destinations

Requirement dimension % must be a positive number between 0 and 100.

Tip If dimension is a nonnegative number, then the unit of measure is pixels.

See dimension attribute value on page 425

“BODYSIZE=dimension | dimension% | * ” on page 391

For information about the HTML files that ODS creates, see “HTML Links and References Produced by the HTML Destination” in SAS Output Delivery System: User’s Guide.

CONTENTTYPE="string"
specifies the value of the content type for pages in an HTML document that is sent directly to a web server rather than to a file.

string
is the content type for the pages.

Requirement string must be enclosed in quotation marks.
Tip  The value of string is usually "text/html".

See  string attribute value on page 427

Valid in  Markup family destinations

Alias  HTMLCONTENTTYPE=

CONTRASTCOLOR=\textit{color}

specifies the alternate colors for maps. The alternate colors are applied to the blocks on region areas in block maps.

Valid in  Markup family, RTF, and printer family destinations

See  color style attribute value on page 423

DATASKIN=\texttt{CRISP | GLOSS | MATTE | NONE | PRESSED | SHEEN}

specifies the type of skin to apply to plots and charts (other than KPIs) to give them a raised, 3-D appearance.

The DATASKIN= style attribute is valid for the following plots and charts in the Graph Template Language:

- bar charts
- box plots
- bubble plots
- drop lines
- high-low charts
- histograms
- line charts
- needle plots
- pie charts
- polygon plots
- reference lines
- scatter plots
- series plots
- step plots
- vector plots
- waterfall charts

The DATASKIN= style attribute is valid for the following plots and charts in the SG procedures:

- bar charts
- scatter plots
- waterfall charts
Restricion In the first maintenance release of SAS 9.4 and later releases, the maximum number of skinned graphical elements is limited to 200 per plot in an overlay or prototype layout. When this limit is exceeded for a plot, the specified data skin is not applied to that plot. In that case, use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the maximum limit.

DISPLAYOPTS=“display-feature” specifies one or more display features for ODS graphs. To specify multiple features, enclose the list of features in quotation marks (for example: `displayopts="fill caps mean"`). “display-feature” can be one of the following:

**CAPS**
- displays caps at the ends of the whiskers.
  - Restriction CAPS can be used only for box plots.

**CONNECT**
- displays the line connecting multiple boxes.
  - Restriction CONNECT can be used only for box plots.

**FILL**
- displays filled boxes, bars, ellipses, and bands.
  - Restriction FILL can be used only for box plots, histograms, ellipses, and confidence bands.

**MEAN**
- displays the mean symbol within a box.
  - Restriction MEAN can be used only for box plots.

**MEDIAN**
- displays the median line within the box.

**NOTCHES**
- displays notched boxes.
  - Restriction NOTCHES can be used only for box plots.

**OUTLIERS**
- displays markers for the outliers.
OUTLIERS can be used only for box plots.

**OUTLINE**
displays outlined ellipses and bars.

**Restriction**
OUTLINE can be used only for ellipses, bands, and histograms.

**Requirement**
You must enclose “display-feature” in quotation marks.

**DOCTYPE=**"*string*"
specifies the entire doctype declaration for the HTML document, including the opening “<!DOCTYPE” and the closing “>”.

*string*
is the doctype declaration.

**Requirement**
*string* must be enclosed in quotation marks.

See string attribute value on page 427

Valid in Markup family destinations

Alias HTMLDOCTYPE=

**DROPShadow=ON | OFF**
specifies whether the drop shadow color for text is displayed.

**ENDCOLOR=***color*
specifies the final color used with a two- or three-color ramp.

See color style attribute value on page 423

**FILLPATTERN=***fillpattern-value*
specifies the fill pattern to be displayed on the chart. The valid values are: S, E, L1, L2, L3, L4, L5, R1, R2, R3, R4, R5, X1, X2, X3, X4, and X5.

Restriction
The FILLPATTERN= attribute is valid for bar charts only.

Tip
To display these fill patterns on the bar chart through the style, you must also specify FILLPATTERN as one of the DISPLAYOPTS in the GRAPHBAR style element.

See
For a table of style elements and the style attributes that are valid in each one, see “Style Elements Affecting Template-Based Graphics” on page 345 and “Style Elements Affecting Device-Based Graphics” on page 354.
**FILLRULEWIDTH=** *dimension*
places a rule of the specified width into the space around the text (or entire cell if there is no text) in a table where white space would otherwise appear.

**Valid in** Printer family destinations

**Tip** If no text is specified, then FILLRULEWIDTH= fills the space around the text with hyphen marks. For example: --this-- or this ------.

**See** dimension attribute value on page 425

**FLYOVER=** *"string"*

specifies the text to show in a data tip for various reporting elements, including table cells.

*string*
is the text of the data tip.

**Restriction** When using the ODS PDF destination, the FLYOVER= style attribute text should not exceed 1024 chars. If the length exceeds 1024, the text is ignored and a warning message is recorded in the SAS log.

**Requirement** *string* must be enclosed in quotation marks.

**See** string attribute value on page 427

**Valid in** Markup family, EPUB, Excel, PowerPoint, Word, and PDF destinations

**FONT=** *font-definition*
specifies a font definition to use in tables, table cells, and graphs.

**Valid in** Markup family, RTF, and printer family destinations

**Tips** For a table, the FONT= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.

If the system does not recognize the font specified, then it refers to the system's default font. This attribute does not accept concatenated fonts. SAS Graph Styles can specify only one font.

**See** font-definition attribute value on page 425

**Example** “Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

**FONTFAMILY=** *string-1<..., string-n>*
specifies the font to use in table cells and graphs. If you supply multiple fonts, then the destination device uses the first one that is installed on the system.

*string*
is the name of the font.

**Requirement** *string* must be enclosed in quotation marks.

**See** string attribute value on page 427
## style attributes

### FONT_FACE=

**Alias**

**Tips**

For a table, the FONTFAMILY= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.

