
SAS® 9.4 Drivers for JDBC:
Cookbook

SAS® Documentation
January 16, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® 9.4 Drivers for JDBC: Cookbook. Cary, NC: SAS
Institute Inc.

SAS® 9.4 Drivers for JDBC: Cookbook

Copyright © 2013, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P3:jdbcref

Contents

What's New for the SAS 9.4 Drivers for JDBC . v

Chapter 1 / Introduction to the SAS Drivers for JDBC . 1
About the SAS Drivers for JDBC: Cookbook . 1
About the SAS Drivers for JDBC . 2
About the Data That Can Be Accessed with the SAS Drivers for JDBC 3
Transport Layer Security . 3
Accessibility Features in the SAS Drivers for JDBC . 4

Chapter 2 / System Requirements and Installation . 5
System Requirements . 5
Location of the Installation Packages . 6
Setting the CLASSPATH Environment Variable . 6

Chapter 3 / Learning about SAS Connections . 9
What You Need to Know about SAS Connections . 9
JDBC Driver Class Names . 10
Connection Properties for the SAS Drivers . 10
Passing Connection Properties on the JDBC URL . 15

Chapter 4 / Connection Recipes . 19
Accessing Specific Types of Data . 19
Accessing DBMS and SPD Server Data . 20
Accessing a Base SAS Data Set . 24
Using SSPI for Authentication to Access a SAS Workspace Server 27

Chapter 5 / Data Management Recipes . 29
Working with Data . 29
Setting the Fetch Size . 30
Limiting the Number of Retrieved Records . 30
Reading and Writing NULL and Missing Values . 31
Retrieving Formatted Data . 35
Retrieving Raw and Formatted Values Simultaneously . 36

Chapter 6 / Log4j Recipes . 39
Overview of the Logging Feature . 39
How to Specify Logging Options . 40
Logging the First and Last ResultSet.next() Calls . 42
Logging ResultSet.next() Calls to a File . 43

Chapter 7 / Tips and Best Practices . 45
How to Generate a List of Supported Connection Properties 45
Using Timestamps, Dates, and Times . 46
Updating Result Sets . 48
Scrolling and Concurrency . 49
Closing Statement and ResultSet Objects . 49

Connection Pooling . 50

iv Contents

What's New for the SAS 9.4
Drivers for JDBC

Overview
October 2023: The SAS Drivers for JDBC: Cookbook was updated to clarify
availability of Transport Layer Security for SAS 9.4 JDBC drivers.

The SAS 9.4 release of the SAS Drivers for JDBC includes updated Java version
support, a feature to provide logging for the IOM driver, and a feature to provide
improved performance when reading formatted and raw values with the IOM driver.

Supported Java Versions
SAS 9.4 supports Java 6 as the baseline Java version. The SAS Drivers for JDBC
work with Java 6. The drivers are not backward compatible with Java 5.

Log4j Support
The IOM driver is enhanced to support logging with the Apache Log4J package.
Several of the classes and methods are instrumented to support logging. For more
information, see Chapter 6, “Log4j Recipes,” on page 39.

v

Support for Reading Formatted and Raw
Values Simultaneously

Formats are a valuable feature of SAS software. Previous releases of the IOM driver
support an applyformats property so that you can choose whether to retrieve
formatted or raw values. For SAS 9.4, the IOM driver is enhanced with a new class,
MVADualResultSet, that supports retrieving formatted and raw values at the same
time. For more information, see “Retrieving Raw and Formatted Values
Simultaneously” on page 36.

vi What's New for the SAS 9.4 Drivers for JDBC

1
Introduction to the SAS Drivers
for JDBC

About the SAS Drivers for JDBC: Cookbook . 1
How the Cookbook Can Help You Write Applications . 1
What You Should Know in Order to Use This Cookbook . 2

About the SAS Drivers for JDBC . 2

About the Data That Can Be Accessed with the SAS Drivers for JDBC 3
Base SAS Data Sets . 3
SAS Scalable Performance Data Server Data . 3
Third-Party Relational Data . 3

Transport Layer Security . 3

Accessibility Features in the SAS Drivers for JDBC . 4

About the SAS Drivers for JDBC:
Cookbook

How the Cookbook Can Help You Write
Applications

The SAS Drivers for JDBC: Cookbook provides programming recipes for use with
the SAS Drivers for JDBC. The recipes are designed to expedite development
efforts in these ways:

n by providing ready-to-use sample code, as complete programs or as fragments

n by encouraging best practices

1

n by answering frequently asked questions

You can use the recipes directly or modify them to fit your needs.

What You Should Know in Order to Use This
Cookbook

The cookbook assumes that the following statements are true:

n You are familiar with the JDK (Java Development Kit).

n You know how to compile and run Java applications.

n You are familiar with Oracle JDBC API documentation, such as the information
available from http://download.oracle.com/javase/6/docs/technotes/guides/jdbc/.

n Either you know how to start the SAS server that you want to access or the
server has been started for you.

About the SAS Drivers for JDBC
The SAS drivers for JDBC implement data access interfaces that conform to the
JDBC API (application programming interface) from Oracle.

The following drivers are available:

n The SAS/SHARE driver for JDBC supports multi-user, forward-only access to
Base SAS and Scalable Performance Data (SPD) Server data via the
SAS/SHARE server.

n The SAS Integration Technologies IOM driver for JDBC supports multi-user,
scrollable access to Base SAS data via a SAS Workspace Server. If you have
licensed one or more SAS/ACCESS engines, you can also use the IOM driver to
access third-party relational data.

The SAS drivers for JDBC are native-protocol, fully Java technology-enabled
drivers. They directly convert JDBC technology calls into the network protocol that is
used by the underlying data sources. The conversion enables client machines to
make direct calls to the data servers.

Note: These drivers are not thread-safe. Sharing database connections across
Java threads is strongly discouraged.

2 Chapter 1 / Introduction to the SAS Drivers for JDBC

About the Data That Can Be Accessed
with the SAS Drivers for JDBC

Base SAS Data Sets
A Base SAS data set is the proprietary file format for SAS software. Data sets
contain data values that are organized as a table of observations (rows) and
variables (columns). The supported file format is the same as SAS data sets created
by the BASE engine Version 7 and higher. A supported SAS data set uses the
extension .sas7bdat.

SAS Scalable Performance Data Server Data
SPD Server data provides performance for very large amounts of data. The data
source provides threaded I/O processing, using multiple CPUs in order to read data
and deliver it rapidly to applications. Very large files can be processed, because the
data can span volumes but is referenced as a single file. The data in the files is also
partitioned, which allows the data to be read in multiple threads per CPU.

Third-Party Relational Data
Third-party relational database management systems (DBMS) data that can be
accessed includes DB2 and Oracle.

Transport Layer Security
SAS uses Transport Layer Security (TLS) to provide encrypted communication. TLS
is supported for clients of the IOM JDBC driver when TLS is configured for the target
server. TLS is not available for clients of the SAS/SHARE JDBC driver. SPD Server
supports TLS for the SAS client interface only.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure
Sockets Layer (SSL).

Transport Layer Security 3

Accessibility Features in the SAS Drivers
for JDBC

The SAS Drivers for JDBC include accessibility and compatibility features that
improve usability of the product for users with disabilities. These features are related
to accessibility standards for electronic information technology adopted by the U.S.
Government under Section 508 of the U.S. Rehabilitation Act of 1973, as amended.
If you have questions or concerns about the accessibility of SAS products, send
email to accessibility@sas.com.

4 Chapter 1 / Introduction to the SAS Drivers for JDBC

2
System Requirements and
Installation

System Requirements . 5

Location of the Installation Packages . 6

Setting the CLASSPATH Environment Variable . 6

System Requirements
This documentation assumes that you have an existing SAS environment that
includes a local or remote SAS server for accessing data. The server determines
which driver you use in your application as explained in the following table.

Table 2.1 SAS Servers and Their Associated Drivers

SAS Server SAS Driver for JDBC Class Name

SAS Workspace
Server

IOM Driver com.sas.rio.MVADriver

SAS/SHARE
server

SAS/SHARE Driver com.sas.net.sharenet.ShareNetDriv
er

For information about how to start the SAS servers, see the following resources:

5

Table 2.2 Documentation Resources for Starting SAS Servers

Server Documentation Title Section

SAS Workspace
Server

SAS Intelligence Platform:
System Administration Guide

"Using SAS Management
Console to Operate SAS
Servers" (refer to the
information about the SAS
Object Spawner because it
creates the SAS Workspace
Server process)

SAS/SHARE
Server

SAS/SHARE: User's Guide "Starting a Server: A Fast-
Track Approach"

These documents are available from SAS website at http://support.sas.com/
documentation/index.html.

Here are some additional system requirements:

n To access data through the SAS Workspace Server, a SAS Workspace Server
must be licensed and installed.

n To access data through a SAS/SHARE server, a SAS/SHARE server must be
licensed and installed.

n JRE 1.6 or later must be installed.

n A CLASSPATH environment variable must be properly configured.

