Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What’s New in SAS/IML 14.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to SAS/IML Software</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Understanding the SAS/IML Language</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Tutorial: A Module for Linear Regression</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Working with Matrices</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Programming Statements</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>Working with SAS Data Sets</td>
<td>81</td>
</tr>
<tr>
<td>8</td>
<td>File Access</td>
<td>109</td>
</tr>
<tr>
<td>9</td>
<td>Mixed-Type Tables</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>Lists and Data Structures</td>
<td>143</td>
</tr>
<tr>
<td>11</td>
<td>Packages</td>
<td>161</td>
</tr>
<tr>
<td>12</td>
<td>General Statistics Examples</td>
<td>177</td>
</tr>
<tr>
<td>13</td>
<td>Submitting SAS Statements</td>
<td>225</td>
</tr>
<tr>
<td>14</td>
<td>Calling Functions in the R Language</td>
<td>233</td>
</tr>
<tr>
<td>15</td>
<td>Robust Regression Examples</td>
<td>249</td>
</tr>
<tr>
<td>16</td>
<td>Time Series Analysis and Examples</td>
<td>277</td>
</tr>
<tr>
<td>17</td>
<td>Nonlinear Optimization Examples</td>
<td>359</td>
</tr>
<tr>
<td>18</td>
<td>Statistical Graphics</td>
<td>433</td>
</tr>
<tr>
<td>19</td>
<td>Traditional Graphics in the IML Procedure</td>
<td>449</td>
</tr>
<tr>
<td>20</td>
<td>Storage Features</td>
<td>479</td>
</tr>
<tr>
<td>21</td>
<td>Using SAS/IML Software to Generate SAS/IML Statements</td>
<td>483</td>
</tr>
<tr>
<td>22</td>
<td>Wavelet Analysis</td>
<td>493</td>
</tr>
<tr>
<td>23</td>
<td>Genetic Algorithms</td>
<td>515</td>
</tr>
<tr>
<td>24</td>
<td>Sparse Matrix Algorithms</td>
<td>543</td>
</tr>
<tr>
<td>25</td>
<td>Further Notes</td>
<td>551</td>
</tr>
<tr>
<td>26</td>
<td>Language Reference</td>
<td>559</td>
</tr>
<tr>
<td>27</td>
<td>Module Library</td>
<td>1163</td>
</tr>
</tbody>
</table>

Subject Index

1173

Syntax Index

1183
Chapter 1
What’s New in SAS/IML 14.2

Contents

Enhancements in SAS/IML 14.2 .. 1
Enhancements in SAS/IML 14.1 .. 2
Enhancements in SAS/IML 13.2 .. 3
Enhancements in SAS/IML 13.1 .. 3

Enhancements in SAS/IML 14.2

The fundamental data type in the IML procedure is the matrix. Prior to SAS/IML 14.2, every symbol in a PROC IML program represented a matrix. A new feature in SAS/IML 14.2 is support for new nonmatrix data types: tables and lists.

- A table is a rectangular data structure that is an in-memory version of a data set. A table contains columns, which can contain either numeric and character data. You can create a table from a SAS data set or from a SAS/IML matrix. You can add new columns to a table or extract columns from a table into matrices. You can pass a table to a SAS/IML module and return a table from a module. The SAS/IML functions that manipulate tables begin with the prefix “TABLE.” For more information about tables, see Chapter 9, “Mixed-Type Tables.”

- A list is a nonrectangular data structure that can contain objects of different sizes and types. A list can contain numeric matrices, character matrices, tables, and other lists. You can insert new items into a list or extract elements from a list. You can pass a list to a SAS/IML module and return a list from a module. The SAS/IML functions that manipulate lists begin with the prefix “LIST.” To help you work with lists, there is a new system package, called the ListUtil package. For more information about lists, see Chapter 10, “Lists and Data Structures.”

The RANDGEN subroutine supports new distributions and enhancements to existing distributions:

- The F and inverse Gaussian (Wald) distributions use more accurate algorithms to generate random variates when parameter values are small.

- The new 'ConMaxPoi' distribution generates discrete random variates from the Conway-Maxwell-Poisson distribution.

- The new 'ExtremeValue' distribution generates random variates from the generalized extreme value distribution.
Chapter 1: What’s New in SAS/IML 14.2

- The new 'GenPoisson' distribution generates discrete random variates from the generalized Poisson distribution.
- The new 'Gompertz' distribution generates random variates from the Gompertz distribution.
- The new 'Gumbel' distribution generates random variates from the Gumbel distribution.
- The new 'Integer' distribution generates random integers between two specified integers.
- The new 'ShGompertz' distribution generates random variates from the shifted Gompertz distribution.

At the time of its release, SAS/IML 14.2 interfaces correctly with recent versions of R 3.3.x. You can contact SAS Technical Support for the latest information regarding support for newer versions of R.

SAS/IML 14.2 also introduces several enhancements to the SUBMIT statement. Global SAS statements that are executed inside a SUBMIT block now also affect the SAS/IML program after the SUBMIT block. In particular:

- Macro variables that are created inside a SUBMIT block are defined and accessible in PROC IML after the SUBMIT block.
- Global SAS statements (such as the LIBNAME, FILEREF, and OPTIONS statements) that are executed inside a SUBMIT block affect the environment outside the SUBMIT block.
- ODS statements executed inside a SUBMIT block can affect subsequent output outside the SUBMIT block.

Enhancements in SAS/IML 14.1

SAS/IML supports creating large matrices and using them in many computations. When previous releases of SAS/IML ran on the Windows operating system, an individual matrix was limited to 2GB. Within this limit, you could create square numerical matrices that had about 16,000 rows and columns. In SAS/IML 14.1, you can create matrices that have up to $2^{31} - 1$ elements, provided that your system has enough RAM. (A numerical matrix that has $2^{31} - 1$ elements requires 16 GB of RAM.) This size increase enables you to create square numerical matrices that have approximately 46,000 rows and columns. Equivalently, you can create matrices that have millions of rows and hundreds of columns. You can create these large matrices on all operating systems.

However, keep in mind that many matrix computations scale cubically with the number of elements in the matrix. That is, many computations on an $n \times n$ matrix require on the order of n^3 floating point operations. Consequently, although you might be able to create extremely large matrices, computing with large matrices can be very expensive.

In addition to supporting large matrices on Windows, SAS/IML 14.1 supports the following new statements and functions:
The PACKAGE statement enables you to install and use packages. A package consists of SAS/IML source code, documentation, data sets, and sample programs. Packages are a convenient way for programmers to download and install functions that extend the functionality of SAS/IML software. Packages are supported only on Linux and Windows operating systems. For more information, see Chapter 11, “Packages.”

The EIGEN subroutine uses vendor-supplied eigenvalue routines such as the Intel Math Kernel Library (MKL), if they are available on your system. The EIGVAL and EIGVEC computations also use vendor-supplied libraries. Because eigenvectors are not unique, the results of eigenvector computations in SAS/IML 14.1 are not necessarily identical to the results from earlier releases. If you want to restore the algorithm that was used before SAS/IML 14.1, you can use the RESET EIGEN93 statement.

The RANDSEED subroutine uses a different initialization algorithm for certain seeds.

The interface to R in SAS/IML 14.1 supports up through R 3.2.5 on Windows. All recent releases of R are supported on Linux.

Lastly, the SAS/IML File Exchange now has a convenient shortcut: https://communities.sas.com/sas-iml-file-exchange. Recall that the SAS/IML File Exchange is a website where you can share SAS/IML programs and download programs that are written by others.

Enhancements in SAS/IML 13.2

SAS/IML 13.2 includes the experimental EXECUTEFILE subroutine, which executes SAS/IML statements that are contained in a text file.

SAS is proud to announce the availability of the SAS/IML File Exchange. Since 2011, programmers have used the SAS/IML Support Community to discuss SAS/IML programs, ask for help, and provide assistance. In the summer of 2014, SAS added the SAS/IML File Exchange, which enables you to share SAS/IML programs and to download programs written by others. Although the file exchange is not formally part of SAS/IML software, you can use it to post SAS/IML functions, tag files, rate files, and search for files by tags, content, or author. To get to the SAS/IML File Exchange, do the following:

- Go to https://communities.sas.com/community/support-communities.
- Click the link for the SAS/IML and SAS/IML Studio Support Community.
- Click the link for the SAS/IML File Exchange.

Enhancements in SAS/IML 13.1

SAS/IML 13.1, which was released as part of the first maintenance release of SAS 9.4 software, contains the following new functions and subroutines:
<table>
<thead>
<tr>
<th>Function/Call</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV function</td>
<td>returns the sample coefficient of variation for each column of a matrix. This function is part of the IMLMLIB library of modules.</td>
</tr>
<tr>
<td>HEATMAPCONT call</td>
<td>creates a heat map of a matrix. The matrix values are visualized by using a continuous color ramp.</td>
</tr>
<tr>
<td>HEATMAPDISC call</td>
<td>creates a heat map of a matrix. The matrix values are visualized by using a discrete color ramp.</td>
</tr>
<tr>
<td>KURTOSIS function</td>
<td>returns the sample kurtosis for each column of a matrix.</td>
</tr>
<tr>
<td>LOGABSDET function</td>
<td>returns the logarithm of the absolute value of a matrix determinant.</td>
</tr>
<tr>
<td>LPSOLVE call</td>
<td>solves linear programming problems.</td>
</tr>
<tr>
<td>MILPSOLVE call</td>
<td>solves mixed integer linear programming problems.</td>
</tr>
<tr>
<td>PALETTE function</td>
<td>returns a discrete color palette that is suitable for choropleth maps, heat maps, and other graphical visualizations that display a relatively small number of discrete values.</td>
</tr>
<tr>
<td>PARENTNAME function</td>
<td>returns the name of the matrix that was passed to a module.</td>
</tr>
<tr>
<td>SKEWNESS function</td>
<td>returns the sample skewness for each column of a matrix.</td>
</tr>
</tbody>
</table>

SAS/IML 13.1 also includes the following enhancements to the syntax:

- The NEXT keyword now supports expressions, as shown in the section “Process a Range of Observations” on page 102. This change affects the DELETE, FIND, LIST, READ, and REPLACE statements.
- The STOP and ABORT statements now accept a default message that is displayed in the SAS log.
- The parentheses in the RETURN statement are now optional.
- The order of resolution has changed for SAS/IML user-defined functions and subroutines. You can now define a function or subroutine that has the same name as a built-in SAS/IML function or subroutine. For more information, see the section “Order of Resolution for Functions and Subroutines” on page 1166.
Chapter 2
Introduction to SAS/IML Software

Contents

Overview of SAS/IML Software .. 5
Highlights of SAS/IML Software .. 6
An Introductory SAS/IML Program 7
Support for SAS/IML Programmers 7
PROC IML Statement ... 8
Conventions Used in This Book .. 8
 Typographical Conventions .. 8
 Output of Examples .. 9
References .. 9

Overview of SAS/IML Software

SAS/IML software gives you access to a powerful and flexible programming language in a dynamic, interactive environment. The acronym IML stands for “interactive matrix language.”

The fundamental object of the language is a data matrix. You can use SAS/IML software interactively (at the statement level) to see results immediately, or you can submit blocks of statements or an entire program. You can also encapsulate a series of statements by defining a module; you can call the module later to execute all of the statements in the module.

SAS/IML software is powerful. SAS/IML software enables you to concentrate on solving problems because necessary (but distracting) activities such as memory allocation and dimensioning of matrices are performed automatically. You can use built-in operators and call routines to perform complex tasks in numerical linear algebra such as matrix inversion or the computation of eigenvalues. You can define your own functions and subroutines by using SAS/IML modules. You can perform operations on a single value or take advantage of matrix operators to perform operations on an entire data matrix. For example, the following statement adds 1 to every element of the matrix x, regardless of the dimensions of x:

\[x = x+1; \]

The SAS/IML language contains statements that enable you to manage data. You can read, create, and update SAS data sets in SAS/IML software without using the DATA step. For example, the following statement reads a SAS data set to obtain phone numbers for all individuals whose last name begins with “Smith”:

\[\text{read all var(phone) where(lastname="Smith");} \]

The result is phone, a vector of phone numbers.
Chapter 2: Introduction to SAS/IML Software

Highlights of SAS/IML Software

SAS/IML provides a high-level programming language.

You can program easily and efficiently with the many features for arithmetic and character expressions in SAS/IML software. You can access a wide variety of built-in functions and subroutines designed to make your programming fast, easy, and efficient. Because SAS/IML software is part of the SAS System, you can access SAS data sets or external files with an extensive set of data processing commands for data input and output, and you can edit existing SAS data sets or create new ones.

SAS/IML software has a complete set of control statements, such as DO/END, START/finish, iterative DO, IF-THEN/ELSE, GOTO, LINK, PAUSE, and STOP, giving you all of the commands necessary for execution control and program modularization. See the section “Control Statements” on page 16 for details.

SAS/IML software operates on matrices.

Functions and statements in most programming languages manipulate and compare a single data element. However, the fundamental data element in SAS/IML software is the matrix, a two-dimensional (row × column) array of numeric or character values.

SAS/IML software possesses a powerful vocabulary of operators.

You can access built-in matrix operations that require calls to math-library subroutines in other languages. You can access many matrix operators, functions, and subroutines.

SAS/IML software uses operators that apply to entire matrices.

You can add elements of the matrices A and B with the expression A+B. You can perform matrix multiplication with the expression A*B and perform elementwise multiplication with the expression A#B.

SAS/IML software is interactive.

You can execute SAS/IML statements one at a time and see the results immediately, or you can submit blocks of statements or an entire program. You can also define a module that encapsulates a series of statements. You can interact with an executing module by using the PAUSE statement, which enables you to enter additional statements before continuing execution.

SAS/IML software is dynamic.

You do not need to declare, dimension, or allocate storage for a data matrix. SAS/IML software does this automatically. You can change the dimension or type of a matrix at any time. You can open multiple files or access many libraries. You can reset options or replace modules at any time.

SAS/IML software processes data.

You can read observations from a SAS data set. You can create either multiple vectors (one for each variable in the data set) or a single matrix that contains a column for each data set variable. You can create a new SAS data set, or you can edit or append observations to an existing SAS data set.
An Introductory SAS/IML Program

This section presents a simple introductory SAS/IML program that implements a numerical algorithm that estimates the square root of a number, accurate to three decimal places. The following statements define a function module named MySqrt that performs the calculations:

```sas
proc iml; /* begin IML session */
start MySqrt(x); /* begin module */
y = 1; /* initialize y */
do until(w<1e-3); /* begin DO loop */
z = y;
    y = 0.5#(z+x/z); /* estimate square root */
w = abs(y-z); /* compute change in estimate */
end; /* end DO loop */
return(y); /* return approximation */
finish; /* end module */
```

You can call the MySqrt module to estimate the square root of several numbers given in a matrix literal (enclosed in braces) and print the results:

```sas
t = MySqrt({3,4,7,9}); /* call function MySqrt */
s = sqrt({3,4,7,9}); /* compare with true values */
diff = t - s; /* compute differences */
print t s diff; /* print matrices */
```

Figure 2.1 Approximate Square Roots

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>s</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.732058</td>
<td>1.732058</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.22E-15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.6457513</td>
<td>2.6457513</td>
<td>4.678E-11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3.197E-9</td>
<td></td>
</tr>
</tbody>
</table>

Support for SAS/IML Programmers

SAS/IML programmers might be interested in the following resources about the SAS/IML language:

- The book *Statistical Programming with SAS/IML Software* (Wicklin 2010) provides tips and techniques for efficient SAS/IML programming and discusses IMLPlus, the programming language in the SAS/IML Studio application.

- You can search for and download programs that are written by other SAS/IML programmers at the SAS/IML File Exchange: https://communities.sas.com/sas-iml-file-exchange.
The blog *The DO Loop* (http://blogs.sas.com/content/iml/) provides advice about statistical programming in SAS, with an emphasis on SAS/IML programming.

If you are a SAS customer and are unable to resolve your problem by using the self-help resources, you are welcome to contact SAS Technical Support: http://support.sas.com/techsup/contact/.

If you are a student or faculty member at a college or university, the IML procedure is available free as part of the SAS University Edition software. Students and professors can ask questions and interact with one another at the SAS Analytics U community: https://communities.sas.com/community/sas-analytics-u.

PROC IML Statement

```
PROC IML <SYMSIZE=n1> <WORKSIZE=(n2)> ;
   <SAS/IML language statements> ;
QUIT ;
```

You can specify the following options in the PROC IML statement:

- **SYMSIZE=n1**
 - specifies the size of memory, in kilobytes, that is allocated to the PROC IML symbol space.

- **WORKSIZE=n2**
 - specifies the size of memory, in kilobytes, that is allocated to the PROC IML workspace.

If you do not specify any options, PROC IML uses host-dependent defaults. In general, you do not need to be concerned with the details of memory usage because memory allocation is done automatically. However, see the section “Memory and Workspace” on page 551 for special situations.

Conventions Used in This Book

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the typographical conventions used in this book:

- **text** is the standard type style used for most text.
- **FUNCTION** is used for the name of SAS/IML functions, subroutines, and statements when they appear in the text. This convention is also used for SAS statements and options. However, you can enter these elements in your own SAS programs in lowercase, uppercase, or a mixture of the two.
- **SYNTAX** is used in the “Syntax” sections’ initial lists of SAS statements and options.
- **argument** is used for option values that must be supplied by the user in the syntax definitions.
VariableName is used for the names of variables and data sets when they appear in the text.

LibName is used for the names of SAS librefs (such as Sasuser) when they appear in the text.

bold is used to refer to *mathematical* matrices and vectors such as in the equation $y = Ax$.

Code is used to refer to SAS/IML matrices, vectors, and expressions in the SAS/IML language such as the expression $y = A\times x$. This convention is also used for example code. In most cases, this book uses lowercase type for SAS/IML statements.

italic is used for terms that are defined in the text, for emphasis, and for references to publications.

Output of Examples

This documentation contains many short examples that illustrate how to use the SAS/IML language. Many examples end with a PRINT statement; the output for these examples appears immediately after the program statements.

References

Chapter 3
Understanding the SAS/IML Language

Contents

Defining a Matrix ... 11
Matrix Names and Literals ... 12
 Matrix Names ... 12
 Matrix Literals ... 12
Creating Matrices from Matrix Literals .. 13
 Scalar Literals ... 13
 Numeric Literals .. 13
 Character Literals .. 14
 Repetition Factors ... 14
 Reassigning Values .. 14
 Assignment Statements ... 14
Types of Statements ... 15
 Control Statements .. 16
 Functions ... 16
 CALL Statements and Subroutines ... 18
 Command Statements ... 19
Missing Values ... 21
Summary .. 22

Defining a Matrix

A matrix is the fundamental structure in the SAS/IML language. A matrix is a two-dimensional array of numeric or character values. Matrices are useful for working with data and have the following properties:

- Matrices can be either numeric or character. Elements of a numeric matrix are double-precision values. Elements of a character matrix are character strings of equal length.
- The name of a matrix must be a valid SAS name.
- Matrices have dimensions defined by the number of rows and columns.
- Matrices can contain elements that have missing values (see the section “Missing Values” on page 21).

The dimensions of a matrix are defined by the number of rows and columns. An \(n \times p \) matrix has \(np \) elements arranged in \(n \) rows and \(p \) columns. The following nomenclature is standard in this book:
• 1 \times 1 matrices are called *scalars*.

• 1 \times p matrices are called *row vectors*.

• n \times 1 matrices are called *column vectors*.

• The type of a matrix is “numeric” if its elements are numbers; the type is “character” if its elements are character strings. A matrix that has not been assigned values has an “undefined” type.

Matrix Names and Literals

Matrix Names

The name of a matrix must be a valid SAS name: a character string that contains between 1 and 32 characters, begins with a letter or underscore, and contains only letters, numbers, and underscores. You associate a name with a matrix when you create or define the matrix. A matrix name exists independently of values. This means that you can change the values associated with a particular matrix name, change the dimension of the matrix, or even change its type (numeric or character).

Matrix Literals

A *matrix literal* is an enumeration of the values of a matrix. For example, \{1, 2, 3\} is a numeric matrix with three elements. A matrix literal can have a single element (a scalar), or it can be an array of many elements. The matrix can be numeric or character. The dimensions of the matrix are automatically determined by the way you punctuate the values.

Use curly braces (\{ \}) to enclose the values of a matrix. Within the braces, values must be either all numeric or all character. Use commas to separate the rows. If you specify multiple rows, all rows must have the same number of elements.

You can specify any of the following types of elements:

• a number. You can specify numbers with or without decimal points, and in standard or scientific notation. For example, 5, 3.14, or 1E−5.

• a period (.), which represents a missing numeric value.

• a number in brackets ([]), which represents a repetition factor.

• a character string. Character strings can be enclosed in single quotes (‘) or double quotes (“), but they do not need to have quotes. Quotes are required when there are no enclosing braces or when you want to preserve case, special characters, or blanks in the string. Special characters include the following: ?, =, *, :, (,), {, and }.

If the string has embedded quotes, you must double them, as shown in the following statements:
Numeric Literals

The following example statements define scalars as literals. These examples are simple assignment statements with a matrix name on the left-hand side of the equal sign and a value on the right-hand side. Notice that you do not need to use braces when there is only one element.

```
a = 12;
a = . ;
a = 'hi there';
a = "Hello";
```

Scalar Literals

You can create a matrix by using matrix literals: simply list the element values inside of curly braces. You can also create a matrix by calling a function, a subroutine, or an assignment statement. The following sections present some simple examples of matrix literals. For more information about matrix literals, see Chapter 5, “Working with Matrices.”

```
w1 = "I said, "Don't fall!"";
w2 = 'I said, "Don't fall!"';
```

Creating Matrices from Matrix Literals

```
x = {1 . 3 4 5 6};  /* 1 x 6 row vector */
y = {1,2,3,4};  /* 4 x 1 column vector */
z = 3#y;  /* 3 times the vector y */
w = {1 2, 3 4, 5 6};  /* 3 x 2 matrix */
print x, y z w;
```

Figure 3.1 Matrices Created from Numeric Literals

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 . 3 4 5 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y z w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 1 2</td>
</tr>
<tr>
<td>2 6 3 4</td>
</tr>
<tr>
<td>3 9 5 6</td>
</tr>
<tr>
<td>4 12</td>
</tr>
</tbody>
</table>
Character Literals

You can define a character matrix literal by specifying character strings between braces. If you do not place quotes around the strings, all characters are converted to uppercase. You can use either single or double quotes to preserve case and to specify strings that contain blanks or special characters. For character matrix literals, the length of the elements is determined by the longest element. Shorter strings are padded on the right with blanks. For example, the following statements define and print two 1×2 character matrices with string length 4 (the length of the longer string):

```sas
a = { abc defg}; /* no quotes; uppercase */
b = {'abc' 'DEFG'}; /* quotes; case preserved */
print a, b;
```

Figure 3.2 Matrices Created from Character Literals

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
| | ABC DEF
| b | |
| | abe DEF

Repetition Factors

A repetition factor can be placed in brackets before a literal element to have the element repeated. For example, the following two statements are equivalent:

```sas
answer = {'Yes' 'Yes', 'No' 'No'};
```

Reassigning Values

You can assign new values to a matrix at any time. The following statements create a 2×3 numeric matrix named a, then redefine a to be a 1×3 character matrix:

```sas
a = {1 2 3, 6 5 4};
a = {'Sales' 'Marketing' 'Administration'};
```

Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the results. The expressions can be composed of operators (for example, matrix multiplication) or functions that operate on matrices (for example, matrix inversion). The resulting matrices automatically acquire appropriate characteristics and values. Assignment statements have the general form $result = expression$ where $result$ is the name of the new matrix and $expression$ is an expression that is evaluated.
Functions as Expressions

You can create matrices as a result of a function call. Scalar functions such as the LOG function or the SQRT function operate on each element of a matrix. Matrix functions such as the INV function or the RANK function operate on the entire matrix. The following statements are examples of function calls:

```plaintext
a = sqrt(b);     /* elementwise square root */
y = inv(x);      /* matrix inversion */
r = rank(x);     /* ranks (order) of elements */
```

The SQRT function assigns each element of \(a \) the square root of the corresponding element of \(b \). The INV function computes the inverse matrix of \(x \) and assigns the results to \(y \). The RANK function creates a matrix \(r \) with elements that are the ranks of the corresponding elements of \(x \).

Operators within Expressions

Three types of operators can be used in assignment statement expressions. The matrices on which an operator acts must have types and dimensions that are conformable to the operation. For example, matrix multiplication requires that the number of columns of the left-hand matrix be equal to the number of rows of the right-hand matrix.

The three types of operators are as follows:

- Prefix operators are placed in front of an operand (\(-A\)).
- Binary operators are placed between operands (\(A*B\)).
- Postfix operators are placed after an operand (\(A_0\)).

All operators can work on scalars, vectors, or matrices, provided that the operation makes sense. For example, you can add a scalar to a matrix or divide a matrix by a scalar. The following statement is an example of using operators in an assignment statement:

```plaintext
y = x*(x>0);
```

This assignment statement creates a matrix \(y \) in which each negative element of the matrix \(x \) is replaced with zero. The statement actually contains two expressions that are evaluated. The expression \(x>0 \) is an operation that compares each element of \(x \) to zero and creates a temporary matrix of results; an element of the temporary matrix is 1 when the corresponding element of \(x \) is positive, and 0 otherwise. The original matrix \(x \) is then multiplied elementwise by the temporary matrix, resulting in the matrix \(y \).

Types of Statements

Statements in the SAS/IML language can be classified into three general categories:

Control statements
direct the flow of execution. For example, the IF-THEN/ELSE statement conditionally controls statement execution.
Functions and CALL statements perform special tasks or user-defined operations. For example, the EIGEN subroutine computes eigenvalues and eigenvectors.

Command statements perform special processing, such as setting options, displaying windows, and handling input and output. For example, the MATTRIB statement associates matrix characteristics with matrix names.

Control Statements

The SAS/IML language has statements that control program execution. You can use control statements to direct the execution of your program and to define DO groups and modules. Some control statements are shown in the following table:

Table 3.1 Control Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO, END</td>
<td>Specifies a group of statements</td>
</tr>
<tr>
<td>Iterative DO, END</td>
<td>Defines an iteration loop</td>
</tr>
<tr>
<td>GOTO, LINK</td>
<td>Specifies the next program statement to be executed</td>
</tr>
<tr>
<td>IF-THEN/ELSE</td>
<td>Conditionally routes execution</td>
</tr>
<tr>
<td>PAUSE</td>
<td>Instructs a module to pause during execution</td>
</tr>
<tr>
<td>QUIT</td>
<td>Exits from the IML procedure</td>
</tr>
<tr>
<td>RESUME</td>
<td>Instructs a module to resume execution</td>
</tr>
<tr>
<td>RETURN</td>
<td>Returns from a LINK statement or module</td>
</tr>
<tr>
<td>RUN</td>
<td>Executes a module</td>
</tr>
<tr>
<td>START, FINISH</td>
<td>Defines a module</td>
</tr>
<tr>
<td>STOP, ABORT</td>
<td>Stops the execution of an IML program</td>
</tr>
</tbody>
</table>

See Chapter 6, “Programming Statements,” for more information about control statements.

Functions

The general form of a function is \(\text{result} = \text{FUNCTION}(\text{arguments}) \) where \text{arguments} is a list of matrix names, matrix literals, or expressions. Functions always return a single matrix, whereas subroutines can return multiple matrices or no matrices at all. If a function returns a character matrix, the matrix to hold the result is allocated with a string length equal to the longest element, and all shorter elements are padded on the right with blanks.

Categories of Functions

Many functions fall into one of the following general categories:
scalar functions
operate on each element of the matrix argument. For example, the ABS function returns a matrix with elements that are the absolute values of the corresponding elements of the argument matrix.

matrix inquiry functions
return information about a matrix. For example, the ANY function returns a value of 1 if any of the elements of the argument matrix are nonzero.

summary functions
return summary statistics based on all elements of the matrix argument. For example, the SSQ function returns the sum of squares of all elements of the argument matrix.

matrix reshaping functions
manipulate the matrix argument and returns a reshaped matrix. For example, the DIAG function returns a diagonal matrix with values and dimensions that are determined by the argument matrix.

linear algebraic functions
perform matrix algebraic operations on the argument. For example, the TRACE function returns the trace of the argument matrix.

statistical functions
perform statistical operations on the matrix argument. For example, the RANK function returns a matrix that contains the ranks of the argument matrix.

The SAS/IML language also provides functions in the following general categories:

- matrix sorting and BY-group processing
- numerical linear algebra
- optimization
- random number generation
- time series analysis
- wavelet analysis

See the section “Statements, Functions, and Subroutines by Category” on page 569 for a complete listing of SAS/IML functions.

Exceptions to the SAS DATA Step

The SAS/IML language supports most functions that are supported in the SAS DATA step. These functions almost always accept matrix arguments and usually act elementwise so that the result has the same dimension as the argument. See the section “Base SAS Functions Accessible from SAS/IML Software” on page 1139 for a list of these functions and also a small list of functions that are not supported by SAS/IML software or that behave differently than their Base SAS counterparts.

The SAS/IML random number functions UNIFORM and NORMAL are built-in functions that produce the same streams as the RANUNI and RANNOR functions, respectively, of the DATA step. For example, you can use the following statement to create a 10×1 vector of random numbers:
\[
x = \text{uniform}(\text{repeat}(0,10,1));
\]
SAS/IML software does not support the OF clause of the SAS DATA step. For example, the following statement cannot be interpreted in SAS/IML software:

\[
a = \text{mean}(\text{of } x1-x10); /* invalid in the SAS/IML language */
\]
The term \(x1-x10\) would be interpreted as subtraction of the two matrix arguments rather than its DATA step meaning, the variables X1 through X10.

CALL Statements and Subroutines

Subroutines (also called “CALL statements”) perform calculations, operations, or interact with the SAS system. CALL statements are often used in place of functions when the operation returns multiple results or, in some cases, no result. The general form of the CALL statement is

\[
\text{CALL SUBROUTINE (arguments)};
\]

where \(arguments\) can be a list of matrix names, matrix literals, or expressions. If you specify several arguments, use commas to separate them. When using output arguments that are computed by a subroutine, always use variable names instead of expressions or literals.

Creating Matrices with CALL Statements

Matrices are created whenever a CALL statement returns one or more result matrices. For example, the following statement returns two matrices (vectors), \(\text{val}\) and \(\text{vec}\), that contain the eigenvalues and eigenvectors, respectively, of the matrix \(A\):

\[
\text{call eigen(val,vec,A);}
\]

You can program your own subroutine by using the START and FINISH statements to define a module. You can then execute the module with a CALL or RUN statement. For example, the following statements define a module named MyMod which returns matrices that contain the square root and log of each element of the argument matrix:

\[
\text{start MyMod(a,b,c);} \\
\text{a=sqrt(c);} \\
\text{b=log(c);} \\
\text{finish;} \\
\text{run MyMod(S,L,{1 2 4 9});}
\]

Execution of the module statements creates matrices \(S\) and \(L\) which contain the square roots and natural logs, respectively, of the elements of the third argument.

Interacting with the SAS System

You can use CALL statements to manage SAS data sets or to access the PROC IML graphics system. For example, the following statement deletes the SAS data set named MyData:
The following statements activate the traditional graphics system and produce a crude scatter plot:

```sas
x = 0:100;
y = 50 + 50*sin(6.28*x/100);
call gstart; /* activate the graphics system */
call gopen;  /* open a new graphics segment */
call gpoint(x,y); /* plot the points */
call gshow;  /* display the graph */
call gclose; /* close the graphics segment */
```

SAS/IML software supports two other kinds of graphics:

- The high-level ODS statistical graphics in PROC IML are discussed in Chapter 18, “Statistical Graphics.”
- SAS/IML Studio, which is distributed as part of SAS/IML software, contains dynamically linked graphics. See the SAS/IML Studio User’s Guide for a description of the graphs in SAS/IML Studio.

Command Statements

Command statements are used to perform specific system actions, such as storing and loading matrices and modules, or to perform special data processing requests. The following table lists some commands and the actions they perform.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE</td>
<td>Frees memory associated with a matrix</td>
</tr>
<tr>
<td>LOAD</td>
<td>Loads a matrix or module from a storage library</td>
</tr>
<tr>
<td>MATTRIB</td>
<td>Associates printing attributes with matrices</td>
</tr>
<tr>
<td>PRINT</td>
<td>Prints a matrix or message</td>
</tr>
<tr>
<td>RESET</td>
<td>Sets various system options</td>
</tr>
<tr>
<td>REMOVE</td>
<td>Removes a matrix or module from library storage</td>
</tr>
<tr>
<td>SHOW</td>
<td>Displays system information</td>
</tr>
<tr>
<td>STORE</td>
<td>Stores a matrix or module in the storage library</td>
</tr>
</tbody>
</table>

These commands play an important role in SAS/IML software. You can use them to control information displayed about matrices, symbols, or modules.