You cannot be sure what fonts are available to someone who is viewing the output in a browser or printing it on a high-resolution printer. Most devices support the following fonts: Times, Courier, Arial, Helvetica.

**Example**

"Creating a Stand-Alone Style" in SAS Output Delivery System: Procedures Guide

### FONTSIZE=dimension | size

**specifies the size of the font for tables, table cells, and graphs.**

**dimension**

is a nonnegative number.

**Alias**

**Restriction**

If you specify a dimension, then specify a unit of measure. Without a unit of measure, the number becomes a relative size.

**See**

dimension attribute value on page 425

**size**

The value of size is relative to all other font sizes in the HTML document.

**Range**

1 to 7

**Valid in**

Markup family, Excel, PowerPoint, RTF, and printer family destinations

**Tip**

For a table, the FONTSIZE= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.

**Example**

"Creating a Stand-Alone Style" in SAS Output Delivery System: Procedures Guide

### FONTSTYLE=ITALIC | ROMAN | SLANT

**specifies the style of the font for tables, table cells, and graphs. In many cases, italic and slant map to the same font.**

**Valid in**

Excel, Markup family, PowerPoint, RTF, and printer family destinations

**Alias**

**Tip**

For a table, the FONTSTYLE= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.
Examples

“Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

**FONTWEIGHT=**weight

Specifies the font weight of tables, table cells, and graphs. weight is any of the following:

- MEDIUM
- BOLD
- DEMI_BOLD
- EXTRA_BOLD
- LIGHT
- DEMI_LIGHT
- EXTRA_LIGHT.

Valid in: Markup family, Excel, PowerPoint, RTF, and printer family destinations

Alias:** FONT_WEIGHT=

Restriction: You cannot be sure what font weights are available to someone who is viewing the output in a browser or printing it on a high-resolution printer. Most devices support only MEDIUM and BOLD, and possibly LIGHT.

Tip: For a table, the FONTWEIGHT= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.

Examples

“Creating a Stand-Alone Style” in SAS Output Delivery System: Procedures Guide

**FONTWIDTH=**relative-width

Specifies the font width of tables, table cells, and graphs compared to the width of the usual design of the table, table cell, or graph. relative-width is any of the following:

- NORMAL
- COMPRESSED
- EXTRA_COMPRESSED
- NARROW
- WIDE
- EXPANDED

Valid in: Markup family, RTF, and printer family destinations

Alias:** FONT_WIDTH=
Restriction  Few fonts honor these values.

Tip  For a table, the FONTWIDTH= attribute affects only the text that is specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the font for the text that appears in the table, set the attribute for a table cell.

Example  “Creating a Stand-Alone Style” in SAS Output Delivery System: Procedures Guide

FRAME=frame-type
specifies the type of frame to use on a table. This table shows the possible values for frame-type and their meanings:

Table 15.28  Frame-type Values

<table>
<thead>
<tr>
<th>Value for frame-type</th>
<th>Frame Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOVE</td>
<td>A border at the top</td>
</tr>
<tr>
<td>BELOW</td>
<td>A border at the bottom</td>
</tr>
<tr>
<td>BOX</td>
<td>Borders at the top, bottom, and both sides</td>
</tr>
<tr>
<td>HSIDES</td>
<td>Borders at the top and bottom</td>
</tr>
<tr>
<td>LHS</td>
<td>A border at the left side</td>
</tr>
<tr>
<td>RHS</td>
<td>A border at the right side</td>
</tr>
<tr>
<td>VOID</td>
<td>No borders</td>
</tr>
<tr>
<td>VSIDES</td>
<td>Borders at the left and right sides</td>
</tr>
</tbody>
</table>

Valid in  Markup family, PowerPoint, RTF, and printer family destinations

Example  “Modifying the Default Style with the CLASS Statement” in SAS Output Delivery System: Procedures Guide

FRAMEBORDER=ON | OFF
specifies whether to put a border around the frame for an HTML file that uses frames.

ON  places a border around the frame for an HTML file that uses frames.

OFF  specifies not to put a border around the frame for an HTML file that uses frames.

Valid in  Markup family destinations

GRADIENT_DIRECTION="YAXIS" | XAXIS
specifies the direction of the gradient.
"YAXIS"
specifies a vertical gradient.

"XAXIS"
specifies a horizontal gradient.

**HEIGHT=** *dimension*
specifies the height of a table cell, graph, or graphics in an HTML document.

*dimension*
is a nonnegative number.

See [dimension attribute value on page 425](#)

---

**Valid in**

Markup family, RTF, and printer family destinations

**Aliases**

CELLHEIGHT=

OUTPUTHEIGHT=

**Restriction**
The HEIGHT= option does not apply to output generated as a result of GRSEG (graph segment) output.

**Interaction**
The YPIXELS= option in the SAS/GRAPH GOPTIONS statement overrides the HEIGHT= attribute.

**Tip**
HTML automatically sets cell height appropriately. You will seldom need to specify this attribute in the HTML destination.

**HREFTARGET=** *"target"*
specifies the window or frame in which to open the target of the link. *target* is one of these values:

* _blank*
  opens the target in a new, blank window. The window has no name.

  **Restriction** Use lowercase letters to specify values for HREFTARGET.

* _parent*
  opens the target in the window from which the current window was opened.

  **Restriction** Use lowercase letters to specify values for HREFTARGET.

* _search*
  opens the target in the browser's search pane.

  **Restriction** Use lowercase letters to specify values for HREFTARGET.

* _self*
  opens the target in the current window.

  **Restriction** Use lowercase letters to specify values for HREFTARGET.

* _top*
  opens the target in the topmost window.

  **Restriction** Use lowercase letters to specify values for HREFTARGET.

* "name"
  opens the target in the specified window or the frame.
Valid in  Markup family destinations

Default  _self

Restriction  Use lowercase letters to specify values for HREFTARGET.

Requirement  target must be enclosed in quotation marks.

**HTMLID="string"**
specifies an ID for the table or table cell. The ID is for use by JavaScript.

*string*
is the ID text.