Location of the Installation Packages
Download the most current versions of the drivers from www.sas.com/apps/
demosdownloads/setupintro.jsp. Click SAS Drivers for JDBC.

Setting the CLASSPATH Environment
Variable

The CLASSPATH is the path that the Java Runtime Environment (JRE) searches in
order to find CLASS, JAR, and other resource files.

You can use one of the following methods to set the CLASSPATH:

n Use the -classpath option with a software development kit (SDK) tool such as
java. This method enables you to set the CLASSPATH for each individual
application.

6 Chapter 2 / System Requirements and Installation

n Set the CLASSPATH environment variable. This recommended method makes
the CLASSPATH available for all applications by default.

When setting the CLASSPATH as an environment variable, follow these guidelines:

n Set the CLASSPATH as an environment variable for the user (not the system).

n Do not forget to precede the CLASSPATH with a period (.). If you leave out the
period and you invoke Java from the same location as your application code, you
get the error: java.lang.NoClassDefFoundError. This requirement applies only
when the JAR file is in the current directory.

n Add the SAS Drivers for JDBC JAR files to the CLASSPATH. You cannot point to
the directory that contains the JAR files.

The following JAR files are required:

o The SAS/SHARE driver needs sas.core.jar and sas.intrnet.javatools.jar.

o The IOM driver needs sas.core.jar and sas.svc.connection.jar. If the Security
Support Provider Interface (SSPI) feature is used, then sas.security.sspi.jar is
also needed.

The complete list of JAR files that are provided with the SAS Drivers for JDBC are
provided in the following table:

icu4j.jar sas.intrnet.javatools.jar
log4j.jar sas.intrnet.javatools.nls.jar
sas.core.jar sas.launcher.jar
sas.core.nls.jar sas.nls.collator.jar
sas.icons.contents.jar sas.security.sspi.jar
sas.icons.jar sas.svc.connection.jar
sas.icons.nls.jar sas.svc.connection.nls.jar

Here are some considerations:

n If there is a conflict, the order in which the JAR files appear on the CLASSPATH
determines which class is used.

n If you change the CLASSPATH, you do not need to reboot. However, if you are
running from a command prompt, you must bring up a new command prompt. If
you are running an applet, you might need to close your web browser and then
restart it.

Setting the CLASSPATH Environment Variable 7

8 Chapter 2 / System Requirements and Installation

3
Learning about SAS Connections

What You Need to Know about SAS Connections . 9

JDBC Driver Class Names . 10

Connection Properties for the SAS Drivers . 10
IOM Driver Properties . 10
SAS/SHARE Driver Properties . 13

Passing Connection Properties on the JDBC URL . 15
What Is the JDBC URL? . 15
What Is the Subprotocol? . 15
What Is the Subname? . 16
The JDBC URL Syntax . 16
Sample Code for Passing Connection Properties on the JDBC URL 16

What You Need to Know about SAS
Connections

In most cases, the SAS Drivers for JDBC can be used to perform tasks as described
in the JDBC specification. The only difference is the connection information. You use
the connection properties in order to control the behavior of the specific driver.

After the connection is made, most of the JDBC code is the same from driver to
driver (assuming that the servers support the desired functionality).

This chapter contains the following connection information that is specific to the SAS
drivers.

n the class names for each driver

n a list of connection properties for each driver

n how to use the JDBC URL when making connections, including sample code

9

JDBC Driver Class Names
JDBC driver class names are used to load the appropriate driver into the Java
session. Class names are unique to the driver. The following table lists the JDBC
driver class names for each SAS driver.

SAS Driver Driver Class Name

IOM driver com.sas.rio.MVADriver

SAS/SHARE driver com.sas.net.sharenet.ShareNetDriver

Connection Properties for the SAS
Drivers

IOM Driver Properties
The following table describes the driver connection properties that are available for
the IOM driver.

Table 3.1 Connection Properties for the IOM Driver (in Alphabetical Order)

Property Description Required

applyFormats Specifies whether column formats are applied when
retrieving Base SAS data. If the applyFormats
connection property is set to true, then formatted data
is returned from the SAS Workspace Server. It is
returned as a String with column formatting (as defined
in the data set) applied.

By default, the applyFormats connection property is set
to false, and formats are not applied when data is
retrieved.

This property needs to be set to true to retrieve special
missing values and invalid values.

No

10 Chapter 3 / Learning about SAS Connections

Property Description Required

dbms Specifies the name of the engine that is used to
connect directly to the underlying third-party relational
DBMS such as ORACLE or MYSQL. The value must be
eight characters padded with trailing blanks. If you do
not set this value, then the default value of sqlview is
used and your Java application can access only Base
SAS data sets.

No

dbmsOptions Specifies valid options for the engine that is specified
by using the dbms connection property. Specify the
options as you would specify the database-definition
arguments when using the PROC SQL CONNECT TO
statement. See the “Pass-Through Facility for
Relational Databases” in SAS/ACCESS for Relational
Databases: Reference.

No

encryptionAlgorithms1 Specifies a comma-separated list of encryption
algorithms in order of preference. Your Java application
uses this list when negotiating encryption algorithms
with the server. List only the algorithms that you want to
use for a particular connection. If no algorithms are
listed, then the server chooses one.

Here are the possible values for this property:

sasproprietary
a stream cipher developed at SAS

rc2
a block cipher developed by RSA Data Security

rc4
a stream cipher developed by RSA Data Security

des
a block cipher known as Data Encryption Standard

tripledes
DES applied three times with separate keys

aes
a block cipher that encrypts data in blocks of 128 bits by
using a 256-bit key

No

encryptionContent Specifies which messages should be encrypted if
encryption is used.

Here are the valid values:

all
encrypt all messages. This value is the default.

authentication
encrypt only messages that contain user name and
password information.

Yes, if encryption
is used

encryptionPolicy Specifies whether your Java application attempts to
negotiate and use an encryption algorithm with the
server and what to do if the negotiations are not
successful.

No

Connection Properties for the SAS Drivers 11

Property Description Required

Here are the possible situations:

n If the value of this property is none, then your Java
application does not attempt to negotiate and use an
encryption algorithm with the server. If the server
requires encryption to be used, then the connection
fails. This value is the default.

n If the value of this property is optional, then your
Java application attempts to negotiate and use an
encryption algorithm with the server. If the
negotiations fail, then your Java application attempts
to continue with an unencrypted connection.
However, the unencrypted connection also fails if the
server requires encryption.

n If the value of this property is required, then your
Java application attempts to negotiate and use an
encryption algorithm with the server. If the
negotiations fail, then the connection fails.

librefs Specifies the name and location of one or more SAS
libraries to assign.

Yes, if the server
does not already
have the librefs
defined and you
are not
accessing data in
the Work libref

password Specifies the password that corresponds to the user
name that you specify by using the user connection
property.

Yes, if the server
is secure

remarks Specifies a Boolean value that determines whether the
IOM driver returns the Base SAS data set label for each
data set in the library that your application accesses. If
the value is true, then the labels are returned. When
this property is set to true, operations that require
reading and returning data set labels can result in poor
performance. This is the case because each data set
must be opened in order to read the label. For example,
if this property is set to true, performance might be
degraded when using the
MVADatabaseMetaData.getTables() method to retrieve
a description of the tables in a catalog. The default
value of this property is false.

No

spn Set the service principal name to use when connecting
to this server (only applicable for SSPI when using
Kerberos or Negotiate).

No

undoPolicyNone Specifies a Boolean value that determines whether
changes to the data are undone when an UPDATE or
INSERT statement generates errors. When the value is
set to true (the default value), the changes are not

No

12 Chapter 3 / Learning about SAS Connections

Property Description Required

undone. When the value is set to false, the server
attempts to undo the changes.

user Specifies a valid user name for the SAS Workspace
Server that you are connecting to.

Yes, if the server
is secure

usesspi Tells the driver whether to use Security Support
Provider Interface (SSPI) or not for authentication:

none
Do not use SSPI. This is the default value.

Kerberos
Use Kerberos authentication.

NTLM
Use Microsoft NT LAN Manager authentication.

negotiate
Enables the client and server to negotiate a site-specific
package to use.

No

1 To use RC2, RC4, DES, TRIPLEDES, or AES, you must license SAS/SECURE on the server and install the Java
component of SAS/SECURE (sasecjav.zip) in your code base. The availability of SAS/SECURE is subject to import and
export restrictions.

SAS/SHARE Driver Properties
The following table describes the driver connection properties that are available for
the SAS/SHARE driver.

Table 3.2 Connection Properties for the SAS/SHARE Driver (in Alphabetical Order)

Property Description Required

appname Specifies the name of the Java applet or application that you
are creating. This name appears in all server log entries that
are related to the applet or application. The value can be a
maximum of eight characters. If the value is longer than eight
characters, then the name is truncated.