If a certain computation requires almost all of the memory on your computer, you can use commands to store extraneous matrices in the storage library, free the matrices of their values, and reload them later when you need them again. For example, the following statements define several matrices:
proc iml;
a = {1 2 3, 4 5 6, 7 8 9};
b = {2 2 2};
show names;

Figure 3.3 List of Symbols in RAM

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ROWS</th>
<th>COLS</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>3</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>num</td>
<td>8</td>
</tr>
</tbody>
</table>

Number of symbols = 2 (includes those without values)

Suppose that you want to compute a quantity that does not involve the \(a\) matrix or the \(b\) matrix. You can store \(a\) and \(b\) in a library storage with the STORE command, and release the space with the FREE command. To list the matrices and modules in library storage, use the SHOW STORAGE command (or the STORAGE function), as shown in the following statements:

```
store a b; /* store the matrices */
show storage; /* make sure the matrices are saved */
free a b; /* free the RAM */
```

The output from the SHOW STORAGE statement (see Figure 3.4) indicates that there are two matrices in storage. (There are no modules in storage for this example.)

Figure 3.4 List of Symbols in Storage

Contents of storage library = WORK.IMLSTOR

Matrices:

\[A \quad B \]

Modules:

You can load these matrices from the storage library into RAM with the LOAD command, as shown in the following statement:

```
load a b;
```

See Chapter 20, “Storage Features,” for more details about storing modules and matrices.

Data Management Commands

SAS/IML software has many commands that enable you to manage your SAS data sets from within the SAS/IML environment. These data management commands operate on SAS data sets. There are also commands for accessing external files. The following table lists some commands and the actions they perform.
Table 3.3 Data Management Statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Adds records to an output SAS data set</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Closes a SAS data set</td>
</tr>
<tr>
<td>CREATE</td>
<td>Creates a new SAS data set</td>
</tr>
<tr>
<td>DELETE</td>
<td>Deletes records in an output SAS data set</td>
</tr>
<tr>
<td>EDIT</td>
<td>Reads from or writes to an existing SAS data set</td>
</tr>
<tr>
<td>FIND</td>
<td>Finds records that satisfy some condition</td>
</tr>
<tr>
<td>LIST</td>
<td>Lists records</td>
</tr>
<tr>
<td>PURGE</td>
<td>Purges records marked for deletion</td>
</tr>
<tr>
<td>READ</td>
<td>Reads records from a SAS data set into IML matrices</td>
</tr>
<tr>
<td>SETIN</td>
<td>Sets a SAS data set to be the input data set</td>
</tr>
<tr>
<td>SETOUT</td>
<td>Sets a SAS data set to be the output data set</td>
</tr>
<tr>
<td>SORT</td>
<td>Sorts a SAS data set</td>
</tr>
<tr>
<td>USE</td>
<td>Opens an existing SAS data set for reading</td>
</tr>
</tbody>
</table>

These commands can be used to perform data management. For example, you can read observations from a SAS data set into a target matrix with the USE or EDIT command. You can edit a SAS data set and append or delete records. If you have a matrix of values, you can output the values to a SAS data set with the APPEND command. See Chapter 7, “Working with SAS Data Sets,” and Chapter 8, “File Access,” for more information about these commands.

Missing Values

With SAS/IML software, a numeric element can have a special value called a *missing value*, which indicates that the value is unknown or unspecified. Such missing values are coded, for logical comparison purposes, in the bit pattern of very large negative numbers. A numeric matrix can have any mixture of missing and nonmissing values. A matrix with missing values should not be confused with an empty or unvalued matrix—that is, a matrix with zero rows and zero columns.

In matrix literals, a numeric missing value is specified as a single period (.), In data processing operations that involve a SAS data set, you can append or delete missing values. All operations that move values also move missing values.

However, for efficiency reasons, SAS/IML software does not support missing values in most matrix operations and functions. For example, matrix multiplication of a matrix with missing values is not supported. Furthermore, many linear algebraic operations are not mathematically defined for a matrix with missing values. For example, the inverse of a matrix with missing values is meaningless.

Summary

This chapter introduced the fundamentals of the SAS/IML language, including the basic data element, the matrix. You learned several ways to create matrices: assignment statements, matrix literals, and CALL statements that return matrix results.

The chapter also introduced various types of programming statements: commands, control statements, iterative statements, module definitions, functions, and subroutines.

Chapter 4, “Tutorial: A Module for Linear Regression,” offers an introductory tutorial that demonstrates how to use SAS/IML software for statistical computations.
Overview of Linear Regression

You can use SAS/IML software to solve mathematical problems or implement new statistical techniques and algorithms. Formulas and matrix equations are easily translated in the SAS/IML language. For example, if X is a data matrix and Y is a vector of observed responses, then you might be interested in the solution, b, to the matrix equation $Xb = Y$. In statistics, the data matrices that arise often have more rows than columns and so an exact solution to the linear system is impossible to find. Instead, the statistician often solves a related equation: $X'Xb = X'Y$. The following mathematical formula expresses the solution vector in terms of the data matrix and the observed responses:

$$b = (X'X)^{-1}X'Y$$

This mathematical formula can be translated into the following SAS/IML statement:

```sas
b = inv(X' * X) * X' * Y; /* least squares estimates */
```

This assignment statement uses a built-in function (INV) and matrix operators (transpose and matrix multiplication). It is mathematically equivalent to (but less efficient than) the following alternative statement:

```sas
b = solve(X' * X, X' * Y); /* more efficient computation */
```

If a statistical method has not been implemented directly in a SAS procedure, you can program it by using the SAS/IML language. The most commonly used mathematical and matrix operations are built directly into the language, so programs that require many statements in other languages require only a few SAS/IML statements.
Example: Solving a System of Linear Equations

Because the syntax of the SAS/IML language is similar to the notation used in linear algebra, it is often possible to directly translate mathematical methods from matrix-algebraic expressions into executable SAS/IML statements. For example, consider the problem of solving three simultaneous equations:

\[\begin{align*}
3x_1 - x_2 + 2x_3 &= 8 \\
2x_1 - 2x_2 + 3x_3 &= 2 \\
4x_1 + x_2 - 4x_3 &= 9
\end{align*}\]

These equations can be written in matrix form as

\[
\begin{bmatrix}
3 & -1 & 2 \\
2 & -2 & 3 \\
4 & 1 & -4
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
8 \\
2 \\
9
\end{bmatrix}
\]

and can be expressed symbolically as

Ax = c

where A is the matrix of coefficients for the linear system. Because A is nonsingular, the system has a solution given by

\[x = A^{-1}c\]

This example solves this linear system of equations.

1 Define the matrices A and c. Both of these matrices are input as matrix literals; that is, you type the row and column values as discussed in Chapter 3, “Understanding the SAS/IML Language.”

```sas
proc iml;
    a = {3 -1 2,
        2 -2 3,
        4 1 -4};
    c = {8, 2, 9};
```

2 Solve the equation by using the built-in INV function and the matrix multiplication operator. The INV function returns the inverse of a square matrix and \(\ast\) is the operator for matrix multiplication. Consequently, the solution is computed as follows:

```sas
    x = inv(a) * c;
    print x;
```
Equivalently, you can solve the linear system by using the more efficient SOLVE function, as shown in the following statement:

```plaintext
x = solve(a, c);
```

After SAS/IML executes the statements, the rows of the vector `x` contain the x_1, x_2, and x_3 values that solve the linear system.

You can end PROC IML by using the QUIT statement:

```plaintext
quit;
```

A Module for Linear Regression

The linear systems that arise naturally in statistics are usually *overconstrained*, meaning that the X matrix has more rows than columns and that an exact solution to the linear system is impossible to find. Instead, the statistician assumes a linear model of the form

$$y = Xb + e$$

where y is the vector of responses, X is a design matrix, and b is a vector of unknown parameters that are estimated by minimizing the sum of squares of e, the error or residual term.

The following example illustrates some programming techniques by using SAS/IML statements to perform linear regression. (The example module does not replace regression procedures such as the REG procedure, which are more efficient for regressions and offer a multitude of diagnostic options.)

Suppose you have response data y measured at five values of the independent variable X and you want to perform a quadratic regression. In this case, you can define the design matrix X and the data vector y as follows:

```plaintext
proc iml;
  x = {1 1 1,
       1 2 4,
       1 3 9,
       1 4 16,
       1 5 25};
  y = {1, 5, 9, 23, 36};
```

You can compute the least squares estimate of b by using the following statement:
\[
b = \text{inv}(x'x) \times x'y;
\]
\[
\text{print } b;
\]

Figure 4.2 Parameter Estimates

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
</tr>
<tr>
<td>-3.2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

The predicted values are found by multiplying the data matrix and the parameter estimates; the residuals are the differences between actual and predicted responses, as shown in the following statements:

\[
yhat = x*b;
\]
\[
r = y-yhat;
\]
\[
\text{print } yhat \ r;
\]

Figure 4.3 Predicted and Residual Values

<table>
<thead>
<tr>
<th>yhat</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>10.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>21.6</td>
<td>1.4</td>
</tr>
<tr>
<td>36.4</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

To estimate the variance of the responses, calculate the sum of squared errors (SSE), the error degrees of freedom (DFE), and the mean squared error (MSE) as follows:

\[
\text{sse} = \text{ssq}(r);
\]
\[
\text{dfe} = \text{nrow}(x) - \text{ncol}(x);
\]
\[
\text{mse} = \frac{\text{sse}}{\text{dfe}};
\]
\[
\text{print } \text{sse} \ \text{dfe} \ \text{mse};
\]

Figure 4.4 Statistics for a Linear Model

<table>
<thead>
<tr>
<th>sse</th>
<th>dfe</th>
<th>mse</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Notice that in computing the degrees of freedom, you use the function \text{NCOL} to return the number of columns of \(X \) and the function \text{NROW} to return the number of rows.

Now suppose you want to solve the problem repeatedly on new data. To do this, you can define a module. Modules begin with a \text{START} statement and end with a \text{FINISH} statement, with the program statements in between. The following statements define a module named Regress to perform linear regression:
A Module for Linear Regression

start Regress; /* begin module */
xx = inv(x`*x); /* inverse of X’X */
beta = xx * (x`*y); /* parameter estimate */
yhat = x*beta; /* predicted values */
resid = y-yhat; /* residuals */

sse = ssq(resid); /* SSE */
n = nrow(x); /* sample size */
dfe = nrow(x)-ncol(x); /* error DF */
ms = ss/dfe; /* MSE */
cssy = ssq(y-sum(y)/n); /* corrected total SS */
rsquare = (cssy-sse)/cssy; /* RSQUARE */
results = sse || dfe || ms || rsquare;
print results[c=\{"SSE" "DFE" "MSE" "RSquare"\}]
 L="Regression Results"];;

stdb = sqrt(vecdiag(xx)*ms); /* std of estimates */
t = beta/stdb; /* parameter t tests */
prob = 1-probf(t#t,1,dfe); /* p-values */
paramest = beta || stdb || t || prob;
print paramest[c=\{"Estimate" "StdErr" "t" "Pr>|t|"\}]
 L="Parameter Estimates" f=Best6.];;

print y yhat resid; /* end module */

Assuming that the matrices x and y are defined, you can run the Regress module as follows:

run Regress; /* run module */

Figure 4.5 The Results of a Regression Module

<table>
<thead>
<tr>
<th>Regression Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
</tr>
<tr>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
</tr>
<tr>
<td>2.4</td>
</tr>
<tr>
<td>-3.2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>yhat</th>
<th>resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>10.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>23</td>
<td>21.6</td>
<td>1.4</td>
</tr>
<tr>
<td>36</td>
<td>36.4</td>
<td>-0.4</td>
</tr>
</tbody>
</table>
Orthogonal Regression

In the previous section, you ran a module that computes parameter estimates and statistics for a linear regression model. All of the matrices used in the Regress module are global variables because the Regress module does not have any arguments. Consequently, you can use those matrices in additional calculations.

Suppose you want to correlate the parameter estimates. To do this, you can calculate the covariance of the estimates, then scale the covariance into a correlation matrix with values of 1 on the diagonal. The following statements perform these operations:

```plaintext
covb = xpxi*mse; /* covariance of estimates */
s = 1/sqrt(vecdiag(covb)); /* standard errors */
corrb = diag(s)*covb*diag(s); /* correlation of estimates */
print covb, s, corrab;
```

The results are shown in Figure 4.6. The covariance matrix of the estimates is contained in the `covb` matrix. The vector `s` contains the standard errors of the parameter estimates and is used to compute the correlation matrix of the estimates (`corrb`).

Equivalently, you can form the `covb` matrix and then call the `COV2CORR` function in order to generate the `corrb` matrix: `corrb = cov2corr(covb)`.

Figure 4.6 Covariance and Correlation Matrices for Estimates

| Parameter Estimates | Estimate | StdErr | t | Pr>|t| |
|---------------------|----------|--------|-----|-----|
| 2.4 | 3.8367 | 0.6255 | 0.5955 |
| -3.2 | 2.9238 | -1.094 | 0.388 |
| 2 | 0.4781 | 4.1833 | 0.0527 |
| y yhat resid | 1 | 1.2 | -0.2 |
| | 5 | 4 | 1 |
| | 9 | 10.8 | -1.8 |
| | 23 | 21.6 | 1.4 |
| | 36 | 36.4 | -0.4 |

covb	14.72	-10.56	1.6
	-10.56	8.5485714	-1.371429
	1.6	-1.371429	0.2285714

s	0.260643
	0.3420214
	2.0916501
You can also use the Regress module to carry out an orthogonalized regression version of the previous polynomial regression. In general, the columns of \(X \) are not orthogonal. You can use the ORPOL function to generate orthogonal polynomials for the regression. Using them provides greater computing accuracy and reduced computing times. When you use orthogonal polynomial regression, you can expect the statistics of fit to be the same and expect the estimates to be more stable and uncorrelated.

To perform an orthogonal regression on the data, you must first create a vector that contains the values of the independent variable \(x \), which is the second column of the design matrix \(X \). Then, use the ORPOL function to generate orthogonal second degree polynomials. The following statements perform these operations:

```plaintext
x1 = x[,2];  /* data = second column of X */
x = orpol(x1, 2);  /* generate orthogonal polynomials */
run Regress;  /* run Regress module */
covb = xpxi* mse;  /* covariance of estimates */
s = 1 / sqrt(vecdiag(covb));
corrb = diag(s) * covb * diag(s);
print covb, s, corrb;
```

Figure 4.7 Covariance and Correlation Matrices for Estimates

<table>
<thead>
<tr>
<th>Regression Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE</td>
</tr>
<tr>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
</tr>
<tr>
<td>33.094</td>
</tr>
<tr>
<td>27.828</td>
</tr>
<tr>
<td>7.4833</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>yhat resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.2 -0.2</td>
</tr>
<tr>
<td>5 4 1</td>
</tr>
<tr>
<td>9 10.8 -1.8</td>
</tr>
<tr>
<td>23 21.6 1.4</td>
</tr>
<tr>
<td>36 36.4 -0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>covb</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 0 0</td>
</tr>
<tr>
<td>0 3.2 0</td>
</tr>
<tr>
<td>0 0 3.2</td>
</tr>
</tbody>
</table>
For these data, the off-diagonal values of the `corrb` matrix are displayed as zeros. For some analyses you might find that certain matrix elements are very close to zero but not exactly zero because of the computations of floating-point arithmetic. You can use the RESET FUZZ option to control whether small values are printed as zeros.

Plotting Regression Results

You can produce high-resolution ODS graphics by using modules in the IMLMLIB library. See Chapter 18, "Statistical Graphics," for more information about high-resolution graphics.

Alternatively, you can create graphics by using the SAS/IML Studio application, which is a Window application that is distributed as part of SAS/IML software. SAS/IML Studio is an environment for developing SAS/IML programs. SAS/IML Studio includes high-level statistical graphics such as scatter plots, histograms, and bar charts. You can use the SAS/IML Studio graphical user interface (GUI) to create graphs, or you can create and modify graphics by writing programs. The GUI is described in the *SAS/IML Studio User’s Guide*. See *SAS/IML Studio for SAS/STAT Users* for an introduction to programming in SAS/IML Studio.

Creating ODS Graphics

You can continue the example of this chapter by using the `SCATTER` subroutine to create scatter plots of the data, the predicted values, and the residuals.

The following statements plot the residual values versus the explanatory variable. The graph is shown in Figure 4.8.

```sas
   title "Plot of Residuals";
   call scatter(x1, resid) label={"x" "Residuals"}
      other="refline 0 / axis=y";
```
In a similar way, you can use the SCATTER routine to plot the predicted values \hat{y} against x.

For more complicated graphs, you might choose to call the SGPLOT procedure directly from within your SAS/IML program. You can use the SUBMIT statement and ENDSUBMIT statement to call any SAS procedure from within PROC IML. For this example, you need to first create a SAS data set that contains the data. The following statements write the data to the RegData data set, then call the SGPLOT procedure to create a scatter plot overlaid with a line plot:

```sas
create RegData var {"x1" "y" "yhat"};
append;
close RegData;

submit;
title "Scatter Plot with Predicted Values";
proc sgplot data=RegData;	
label x1="x" yhat="Predicted";
series x=x1 y=yhat;
scatter x=x1 y=y;
run;
endsubmit;
```

The CREATE statement creates a SAS data set named RegData. The APPEND statement writes the data to the data set. The SUBMIT and ENDSUBMIT statements bracket SAS programs statements that generate Figure 4.9.
SAS/IML Studio Graphics

If you develop your SAS/IML programs in SAS/IML Studio, you can use high-level statistical graphics. For example, the following statements create three scatter plots that duplicate the low-resolution plots created in the previous section. Two of the plots are shown in Figure 4.10. The main steps in the program are indicated by numbered comments; these steps are explained in the list that follows the program.

```sas
x = {1 1 1, 1 2 4, 1 3 9, 1 4 16, 1 5 25}; /* 1 */
y = {1, 5, 9, 23, 36};
x1 = x[,2]; /* data = second column of X */
x = orpol(x1,2); /* generates orthogonal polynomials */
run Regress; /* runs the Regress module */

declare DataObject dobj; /* 2 */
dobj = DataObject.Create("Reg", /* 3 */
   {"x" "y" "Residuals" "Predicted"},
   x1 || y || resid || yhat);

declare ScatterPlot p1, p2, p3;
p1 = ScatterPlot.Create(dobj, "x", "Residuals"); /* 4 */
p1.SetTitleText("Plot of Residuals", true);

p2 = ScatterPlot.Create(dobj, "x", "Predicted"); /* 5 */
p2.SetTitleText("Plot of Predicted Values", true);

p3 = ScatterPlot.Create(dobj, "x", "y"); /* 6 */
p3.SetTitleText("Scatter Plot with Regression Line", true);
p3.DrawLine(x1,yhat); /* 7 */
```

Figure 4.9 Plot of Predicted and Observed Values

![Scatter Plot with Predicted Values](image)
To completely understand this program, you should read *SAS/IML Studio for SAS/STAT Users*. The following list describes the main steps of the program:

1. Use SAS/IML to create the data and run the Regress module.
2. Specify that the `dobj` variable is an object of the DataObject class. SAS/IML Studio extends the SAS/IML language by adding object-oriented programming techniques.
3. Create an object of the DataObject class from SAS/IML vectors.
4. Create a scatter plot of the residuals versus the values of the explanatory variable.
5. Create a scatter plot of the predicted values versus the values of the explanatory variable.
6. Create a scatter plot of the observed responses versus the values of the explanatory variable.
7. Overlay a line for the predicted values.

Figure 4.10 Graphs Created by SAS/IML Studio
Overview of Working with Matrices

SAS/IML software provides many ways to create matrices. You can create matrices by doing any of the following:

- entering data as a matrix literal
- using assignment statements
- using functions that generate matrices
- creating submatrices from existing matrices with subscripts
- using SAS data sets (see Chapter 7, “Working with SAS Data Sets,” for more information)
Chapter 3, “Understanding the SAS/IML Language,” describes some of these techniques.

After you define matrices, you have access to many operators and functions for forming matrix expressions. These operators and functions facilitate programming and enable you to refer to submatrices. This chapter describes how to work with matrices in the SAS/IML language.

Entering Data as Matrix Literals

The simplest way to create a matrix is to define a matrix literal by entering the matrix elements. A matrix literal can contain numeric or character data. A matrix literal can be a single element (called a *scalar*), a single row of data (called a *row vector*), a single column of data (called a *column vector*), or a rectangular array of data (called a *matrix*). The *dimension* of a matrix is given by its number of rows and columns. An \(n \times p \) matrix has \(n \) rows and \(p \) columns.

Scalars

Scalars are matrices that have only one element. You can define a scalar by typing the matrix name on the left side of an assignment statement and its value on the right side. The following statements create and display several examples of scalar literals:

```iml
proc iml;
  x = 12;
  y = 12.34;
  z = .;
  a = 'Hello';
  b = "Hi there";
  print x y z a b;
```

The output is displayed in Figure 5.1. Notice that you need to use either single quotes (‘) or double quotes (")) when defining a character literal. Using quotes preserves the case and embedded blanks of the literal. It is also always correct to enclose data values within braces ({ }).

![Figure 5.1 Examples of Scalar Quantities](https://example.com/figure5.1.png)

Matrices with Multiple Elements

To enter a matrix having multiple elements, use braces ({} to enclose the data values. If the matrix has multiple rows, use commas to separate them. Inside the braces, all elements must be either numeric or character. You cannot have a mixture of data types within a matrix. Each row must have the same number of elements.

For example, suppose you have one week of data on daily coffee consumption (cups per day) for four people in your office. Create a \(4 \times 5 \) matrix called *coffee* with each person’s consumption represented by a row of
the matrix and each day represented by a column. The following statements use the `RESET PRINT` command so that the result of each assignment statement is displayed automatically:

``` SAS
proc iml;
reset print;
coffee = {4 2 2 3 2,
       3 3 1 2 1,
       2 1 0 2 1,
       5 4 4 3 4};
```

Figure 5.2 A 4×5 Matrix

<table>
<thead>
<tr>
<th>coffee</th>
<th>4 rows</th>
<th>5 cols</th>
<th>(numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 2 2 3 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 3 1 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 0 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 4 4 3 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next, you can create a character matrix called `names` with rows that contains the names of the coffee drinkers in your office. Notice in **Figure 5.3** that if you do not use quotes, characters are converted to uppercase.

``` SAS
names = {Jenny, Linda, Jim, Samuel};
```

Figure 5.3 A Column Vector of Names

<table>
<thead>
<tr>
<th>names</th>
<th>4 rows</th>
<th>1 col</th>
<th>(character, size 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JENNY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JIM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMUEL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice that `RESET PRINT` statement produces output that includes the name of the matrix, its dimensions, its type, and (when the type is character) the element size of the matrix. The element size represents the length of each string, and it is determined by the length of the longest string.

Next display the `coffee` matrix using the elements of `names` as row names by specifying the `ROWNAME=` option in the `PRINT` statement:

``` SAS
print coffee[rowname=names];
```

Figure 5.4 Rows of a Matrix Labeled by a Vector

<table>
<thead>
<tr>
<th>coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>JENNY</td>
</tr>
<tr>
<td>LINDA</td>
</tr>
<tr>
<td>JIM</td>
</tr>
<tr>
<td>SAMUEL</td>
</tr>
</tbody>
</table>
Using Assignment Statements

Assignment statements create matrices by evaluating expressions and assigning the results to a matrix. The expressions can be composed of operators (for example, the matrix addition operator (+)), functions (for example, the INV function), and subscripts. Assignment statements have the general form result = expression where result is the name of the new matrix and expression is an expression that is evaluated. The resulting matrix automatically acquires the appropriate dimension, type, and value. Details about writing expressions are described in the section “Using Matrix Expressions” on page 44.

Simple Assignment Statements

Simple assignment statements involve an equation that has a matrix name on the left side and either an expression or a function that generates a matrix on the right side.

Suppose that you want to generate some statistics for the weekly coffee data. If a cup of coffee costs 30 cents, then you can create a matrix with the daily expenses, dayCost, by multiplying the per-cup cost with the matrix coffee. You can turn off the automatic printing so that you can customize the output with the ROWNAME=, FORMAT=, and LABEL= options in the PRINT statement, as shown in the following statements:

```plaintext
reset noprint;
dayCost = 0.30 # coffee; /* elementwise multiplication */
print dayCost[rownames=names format=8.2 label="Daily totals"];```

Figure 5.5 Daily Cost for Each Employee

<table>
<thead>
<tr>
<th>Daily totals</th>
<th>JENNY</th>
<th>1.20 0.60 0.60 0.90 0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINDA</td>
<td>0.90  0.90 0.30 0.60 0.30</td>
<td></td>
</tr>
<tr>
<td>JIM</td>
<td>0.60  0.30 0.00 0.60 0.30</td>
<td></td>
</tr>
<tr>
<td>SAMUEL</td>
<td>1.50  1.20 1.20 0.90 1.20</td>
<td></td>
</tr>
</tbody>
</table>

You can calculate the weekly total cost for each person by using the matrix multiplication operator (*). First create a 5 × 1 vector of ones. This vector sums the daily costs for each person when multiplied with the coffee matrix. (A more efficient way to do this is by using subscript reduction operators, which are discussed in the section “Using Matrix Expressions” on page 44.) The following statements perform the multiplication:

```plaintext
ones = {1,1,1,1,1};
weektot = dayCost * ones; /* matrix-vector multiplication */
print wektot[rownames=names format=8.2 label="Weekly totals"];```
You might want to calculate the average number of cups consumed per day in the office. You can use the SUM function, which returns the sum of all elements of a matrix, to find the total number of cups consumed in the office. Then divide the total by 5, the number of days. The number of days is also the number of columns in the coffee matrix, which you can determine by using the NCOL function. The following statements perform this calculation:

```sas
grandtot = sum(coffee);
average = grandtot / ncol(coffee);
print grandtot[label="Total number of cups"],
     average[label="Daily average"];```

**Figure 5.7** Total and Average Number of Cups for the Office

<table>
<thead>
<tr>
<th>Total number of cups</th>
<th>Daily average</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>9.8</td>
</tr>
</tbody>
</table>

---

**Functions That Generate Matrices**

SAS/IML software has many useful built-in functions that generate matrices. For example, the **J** function creates a matrix with a given dimension and specified element value. You can use this function to initialize a matrix to a predetermined size. Here are several functions that generate matrices:

- **BLOCK** creates a block-diagonal matrix
- **DESIGNF** creates a full-rank design matrix
- **I** creates an identity matrix
- **J** creates a matrix of a given dimension
- **REPEAT** creates a new matrix by repeating elements of the argument matrix
- **SHAPE** shapes a new matrix from the argument

The sections that follow illustrate the functions that generate matrices. The output of each example is generated automatically by using the **RESET PRINT** statement:

```sas
reset print;
```
The BLOCK Function

The BLOCK function has the following general form:

\[
\text{BLOCK} \ (\text{matrix1},<\text{matrix2},\ldots,\text{matrix15}>); \\
\]

The BLOCK function creates a block-diagonal matrix from the argument matrices. For example, the following statements form a block-diagonal matrix:

\[
a = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; \quad b = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}; \quad c = \text{block}(a,b);
\]

\[
\begin{array}{cccc}
\text{Figure 5.8} & \text{A Block-Diagonal Matrix} \\
\hline \\
\text{c} & 4 \text{ rows} & 4 \text{ cols} & \text{(numeric)} \\
\hline \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 2 \\
\hline 
\end{array}
\]

The J Function

The J function has the following general form:

\[
\text{J} \ (\text{nrow} <,\text{ncol} <,\text{value} >); \\
\]

It creates a matrix that has \text{nrow} rows, \text{ncol} columns, and all elements equal to \text{value}. The \text{ncol} and \text{value} arguments are optional; if they are not specified, default values are used. In many statistical applications, it is helpful to be able to create a row (or column) vector of ones. (You did so to calculate coffee totals in the previous section.) You can do this with the J function. For example, the following statement creates a 5 × 1 column vector of ones:

\[
\text{ones} = \text{j}(5,1,1);
\]

\[
\begin{array}{cccc}
\text{Figure 5.9} & \text{A Vector of Ones} \\
\hline \\
\text{ones} & 5 \text{ rows} & 1 \text{ col} & \text{(numeric)} \\
\hline \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
\hline 
\end{array}
\]

The I Function

The I function creates an identity matrix of a given size. It has the following general form:

\[
\text{I} \ (\text{dimension}) ;
\]
where *dimension* gives the number of rows. For example, the following statement creates a $3 \times 3$ identity matrix:

$$
I_3 = I(3);
$$

**Figure 5.10** An Identity Matrix

<table>
<thead>
<tr>
<th>I3</th>
<th>3 rows</th>
<th>3 cols</th>
<th>(numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**The DESIGNF Function**

The DESIGNF function generates a full-rank design matrix, which is useful in calculating ANOVA tables. It has the following general form:

```
DESIGNF (column-vector) ;
```

For example, the following statement creates a full-rank design matrix for a one-way ANOVA, where the treatment factor has three levels and there are $n_1 = 3$, $n_2 = 2$, and $n_3 = 2$ observations at the factor levels:

```
d = designf({1,1,1,2,2,3,3});
```

**Figure 5.11** A Design Matrix

<table>
<thead>
<tr>
<th>d</th>
<th>7 rows</th>
<th>2 cols</th>
<th>(numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 -1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 -1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**The REPEAT Function**

The REPEAT function creates a new matrix by repeating elements of the argument matrix. It has the following syntax:

```
REPEAT (matrix, nrow, ncol) ;
```

The function repeats *matrix* a total of $nrow \times ncol$ times. The argument is repeated $nrow$ times in the vertical direction and $ncol$ times in the horizontal direction. For example, the following statement creates a $4 \times 6$ matrix:

```
x = {1 2, 3 4};
r = repeat(x, 2, 3);
```
The SHAPE Function

The SHAPE function creates a new matrix by reshaping an argument matrix. It has the following general form:

```
SHAPE (matrix, nrow <.ncol <.pad-value>>>);
```

The ncol and pad-value arguments are optional; if they are not specified, default values are used. The following statement uses the SHAPE function to create a $3 \times 3$ matrix that contains the values 99 and 33. The function cycles back and repeats values to fill in the matrix when no pad-value is given.