Requirement  *string* must be enclosed in quotation marks.

See  string attribute value on page 427

**HTMLSTYLE="string"**
specifies individual attributes and values for a table or table cell in an HTML document.

*string*
is the name of an attribute or value.

Requirement  *string* must be enclosed in quotation marks.

See  string attribute value on page 427

**IMAGE="external-file"**
**IMAGE="external-file?DESC=alternative-text"**
specifies the image to appear in a graph. This image is positioned or tiled.

*external-file*names a GIF or JPEG file. Use a simple filename, a complete path, or a URL.

Requirement  *external-file* must be enclosed in quotation marks.

?DESC=alternative-text specifies alternative image text for the image. To change the alternative text for an image, append ?desc=mydesc to the image filename. This option helps to make reports accessible for people with a wide range of abilities. For accessibility, the text should convey the meaning of the image.

If an empty text string is specified, then the image is ignored by screen readers.

Valid in  PDF, EPUB, and HTML5 destinations

Alias  DESC=

Accessibility note  You can use the ACCESSIBLECHECK system option to write a note to the SAS log if no description is provided for an image.
Example image="questions.gif?desc=questionmark montage"

Valid in Markup family, printer family, and RTF destinations

Interaction The BACK= and IMAGESTYLE=TILE options in the SAS/GRAPH GOPTIONS statement override the IMAGE= attribute.

KPISKIN=BASIC | MODERN | NONE | ONYX | SATIN
specifies the type of skin to apply to KPI charts to give them a raised, 3-D appearance.

LINESTYLE=pattern-number
specifies the pattern of a line. Valid pattern numbers range from 1 to 46. Not all pattern numbers have names. You must specify the line pattern by its number. pattern-number can be one of the following:

Figure 15.1 Table of Line Patterns

<table>
<thead>
<tr>
<th>Pattern Name</th>
<th>Pattern Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>1</td>
</tr>
<tr>
<td>ShortDash</td>
<td>2</td>
</tr>
<tr>
<td>MediumDash</td>
<td>4</td>
</tr>
<tr>
<td>LongDash</td>
<td>5</td>
</tr>
<tr>
<td>MediumDashShortDash</td>
<td>8</td>
</tr>
<tr>
<td>DashDashDot</td>
<td>14</td>
</tr>
<tr>
<td>DashDotDot</td>
<td>15</td>
</tr>
<tr>
<td>Dash</td>
<td>20</td>
</tr>
<tr>
<td>LongDashShortDash</td>
<td>26</td>
</tr>
<tr>
<td>Dot</td>
<td>34</td>
</tr>
<tr>
<td>ThinDot</td>
<td>35</td>
</tr>
<tr>
<td>ShortDashDot</td>
<td>41</td>
</tr>
<tr>
<td>MediumDashDotDot</td>
<td>42</td>
</tr>
</tbody>
</table>

LINETHICKNESS=dimension
specifies the thickness of a line.

See dimension attribute value on page 425

LINKCOLOR=color
specifies the color for the links in an HTML document that have not yet been visited.

Valid in Markup family, printer family, and RTF destinations

See color style attribute value on page 423

LISTENTRYANCHOR=ON | OFF
in an HTML document, the LISTENTRYANCHOR= attribute specifies whether to make the entry in the table of contents a link to the body file.

ON
specifies to make this entry in the table of contents a link to the body file.

OFF
specifies not to make this entry in the table of contents a link to the body file.

Valid in Markup family destinations
LISTSTYLEIMAGE=string
specifies a path or URL to an image file to be used as the bullet for list items.

Valid in Printer family destinations

LISTSTYLETYPE=bullet-type
specifies the type of bullet to use for lists and the contents file. ODS uses bullets in the contents file.

bullet-type
The bullet-type value differs for PowerPoint, Markup, Excel, and Word destinations.

The following values are valid in the Markup destinations:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMENIAN</td>
<td>LOWER-GREEK</td>
</tr>
<tr>
<td>CIRCLE</td>
<td>LOWER-LATIN</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>LOWER-ROMAN</td>
</tr>
<tr>
<td>DECIMAL-LEADING-ZERO</td>
<td>NONE</td>
</tr>
<tr>
<td>DISC</td>
<td>UPPER-ALPHA</td>
</tr>
<tr>
<td>GEORGIAN</td>
<td>UPPER-LATIN</td>
</tr>
<tr>
<td>INHERIT</td>
<td>UPPER-ROMAN</td>
</tr>
<tr>
<td>LOWER-ALPHA</td>
<td>SQUARE</td>
</tr>
</tbody>
</table>

The following values are valid in the PowerPoint destination:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTERISK</td>
<td>HYPHEN</td>
</tr>
<tr>
<td>BOX</td>
<td>LOWER_ROMAN</td>
</tr>
<tr>
<td>CHECK</td>
<td>PARENTHESESISED_LOWER_LATIN</td>
</tr>
<tr>
<td>CIRCLE</td>
<td>PARENTHESESISED_DECIMAL</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>SQUARE</td>
</tr>
<tr>
<td>DIAMOND</td>
<td>UPPER_ROMAN</td>
</tr>
<tr>
<td>DISC</td>
<td></td>
</tr>
</tbody>
</table>

The following values are valid in the Excel destination:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCLE</td>
<td>SQUARE</td>
</tr>
<tr>
<td>DISC</td>
<td>NONE</td>
</tr>
</tbody>
</table>

The following values are valid in the Word destination:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCLE</td>
<td>LOWER_ROMAN</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>NONE</td>
</tr>
<tr>
<td>DECIMAL-LEADING-ZERO</td>
<td>SQUARE</td>
</tr>
<tr>
<td>DISC</td>
<td></td>
</tr>
<tr>
<td>LOWER_ALPHA</td>
<td>UPPER_ALPHA</td>
</tr>
</tbody>
</table>