Not required, but
provides
information for
the SAS log

dbms Specifies the engine. For example, you can specify spds,
which is the name of the engine that is used to connect
directly to the SPD Server.

The default is sqlview, which specifies to access SAS data
sets.

No

dbmsOptions Specifies valid options for the engine that is specified by using
the dbms connection property. Specify the options as you
would specify the database-definition arguments when using
the PROC SQL CONNECT TO statement. See the “Pass-

No

Connection Properties for the SAS Drivers 13

Property Description Required

Through Facility for Relational Databases” in SAS/ACCESS
for Relational Databases: Reference.

librefs Specifies the name and location of one or more SAS Libraries
to assign.

Yes, if the server
does not already
have the librefs
defined and you
are not
accessing data
in the Work libref

password Specifies the password that corresponds to the user name
that you specify by using the user connection property.
Commonly thought of as the password that is required to
connect to the server, this password is required by the
network protocol.

Yes, if the server
is secure

pt2dbpw Specifies the password that is required by the third-party
relational database management system (DBMS) that is
specified by the dbms connection property. This password is
the SQL pass-through facility password for the SAS/SHARE
server that your Java application connects to. The SQL pass-
through facility enables your application to access third-party
DBMSs. See the “Pass-Through Facility for Relational
Databases” in SAS/ACCESS for Relational Databases:
Reference.

Yes, if the DBMS
connection
requires it

remarks Specifies a Boolean value that determines whether the
SAS/SHARE driver for JDBC returns the Base SAS data set
label for each data set in the library that your application
accesses. If the value is true, then the labels are returned.
When this property is set to true, operations that require
reading and returning data set labels can result in poor
performance. This is the case because each data set must be
opened in order to read the label. For example, if this property
is set to true, performance might be degraded when using
the MVADatabaseMetaData.getTables() method to retrieve a
description of the tables in a catalog. The default value of this
property is false.

No

routerUrl1 Specifies the URL of the Message Router. Use this form:
(routerUrl http://your_server/cgi-bin/shrcgi)

where http://your_server/cgi-bin/shrcgi is the URL of the
Message Router (shrcgi.exe), one of the tunnel feature's
server programs.

No

sapw Specifies the Server Access Password that is required if the
SAS/SHARE server was started with the User Access
Password (UAPW) option. More often, the password
connection property is used instead.

Yes, if the server
is secure

14 Chapter 3 / Learning about SAS Connections

Property Description Required

undoPolicyNone Specifies a Boolean value that determines whether changes
to the data are undone when an UPDATE or INSERT
statement generates errors. When the value is set to true
(the recommended setting), the changes are not undone.
When the value is set to false, the server attempts to undo
the changes.

No

user Specifies a valid user name for the SAS/SHARE server that
you are connecting to.

Yes, if the server
is secure

1 The tunnel feature consists of programs that are installed on your web server. These programs use the Common Gateway
Interface (CGI) to receive requests from the Java applet that is running on a user's browser. The server programs forward
the requests to the SAS server for processing. When the processing is complete, the programs return the results to the
applet.

Passing Connection Properties on the
JDBC URL

What Is the JDBC URL?
The JDBC URL is a method of supplying connection information to the data source
that you are accessing. It is an alternative to providing a connection property list.
The JDBC URL uses the following form:

jdbc:subprotocol:subname

CAUTION
Do not pass properties through the URL if you are creating a connection
Properties object. Properties that are passed through the URL override properties that
are specified in the Properties object used in the DriverManager.getConnection(String
url, Properties info) method. For example, if you use both methods of specifying
properties, a libref that is specified in a URL overrides any libref that is also specified in
the connection Properties object.

What Is the Subprotocol?
The subprotocol is unique to the server. The subprotocols for the SAS servers are
listed in the following table.

Passing Connection Properties on the JDBC URL 15

Table 3.3 Subprotocols

SAS Server Subprotocol

SAS Workspace Server sasiom

SAS/SHARE server sharenet

What Is the Subname?
The subname uses the form //hostname:port. The host name and the port are
unique to your site and should be known by your database administrator. For
example, the following JDBC URL might be used for a SAS Workspace Server with
the host name c123.na.abc.com using port number 5671.

jdbc:sasiom://c123.na.abc.com:5671

The JDBC URL Syntax
Here is the syntax for passing connection properties on the JDBC URL:

"url?[property=value]&[...]"

Here is an example that includes user and password properties:

"jdbc:sasiom://c123.na.abc.com:5671?user=jdoe&password=4ht8d"

Sample Code for Passing Connection Properties on
the JDBC URL

The following sample code passes a libref property on the JDBC URL to a SAS
Workspace Server.

Here are the scenario details:

n Because you are accessing a workspace server, you must use the IOM driver.
The driver class name for the IOM driver is com.sas.rio.MVADriver.

n The host name for the server is c123.na.abc.com, and the port number is 5671.

n The librefs connection property is used to assign a SAS library, which is
c:\sasdata. The first backslash is used to escape the backslash in the actual
location.

n Because the server is password-protected, you specify values for the user and
password connection properties.

import java.sql.*;

16 Chapter 3 / Learning about SAS Connections

public class AccessBase
{
 public static void main(String argv[])
 {
 Connection connection;
 int i;
 Statement statement;
 String queryString = "SELECT sup_id, sup_name " +
 "FROM mySASLib.suppliers ORDER BY sup_name";
 ResultSet result;
 double id;
 String name;

 try{
 //CONNECT TO THE SERVER BY USING A JDBC URL
 Class.forName("com.sas.rio.MVADriver");
 String user = "jdoe";
 String password = "4ht8d";
 connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:5671?" +
 "librefs=MySasLib 'c:\\sasdata'",
 user, password);

 //ACCESS DATA
 statement = connection.createStatement();
 result = statement.executeQuery(queryString);
 while (result.next()) {
 id = result.getDouble(1);
 name = result.getString(2);
 System.out.println(id + " " + name);
 }
 statement.close();
 connection.close();
 }
 catch(Exception e){
 System.out.println("error " + e);
 }
 }
}

Passing Connection Properties on the JDBC URL 17

18 Chapter 3 / Learning about SAS Connections

4
Connection Recipes

Accessing Specific Types of Data . 19

Accessing DBMS and SPD Server Data . 20
Goal . 20
Implementation . 20

Accessing a Base SAS Data Set . 24
Goal . 24
Implementation . 24

Using SSPI for Authentication to Access a SAS Workspace Server 27
Goal . 27
Implementation . 27

Accessing Specific Types of Data
This chapter explains how to write Java applications that access Base SAS data
sets, SPD Server data, and third-party DBMS data. These tasks were chosen
because they have some aspects that are specific to SAS. To access the result set
that is returned by a query, you use standard JDBC syntax.

For more information about the connection properties used in the sample code, see
“Connection Properties for the SAS Drivers” on page 10.

For information about how to control specific aspects of data access, such as
limiting the number of retrieved records, see “Working with Data” on page 29.

19

Accessing DBMS and SPD Server Data

Goal
You want your application to access the following data:

n third-party relational DBMS data that is hosted on a SAS Workspace Server

n SPD Server data that is hosted on a SAS/SHARE server

Implementation

Requirements
Your Java application must meet the following requirements:

n Use the standard JDBC data-access calls.

n Specify the appropriate JDBC driver class name.

n Specify the appropriate host server user ID and host server password.

n Specify the subprotocol and subname for the driver that you are using.

n Use the appropriate dbms and dbmsOptions connection properties to specify the
connection information.

n Use SQL that is specific to the underlying DBMS or the SPD Server.

What Are SAS Engines?
An engine is a component of SAS software that is used to read from or write to a
source of data. There are several types of SAS engines, including engines that
SAS/ACCESS software uses to connect to a variety of data sources other than
Base SAS. Specifically, this recipe discusses how to use SAS/ACCESS engines to
access data that is stored in a third-party DBMS or on an SPD Server.

In order to access the DBMS or SPD Server, the JDBC driver uses the dbms
connection property. The dbms connection property specifies the name of the engine
that is used to connect directly to the underlying DBMS or the SPD Server.
Connecting through an engine enables you to use the SQL syntax of the underlying
DBMS or SPD Server.

20 Chapter 4 / Connection Recipes

Valid dbms values include oracle and db2 for use with the IOM driver and spds for
use with the SAS/SHARE driver.

After you use the dbms property to specify a DBMS engine or the SPD Server
engine, you use the dbmsOptions property to specify the engine-specific options.
Valid dbmsOptions include user, path, and dsn for DBMS engines, and host and
serv for the SPD Server engine.

Note: The JDBC drivers do not process the dbms and dbmsOptions values. The
drivers simply pass the values down to the server.

More about Engine-Specific Options
For a DBMS, engine-specific options are usually the same as the database-
connection-arguments for the CONNECT statement, which is part of the
SAS/ACCESS syntax for the pass-through facility for relational databases. For more
information, see “DBMS-Specific Reference” in SAS/ACCESS for Relational
Databases: Reference.