```
aa = shape([99 33; 33 99], 3, 3);
```

Alternatively, you can specify a value for pad-value that is used for filling in the matrix:

```
bb = shape([99 33; 33 99], 3, 3, 0);
```

The SHAPE function cycles through the argument matrix elements in row-major order and fills in the matrix with zeros after the first cycle through the argument matrix.
Index Vectors

You can create a row vector by using the index operator (:). The following statements show that you can use the index operator to count up, count down, or to create a vector of character values with numerical suffixes:

```matlab
r = 1:5;
s = 10:6;
t = 'abc1':'abc5';
```

**Figure 5.15** Row Vectors Created with the Index Operator

<table>
<thead>
<tr>
<th></th>
<th>1 row</th>
<th>5 cols (numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td>10 9 8 7 6</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>abc1 abc2 abc3 abc4 abc5</td>
</tr>
</tbody>
</table>

To create a vector based on an increment other than 1, use the DO function. For example, if you want a vector that ranges from –1 to 1 by 0.5, use the following statement:

```matlab
u = do(-1,1,.5);
```

**Figure 5.16** Row Vector Created with the DO Function

<table>
<thead>
<tr>
<th></th>
<th>1 row</th>
<th>5 cols (numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td>-1 -0.5 0 0.5 1</td>
</tr>
</tbody>
</table>
Using Matrix Expressions

A matrix expression is a sequence of names, literals, operators, and functions that perform some calculation, evaluate some condition, or manipulate values. Matrix expressions can appear on either side of an assignment statement.

Operators

Operators used in matrix expressions fall into three general categories:

Prefix operators are placed in front of operands. For example, \(-A\) uses the sign reversal prefix operator (\(-\)) in front of the matrix \(A\) to reverse the sign of each element of \(A\).

Binary operators are placed between operands. For example, \(A + B\) uses the addition binary operator (+) between matrices \(A\) and \(B\) to add corresponding elements of the matrices.

Postfix operators are placed after an operand. For example, \(A'\) uses the transpose postfix operator (\(\cdot\)) after the matrix \(A\) to transpose the matrix.

Matrix operators are described in detail in Chapter 26, “Language Reference.”

Table 5.1 shows the precedence of matrix operators in the SAS/IML language.

<table>
<thead>
<tr>
<th>Priority Group</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (highest)</td>
<td>(^\prime) subscripts -(prefix) ## **</td>
</tr>
<tr>
<td>II</td>
<td>* # &lt;&gt; &gt;(&lt;) / @</td>
</tr>
<tr>
<td>III</td>
<td>+ -</td>
</tr>
<tr>
<td>IV</td>
<td>| // :</td>
</tr>
<tr>
<td>V</td>
<td>&lt; &lt;= &gt; &gt;= = ^=</td>
</tr>
<tr>
<td>VI</td>
<td>&amp;</td>
</tr>
<tr>
<td>VII (lowest)</td>
<td></td>
</tr>
</tbody>
</table>

Compound Expressions

With SAS/IML software, you can write compound expressions that involve several matrix operators and operands. For example, the following statements are valid matrix assignment statements:

\[
\begin{align*}
a &= x+y+z; \\
a &= x+y*z' ; \\
a &= (-x) # (y-z); 
\end{align*}
\]

The rules for evaluating compound expressions are as follows:

- Evaluation follows the order of operator precedence, as described in Table 5.1. Group I has the highest priority; that is, Group I operators are evaluated first. Group II operators are evaluated after Group I operators, and so forth. Consider the following statement:
Elementwise Binary Operators

Elementwise binary operators produce a result matrix from element-by-element operations on two argument matrices.

Table 5.2 lists the elementwise binary operators.
Table 5.2  Elementwise Binary Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition; string concatenation</td>
</tr>
<tr>
<td>−</td>
<td>Subtraction</td>
</tr>
<tr>
<td>#</td>
<td>Elementwise multiplication</td>
</tr>
<tr>
<td>##</td>
<td>Elementwise power</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>Element maximum</td>
</tr>
<tr>
<td>&gt;</td>
<td>Element minimum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp;</td>
<td>Logical AND</td>
</tr>
<tr>
<td>&lt;</td>
<td>Less than</td>
</tr>
<tr>
<td>&lt;=</td>
<td>Less than or equal to</td>
</tr>
<tr>
<td>&gt;</td>
<td>Greater than</td>
</tr>
<tr>
<td>&gt;=</td>
<td>Greater than or equal to</td>
</tr>
<tr>
<td>^=</td>
<td>Not equal to</td>
</tr>
<tr>
<td>^=</td>
<td>Equal to</td>
</tr>
</tbody>
</table>

For example, consider the following two matrices:

\[
A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 5 \\ 1 & 0 \end{bmatrix}
\]

The addition operator (+) adds corresponding matrix elements, as follows:

\[
A + B = \begin{bmatrix} 6 & 7 \\ 4 & 4 \end{bmatrix}
\]

The elementwise multiplication operator (#) multiplies corresponding elements, as follows:

\[
A \# B = \begin{bmatrix} 8 & 10 \\ 3 & 0 \end{bmatrix}
\]

The elementwise power operator (##) raises elements to powers, as follows:

\[
A^{##2} = \begin{bmatrix} 4 & 4 \\ 9 & 16 \end{bmatrix}
\]

The element maximum operator (<> ) compares corresponding elements and chooses the larger, as follows:

\[
A <> B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}
\]

The less than or equal to operator (<=) returns a 1 if an element of A is less than or equal to the corresponding element of B, and returns a 0 otherwise:

\[
A \leq B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}
\]
All operators can work on scalars, vectors, or matrices, provided that the operation makes sense. For example, you can add a scalar to a matrix or divide a matrix by a scalar. For example, the following statement replaces each negative element of the matrix $x$ with 0:

$$y = x\#(x>0);$$

The expression $x>0$ is an operation that compares each element of $x$ to (scalar) zero and creates a temporary matrix of results; an element of the temporary matrix is 1 when the corresponding element of $x$ is positive, and 0 otherwise. The original matrix $x$ is then multiplied elementwise by the temporary matrix, resulting in the matrix $y$. To fully understand the intermediate calculations, you can use the \texttt{RESET} statement with the \texttt{PRINTALL} option to have the temporary result matrices displayed.

---

**Subscripts**

Subscripts are special postfix operators placed in square brackets ([ ]) after a matrix operand. Subscript operations have the general form \texttt{operand[row,column]} where

- \texttt{operand} is usually a matrix name, but it can also be an expression or literal.
- \texttt{row} refers to a scalar or vector expression that selects one or more rows from the operand.
- \texttt{column} refers to a scalar or vector expression that selects one or more columns from the operand.

You can use subscripts to do any of the following:

- refer to a single element of a matrix
- refer to an entire row or column of a matrix
- refer to any submatrix contained within a matrix
- perform a \textit{reduction} across rows or columns of a matrix. A reduction is a statistical operation (often a sum or mean) applied to the rows or to the columns of a matrix.

In expressions, subscripts have the same (high) precedence as the transpose postfix operator (\texttt{\^}). When both \texttt{row} and \texttt{column} subscripts are used, they are separated by a comma. If a matrix has row or column names associated with it from a \texttt{MATTRIB} or \texttt{READ} statement, then the corresponding row or column subscript can also be a character matrix whose elements match the names of the rows or columns to be selected.

**Selecting a Single Element**

You can select a single element of a matrix in several ways. You can use two subscripts (\texttt{row, column}) to refer to its location, or you can use one subscript to index the elements in row-major order.

For example, for the coffee example used previously in this chapter, there are several ways to find the element that corresponds to the number of cups that Samuel drank on Monday.

First, you can refer to the element by row and column location. In this case, you want the fourth row and first column. The following statements extract the datum and place it in the matrix $c41$: 
coffee=(4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4);
names={Jenny, Linda, Jim, Samuel};
print coffee[rownames=names];
c41 = coffee[4,1];
print c41;

Figure 5.17 Datum Extracted from a Matrix

<table>
<thead>
<tr>
<th>coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>JENNY</td>
</tr>
<tr>
<td>LINDA</td>
</tr>
<tr>
<td>JIM</td>
</tr>
<tr>
<td>SAMUEL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c41</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

You can also use row and column names, which can be assigned with an MATTRIB statement as follows:

mattrib coffee rowname=names
  colname={'MON' 'TUE' 'WED' 'THU' 'FRI'};
cSamMon = coffee['SAMUEL','MON'];
print cSamMon;

Figure 5.18 Datum Extracted from a Matrix with Assigned Attributes

<table>
<thead>
<tr>
<th>cSamMon</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

You can also look for the element by enumerating the elements of the matrix in row-major order. In this case, you refer to this element as the sixteenth element of coffee:

c16 = coffee[16];
print c16;

Figure 5.19 Datum Extracted from a Matrix by Specifying the Element Number

<table>
<thead>
<tr>
<th>c16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Selecting a Row or Column

To refer to an entire row of a matrix, specify the subscript for the row but omit the subscript for the column. For example, to refer to the row of the coffee matrix that corresponds to Jim, you can specify the submatrix that consists of the third row and all columns. The following statements extract and print this submatrix:

jim = coffee[3,];
print jim;

Alternately, you can use the row names assigned by the MATTRIB statement. Both results are shown in Figure 5.20.
jim2 = coffee['JIM',];
print jim2;

Figure 5.20  Row Extracted from a Matrix

<table>
<thead>
<tr>
<th>jim</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0 2 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>jim2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0 2 1</td>
</tr>
</tbody>
</table>

If you want to extract the data for Friday, you can specify the subscript for the fifth column. You omit the row subscript to indicate that the operation applies to all rows. The following statements extract and print this submatrix:

friday = coffee[,5];
print friday;

Figure 5.21  Column Extracted from a Matrix

<table>
<thead>
<tr>
<th>friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Alternatively, you could also index by the column name as follows:

friday = coffee[,]'FRI'];

Submatrices

You refer to a submatrix by specifying the rows and columns that determine the submatrix. For example, to create the submatrix of coffee that consists of the first and third rows and the second, third, and fifth columns, use the following statements:

submat1 = coffee[{1 3}, {2 3 5}];
print submat1;

Figure 5.22  Submatrix Extracted from a Matrix

<table>
<thead>
<tr>
<th>submat1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2 2</td>
</tr>
<tr>
<td>1 0 1</td>
</tr>
</tbody>
</table>

The first vector, {1 3}, selects the rows and the second vector, {2 3 5}, selects the columns. Alternately, you can create the vectors of indices and use them to extract the submatrix, as shown in following statements:
Chapter 5: Working with Matrices

rows = {1 3};
cols = {2 3 5};
submat1 = coffee[rows, cols];

You can also use the row and column names:

rows = {'JENNY' 'JIM'};
cols = {'TUE' 'WED' 'FRI'};
submat1 = coffee[rows, cols];

You can use index vectors generated by the index creation operator (:) in subscripts to refer to successive rows or columns. For example, the following statements extract the first three rows and last three columns of coffee:

submat2 = coffee[1:3, 3:5];
print submat2;

**Figure 5.23** Submatrix of Contiguous Rows and Columns

<table>
<thead>
<tr>
<th>submat2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 2</td>
</tr>
<tr>
<td>1 2 1</td>
</tr>
<tr>
<td>0 2 1</td>
</tr>
</tbody>
</table>

Selecting Multiple Elements

All SAS/IML matrices are stored in row-major order. This means that you can index multiple elements of a matrix by listing the position of the elements in an $n \times p$ matrix. The elements in the first row have positions 1 through $p$, the elements in the second row have positions $p + 1$ through $2p$, and the elements in the last row have positions $(n - 1)p + 1$ through $np$.

For example, in the coffee data discussed previously, you might be interested in finding occurrences for which some person (on some day) drank more than two cups of coffee. The LOC function is useful for creating an index vector for a matrix that satisfies some condition. The following statement uses the LOC function to find the data that satisfy the desired criterion:

h = loc(coffee > 2);
print h;

**Figure 5.24** Indices That Correspond to a Criterion

<table>
<thead>
<tr>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1</td>
</tr>
<tr>
<td>COL2</td>
</tr>
<tr>
<td>COL3</td>
</tr>
<tr>
<td>COL4</td>
</tr>
<tr>
<td>COL5</td>
</tr>
<tr>
<td>COL6</td>
</tr>
<tr>
<td>COL7</td>
</tr>
<tr>
<td>COL8</td>
</tr>
<tr>
<td>COL9</td>
</tr>
<tr>
<td>ROW1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

The row vector h contains indices of the coffee matrix that satisfy the criterion. If you want to find the number of cups of coffee consumed on these occasions, you need to subscript the coffee matrix with the indices, as shown in the following statements:
cups = coffee[h];
print cups;

**Figure 5.25** Values That Correspond to a Criterion

<table>
<thead>
<tr>
<th>cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Notice that SAS/IML software returns a column vector when a matrix is subscripted by a single array of indices. This might surprise you, but clearly the `cups` matrix cannot be the same shape as the `coffee` matrix since it contains a different number of elements. Therefore, the only reasonable alternative is to return either a row vector or a column vector. Either would be a valid choice; SAS/IML software returns a column vector.

Even if the original matrix is a row vector, the subscripted matrix will be a column vector, as the following example shows:

```plaintext
v = {-1 2 5 -2 7}; /* v is a row vector */
v2 = v[{1 3 5}]; /* v2 is a column vector */
print v2;
```

**Figure 5.26** Column Vector of Extracted Values

<table>
<thead>
<tr>
<th>v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

If you want to index into a row vector and you want the resulting variable also to be a row vector, then use the following technique:

```plaintext
v3 = v[,{1 3 5}]; /* Select columns. Note the comma. */
print v3;
```

**Figure 5.27** Row Vector of Extracted Values

<table>
<thead>
<tr>
<th>v3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 5 7</td>
</tr>
</tbody>
</table>
Subscripted Assignment

You can assign values into a matrix by using subscripts to refer to the element or submatrix. In this type of assignment, the subscripts appear on the left side of the equal sign. For example, to assign the value 4 in the first row, second column of `coffee`, use subscripts to refer to the appropriate element in an assignment statement, as shown in the following statements and in Figure 5.27:

```plaintext
coffee[1,2] = 4;
print coffee;
```

To change the values in the last column of `coffee` to zeros, use the following statements:

```plaintext
coffee[,5] = {0,0,0,0}; /* alternatively: coffee[,5] = 0; */
print coffee;
```

![Figure 5.28 Matrices after Assigning Values to Elements](image)

In the next example, you locate the negative elements of a matrix and set these elements to zero. (This can be useful in situations where negative elements might indicate errors.) The LOC function is useful for creating an index vector for a matrix that satisfies some criterion. The following statements use the LOC function to find and replace the negative elements of the matrix `T`:

```plaintext
t = {3 2 -1,
 6 -4 3,
 2 2 2 };
i = loc(t<0);
print i;
t[i] = 0;
print t;
```

![Figure 5.29 Results of Finding and Replacing Negative Values](image)
Subscripts can also contain expressions. For example, the previous example could have been written as follows:

\[ t[\text{loc}(t<0)] = 0; \]

If you use a noninteger value as a subscript, only the integer portion is used. Using a subscript value less than one or greater than the dimension of the matrix results in an error.

### Subscript Reduction Operators

A reduction operator is a statistical operation (for example, a sum or a mean) that returns a matrix of a smaller dimension. Reduction operators are often encountered in frequency tables: the marginal frequencies represent the sum of the frequencies across rows or down columns.

In SAS/IML software, you can use reduction operators in place of values for subscripts to get reductions across all rows or columns. Table 5.3 lists operators for subscript reduction.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>#</td>
<td>Multiplication</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>Maximum</td>
</tr>
<tr>
<td>&lt;&lt;</td>
<td>Minimum</td>
</tr>
<tr>
<td>&lt;:&gt;</td>
<td>Index of maximum</td>
</tr>
<tr>
<td>&gt;:&lt;</td>
<td>Index of minimum</td>
</tr>
<tr>
<td>:</td>
<td>Mean</td>
</tr>
<tr>
<td>##</td>
<td>Sum of squares</td>
</tr>
</tbody>
</table>

For example, to get row sums of a matrix \( X \), you can sum across the columns with the syntax \( X[,+] \). Omitting the first subscript specifies that the operator apply to all rows. The second subscript (+) specifies that summation reduction take place across the columns. The elements in each row are added, and the new matrix consists of one column that contains the row sums.

To give a specific example, consider the coffee data from earlier in the chapter. The following statements use the summation reduction operator to compute the sums for each row:

```sas
coffee={4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4}; names={Jenny, Linda, Jim, Samuel}; mattrib coffee rowname=names colname=('MON' 'TUE' 'WED' 'THU' 'FRI'); Total = coffee[,+]; print coffee Total;
```
Figure 5.30 Summation across Columns to Find the Row Sums

<table>
<thead>
<tr>
<th></th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>JENNY</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>LINDA</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>JIM</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SAMUEL</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

You can use these reduction operators to reduce the dimensions of rows, columns, or both. When both rows and columns are reduced, row reduction is done first.

For example, the expression $A[+, <>]$ results in the maximum ($<>$) of the column sums ($+$).

You can repeat reduction operators. To get the sum of the row maxima, use the expression $A[<>, +]$, or, equivalently, $A[<>, +]$.

A subscript such as $A[2 3], +$ first selects the second and third rows of $A$ and then finds the row sums of that submatrix.

The following examples demonstrate how to use the operators for subscript reduction. Consider the following matrix:

$$A = \begin{bmatrix}
0 & 1 & 2 \\
5 & 4 & 3 \\
7 & 6 & 8
\end{bmatrix}$$

The following statements are true:

- $A[2 3], +$ is $\begin{bmatrix} 12 \\ 21 \end{bmatrix}$ (row sums for rows 2 and 3)
- $A[+, <>]$ is $\begin{bmatrix} 13 \end{bmatrix}$ (maximum of column sums)
- $A[<>, +]$ is $\begin{bmatrix} 21 \end{bmatrix}$ (sum of column maxima)
- $A[+, >][+.]$ is $\begin{bmatrix} 9 \end{bmatrix}$ (sum of row minima)
- $A[<:, >]$ is $\begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}$ (indices of row maxima)
- $A[>:<.]$ is $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ (indices of column minima)
- $A[:]$ is $\begin{bmatrix} 4 \end{bmatrix}$ (mean of all elements)

Displaying Matrices with Row and Column Headings

You can customize the way matrices are displayed with the AUTONAME option, with the ROWNAME= and COLNAME= options, or with the MATTRIB statement.
The AUTONAME Option in the RESET Statement

You can use the RESET statement with the AUTONAME option to automatically display row and column headings. If your matrix has \( n \) rows and \( p \) columns, the row headings are ROW1 to ROW\( n \) and the column headings are COL1 to COL\( p \). For example, the following statements produce the subsequent matrix:

```plaintext
coffee={4 2 2 3 2, 3 3 1 2 1, 2 1 0 2 1, 5 4 4 3 4};
reset autoname;
print coffee;
```

**Figure 5.31** Result of the AUTONAME Option

```
 coffee
 | COL1 | COL2 | COL3 | COL4 | COL5 |
---|------|------|------|------|------|
ROW1 | 4 | 2 | 2 | 3 | 2 |
ROW2 | 3 | 3 | 1 | 2 | 1 |
ROW3 | 2 | 1 | 0 | 2 | 1 |
ROW4 | 5 | 4 | 4 | 3 | 4 |
```

The ROWNAME= and COLNAME= Options in the PRINT Statement

You can specify your own row and column headings. The easiest way is to create vectors that contain the headings and then display the matrix by using the ROWNAME= and COLNAME= options in the PRINT statement. For example, the following statements display row names and column names for a matrix:

```plaintext
names={Jenny, Linda, Jim, Samuel};
days={Mon Tue Wed Thu Fri};
print coffee[rowname=names colname=days];
```

**Figure 5.32** Result of the ROWNAME= and COLNAME= Options

```
 coffee
 | MON | TUE | WED | THU | FRI |
---|-----|-----|-----|-----|-----|
JENNY | 4 | 2 | 2 | 3 | 2 |
LINDA | 3 | 3 | 1 | 2 | 1 |
JIM | 2 | 1 | 0 | 2 | 1 |
SAMUEL | 5 | 4 | 4 | 3 | 4 |
```

The MATTRIB Statement

The MATTRIB statement associates printing characteristics with matrices. You can use the MATTRIB statement to display `coffee` with row and column headings. In addition, you can format the displayed numeric output and assign a label to the matrix name. The following example shows how to customize your displayed output:
More about Missing Values

Missing values in matrices are discussed in Chapter 3, “Understanding the SAS/IML Language.” You should carefully read that chapter and Chapter 25, “Further Notes,” so that you are aware of the way SAS/IML software handles missing values. The following examples show how missing values are handled for elementwise operations and for subscript reduction operators.

Consider the following two matrices $X$ and $Y$:

\[
X = \begin{bmatrix}
1 & 2 & . \\
. & 5 & 6 \\
7 & . & 9
\end{bmatrix}
\quad Y = \begin{bmatrix}
4 & . & 2 \\
2 & 1 & 3 \\
6 & . & 5
\end{bmatrix}
\]

The following operations handle missing values in matrices:

Matrix addition: $X + Y$ is

\[
\begin{bmatrix}
5 & . & . \\
. & 6 & 9 \\
13 & . & 14
\end{bmatrix}
\]

Elementwise multiplication: $X \# Y$ is

\[
\begin{bmatrix}
4 & . & . \\
. & 5 & 18 \\
42 & . & 45
\end{bmatrix}
\]

Subscript reduction: $X[+,]$ is $\begin{bmatrix} 8 & 7 & 15 \end{bmatrix}$
Overview of Programming Statements

The SAS/IML programming language has control statements that enable you to control the path of execution in a program. The control statements in the SAS/IML language are similar to the corresponding statements in the SAS DATA step. This chapter describes the following concepts:

- selection statements
- compound statements
Selection Statements

Selection statements choose one of several control paths in a program. The SAS/IML language supports the IF-THEN and the IF-THEN/ELSE statements. You can use an IF-THEN statement to test an expression and to conditionally perform an operation. You can also optionally specify an ELSE statement. The general form of the IF-THEN/ELSE statement is as follows:

```
IF expression THEN statement1;
ELSE statement2;
```

The expression is evaluated first. If the value of expression is true (which means nonzero and nonmissing), the THEN statement is executed. If the value of expression is false (which means zero or missing), the ELSE statement (if present) is executed. If an ELSE statement is not present, control passes to the next statement in the program.

The expression in an IF-THEN statement is often a comparison, as in the following example:

```
a = {17 22, 13 10};
if max(a)<20 then
 p = 1;
else p = 0;
```

The IF clause evaluates the expression `max(a)<20`. If all values of the matrix `a` are less than 20, `p` is set to 1. Otherwise, `p` is set to 0. For the given values of `a`, the IF condition is false, since `a[1,2]` is not less than 20.

You can nest IF-THEN statements within the clauses of other IF-THEN or ELSE statements. Any number of nesting levels is allowed. The following is an example of nested IF-THEN statements:

```
w = 0;
if n>0 then
 if x>y then w = x;
 else w = y;
```

There is an ambiguity associated with the previous statements. Is the ELSE statement associated with the first IF-THEN statement or the second? As the indenting indicates, an ELSE statement is associated with the closest previous IF-THEN statement. (If you want the ELSE statement to be associated with the first IF-THEN statement, you need to use a DO group, as described in the next section.)

When the condition to be evaluated is a matrix expression, the result of the evaluation is a temporary matrix of zeros, ones, and possibly missing values. If all values of the result matrix are nonzero and nonmissing, the condition is true; if any element in the result matrix is zero or missing, the condition is false. This evaluation is equivalent to using the ALL function. For example, the following two statements produce the same result:
if \( x < y \) then \( \text{statement} \);
if all(\( x < y \)) then \( \text{statement} \);

If you are testing whether at least one element in \( x \) is less than the corresponding element in \( y \), use the ANY function, as shown in the following statement:

if any(\( x < y \)) then \( \text{statement} \);

---

**Compound Statements**

Several statements can be grouped together into a compound statement (also called a block or a DO group). You use a DO statement to define the beginning of a DO group and an END statement to define the end. DO groups have two principal uses:

- to group a set of statements so that they are executed as a unit
- to group a set of statements for a conditional (IF-THEN/ELSE) clause

DO groups have the following general form:

```plaintext
DO ;
 statements ;
END ;
```

As with IF-THEN/ELSE statements, you can nest DO groups to any number of levels. The following is an example of nested DO groups:

```plaintext
do;
 statements;
do;
 statements;
end;
 statements;
end;
end;
```

It is a good programming convention to indent the statements in DO groups as shown, so that each statement’s position indicates its level of nesting.

For IF-THEN/ELSE conditionals, DO groups can be used as units for either the THEN or ELSE clauses so that you can perform many statements as part of the conditional action, as shown in the following statements:

```plaintext
if \(x < y \) then
do;
 z1 = \text{abs}(x+y);
 z2 = \text{abs}(x-y);
end;
else
do;
```
Chapter 6: Programming Statements

```plaintext
z1 = abs(x-y);
z2 = abs(x+y);
end;
```

An alternative formulation that requires less indented space is to write the DO statement on the same line as the THEN or ELSE clause, as shown in following statements:

```plaintext
if x<y then do;
 z1 = abs(x+y);
 z2 = abs(x-y);
end;
else do;
 z1 = abs(x-y);
 z2 = abs(x+y);
end;
```

For some programming applications, you must use either a DO group or a module. For example, LINK and GOTO statements must be programmed inside a DO group or a module.

---

**Iteration Statements**

The DO statement supports clauses that iterate over compound statements. With an iterative DO statement, you can repeatedly execute a set of statements until some condition stops the execution. The following table lists the different kinds of iteration statements in the SAS/IML language:

<table>
<thead>
<tr>
<th>Clause</th>
<th>DO Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>DO DATA statement</td>
</tr>
<tr>
<td>variable = start TO stop &lt; BY increment &gt;</td>
<td>Iterative DO statement</td>
</tr>
<tr>
<td>WHILE(expression)</td>
<td>DO WHILE statement</td>
</tr>
<tr>
<td>UNTIL(expression)</td>
<td>DO UNTIL statement</td>
</tr>
</tbody>
</table>

A DO statement can have any combination of these four iteration clauses, but the clauses must be specified in the order listed in the preceding table.

**DO DATA Statements**

The general form of the DO DATA statement is as follows:

```plaintext
DO DATA ;
```

The DATA keyword specifies that iteration stops when an end-of-file condition occurs. Other DO specifications exit after tests are performed at the top or bottom of a loop.


You can use the DO DATA statement to read data from an external file or to process observations from a SAS data set. In the DATA step in Base SAS software, the iteration is usually implied. The DO DATA statement simulates this iteration until the end of a file is reached.

The following example reads data from an external file named *MyData.txt* that contains the following data:
The data values are read one at a time into the scalar variables Name, x, and y.

```
filename MyFile 'MyData.txt';
infile MyFile; /* infile statement */
do data; /* begin read loop */
 input Name $6. x y; /* read a data value */
 /* do something with each value */
end;
/* do something with each value */
closefile MyFile;
```

**Iterative DO Statements**

The general form of the iterative DO statement is as follows:

```
DO variable=start TO stop <BY increment> ;
```

The value of the `variable` matrix is initialized to the value of the `start` matrix. This value is then incremented by the `increment` value (or by 1 if `increment` is not specified) until it is greater than or equal to the `stop` value. (If `increment` is negative, then the iterations stop when the value is less than or equal to `stop`.)

For example, the following statement specifies a DO loop that initializes `i` to the value 1 and increments `i` by 2 after each loop. The loop ends when the value of `i` is greater than 10.

```
y = 0;
do i = 1 to 10 by 2;
 y = y + i;
end;
```

**DO WHILE Statements**

The general form of the DO WHILE statement is as follows:

```
DO WHILE expression ;
```

With a WHILE clause, the expression is evaluated at the beginning of each loop, with iterations continuing until the expression is false (that is, until the expression contains a zero or a missing value). Note that if the expression is false the first time it is evaluated, the loop is not executed.

For example, the following statements initialize `count` to 1 and then increment `count` four times:

```
count = 1;
do while(count<5);
 count = count+1;
end;
```

**DO UNTIL Statements**

The general form of the DO UNTIL statement is as follows:

```
DO UNTIL expression ;
```
Chapter 6: Programming Statements

The UNTIL clause is like the WHILE clause except that the expression is evaluated at the bottom of the loop. This means that the loop always executes at least once.

For example, the following statements initialize count to 1 and then increment count five times:

```sas
count = 1;
do until(count>5);
 count = count+1;
end;
```

Jump Statements

During normal execution, each statement in a program is executed in sequence, one after another. The GOTO and LINK statements cause a SAS/IML program to jump from one statement in a program to another statement without executing intervening statements. The place to which execution jumps is identified by a label, which is a name followed by a colon placed before an executable statement. You can program a jump by using either the GOTO statement or the LINK statement:

```sas
GOTO label;
LINK label;
```

Both the GOTO and LINK statements instruct SAS/IML software to jump immediately to a labeled statement. However, if you use a LINK statement, then the program returns to the statement following the LINK statement when the program executes a RETURN statement. The GOTO statement does not have this feature. Thus, the LINK statement provides a way of calling sections of code as if they were subroutines. The statements that define the subroutine begin with the label and end with a RETURN statement. LINK statements can be nested within other LINK statements; any number of nesting levels is allowed.

**NOTE**: The GOTO and LINK statements must be inside a module or DO group. These statements must be able to resolve the referenced label within the current unit of statements. Although matrix symbols can be shared across modules, statement labels cannot. Therefore, all GOTO statement labels and LINK statement labels must be local to the DO group or module.

The GOTO and LINK statements are not often used because you can usually write more understandable programs by using DO groups and modules. The following statements shows an example of using the GOTO statement, followed by an equivalent set of statements that do not use the GOTO statement:

```sas
x = -2;
do;
 if x<0 then goto negative;
 y = sqrt(x);
 print y;
 goto TheEnd;
negative:
 print "Sorry, value is negative";
TheEnd:
end;
/* same logic, but without using a GOTO statement */
if x<0 then print "Sorry, value is negative";
```
The output of each section of the program is identical. It is shown in Figure 6.1.

**Figure 6.1** Output That Demonstrates the GOTO Statement

<table>
<thead>
<tr>
<th>Sorry, value is negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorry, value is negative</td>
</tr>
</tbody>
</table>

The following statements show an example of using the LINK statements. You can also rewrite the statements in a way that avoids using the LINK statement.

```plaintext
x = -2;
do;
 if x<0 then link negative;
y = sqrt(x);
 print y;
goto TheEnd;
negative:
 print "Using absolute value of x";
x = abs(x);
return;
TheEnd:
end;
```

The output of the program is shown in Figure 6.2.

**Figure 6.2** Output That Demonstrates the LINK Statement

<table>
<thead>
<tr>
<th>Using absolute value of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
</tr>
<tr>
<td>1.4142136</td>
</tr>
</tbody>
</table>

**Statements That Define and Execute Modules**

Modules are used for two purposes:

- to create a user-defined subroutine or function. That is, you can define a group of statements that can be called from anywhere in the program.

- to define variables that are local to the module. That is, you can create a separate environment with its own symbol table (see “Understanding Symbol Tables” on page 64).

A module always begins with a START statement and ends with a FINISH statement. A module is either a function or a subroutine. When a module returns a single parameter, it is called a function. A function is
invoked by its name in an assignment statement. Otherwise, a module is a subroutine. You can execute a subroutine by using either the RUN statement or the CALL statement.

---

**Defining and Executing a Module**

A module definition begins with a START statement, which has the following general form:

```plaintext
START <name> <(arguments)> <GLOBAL(arguments)> ;
```

A module definition ends with a FINISH statement, which has the following general form:

```plaintext
FINISH <name> ;
```

If no name appears in the START statement, the name of the module defaults to MAIN. If no name appears on the FINISH statement, the name of the most recently defined module is used.

There are two ways you can execute a module: you can use either a RUN statement or a CALL statement. The general forms of these statements are as follows:

```plaintext
RUN name <(arguments)> ;
CALL name <(arguments)> ;
```

The main difference between the RUN and CALL statements is the order of resolution. If you define a module that has the same name as a SAS/IML subroutine, you can use the RUN statement to call the user-defined module and the CALL statement to call the built-in subroutine. For more on the order of resolution, see “Order of Resolution for Functions and Subroutines” on page 1166.

The RUN and CALL statements must have arguments that correspond to the ones defined in the START statement. A module can call other modules but cannot recursively call itself.

After the last statement in a module is executed, control returns to the statement that initially called the module. You can also force a return from a module by using the RETURN statement.

---

**Understanding Symbol Tables**

The *scope* of a variable is the set of locations in a program where a variable can be referenced. A variable defined outside of any module is said to exist at the program’s *main scope*. For a variable defined inside a module, the scope of the variable is the body of the module.

A *symbol* is the name of a SAS/IML matrix. For example, if `x` and `y` are matrices, then the names ‘x’ and ‘y’ are the symbols. Whenever a matrix is defined, its symbol is stored in a *symbol table*. There are two kinds of symbol tables. When a matrix is defined at the main scope, its name is stored in the *global symbol table*. In contrast, each module with arguments is given its own *local symbol table* that contains all symbols used inside the module.

There can be many local symbol tables, one for each module with arguments. (Modules without arguments are described in the next section.) You can have a symbol ‘x’ in the global table and the same symbol in a local table, but these correspond to separate matrices. By default, the value of the matrix at global scope is independent from the value of a local matrix of the same name that is defined inside a module. Similarly, you can have two modules that each use the matrix `x`, and these matrices are not related. You can force a module
to use a variable at main scope by using a GLOBAL clause as described in “Using the GLOBAL Clause” on page 69.

Values of symbols in a local table are temporary; that is, they exist only while the module is executing. You can no longer access the value of a local variable after the module exits.

---

**Modules with No Arguments**

The previous section emphasized that modules with arguments are given a local symbol table. In contrast, a module that has no arguments shares the global symbol table. All variables in such a module are global, which implies that if you modify the value of a matrix inside the module, that change persists when the module exits.

The following example shows a module with no arguments:

```iml
/* module without arguments, all symbols are global. */
proc iml;
 a = 10; /* a is global */
 b = 20; /* b is global */
 c = 30; /* c is global */
 start Mod1; /* begin module */
 p = a+b; /* p is global */
 c = 40; /* c already global */
 finish; /* end module */
run Mod1; /* run the module */
print a b c p;
```

![Figure 6.3 Output from Module with Global Variables](output_image.png)

Notice that after the module exits, the following conditions exist:

- **a** is still 10.
- **b** is still 20.
- **c** has been changed to 40.
- **p** is created, added to the global symbol table, and set to 30.

---

**Modules with Arguments**

Most modules contain one or more arguments, and therefore contain a separate local symbol table. The following statements apply to modules with arguments:

- You can specify arguments as variable names, expressions, or literal values.
• If you specify several arguments, use commas to separate them.

• Arguments are passed by reference, not by value. This means that a module can change the value of an argument. An argument that is modified by a module is called an output argument.

• If you have both output arguments and input arguments, the SAS/IML convention is to list the output arguments first.

• When a module is run, the input arguments can be a matrix name, expression, or literal. However, you should specify only matrix names for output arguments.

When a module is run, the value for each argument is transferred from the global symbol table to the local symbol table. For example, consider the module Mod2 defined in the following statements:

```iml
proc iml;
a = 10;
b = 20;
c = 30;
start Mod2(x,y); /* begin module */
p = x+y;
x = 100; /* change the value of an argument */
c = 25;
finish Mod2; /* end module */
run Mod2(a,b);
print a b c;
```

The first three statements are submitted in the main scope and define the variables `a`, `b`, and `c`. The values of these variables are stored in the global symbol table. The START statement begins the definition of Mod2 and lists two variables (`x` and `y`) as arguments. This creates a local symbol table for Mod2. All symbols used inside the module (`x`, `y`, `p`, and `c`) are in the local symbol table. There is also a correspondence between the arguments in the RUN statement (`a` and `b`) and the arguments in the START statement (`x` and `y`). Also note that `a` and `b` exist only in the global symbol table, whereas `x`, `y`, and `p` exist only in the local symbol table. The symbol `c` exists in both symbol tables, but the values are completely independent.

When Mod2 is executed with the RUN statement, the local variable `x` becomes the “owner” of the data in the global matrix `a`. Similarly, the local variable `y` becomes the owner of the data in `b`. Because `c` is not an argument, there is no correspondence between the value of `c` in the global table and the value of `c` in the local table. When the module finishes execution, the variables `a` and `b` at main scope regain ownership of the data in `x` and `y`, respectively. The local symbol table that contains `x` and `y` is deleted. If the data were modified within the module, the values of `a` and `b` reflect the change, as shown in Figure 6.4.

**Figure 6.4** Output from Module with Arguments

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Notice that after the module is executed, the following are true:

• `a` is changed to 100 since the corresponding argument, `x`, was changed to 100 inside the module.

• `b` is still 20.
• c is still 30. Inside the module, the local symbol c was set to 25, but there is no correspondence between the global symbol c and the local symbol c.

Also note that, inside the module, the symbols a and b do not exist. Outside the module, the symbols p, x, and y do not exist.

---

**Passing Arguments by Using Keyword-Value Pairs**

The standard way to pass arguments to a module is to supply a comma-separated list of parameter values that is enclosed in parentheses. In this syntax, the arguments are supplied as *positional parameters*. You can call module subroutines by using an alternative syntax, called the *keyword-value pairs* syntax (also known as the *named arguments* syntax and the *keyword parameters* syntax).

When you define a module, the names of the parameters become keywords for calling that module. You can call the module by specifying some of the positional parameters and then specifying the remaining parameters as keyword-value pairs outside parentheses. For example, the Mod2 module that is defined in the previous section has two parameters, named x and y. The following calls are equivalent:

```
run Mod2(a,b); /* two positional parameters */
run Mod2(a) y=b; /* one positional parameter; one keyword */
run Mod2() x=a y=b; /* no positional parameters; two keywords */
run Mod2() y=b x=a; /* order of keywords does not matter */
```

Although the order of positional parameters is important, you can specify keyword-value pairs in any order, as shown in the last statement.

Keyword-value pairs are especially useful for modules that have a large number of optional arguments (see the section “Modules with Optional and Default Arguments” on page 70). For example, if a module accepts five optional parameters and you want to supply a value for the fifth, it is easier to use keyword-value pairs than to use positional parameters, as shown in the following example:

```
start Sum5(x, a=1, b=2, c=3, d=4, e=5);
 x = a + b + c + d + e;
finish;

run Sum5(x,,,,,10); /* skip some positional parameters */
run Sum5(x) e=10; /* equivalent, but simpler */
print x;
```

**Figure 6.5** Specifying a Keyword-Value Pair

```
x
20
```

You can also use keyword-value pairs to specify the optional parameters for many of the SAS/IML built-in subroutines. For an example, see the QUAD subroutine.

The ability to pass arguments to modules by using keyword-value pairs is supported only for subroutines. Function modules, which are described in the next section, do not support keyword-value pairs.
Defining Function Modules

Functions are special modules that return a single value. To write a function module, include a RETURN statement that specifies the value to return. The RETURN statement is necessary for a module to be a function. You can use a function module in an assignment statement, as you would a built-in function.

The symbol-table logic described in the preceding section also applies to function modules. In the following function module, the value of $c$ in the local symbol table is assigned to the symbol $z$ at main scope:

```iml
proc iml;
a = 10;
b = 20;
c = 30;
start Mod3(x,y);
c = 2#x + y;
return (c); /* return function value */
finish Mod3;

z = Mod3(a,b); /* call function */
print a b c z;
```

**Figure 6.6 Output from a Function Module**

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Notice the following about this example:

- $a$ is still 10 and $b$ is still 20.
- $c$ is still 30. The symbol $c$ in the global table has no connection with the symbol $c$ in the local table.
- $z$ assigned the value 40, which is the value returned by the module.

Again notice that, inside the module, the symbols $a$, $b$, and $z$ do not exist. Outside the module, the symbols $x$ and $y$ do not exist.

In the next example, you define your own function module, `Add`, which adds its two arguments:

```iml
proc iml;
start Add(x,y);
sum = x+y;
return(sum);
finish;

a = {9 2, 5 7};
b = {1 6, 8 10};
c = Add(a,b);
print c;
```
Function modules can also be called as arguments to other modules or to built-in functions. For example, in the following statements, the Add module is called twice, and the results from those calls are used as arguments to call the Add module a third time:

```iML
 d = Add(Add({1 2},{3 4}), Add({5 6},{7 8}));
 print d;
```

Functions are resolved in the following order:

1. SAS/IML built-in functions
2. user-defined function modules
3. SAS DATA step functions

Because of this order of resolution, it is an error to try to define a function module that has the same name as a SAS/IML built-in function.

---

**Using the GLOBAL Clause**

For modules with arguments, the variables used inside the module are local and have no connection with any variables that exist outside the module in the global table. However, it is possible to specify that certain variables not be placed in the local symbol table but rather be accessed from the global table. The GLOBAL clause specifies variables that you want to share between local and global symbol tables. The following is an example of a module that uses a GLOBAL clause to define the symbol \( c \) as global. This defines a one-to-one correspondence between the value of \( c \) in the global symbol table and the value of \( c \) in the local symbol table.