Default DISC
See string attribute value on page 427

Valid in PowerPoint, Markup family, and Excel destinations

MARGINBOTTOM=dimension
specifies the bottom margin for the document.
<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, printer family, and RTF destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>BOTTOMMARGIN=</td>
</tr>
<tr>
<td>Tip</td>
<td>If the orientation of a PDF document is changed after the PDF destination is opened and before the PDF destination is closed, any setting for margins is taken from the OPTIONS statement in place before the ODS PDF FILE= statement. If no OPTIONS statement is used to explicitly set the margins, the margin settings are retrieved from the SAS registry.</td>
</tr>
<tr>
<td>See</td>
<td>dimension attribute value on page 425</td>
</tr>
</tbody>
</table>

**MARGINLEFT=**`dimension`  
Specifies the left margin for the document.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, PowerPoint, printer family, and RTF destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>LEFTMARGIN=</td>
</tr>
<tr>
<td>Tip</td>
<td>If the orientation of a PDF document is changed after the PDF destination is opened and before the PDF destination is closed, any setting for margins is taken from the OPTIONS statement in place before the ODS PDF FILE= statement. If no OPTIONS statement is used to explicitly set the margins, the margin settings are retrieved from the SAS registry.</td>
</tr>
<tr>
<td>See</td>
<td>dimension attribute value on page 425</td>
</tr>
</tbody>
</table>

**MARGINRIGHT=**`dimension`  
Specifies the right margin for the document.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, PowerPoint, printer family, and RTF destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>RIGHTMARGIN=</td>
</tr>
<tr>
<td>Tip</td>
<td>If the orientation of a PDF document is changed after the PDF destination is opened and before the PDF destination is closed, any setting for margins is taken from the OPTIONS statement in place before the ODS PDF FILE= statement. If no OPTIONS statement is used to explicitly set the margins, the margin settings are retrieved from the SAS registry.</td>
</tr>
<tr>
<td>See</td>
<td>dimension attribute value on page 425</td>
</tr>
</tbody>
</table>

**MARGINTOP=**`dimension`  
Specifies the top margin for the document.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, printer family, and RTF destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>TOPMARGIN=</td>
</tr>
<tr>
<td>Tip</td>
<td>If the orientation of a PDF document is changed after the PDF destination is opened and before the PDF destination is closed, any setting for margins is taken from the OPTIONS statement in place before the ODS PDF FILE= statement. If no OPTIONS statement is used to explicitly set the margins, the margin settings are retrieved from the SAS registry.</td>
</tr>
</tbody>
</table>
MARKERSIZE=dimension
specifies the marker size (both width and height).

MARKERSYMBOL=marker-symbol
specifies a marker symbol. marker-symbol can be one of the following:

Figure 15.2  Table of Marker Symbols

NEUTRALCOLOR=color
specifies the middle color in a three-color ramp.

NOBREAKSPACE=ON | OFF
specifies how to handle space characters in table cells.

ON
  does not let SAS break a line at a space character.

OFF
  lets SAS break a line at a space character if appropriate.

Valid in  Markup family, Excel, printer family, and RTF destinations

ORPHAN=integer
specifies the minimum number of lines of text that must appear in a paragraph before it is forced to move to another page.

Valid in  EPUB destination
Default  2

OUTLINECOLOR=color
specifies the color of the link-focus indicator outline.

Valid in  HTML5 destination

Note  The OUTLINECOLOR= attribute is valid starting with SAS 9.4M5.

Tip  The OUTLINECOLOR= attribute is useful for making your HTML5 documents accessible. See Enhancing the Appearance of the Link-

See color style attribute value on page 423

**OUTLINESTYLE=** line-style

specifies the line style of the link-focus indicator outline.

*line-style*

- can be one of the following:
  - DASHED
  - DOTTED
  - DOUBLE
  - GROOVE
  - HIDDEN
  - INSET
  - OUTSET
  - RIDGE
  - SOLID

Valid in HTML5 destination

Note The OUTLINESTYLE= attribute is valid starting with SAS 9.4M5.

Tip The OUTLINESTYLE= attribute is useful for making your HTML5 documents accessible. See Enhancing the Appearance of the Link-Focus Indicator in Creating Accessible SAS Output Using ODS and ODS Graphics.

**OUTLINEWIDTH=** dimension

specifies the line width of the link-focus indicator outline.

Valid in HTML5 destination

Note The OUTLINEWIDTH= attribute is valid starting with SAS 9.4M5.

Tip The OUTLINEWIDTH= attribute is useful for making your HTML5 documents accessible. See Enhancing the Appearance of the Link-Focus Indicator in Creating Accessible SAS Output Using ODS and ODS Graphics.

See dimension attribute value on page 425

**OUTPUTHEIGHT=** dimension

specifies the height of a graph.

See dimension attribute value on page 425

**OUTPUTWIDTH=** dimension

specifies the width of a graph.

See dimension attribute value on page 425
PADDING=\texttt{dimension} | \texttt{dimension}%
specifies the amount of white space between the content of the table cell and the border. The value of PADDING= applies to all four sides.

To change the padding of each side, use one or more of the following attributes:

- \texttt{PADDINGBOTTOM=} on page 414
- \texttt{PADDINGLEFT=} on page 414
- \texttt{PADDINGRIGHT=} on page 414
- \texttt{PADDINTOP=} on page 414

Valid in Markup family, RTF, and printer family destinations

See dimension attribute value on page 425

PADDINGBOTTOM=\texttt{dimension} | \texttt{dimension}%
specifies the amount of white space on the bottom of the content of the table cell.

Valid in Markup family, PowerPoint, RTF, and printer family destinations

Default 0

See dimension attribute value on page 425

PADDINGLEFT=\texttt{dimension} | \texttt{dimension}%
specifies the amount of white space on the left side of the content of the table cell.

Valid in Markup family, PowerPoint, RTF, and printer family destinations

Default 0

See dimension attribute value on page 425

PADDINGRIGHT=\texttt{dimension} | \texttt{dimension}%
specifies the amount of white space on the right side of the content of the table cell.