For information about SPD Server options, see the SAS Scalable Performance Data
Server: User's Guide.

Assigning Librefs to a DBMS or SPD
Server
You can also assign a libref to a DBMS or the SPD Server. However, if you use a
libref, then the connection is implicit. An implicit connection uses SAS SQL syntax
instead of the underlying SQL syntax. In addition, a connection that is made by
using a libref does not support all of the SQL procedure functionality.

Sample Code for Accessing an Oracle
DBMS on a SAS Workspace Server
In this example, you are accessing an Oracle DBMS that is hosted on a SAS
Workspace Server.

Here are the scenario details:

n Because you are accessing a SAS Workspace Server, you must use the IOM
driver. The driver class name for the IOM driver is com.sas.rio.MVADriver.

n Because the workspace server is password-protected, you specify values for the
user and password connection properties. These credentials are authenticated
to SAS, as opposed to credentials authenticated to the DBMS.

n You identify the Oracle DBMS by specifying the appropriate values for the dbms
and the dbmsOptions connection properties. The dbmsOptions property is the

Accessing DBMS and SPD Server Data 21

object to use for identifying the user and password credentials authenticated by
the DBMS.

n The host name for the workspace server is c123.na.abc.com, and the port
number is 8591.

import java.sql.*;
import java.util.Properties;

public class iomAccessDbms
{
 public static void main(String argv[])
 {
 Connection connection;
 Properties props;
 int i;
 Statement statement;
 String queryString = "SELECT sup_id, sup_name FROM suppliers " +
 "ORDER BY sup_name";
 ResultSet result;
 double id;
 String name;

 try {
 //CONNECT TO THE SERVER BY USING A CONNECTION PROPERTY LIST
 Class.forName("com.sas.rio.MVADriver");
 props = new Properties();
 props.setProperty("user","oracleUserJdoe"); /* user acct for
SAS */
 props.setProperty("password","oracle2ytr8"); /* passwd for SAS
acct */
 props.setProperty("dbms", "ORACLE");
 props.setProperty("dbmsOptions","user='oracleAdminRsmith' " +
 "password='admin3yr8' path='oraclev7'");

 connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:8591",props);

 //ACCESS DATA
 statement = connection.createStatement();
 result = statement.executeQuery(queryString);
 while (result.next()){
 id = result.getDouble(1);
 name = result.getString(2);
 System.out.println(id + " " + name);
 }
 statement.close();
 connection.close();
 }
 catch(Exception e){
 System.out.println("error " + e);
 }
 }
}

You can also use the JDBC URL to specify connection properties as shown in the
following example. Note that the credentials oracleUserJdoe and oracle2ytr8 are

22 Chapter 4 / Connection Recipes

authenticated by SAS. The credentials in the dbmsOptions property are
authenticated by the database.

connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:8591?
user=oracleUserJdoe&password=oracle2ytr8" +
 "&dbms=ORACLE&dbmsOptions="user='oracleAdminRsmith'
password='admin3yr8' " +
 "path='oraclev7'"

Sample Code for Accessing SQL Server
and DB2 Data on a SAS Workspace
Server
The following table contains sample connection code for using the IOM driver to
access other third-party relational DBMS data. User-supplied values such as
passwords and user IDs are italicized. Note that SAS/ACCESS must be configured
on the server that receives the request.

Table 4.1 Sample Connection Code for Using the IOM Driver to Access DBMS Data

Data Source Sample Connection Code

OLE DB Connection to
Microsoft SQL Server

properties.setProperty("dbms","oledb");
properties.setProperty("dbmsOptions","provider='sqloledb' user='dbadmin'
password='password1' datasource='sql1'");

DB2 properties.setProperty("dbms","DB2");
properties.setProperty("dbmsOptions","user='dbadmin'
password='password1' dsn='myDSN'");

Sample Code for Accessing SPD Server
Data on a SAS/SHARE Server
Only the SAS/SHARE driver for JDBC supports access to SPD Server data via the
dbms and dbmsOptions connection properties. The driver class name for the
SAS/SHARE driver for JDBC is com.sas.net.sharenet.ShareNetDriver. You can use
the following sample connection code:

properties.setProperty("dbms", "SPDS");
properties.setProperty("dbmsOptions", "DBQ='qabig1'
HOST='xyz.abc.def.com' " +
 "SERV='5190'");

Accessing DBMS and SPD Server Data 23

Accessing a Base SAS Data Set

Goal
You want to access a Base SAS data set that is hosted on a SAS Workspace or
SAS/SHARE server.

Implementation

Requirements
Your Java application must meet the following requirements:

n Use the standard JDBC data-access calls.

n Specify the appropriate JDBC driver class name.

n Specify the appropriate host server user ID and host server password.

n Specify the subprotocol and subname for the driver that you are using.

n Use the librefs connection property in order to assign a SAS library.

n Prepend table names with the libref that identifies the SAS library.

What Are SAS Libraries?
SAS organizes tables in libraries. Before you can use a SAS library, you must tell
SAS where it is. One way to identify the library is to use a libref, which is a short
name (or alias) for the full physical name of the library. In the SAS programming
language, you use a LIBNAME statement in order to define the libref. In your Java
application, you use the librefs connection property in order to assign the SAS
library.

For example, you have a Base SAS data set named suppliers.sas7bdat that is
stored in a directory named c:\sasdata on a SAS Workspace Server. The following
line of code shows how you set the librefs connection property in order to define
mySasLib.

props.setProperty("librefs", "mySasLib 'c:\\sasdata'");

Often, librefs are already defined for SAS servers, which means you do not need to
set the librefs property.

24 Chapter 4 / Connection Recipes

You write your Java application using standard SQL. However, you must prepend a
libref to the name of the table that you want to access. For example, after you define
mySasLib, you can issue the following query in order to access the data in
suppliers.sas7bdat.

String queryString = "SELECT * FROM mySasLib.suppliers";

For more information about SAS libraries, librefs, and the LIBNAME statement, see
SAS Language Reference: Dictionary.

Note: For information about how to access a Base SAS data set without using a
LIBNAME statement, see “SAS Libraries: Tools for Managing Libraries” in SAS
Language Reference: Concepts.

Sample Code for Accessing a Base SAS
Data Set
In this example, you use the IOM driver to access a Base SAS data set in a library
named mySasLib.

Here are the scenario details:

n Because you are accessing a SAS Workspace Server, you must use the IOM
driver. The driver class name for the IOM driver is com.sas.rio.MVADriver.

n Because the workspace server is password-protected, you specify values for the
user and password connection properties.

n The librefs connection property is used to assign the SAS library located in
c:\sasdata.

n The host name for the workspace server is c123.na.abc.com, and the port
number is 8591.

TIP To access the same data set on a SAS/SHARE server, use the
SAS/SHARE driver and modify the code to use
com.sas.net.sharenet.ShareNetDriver as the driver class name. Set
sharenet as the URL subprotocol name, and the correct port number for the
server.

import java.sql.*;
import java.util.Properties;

public class accessSASData
{

 public static void main(String argv[])
 {
 Connection connection;
 Properties props;
 int i;
 Statement statement;

Accessing a Base SAS Data Set 25

 String queryString = "SELECT sup_id, sup_name " +
 "FROM mySasLib.suppliers ORDER BY sup_name";
 ResultSet result;
 double id;
 String name;

 try {
 //CONNECT TO THE SERVER BY USING A CONNECTION PROPERTY LIST
 Class.forName("com.sas.rio.MVADriver");
 props = new Properties();
 props.setProperty("user","jdoe");
 props.setProperty("password", "4ht8d");
 props.setProperty("librefs", "mySasLib c:\\sasdata';");

 connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:8591", props);

 //ACCESS DATA
 statement = connection.createStatement();
 result = statement.executeQuery(queryString);
 while (result.next()){
 id = result.getDouble(1);
 name = result.getString(2);
 System.out.println(id + " " + name);
 }
 statement.close();
 connection.close();
 }
 catch(Exception e){
 System.out.println("error " + e);
 }
 }
}

You can also use the JDBC URL to specify connection properties as shown in the
following example:

connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:8591?user=jdoe&password=4ht8d" +
 "&librefs=MySasLib 'c:\\sasdata'");

TIP Separate multiple libraries with a semicolon and enclose the paths
within parentheses, as shown here:

properties.setProperty("librefs",
 "(mySasLib 'c:\\libraryFolder';mySasLib2 'c:\\libraryFolder2')");

26 Chapter 4 / Connection Recipes

Using SSPI for Authentication to Access
a SAS Workspace Server

Goal
You want to use SSPI for an Integrated Windows Authentication (IWA) connection
from a client program running on a Windows host to a SAS Workspace Server
running on Windows. A program that uses SSPI does not store credentials in the
source code or transmit credentials over the network. The Windows identity of the
user account that is running the client program is propagated to the SAS server that
the client program connects to. SSPI is available only when the client host and the
server are both Windows hosts in the same domain or in domains that trust each
other.