```iML
 proc iml;
 a = 10;
 b = 20;
 c = 30;
 start Mod4(x,y) global (c);
 x = 100;
 c = 40;
 b = 500;
 finish Mod4;

 run Mod4(a,b);
```
print a b c;

The output is shown in Figure 6.9.

![Output from a Module with a GLOBAL Clause](image)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

After the module is called, the following facts are true:

- a is changed to 100.
- b is still 20 and not 500, since b exists independently in the global and local symbol tables.
- c is changed to 40 because it was declared to be a global variable. The matrix c inside the module is the same matrix as the one outside the module.

Because every module with arguments has its own local table, it is possible to have many local tables. You can use the GLOBAL clause with many (or all) modules to share a single global variable among many local symbol tables.

---

### Modules with Optional and Default Arguments

You can define a module that has optional arguments. You can also assign default values to optional arguments. Optional arguments can be skipped when the module is called. Optional arguments are supported for all user-defined modules, both functions and subroutines.

By convention, optional arguments appear at the end of a module argument list.

---

### Optional Arguments without Default Values

To designate an argument as optional, type an equal sign (=) after the argument when defining the module. Arguments that are not followed by an equal sign are required arguments. Optional arguments can be skipped when you call the module. If you skip an optional argument, the local variable is set to the empty matrix, as shown in the following example:

```iml
proc iml;
start MyAdd(x, y=);
 if ncol(y)=0 then return(x); /* y is empty matrix */
 return(x+y);
finish;
z = MyAdd(5); /* z = 5 */
w = MyAdd(5, 3);/* w = 8 */
```

When the MyAdd module is called the first time, the second argument is skipped. Inside the MyAdd function, the local variable y is set to the empty matrix: it has no rows and no columns. Consequently, the IF-THEN condition is true and the function returns the value of the local variable x.
When the MyAdd module is called the second time, the second argument is provided. Inside the MyAdd function, the local variable \( y \) is not empty. Consequently, the IF-THEN condition is false and the function returns the sum of the two arguments.

Because the optional argument appears last in the module argument list, you can call the argument with a single argument. You can also skip optional arguments by not providing an argument when the module is called. For example, the following statement is valid syntax:

\[
\text{z = MyAdd(5, );} \quad /* \text{skip second argument */}
\]

In previous versions of SAS/IML software, you could skip any parameter in a user-defined subroutine. With the new syntax, you can skip only those arguments that are explicitly designated as optional.

**Detecting Skipped Arguments**

Arguments can be skipped in the call by using white space and a comma, or by simply not supplying the maximum number of arguments declared in the START statement.

The **ISSKIPPED** function enables you to determine at run time whether a module is being called with a skipped argument. The ISSKIPPED function returns 1 if the argument to the function is skipped, and 0 otherwise. For example, the following function returns the inner product (dot product) of two column vectors. If the function is called with a single argument, the function returns the inner product of the first argument with itself. If the function is called with two arguments, the function returns their inner product.

\[
\begin{align*}
\text{start MyDot(x, y=);} \\
\quad \text{if isskipped(y) then return(x`*x);} \\
\quad \text{return(x`*y);} \\
\text{finish;} \\
\text{z = MyDot({1,2,3});} \quad /* \text{z = 14 */} \\
\text{w = MyDot({1,2,3}, {-1,0,1});} /* \text{w = 2 */}
\end{align*}
\]

**Optional Arguments with Default Values**

You can assign a default value for an optional argument by specifying the value after the equal sign in the module argument list. For example, you might define the following module:

\[
\begin{align*}
\text{start MySum(x=1, y=2);} \\
\quad \text{return(x+y);} \\
\text{finish;}
\end{align*}
\]

In this module, if the first argument is skipped, the local variable \( x \) is assigned the value 1. Similarly, if the second argument is skipped, the local variable \( y \) is assigned the value 2. Consequently, the syntax that assigns the default values is logically equivalent to the following statements:

\[
\begin{align*}
\text{if IsSkipped(x) then x=1;} \\
\text{if IsSkipped(y) then y=2;}
\end{align*}
\]

**Optional Arguments with Constant Default Values**

As indicated in the previous section, you can assign a default value for an optional argument by specifying the value after the equal sign in the module argument list. For example, the following module returns the vector sum \( ax + y \) for vectors \( x \) and \( y \) and constant \( a \). If the \( a \) parameter is not specified, a default value of 1 is used. The default value is specified as follows:

\[
\begin{align*}
\text{start MyAdd(x=1, y=2);} \\
\quad \text{return(x+y);} \\
\text{finish;}
\end{align*}
\]
Optional Arguments with Data-Dependent Default Values

In the previous section, a constant value was used as the default value of an argument. You can also provide an expression for a default value. If the argument is skipped, the expression is evaluated and assigned to the local variable for the skipped argument. The expression can refer to other arguments, so the default values are data dependent.

For example, the following module standardizes columns of a matrix:

```plaintext
start stdize(x, loc=mean(x), scale=std(x));
 return ((x-loc)/scale);
finish;

x = {1, 1, 0, -1, -1};
z = stdize(x); /* use default values */

center = 1; s = 2;
z1 = stdize(x, center); /* skip 3rd argument */
z2 = stdize(x, , s); /* skip 2nd argument */
z3 = stdize(x, center, s); /* no arguments are skipped */
print z z1 z2 z3;
```
The module is called four times. The results are shown in Figure 6.11. As discussed previously, the syntax that defines the default arguments is logically equivalent to beginning the module with the following two statements:

```plaintext
if IsSkipped(loc) then loc=mean(x);
if IsSkipped(scale) then scale=std(x);
```

During the first call, the second and third arguments are skipped. The local variable `loc` is set to the mean values of the columns of the required argument, `x`, and the local variable `scale` is set to the standard deviation of the columns of `x`. The MEAN and STD functions are evaluated only when the second and third arguments, respectively, are skipped.

During the second call, the third argument is skipped. The local variable `loc` is set to the value 1, and the local variable `scale` is set to the standard deviation of the columns of `x`.

During the third call, the local variable `loc` is set to the mean value of the columns of `x`, and the local variable `scale` is set to 2. During the fourth call, no arguments are skipped.

The argument list is parsed from left to right. Consequently, a good programming practice is to use data-dependent expressions that depend only on arguments that appear earlier in the argument list. The syntax does not forbid referring to variables that appear later in the argument list, but it is often an error to evaluate an expression that involves unassigned (empty) matrices.

Data-dependent expressions can also use global variables that are specified in the GLOBAL statement. For example, the following statements use global variables to form a data-dependent default value:

```plaintext
start MyFunc(x, a=max(1,gMax)) global(gmax);
 return(a*x);
finish;

gMax = 2;
y = MyFunc(5);
```

Default values for skipped arguments apply only to local variables in modules. The GLOBAL statement does not support default arguments.

---

**Figure 6.11** Data-Dependent Default Values

<table>
<thead>
<tr>
<th>z</th>
<th>z1</th>
<th>z2</th>
<th>z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-0.5</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-0.5</td>
<td>-1</td>
</tr>
</tbody>
</table>

Nesting Module Definitions

You can define one module while in the midst of defining another. Each module definition must be completely contained inside the parent module definition, as shown in the following example:
In this example, SAS/IML software starts parsing statements for a module called ModA. In the middle of this module definition, it recognizes the start of a new module called ModB. It parses ModB until it encounters the first FINISH statement. It then finishes parsing ModA.

Although it looks like ModB might be “local” to ModA, that is not the case. The previous statements are equivalent to the following:

```
start ModB;
 x = 1;
finish ModB;

start ModA;
 run ModB;
finish ModA;

run ModA;
```

In particular, you can call the ModB module from the program’s main scope or from other modules. The SAS/IML language does not support local modules. All modules are defined at global scope.

---

### Calling a Module from Another Module

Consider the following example of calling one module from another module:

```
proc iml;
start Mod5(a,b);
 c = a+b;
 d = a-b;
 run Mod6(c,d);
 print "In Mod5:" c d;
finish;

start Mod6(x,y);
 x = x#y;
finish;

run Mod5({1 2}, {3 4});
```

When one module calls another, you can pass in any symbol defined in the scope of the calling module. In the previous example, the Mod5 module calls the Mod6 module and passes in the local variables `c` and `d`. The Mod6 module multiplies its arguments and overwrites the first argument, as shown in Figure 6.12.
The variables in the local symbol table of Mod5 are available to pass into Mod6. If Mod6 changes the values of an argument, those values are also changed in the environment from which Mod6 was called. For the previous example, this means that the local variable \( c \) is modified by Mod6.

If a module has no arguments, it can access variables in the environment from which it is called. For example, consider the following modules:

```sas
x = 123;

start Mod7;
 print "In Mod7:" x;
finish;

start Mod8(p);
 print "In Mod8:" p;
 run Mod7;
finish;

run Mod8(x);
```

In this example, module Mod7 is called from module Mod8. Therefore, the variables available to Mod7 are those defined in the scope of Mod8. There is no variable named \( x \) in the environment of Mod8. Therefore an error occurs on the PRINT statement in Mod7, as shown in Figure 6.13. An error would not occur if you call Mod7 from the main scope, because \( x \) is defined at main scope.

```
NOTE: IML Ready
NOTE: Module MOD7 defined.
NOTE: Module MOD8 defined.
ERROR: Matrix x has not been set to a value.

statement : PRINT at line 1882 column 4
traceback : module MOD7 at line 1882 column 4
 module MOD8 at line 1887 column 4

NOTE: Paused in module MOD7.
```

You can use expressions and subscripted matrices as arguments to a module, but it is important to understand the way the SAS/IML software passes the results to the module. Expressions are evaluated, and the evaluated values are stored in temporary variables. Similarly, submatrices are created from subscripted variables and stored in temporary variables. The temporary variables are passed to the module. In the following example, notice that the matrix \( x \) does not change; you might expect \( x \) to contain the squared values of \( y \).
Chapter 6: Programming Statements

```plaintext
start Square(a, b);
 a = b##2;
finish;

x = {. .}; /* initialize with missing values */
y = {3 4};
reset printall; /* print all intermediate results */
do i = 1 to 2; /* pass elements of matrix to modules */
 run Square(x[i], y[i]); /* WRONG: x[i] is not changed */
end;
print x; /* show that x is unchanged */
```

The output is shown in Figure 6.14. The names of the temporary matrices created by the subscript operators are `_TEM1001` and `_TEM1002`. These are the matrices passed into the square module. The module assigns the value 9 to the local matrix `a`, and this value is returned to main scope in the temporary matrix `_TEM1001`, which promptly vanishes! The same sequence of operations repeats for the next call to the Square module.

**Figure 6.14** Temporary and Local Matrices in a Module

```
<table>
<thead>
<tr>
<th>i</th>
<th>1 row</th>
<th>1 col</th>
<th>(numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>_TEM1002</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>_TEM1001</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>a</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>_TEM1002</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>_TEM1001</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>a</td>
<td>1 row</td>
<td>1 col</td>
<td>(numeric)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
```

Consequently, the values of `x` remain unchanged by the previous calls, as shown in Figure 6.15. The lesson to learn from this example is this: do not pass in an expression or literal as an output argument to a module. Use only matrix names for output arguments. For example, the correct way to call the Square module is to eliminate the loop and simply use the statement `run Square(x, y);`.
Storing and Loading Modules

You can store and reload modules by using the STORE statement. The STORE statement saves the module in a storage library. The stored module persists even when you exit PROC IML or exit the SAS System. After a module is stored, you can use the module in other SAS/IML programs by using the LOAD statement prior to calling the module. The syntax of the STORE and LOAD statements are as follows:

```
STORE Module= name ;
LOAD Module= name ;
```

You can view the names of the modules in storage with the SHOW statement, as follows:

```
show storage;
```

See Chapter 20, “Storage Features,” for details about using the library storage facilities.

Termination Statements

You can stop execution with a PAUSE, STOP, or ABORT statement. The QUIT statement is also a termination statement, but it causes the IML procedure to immediately exit. The other termination statements do not cause PROC IML to exit until the statements are executed. The following sections describe the PAUSE, STOP, ABORT, and QUIT statements.

PAUSE Statement

The general form of the PAUSE statement is as follows:

```
PAUSE <message> <‘> ;
```

The PAUSE statement does the following:

- stops execution of a module
- remembers where it stopped
- prints a message that you can specify
- sets the current program environment and symbol table to be that of the module that contains the PAUSE statement. This means that you can type statements that reference local variables in the module. For example, you might want to use a PAUSE statement while debugging a module so that you can print the value of local variables.
A RESUME statement enables you to continue execution at the location of the most recent PAUSE statement. You can use a STOP statement as an alternative to the RESUME statement to remove the paused state and to return to the main scope outside the module. You can specify a message in the PAUSE statement. This message is displayed in the output window when the PAUSE statement is executed. For example, the following PAUSE statements each display a message:

```plaintext
pause "Please enter an assignment for X, then enter RESUME;";
msg = "Please enter an assignment for X, then enter RESUME;";
pause msg;
```

The PAUSE statement also writes a note to the SAS log. To suppress the note, use the * option, as shown in the following statement:

```plaintext
pause *;
```

When you use a PAUSE, RESUME, STOP, or ABORT statement, keep in mind the following details:

- The PAUSE statement must be used from inside a module.
- It is an error to execute a RESUME statement without any outstanding pauses.
- You can define and execute modules while paused within another module.
- If a run-time error occurs inside a module, a PAUSE statement is automatically executed. This gives you an opportunity to correct the error and resume execution of the module with a RESUME statement. Alternately, you can submit a STOP statement to exit from the module environment, or an ABORT statement to exit PROC IML.
- You cannot reenter or redefine an active (paused) module.
- When paused, you can run another module that also pauses. The paused environments are stacked.
- You can put a RESUME statement inside a module. For example, suppose you are paused in module A and then run module B, which executes a RESUME statement. Execution is resumed in module A and does not return to module B.
- You can use the PAUSE and RESUME statements in both subroutine and function modules.
- If you pause in a subroutine module that has its own symbol table, then the statements executed while paused use this symbol table. You must use a RESUME or a STOP statement to return to the global symbol table environment.
- You can use the PAUSE and RESUME statements, in conjunction with the PUSH, QUEUE, and EXECUTE subroutines described in Chapter 21, “Using SAS/IML Software to Generate SAS/IML Statements,” to execute SAS/IML statements that you generate within a module.
STOP Statement

The general form of the STOP statement is as follows:

```
STOP < error-message > ;
```

The STOP statement clears all pauses and returns to the main scope.

ABORT Statement

The general form of the ABORT statement is as follows:

```
ABORT < error-message > ;
```

The ABORT statement stops execution and exits from PROC IML, much like a QUIT statement. The difference is that the ABORT statement is an executable statement that can be used in IF-THEN statements and in modules. For example, you might want to exit PROC IML if a certain error occurs. You can check for the error in a module and execute the ABORT statement if the error occurs.

QUIT Statement

The syntax of the QUIT statement is as follows:

```
QUIT ;
```

The QUIT statement stops execution and exits from PROC IML. The QUIT statement is executed as soon as the statement is parsed. Consequently, you cannot use QUIT in a module or as part of an IF-THEN/ELSE statement.
## Chapter 7
### Working with SAS Data Sets

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>82</td>
</tr>
<tr>
<td>Open a SAS Data Set</td>
<td>83</td>
</tr>
<tr>
<td>Syntax for Specifying a SAS Data Set</td>
<td>84</td>
</tr>
<tr>
<td>Make a SAS Data Set Current</td>
<td>85</td>
</tr>
<tr>
<td>Display SAS Data Set Information</td>
<td>86</td>
</tr>
<tr>
<td>List Observations</td>
<td>87</td>
</tr>
<tr>
<td>Specify a Range of Observations</td>
<td>88</td>
</tr>
<tr>
<td>Select a Set of Variables</td>
<td>89</td>
</tr>
<tr>
<td>Select a Set of Observations</td>
<td>89</td>
</tr>
<tr>
<td>Read Observations from a SAS Data Set</td>
<td>90</td>
</tr>
<tr>
<td>Use the READ Statement with the VAR Clause</td>
<td>91</td>
</tr>
<tr>
<td>Use the READ Statement with the INTO Clause</td>
<td>91</td>
</tr>
<tr>
<td>Use the READ Statement with the WHERE Clause</td>
<td>92</td>
</tr>
<tr>
<td>Edit a SAS Data Set</td>
<td>93</td>
</tr>
<tr>
<td>Update Observations</td>
<td>93</td>
</tr>
<tr>
<td>Delete Observations</td>
<td>94</td>
</tr>
<tr>
<td>Create a SAS Data Set from a Matrix</td>
<td>95</td>
</tr>
<tr>
<td>Use the CREATE Statement with the FROM Option</td>
<td>95</td>
</tr>
<tr>
<td>Use the CREATE Statement with the VAR Clause</td>
<td>96</td>
</tr>
<tr>
<td>Understand the End-of-File Condition</td>
<td>97</td>
</tr>
<tr>
<td>Produce Summary Statistics</td>
<td>98</td>
</tr>
<tr>
<td>Sort a SAS Data Set</td>
<td>99</td>
</tr>
<tr>
<td>Index a SAS Data Set</td>
<td>99</td>
</tr>
<tr>
<td>Data Set Maintenance Functions</td>
<td>101</td>
</tr>
<tr>
<td>Summary of Commands</td>
<td>101</td>
</tr>
<tr>
<td>Shared Concepts for Processing Data</td>
<td>102</td>
</tr>
<tr>
<td>Process a Range of Observations</td>
<td>102</td>
</tr>
<tr>
<td>Select Variables with the VAR Clause</td>
<td>103</td>
</tr>
<tr>
<td>Process Data by Using the WHERE Clause</td>
<td>104</td>
</tr>
<tr>
<td>Using Data Set Options</td>
<td>107</td>
</tr>
<tr>
<td>Comparison with the SAS DATA Step</td>
<td>107</td>
</tr>
</tbody>
</table>
Overview

SAS/IML software has statements for creating a matrix from a SAS data set and for creating a SAS data set from a matrix.

You can create a matrix from a SAS data set in several ways. For example:

- You can create a column vector for each data set variable.
- You can create a matrix whose columns correspond to data set variables.
- You can use all the observations in a data set or use a subset of them.

You can read observations from a SAS data set into a matrix. You can read them sequentially (by record number) or conditionally (by using a WHERE clause).

You can also create a SAS data set from a matrix. Each column of the matrix becomes a variable in the data set, and each row becomes an observation.

There are SAS/IML statements that enable you to edit, append, index, rename, and delete SAS data sets from within the SAS/IML environment.

You can dynamically specify which observations and variables are read. For example, the READ statement can do the following:

- read all records
- read the next record
- read any number of specified records
- read records that satisfy one or more conditions
- read specified variables, all numeric variables, or all character variables

This chapter demonstrates how to use the SAS/IML language to do the following:

- open a SAS data set
- examine the contents of a SAS data set
- display data values by using the LIST statement
- read observations from a SAS data set into matrices or vectors
- edit a SAS data set
- create a SAS data set from a matrix or from vectors
- produce summary statistics for variables in a data set
Open a SAS Data Set

You must open a SAS data set before you can access the data. There are three ways to open a SAS data set:

- To read from an existing data set, submit the USE statement, which opens a data set for input. The general form of the USE statement is as follows:
  
  ```
 USE SAS-data-set < VAR operand > < WHERE(expression) > ;
  ```

  You can use the FIND, INDEX, LIST, and READ statements after the data set is open.

- To read and write to an existing data set, use the EDIT statement. The general form of the EDIT statement is as follows:

  ```
 EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;
  ```

  This statement enables you to use both the reading statements (LIST, READ, INDEX, and FIND) and the writing statements (REPLACE, APPEND, DELETE, and PURGE).

- To create a new data set, use the CREATE statement, which opens a new data set for both output and input. The general form of the CREATE statement is as follows:

  ```
 CREATE SAS-data-set < VAR operand > ;
 CREATE SAS-data-set FROM matrix-name < [COLNAME=column-name] ROWNAME=row-name > ;
  ```

  Use the APPEND statement to place data into the newly created data set. If you do not use the APPEND statement, the new data set will not contain any observations.

See the section “Process Data by Using the WHERE Clause” on page 104 for details about using the WHERE clause; see the section “Select Variables with the VAR Clause” on page 103 for details about using the VAR clause.

Specify a data set name as the first operand to the USE, EDIT, and CREATE statements. This name can have either one or two levels. If it is a two-level name, the first level refers to the name of the SAS data library, and the second level refers to the data set name. If the libref is Work, the data set is stored in a temporary directory. All data in the Work library are deleted at the end of the SAS session.

You can use the LIBNAME statement to assign a libref that refers to a permanent directory, as described in SAS Language Reference: Concepts. If you specify only a single name, then a default libref is used. The default libref is Sasuser if Sasuser is defined or Work otherwise. You can reset the default libref by using the RESET DEFLIB statement, as shown in the following statements:
libname mydir "C:\Users\userid\Documents\My SAS Files";  
reset deflib=mydir;

If you run these statements, one-level names are read from and written to the mydir library.

---

**Syntax for Specifying a SAS Data Set**

You can specify a SAS data set by using a literal value, such as “Sashelp.Class,” or by specifying an expression that resolves to the name of a SAS data set. Most of the examples in this chapter use a literal value, such as the following statements:

```sas
proc iml;
 use Sashelp.Class;
 read all var _NUM_ into X;
 close Sashelp.Class;
```

The statements open the Sashelp.Class data set, read all the numerical variables into a matrix named X, and close the Sashelp.Class data set. The previous statements are equivalent to the following statements, which use an expression (which must be enclosed in parentheses) to specify the data set:

```sas
dsname = "Sashelp.Class";
use (dsname);
 read all var _NUM_ into X;
 close (dsname);
```

This alternate syntax is available for specifying a data set name in the CLOSE, CREATE, EDIT, SETIN, SETOUT, SORT, and USE statements.

You can use expressions to interact with a data set whose name is not known until run time. For example, the following statements read several data sets and perform an analysis on each:

```sas
lib = "Sashelp";
dsnames = {"Class" "Enso" "Iris"};
do i = 1 to ncol(dsnames);
 dsname = concat(lib,".",dsnames[i]);
 use (dsname); /* Sashelp.Class, Sashelp.Enso, etc. */
 read all var _NUM_ into X[c=varNames];
 /* do something with the data in X */
 print dsname varNames;
 close (dsname);
end;
```
**Figure 7.1** Looping over Data Sets

<table>
<thead>
<tr>
<th>dsname</th>
<th>varNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sashelp.Class</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td>Height Weight</td>
</tr>
<tr>
<td>Sashelp.Enso</td>
<td>Month</td>
</tr>
<tr>
<td></td>
<td>Year Pressure</td>
</tr>
<tr>
<td>Sashelp.Iris</td>
<td>SepalLength</td>
</tr>
<tr>
<td></td>
<td>SepalWidth</td>
</tr>
<tr>
<td></td>
<td>PetalLength</td>
</tr>
<tr>
<td></td>
<td>PetalWidth</td>
</tr>
</tbody>
</table>

**Make a SAS Data Set Current**

The SAS/IML statements that process data operate on the current data set. It is therefore unnecessary to specify the data set as an operand to most statements. There are two current data sets, one for input and one for output. When you open a data set, it is set to be “current.” You can also make a data set current by using the **SETIN statement** or the **SETOUT statement**. The following list summarizes the statements that change the current data set:

- The USE and SETIN statements make a data set current for input.
- The SETOUT statement makes a data set current for output.
- The CREATE and EDIT statements make a data set current for both input and output.

The SHOW DATASETS statement displays which data sets are open and which are current for input and output.

The current observation is set by the last operation that performed input/output (I/O). If you want to set the current observation without doing any I/O, use the SETIN (or SETOUT) statement with the POINT option. After a data set is opened, the current observation is set to 0. If you attempt to list or read the current observation, the current observation is changed to 1. You can make the Sashelp.Class data set current for input and position the pointer at the tenth observation by using the following statements:

```sas
use Sashelp.Class;
setin Sashelp.Class point 10;
```
You can then read the tenth observation by using the READ statement, as follows:

```
read current var _NUM_ into x[colname=numVars];
read current var _CHAR_ into c[colname=charVars];
print x[colname=numVars], c[colname=charVars];
```

![Figure 7.2 A Single Observation](image)

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>99.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

### Display SAS Data Set Information

You can use the **SHOW** statement to display information about your SAS data sets. The **SHOW DATASETS** statement lists all open SAS data sets and their status. The **SHOW CONTENTS** statement displays the variable names and types, the size, and the number of observations in the current input data set. For example, the following statements display information about the Sashelp.Class data set:

```
use Sashelp.Class;
show datasets;
```

![Figure 7.3 Open Data Sets](image)

<table>
<thead>
<tr>
<th>LIBNAME</th>
<th>MEMNAME</th>
<th>OPEN MODE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHELP</td>
<td>CLASS</td>
<td>Input</td>
<td>Current</td>
</tr>
</tbody>
</table>

As shown in Figure 7.3, Sashelp.Class is the only data set that is open. The USE statement opens the data set for input and makes it the current input data set.

You can see the names of variables, their lengths, and whether they are numeric or character by using the **SHOW CONTENTS** statement, as follows:

```
show contents;
```
The five variables are shown in Figure 7.4. Name and Sex are character variables; Age, Height, and Weight are numeric variables. The variable Sex has length 1, which means that each observation contains a single character.

List Observations

You can list variables and observations in a SAS data set by using the LIST statement. The general form of the LIST statement is as follows:

```
LIST <range> <VAR operand> <WHERE(expression)> ;
```

where

- `range` specifies a range of observations. For details, see the section “Process a Range of Observations” on page 102.
- `operand` selects a set of variables. For details about the VAR clause, see the section “Select Variables with the VAR Clause” on page 103.
- `expression` is an expression that is evaluated as being true or false. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

The next three sections discuss how to use each of these clauses with the Sashelp.Class data set.
Specify a Range of Observations

You can specify a range of observations with a keyword or by record number by using the POINT option. For example, if you want to list all observations in the Sashelp.Class data set, use the ALL keyword to indicate that the range is all observations, as shown in the following example:

```
use Sashelp.Class;
list all;
```

![Figure 7.5 All Observations](image)

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfred</td>
<td>M</td>
<td>14.000</td>
<td>69.000</td>
<td>112.500</td>
</tr>
<tr>
<td>2</td>
<td>Alice</td>
<td>F</td>
<td>13.000</td>
<td>56.500</td>
<td>84.000</td>
</tr>
<tr>
<td>3</td>
<td>Barbara</td>
<td>F</td>
<td>13.000</td>
<td>65.300</td>
<td>98.000</td>
</tr>
<tr>
<td>4</td>
<td>Carol</td>
<td>F</td>
<td>14.000</td>
<td>62.800</td>
<td>102.500</td>
</tr>
<tr>
<td>5</td>
<td>Henry</td>
<td>M</td>
<td>14.000</td>
<td>63.500</td>
<td>102.500</td>
</tr>
<tr>
<td>6</td>
<td>James</td>
<td>M</td>
<td>12.000</td>
<td>57.300</td>
<td>83.000</td>
</tr>
<tr>
<td>7</td>
<td>Jane</td>
<td>F</td>
<td>12.000</td>
<td>59.800</td>
<td>84.500</td>
</tr>
<tr>
<td>8</td>
<td>Janet</td>
<td>F</td>
<td>15.000</td>
<td>62.500</td>
<td>112.500</td>
</tr>
<tr>
<td>9</td>
<td>Jeffrey</td>
<td>M</td>
<td>13.000</td>
<td>62.500</td>
<td>84.000</td>
</tr>
<tr>
<td>10</td>
<td>John</td>
<td>M</td>
<td>12.000</td>
<td>59.000</td>
<td>99.500</td>
</tr>
<tr>
<td>11</td>
<td>Joyce</td>
<td>F</td>
<td>11.000</td>
<td>51.300</td>
<td>50.500</td>
</tr>
<tr>
<td>12</td>
<td>Judy</td>
<td>F</td>
<td>14.000</td>
<td>64.300</td>
<td>90.000</td>
</tr>
<tr>
<td>13</td>
<td>Louise</td>
<td>F</td>
<td>12.000</td>
<td>56.300</td>
<td>77.000</td>
</tr>
<tr>
<td>14</td>
<td>Mary</td>
<td>F</td>
<td>15.000</td>
<td>66.500</td>
<td>112.000</td>
</tr>
<tr>
<td>15</td>
<td>Philip</td>
<td>M</td>
<td>16.000</td>
<td>72.000</td>
<td>150.000</td>
</tr>
<tr>
<td>16</td>
<td>Robert</td>
<td>M</td>
<td>12.000</td>
<td>64.800</td>
<td>128.000</td>
</tr>
<tr>
<td>17</td>
<td>Ronald</td>
<td>M</td>
<td>15.000</td>
<td>67.000</td>
<td>133.000</td>
</tr>
<tr>
<td>18</td>
<td>Thomas</td>
<td>M</td>
<td>11.000</td>
<td>57.500</td>
<td>85.000</td>
</tr>
<tr>
<td>19</td>
<td>William</td>
<td>M</td>
<td>15.000</td>
<td>66.500</td>
<td>112.000</td>
</tr>
</tbody>
</table>

If you do not explicitly specify a range of observations, the LIST statement displays the current observation. Because of the previous LIST statement, the current observation for the Sashelp.Class data is the last observation, as shown in Figure 7.6:

```
list;
```

![Figure 7.6 Current Observation](image)

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>William</td>
<td>M</td>
<td>15.000</td>
<td>66.500</td>
<td>112.000</td>
</tr>
</tbody>
</table>

To display a specific set of observations, use the POINT keyword and specify a vector of observation numbers, as shown in the following statement:
p = {3 6 9};
lst point p;

**Figure 7.7** Other Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Barbara</td>
<td>F</td>
<td>13.0000</td>
<td>65.3000</td>
<td>98.0000</td>
</tr>
<tr>
<td>6</td>
<td>James</td>
<td>M</td>
<td>12.0000</td>
<td>57.3000</td>
<td>83.0000</td>
</tr>
<tr>
<td>9</td>
<td>Jeffrey</td>
<td>M</td>
<td>13.0000</td>
<td>62.5000</td>
<td>84.0000</td>
</tr>
</tbody>
</table>

**Select a Set of Variables**

You can use the VAR clause to select a set of variables. For example, the following statements list students’ names from the Sashelp.Class data set:

```plaintext
varNames = {Name Sex Age};
p = {3 6 9};
use Sashelp.Class;
lst point p var varNames;
```

**Figure 7.8** Listing Specific Variables and Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Barbara</td>
<td>F</td>
<td>13.0000</td>
</tr>
<tr>
<td>6</td>
<td>James</td>
<td>M</td>
<td>12.0000</td>
</tr>
<tr>
<td>9</td>
<td>Jeffrey</td>
<td>M</td>
<td>13.0000</td>
</tr>
</tbody>
</table>

**Select a Set of Observations**

The WHERE clause conditionally selects observations, within the range specification, according to conditions given in the expression. For example, to list the names of all teenage males in the Sashelp.Class data set, use the following statements:

```plaintext
varNames = {Name Sex Age};
use Sashelp.Class;
lst all var varNames where(Sex='M' & Age>12);
```
Chapter 7: Working with SAS Data Sets

Figure 7.9 A Subset of Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfred</td>
<td>M</td>
<td>14.0000</td>
</tr>
<tr>
<td>5</td>
<td>Henry</td>
<td>M</td>
<td>14.0000</td>
</tr>
<tr>
<td>9</td>
<td>Jeffrey</td>
<td>M</td>
<td>13.0000</td>
</tr>
<tr>
<td>15</td>
<td>Philip</td>
<td>M</td>
<td>16.0000</td>
</tr>
<tr>
<td>17</td>
<td>Ronald</td>
<td>M</td>
<td>15.0000</td>
</tr>
<tr>
<td>19</td>
<td>William</td>
<td>M</td>
<td>15.0000</td>
</tr>
</tbody>
</table>

You can use matrices on the right-hand side of the comparison operator. The following example uses the `=*` operator to find a string that sounds like or is spelled like certain strings:

```
list all var varNames where(name=+{"JON","CAROL","JUDI"});
```

Figure 7.10 Names That Are Close to Specified Strings

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Carol</td>
<td>F</td>
<td>14.0000</td>
</tr>
<tr>
<td>7</td>
<td>Jane</td>
<td>F</td>
<td>12.0000</td>
</tr>
<tr>
<td>10</td>
<td>John</td>
<td>M</td>
<td>12.0000</td>
</tr>
<tr>
<td>12</td>
<td>Judy</td>
<td>F</td>
<td>14.0000</td>
</tr>
</tbody>
</table>

Read Observations from a SAS Data Set

You can use the `READ` statement to create a SAS/IML matrix from data in a SAS data set. You must first open a SAS data set by using the `USE` or `EDIT` statement. If you have several data sets open, you can use the `SETIN` statement to make one the current input data set.

The general form of the `READ` statement is as follows:

```
READ <range> <VAR operand> <WHERE(expression)> <INTO name> ;
```

where

- `range` specifies a range of observations. For details, see the section “Process a Range of Observations” on page 102.
- `operand` selects a set of variables. For details about the `VAR` clause, see the section “Select Variables with the `VAR` Clause” on page 103.
- `expression` is an expression that is evaluated as being true or false. For details about the `WHERE` clause, see the section “Process Data by Using the `WHERE` Clause” on page 104.
- `name` names a target matrix for the data.
Use the READ Statement with the VAR Clause

Use the READ statement with the VAR clause to read variables from the current SAS data set into column vectors. Each variable in the VAR clause becomes a column vector with the same name as the variable in the SAS data set. The number of rows is equal to the number of observations that are processed, depending on the range specification and the WHERE clause. For example, to read the numeric variables Age, Height, and Weight for all observations in the Sashelp.Class data set, use the following statements:

```
proc iml;
 use Sashelp.Class;
 read all var {Age Height Weight};
 close Sashelp.Class;
```

Now use the SHOW NAMES statement to display all the matrices in the current SAS/IML session:

```
show names;
```

**Figure 7.11** Matrices Created from Data

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ROWS</th>
<th>COLS</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>19</td>
<td>1</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>Height</td>
<td>19</td>
<td>1</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>Weight</td>
<td>19</td>
<td>1</td>
<td>num</td>
<td>8</td>
</tr>
</tbody>
</table>

Number of symbols = 5 (includes those without values)

Figure 7.11 shows that the READ statement created three numeric vectors: Age, Height, and Weight.

Notice, however, that Figure 7.11 tells you that there are five symbols. The USE statement creates SAS/IML symbols for Name and Sex, but these variables were never read and so the symbols were not assigned values. (You can use the SHOW ALLNAMES statement to see the unassigned symbols.) If the data set contains many variables, it can be more efficient to subset the data set by using the VAR clause in the USE statement. For example, the following statements create the same vectors but do not create symbols for the unread variables:

```
use Sashelp.Class var {Age Height Weight};
read all;
close Sashelp.Class;
```

Use the READ Statement with the INTO Clause

Sometimes it is convenient to read all the numeric variables into columns of a matrix. To do this, use the READ statement with the INTO clause and specify the name of a matrix to create. Each variable that is specified in the VAR clause becomes a column of the target matrix. If there are \( p \) variables in the VAR clause and \( n \) observations are processed, the target matrix is an \( n \times p \) matrix.
The following statement creates a matrix `X` that contains the first five observations of the numeric variables of the `Sashelp.Class` data set. The keyword `_NUM_` in the `VAR` clause specifies that all numeric variables be read.

```sas
proc iml;
use Sashelp.Class;
read point (1:5) var _NUM_ into X;
/* Equivalent: range=1:5; read point range var _NUM_ into X; */
print X;
```

![Figure 7.12 All Numeric Variables](image)

Every SAS/IML matrix is of either character or numeric type. Therefore, when you read data by using the INTO clause, you should use the `_NUM_` or `_CHAR_` keyword to specify the types of variables that you want to read. If you use the `_ALL_` keyword with the INTO statement, all numeric variables are read.

## Use the READ Statement with the WHERE Clause

Use the WHERE clause to conditionally select observations from within the specified range. The following statements create a matrix to contain the variables `Age`, `Height`, and `Weight` for females in the `Sashelp.Class` data set:

```sas
use Sashelp.Class;
read all var _num_ into Female where(sex="F");
print Female;
```

![Figure 7.13 Female Students](image)

The section “Process Data by Using the WHERE Clause” on page 104 describes other features of the WHERE clause. For example, you can create a matrix to contain the student names that begin with the letter “J,” by using the following statements:
You can edit a SAS data set by using the `EDIT` statement. You can update values of variables, mark observations for deletion, delete the marked observations, and save your changes. The general form of the `EDIT` statement is as follows:

```
EDIT SAS-data-set < VAR operand > < WHERE(expression) > ;
```

where

- `SAS-data-set` names an existing SAS data set.
- `operand` selects a set of variables. For details about the `VAR` clause, see the section “Select Variables with the `VAR` Clause” on page 103.
- `expression` is an expression that is evaluated as being true or false. For details about the `WHERE` clause, see the section “Process Data by Using the `WHERE` Clause” on page 104.

This section edits and deletes observations, so make a copy of the `Sashelp.Class` data set by running the following DATA step:

```
data Class;
set Sashelp.Class;
run;
```

### Update Observations

Suppose you have updated data and want to change some values in the `Class` data set. For instance, suppose the student named Henry recently had a birthday. You can do the following:

- use the `EDIT` statement to open the `Class` data set for input and output
- read the data
• change the appropriate data value
• replace the changed data in the data set

The following statements open the Class data set and use the FIND statement to find the observation number that corresponds to Henry. The observation number is stored in the matrix Obs, as shown in Figure 7.15.

```sas
proc iml;
edit Class;
find all where(name={'Henry'}) into Obs;
list point Obs;
```

**Figure 7.15** Selected Observation

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Henry</td>
<td>M</td>
<td>14.0000</td>
<td>63.5000</td>
<td>102.5000</td>
</tr>
</tbody>
</table>

You can read in the Age variable, increment its value, and use the REPLACE statement to overwrite the value in the Class data set, as follows:

```sas
read point Obs var {Age};
Age = Age + 1;
replace point Obs var {Age};
list point Obs;
close Class;
```

**Figure 7.16** New Value

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Henry</td>
<td>M</td>
<td>15.0000</td>
<td>63.5000</td>
<td>102.5000</td>
</tr>
</tbody>
</table>

Figure 7.16 shows that the value for Henry’s age has been updated.

---

**Delete Observations**

Use the DELETE statement to mark an observation for subsequent deletion. The general form of the DELETE statement is as follows:

```sas
DELETE <range> <WHERE(expression)> ;
```

where

- **range** specifies a range of observations. For details, see the section “Process a Range of Observations” on page 102.
- **expression** is an expression that is evaluated as being true or false. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.
The DELETE statement marks observations for deletion. To actually delete the marked observations and renumber the remaining observations, use the PURGE statement.

Suppose the student named John has moved and you want to delete the corresponding observation from the Class data set, which was created in the section “Edit a SAS Data Set” on page 93. The following statements find the observation for John and mark it for deletion:

```sas
edit Class;
 find all where(name='John') into Obs;
dele point Obs;
```

To update the data set and renumber the observations, use the PURGE statement. Be aware that the PURGE statement deletes any indexes associated with a data set.

```sas
purge;
show contents;
```

**Figure 7.17** Updated Data Set

<table>
<thead>
<tr>
<th>DATASET : WORK.CLASS.DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

Number of Variables : 5
Number of Observations: 18

The data set now has 18 observations, whereas it used to have 19.

---

**Create a SAS Data Set from a Matrix**

SAS/IML software provides the capability to create a new SAS data set from a matrix. You can use the CREATE and APPEND statements to create a SAS data set from a matrix. An $n \times p$ matrix creates a SAS data set with $p$ variables and $n$ observations. That is, the columns of the matrix become the data set variables, and the rows of the matrix become the observations. The CREATE statement creates the new SAS data set, and the APPEND statement writes the observations.

---

**Use the CREATE Statement with the FROM Option**

You can create a SAS data set from a matrix by using the CREATE statement with the FROM option. This form of the CREATE statement is as follows:
CREATE SAS-data-set FROM matrix-name < [COLNAME=column-name
    ROWNAME=row-name] > ;

where

SAS-data-set    specifies the name of the new data set.
matrix          specifies the matrix that contains the data.
column-name     specifies names for the data set variables.
row-name        adds a character variable that identifies each row in the data set.

Suppose you want to create a SAS data set to contain a variable with the height-to-weight ratio for each student. The following statements read variables from the Sashelp.Class data set, form the ratio, and use the CREATE and APPEND statements to write a new SAS data set called Ratio:

proc iml;
use Sashelp.Class;
read all var {Name Height Weight};

HWRatio = Height/Weight;
create Ratio from HWRatio[colname="HtWt"];
append from HWRatio;
show contents;
close Ratio;

Figure 7.18 New Data Set from a Matrix

<table>
<thead>
<tr>
<th>DATASET : WORK.RATIO.DATA</th>
<th>VARIABLE</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HtWt</td>
<td>num</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Number of Variables : 1
Number of Observations: 19

The variable in the Ratio data set is called HtWt. If you do not specify the COLNAME= option, the variables in the new data set are named COL1, COL2, and so forth.

Use the CREATE Statement with the VAR Clause

You can use a VAR clause with the CREATE statement to select the variables that you want to include in the new data set.

The syntax is as follows:

CREATE SAS-data-set < VAR operand > ;

In the previous example, the new data set Ratio had one variable. You can use the VAR clause to create a similar data set to contain both HWRatio and Name. Notice that the variable HWRatio is numeric and
the variable Name is character. Consequently, these two variables cannot coexist in a single matrix. The following statements create a new data set, Ratio2, to contain the variables Name and HWRatio:

```plaintext
create Ratio2 var {"Name" "HWRatio"};
append;
show contents;
close Ratio2;
```

Figure 7.19 New Data Set from Variables

<table>
<thead>
<tr>
<th>DATASET : WORK.RATIO2.DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>HWRatio</td>
</tr>
<tr>
<td>Number of Variables : 2</td>
</tr>
<tr>
<td>Number of Observations: 19</td>
</tr>
</tbody>
</table>

**Understand the End-of-File Condition**

An *end-of-file condition* occurs when you try to read past the end of a data set or when you point to an observation that exceeds the number of observations in a data set. If an end-of-file condition occurs inside a DO DATA iteration loop, control passes to the first statement after the DO DATA loop.

The following example uses a DO DATA loop to read observations from the Sashelp.Class data set. The loop reads the data one observation at a time and accumulates the weights of the students in the SAS/IML matrix named sum. After the data are read, the variable sum contains the sum of the weights for the class.

```plaintext
proc iml;
use Sashelp.Class;
/* if data set already open, use setin class point 0; */
sum=0;
do data;
 read next var{weight};
 sum = sum + weight;
end;
print sum;
```

Figure 7.20 Sum of Data Values

<table>
<thead>
<tr>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900.5</td>
</tr>
</tbody>
</table>

The example shows how to read data one observation at a time within a DO loop. However, there are more efficient ways to read data in the SAS/IML language. If all the data can fit into memory, it is more efficient to read all the data into a vector and use vector operations to compute statistical quantities such as a sum. For
example, the following statements compute the same quantity (the sum of the Weight variable) but are more efficient:

```plaintext
read all var(weight);
sum = sum(weight);
```

---

### Produce Summary Statistics

You can use the `SUMMARY` statement to compute summary statistics of numeric variables in a SAS data set. The statistics can be computed for subgroups of the data by using the `CLASS` clause. The `SAVE` option in the `OPT` clause enables you to save the computed statistics in matrices. For example, consider the following statements:

```plaintext
proc iml;
 use Sashelp.class;
 summary class {sex} var {height weight};
```

**Figure 7.21** Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Nobs</th>
<th>Variable</th>
<th>MIN</th>
<th>MAX</th>
<th>MEAN</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>F</strong></td>
<td>9</td>
<td>Height</td>
<td>51.3000</td>
<td>66.5000</td>
<td>60.5889</td>
<td>5.01833</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td>50.5000</td>
<td>112.5000</td>
<td>90.1111</td>
<td>19.38391</td>
</tr>
<tr>
<td><strong>M</strong></td>
<td>10</td>
<td>Height</td>
<td>57.3000</td>
<td>72.0000</td>
<td>63.9100</td>
<td>4.93794</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td>83.0000</td>
<td>150.0000</td>
<td>108.9500</td>
<td>22.72719</td>
</tr>
<tr>
<td><strong>All</strong></td>
<td>19</td>
<td>Height</td>
<td>51.3000</td>
<td>72.0000</td>
<td>62.33684</td>
<td>5.12708</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td>50.5000</td>
<td>150.0000</td>
<td>100.02632</td>
<td>22.77393</td>
</tr>
</tbody>
</table>
```

As shown in Figure 7.21, the default statistics are the minimum, maximum, mean, and standard deviation of each variable specified in the `VAR` clause. The default behavior is to display the summary statistics in a table.

You can also store the summary statistics in SAS/IML matrices. For example, the following statement creates four matrices: `Sex`, `_OBS_`, `Height`, and `Weight`:

```plaintext
summary class {sex} var {height weight}
   stat {mean std var} opt {noprint save};
```

Because the `SAVE` option was specified, the statistics of the variables are stored in matrices under the name of the corresponding variables: each column corresponds to a statistic, and each row corresponds to a subgroup. Two other vectors, `Sex` and `_NOBS_`, are also created. The vector `Sex` contains the two distinct values of the `CLASS` variable. The vector `_NOBS_` contains the number of observations in each subgroup. The following statements display the SAS/IML matrices that are defined and print the `height` and `weight` matrices:

```plaintext
show names;
/* print matrices that show the stats */
print height[r=sex c={"Mean" "Std" "Var"}];
   weight[r=sex c={"Mean" "Std" "Var"}];
```
You can specify more than one CLASS variable, in which case subgroups are defined by the joint combinations of the values of the CLASS variables.

Sort a SAS Data Set

The observations in a SAS data set can be ordered (sorted) by specific variables. To sort a SAS data set, first close the data set if it is open. Then submit a SORT statement and specify the ordering variables. You can also specify an output data set name if you do not want to overwrite the original data set. For example, the following statements create a new SAS data set named Sorted:

``` Sas
proc iml;
sort Sashelp.Class out=Sorted by name;
```

The new data set contains the observations from the data set Sashelp.Class, ordered by the variable Name. If you omit the OUT= option, the original data set is replaced by the sorted data set.

You can specify multiple sort variables. Optionally, each variable can be preceded by the keyword DESCENDING, which denotes that the subsequent variable is to be sorted in descending order.

Index a SAS Data Set

Searching through a large data set for observations that satisfy some complex criteria can take a long time. You can reduce this search time by indexing the data set. The INDEX statement builds a special companion file that contains the values and record numbers of the indexed variables. After the index is built, queries that...
use a WHERE clauses might use the index to make the processing more efficient. Any number of variables can be indexed, but only one index is in use at a given time.

If you sort a data set in place or use the PURGE statement to delete observations, indices for the data set are deleted.

After you index a data set, the SAS/IML language has the option to use the index when a search is conducted with respect to the indexed variables. The indexes are updated automatically whenever you change values in indexed variables. When an index is in use, observations cannot be randomly accessed by their physical location numbers. In other words, you cannot use the POINT clause when an index is in effect.

To see how the INDEX statement works, make a copy of the Sashelp.Class data set, as follows:

```sas
data Class;
  set Sashelp.Class;
run;
```

If you want a list of all female students in the Class data set, you can first index the data by the Sex variable:

```sas
proc iml;
  use Class;
  index Sex;
```

If you subsequently submit a WHERE clause that uses the Sex variable, the index is used. Of course, the Class data set is small, so you will not notice any performance improvement for these data. However, for large data sets indexing can improve performance.

Now list all students by using the following statement:

```sas
list all;
```

Figure 7.23 Indexed Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Alice</td>
<td>F</td>
<td>13.0000</td>
<td>56.5000</td>
<td>84.0000</td>
</tr>
<tr>
<td>3</td>
<td>Barbara</td>
<td>F</td>
<td>13.0000</td>
<td>65.3000</td>
<td>98.0000</td>
</tr>
<tr>
<td>4</td>
<td>Carol</td>
<td>F</td>
<td>14.0000</td>
<td>62.8000</td>
<td>102.5000</td>
</tr>
<tr>
<td>7</td>
<td>Jane</td>
<td>F</td>
<td>12.0000</td>
<td>59.8000</td>
<td>84.5000</td>
</tr>
<tr>
<td>8</td>
<td>Janet</td>
<td>F</td>
<td>15.0000</td>
<td>62.5000</td>
<td>112.5000</td>
</tr>
<tr>
<td>11</td>
<td>Joyce</td>
<td>F</td>
<td>11.0000</td>
<td>51.3000</td>
<td>50.5000</td>
</tr>
<tr>
<td>12</td>
<td>Judy</td>
<td>F</td>
<td>14.0000</td>
<td>64.3000</td>
<td>90.0000</td>
</tr>
<tr>
<td>13</td>
<td>Louise</td>
<td>F</td>
<td>12.0000</td>
<td>56.3000</td>
<td>77.0000</td>
</tr>
<tr>
<td>14</td>
<td>Mary</td>
<td>F</td>
<td>15.0000</td>
<td>66.5000</td>
<td>112.0000</td>
</tr>
<tr>
<td>1</td>
<td>Alfred</td>
<td>M</td>
<td>14.0000</td>
<td>69.0000</td>
<td>112.5000</td>
</tr>
<tr>
<td>5</td>
<td>Henry</td>
<td>M</td>
<td>14.0000</td>
<td>63.5000</td>
<td>102.5000</td>
</tr>
<tr>
<td>6</td>
<td>James</td>
<td>M</td>
<td>12.0000</td>
<td>57.3000</td>
<td>83.0000</td>
</tr>
<tr>
<td>9</td>
<td>Jeffrey</td>
<td>M</td>
<td>13.0000</td>
<td>62.5000</td>
<td>84.0000</td>
</tr>
<tr>
<td>10</td>
<td>John</td>
<td>M</td>
<td>12.0000</td>
<td>59.0000</td>
<td>99.5000</td>
</tr>
<tr>
<td>15</td>
<td>Philip</td>
<td>M</td>
<td>16.0000</td>
<td>72.0000</td>
<td>150.0000</td>
</tr>
<tr>
<td>16</td>
<td>Robert</td>
<td>M</td>
<td>12.0000</td>
<td>64.8000</td>
<td>128.0000</td>
</tr>
<tr>
<td>17</td>
<td>Ronald</td>
<td>M</td>
<td>15.0000</td>
<td>67.0000</td>
<td>133.0000</td>
</tr>
<tr>
<td>18</td>
<td>Thomas</td>
<td>M</td>
<td>11.0000</td>
<td>57.5000</td>
<td>85.0000</td>
</tr>
<tr>
<td>19</td>
<td>William</td>
<td>M</td>
<td>15.0000</td>
<td>66.5000</td>
<td>112.0000</td>
</tr>
</tbody>
</table>
Notice that the indexed observations are sorted by Sex rather than by the OBS number. Retrievals that use the Sex variable are quicker than retrievals of data that are not indexed.

Data Set Maintenance Functions

The following functions and subroutines perform data set maintenance tasks:

- **DATASETS function**: obtains members in a data library. This function returns a character matrix that contains the names of the SAS data sets in a library.
- **CONTENTS function**: obtains variables in a SAS data set. This function returns a character matrix that contains the variable names for the data set. The variable list is returned in alphabetical order.
- **RENAME subroutine**: renames a SAS data set member in a specified library.
- **DELETE subroutine**: deletes a SAS data set member in a specified library.

See Chapter 26 for details and examples of these functions and routines.

Summary of Commands

You can use the functions, subroutines, and statements in this chapter to interact with SAS data sets. Table 7.1 summarizes the statements that you can use to perform management tasks from within the SAS/IML language.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Adds observations to the end of a SAS data set</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Closes a SAS data set</td>
</tr>
<tr>
<td>CREATE</td>
<td>Creates and opens a new SAS data set for input and output</td>
</tr>
<tr>
<td>DELETE</td>
<td>Marks observations for deletion in a SAS data set</td>
</tr>
<tr>
<td>EDIT</td>
<td>Opens an existing SAS data set for input and output</td>
</tr>
<tr>
<td>FIND</td>
<td>Finds observations</td>
</tr>
<tr>
<td>INDEX</td>
<td>Indexes variables in a SAS data set</td>
</tr>
<tr>
<td>LIST</td>
<td>Lists observations</td>
</tr>
<tr>
<td>PURGE</td>
<td>Purges all deleted observations from a SAS data set</td>
</tr>
<tr>
<td>READ</td>
<td>Reads observations into SAS/IML variables</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Writes observations back into a SAS data set</td>
</tr>
<tr>
<td>RESET DEFLIB</td>
<td>Names default libref</td>
</tr>
<tr>
<td>SAVE</td>
<td>Saves changes and reopens a SAS data set</td>
</tr>
<tr>
<td>SETIN</td>
<td>Selects an open SAS data set for input</td>
</tr>
<tr>
<td>SETOUT</td>
<td>Selects an open SAS data set for output</td>
</tr>
<tr>
<td>SHOW CONTENTS</td>
<td>Shows contents of the current input SAS data set</td>
</tr>
<tr>
<td>SHOW DATASETS</td>
<td>Shows SAS data sets currently open</td>
</tr>
<tr>
<td>SORT</td>
<td>Sorts a SAS data set</td>
</tr>
</tbody>
</table>
Shared Concepts for Processing Data

This section describes concepts that are common to two or more SAS/IML statements and that are related to reading or writing data.

Process a Range of Observations

The following SAS/IML statements enable you to specify a range of observations to process:

- DELETE statement
- FIND statement
- LIST statement
- READ statement
- REPLACE statement

You can specify a range of observations by using one of the following keywords:

<table>
<thead>
<tr>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>specifies all observations.</td>
</tr>
<tr>
<td>CURRENT</td>
<td>specifies the current observation.</td>
</tr>
<tr>
<td>NEXT <number></td>
<td>specifies the next observation or the next number of observations.</td>
</tr>
<tr>
<td>AFTER</td>
<td>specifies all observations after the current one.</td>
</tr>
<tr>
<td>POINT value</td>
<td>specifies observations by number.</td>
</tr>
</tbody>
</table>

Usually the ALL keyword is used, but the default value for the range is CURRENT. The NEXT and POINT keywords support values. The values can be literals, expressions, and numeric matrices, as shown in Table 7.2.

Table 7.2 Values Supported by the POINT and NEXT Keywords

<table>
<thead>
<tr>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single record number</td>
<td>read point 5</td>
</tr>
<tr>
<td>A literal that contains several record numbers</td>
<td>read point {2 5 10}</td>
</tr>
<tr>
<td>The name of a matrix that contains record numbers</td>
<td>p=1:5; read point p;</td>
</tr>
<tr>
<td>An expression in parentheses</td>
<td>read point (p+1);</td>
</tr>
</tbody>
</table>
If the current data set has an index in use (see the INDEX statement), the POINT keyword is invalid.

The following statements specify ranges of observations to the LIST statement. The output is not shown.

```sas
proc iml;
use Sashelp.class;
list all;       /* lists whole data set */
list;          /* lists current observation */
list var{name age};  /* lists NAME and AGE in current obs */
list all where(age<=13);  /* lists all obs where condition holds */
list next;     /* lists next observation */
list point 18; /* lists observation 18 */
range = 10:15;
list point range; /* lists observations 10 through 15 */
close Sashelp.class;
```

The range operand is usually listed first when you are using the access statements DELETE, FIND, LIST, READ, and REPLACE. The following table shows access statements and their default ranges:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Default Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST</td>
<td>Current</td>
</tr>
<tr>
<td>READ</td>
<td>Current</td>
</tr>
<tr>
<td>FIND</td>
<td>All</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Current</td>
</tr>
<tr>
<td>DELETE</td>
<td>Current</td>
</tr>
</tbody>
</table>

The APPEND statement does not support a range operand; new observations are always appended to the end of a data set.

Select Variables with the VAR Clause

Several SAS/IML statements support a VAR clause that specifies variables to use for subsequent processing. The VAR clause is supported by the following statements:

- APPEND statement
- CREATE statement
- EDIT statement
- LIST statement
- READ statement
- REPLACE statement
- SUMMARY statement
 USE statement

The general form of the VAR clause is

\texttt{VAR \vars \; ;}

The argument \vars is one of the following:

- a literal matrix that contains variable names
- a character matrix that contains variable names
- an expression in parentheses that yields variable names
- one of the following keywords:
 - _ALL_ for all variables
 - _CHAR_ for all character variables
 - _NUM_ for all numeric variables

The following examples demonstrate ways to use the VAR clause:

\begin{verbatim}
proc iml;
use Sashelp.Class;
read all var {age sex}; /* a literal matrix of names */
varNames = {"weight" "height"};
read all var varNames; /* a matrix that contains the names */
read all var _NUM_ into X; /* a keyword */
close Sashelp.Class;

x1 = X[,1]; x2 = X[,2]; x3 = X[,3];
create Test var ("x1":"x3"); /* an expression */
append;
close Test;
\end{verbatim}

Process Data by Using the WHERE Clause

Several SAS/IML statements support a WHERE clause that selects observations that satisfy specified criteria. The WHERE clause is supported by the following statements:

- DELETE statement
- EDIT statement
- FIND statement
- LIST statement
- READ statement
- REPLACE statement
The WHERE clause conditionally selects observations that satisfy some criterion. The general form of the WHERE clause is

```
WHERE variable comparison-op operand ;
```

The arguments to the WHERE clause are as follows:

- **variable** is a variable in the SAS data set.
- **comparison-op** is one of the following comparison operators:
 - `<` less than
 - `<=` less than or equal to
 - `=` equal to
 - `>` greater than
 - `>=` greater than or equal to
 - `^=` not equal to
 - `?` contains a given string
 - `'?'` does not contain a given string
 - `=:` begins with a given string
 - `=*` sounds like or is spelled like a given string
- **operand** is a literal value, a matrix name, or an expression in parentheses.

For example, a typical use of the WHERE clause is to subset data:

```
proc iml;
use Sashelp.Class where(age>14);
read all var {Age Weight} into X;
close Sashelp.Class;
print X[colname={"Age" "Weight"}];
```

Figure 7.24 Observations That Satisfy a Criterion

<table>
<thead>
<tr>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>112.5</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>112</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>133</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>112</td>
</tr>
</tbody>
</table>

You can also use a WHERE clause in the READ statement. For example, to conduct BY-group processing of all the students in the Sashelp.Class data set, first call the FREQ procedure to find the unique BY groups, and
then use a WHERE clause in a DO loop to read observations from each BY group, as shown in the following example:

```sas
/* find unique BY combinations of Age and Sex */
proc freq data=Sashelp.Class;
tables Age*Sex / out=freqout
   nocum norow nocol nopercent;
run;

proc iml;
/* read unique BY groups */
use freqout;
read all var {Age Sex};
close freqout;

use Sashelp.Class;  /* open data set for reading */
MeanHeight = j(nrow(Sex), 1);  /* allocate vector for results */
do i = 1 to nrow(Age);  /* for each BY group */
   /* read data for the i_th group */
   read all var {Height} where(Sex=(sex[i]) & Age=(age[i]));
   MeanHeight[i] = mean(Height);  /* analyze this BY group */
end;
close Sashelp.Class;

print Age Sex MeanHeight[format=4.1];
```

Figure 7.25 BY-Group Processing

The FREQ Procedure

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Table of Age by Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Age</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>MeanHeight</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>M</td>
<td>57.5</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>60.4</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>62.5</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>63.6</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>66.8</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>72.0</td>
</tr>
</tbody>
</table>
The operand argument in a WHERE comparison can be a matrix. For the following operators, the WHERE clause succeeds if any of the elements in the matrix satisfy the condition:

\[=, \neq, \leq, \geq, =*\]

For the following operators, the WHERE clause succeeds only if all the elements in the matrix satisfy the condition:

\[^=, ^=, <, <=, >, >=\]

You can specify logical expressions within the WHERE clause by using the AND (\&) and OR (|) operators. If clause is a valid WHERE expression, then you can combine expressions as follows:

- Both conditions satisfied: \(\text{clause1} \& \text{clause2}\)
- Either condition satisfied: \(\text{clause1} \mid \text{clause2}\)

In the WHERE clause, the expression on the left side of a comparison operator refers to values of the data set variables, whereas the expression on the right side is a constant or SAS/IML matrix. Expressions that involve more than one data set variable in a single clause are not supported. For example, you cannot use either of the following expressions:

\[
\text{list all where(weight>height); /* not supported */}
\]
\[
\text{list all where(weight-height>0); /* not supported */}
\]

Using Data Set Options

The SAS/IML USE, EDIT, and CREATE statements support most of the standard SAS data set options, as documented in *SAS Data Set Options: Reference*. For example, the following statements use the OBS=, RENAME=, and DROP= data set options to read data from the Sashelp.Class data set:

```sas
proc iml;
use sashelp.class(obs=5
  rename=(sex=Gender)
  drop=Age);
read all var _NUM_ into X[colname=nNames];
read all var _CHAR_ into C[colname=cNames];
close sashelp.class;
print X[c=NNames] C[c=cNames];
```

Comparison with the SAS DATA Step

The SAS/IML environment enables you to perform basic manipulation of data. However, there are some differences between the SAS/IML language and the SAS DATA step:

- With SAS/IML software, you open a file for output by using the CREATE statement. You must explicitly set up all your variables with the correct attributes before you create a data set. This means that you must define character variables to have the desired length. Numeric variables are the default, so any variable not defined as character is assumed to be numeric. In the DATA step, the variable attributes are determined from context across the whole step.
• With SAS/IML software, you must use an APPEND statement to output an observation; in the DATA step, you either use an OUTPUT statement or let the DATA step output each observation automatically.

• With SAS/IML software, you iterate with a DO DATA loop. In the DATA step, the iterations are implied.

• With SAS/IML software, you have to close the data set with a CLOSE statement. (However, PROC IML automatically closes all open data sets when the procedure exits.) The DATA step closes the data set automatically at the end of the step.

• When reading or writing data, the DATA step usually executes faster than the equivalent operation in the SAS/IML language.

In short, the DATA step treats the problem with greater simplicity, allowing shorter programs. However, the SAS/IML language is more flexible and interactive, and it has powerful matrix-handling capabilities.
Chapter 8
File Access

Overview of File Access

In this chapter you learn about external files and how to refer to an external file, whether it is a text file or a binary file. You learn how to read data from a file by using the INFILE and INPUT statements and how to write data to an external file by using the FILE and PUT statements.