Valid in Markup family, PowerPoint, RTF, and printer family destinations

Default 0

See dimension attribute value on page 425

PADDINTOP=\texttt{dimension} | \texttt{dimension}%
specifies the amount of white space on the top of the content of the table cell.

Valid in Markup family, PowerPoint, RTF, and printer family destinations

Default 0

See dimension attribute value on page 425

PAGEBREAKHTML=\texttt{"string"}

specifies HTML to place at page breaks in an HTML document.

\texttt{string}
is the HTML code used to place at page breaks.
**Requirement**  
*string* must be enclosed in quotation marks.

**See**  
*string* attribute value on page 427

**Valid in**  
Markup family destinations

**POSTHTML=**"*string*"

specifies the HTML code to place after the table or table cell.

*string*  
is the HTML code to place after a table or table cell.

**Requirement**  
*string* must be enclosed in quotation marks.

**See**  
*string* attribute value on page 427

**Valid in**  
Markup family destinations

**Example**  
"Modifying the Default Style with the CLASS Statement" in SAS Output Delivery System: Procedures Guide

**POSTIMAGE=**"*external-file* | *fileref* | POSTIMAGE="*external-file*?DESC=*alternative-text*"

specifies an image to place after the table or table cell.

*external-file*  
names a GIF or JPEG file. Use a simple filename, a complete path, or a URL.

**Requirement**  
*external-file* must be enclosed in quotation marks.

*fileref*  
is a reference that has been assigned to an external file. Use the FILENAME statement to assign a fileref.

**See**  

**?DESC=*alternative-text***

specifies alternative image text for the image. To change the alternative text for an image, append ?desc=mydesc to the image filename. This option helps to make reports accessible for people with a wide range of abilities. For accessibility, the text should convey the meaning of the image.

If an empty text string is specified, then the image is ignored by screen readers.

**Valid in**  
PDF, EPUB, and HTML5 destinations

**Alias**  
DESC=

**Accessibility note**  
You can use the ACCESSIBLECHECK system option to write a note to the SAS log if no description is provided for an image.

**Example**  
postimage="*questions.gif?desc=question mark montage*"

**Valid in**  
Markup family, printer family, PowerPoint, and RTF destinations
Restriction  For the ODS destination for PowerPoint, the POSTIMAGE= attribute can be used to place an image below a table, but it cannot be used to put an image after a cell.

**POSTTEXT=**"string"

specifies text to place after the table cell or table.

**Requirement** string must be enclosed in quotation marks.

**See** string attribute value on page 427

**PREHTML=**"string"

specifies the HTML code to place before the table or table cell.

**Restriction** The PREHTML= attribute is valid only for markup family destinations.

**See** string attribute value on page 427

**PREIMAGE="external-file" | fileref | PREIMAGE="external-file?DESC=alternative-text"**

specifies an image to place before the table or table cell.

**external-file**

names a GIF or JPEG file. Use a simple filename, a complete path, or a URL.

**Valid in** Markup family, printer family, and RTF destinations

**Restriction** When using the PREIMAGE= style attribute with the PRINTER destination, you must specify STARTPAGE=NO on the PRINTER family statement to display page numbers, times, dates, and titles. Without the STARTPAGE=NO option, preimages are treated like graphs and have no page numbers, times, dates, or titles displayed.

**Requirement** Enclose external-file in quotation marks.

**fileref**

is a reference that has been assigned to an external file. Use the FILENAME statement to assign a fileref. (For information about the FILENAME statement, see "Statements" in SAS DATA Step Statements: Reference.)

**?DESC=alternative-text**

specifies alternative image text for the image. To change the alternative text for an image, append ?desc=mydesc to the image filename. This option helps to make reports accessible for people with a wide range of abilities. For accessibility, the text should convey the meaning of the image.

If an empty text string is specified, then the image is ignored by screen readers.

**Valid in** PDF, EPUB, and HTML5 destinations

**Alias** DESC=

**Accessibility note** You can use the ACCESSIBLECHECK system option to write a note to the SAS log if no description is provided for an image.
Example: preimage="questions.gif?desc=questionmark montage"

Valid in: Markup family, printer family, and RTF destinations

Restriction: For the ODS destination for PowerPoint, the PREIMAGE= attribute can be used to place an image above a table, but it cannot be used to put an image before a cell.

PRETEXT="string"
specifies text to place before the table cell or table.

string
text that is placed before the table cell or table.

Valid in: Markup family, Excel, printer family, and RTF destinations

Requirement: Enclose string in quotation marks.

See: string attribute value on page 427

Example: "Customizing the Table of Contents" in SAS Output Delivery System: User’s Guide

PROTECTSPECIALCHARS=ON | OFF | AUTO
specifies how less-than signs (<), greater-than signs (>), and ampersands (&) are interpreted in table cells. In HTML and other markup languages, these characters indicate the beginning of a markup tag, the end of a markup tag, and the beginning of the name of a file or character entity.

ON
interprets special characters as the characters themselves. That is, when ON is in effect the characters are protected before they are passed to the HTML or other markup language destination so that the characters are not interpreted as part of the markup language. Using ON enables you to show markup language tags in the HTML document.

OFF
interprets special characters as markup language tags. That is, when OFF is in effect, the characters are passed to the HTML or other markup language destination without any protection so that the special characters are interpreted as part of the markup language.

AUTO
interprets any string that starts with a < and ends with a > as a markup language tag (ignoring spaces that immediately precede the <, spaces that immediately follow the >, and spaces at the beginning and end of the string). In any other string, AUTO protects the special characters from their markup language meaning.