Implementation

Requirements
1 Ensure that the SAS ObjectSpawner for the workspace server is configured with

the -sspi option. Check the ObjectSpawner.bat file for this option. For more
information about the -sspi option, see "Spawner Invocation Options" in SAS
Intelligence Platform: Application Server Administration Guide.

2 Make the sspiauth.dll file available to the JVM that is running the client program.
An sspiauth.dll is available with a SAS Foundation installation such as
C:\Program Files\SASHome\SASFoundation\9.4\core\sasext. This file must
be available to the JVM within the java.library.path system property. One method
of providing access to the library is to have the dll in the same directory that the
JVM runs. Another method is to ensure that the file is available in the PATH
environment variable.

Sample Code
In this example, the IOM driver is used to return the number of observations stored
in the SASHELP shoes SAS data set.

import java.sql.*;
import java.util.Properties;

Using SSPI for Authentication to Access a SAS Workspace Server 27

public class SSPIAuthentication
{

 public static void main(String argv[])
 {
 Connection connection;
 Properties props;
 Statement statement;
 String queryString = "SELECT COUNT(*) " +
 "FROM sashelp.shoes";
 ResultSet result;
 double rowcount;

 try {
 //CONNECT TO THE SERVER BY USING A CONNECTION PROPERTY LIST
 Class.forName("com.sas.rio.MVADriver");
 props = new Properties();
 props.setProperty("usesspi","negotiate");
 /*
 * properties user and password are not specified because
 * SSPI is providing the identity to the workspace server
 */

 connection = DriverManager.getConnection(
 "jdbc:sasiom://c123.na.abc.com:8591", props);

 //ACCESS DATA
 statement = connection.createStatement();
 result = statement.executeQuery(queryString);
 while (result.next()){
 rowcount = result.getDouble(1);
 System.out.println("Number of obs in sashelp.shoes: " +
rowcount);
 }
 statement.close();
 connection.close();
 }
 catch(Exception e){
 System.out.println("error " + e);
 }
 }
}

28 Chapter 4 / Connection Recipes

5
Data Management Recipes

Working with Data . 29

Setting the Fetch Size . 30
Goal . 30
Implementation . 30

Limiting the Number of Retrieved Records . 30
Goal . 30
Implementation . 31

Reading and Writing NULL and Missing Values . 31
Goal . 31
Implementation . 32

Retrieving Formatted Data . 35
Goal . 35
Implementation . 35
See Also . 36

Retrieving Raw and Formatted Values Simultaneously . 36
Goal . 36
Implementation . 36
Accessing Wide Tables . 37

Working with Data
This chapter explains how to perform tasks related to limiting retrieved data,
managing missing values, and applying formats. These tasks were chosen because
they have some aspects that are specific to SAS.

To perform a task that is not included in this chapter, use Oracle JDBC API
documentation along with the connection recipes in “Accessing Specific Types of
Data” on page 19.

For more information about the connection properties used in the sample code, see
“Connection Properties for the SAS Drivers” on page 10.

29

Setting the Fetch Size

Goal
You want your application to generate a result set for optimal performance and
memory usage.

Implementation
For the IOM driver, the default fetch size is calculated dynamically unless the fetch
size is set manually with the setFetchSize method. The getFetchSize method
returns 0 to indicate the dynamic sizing. The calculation is performed at run time by
determining the width of a row in the result set, and then determining how many
rows can be stored in a 16-kilobyte buffer.

This value works well in most cases, and also takes into consideration data sources
that have either narrow rows (few columns or short CHAR columns) or wide rows
(many columns or long CHAR columns). For data sources with narrow rows, the
result set can hold many rows to improve performance. For data sources with wide
rows, the result set holds fewer rows so that memory consumption does not reduce
performance. Use the setFetchSize method to override this behavior.

The SAS/SHARE driver uses a default fetch size of 10 rows. This value can be
changed with the setFetchSize method, but this driver does not perform a dynamic
calculation for the optimal fetch size.

Limiting the Number of Retrieved
Records

Goal
You want your application to limit the number of records that are retrieved from a
data source.

30 Chapter 5 / Data Management Recipes

Implementation
To limit the size of a result set, you can use either SAS syntax or standard JDBC
syntax. Because there are implementation differences between the two types of
syntax, you should use the syntax that best meets your needs.

The sample code in the table can be used to produce a result set that contains a
maximum of 20 rows.

Table 5.1 Two Ways to Limit a Result Set

Method Sample Code Action

SAS syntax1 stmt.executeUpdate("reset outobs=20") n Limits the number of rows that the
server sends back.

n The limit remains for the duration of
the connection, as long as the limit is
not changed with subsequent code.

Standard JDBC
syntax

stmt.setMaxRows(20) n Limits the number of rows that the
client asks for.

n The limit remains for the duration of
the statement, as long as the limit is
not changed with subsequent code.

1 Simple queries of the form SELECT * FROM table are not affected by the OUTOBS= option. You must explicitly select the
columns or provide a WHERE clause.

Note: In addition, standard JDBC syntax is more portable than SAS syntax.

Reading and Writing NULL and Missing
Values

Goal
You want to read and write null and missing values.

Note: SAS uses libraries to organize collections of tables. In most cases, when a
table name is used in an SQL string, the table name must be prefixed by a library
name. If the SAS Work library is being used, the prefix is not needed. The examples

Reading and Writing NULL and Missing Values 31

in this recipe assume that the Work library is being used. For more information
about SAS libraries, see “What Are SAS Libraries?” on page 24.

Implementation

What Are NULL and Missing Values?
The SAS/SHARE server and the SAS Workspace Server do not explicitly support
ANSI SQL NULL values. Instead, they support a SAS concept called missing
values. Although ANSI SQL NULL values are sometimes equivalent to SAS missing
values, the two concepts are not exactly the same.

Here are some of the differences:

n Users can specify many types of SAS missing values for numeric data. An ANSI
SQL NULL represents nonexistent data in only one way.

n If a NULL value is written to a character type column, both the SAS/SHARE
driver and the IOM driver interpret the value as a SAS missing value and return
FALSE for wasNull.

Note: If a numeric type is set to NULL, wasNull returns TRUE as expected.

Note: For more information about SAS missing values, see “Definition of Missing
Values” in SAS Language Reference: Concepts.

Writing SQL NULL Values
The following code creates a sample table named books and inserts two SQL NULL
values. The SAS/SHARE server and the SAS Workspace Server store these types
of values as SAS missing values.

stmt.executeUpdate("CREATE TABLE books (c1 varchar(32), c2 double
precision)");
stmt.executeUpdate("INSERT INTO books VALUES(null, null)");

The following code stores SQL NULL values by using a prepared statement.

stmt.executeUpdate("CREATE TABLE books (c1 varchar(32), c2 double
precision)");
PreparedStatement ps =
 connection.prepareStatement("INSERT INTO books VALUES(?,?)");
ps.setNull(1, Types.VARCHAR);
ps.setNull(2, Types.DOUBLE);
ps.executeUpdate();

32 Chapter 5 / Data Management Recipes

Writing SAS Missing Values
The following code stores SAS missing values. Note that there is little reason to
write missing values to character columns because writing null values is more
portable. Writing missing values to numeric type columns in SAS data sets might be
appropriate if the data sets are used for reporting and the type of missing value is
important.

stmt.executeUpdate("CREATE TABLE books (c1 varchar(32), c2 double
precision)");
stmt.executeUpdate("INSERT INTO books VALUES(' ', .a)"); /* NOTE:
just .a */

The following code stores missing values by using a prepared statement.

stmt.executeUpdate("CREATE TABLE books (c1 varchar(32), c2 double
precision)");
PreparedStatement ps =
 connection.prepareStatement("INSERT INTO books VALUES(?, ?");
ps.setString(1, " ");
ps.setObject(2, ".a", Types.DOUBLE);
ps.executeUpdate();

Missing character values are represented by a single blank. Numeric values can
have special missing value representations. A special missing value enables you to
represent different categories of missing data by using the letters A-Z or an
underscore.

Note: For more information about special missing values, see “Special Missing
Values” in SAS Language Reference: Concepts.

Reading Null and Missing Values
The following table describes the values that are returned by the SAS drivers
depending on the server, column type, and call.

Table 5.2 Values That Are Returned by the SAS Drivers for JDBC Depending on the
Server, Column Type, and Call

Call SAS/SHARE Driver IOM Driver

Strings stored as NULL

getString, getObject " "1 " "1

wasNull false2 false2

Strings stored as missing

Reading and Writing NULL and Missing Values 33

Call SAS/SHARE Driver IOM Driver

getString, getObject " " " "

wasNull false false

Numeric stored as NULL

getString, getObject null null

getDouble, getFloat, getInt, and so
on

0.0 0.0

wasNull true true

Numeric stored as missing

getString, getObject null null

getDouble, getFloat, getInt, and so
on

0.0 0.0

wasNull true true

1 The SAS/SHARE and IOM drivers return the nonstandard empty string " ". This empty string is
padded with spaces to the size of the column width.