With external files, you must know the format in which the data are stored or to be written. This is in contrast to SAS data sets, which are specialized files with a structure that is already known to the SAS System.

The SAS/IML statements used to access files are very similar to the corresponding statements in the SAS DATA step. The following table summarizes the SAS/IML statements and their functions.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSEFILE</td>
<td>closes an external file</td>
</tr>
<tr>
<td>FILE</td>
<td>opens an external file for output</td>
</tr>
<tr>
<td>INFILE</td>
<td>opens an external file for input</td>
</tr>
<tr>
<td>INPUT</td>
<td>reads from the current input file</td>
</tr>
<tr>
<td>PUT</td>
<td>writes to the current output file</td>
</tr>
<tr>
<td>SHOW FILES</td>
<td>Shows all open files, their attributes, and their status</td>
</tr>
</tbody>
</table>

(current input and output files)
Suppose that you have data for students in a class. You have recorded the values for the variables NAME, SEX, AGE, HEIGHT, and WEIGHT for each student and have stored the data in an external text file named USER.TEXT.CLASS. If you want to read these data into SAS/IML variables, you need to indicate where the data are stored. In other words, you need to name the input file. If you want to write data from matrices to a file, you also need to name an output file.

There are two ways to refer to an input or output file: a pathname and a filename. A pathname is the name of the file as it is known to the operating system. A filename is an indirect SAS reference to the file made by using the FILENAME statement. You can identify a file in either way by using the FILE and INFILE statements.

For example, you can refer to the input file where the class data are stored by using a literal pathname—that is, a quoted string. The following statement opens the file USER.TEXT.CLASS for input:

```
infile 'user.text.class';
```

Similarly, if you want to output data to the file USER.TEXT.NEWCLASS, you need to reference the output file with the following statement:

```
file 'user.text.newclass';
```

You can also refer to external files by using a filename. When using a filename as the operand, simply give the name. The name must be one already associated with a pathname by a previously issued FILENAME statement.

For example, suppose you want to reference the file with the class data by using a FILENAME statement. First, you must associate the pathname with an alias (called a fileref), such as INCLASS. Then you can refer to USER.TEXT.CLASS with the fileref INCLASS.

The following statements achieve the same result as the previous INFILE statement with the quoted pathname:

```
filename inclass 'user.text.class';
inclass;
```

You can use the same technique for output files. The following statements have the same effect as the previous FILE statement:

```
filename outclass 'user.text.newclass';
file outclass;
```

Three filenames have special meaning in the SAS/IML language: CARDS, LOG, and PRINT. These refer to the standard input and output streams for all SAS sessions, as follows:

- CARDS is a special filename for instream input data.
- LOG is a special filename for log output.
- PRINT is a special filename for standard print output.

When the pathname is specified, there is a limit of 64 characters to the operand.
Types of External Files

Most files that you work with are text files, which means that they can be edited and displayed without any special program. Text files under most host environments have special characters, called carriage-control characters or end-of-line characters, to separate one record from the next.

If your file does not adhere to these conventions, it is called a binary file. Typically, binary files do not have the usual record separators, and they can use any binary codes, including unprintable control characters. If you want to read a binary file, you must specify RECFM=N in the INFILE statement and use the byte operand (<) in the INPUT statement to specify the length of each item you want read. Treating a file as binary enables you to have direct access to a file position by byte address by using the byte operand (>) in the INPUT or PUT statement.

You write data to an external file by using the FILE and PUT statements. The output file can be text or binary. If your output file is binary, you must specify RECFM=N in the FILE statement. One difference between binary files and text files in output is that with binary files, the PUT statement does not put the record-separator characters at the end of each record written.

Reading from an External File

After you have chosen a method to refer to the external file you want to read, you need an INFILE statement to open it for input and an INPUT statement to specify how to read the data.

The next several sections cover how to use an INFILE statement and how to specify an INPUT statement so that you can input data from an external file.

Using the INFILE Statement

An INFILE statement identifies an external file that contains data that you want to read. It opens the file for input or, if the file is already open, makes it the current input file. This means that subsequent INPUT statements are read from this file until another file is made the current input file.

The following options can be used with the INFILE statement:

FLOWOVER
 enables the INPUT statement to go to the next record to obtain values for the variables.

LENGTH=variable
 names a variable that contains the length of the current record, where the value is set to the number of bytes used after each INPUT statement.

MISSOVER
 prevents reading from the next input record when an INPUT statement reaches the end of the current record without finding values for all variables. It assigns missing values to all values that are expected but not found.
RECFM=N

specifies that the file is to be read in as a pure binary file rather than as a file with record-separator characters. You must use the byte operands (< and >) to get new records rather than separate INPUT statements or the new line operator (/).

STOPOVER

stops reading when an INPUT statement reaches the end of the current record without finding values for all variables in the statement. It treats going past the end of a record as an error condition, triggering an end-of-file condition. The STOPOVER option is the default.

The FLOWOVER, MISSOVER, and STOPOVER options control how the INPUT statement works when you try to read past the end of a record. You can specify only one of these options. Read these options carefully so that you understand them completely.

The following example uses the INFILE statement with a FILENAME statement to read the class data file. The MISSOVER option is used to prevent reading from the next record if values for all variables in the INPUT statement are not found.

 filename inclass 'user.text.class';
 infile inclass missover;

You can specify the pathname with a quoted literal also. The preceding statements could be written as follows:

 infile 'user.text.class' missover;

Using the INPUT Statement

Once you have referenced the data file that contains your data with an INFILE statement, you need specify the following information about how the data are arranged:

- the number of variables and their names
- each variable’s type, either numeric or character
- the format of each variable’s values
- the columns that correspond to each variable

In other words, you must specify how to read the data.

The INPUT statement describes the arrangement of values in an input record. The INPUT statement reads records from a file specified in the previously executed INFILE statement, reading the values into SAS/IML variables.
There are two ways to describe a record’s values in a SAS/IML INPUT statement:

- list (or scanning) input
- formatted input

Following are several examples of valid INPUT statements for the class data file, depending, of course, on how the data are stored.

If the data are stored with a blank or a comma between fields, then list input can be used. For example, the INPUT statement for the class data file might look as follows:

```sas
infile inclass;
input name $ sex $ age height weight;
```

These statements specify the following:

- There are five variables: NAME, SEX, AGE, HEIGHT and WEIGHT.
- Data fields are separated by commas or blanks.
- NAME and SEX are character variables, as indicated by the dollar sign ($).
- AGE, HEIGHT, and WEIGHT are numeric variables, the default.

The data must be stored in the same order in which the variables are listed in the INPUT statement. Otherwise, you can use formatted input, which is column specific. Formatted input is the most flexible and can handle any data file. Your INPUT statement for the class data file might look as follows:

```sas
infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0
@20 height 4.1 @25 weight 5.1;
```

These statements specify the following:

- NAME is a character variable; its value begins in column 1 (indicated by @1) and occupies eight columns ($CHAR8.).
- SEX is a character variable; its value is found in column 10 ($CHAR1.).
- AGE is a numeric variable; its value is found in columns 15 and 16 and has no decimal places (2.0).
- HEIGHT is a numeric variable found in columns 20 through 23 with one decimal place implied (4.1).
- WEIGHT is a numeric variable found in columns 25 through 29 with one decimal place implied (5.1).

The next sections discuss these two modes of input.
List Input

If your data are recorded with a comma or one or more blanks between data fields, you can use list input to read your data. If you have missing values—that is, unknown values—they must be represented by a period (.) rather than a blank field.

When the SAS/IML language looks for a value, it skips past blanks and tab characters. Then it scans for a delimiter to the value. The delimiter is a blank, a comma, or the end of the record. When the ampersand (&) format modifier is used, SAS/IML looks for two blanks, a comma, or the end of the record.

The general form of the INPUT statement for list input is as follows:

\[
\text{INPUT variable <$> <&> <variable <$> > <&> ;}
\]

where

- \text{variable} names the variable to be read by the INPUT statement.
- \$ indicates that the preceding variable is character.
- \& indicates that a character value can have a single embedded blank. Because a blank normally indicates the end of a data value, use the ampersand format modifier to indicate the end of the value with at least two blanks or a comma.

With list input, SAS/IML scans the input lines for values. Consider using list input in the following cases:

- when blanks or commas separate input values
- when periods rather than blanks represent missing values

List input is the default in several situations. Descriptions of these situations and the behavior of SAS/IML follow:

- If no input format is specified for a variable, SAS/IML scans for a number.
- If a single dollar sign or ampersand format modifier is specified, SAS/IML scans for a character value. The ampersand format modifier enables single embedded blanks to occur.
- If a format is given with width unspecified or zero, SAS/IML scans for the first blank or comma.

If the end of a record is encountered before a value is found, then the behavior is as described by the record overflow options in the INFILE statement discussed in the section “Using the INFILE Statement” on page 111.

When you read with list input, the order of the variables listed in the INPUT statement must agree with the order of the values in the data file. For example, consider the following data:

<table>
<thead>
<tr>
<th>Alice</th>
<th>f</th>
<th>10</th>
<th>61</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth</td>
<td>f</td>
<td>11</td>
<td>64</td>
<td>105</td>
</tr>
<tr>
<td>Bill</td>
<td>m</td>
<td>12</td>
<td>63</td>
<td>110</td>
</tr>
</tbody>
</table>

You can use list input to read these data by specifying the following INPUT statement:
input name $ sex $ age height weight;

NOTE: This statement implies that the variables are stored in the order given. That is, each line of data contains a student’s name, sex, age, height, and weight in that order and separated by at least one blank or by a comma.

Formatted Input

The alternative to list input is formatted input. An INPUT statement reading formatted input must have a SAS informat after each variable. An *informat* gives the data type and field width of an input value. Formatted input can be used with pointer controls and format modifiers. However, neither pointer controls nor format modifiers are necessary for formatted input.

Pointer Control Features

Pointer controls reset the pointer’s column and line positions and tell the INPUT statement where to go to read the data value. You use pointer controls to specify the columns and lines from which you want to read:

- **Column pointer controls** move the pointer to the column you specify.
- **Line pointer controls** move the pointer to the next line.
- **Line hold controls** keep the pointer on the current input line.
- **Binary file indicator controls** indicate that the input line is from a binary file.

Column Pointer Controls

Column pointer controls indicate in which column an input value starts. Column pointer controls begin with either an at sign (@) or a plus sign (+). A complete list follows:

<table>
<thead>
<tr>
<th>Column Pointer Control</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>@n</td>
<td>moves the pointer to column n.</td>
</tr>
<tr>
<td>@point-variable</td>
<td>moves the pointer to the column given by the current value of <code>point-variable</code>.</td>
</tr>
<tr>
<td>@(expression)</td>
<td>moves the pointer to the column given by the value of the <code>expression</code>. The <code>expression</code> must evaluate to a positive integer.</td>
</tr>
<tr>
<td>+n</td>
<td>moves the pointer n columns.</td>
</tr>
<tr>
<td>+point-variable</td>
<td>moves the pointer the number of columns given by the value of <code>point-variable</code>.</td>
</tr>
<tr>
<td>+(expression)</td>
<td>moves the pointer the number of columns given by the value of <code>expression</code>. The value of <code>expression</code> can be positive or negative.</td>
</tr>
</tbody>
</table>

Here are some examples of using column pointer controls:

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>@12</td>
<td>go to column 12</td>
</tr>
<tr>
<td>@N</td>
<td>go to the column given by the value of N</td>
</tr>
<tr>
<td>@(N−1)</td>
<td>go to the column given by the value of N−1</td>
</tr>
<tr>
<td>+5</td>
<td>skip 5 spaces</td>
</tr>
<tr>
<td>+N</td>
<td>skip N spaces</td>
</tr>
<tr>
<td>+(N+1)</td>
<td>skip N+1 spaces</td>
</tr>
</tbody>
</table>
In the earlier example that used formatted input, you used several pointer controls. Here are the statements:

```plaintext
infile inclass;
input @1 name $char8. @10 sex $char1. @15 age 2.0
   @20 height 4.1 @25 weight 5.1;
```

The @1 moves the pointer to column 1, the @10 moves it to column 10, and so on. You move the pointer to the column where the data field begins and then supply an informat specifying how many columns the variable occupies. The INPUT statement could also be written as follows:

```plaintext
input @1 name $char8. +1 sex $char1. +4 age 2. +3 height 4.1
   +1 weight 5.1;
```

In this form, you move the pointer to column 1 (@1) and read eight columns. The pointer is now at column 9. Now, move the pointer +1 columns to column 10 to read `SEX`. The $char1. informat says to read a character variable occupying one column. After you read the value for `SEX`, the pointer is at column 11, so move it to column 15 with +4 and read `AGE` in columns 15 and 16 (the 2. informat). The pointer is now at column 17, so move +3 columns and read `HEIGHT`. The same idea applies for reading `WEIGHT`.

Line Pointer Control

The line pointer control (/) directs SAS/IML to skip to the next line of input. You need a line pointer control when a record of data takes more than one line. You use the new line pointer control (/) to skip to the next line and continue reading data. In the example reading the class data, you do not need to skip a line because each line of data contains all the variables for a student.

Line Hold Control

The trailing at sign (@), when at the end of an INPUT statement, directs SAS/IML to hold the pointer on the current record so that you can read more data with subsequent INPUT statements. You can use it to read several records from a single line of data. Sometimes, when a record is very short—say, 10 columns or so—you can save space in your external file by coding several records on the same line.

Binary File Indicator Controls

When the external file you want to read is a binary file (RECFM=N is specified in the INFILE statement), you must specify how to read the values by using the following binary file indicator controls:

- `>n` start reading the next record at the byte position `n` in the file.
- `>point-variable` start reading the next record at the byte position in the file given by `point-variable`.
- `>(expression)` start reading the next record at the byte position in the file given by `expression`.
- `<n` read the number of bytes indicated by the value of `n`.
- `<point-variable` read the number of bytes indicated by the value of `point-variable`.
- `<(expression)` read the number of bytes indicated by the value of `expression`.
Pattern Searching

You can have the input mechanism search for patterns of text by using the at sign (@) with a character operand. SAS/IML starts searching at the current position, advances until it finds the pattern, and leaves the pointer at the position immediately after the found pattern in the input record. For example, the following statement searches for the pattern `NAME=` and then uses list input to read the value after the found pattern:

```
input @ 'NAME=' name $;
```

If the pattern is not found, then the pointer is left past the end of the record, and the rest of the INPUT statement follows the conventions based on the options MISSOVER, STOPOVER, and FLOWOVER described in the section “Using the INFILE Statement” on page 111. If you use pattern searching, you usually specify the MISSOVER option so that you can control for the occurrences of the pattern not being found.

Notice that the MISSOVER feature enables you to search for a variety of items in the same record, even if some of them are not found. For example, the following statements are able to read in the ADDR variable even if `NAME=` is not found (in which case, NAME is unvalued):

```
infile in1 missover;
input @1 @ "NAME=" name $ @1 @ "ADDR=" addr & @1 @ "PHONE=" phone $;
```

The pattern operand can use any characters except for the following:

```
% $ [ ] { } < > – ? * # @ ˆ ` (backquote)
```

Record Directives

Each INPUT statement goes to a new record except in the following special cases:

- An at sign (@) at the end of an INPUT statement specifies that the record is to be held for future INPUT statements.
- Binary files (RECFM=N) always hold their records until the > directive.

As discussed in the syntax of the INPUT statement, the line pointer operator (/) instructs the input mechanism to go immediately to the next record. For binary (RECFM=N) files, the > directive is used instead of the /.

Blanks

For character values, the informat determines the way blanks are interpreted. For example, the $CHARw. format reads blanks as part of the whole value, while the BZW. format turns blanks into zeros. See SAS Language Reference: Dictionary for more information about informats.
Missing Values

Missing values in formatted input are represented by blanks or a single period for a numeric value and by blanks for a character value.

Matrix Use

Data values are either character or numeric. Input variables always result in scalar (one row by one column) values with type (character or numeric) and length determined by the input format.

End-of-File Condition

End of file is the condition of trying to read a record when there are no more records to read from the file. The consequences of an end-of-file condition are described as follows.

- All the variables in the INPUT statement that encountered end of file are freed of their values. You can use the NROW or NCOL function to test if this has happened.
- If end of file occurs inside a DO DATA loop, execution is passed to the statement after the END statement in the loop.

For text files, end of file is encountered first as the end of the last record. The next time input is attempted, the end-of-file condition is raised.

For binary files, end of file can result in the input mechanism returning a record that is shorter than the requested length. In this case SAS/IML still attempts to process the record, using the rules described in the section “Using the INFILE Statement” on page 111.

The DO DATA mechanism provides a convenient mechanism for handling end of file.

For example, to read the class data from the external file USER.TEXT.CLASS into a SAS data set, you need to perform the following steps:

1. Establish a fileref referencing the data file.
2. Use an INFILE statement to open the file for input.
3. Initialize any character variables by setting the length.
4. Create a new SAS data set with a CREATE statement. You want to list the variables you plan to input in a VAR clause.
5. Use a DO DATA loop to read the data one line at a time.
6. Write an INPUT statement that specifies how to read the data.
7. Use an APPEND statement to add the new data line to the end of the new SAS data set.
8. End the DO DATA loop.
9. Close the new data set.

10. Close the external file with a CLOSEFILE statement.

Your statements should look as follows:

```plaintext
filename inclass 'user.text.class';
infile inclass missover;
name="12345678";
sex="1";
create class var{name sex age height weight};
do data;
   input name $ sex $ age height weight;
   append;
end;
close class;
closefile inclass;
```

Notice that the APPEND statement is not executed if the INPUT statement reads past the end of file because SAS/IML escapes the loop immediately when the condition is encountered.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following features are supported differently or are not supported in SAS/IML:

- The pound sign (#) directive supporting multiple current records is not supported.
- Grouping parentheses are not supported.
- The colon (:) format modifier is not supported.
- The byte operands (< and >) are new features supporting binary files.
- The ampersand (&) format modifier causes SAS/IML to stop reading data if a comma is encountered. Use of the ampersand format modifier is valid with list input only.
- The RECFM=F option is not supported.

Writing to an External File

If you have data in matrices and you want to write these data to an external file, you need to reference, or point to, the file (as discussed in the section “Referring to an External File” on page 110. The FILE statement opens the file for output so that you can write data to it. You need to specify a PUT statement to direct how the data are output. These two statements are discussed in the following sections.
Using the FILE Statement

The FILE statement is used to refer to an external file. If you have values stored in matrices, you can write these values to a file. Just as with the INFILE statement, you need a fileref to point to the file you want to write to. You use a FILE statement to indicate that you want to write to rather than read from a file.

For example, if you want to output to the file USER.TEXT.NEWCLASS, you can specify the file with a quoted literal pathname. Here is the statement:

```sas
> file 'user.text.newclass';
```

Otherwise, you can first establish a fileref and then refer to the file by its fileref, as follows:

```sas
> filename outclass 'user.text.class';
> file outclass;
```

There are two options you can use in the FILE statement:

- **RECFM=N** specifies that the file is to be written as a pure binary file without record-separator characters.
- **LRECL=operand** specifies the size of the buffer to hold the records.

The FILE statement opens a file for output or, if the file is already open, makes it the current output file so that subsequent PUT statements write to the file. The FILE statement is similar in syntax and operation to the INFILE statement.

Using the PUT Statement

The PUT statement writes lines to the SAS log, to the SAS output file, or to any external file specified in a FILE statement. The file associated with the most recently executed FILE statement is the current output file.

You can use the following arguments with the PUT statement:

- **variable** names the SAS/IML variable with a value that is put to the current pointer position in the record. The variable must be scalar valued. The put variable can be followed immediately by an output format.
- **literal** gives a literal to be put to the current pointer position in the record. The literal can be followed immediately by an output format.
(expression) must produce a scalar-valued result. The expression can be immediately followed by an output format.

format names the output formats for the values.

pointer-control moves the output pointer to a line or column.

Pointer Control Features

Most PUT statements need the added flexibility obtained with pointer controls. SAS/IML keeps track of its position on each output line with a pointer. With specifications in the PUT statement, you can control pointer movement from column to column and line to line. The pointer controls available are discussed in the section “Using the INPUT Statement” on page 112.

Differences with the SAS DATA Step

If you are familiar with the SAS DATA step, you will notice that the following features are supported differently or are not supported:

- The pound sign (#) directive supporting multiple current records is not supported.
- Grouping parentheses are not supported.
- The byte operands (< and >) are a new feature supporting binary files.

Examples

Writing a Matrix to an External File

If you have data stored in an $n \times m$ matrix and you want to output the values to an external file, you need to write out the matrix element by element.

For example, suppose you have a matrix X that contains data that you want written to the file USER.MATRIX. Suppose also that X contains ones and zeros so that the format for output can be one column. You need to do the following:

1. Establish a fileref, such as OUT.
2. Use a FILE statement to open the file for output.
3. Specify a DO loop for the rows of the matrix.
4. Specify a DO loop for the columns of the matrix.
5. Use a PUT statement to specify how to write the element value.

6. End the inner DO loop.

7. Skip a line.

8. End the outer DO loop.

Your statements should look as follows:

```plaintext
cfilename out 'user.matrix';
file out;
do i = 1 to nrow(x);
   do j = 1 to ncol(x);
      put (x[i,j]) 1.0 +2 @;
   end;
   put;
end;
closefile out;
```

The output file contains a record for each row of the matrix. For example, if your matrix is 4×4, then the file might look as follows:

```
1 1 0 1
1 0 0 1
1 1 1 0
0 1 0 1
```

Quick Printing to the PRINT File

You can use the FILE PRINT statement to route output to the standard print file. The following statements generate data that are output to the PRINT file:

```plaintext
```
> file print;
> do a = 0 to 6.28 by .2;
> x = sin(a);
> p = (x+1)#30;
> put @1 a 6.4 +p x 8.4;
> end;

Here is the resulting output:

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.200</td>
<td>0.1987</td>
</tr>
<tr>
<td>0.400</td>
<td>0.3894</td>
</tr>
<tr>
<td>0.600</td>
<td>0.5646</td>
</tr>
<tr>
<td>0.800</td>
<td>0.7174</td>
</tr>
<tr>
<td>1.000</td>
<td>0.8415</td>
</tr>
<tr>
<td>1.200</td>
<td>0.9320</td>
</tr>
<tr>
<td>1.400</td>
<td>0.9854</td>
</tr>
<tr>
<td>1.600</td>
<td>0.9996</td>
</tr>
<tr>
<td>1.800</td>
<td>0.9738</td>
</tr>
<tr>
<td>2.000</td>
<td>0.9093</td>
</tr>
<tr>
<td>2.200</td>
<td>0.8085</td>
</tr>
<tr>
<td>2.400</td>
<td>0.6755</td>
</tr>
<tr>
<td>2.600</td>
<td>0.5155</td>
</tr>
<tr>
<td>2.800</td>
<td>0.3350</td>
</tr>
<tr>
<td>3.000</td>
<td>0.1411</td>
</tr>
<tr>
<td>3.200</td>
<td>-0.0584</td>
</tr>
<tr>
<td>3.400</td>
<td>-0.2555</td>
</tr>
<tr>
<td>3.600</td>
<td>-0.4425</td>
</tr>
<tr>
<td>3.800</td>
<td>-0.6119</td>
</tr>
<tr>
<td>4.000</td>
<td>-0.7568</td>
</tr>
<tr>
<td>4.200</td>
<td>-0.8716</td>
</tr>
<tr>
<td>4.400</td>
<td>-0.9516</td>
</tr>
<tr>
<td>4.600</td>
<td>-0.9937</td>
</tr>
<tr>
<td>4.800</td>
<td>-0.9962</td>
</tr>
<tr>
<td>5.000</td>
<td>-0.9589</td>
</tr>
<tr>
<td>5.200</td>
<td>-0.8835</td>
</tr>
<tr>
<td>5.400</td>
<td>-0.7728</td>
</tr>
<tr>
<td>5.600</td>
<td>-0.6313</td>
</tr>
<tr>
<td>5.800</td>
<td>-0.4646</td>
</tr>
<tr>
<td>6.000</td>
<td>-0.2794</td>
</tr>
<tr>
<td>6.200</td>
<td>-0.0831</td>
</tr>
</tbody>
</table>
Chapter 8: File Access

Listing Your External Files

To list all open files and their current input or current output status, use the SHOW FILES statement.

Closing an External File

The CLOSEFILE statement closes files opened by an INFILE or FILE statement. You specify the CLOSEFILE statement just as you do the INFILE or FILE statement. For example, the following statements open the external file USER.TEXT.CLASS for input and then close it:

```plaintext
filename in 'user.text.class';
infile in;
closefile in;
```

Summary

In this chapter, you learned how to refer to, or point to, an external file by using a FILENAME statement. You can use the FILENAME statement whether you want to read from or write to an external file. The file can also be referenced by a quoted literal pathname. You also learned about the difference between a text file and a binary file.

You learned how to read data from an external file with the INFILE and INPUT statements, using either list or formatted input. You learned how to write your matrices to an external file by using the FILE and PUT statements. Finally, you learned how to close your files.
Introduction to Tables

The matrix is the fundamental data type for SAS/IML computations. A matrix must contain either all numeric or all character values. You cannot create a matrix in which one column has numeric values and another column has character values.

In contrast, SAS data sets can contain mixed-type data. Beginning with SAS/IML 14.2, you can create tables, which are in-memory versions of data sets. You can create a table from a SAS data set or from a SAS/IML matrix. You can add new columns to the table or extract values from the table into matrices. You can pass the table to a SAS/IML module, and modules can create new tables or modify existing tables.

Tables are a convenient way to store mixed-type data and to pass data to modules. You cannot perform linear algebraic operations on a table. For example, you cannot add two tables together or compute the eigenvalues of a table, even if all the columns of the table are numeric. However, SAS/IML includes functions for creating matrices from the columns of tables, so you can extract the data and then compute with the matrices.
In this chapter, the word “variable” can have several meanings. When there is the potential for confusion, this chapter uses the following conventions:

- A variable is a column in a data set.
- A column is a column in a SAS/IML table.
- A symbol is the name of a SAS/IML matrix, vector, or table.
- A dynamic variable is a symbol that is named in the DYNAMIC statement in the TEMPLATE procedure. The value of a dynamic variable is specified at run time.

For example, you might read a data set that has three variables into a SAS/IML table that has three columns. The name of the table might be the symbol tbl.

Create Tables from SAS Data Sets

The easiest way to create an in-memory table is to use the TableCreateFromDataSet function to create a table directly from a SAS data set. The following statements read the Sashelp.Class data set into a table:

```iml
proc iml;
tClass = TableCreateFromDataSet("Sashelp", "Class");
```

The tClass symbol is a table. It can be passed as an argument to any SAS/IML function that supports tables. For example, you can use the NROW and NCOL functions to obtain the number of rows and columns, respectively, for the tClass table:

```iml
nrow = nrow(tClass);
ncol = ncol(tClass);
print nrow ncol;
```

![Figure 9.1 Number of Rows and Columns for a Table](image)

You can also use data set options to filter data. For example, you can use the DROP=, KEEP=, OBS=, and WHERE= options to restrict the data that are read into a table, as shown in the following statements:

```iml
dsOpt = "drop=Name rename=(Weight=Mass) where=(Sex='M')";
tblBoys = TableCreateFromDataSet("Sashelp", "Class", dsOpt);
```

Create Tables from Matrices

You can use the TableCreate function to create a table from a SAS/IML matrix. You can also use the TableAddVar subroutine to add columns to an existing table.
The following statements define two character vectors that contain data about historical hurricanes in the Atlantic basin. The TableCreate function is used to create a table from the data:

```plaintext
proc iml;
Hurr = {"Katrina", "Ike", "Andrew", "Wilma"];
Month = {"August", "September", "August", "October"];
tbl = TableCreate({"Name" "Month"}, Hurr||Month);
```

Because a matrix cannot contain mixed types, you might need to call the TableAddVar subroutine to add columns to the table. The following statements add two new columns to the existing table:

```plaintext
Wind = { 175, 145, 175, 185}; /* max wind, mph */
call TableAddVar(tbl, {"Year" "MaxWind"}, Yr||Wind); /* add numeric cols */
```

The order of the columns in the table is the order in which the columns were added. For the current table, the character columns appear first, followed by the numeric columns. You can use the TableGetVarName function to obtain the column names of a table:

```plaintext
colNames = TableGetVarName(tbl);
print colNames;
```

Figure 9.2 Names of Table Columns

<table>
<thead>
<tr>
<th>colNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name Month Year MaxWind</td>
</tr>
</tbody>
</table>

Query Properties of Tables

The following list describes functions that enable you to retrieve properties of a table:

- The **TYPE** function returns the type of the input symbol:
 - If a symbol is undefined, the TYPE function returns U.
 - If a symbol is a character matrix, the TYPE function returns C.
 - If a symbol is a numeric matrix, the TYPE function returns N.
 - If a symbol is a table, the TYPE function returns T.

- The following functions return the dimensions of a table:
 - The **NROW** function returns the number of rows.
 - The **NCOL** function returns the number of columns.
 - The **DIMENSION** function returns both quantities in a row vector.

- The following functions return a row vector that contains information about the columns, such as names, labels, and types (character or numeric):
 - The **TableGetVarFormat** function returns the formats that are associated with columns. If a column does not have a format, a blank is returned.
The TableGetVarIndex function returns the column numbers when you specify the column names.

The TableGetVarInformat function returns the informats that are associated with columns. If a column does not have an informat, a blank is returned.

The TableGetVarLabel function returns the labels that are associated with columns. If a column does not have a label, a blank is returned.

The TableGetVarName function returns the names of columns in a table when you specify the column numbers (indices).

The TableGetVarType function returns a vector that contains values C and N to represent character and numeric columns, respectively.

The TableIsExistingVar function determines whether a table contains a specified column name. The function returns a binary indicator vector.

The TableIsVarNumeric function returns a vector that contains values 0 and 1 to indicate character and numeric columns, respectively.

The following statements create a table from the Sashelp.Class data set and return information about the columns. The information is shown in Figure 9.3.

```iml
proc iml;
tClass = TableCreateFromDataSet("Sashelp", "Class");
colnames = TableGetVarName(tClass);
type = TableGetVarType(tClass);
isNum = TableIsVarNumeric(tClass);
print (type // char(isNum))[c=colnames r=":Type" "IsNum"];
```

Figure 9.3 Information about a Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>C</td>
<td>C</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>IsNum</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Set Properties of Tables

The columns of tables have properties such as names, formats, informats, and labels. The following functions enable you to set the properties for columns of a table:

- The TableRenameVar call sets the names of columns.
- The TableSetVarFormat call sets the formats that are associated columns.
- The TableSetVarInformat call sets the informats that are associated with columns.
- The TableSetVarLabel call sets the labels that are associated with columns.
Extract Data from a Table to Matrices

You can use the `TableGetVarData` function to extract values from the table into a matrix. You can then perform standard matrix computations on the data. For example, the following statements create a table from the `Sashelp.Class` data set. The `TableGetVarData` function extracts the numeric variables `Height` and `Weight` into a matrix. The `COV` function then computes the covariance matrix for those two variables. The covariance matrix is shown in Figure 9.4.

```sas
proc iml;
tClass = TableCreateFromDataSet("Sashelp", "Class");
colNames = {"Height" "Weight");
X = tableGetVarData(tClass, colNames);
cov = cov(X);
print cov[c=colNames r=colNames];
```

![Figure 9.4 Covariance Matrix for Numeric Variables](image)

Because the `TableGetVarData` function returns a matrix, the variable names that you specify must be all numeric or all character.

Modify Tables

Tables enable you to use a single parameter to send mixed-type data into a SAS/IML module. The module can use the `TableGetVarData` function to extract values from the table into a matrix. It can also use the `TableAddVar` function to add new columns to the table.

The following module takes a table as an argument. It assumes that the table contains columns named `Height` and `Weight`, where height is measured in inches and weight is measured in pounds. (It could use the `TableIsExistingVar` function to verify that columns with these names exist.) The module extracts the data from these columns into vectors, and uses a standard formula to compute the body mass index (BMI) for each person in the data. The BMI values are then added to the table.

```sas
proc iml;
/* Compute BMI from the Height and Weight vars */
start AddBMI(tbl);
weight = TableGetVarData(tbl, "Weight");
height = TableGetVarData(tbl, "Height");
BMI = weight / height##2 * 703;    /* standard formula */
call TableAddVar(tbl, "BMI", BMI); /* add numeric col */
return;
finish;
```
The following statements create a table from the Sashelp.Class data set. The table is passed into the AddBMI module, which modifies the table. When the module returns, the main program extracts the BMI values from the table and displays a histogram of the BMI values. The histogram is shown in Figure 9.5.

```plaintext
tClass = TableCreateFromDataSet("Sashelp", "Class");
run AddBMI(tClass); /* call a module that modifies the table */
bmi = TableGetVarData(tClass, "BMI");
call histogram(bmi); /* graph distribution of derived column */
```

![Figure 9.5 Histogram of Computed Column](image)

Save Tables to SAS Data Sets

Just as the `TableCreateFromDataSet` function enables you to read a data set into a SAS/IML table, the `TableWriteToDataSet` call enables you to create a SAS data set from a table. The following statements create a table from two vectors and then write the data to a SAS data set named Letters in the Work library. The `CONTENTS` function is used to retrieve the names of the variables in the data set. The names are displayed in Figure 9.6.

```plaintext
proc iml;
tbl = TableCreate("Letters", T("A":"Z"); /* create a character column */
call TableAddvar(tbl, "ID", T(1:26)); /* create a numeric column */
call TableWriteToDataSet(tbl, "work", "Letters"); /* create SAS data set */
vars = contents("Letters"); /* variables in work.Letters */
print vars;
```

![Figure 9.6 Creating a SAS Data Set from a Table](image)
You can include data set options in order to write a subset of the table to a data set. The following statement uses the WHERE= option to write half of the data to a data set. The Letters2 data set contains all data for which the ID column is a multiple of 2.

```sas
call TableWriteToDataSet(tbl, "work", "Letters2",
    "where=(mod(ID,2)=0)"); /* write subset */
```

In a similar way, you can use the DROP= and KEEP= data set options to create a SAS data set that contains only certain columns in a table.