Valid in: Markup family, Excel, printer family, and RTF destinations

RULES=rule-type
specifies the types of rules to use in tables. This table shows the possible values for the RULES= attribute and their meanings:
Table 15.29  RULES= Attribute Values

<table>
<thead>
<tr>
<th>Value of RULES= Attribute</th>
<th>Locations of Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Between all rows and columns</td>
</tr>
<tr>
<td>COLS</td>
<td>Between all columns</td>
</tr>
<tr>
<td>GROUPS</td>
<td>Between the table header and the table and between the table and the table footer, if there is one</td>
</tr>
<tr>
<td>NONE</td>
<td>No rules anywhere</td>
</tr>
<tr>
<td>ROWS</td>
<td>Between all rows</td>
</tr>
</tbody>
</table>

Valid in  Markup family, PowerPoint, printer family, and RTF destinations

Example  “Defining a Table and Graph Style” in SAS Output Delivery System: Procedures Guide

STARTCOLOR=color  specifies the start fill color for a graph. It is used to create a gradient effect.

Note: You can have either a start and end gradient effect or no gradient effect. If you specify a TRANSPARENCY level and you only specify the STARTCOLOR, then the end color is completely transparent gradationally to the specified start color.

Valid in  HTML4 destination

See  color style attribute value on page 423

TAGATTR="string"  specifies text to insert into HTML.

string  is the text that is inserted into HTML tags.

Requirements  

string must be enclosed in quotation marks.

string must be valid HTML for the context in which the style element is created.

Tip  Many style elements are created between <TD> and </TD> tags. To determine how a style element is created, look at the source for the output.

Interaction  When using the Report Writing Interface with the ODS destination for Excel, the TAGATTR= Style Attribute is needed to pass Excel formats instead of the FORMAT parameter within the FORMAT_CELL Method on page 141 .

See  string attribute value on page 427

Valid in  Markup family and Excel destinations
**TEXTALIGN=alignment**

specifies justification in tables, table cells, and graphs. In graphs, this option specifies the justification of the image specified with the IMAGE= statement. For example, this statement would produce a page number that is centered at the bottom of the page:

```
style PageNo from TitleAndFooters / textalign=c verticalalign=b;
```

This statement would produce a date in the body file that is left-justified at the top of the page:

```
style BodyDate from Date / textalign=l;
```

The value of *alignment* can be one of the following:

**CENTER**
- specifies center justification.
- **Alias** C

**DEC**
- specifies aligning the values by the decimal point.
- **Alias** D
- **Restriction** Decimal alignment is supported for the printer family and RTF destinations only.

**LEFT**
- specifies left justification.
- **Alias** L

**RIGHT**
- specifies right justification.
- **Alias** R
- **Restriction** Not all contexts support RIGHT. If RIGHT is not supported, it is interpreted as CENTER.

**Valid in** Markup family, printer family, PowerPoint, Excel, Word, and RTF destinations

**Alias** JUST=

**Restriction** For the HTML5 destination, you might be able to use MARGINRIGHT=0 instead.

**Tips**
- For the printer family destinations and the MARKUP destination, use the style attribute TEXTALIGN= with the style attribute VERTICALALIGN= in the style element PageNo to control the placement of page numbers.
- For printer family destinations and the MARKUP destination, control the placement of dates by using the style attribute TEXTALIGN= with the style attribute VERTICALALIGN= in the BodyDate or Date. style element.

**TEXTDECORATION=presentation–options**

changes the visual presentation of the text. *presentation–options* can be one of the following:
BLINK
specifies that the text’s visual presentation alternates rapidly between visible and invisible.
Valid in Excel, HTML, RTF, PowerPoint, and Excel destinations

LINE_THROUGH
specifies that a line is drawn through the text.
Valid in HTML, printer family, measured RTF, and RTF destinations

OVERLINE
specifies that a line is drawn above the text.
Valid in HTML and printer family destinations

UNDERLINE
specifies that a line is drawn below the text.
Valid in HTML, printer family, measured RTF, and RTF destinations

Tip TEXTDECORATION= can be used with inline formatting and the ODS PDF statement to enhance PDF files.
Example “Formatting Cells with the Textdecoration Style Attribute ” on page 219

TEXTINDENT=n
specifies the number of spaces that the first line of output is indented.

n specifies the number of spaces to indent the output.
Valid in Markup family, printer family, Excel, PowerPoint, and RTF destinations
Alias INDENT=
Default The default value for XML is 2. For all other ODS destinations, the default value is 0.

TICKDISPLAY="INSIDE"| OUTSIDE"| ACROSS"
specifies the placement of all major and minor axis tick marks.

TEXTJUSTIFY=INTER_WORD | INTER_CHARACTER
specifies how to evenly distribute text.

INTER_WORD
specifies that the words are evenly distributed across the page.

INTER_CHARACTER
specifies that all characters are evenly distributed across a page.
Valid in RTF, TAGSETS.RTF, and Word destinations
Restriction The ODS destination for Word supports only the INTER_WORD option.
Tip Use the TEXTJUSTIFY= style attribute with the TEXTALIGN=J (alias JUST=) style attribute.
**TRANSPARENCY=**\texttt{dimension}  
specifies a transparency level for graphs. The values are 0.0 (opaque) to 1.0 (transparent).

<table>
<thead>
<tr>
<th>Valid in</th>
<th>HTML destination</th>
</tr>
</thead>
</table>

**See**  
dimension attribute value on page 425

**URL="**\texttt{uniform-resource-locator}"**  
specifies a URL to link to from various reporting elements, including table cells.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family, Excel, PowerPoint, printer family, and RTF destinations</th>
</tr>
</thead>
</table>

**Requirement**  
\texttt{uniform-resource-locator} must be enclosed in quotation marks.

**VERTICALALIGN=**\texttt{BOTTOM} | \texttt{MIDDLE} | \texttt{TOP}  
specifies vertical justification for graphs and cells. In graphs, this option specifies the vertical justification of the image specified with \texttt{IMAGE=}.

For example, this statement produces a page number that is centered at the bottom of the page:

\texttt{style PageNo from TitleAndFooters / textalign=c verticalalign=b;}

This statement produces a date in the body file that is left-justified at the top of the page:

\texttt{style BodyDate from Date / textalign=l verticalalign=t;}

**BOTTOM**  
specifies bottom justification.

\texttt{Alias B}

**MIDDLE**  
specifies center justification.

\texttt{Alias M}

**TOP**  
specifies top justification.

\texttt{Alias T}

**Valid in**  
Markup family, Excel, printer family, and RTF destinations

**Alias**  
\texttt{VJUST=}

**Tips**  
For printer and markup family destinations, use the style attribute \texttt{VERTICALALIGN=} with the style attribute \texttt{TEXTALIGN=} in the style element \texttt{PAGENO} to control the placement of page numbers.