2 The SAS/SHARE and IOM drivers return false. Some users might not expect false as a return value.

Missing Values and SAS SQL
As indicated in the previous sections, the Java method wasNull returns true against
any numeric type column that holds an ANSI SQL NULL value or a SAS missing
value. Also indicated in the previous sections, wasNull unexpectedly returns false
against character type columns when reading SAS data sets. If there is a need to
detect null values in character columns under these conditions, you can use the
SAS SQL "IS [NOT] MISSING" extension to the SQL language. You you can also
trim the value and test against " ".

create table books (c1 varchar(32), c2 double precision);
insert into books values (null, null);
select count(*) from books where trim(c1) = " "; /* returns 1 */
select count(*) from books where c1 is missing; /* also returns 1 */

34 Chapter 5 / Data Management Recipes

Retrieving Formatted Data

Goal
You want your application to retrieve data from a SAS Workspace Server with
formatting applied as it is stored in the Base SAS data set.

Note: The SAS/SHARE driver does not support a connection property that controls
formats. However, the drivers do support formatting in the SQL string.

Implementation

Sample Code for Retrieving Formatted
Data
Formats can be associated with each column of a SAS data set. When reading SAS
data sets with the IOM driver, you can control whether those formats are applied.

By default, the formats associated with a Base SAS data set are not applied when
data is retrieved. In order to apply SAS formatting, you set the applyFormats
connection property to true. The code looks like this:

properties.setProperty("applyFormats", "true");

When applyFormats is set to true, all data is returned from the server as a string
with column formatting applied. To access the data, you use the getString method
on the result set. For example, assume that a column with the format "5." has a
value of 15.2854. If applyFormats is set to true, then calling getString for that value
returns "15".

How Formats Are Determined Regardless
of the Property Setting
Regardless of the applyFormats setting, the formats that are associated with a SAS
data set determine what column type is returned by the driver.

Retrieving Formatted Data 35

When a ResultSet is created from a query, the driver obtains column metadata
information from SAS. From this metadata, the driver uses parts of the column
format to make a type determination. For example, if the format is DATEx. or
DATETIME, then the type is considered to be an SQL DATE (or TIMESTAMP). If the
format is DOLLAR12., then the type is considered to be SQL INT. However, when
applyFormats is set to true, the returned data type is java.sql.Types.VARCHAR
because SAS formats the numeric data as text.

See Also
“Retrieving Raw and Formatted Values Simultaneously” on page 36

Retrieving Raw and Formatted Values
Simultaneously

Goal
You want to retrieve data from a SAS Workspace Server with the raw values and
also with formatting applied as it is stored in the Base SAS data set.

Implementation
SAS provides a com.sas.rio.MVADualResultSet class that provides simultaneous
access to raw and formatted values. You can simulate the same behavior by making
two queries to the server, one with the applyFormats connection property set to
false, and one with the property set to true. However, this class is able to perform
the work of those two queries in a single query. Because the class retrieves
formatted values and raw data, it disregards the applyFormats connection property.
The MVADualResultSet class does not permit updates to data.

An MVADualResult class can be created by direct access to a SAS data set only. It
cannot be created with an SQL SELECT statement.

Using the getString() method with the MVADualResultSet returns the server-side
formatted value. Other methods, such as getObject(), return the raw value.

import java.sql.*;
import java.util.Properties;

import com.sas.rio.MVADualResultSet;
import com.sas.rio.MVAStatement;

public class DualExample {

36 Chapter 5 / Data Management Recipes

 public static void main(String argv[]) {
 try {
 Class.forName("com.sas.rio.MVADriver");
 Properties props = new Properties();
 props.put("user", "sasdemo");
 props.put("password", "secret");

 Connection connection = DriverManager.getConnection(
 "jdbc:sasiom://hostname.example.com:8591",
 props
);

 MVAStatement statement = (MVAStatement)
connection.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY
);

 MVADualResultSet resultSet = statement.createDualResultSet(
 "SASHELP", /* libref */
 "SHOES", /* table */
 null, /* String[] for READ, WRITE or ALTER passwords */
 null /* String, data set options such as
"WHERE=(region='Asia')" */
);

 while (resultSet.next()) {
 /* this table has 7 columns */
 for (int i = 1; i <= 7; ++i) {
 /* print the formatted value with getString() */
 System.out.print(resultSet.getString(i) + "\t");

 /* print the raw data with getObject(), getInt(), and so on
*/
 System.out.print(resultSet.getObject(i) + "\t");
 }
 System.out.println();
 }
 } catch (Exception e) {
 /* ignore for sample code */
 }
 }
}

Accessing Wide Tables
The MVADualResultSet class returns the raw and formatted values of all the
columns in a table. If you want to use all the columns, using this class reduces the
number of requests that are sent to the server and therefore improves performance.
However, if you are interested in a subset of the columns only, you might not want to
use the MVADualResultSet class because it returns more data than you need.

Retrieving Raw and Formatted Values Simultaneously 37

38 Chapter 5 / Data Management Recipes

6
Log4j Recipes

Overview of the Logging Feature . 39
Supported Drivers and Features . 39
Logging Levels and Driver Classes . 40

How to Specify Logging Options . 40
Using a Properties File . 40
Using an XML File . 41

Logging the First and Last ResultSet.next() Calls . 42
Goal . 42
Implementation . 42

Logging ResultSet.next() Calls to a File . 43
Goal . 43
Implementation . 43

Overview of the Logging Feature

Supported Drivers and Features
Only the IOM driver (com.sas.rio.MVADriver) supports log4j logging.

The driver supports dynamic logging configuration changes. In order to change the
logging configuration, you need to modify (or replace) the log4j configuration file and
the create a new instance of the MVAStatement class. Every time a new
MVAStatement instance is created, it reads the log4j configuration file. (The
MVAStatement class implements the java.sql.Statement interface.) When you
specify the -Dlog4j.configuration JVM option, be sure to use a URL to reference the
file. You can use the file protocol to reference the file as shown in the following
example:

java -Dlog4j.configuration=file:////tmp/log4j.xml Program

39

Logging Levels and Driver Classes
The logging implementation supports dynamic logging level changes. The driver
supports the OFF, ERROR, INFO, and DEBUG levels.

Table 6.1 Logging Classes, Methods, and Levels

Class Method Logging Level

com.sas.rio.MVADriver Constructor and connect INFO

com.sas.rio.MVAConnection Constructor, close, commit,
createStatement, prepareCall,
prepareStatement, and
rollback

INFO

Setting the logging level
to DEBUG logs all
connection parameters.

com.sas.rio.MVAPreparedStatement Constructor, close, execute,
executeQuery, and
executeUpdate

INFO

com.sas.rio.MVACallableStatement Constructor, close, execute,
executeQuery, executeUpdate

INFO

com.sas.rio.MVAStatement Constructor, close, addBatch,
executeBatch, execute,
executeQuery, and
executeUpdate

INFO

com.sas.rio.MVAResultSet Constructor, and close INFO

Setting the logging level
to DEBUG logs each call
to next().

How to Specify Logging Options

Using a Properties File
The following example shows how to set logging level for the MVAConnection and
MVAPreparedStatement classes to DEBUG.

40 Chapter 6 / Log4j Recipes

Example Code 6.1 Sample Properties Configuration File

http://logging.apache.org/log4j/docs/manual.html
log4j.rootCategory=ERROR, A1
log4j.logger.com.sas.rio.MVAConnection=DEBUG
log4j.logger.com.sas.rio.MVAPreparedStatement=DEBUG
log4j.additivity.com.sas=false
#
A1 is a ConsoleAppender
#
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-5p [%t] - %m%n
#
A2 is a FileAppender
#
log4j.appender.A2=org.apache.log4j.FileAppender
log4j.appender.A2.layout=org.apache.log4j.PatternLayout
log4j.appender.A2.layout.ConversionPattern=%-5p [%t] - %m%n
log4j.appender.A2.file=/tmp/sample.log
log4j.appender.A2.append=true

To use the configuration file from the command line, use a syntax that is similar to
the following example:

java -Dlog4j.configuration=file:////logging.properties Program

Using an XML File
The following example shows how to set logging level for the MVAConnection to
DEBUG.

Example Code 6.2 Sample XML Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="A1" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="[%c] %-5p %m%n" />
 </layout>
 </appender>

 <category additivity="false" name="com.sas.rio.MVAConnection">
 <priority value="DEBUG"/>
 <appender-ref ref="A1"/>
 </category>

 <root>
 <level value="ERROR"/>
 <appender-ref ref="A1"/>
 </root>
</log4j:configuration>

How to Specify Logging Options 41

To use the configuration file from the command line, use a syntax that is similar to
the following example:

java -Dlog4j.configuration=////tmp/log4j.xml Program

Logging the First and Last
ResultSet.next() Calls

Goal
You want to log records when the IOM driver retrieves the first row from a ResultSet
and when it retrieves the last row from a ResultSet.