Copy Tables

You can copy a table from one symbol into another by using the assignment operator (=) as shown in the following statements:

```sas
proc iml;
tClass = TableCreateFromDataSet("Sashelp", "Class");
tNew = tClass; /* make a copy of the table */quit;
```

Tables are copied by value. After you make a copy of a table, changes to the original table do not affect the copy. Similarly, you can modify the copy without affecting the original table.

The `VALUE` function and `VALSET` call also enable you to copy a table by specifying the name of the table.

Release Table Memory

Like matrices, tables are stored in memory. Consequently, large tables might consume a lot of the RAM on your computer. When you are finished using a table, you can use the `FREE` statement to free the symbol and release the memory. You can then reuse the symbol.

For example, the following statements create a table and then use the `FREE` statement to delete the table from memory and free the symbol. The `SHOW NAMES` statement displays the symbols that have values. Figure 9.7 shows that the `tbl` symbol is no longer defined.

```sas
proc iml;
x = 1:10;
y = {1 2, 3 4};
tbl = TableCreateFromDataSet("Sashelp", "BWeight"); /* load a big table */
free tbl; /* delete the big table */
show names;
quit;
```
Chapter 9: Mixed-Type Tables

Figure 9.7 Symbols after Deleting Table

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ROWS</th>
<th>COLS</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>10</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
<td>2</td>
<td>num</td>
<td>8</td>
</tr>
</tbody>
</table>

Number of symbols = 3 (includes those without values)

Compute Statistics for Columns of Tables

The computational functions and operators in the SAS/IML language are designed to operate on matrices, not tables. You cannot add two tables or pass a table to the MEAN function to compute the mean of each column. However, you can write a SAS/IML module that accepts a table as a parameter and computes statistics for one or more columns. To do this, use the TableGetVarData function to extract the data from a table into a matrix. For example, the following function prints a table of descriptive statistics for each numeric column in a table. The statistics are shown in Figure 9.8.

```sas
proc iml;
start PrintDescStats( tbl );
    cols = loc( TableIsVarNumeric(tbl) ); /* get column numbers */
    if ncol(cols)=0 then do;
        print "The table does not contain any numeric columns.";
        return;
    end;
    stats = j(5, ncol(cols)); /* allocate matrix for results */
    m = TableGetVarData(tbl, cols); /* extract data into matrix */
    stats[1,] = countn(m); /* N for each column */
    stats[2,] = mean(m); /* Mean for each column */
    stats[3,] = std(m); /* Std Dev for each column */
    stats[4,] = m[><, ]; /* Minimum for each column */
    stats[5,] = m[<>, ]; /* Maximum for each column */
    varNames = TableGetVarName(tbl, cols);
    rowNames = {"N", "Mean", "Std Dev", "Minimum", "Maximum"};
    print stats[L="Descriptive Statistics" r=rowNames c=varNames];
finish;

table = TableCreateFromDataSet("Sashelp", "Class");
run PrintDescStats(table);
```

Figure 9.8 Descriptive Statistics for Numeric Columns

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>Mean</td>
<td>13.315789</td>
<td>62.336642</td>
<td>100.02632</td>
</tr>
<tr>
<td>Std Dev</td>
<td>1.4926722</td>
<td>5.1270752</td>
<td>22.773933</td>
</tr>
<tr>
<td>Minimum</td>
<td>11</td>
<td>51.3</td>
<td>50.5</td>
</tr>
<tr>
<td>Maximum</td>
<td>16</td>
<td>72</td>
<td>150</td>
</tr>
</tbody>
</table>
Print Tables

The SAS Output Delivery System (ODS) displays tables by using a template. A template determines the layout of the table and the styles that are used to display the individual headers, columns, and cells. You can print a table in SAS/IML software by using the TablePrint subroutine. By default, the TablePrint subroutine uses the IML.Table template. The following PROC TEMPLATE statements display the IML.Table template in the SAS log:

```
proc template;
  source IML.Table;
run;
```

The IML.Table template is not complicated. It defines columns that can be used to display numeric or character variables. The IML.Table template supports standard tables that contain a table header, column headers, and row headers.

The following basic options for the TablePrint subroutine control the appearance of the displayed table:

- The VAR= option specifies the columns to print. By default, all columns are printed.
- The ID= option specifies a column to use as row headers. By default, row numbers are used as row headers.
- The LABEL= option specifies a header for the entire table. By default, the subroutine prints the name of the SAS/IML symbol as the table header.
- The FIRSTOBS= option specifies the initial row to print. By default, the subroutine prints the first row in the table as the initial row.
- The NUMOBS= option specifies the number of rows to print. By default, the initial row and all subsequent rows are printed.
- The COLHEADER= option specifies the column headers. Valid values are “Names”, “Labels”, and “None”. By default, COLHEADER=“Labels”.
- The JUSTIFY= option specifies the horizontal alignment (left, center, or right) for each column. By default, character columns are left-justified and numeric columns are right-justified.

The following program creates a table from the Sashelp.Class data set. The TablePrint subroutine options request that only a portion of the table be printed. The output is shown in Figure 9.9.

```
proc iml;
  tClass = TableCreateFromDataSet("Sashelp", "Class");
call TablePrint(tClass) label="Subset of Students" var={"Name" "Sex" "Age" "Weight"}
  justify={'R' 'C' 'C' 'R'}
  ID="Name"
  firstObs=3 numobs=5;
```
The PrintTable subroutine supports advanced options that enable you to use custom templates to display tables. These advanced options are discussed in the next section.

Advanced Printing of Tables

You can use the TEMPLATE= option in the TablePrint subroutine to specify a custom template that specifies the layout for a SAS/IML table. This section describes how to use the TEMPLATE procedure to define a custom template. For an introduction to table templates, see Smith (2007, 2013).

When you use the TEMPLATE= option to specify a custom template, you can still use the VAR=, FIRSTOBS=, and NUMOBS= options. You can use the LABEL= option if the template includes the HEADER _LABEL_ statement. You cannot use the ID= or JUSTIFY= options with custom templates, nor can you use the COLHEADER=“None” option.

The following options to the TablePrint subroutine enable you to specify templates and to pass values at run time to dynamic variables in the templates.

- The TEMPLATE= option specifies the name of a template that ODS should use to display the table.

- The DYNAMIC= option specifies the names of SAS/IML matrices whose values are passed to the template and used as the values of dynamic variables.

- The COLTEMPLATE= option specifies the names of column templates that are defined by using the DEFINE COLUMN statement in PROC TEMPLATE. The names should be known to the template that is specified by the TEMPLATE= option.

- The COLDYNAMIC= option specifies the names of SAS/IML matrices. The values of these matrices are passed to dynamic variables in column templates.

You must specify the TEMPLATE= option in order to specify the DYNAMIC= or COLTEMPLATE= options. You must specify the COLTEMPLATE= option in order to specify the COLDYNAMIC= option.

Using Custom Templates

This example defines a custom template and uses it to print a SAS/IML table. The following call to PROC TEMPLATE defines a table template called “Custom1.” The table has three columns that have specified
names. The table contains a main header and a secondary header that spans the second and third column. For more information about how to use PROC TEMPLATE to define a template, see *SAS Output Delivery System: Procedures Guide*.

```sas
proc template;
define table Custom1;
column Estimate LowerCL UpperCL; /* names and order of columns */
define header topHeader; /* header at top of table */
text "Parameter Estimates";
end;
define header SpanHeader; /* define spanning header */
text "95% Confidence Limits"; /* title of spanning header */
start = LowerCL; /* span starts at second column */
end = UpperCL; /* span ends at third column */
end;
end;
run;
```

You can use the TEMPLATE= option to request that the “Custom1” template be used to print a SAS/IML table. The following SAS/IML statements create a table that has three columns. The names of the columns agree with the names that were specified in the template. The TablePrint subroutine displays the table. The output is shown in Figure 9.10.

```sas
proc iml;
x = {1 0.5 1.5,
    1.8 1.6 2.0,
    2.8 2.1 3.5};
ParamEst = TableCreate({"Estimate" "LowerCL" "UpperCL"}, x);
call TablePrint(ParamEst) template="Custom1";
quit;
```

Figure 9.10 Output That Uses a Custom Template

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>LowerCL</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>2.8</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Figure 9.10 shows that the table has a header that displays the text “Parameter Estimates.” The table also has a spanning header that displays the text “95% Confidence Limits.”

A second example of a custom template is a table that colors certain cells in a table according to the values in those cells.

For example, the Sashelp.Class data includes variables that indicate gender and weight. You might want to highlight males by using a light blue background and females by using a pink background, and you might want to highlight any child that weighs more than 100 pounds by using a light orange background. The following call to PROC TEMPLATE uses the CELLSTYLE statement to define a table with these attributes.
proc template;
define table CustomColor1;
 cellstyle _COL_ = 2 && _VAL_="M" as {backgroundcolor=LightBlue},
 COL = 2 && _VAL_="F" as {backgroundcolor=Pink},
 COL = 5 && _VAL_>100 as {backgroundcolor=LightOrange};
end;
run;

The following call to the TablePrint subroutine uses this template to display the table. The output is displayed in Figure 9.11.

proc iml;
tbl = TableCreateFromDataSet("Sashelp", "Class");
call TablePrint(tbl) numobs=6
 template="CustomColor1";
quit;

Figure 9.11 Output That Colors Cells According to Their Values

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfred</td>
<td>M</td>
<td>14</td>
<td>69</td>
<td>112.5</td>
</tr>
<tr>
<td>Alice</td>
<td>F</td>
<td>13</td>
<td>56.5</td>
<td>84</td>
</tr>
<tr>
<td>Barbara</td>
<td>F</td>
<td>13</td>
<td>65.3</td>
<td>98</td>
</tr>
<tr>
<td>Carol</td>
<td>F</td>
<td>14</td>
<td>62.8</td>
<td>102.5</td>
</tr>
<tr>
<td>Henry</td>
<td>M</td>
<td>14</td>
<td>63.5</td>
<td>102.5</td>
</tr>
<tr>
<td>James</td>
<td>M</td>
<td>12</td>
<td>57.3</td>
<td>83</td>
</tr>
</tbody>
</table>

In Figure 9.11, the cells in the Sex column are colored pink or blue. Cells in the Weight column are colored orange if the student weighs more than 100 pounds. The table does not have a main header because the template does not define one.

Using Dynamic Variables in Custom Templates

Dynamic variables enable you to specify attributes of a table when the table is rendered, rather than when the template is stored.

For example, the previous section defined the CustomColor1 template, which used the colors pink, blue, and orange to highlight certain cells in a table. But suppose you want the flexibility to change the background colors in the CustomColor1 template. Although the DYNAMIC statement in PROC TEMPLATE supports default values, the following template defines three dynamic variables that are unspecified until run time:

proc template;
define table CustomColor2;
 dynamic MaleColor FemaleColor OverweightColor;
 cellstyle _COL_ = 2 && _VAL_="M" as {backgroundcolor=MaleColor},
 COL = 2 && _VAL_="F" as {backgroundcolor=FemaleColor},
 COL = 5 && _VAL_>100 as {backgroundcolor=OverweightColor};
end;
run;
You can use the DYNAMIC= option in the TablePrint subroutine to specify (at run time) values for the MaleColor, FemaleColor, and OverweightColor dynamic variables. The argument to the DYNAMIC= option in the TablePrint subroutine is a vector of keyword-value pairs. Each element of the vector specifies the name of a dynamic variable in a template, an equal sign, and the name of a SAS/IML symbol whose value will be used for the corresponding dynamic variable.

For example, the following SAS/IML program contains three symbols: M, F, and Wt. Each symbol contains a string that specifies a valid color. The dynamicVar variable is a vector that specifies the keyword-value pairs. The first element indicates that the value of the M symbol should be used for the MaleColor dynamic variable in the CustomColor2 template, the second element indicates that the value of the F symbol should be used for the FemaleColor dynamic variable, and so on. The output is shown in Figure 9.12.

```sas
proc iml;
tbl = TableCreateFromDataSet("Sashelp", "Class");
M = "LightGreen";
F = "LightRed";
Wt = "LightGrey";
/* Syntax: DynamicVar1=Symbol1, DynamicVar2=Symbol2, ... */
dynamicVar = {"MaleColor=M" "FemaleColor=F" "OverweightColor=Wt"];
call TablePrint(tbl) numobs=6
template="CustomColor2"
dynamic=dynamicVar;
```

Figure 9.12 Output from a Custom Template That Contains Dynamic Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfred</td>
<td>M</td>
<td>14</td>
<td>69</td>
<td>112.5</td>
</tr>
<tr>
<td>Alice</td>
<td>F</td>
<td>13</td>
<td>56.5</td>
<td>84</td>
</tr>
<tr>
<td>Barbara</td>
<td>F</td>
<td>13</td>
<td>65.3</td>
<td>98</td>
</tr>
<tr>
<td>Carol</td>
<td>F</td>
<td>14</td>
<td>62.8</td>
<td>102.5</td>
</tr>
<tr>
<td>Henry</td>
<td>M</td>
<td>14</td>
<td>63.5</td>
<td>102.5</td>
</tr>
<tr>
<td>James</td>
<td>M</td>
<td>12</td>
<td>57.3</td>
<td>83</td>
</tr>
</tbody>
</table>

The DYNAMIC= option in the TablePrint subroutine also supports an alternate syntax. If the name of the SAS/IML symbol is the same as the name of a template dynamic variable, then you can omit the value part of a keyword-value pair. For example, the following program creates the same output as Figure 9.12.

```sas
MaleColor = "LightGreen";
FemaleColor = "LightRed";
OverweightColor = "LightGrey";
/* names of SAS/IML symbols = names of dynamic variables in template */
dynamicVar = {"MaleColor" "FemaleColor" "OverweightColor"];
call TablePrint(tbl) numobs=6
template="CustomColor2"
dynamic=dynamicVar;
```

Using Column Templates

The DEFINE COLUMN statement in PROC TEMPLATE enables you to specify the attributes of a column within a table. This column definition is known as the column template. You can use the COLTEMPLATE=
option in the TablePrint subroutine to specify which column templates should be used to render particular columns of a table.

For example, the following statements define three column templates. Each template specifies the GENERIC=ON attribute, which means that you can use the column template for multiple columns.

```plaintext
proc template;
define table ColTempl1;
  header _LABEL_; /* main header */
  define column Generic;
    generic=ON; /* multiple variables can use */
  end;
  /* column for numeric variables */
  define column Float;
    generic=ON; /* multiple variables can use */
    format=7.2; /* display in 7.2 format */
    style=DataStrong; /* boldface */
    cellstyle _COL_ as {color=Blue}; /* blue text */
  end;
  /* column for numeric integer variables */
  define column Integer;
    generic=ON; /* multiple variables can use */
    format=6.; /* display in 6. format */
    cellstyle _COL_ as {color=Red backgroundcolor=GrayEE};
    justify=ON; just=C; /* center text */
  end;
end;
run;
```

The HEADER _LABEL_ statement enables you to set the table label by using the LABEL= option in the TablePrint subroutine.

The ColTempl1 template defines the following three columns:

- The Generic column is defined as a column that contains only one attribute. Character and numeric columns will be given default values for formats and justification.

- The Float column template uses the 7.2 format to display values of numeric variables. The STYLE= statement causes text to be displayed in a bold typeface, and the CELLSTYLE= statement causes it to be displayed in a blue color.

- The Integer column template displays values for integer values. The values will be centered in the column, and the text will be displayed in a red color on a light gray background.

```plaintext
proc iml;
  tbl = TableCreateFromDataSet("Sashelp", "Class");
call TablePrint(tbl)
  label="Custom Column Templates"
  numobs=6
  template="ColTempl1"
  var  ={"Name" "Height" "Weight" "Age"}
  coltemplate={Generic Generic Float Integer};
```
Using Dynamic Variables in Column Templates

You can define a column template that uses dynamic variables. Dynamic variables enable you to specify attributes of a table when the table is rendered, rather than when the template is defined.

For example, the previous section describes the ColTempl1 template, which defines column templates that use hardcoded formats and colors. In the following table template, dynamic variables are used for formats, styles, and colors:

```sas
proc template;
define table ColTempl2;
  header _LABEL_; /* column for character variables */
define column Generic;
  generic=ON; /* multiple variables can use */
end;
/* column for numeric variables */
define column Float;
  dynamic ColFormat="7.2"
  ColStyle="DataStrong"
  ColTextColor="Blue";
  generic=ON; /* multiple variables can use */
  format=ColFormat;
  style=ColStyle;
  cellstyle _COL_ as {color=ColTextColor};
end;
define column Integer;
  dynamic ColTextColor="Red"
  ColBGColor="GrayEE";
  generic=ON; /* multiple variables can use */
  format=6.;
  cellstyle _COL_ as {color=ColTextColor backgroundcolor=ColBGColor};
  justify=ON; just=C; /* center text */
end;
end;
run;
```

The default values for the dynamic variables are the same as the hardcoded values in the ColTempl1 template. Consequently, if you use the COLTEMPLATE=ColTempl2 option in the PrintTable subroutine, you will
obtain the same table as shown in Figure 9.13. However, you can override the default formats, styles, and colors by using the COLDYNAMIC= option to specify values at run time.

For example, suppose you want to print columns of the Sashelp.Class data that contain the Name, Height, Weight, and Age variables. You want to use the Generic column template to display the first two variables, the Float column template for the third variable, and the Integer column template for the fourth variable. Furthermore, suppose you want the values in the Weight column to be displayed by using the 8.3 format and you want to change the colors for the Age column so that the table displays black text on a light pink background.

The following SAS/IML program defines SAS/IML symbols that contain the format and color values:

```sas
proc iml;
    tbl = TableCreateFromDataSet("Sashelp", "Class");
    varNames = {"Name" "Height" "Weight" "Age"};
    colTemplates = {Generic Generic Float Integer};

    Fmt="8.3"; /* specify one value for Float column template */
    ColBGColor="LightPink"; /* specify two values for Integer column template */
    ColTextColor="Black";

    DynValues = {" " " " /* no dynamic vals for Generic columns */
                  "ColFormat=Fmt" /* vals for Float */
                  "ColBGColor ColTextColor"}; /* vals for Integer */

    call TablePrint(tbl)
        label="Column Templates with Dynamic Variables"
        numobs=6
        template="ColTempl2"
        var=varNames
        coltemplate=colTemplates
        coldynamic=DynValues;
```

You can use the COLDYNAMIC= option to pass these values into the ColTempl2 template. Because you are going to print four columns, you must specify a four-element matrix to the COLDYNAMIC= option, as follows:

```sas
    DynValues = {" " " " /* no dynamic vals for Generic columns */
                  "ColFormat=Fmt" /* vals for Float */
                  "ColBGColor ColTextColor"}; /* vals for Integer */
```

The ith element of the DynValues matrix specifies the values for the dynamic variables in the ith column template. For this example, the first two columns do not have any dynamic variables; therefore the first two elements of DynValues are blank strings. For the third column, the ColFormat dynamic variable in the Float template is assigned the value of the Fmt variable. Consequently, the third column in Figure 9.14 displays three digits after the decimal point. For the fourth column, the ColBGColor and ColTextColor dynamic
variables are assigned values from the SAS/IML variables of the same name. Consequently, the fourth column in Figure 9.14 contains black text on a light pink background.

Notice that the third element of the DynValues vector uses the “keyword=value” syntax, whereas the fourth element uses the alternate syntax. You can use whichever syntax is most convenient.

Using Existing SAS Templates

SAS software is shipped with hundreds of table templates. Every time you run a SAS procedure, it uses an ODS template to format and display the output. Previous sections show how you can define your own table templates. This section describes how to specify an existing template as input to the TablePrint subroutine.

For example, suppose you run the following statements to call the REG procedure:

```sas
ods trace on;
proc reg data=Sashelp.Class plots=none;
    model height=weight age / CLB;
    ods output ParameterEstimates=Parms;
    ods select ParameterEstimates;
quit;
ods trace off;
```

PROC REG produces the ParameterEstimates table, which is shown in Figure 9.15. The first column is a row header. The last two columns share a common spanning header that displays the text “95% Confidence Limits.”

![Figure 9.15 Parameter Estimates Table](image)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>32.19431</td>
<td>5.08227</td>
<td>6.33</td>
<td><.0001</td>
<td>21.42039 42.96824</td>
</tr>
<tr>
<td>Weight</td>
<td>0.13805</td>
<td>0.03475</td>
<td>3.97</td>
<td>0.0011</td>
<td>0.06438 0.21171</td>
</tr>
<tr>
<td>Age</td>
<td>1.22667</td>
<td>0.53019</td>
<td>2.31</td>
<td>0.0343</td>
<td>0.10272 2.35062</td>
</tr>
</tbody>
</table>

Because of the ODS TRACE ON statement, ODS echoes information about SAS templates to the SAS log. The log shows that the template that PROC REG uses to display the parameter estimates table is `Stat.REG.ParameterEstimates`. You can view the template by using the SOURCE statement in PROC TEMPLATE, as follows:

```sas
proc template;
run;
```

The source of the template is written to the log. The template definition is long and complex. However, a careful inspection reveals the column names in the templates and also reveals that a dynamic variable named Confidence is used to form the spanning header.
The REG procedure saved the data in the ParameterEstimates table to a data set calledParms. The following statements read the data into a SAS/IML table and print the table by using the default template. The output is shown in Figure 9.16.

```sas
proc iml;
tbl = TableCreateFromDataSet("Parms");
call TablePrint(tbl) colheader="Names";
```

![Figure 9.16 Output When Using the Standard Template](image)

<table>
<thead>
<tr>
<th>tbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Although the table displays information that is consistent with Figure 9.15, the SAS/IML table does not look as nice. You can use the TEMPLATE= option to request that the TablePrint subroutine use the Stat.REG.ParameterEstimates template to display the table.

The following statement uses the Stat.REG.ParameterEstimates template to display the table. In order to format the spanning header correctly, you must pass a value for the Confidence dynamic variable into the template. The result is shown in Figure 9.17.

```sas
Confidence=95;
call TablePrint(tbl) template="Stat.Reg.ParameterEstimates" dynamic={Confidence};
```

![Figure 9.17 Output When Using a SAS/STAT Template](image)

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Age</td>
</tr>
</tbody>
</table>

Notice that Figure 9.15 and Figure 9.17 are identical. This shows that you can use templates for SAS/STAT procedures to display data from within SAS/IML programs.

References

Overview

The matrix is the fundamental data type for SAS/IML computations. A matrix must contain either all numeric or all character values. You cannot create a matrix in which one column has numeric values and another column has character values.

However, beginning with SAS/IML 14.2, you can create lists. The objects in a list can be of different sizes and types. A list can contain numeric matrices, character matrices, tables, and other lists.

A SAS/IML list is similar to a dynamic array. A dynamic array (also called a growable array or a mutable array) is a random-access array that can grow and shrink. Elements in a dynamic array are directly accessed by specifying their position (index). Because matrices are sometimes called arrays, the word “list” is used to describe the SAS/IML data structure that can contain other data structures.

Lists are a convenient way to store related data and to pass that data to modules, but they do not support arithmetic operations. For example, you cannot add or multiply two lists.

You can use the ListAddItem and ListInsertItem subroutines to insert new items into a list. You can use the ListDeleteItem subroutine to remove items from a list. You can use the ListSetItem subroutine to modify an existing item.
You can use the list structure and the associated SAS/IML functions to emulate many different data structures, including the following:

- **Associative arrays.** An *associative array* (also called a *map* or a *dictionary*) is a set of key-value pairs. Elements in an associative array are accessed by specifying the key. In the SAS/IML language, you can use the ListSetName subroutine to assign names to some or all elements. You can then access the elements by name.

- **Structs.** A *struct* is a collection of named elements called *members*. The members can be *inhomogeneous*, which means they do not have to be the same type or size. For example, you could create a list that contains named fields for a person’s name, address, telephone number, and salary. You can use the ListSetName subroutine to assign names to list items.

- **Stacks.** A *stack* is a linear array in which objects can be inserted and removed only at the beginning of the array. A push operation adds an item to the front of the list; a pop operation removes the item at the front of the list. A stack obeys the last-in first-out principle (LIFO). You can access only the first element of a stack. In the SAS/IML language, you can use the ListGetItem function to implement the pop operation and use the ListInsertItem operation to implement the push operation.

- **Queues.** A *queue* is a linear array in which objects can be inserted at the end of the array and removed from the beginning of the array. A queue obeys the first-in first-out principle (FIFO) but is otherwise similar to a stack.

- **Trees.** A *tree* contains nodes and directed edges. A tree starts with a root node. The root node is connected via branches to other nodes, called child nodes. Every node except the root node has exactly one parent node. In SAS/IML, lists can contains sublists. For an example, see the section “Construct a Binary Search Tree” on page 156.

Getting Started

This section provides several examples of using lists.

Create a Growable List of Matrices

Suppose you want to store three matrices in a list. One way is to allocate a list that contains three elements and use the ListsetItem subroutine to assign each element to a matrix. The following statements store matrices of different sizes in a list. The ListLen function is used to iterate over the elements in the list.

```sas
proc iml;
/* create a list of matrices; use ListsetItem to fill */
L = ListCreate(3); /* allocate list of 3 elements */
do n = 1 to ListLen(L); /* for each element in list */
    A = j(n, n, n-1); /* define n x n matrix */
    call ListsetItem(L, n, A); /* assign n_th element of L */
end;
```
Notice the order of the arguments to the list functions. For most functions, the first argument is the name of the list object, and the second argument specifies positions or names. This is the same order that you would use to specify the element of a matrix: M[i]. In particular, the syntax to assign a matrix element is reminiscent of the syntax M[i]=b.

The list L contains three elements. You can use the ListGetItem function to extract each element into a SAS/IML matrix, as shown by the following statements:

```sas
sum = j(ListLen(L), 1);
do n = 1 to ListLen(L); /* for each element in list */
    B = ListGetItem(L, n); /* get n_th matrix of L */
    sum[n] = sum(B); /* compute sum of elements */
end;
```

The vector sum contains the sums of the values in the three matrices.

You can use the ListAddItem subroutine to add more items to the list. The list will automatically grow to accommodate the new elements. The new elements are added to the end of the list, as shown in the following statements:

```sas
C = 1:3;
call ListAddItem(L, C); /* add C as 4th element to L */
D = {4 3, 2 1};
call ListAddItem(L, D); /* add 5th element to L */
```

If you want to view the contents of the list, you can use the ListPrint or the Struct subroutines in the ListUtil package, as described in the section “List Utilities: The ListUtil Package” on page 151. For example, the following statements load the package and display the structure of the list, which has five elements:

```sas
package load ListUtil;
run struct(L);
```

Figure 10.1 Structure of a List

<table>
<thead>
<tr>
<th>L</th>
<th>Name</th>
<th>Level</th>
<th>NRow</th>
<th>NCol</th>
<th>Type</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>More</th>
</tr>
</thead>
<tbody>
<tr>
<td>L[1]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Num</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L[2]</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>Num</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>L[3]</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>Num</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>L[4]</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>Num</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L[5]</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>Num</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10.1 shows the structure of the list. The first row provides information about the list L, including that the list contains five unnamed elements. Subsequent rows provide information about each element, including the dimensions of the matrix, the type of the matrix, and the first few matrix values.

The meaning of each column is as follows:

- **Name** column provides the name of an object or a subobject. Unnamed elements are named by using subscripts. For example, L[1] is the first element of a list L. By default, the string “===>” is used to indicate subobjects that are contained in a higher-level object.
Chapter 10: Lists and Data Structures

- The **Level** column contains the value 0, 1, or 2. The value 0 means that the row is a top-level object that you can directly reference by using a SAS/IML symbol. The value 1 indicates a subobject, such as an element of a list or a variable in a table. The value 2 indicates a subobject of a subobject.

- The **NRow** column indicates the number of rows for a matrix or a table. For a list, this column has a missing value.

- The **NCol** column indicates the number of columns for a matrix or a table. For a list, this value is the number of elements.

- The **Type** column indicates the type of each object. Valid values are List, Table, Num (for a numeric matrix), Char (for a character matrix), or Empty (for an undefined matrix).

- The **Value1** through **Value4** columns display the values of the first few elements of a matrix. For a table, they display the names of the first few variables. For a list, they display the names of the first few elements.

- The **More** column is an indicator variable. The column has two possible values: blank indicates that an object has fewer than four elements, and the symbol “…” indicates that there are more than four elements in a matrix or list, or more than four columns in a table.

Not only can you add and modify elements, but you can also remove elements from a list. The following statements use the ListDeleteItem subroutine to remove the first, third, and fifth elements, thus leaving only two elements:

```sas
call ListDeleteItem(L, {1 3 5}); /* remove three elements */
```

Create a List of Items of Different Types

The elements of a list can be matrices, tables, or other lists. A list can store inhomogeneous types. The following SAS/IML statements create four different types of variables: a numeric matrix, a character vector, a table, and a list that contains three elements.

```sas
proc iml;
M = {1 2, 3 4};
C = "A":"G";
tbl = TableCreateFromDataSet("Sashelp", "Class", "obs=5");
s sublist = ListCreate(3);
doi = 1 to ListLen(sublist);
call ListsetItem(sublist, i, j(i, i, i##2));
end;
```

You can create a second list that contains a copy of the previous list as a sublist. The following statements create the new list:

```sas
list = ListCreate();
call ListaddItem(list, {1.2 3.45 6.789}); /* add numeric vector */
call ListaddItem(list, {"Male" "Female"}); /* add character vector */
call ListaddItem(list, sublist); /* add sublist */
```
If you want to print the elements in the list, you can use the ListPrint subroutine. The ListPrint subroutine is included in the ListUtil package, which is described in the section “List Utilities: The ListUtil Package” on page 151. The results of the ListPrint call are shown in Figure 10.2.

```lisp
package load ListUtil; /* load ListPrint module */
run ListPrint (list);
```

Figure 10.2 Printing a List

```
<table>
<thead>
<tr>
<th>List = list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
</tr>
<tr>
<td>1.2 3.45 6.789</td>
</tr>
<tr>
<td>Item 2</td>
</tr>
<tr>
<td>Male Female</td>
</tr>
<tr>
<td>Item 3</td>
</tr>
<tr>
<td>[ LIST ]</td>
</tr>
<tr>
<td>Item 3[1]</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Item 3[2]</td>
</tr>
<tr>
<td>4 4</td>
</tr>
<tr>
<td>Item 3[3]</td>
</tr>
<tr>
<td>9 9 9</td>
</tr>
</tbody>
</table>
```

The first output is a label that provides the name of the symbol being printed. Then each item in the list is printed. The first item (labeled “Item 1”) is a numeric matrix that contains three elements. The second item (labeled “Item 2”) is a character matrix that contains two elements. The third item (labeled “Item 3”) is a list that contains three elements, each of which is a numeric matrix. The matrices are printed with the labels “Item 3[1],” “Item 3[2],” and “Item 3[3].”

Create an Associative Array

This example shows how to create a list of named elements, which is sometimes called an *associative array*. Some of the elements are numeric vectors; others are character vectors. The elements can have different lengths. Associative arrays are useful because they enable you to create a single object that contains related data elements.

As an example, suppose you want to create a list that contains information about a linear regression. The following call to the REG procedure creates two output data sets:
• The PE data set contains information about parameter estimates, standard errors, and p-values.
• The Out data set contains original data and the predicted values and residual values for each observation.

```sas
proc reg data=Sashelp.Class plots=none;
  where sex="M";
  model weight = height;
  output out=Out p=Pred r=Res;
  ods output ParameterEstimates=PE;
quit;
```

The PE data set has two observations, whereas the Out data set has 10 observations. The following SAS/IML statements create vectors from variables in these data sets:

```sas
proc iml;
  use PE; read all var {"Variable" "Estimate"}; close;
  use Out; read all var {"Weight" "Pred" "Res"}; close;
```

The following statements create a new list that contains five named elements. Data from the PE data set are copied into two elements. Data from the Out data set are copied into three elements.

```sas
StructNames = {"Variable" "Estimate" "DepVar" "Predicted" "Residual"};
RegModel = ListCreate( StructNames );
call ListsetItem(RegModel, "Variable", Variable);
call ListsetItem(RegModel, "Estimate", Estimate);
call ListsetItem(RegModel, "DepVar", Weight);
call ListsetItem(RegModel, "Predicted", Pred);
call ListsetItem(RegModel, "Residual", Res);
```

If you want to print the elements in the RegModel list, you can use the ListPrint subroutine. The ListPrint subroutine is included in the ListUtil package, which is described in the section “List Utilities: The ListUtil Package” on page 151. The results are shown in Figure 10.3.

```sas
package load ListUtil; /* load ListPrint module */
run ListPrint(RegModel);
```

Figure 10.3 Printing an Associative Array

```
---------- List = RegModel---------

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: &quot;Variable&quot;</td>
<td>Intercept  Height</td>
</tr>
<tr>
<td>2: &quot;Estimate&quot;</td>
<td>-141.101  3.9125492</td>
</tr>
<tr>
<td>3: &quot;DepVar&quot;</td>
<td>112.5  102.5  83  84  99.5  150  128  133  85  112</td>
</tr>
<tr>
<td>4: &quot;Predicted&quot;</td>
<td>128.86488  107.34585  83.08805  103.43331  89.739384  140.60252  112.43217  121.03978  83.87056  119.0835</td>
</tr>
</tbody>
</table>
```
The output shows the five elements (items) in the list. Two elements are 1×2 matrices, and three elements are 1×10 matrices.