For printer and markup family destinations, control the placement of dates by using the style attribute \texttt{VERTICALALIGN=} with the style attribute \texttt{TEXTALIGN=} in the \texttt{BODYDATE} or \texttt{DATE} style element.

**VISITEDLINKCOLOR=**\texttt{color}  
specifies the color for links that have been visited in an HTML document.

<table>
<thead>
<tr>
<th>Valid in</th>
<th>Markup family destinations</th>
</tr>
</thead>
</table>

**See**  
color style attribute value on page 423
WATERMARK=ON | OFF
specifies whether to make the image that is specified by BACKGROUNDIMAGE= into a watermark. A watermark appears in a fixed position as the window is scrolled.

ON
specifies to make the image that is specified by BACKGROUNDIMAGE= into a watermark.

OFF
specifies not to make the image that is specified by BACKGROUNDIMAGE= into a watermark.

Valid in Markup family and RTF destinations

Tip
You can apply a watermark to output generated using the ODS TAGSETS.RTF destination by specifying a background image file. Note that the image is applied to the RTF document and not to a table or a table cell.

See “BACKGROUNDIMAGE="string"” on page 389

WIDTH=dimension
specifies the width of a table cell, table, line, or a graph.

When used with graphs, the WIDTH= option must be specified as a pixel or percentage value. If a unit of measure is not specified with the dimension, then the value will be in pixels. If a unit of measure other than pixels or percentage is specified with the dimension, then the HEIGHT=dimension is not applied to the graph.

dimension
is a nonnegative number.

Valid in Markup family, Excel, printer family, and RTF destinations

Aliases CELLWIDTH=
OUTPUTWIDTH=

Restriction The WIDTH= option does not apply to output generated as a result of GRSEG (graph segment) output.

Interaction The XPIXELS= option in the SAS/GRAPH GOPTIONS statement overrides the WIDTH= attribute.

Tips A column of cells has the width of the widest cell in the column.
Use WIDTH=100% to make the table or graph as wide as the window that it is open in.

WINDOW=integer
specifies the number of lines of text that must appear at the top of a page if a paragraph is separated by a page break.

Valid in EPUB destination
Style Attributes Values

color

is a string that identifies a color. A color is defined in the following ways:

- most of the color names that are supported by SAS/GRAPH. These names include the following:
  - a predefined SAS color (for example, blue or VIYG)
  - a red/green/blue (RGB) value (for example, CX0023FF)
  - a hue/light/saturation (HLS) value (for example, H14E162D)
  - a gray-scale value (for example, GRAYBB).
  - a red/green/blue transparency (RGBA) value (for example, a98FB9880)
  - a cyan/magenta/yellow/black (CMYK) value (for example, FFFFFF00)
    Note: RGBA color mode is not supported by Java devices. RGBA color mode is supported by ActiveX devices when the output is used in Microsoft applications.
  - an RGB value with a leading number sign (#) rather than CX (for example, #0023FF).

- one of the colors that exist in the SAS session when the style is used:
  - DMSBLUE
  - DMSRED
  - DMSPINK
  - DMSGREEN
  - DMSCYAN
  - DMSYELLOW
  - DMSWHITE
  - DMSORANGE
  - DMSBLACK
  - DMSMAGENTA
  - DMSGRAY
  - DMSBROWN
  - SYSBACK
  - SYSSECB
  - SYSFORE

Note: Use these colors only when running SAS in the windowing environment.
an English description of an HLS. Such descriptions use a combination of words to describe the lightness, the saturation, and the hue (in that order).

Use the Color Naming System to form a color in the following ways:

- combining a chromatic hue with a lightness, a saturation, or both
- combining the achromatic hue gray with a lightness
- combining the achromatic hue black or white without qualifiers

Use the words in the following table:

**Table 15.30  Hue/Light/Saturation (HLS) Values**

<table>
<thead>
<tr>
<th>Lightness</th>
<th>Saturation</th>
<th>Chromatic Hue</th>
<th>Achromatic Hue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td></td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Very dark</td>
<td>Grayish</td>
<td>Purple</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>Moderate</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Strong</td>
<td>Orange</td>
<td>brown</td>
</tr>
<tr>
<td>Light</td>
<td>Vivid</td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>Very light</td>
<td></td>
<td>Green</td>
<td>White</td>
</tr>
</tbody>
</table>

- Black and white cannot be combined with a lightness value or a saturation value.
- Gray cannot be combined with a saturation value.

Combine these words to form a wide variety of colors. Here are examples:

- light vivid green
- dark vivid orange
- light yellow

**Note:** The Output Delivery System first tries to match a color with a SAS/GRAPH color. Thus, although brown and orange are interchangeable in the table, if you use them as unmodified hues, then they are different. The reason for this is that ODS interprets them as SAS colors, which are mapped to different colors.

You can also specify hues that are intermediate between two neighboring colors. To do so, combine one of these adjectives with one of its neighboring colors:

- reddish
- orangish
- brownish
- yellowish
- greenish
- bluish
- purplish
Tips For a list of some valid colors, see Link to Valid Colors to use with cascading style sheets.

To see how color names map to hexadecimal values, submit the following REGISTRY procedure code:

```
proc registry list startat="COLORNAMES";
run;
```

See RBG Color Codes, HLS Color Codes, and Gray-Scale Color codes in SAS/GRAPH: Reference for information about SAS/GRAPH colors.