Implementation
The following log4j configuration file sets the logging level to INFO for the
com.sas.rio.MVAResultSet class. At that logging level, the driver generates log
records for the first and last call to ResultSet.next().

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <!- http://logging.apache.org/log4j/docs/manual.html -->
 <appender name="A1" class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="[%c] %-5p %m%n" />
 </layout>
 </appender>

 <appender name="SASConsoleAppender"
class="org.apache.log4j.ConsoleAppender">
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="%d{yyyy-MM-dd'T'HH:mm:ss,SSS} %-5p [%t] - %m%n" />
 </layout>
 </appender>

 <category additivity="false" name="com.sas.rio.MVAResultSet">
 <level value="INFO"/>
 <appender-ref ref="SASConsoleAppender"/>
 </categoryt>

 <root>

42 Chapter 6 / Log4j Recipes

 <level value="ERROR"/>
 <appender-ref ref="A1"/>
 </root>
</log4j:configuration>

The log records resemble the following output:

[com.sas.rio.MVAResultSet] INFO MVAResultSet()
[com.sas.rio.MVAResultSet] INFO MVAResultSet() Concurrency=CONCUR_READ_ONLY
[com.sas.rio.MVAResultSet] INFO MVAResultSet() Cursor=TYPE_SCROLL_INSENSITIVE
[com.sas.rio.MVAResultSet] INFO MVAResultSet.next(first) # 1
[com.sas.rio.MVAResultSet] INFO MVAResultSet.next(last) # 395

Logging ResultSet.next() Calls to a File

Goal
You want to log records for each call to the ResultSet.next() method for the IOM
driver to a file.

Implementation
The sample log4j configuration file uses a log4j filter to select the ResultSet.next()
calls and store those log records in a file.

Note: Because this sample uses a filter, you must use an XML configuration file.
The log4j properties file format does not support filters.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j='http://jakarta.apache.org/log4j/'>

 <!- http://logging.apache.org/log4j/docs/manual.html -->
 <appender name="A1" class="org.apache.log4j.FileAppender">
 <param name="append" value="true"/>
 <param name="file" value="/tmp/nextcalls.log"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="[%c] %-5p %m%n" />
 </layout>
 <filter class="org.apache.log4j.varia.StringMatchFilter">
 <param name="StringToMatch" value="MVAResultSet.next"/>
 <param name="AcceptOnMatch" value="true"/>

Logging ResultSet.next() Calls to a File 43

 </filter>
 </appender>

 <category additivity="false" name="com.sas.rio.MVAResultSet">
 <level value="DEBUG"/>
 <appender-ref ref="A1"/>
 </category>

 <root>
 <level value="ERROR"/>
 <appender-ref ref="A1"/>
 </root>
</log4j:configuration>

The log records resemble the following output:

INFO [main] - MVAResultSet()
INFO [main] - MVAResultSet() Concurrency=CONCUR_READ_ONLY
INFO [main] - MVAResultSet() Cursor=TYPE_SCROLL_INSENSITIVE
INFO [main] - MVAResultSet.next(first) # 1
DEBUG [main] - MVAResultSet.next # 2
DEBUG [main] - MVAResultSet.next # 3
…
INFO [main] - MVAResultSet.next(last) # 395

44 Chapter 6 / Log4j Recipes

7
Tips and Best Practices

How to Generate a List of Supported Connection Properties . 45

Using Timestamps, Dates, and Times . 46
Understanding SAS Dates . 46
Inserting Timestamps, Dates, and Times . 46
Creating Timestamp, Date, and Time Columns . 47

Updating Result Sets . 48

Scrolling and Concurrency . 49

Closing Statement and ResultSet Objects . 49

Connection Pooling . 50
About Support for Connection Pooling . 50
Example: Configuring JBoss . 50

How to Generate a List of Supported
Connection Properties

You can use connection properties in order to control the behavior of a SAS driver.
To determine which connection properties are supported by a specific SAS driver for
JDBC, you write code that iterates through the DriverPropertyInfo that is returned
from the Driver.getPropertyInfo method. The following sample code shows how this
task is done.

String url = "jdbc:subprotocol://hostName:port";
Driver driver = null;
DriverPropertyInfo [] driverProperties;
driver = DriverManager.getDriver(url);
driverProperties = driver.getPropertyInfo(url, new Properties());
for (int i = 0; i < driverProperties.length; i++) {
 System.out.println(driverProperties[i].name);
}

45

Note: For information about the subprotocol, hostName, and port, see “Passing
Connection Properties on the JDBC URL” on page 15.

Using Timestamps, Dates, and Times

Understanding SAS Dates
When you compare date, time, and datetime values in SAS data sets, you must
consider the following:

n A SAS time value is the number of seconds that have elapsed since the current
day began. That is, 0 is 00:00:00 or 12:00:00 a.m., and 86399 is 11:59:59 p.m.

n The drivers return an error for time values that are less than 0 or greater than
86399 (the last second of the day).

n A SAS date value is the number of days that have elapsed since January 1,
1960, GMT. That is, 0 is 01jan1960, and -1 is 31dec1959. The SAS date value
can be read with the getDouble method.

n A Java date value is the number of milliseconds that have elapsed since January
1, 1970, GMT. The millisecond value can be read by calling getDate().getTime().

n A SAS datetime value is the number of seconds that have elapsed since
midnight on January 1, 1960. That is, 0 is 01jan1960:00:00:00, and -1 is
31dec1959:11:59:59. The SAS datetime value can be read with the getDouble
method.

n A Java timestamp records the number of milliseconds that have elapsed since
January 1, 1970, GMT and a separate nanoseconds field. The millisecond value
can be read by calling getTimestamp().getTime().

Inserting Timestamps, Dates, and Times
The drivers accept the Date, Time, and Timestamp classes from the java.sql
package and the JDBC escape sequences for the same types.

The following code fragment illustrates using the time-related classes in the java.sql
package with a PreparedStatement:

// stmt is a Statement object created with Connection.createStatement()
stmt.executeUpdate(
 "create table sample.timeexamples (c1 date, c2 time, c3 timestamp)"
);

// Use the time-related classes in the java.sql package
// with a PreparedStatement

46 Chapter 7 / Tips and Best Practices

java.sql.Date d = new java.sql.Date(System.currentTimeMillis());
java.sql.Time t = new java.sql.Time(System.currentTimeMillis());
java.sql.Timestamp ts = new java.sql.Timestamp(System.currentTimeMillis());

PreparedStatement ps = c.prepareStatement("insert into sample.timeexamples
values (?, ?, ?)");
ps.setDate(1, d);
ps.setTime(2, t);
ps.setTimestamp(3, ts);
ps.executeUpdate();

// Let the classes in the java.sql package perform the
// JDBC escape sequences
ps.setDate(1, java.sql.Date.valueOf("2010-06-10"));
ps.setTime(2, java.sql.Time.valueOf("09:17:00"));
ps.setTimestamp(3, java.sql.Timestamp.valueOf("2010-06-10 09:17:00"));
ps.executeUpdate();

ps.close();

Alternatively, the JDBC escape syntax can be coded manually to insert timestamps
(keyword ts), dates (keyword d), and times (keyword t). The following code
fragment illustrates using the JDBC escape sequence with timestamp.

Timestamp ts = new Timestamp(System.currentTimeMillis());

// By using an escape clause with curly braces and the ts keyword,
// the following code is portable across the SAS Drivers for JDBC.
String myDate = new String ("{ts '" + ts.toString() + "'}");
String query =
 "INSERT INTO work.testtable (index, ts, name) VALUES ("
 + i
 + ", "
 + myDate
 + ", "
 + n
 + ")";

Creating Timestamp, Date, and Time Columns
SAS uses double precision numbers to store all numeric data, including time-related
values. In order to determine how to parse and present the values, SAS uses
formats and informats. When a CREATE TABLE statement is sent to a SAS server,
the time-related column definitions are parsed, and the appropriate formats are
associated with the column.

The following table identifies the formats that are associated with the time-related
data types:

Using Timestamps, Dates, and Times 47

Table 7.1 CREATE TABLE Data Types and SAS Data Types

CREATE TABLE Data
Type Name Java Data Type SAS Format

date java.sql.Date DATE9.

time java.sql.Time TIME8.

timestamp java.sql.Timestamp DATETIME19.2

The data in the previous table can be helpful for readers who are familiar with SAS
programming to understand how SAS interprets the following SQL statement:

create table sample.timeexamples (c1 date, c2, time, c3 timestamp);

When a SAS driver parses that statement, it converts the JDBC syntax to SAS
format instructions. The previous SQL statement is passed to a SAS server as the
following code:

create table sample.timeexamples (
 c1 num format=date9.,
 c2 num format=time8.,
 c3 num format=datetime19.2
);

Updating Result Sets
The IOM driver is the only SAS driver that supports updating ResultSets. For this
driver, you must form the result set in one of the following ways:

n Call the proprietary method MVAStatement.getTable(String libref, String
tableName)

n Call Statement.executeQuery with the explicit syntax select * from table

The table value must be in one of these forms:

tableName
With this form, the libref WORK is automatically prefixed to the table name.

libref.table
With this form, standard SQL elements such as joins, clauses, and column
lists are not supported.