**dimension**

is a whole number, a percentage, or a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>em</td>
<td>Standard typesetting measurement unit for width</td>
</tr>
<tr>
<td>ex</td>
<td>Standard typesetting measurement unit for height</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pt</td>
<td>A printer's point</td>
</tr>
</tbody>
</table>

Default For the PRINTER destination, units of 1/150 of an inch

**font-definition**

is the name of a font, the font size, and font keywords. A font definition has this general format.

```
("font-face-1 <… , font-face-n>", font-size, keyword-list)
```

A font specification in an ODS style can specify multiple fonts so that a reasonable substitution can be made when a font cannot be located on the current computer. The fonts are normally listed in a most-specific to most-generic order. For example, the TitleFont attribute shown in the following example specifies a list of fonts in the following order: <sans-serif>, <MTsans-serif>, Helvetica, and then Helv.

```
'TitleFont'='("<sans-serif>,<MTsans-serif>,Helvetica,Helv",3,bold)
```

For table title text, SAS searches the computer for a font in the TitleFont font list in the order listed. The first font in the list that is found is used.

If a font is enclosed in angle brackets, that indicates that the resolved font is defined in the ODS/FONTS portion of the SAS registry. One way to view the SAS registry font definitions is with the DMS REGEDIT command.
"font-face" specifies the name of the font.

ODS styles can now use new TrueType fonts. All Universal Printers and many SAS/GRAPH devices use the FreeType library to render TrueType fonts for output in all of the operating environments that SAS software supports. In addition, by default, many SAS/GRAPH device drivers and all Universal Printers generate output using ODS styles, and these ODS styles use TrueType fonts. In addition to SAS Monospace and SAS Monospace Bold, 21 new TrueType fonts are made available when you install SAS:

- five Latin fonts compatible with Microsoft
- eight multilingual Unicode fonts
- eight monolingual Asian fonts

For more information about the TrueType fonts, see the section "Printing with SAS" in SAS Language Reference: Concepts.

**Restriction**

You must enclose multiple font-face in quotation marks. If you specify only one font and if its name does not include a space character, then omit the quotation marks.

**Note**

For SAS 9.4M5, ODS Styles supports the AvenirNextForSAS font.

**Tip**

If you specify more than one font, then the destination device uses the first one that is installed on the system.

`font-size` specifies the size of the font. font-size is a dimension or a number without units of measure. If you specify a dimension, then specify a unit of measure. Without a unit of measure the number becomes a size that is relative to all other font sizes in the HTML document. For more information, see dimension attribute value on page 425.

`keyword-list` specifies the font weight, font style, and font width. Include one value for each, in any order. This table shows the keywords to use:

<table>
<thead>
<tr>
<th>Keywords for Font Weight</th>
<th>Keywords for Font Style</th>
<th>Keywords for Font Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDIUM</td>
<td>ITALIC</td>
<td>NORMAL*</td>
</tr>
<tr>
<td>BOLD</td>
<td>ROMAN</td>
<td>COMPRESSED*</td>
</tr>
<tr>
<td>DEMI_BOLD*</td>
<td>SLANT</td>
<td>EXTRA_COMPRESSED*</td>
</tr>
<tr>
<td>EXTRA_BOLD*</td>
<td>OBLIQUE*</td>
<td>NARROW*</td>
</tr>
<tr>
<td>LIGHT</td>
<td>NORMAL*</td>
<td>WIDE*</td>
</tr>
<tr>
<td>DEMI_LIGHT*</td>
<td></td>
<td>EXPANDED*</td>
</tr>
<tr>
<td>EXTRA_LIGHT*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keywords for Font Weight | Keywords for Font Style | Keywords for Font Width
---|---|---
NORMAL

* Few fonts honor these values.

**Example**  "Using User-Defined Attributes" in SAS Output Delivery System: Procedures Guide

**format**

is a SAS format or a user-defined format.

**integer | integer-list | integer-column-list**

specifies a column variable that contains integer values, or a dynamic variable that refers to such a column variable.

**integer**

specifies a single integer.

**integer-list**

specifies a sequence of integer values, or a column variable that contains integer values, or a dynamic variable that refers to such a column variable or to a string.

**integer-column-list**

specifies a sequence of column variables, or a column variable that contains column variables, or a dynamic variable that refers to such a column variable, or a dynamic variable that refers to a string containing a list of column variables. Values within the columns must be integers.

**style-reference**

is a reference to an attribute that is defined in the current style or in the parent style (or beyond). The value used is the name of the style element followed by the name of an attribute, in parentheses, within that element. Style references have the following form.

**style-attribute=target-style-element("target-style-attribute")**

**style-attribute**

specifies the name of the style attribute.

**target-style-element**

specifies the name of the style element that contains the style attribute that you want to reference.

**target-style-attribute**

specifies the style attribute with the value that you want to use.

**Requirement**  You must enclose target-style-attribute in quotation marks if it is a user-supplied style attribute.

**See**  "Understanding Style References " in SAS Output Delivery System: Procedures Guide

**Example**  "Using User-Defined Attributes" in SAS Output Delivery System: Procedures Guide

"string"

is a quoted character string.
user-defined-format
specifies a format created with the FORMAT procedure.

Restriction  user-defined-format can be specified only for data cells.
Appendixes

Appendix 1

Example Programs

431
Creating the DistrData Data Set

```sas
data distrdata;
 drop n;
 label Normal_x='Normal Random Variable'
 Exponential_x='Exponential Random Variable';
 do n=1 to 100;
 Normal_x=10*rannor(53124)+50;
 Exponential_x=ranexp(18746363);
 output;
 end;
run;
```

Creating the Univ ODS Document

```sas
ods document name=univ;

 title '100 Obs Sampled from a Normal Distribution';
 proc univariate data=distrdata noprint;
 var Normal_x;
 histogram Normal_x /normal(noprint) cbarline=grey name='normal';
 run;

 title '100 Obs Sampled from an Exponential Distribution';
 proc univariate data=distrdata noprint;
 var Exponential_x;
 histogram /exp(fill l=3) cfill=yellow midpoints=.05 to 5.55 by .25
 name='exp';
 run;
```
ods document close;
title;
quit;