The following code sample shows the syntax that is different from basic JDBC and
that is relevant to getting a result set that can be updated:

import com.sas.rio.MVAResultSet;
import com.sas.rio.MVAStatement;

/* This feature is available with IOM only. */
Class.forName("com.sas.rio.MVADriver");
connection = DriverManager.getConnection(

48 Chapter 7 / Tips and Best Practices

 "jdbc:sasiom://hostname:port", props);

stmt = (MVAStatement) connection.createStateent(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

resultSet = stmt.getTable("libref", "tableName");

/* assume that table has cols Name and Age */
resultSet.absolute(5);
resultSet.updateString("name", "jdoe");
resultSet.updateInt("age", 34);
resultSet.updateRow();

Scrolling and Concurrency
The IOM driver supports scrolling by following the standard JDBC syntax for
ResultSet.TYPE_SCROLL_INSENSITIVE. The SAS/SHARE driver does not
support scrolling.

Note: Requests for ResultSet.TYPE_SCROLL_SENSITIVE are not supported.
Those result sets are returned with ResultSet.TYPE_SCROLL_INSENSITIVE.

When you use connection.createStatement, if the underlying data store does not
support the requested scrolling type or concurrency, then the JDBC driver sets the
scrolling type or concurrency to something that is supported. This JDBC
specification requirement means that it is a best practice to check the statement
object's values for getResultSetType and getResultSetConcurrency to avoid
unexpected results.

Closing Statement and ResultSet
Objects

The SAS/SHARE driver can manage a maximum of 64 open statements per
connection. To prevent your application from reaching that limit, remember to close
Statement and ResultSet objects. In addition, when Statement and ResultSet
objects are open, memory remains allocated. Therefore, closing Statement and
ResultSet objects also saves memory.

Closing Statement and ResultSet Objects 49

Connection Pooling

About Support for Connection Pooling
The SAS Drivers for JDBC do not implement the JDBC pooling classes or
interfaces. The recommended approach is to configure the application server to use
pooled connections and to use the SAS driver.

Example: Configuring JBoss
This section provides a high-level and simple overview of the JBoss configuration
needed to use the SAS drivers. It is assumed that you have JBoss installed,
running, and operational. Note that this is just an example. JBoss is not
recommended over other application servers.

Ensure that the JAR files for the SAS driver are located within the lib directory for
the server:

$ pwd
.../jboss/jboss-4.2.0.GA/server/SASServer1
$ ls lib/sas.*.jar
lib/sas.core.jar
lib/sas.svc.connection.jar

Edit or create a data source XML file in the deploy directory:

$ cat deploy/iom-ds.xml
<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>sas/jdbc/Iom</jndi-name>
 <connection-url>
 jdbc:sasiom://localhost:8591?librefs=
 HELP 'C:\Program Files\SASHome\SASFoundation\9.4\core\sashelp'
 </connection-url>
 <driver-class>com.sas.rio.MVADriver</driver-class>
 <user-name>sasdemo</user-name>
 <password>{sas001}cGFzc3dvcmQ=</password>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>50</max-pool-size>
 </local-tx-datasource>
</datasources>

Identify the DataSource jndi-name value as shown in the following example:

<%@page contentType="text/html"
 import="java.util.*,javax.naming.*,javax.sql.DataSource,
 java.sql.*,java.net.*,java.io.*"

50 Chapter 7 / Tips and Best Practices

 %>
 <html>
 <body>
 <p>Count of Subsidiaries by Region and Product</p>

<%
 DataSource ds = null;
 Connection con = null;
 InitialContext ic;
 String query = "SELECT REGION, PRODUCT, COUNT(SUBSIDIARY) " +
 "FROM HELP.shoes GROUP BY REGION, PRODUCT";
 String nbsp = " ";

 try {
 ic = new InitialContext();
 ds = (DataSource) ic.lookup("java:/sas/jdbc/Iom");
 con = ds.getConnection();
 ResultSet rs = con.createStatement().executeQuery(query);
 ResultSetMetaData rsmd = rs.getMetaData();
 int colCount = rsmd.getColumnCount();
 out.println("<TABLE border='1'>");
 out.println("<TR>");
 for (int i = 1; i <= colCount; ++i) {
 out.println("<TH>" + rsmd.getColumnLabel(i) + "</TH>");
 }
 out.println("</TR>");

 String val = null;
 while (rs.next()) {
 out.print("<TR>");
 for (int i = 1; i <= colCount; ++i) {
 val = rs.getString(i);
 if (rs.wasNull()) {
 val = nbsp;
 }
 out.print("<TD>" + val + "</TD>");
 }
 out.println("</TR>");
 }
 out.println("</TABLE>");
 rs.close();
 con.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
%>
 </body>
 </html>

Connection Pooling 51

52 Chapter 7 / Tips and Best Practices

	Contents
	What's New for the SAS 9.4 Drivers for JDBC
	Overview
	Supported Java Versions
	Log4j Support
	Support for Reading Formatted and Raw Values Simultaneously

	Introduction to the SAS Drivers for JDBC
	About the SAS Drivers for JDBC: Cookbook
	How the Cookbook Can Help You Write Applications
	What You Should Know in Order to Use This Cookbook

	About the SAS Drivers for JDBC
	About the Data That Can Be Accessed with the SAS Drivers for JDBC
	Base SAS Data Sets
	SAS Scalable Performance Data Server Data
	Third-Party Relational Data

	Transport Layer Security
	Accessibility Features in the SAS Drivers for JDBC

	System Requirements and Installation
	System Requirements
	Location of the Installation Packages
	Setting the CLASSPATH Environment Variable

	Learning about SAS Connections
	What You Need to Know about SAS Connections
	JDBC Driver Class Names
	Connection Properties for the SAS Drivers
	IOM Driver Properties
	SAS/SHARE Driver Properties

	Passing Connection Properties on the JDBC URL
	What Is the JDBC URL?
	What Is the Subprotocol?
	What Is the Subname?
	The JDBC URL Syntax
	Sample Code for Passing Connection Properties on the JDBC URL

	Connection Recipes
	Accessing Specific Types of Data
	Accessing DBMS and SPD Server Data
	Goal
	Implementation
	Requirements
	What Are SAS Engines?
	More about Engine-Specific Options
	Assigning Librefs to a DBMS or SPD Server
	Sample Code for Accessing an Oracle DBMS on a SAS Workspace
Server
	Sample Code for Accessing SQL Server and DB2 Data on a SAS
Workspace Server
	Sample Code for Accessing SPD Server Data on a SAS/SHARE Server

	Accessing a Base SAS Data Set
	Goal
	Implementation
	Requirements
	What Are SAS Libraries?
	Sample Code for Accessing a Base SAS Data Set

	Using SSPI for Authentication to Access a SAS Workspace Server
	Goal
	Implementation
	Requirements
	Sample Code

	Data Management Recipes
	Working with Data
	Setting the Fetch Size
	Goal
	Implementation

	Limiting the Number of Retrieved Records
	Goal
	Implementation

	Reading and Writing NULL and Missing Values
	Goal
	Implementation
	What Are NULL and Missing Values?
	Writing SQL NULL Values
	Writing SAS Missing Values
	Reading Null and Missing Values
	Missing Values and SAS SQL

	Retrieving Formatted Data
	Goal
	Implementation
	Sample Code for Retrieving Formatted Data
	How Formats Are Determined Regardless of the Property Setting

	Retrieving Raw and Formatted Values Simultaneously
	Goal
	Implementation
	Accessing Wide Tables

	Log4j Recipes
	Overview of the Logging Feature
	Supported Drivers and Features
	Logging Levels and Driver Classes

	How to Specify Logging Options
	Using a Properties File
	Using an XML File

	Logging the First and Last ResultSet.next() Calls
	Goal
	Implementation

	Logging ResultSet.next() Calls to a File
	Goal
	Implementation

	Tips and Best Practices
	How to Generate a List of Supported Connection Properties
	Using Timestamps, Dates, and Times
	Understanding SAS Dates
	Inserting Timestamps, Dates, and Times
	Creating Timestamp, Date, and Time Columns

	Updating Result Sets
	Scrolling and Concurrency
	Closing Statement and ResultSet Objects
	Connection Pooling
	About Support for Connection Pooling
	Example: Configuring JBoss