You can use a list to pass multiple objects to a module. For example, the following module creates a plot of the observed response versus the predicted response. Provided that you pass in a list object that contains fields named “DepVar” and “Predicted”, this module can handle a wide variety of regression models. The output of this module is not shown.

```plaintext
/* Module that creates a plot of observed vs predicted response. 
 Pass in a list that contains elements named "DepVar" and "Predicted" */
start PredPlot(L);
   Observed = ListGetItem(L, "DepVar");
   Predicted = ListGetItem(L, "Predicted");
   call Scatter(Observed, Predicted) procopt="noautolegend"
            other="lineparm x=0 y=0 slope=1 / clip";
finish;

run PredPlot(RegModel);
```

Syntax

Chapter 26, “Language Reference,” describes the syntax of the functions and subroutines that create and manipulate lists. You can group the functions into categories as follows:

Create and Delete Lists

- The `ListCreate` subroutine creates a new list. You can create an empty list and use the `ListAddItem` subroutine to add items to the list. Alternatively, you can create a list that contains a specified number of initially empty items, then use the `ListSetItem` subroutines to set the value for each item.

- The `FREE` statement frees the symbol and memory associated with a list.

- The `ListLen` function returns the number of items in a list. Uninitialized items and items that have an empty value are included in the count.

Add, Set, or Delete Items in a List

- The `ListAddItem` subroutine adds a new item to the end of a list. The length of the list increases by one.

- The `ListSetItem` subroutine sets or replaces the value of an existing list item. The length of the list stays the same.

- The `ListDeleteItem` subroutine deletes an item from a list. The length of the list decreases by one.

- The `ListInsertItem` subroutine inserts an item at a specified position in the list. The length of the list increases by one.

- The `ListSetSubItem` sets the value of an item in a nested sublist. The length of the list stays the same.
Get Items from a List

- The ListGetItem function returns a list item.
- The ListGetSubItem function returns an item from a nested sublist.

Use Named Items in a List

- The ListDeleteName subroutine removes a name from an item, but it does not remove the item itself.
- The ListGetAllNames function returns the complete set of names for items in a list.
- The ListGetName function returns the names that are associated with specific items in a list.
- The ListIndex function returns the positions of named items in the list.
- The ListSetName subroutine sets the name of an item.

Details

This section provides additional information about creating and modifying lists.

Add Elements to a List

SAS/IML lists are essentially arrays that can shrink and grow. You can use the ListAddItem subroutine to add a new item to the end of a list.

You can use the ListInsertItem subroutine to add a new item to an existing list. If the list has \(k \) elements, you can insert a new element in positions 1, 2, \ldots, \(k + 1 \). If you insert an item at position \(i \) where \(i \leq k \), then the existing elements at positions \(i, i + 1, \ldots, k \) are shifted to the right to make room for the new item. In other words, the new item is inserted prior to the existing element in the specified position, and the length of the list increases by one.

It is more efficient to add a new item to the end of a list than to insert the item at the beginning or in the middle of a list. Inserting an item at position \(k + 1 \) is equivalent to adding an item to the end of the list.

Delete Elements from a List

You can use the ListDeleteItem subroutine to delete items from a list. If a list has \(k \) items and you delete \(m \) items, then the new length of the list is \(k - m \).
Extract Elements from a List

You can use the ListGetItem or ListGetSubItem function to extract one element from a list. These functions support options that control whether the extracted item is copied, moved, or deleted from the list. If the item is copied or moved, the length of the list does not change. If the item is deleted, then the length of the list or sublist decreases by one.

Release List Memory

If you no longer need a list, you can use the FREE statement to delete the list and all its elements. The FREE statement also frees all memory that was used to store the list; there is no need to use the ListDeleteItem subroutine prior to running the FREE statement.

List Utilities: The ListUtil Package

SAS/IML software includes the ListUtil package, which is a system package that contains useful functions for working with lists. The ListUtil package is pre-installed, so the following statements load the package and print a short overview of the package in the SAS log:

```sas
proc iml;
package load ListUtil;
package help ListUtil;  /* display overview in SAS log */
quit;
```

For information about how to use packages, see Chapter 11, “Packages.” Several examples in this chapter use the following modules from the ListUtil package:

- The ListPrint subroutine prints elements in a list. If a list contains sublists, elements of sublists are also printed.
- The Struct subroutine prints a table that shows the structure of a SAS/IML object. The Struct subroutine is especially useful for showing the structure of a list.

Examples

This section provides examples of creating complex list structures, including a list of lists, a stack structure, and a binary search tree.

Create a List of Lists

The Sashelp.Class data set contains data about 19 students. The data include each student’s age and gender.
Chapter 10: Lists and Data Structures

If you sort the data by age and gender, you have created a hierarchical structure. There are six ages (11 through 16) and two genders (“F” for females and “M” for males). You could represent these data as a list of named lists. The main list has six elements, which are named “11” through “16”. Each element in turn contains a two-element sublist. The sublists contain a vector of male names and a vector of female names. A vector can be empty if a particular age does not contain any students for a particular gender.

For example, in the list for 12-year-old students, the “F” element is the vector {Jane, Louise} and the “M” element is the vector {James, John, Robert}.

The following code builds a list of lists that contains the data. The outer list, \(L \), contains the unique values of the ages. Each element of \(L \) is a two-element list that contains two vectors.

```sas
proc iml;
use Sashelp.Class; /* read data */
read all var {Age Sex Name};
close Sashelp.Class;

Age = char(Age, 2); /* convert to character vector */
ages = unique(Age);
L = ListCreate(ages); /* outer list: elements named "11":"16" */

gender = unique(Sex);
K = ListCreate(gender); /* inner list: elements named{"F" "M"} */

do i = 1 to ncol(ages); /* For each age level... */
   idx = loc(Age=ages[i]); /* Find observations for this age */
   do j = 1 to ncol(gender); /* for each gender... */
      jdx = loc( Sex[idx]=gender[j] ); /* find this age and gender */
      if ncol(jdx)=0 then students = {}; /* no students found */
      else students = Name[idx[jdx]]; /* get student names */
      call ListSetItem(K, gender[j], students); /* value of inner list */
   end;
   call ListSetItem(L, ages[i], K); /* set sublist as value */
end;

Notice that the \( K \) sublist is used multiple times. For each age, the \( K \) list is updated in place. The ListSetItem subroutine copies the contents of the \( K \) list into the appropriate element of the \( L \) list.

Construct a Stack

A stack is linear array in which objects can be inserted and removed only at the beginning of the array. A push operation adds an item to the front of the list; a pop operation removes the item at the front of the list. A stack obeys the last-in first-out (LIFO) principle. You can access only the first element of a stack.

In the SAS/IML language, you can use the ListInsertItem operation to implement the push operation and use the ListGetItem function to implement the pop operation. For efficiency, this implementation adds and removes new items from the end of a list, so that the positions of other elements are unchanged. This prevents unnecessary copying of data.

The following SAS/IML modules define other useful operations on stacks:
• The StackCreate function creates and returns a list. When called with zero arguments, the function returns an empty stack. When called with one argument, it returns a stack that contains one element.

• The StackPush subroutine pushes an item onto an existing stack.

• The StackPop function returns the item on the top of the stack and removes the item from the stack.

• The StackPeek function returns the item on the top of the stack but does not change the stack.

• The StackIsEmpty function returns 1 (true) if the stack is empty and 0 (false) if the stack contains at least one element.

The modules are defined as follows. Each module is a thin wrapper around calls that manipulate lists.

```
proc iml;
/* implement a stack, which is a 1-D LIFO structure */
start StackCreate(item=);
 S = ListCreate(); /* create empty list */
 if ^IsSkipped(item) then /* if item specified, */
 call ListAddItem(S, item); /* add item to list */
 return S;
finish;

/* push an item onto the stack */
start StackPush(S, item);
 call ListAddItem(S, item); /* add item to the end */
finish;

/* pop an item from the stack */
start StackPop(S);
 A = ListGetItem(S, ListLen(S), 'd'); /* get & remove last item */
 return A;
finish;

/* peek at the item at the top of the stack without removing it */
start StackPeek(S);
 A = ListGetItem(S, ListLen(S), 'c'); /* get last item */
 return A;
finish;

/* return 1 if stack is empty; 0 otherwise */
start StackIsEmpty(S);
 return (ListLen(S) = 0);
finish;

/* return number of elements in stack */
start StackLen(S);
 return ListLen(S);
finish;
store module=_all_
quit;
```
In the same way, you could define helper functions for a queue, which is a one-dimensional first-in first-out (FIFO) data structure.

If you want to use the Stack or Queue functions, you can use the following statements to define the modules:

```sas
%include sampsrc(LstStack.sas);
%include sampsrc(LstQueue.sas);
proc iml;
load module = _all_; /* use modules for stacks and queues */
quit;
```

You can specify the SOURCE option in the %INCLUDE statement to display the contents of the program file in the SAS log.

### Reverse the Words in a Sentence

By using the helper functions in the previous section, you can use SAS/IML lists to simulate stacks. One of the simplest applications of stacks is to reverse the contents of a list. The following example loads the helper functions and uses the StackPush subroutine to create a list of words. The StackPop subroutine then retrieves the list elements. Because the elements are retrieved in LIFO order, the sequence of words is reversed.

```sas
proc iml;
load module=(StackCreate StackPush StackPop
 StackPeek StackIsEmpty StackLen);
/* Create sentence. Break into vector of words. */
str = "Now is the time for all good men to come to the aid of their party."
 n = countw(str, " "); /* use blanks and period as delimiters */
 words = scan(str, 1:n, " "); /* character vector */

S = StackCreate(); /* create an empty stack */
do i = 1 to ncol(words);
 run StackPush(S, words[i]); /* push each element onto the stack */
end;

print (StackPeek(S))[L="Top of Stack"]; /* the last word is on top */

/* retrieve the data in reverse order */
w = j(1, StackLen(S), " ");
do i = 1 to ncol(w); /* pop each element; insert into stack */
 w[i] = StackPop(S);
end;
print w[L="Reversed Words"]; if StackIsEmpty(S) then
 print "Stack is empty";
else print (StackPeek(S))[L="Top of Stack"];```
The output from the program is shown in Figure 10.4. The program illustrates pushing elements onto a stack and popping elements off the stack. In practice there are simpler ways to reverse the words in a sentence, such as the matrix expression `words[, ncol(words) : 1]`.

Implement a Postfix Calculator

Another elementary application of stacks is to implement a postfix calculator. Postfix notation (sometimes called reverse Polish notation in honor of its inventor, the logician Jan Lukasiewicz) is a way of writing arithmetic expressions in a way that does not require parentheses. In postfix notation, the operands (numbers) appear before the operators that act on them. This section implements a postfix expression calculator that can perform the following binary operations: addition, subtraction, multiplication, and division.

In postfix notation, an expression is read from right to left. Each binary operator operates on the two numbers that precede the operator. Thus the usual (infix) expression ‘3 + 4’ is represented in postfix notation as ‘3 4 +’. The infix expression ‘2*(3+4)’ is equivalent to the postfix expression ‘2 3 4 + *’.

The following SAS/IML program loads the helper functions for working with stacks. The program then defines two modules. The `BinaryCalc` function takes a binary operation and two numbers and returns the result of the operation. The `PostfixCalc` function takes a space-separated string that represents an expression in postfix notation. The function splits the string into tokens and then uses stacks to compute the result of the expression. The module assumes that the postfix expression is valid.

```sas
proc iml;
load module=(StackCreate StackPush StackPop);

/* Given a binary operator, return the expression (L op R) where op is in the set {+, -, *, /} */
start BinaryCalc(operator, L, R);
   if operator="+" then return L + R;
   else if operator="-" then return L - R;
   else if operator="*" then return L * R;
   else if operator="/" then return L / R;
   else return .;
finish;

/* Input a space-separated string that represents a valid arithmetic operation in postfix notation. The string can contain numbers and the binary operators {+, -, *, /}. The string must represent a valid operation; no error checking is performed. */

```


start PostfixCalc(str);
 n = countw(str, " ");
 tokens = scan(str, 1:n, " "); /* character vector */
 binOps = {"+","-","*","/"}; /* four binary operators */
 S = StackCreate(); /* create an empty stack */
 do i = 1 to ncol(tokens);
 token = tokens[i]; /* get the token */
 if element(token, binOps) then do; /* it is a binary op */
 R = StackPop(S); /* retrieve the previous */
 L = StackPop(S); /* two numbers */
 result = BinaryCalc(token, num(L), num(R));
 run StackPush(S, char(result)); /* push result on stack */
 end;
 else
 run StackPush(S, token); /* push number on stack */
 end;
 end;
 return num(StackPop(S)); /* return result as number */
finish;

/* examples of parsing postfix expressions */
str = {"2 2.8 7.2 + * 5 /", /* 2*(2.8+7.2) / 5 = 4 */
 "4 5 7 2 + - *", /* 4*(5 - (7+2)) = -16 */
 "4 -5 + 6 -2 - *", /* (4 + -5)*(6 - -2)= -8 */
 "2 2 2 2 * * *"}; /* 2*4 */
result = j(nrow(str), 1);
 do i = 1 to nrow(str);
 result[i] = PostfixCalc(str[i]);
 end;
print str result;

The output of the program is shown in Figure 10.5, which displays the result of parsing four postfix expressions. The comments in the program show the equivalent infix notation for each expression.

Figure 10.5 Using a Stack to Evaluate Postfix Expressions

<table>
<thead>
<tr>
<th>str</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2.8 7.2 + * 5 /</td>
<td>4</td>
</tr>
<tr>
<td>4 5 7 2 + - *</td>
<td>-16</td>
</tr>
<tr>
<td>4 -5 + 6 -2 - *</td>
<td>-8</td>
</tr>
<tr>
<td>2 2 2 2 * * *</td>
<td>16</td>
</tr>
</tbody>
</table>

Construct a Binary Search Tree

A tree contains nodes and edges and starts with a root node. The root node is connected via branches to other nodes, called child nodes. Every node except the root node has exactly one parent node. A tree has no cycles: any two nodes can be connected by a unique path through the tree.

A binary tree is a tree in which every node has at most two child nodes. A binary search tree (BST) is a binary tree in which each node has a value (called a key), a link to a left child node, and a link to a right child node. Either or both child nodes might be null. By starting at the root node, you can quickly determine
whether a value is in the tree. If not, you can insert the value into the tree by modifying one of the null left or right child nodes of an existing node.

Figure 10.6 shows the binary search tree that corresponds to the integer sequence \{5, 3, 1, 9, 6, 4\}.

Figure 10.6 Visualization of a Binary Search Tree

![Diagram of Binary Search Tree](image)

In terms of data structures, each node is a list that contains three elements: the first element is the key value, and the second and third elements are the child nodes. The child nodes are initially empty, but values can be assigned to them as the tree grows. In terms of SAS/IML lists, the following statements define a node in a BST. The call to PROC FORMAT defines a format that will be useful later in this section.

```sas
/* L[i] is key value, L[2] is left child, L[3] is right child */
proc format;
  value BSTFmt 1='Key' 2='Left' 3='Right';
run;

proc iml;
/* A node is a three-element list: */
  node[1] contains the KEY value
  node[2] contains the LEFT value (or empty if null)
  node[3] contains the RIGHT value (or empty if null) */
start BSTNewNode(value);
  node = ListCreate(3); /* create list with 3 null elements */
  call ListSetItem(node, 1, value); /* set KEY value */
  return node;
finish;
```

The following algorithm searches a binary tree to determine whether a target value is in the tree:

1. Set the current node to be the root node of the tree.
2. If the target value equals the key value for the current node, then the target value is found. Return information about the path to the node that contains the target value.
3. If the target value is less than the key value for a node, make the current node the left child. Otherwise, make the current node the right child.

4. If the current node is null, the target value is not in the tree. Return the path to the current node. You can create and insert a new node at that location to add the target value to the tree.

5. Go to Step 2.

In particular, the following SAS/IML function uses lists to look up a value in a binary search tree:

```sas
/* Search for a target value in a binary search tree. 
   Input: root is the root node of a BST, 
          value is the target value. 
   Output: path contains the path to the node that contains the target 
           value or the node where the target value can be inserted. 
   Return: 1 if the target value is in the tree; 0 otherwise */
start BSTLookup(path, root, value);
   KEY = 1; LEFT = 2; RIGHT = 3;
   path = {}; 
   T = root;
   do while (1);
      if value = ListGetItem(T, KEY) then 
         return 1; /* found it: return path to subitem */
      else if value < ListGetItem(T, KEY) then do;
         path = path || LEFT; /* add to path */
         T = ListGetItem(T, LEFT); /* new root is left child */
      end;
      else do;
         path = path || RIGHT; /* add to path */
         T = ListGetItem(T, RIGHT); /* new root is right child */
      end;
      if type(T)='U' then 
         return 0; /* not found: return path to subitem */
   end;
finish;
```

For example, if the target value is 6 and you run the algorithm on the binary tree in Figure 10.6, the function does the following:

- The target value is greater than the root value (5), so the right child of the “5” node becomes the current node.
- The target value is less than the key value 9, so the left child of the “9” node becomes the current node.
- The target value equals the key value, so the target value has been found. Return the row vector {3, 3}, which represents unformatted values for the path {Right, Right}.

The previous BSTLookup function assumes that the binary search tree already exists. You can write additional functions to create a BST. The following statements define two functions:

- The BSTCreate function takes a vector of values and calls the BSTNewNode and BSTInsert functions to create a BST.
- The BSTInsert function takes one item and inserts it into the BST.
/* pass a vector of key values to this routine to create a BST that has those values as keys */
start BSTCreate(x);
 bst = BSTNewNode(x[1]);
 do i = 2 to nrow(colvec(x));
 run BSTInsert(bst, x[i]);
 end;
 return bst;
finish;

/* Insert a new branch for a key value in a BST. If the value already exists, do nothing (so there are never duplicates) */
start BSTInsert(root, value);
 if ListLen(root)=0 then do; /* List empty. Set root node */
 root = BSTNewNode(value);
 return;
 end;
 /* otherwise, search tree to find value */
 found = BSTLookup(path, root, value); /* if found, return */
 if ^found then /* else add to sub-path */
 call ListSetSubItem(root, path, BSTNewNode(value));
 finish;

To illustrate the process of building the tree in Figure 10.6, the following sequence traces through the algorithm for the key values {5, 3, 1, 9, 6, 4}:

- The first value is 5. Create the root node and assign the key value 5.
- The next value is 3, which is less than 5. Insert a new node with key value 3 as the left child of the “5” node.
- The next value is 1, which is less than 5 and less than 3. Insert a new node with key value 1 as the left child of the “3” node.
- The next value is 9, which is greater than 5. Insert a new node with key value 9 as the right child of the “5” node.
- The next value is 6, which is greater than 5 and less than 9. Insert a new node with key value 6 as the left child of the “9” node.
- The last value is 4, which is less than 5 and greater than 3. Insert a new node with key value 4 as the right child of the “3” node.

With these functions defined, you can create and search a BST. The following statements create the tree in Figure 10.6 and determine whether the target values 6 and 10 are in the tree:

```plaintext
x = {5 3 1 9 6 4};
bst = BSTCreate(x);

found = BSTLookup(path, bst, 6);
print found[L="Was 6 found?", path=L="Path from root" F=BSTFmt.];
found = BSTLookup(path, bst, 10);
```
print found[L="Was 10 found?"], path[L="Path from root" F=BSTFmt.];
quit;

Figure 10.7 Look for Values in a Binary Search Tree

<table>
<thead>
<tr>
<th>Was 6 found?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Path from root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Left</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Was 10 found?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Path from root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Right</td>
</tr>
</tbody>
</table>

There are other algorithms that you can define to operate on binary trees. The *LstBST.sas* file, which is contained in the SAS/IML sample library, includes functions that produce a graph of a BST (like Figure 10.6), that compute the depth of a BST, and that return the set of all edges in a BST. For example, Figure 10.6 is created by using the following statements:

```sas
%include sampsrc(LstBST.sas); /* define modules */
proc iml;
load module = _all_; /* load modules */
x = {5 3 1 9 1 6 4}`;
bst = BSTCreate(x);
title "Diagram of Binary Search Tree";
call BSTPlot(bst);
quit;
```

You can specify the SOURCE option in the `%INCLUDE` statement to display the contents of the program file in the SAS log.
Overview of Packages

A SAS/IML package consists of SAS/IML source code, documentation, data sets, and sample programs. A package is a convenient way for a programmer to download and install a function that extends the functionality of SAS/IML software. Similarly, authoring a package is a convenient way for an expert to disseminate a SAS/IML module that implements complex computations.

You use the following PACKAGE statements to install, uninstall, and load packages:

- The PACKAGE HELP statement displays documentation for the package.
- The PACKAGE INFO statement displays information about an installed package.
- The PACKAGE INSTALL statement installs a package in a predetermined location.
- The PACKAGE LIBNAME statement creates a SAS libref to the data directory for a package.
- The PACKAGE LIST statement lists the installed packages.
- The PACKAGE LOAD statement loads modules that are defined by a package.
- The PACKAGE UNINSTALL statement uninstalls a package.
You might obtain a package by downloading it from a website, such as the SAS/IML File Exchange (https://communities.sas.com/sas-iml-file-exchange). The File Exchange is also a great place to post a package so that other SAS/IML programmers can easily download it.

The File Exchange contains the RightTriangle package that is used as an example in this documentation.

Installing, Loading, and Uninstalling a Package

Packages are distributed as ZIP files. The name of the ZIP file must be the package name. To install a package, specify the full path name of the ZIP file in the `PACKAGE INSTALL` statement. For example, if the file `C:\Packages\RightTriangle.zip` contains the source code for the RightTriangle package, you can install the package as follows:

```
proc iml;
package install "C:\Packages\RightTriangle.zip";
quit;
```

The `PACKAGE INSTALL` statement creates a subdirectory named `righttriangle` in a directory whose location is system-dependent and then unzips the contents of the ZIP file into that subdirectory. Although the SAS language is case-insensitive, some operating systems (notably Linux) are case-sensitive. When you specify a ZIP file on a case-sensitive operating system, be sure to match the case of the filename in the operating system.

By default, the `PACKAGE INSTALL` statement installs the package in the `PRIVATE` collection. For more information about the installation directory and the collections, see the section “Collections of Packages” on page 166.

The IML procedure also accepts a SAS fileref, as created by the `FILENAME` statement in Base SAS. Consequently, the following statements also install the RightTriangle package:

```
filename ThePkg "C:\Packages\RightTriangle.zip";
proc iml;
package install ThePkg;
quit;
```

You should install a package only once. The section “Displaying Information about Installed Packages” on page 163 describes how to display information about the installed package.

When you want to call modules in the package, use the `PACKAGE LOAD` statement to load the package’s modules into a SAS/IML session, as described in the section “Using a Package” on page 165.

If you no longer need a package, you can use the `PACKAGE UNINSTALL` statement to uninstall the package.

Installing and uninstalling a package does not change or delete the ZIP file. Although you are free to delete the ZIP file from your local machine after you have installed the package, you might want to keep the ZIP file on your local machine if you are running SAS on a remote server. When SAS runs on a remote server, the help files and source files for the package are installed on the remote server. Consequently, it might be difficult to view or browse those files. If you keep the ZIP file on your local machine, you can locally access the help files and source files.
Displaying Information about Installed Packages

You can use the following PACKAGE statements to display information about packages that have been installed:

- The PACKAGE LIST statement displays the packages that are installed on your system. For each collection of packages, the statement produces a table that shows the names of packages in that collection. For more information about collections, see the section “Collections of Packages” on page 166. The following statement produces the output in Figure 11.1 for a hypothetical user and site. The results of the PACKAGE LIST statement will be different on your system.

```plaintext
proc iml;
package list;
```

![Figure 11.1](image-url) Names of Installed Packages

<table>
<thead>
<tr>
<th>Private Packages</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RightTriangle</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>SimWithSAS</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Public Packages</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmaTools</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Packages</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AboveBelow</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

- The PACKAGE INFO statement displays information about a particular package that is installed. For example, the following statement produces the output in Figure 11.2, information about the AboveBelow package, which is distributed with SAS/IML software:

```plaintext
package info AboveBelow;
```

![Figure 11.2](image-url) Information about an Installed Package

<table>
<thead>
<tr>
<th>Package Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>Collection</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Requires IML</td>
</tr>
<tr>
<td>Directory</td>
</tr>
</tbody>
</table>
The table in Figure 11.2 provides the name of the package, a brief description, the package author, the collection to which the package belongs, the package version, the version of SAS/IML software that is required to run the package, and the directory in which the package is installed. The location of the directory depends on the operating system.

- The PACKAGE HELP statement displays the help that was supplied by the author of the package. Usually the help includes information about the modules in the package and their calling syntax. The SAS/IML Studio application displays help in the form of a PDF file or HTML page, if these formats are provided by the package author. The IML procedure displays the function names and syntax in the SAS Log window. The following statement displays information about the functions in the AboveBelow package. The PDF output is shown in Figure 11.3.

```
package help AboveBelow;
```

![Figure 11.3 Help File Displayed as PDF Document](abovebelow.pdf)

Alternately, if you are running SAS on your local machine, you can view the documentation in PDF format by doing the following:

1. Use the PACKAGE INFO statement to display the package installation directory, as shown in Figure 11.2.
2. Use the operating system to navigate to the package installation directory.
3. Navigate to the help subdirectory of the installation directory.
4. Use an application such as Adobe Reader to display the PDF file in that directory.

If you install a package on a remote SAS server, you can keep the ZIP file on your local computer and use similar steps to open the ZIP file and view the documentation.
Using a Package

Before you can use a package, it must be installed, as described in the section “Installing, Loading, and Uninstalling a Package” on page 162.

Usually a package provides definitions of SAS/IML modules. To use a package, use the PACKAGE LOAD statement to load the module definitions. The following statement loads the AboveBelow package, which is distributed as part of SAS/IML software:

```
package load AboveBelow;
```

If the package includes a data directory, you can use the PACKAGE LIBNAME statement to create a libref that points to the data directory. (If the package does not include a data directory, the PACKAGE LIBNAME statement generates an error.) The following statements assign the libref ABDATA to point to the data directory for the AboveBelow package. The USE and READ statements read the data into the matrix A.

```
package libname abdata AboveBelow;
use abdata.example; read all var _NUM_ into A; close;
```

Loading a package defines all modules and variables in the package. (Use the PACKAGE HELP statement to view the module syntax, as shown in the section “Displaying Information about Installed Packages” on page 163.) The following statements call a module in the AboveBelow package and run it on the example data. Figure 11.4 illustrates the data and the module’s output, which shows the numbers of negative values, zero values, positive values, and missing values for each of the three columns of the data matrix.

```
print A;
run PrintAboveBelow(A); /* call module in package */
```

![Figure 11.4 Matrix and Result of Calling a Module in the AboveBelow Package](image)

In a similar way, you can call other functions in the AboveBelow package.
Collections of Packages

SAS/IML software supports the following *collections* of packages, which reflect different ways that SAS/IML software is used:

- The SYSTEM collection contains packages that are installed as part of SAS/IML software and are available to any user. These packages enable developers at SAS to write and distribute specialized packages of functions that might be of interest to some—but perhaps not all—SAS/IML programmers. The SYSTEM collection is a generalization of the IMLMLIB library of modules. The SYSTEM collection includes the AboveBelow package, which serves as an example of how to load and use packages.

- The PUBLIC collection contains packages that are installed by a system administrator in a public location and are available to any user. These packages enable SAS administrators at a site to install a library of common modules that are used by programmers who work together. These modules ensure that the programmers use the same module library.

- The PRIVATE collection contains packages that are installed by a user and are available only to that user. These packages enable a SAS/IML programmer to install libraries of modules for personal use. This collection enables an individual to extend the capabilities of SAS/IML software by using modules written by others.

If you specify the name of a package in the PACKAGE statement but do not specify a collection, then the PACKAGE statement searches for the package first in the PRIVATE collection, then in the PUBLIC collection, and finally in the SYSTEM collection.

You can use this search behavior to control which version of a package is loaded. Suppose that your site administrator has installed version 1.0 of a package named Pkg1 in the PUBLIC collection. If the package author releases version 2.0 and you want to use that newer version, you can install the newer version in the PRIVATE collection. The following statement loads the newer version of the package:

```
package load Pkg1; /* the PRIVATE collection is searched first */
```

If you discover that the newer version is not robust and you want to use the older version, you can use the following statement to explicitly load the older package from the PUBLIC collection:

```
package load Pkg1(public); /* specify the PUBLIC collection */
```

Each collection is installed in a different directory. The IML procedure uses directory locations that are system specific:

- Private packages are installed in the directory that is specified by the IMLPACKAGEPRIVATE system option.
- Public packages are installed in the directory that is specified by the IMLPACKAGEPUBLIC system option.
- System packages are installed in the directory that is specified by the IMLPACKAGESYSTEM system option.

The following statement displays the location for private, public, and system packages:
The previous sections of this chapter show how to install and use a package that was written by someone else. This section shows how you can author a new SAS/IML package. A package can contain source files that define modules, data sets, documentation, and programs that demonstrate how to use the package.

Suppose you have written some SAS/IML functions that compute certain facts about right triangles in the Euclidean plane. You decide to create a package called RightTriangle to share these functions with others.

This section guides you through the creation of the RightTriangle package. The steps are summarized as follows and described in more detail in subsequent sections:

1. Create a package directory structure.
2. Create a file named info.txt, which provides SAS/IML software with information about the package. The file name must contain only lowercase letters.
3. Create one or more source files that define the SAS/IML modules in the package.
4. Create a program file that demonstrates how to call the modules.
5. Create a help file that documents the purpose of the package and shows the syntax of the modules.
6. Create a ZIP file that preserves the directory structure and contains all the package files.

Step 1: Create the Package Directory Structure

To create a package, you must first create a directory hierarchy on your local computer.

If you install a package by using PROC IML, the root directory is the name of your package in lowercase. To match that behavior, create a directory named righttriangle.
Within the righttriangle directory, create four subdirectories: data, help, programs, and source. It is recommended that you create these directories even though one or more of them might be empty. The purpose of each subdirectory is as follows:

data
Contains all SAS data sets (sas7bdat files) that are used by the package. Use lowercase characters for the names of the data sets in this directory.

help
Contains documentation for the package. You should include a plain text file with a .txt extension. Optionally, you can include a PDF or HTML file in this subdirectory.

programs
Contains SAS/IML programs that call functions in the package. For example, this subdirectory can include demo programs, test programs, and programs that reproduce results in a journal article or conference proceedings.

source
Contains the source files that are read by the PACKAGE LOAD statement. These files usually contain module definitions. The files should not contain a PROC IML statement or a QUIT statement.

The RightTriangle package does not contain a data file, so the data subdirectory remains empty. The following sections describe how to create the info.txt file and the files for the other subdirectories.

A package can contain other subdirectories in addition to these four subdirectories.

Step 2: Create the Package Information File

The PACKAGE INSTALL statement reads the info.txt file, which must be in the root directory for the package. The file must be stored in UTF-8 format. The first line in the file, which tells the SAS/IML software how to interpret subsequent lines, must be as follows:

```plaintext
# SAS/IML Package Information File Format 1.0
```

Subsequent lines define keyword-value pairs. A keyword must begin in the first column and must be followed by a colon (:). The value that follows the colon is free-form text, unless otherwise noted. A value is ended by either a new keyword-value pair or a blank line. If a value requires more than one line of text, subsequent lines must be indented by at least one space or tab character.

If the first character on a line is the number sign (#), then the rest of the line is ignored. You can use the number sign to put comments in the info.txt file.

The SAS/IML language supports the following list of keyword-value pairs. Only the NAME keyword is required. If a keyword is marked “Reported,” then that keyword-value pair (up to 100 characters) is displayed by the PACKAGE INFO statement.

NAME:
(Reported) Specify the name of the package. The package name must be a valid SAS name, which means it must contain 32 characters or less, begin with a letter or underscore, and contain only letters, underscores, and digits.

The case (uppercase, lowercase, or mixed case) of this keyword value is important for the following reasons:
• The PACKAGE LIST and PACKAGE INFO statements display the value of the NAME keyword exactly as you specify it.

• The help system looks for a file of the name $PkgName.pdf$ or $PkgName.txt$, where $PkgName$ is the exact value of the NAME keyword.

• In the SAS/IML Studio application, the value determines the case of the name of the package’s directory.

DESCRIPTION: (Reported) Specify a brief description of the package.

AUTHOR: (Reported) Specify the authors of the package. Optionally, you can include contact information such as an email address or website.

VERSION: (Reported) Specify the version of the package. The default value is 0.0.0.0. The version can have up to four levels, separated by decimal points (.). For example, valid values are 1.0, 2.7.1, and 3.1.4.1.

REQUIRESIML: (Reported) Specify the version of SAS/IML software that is required to run the package. The default value is 14.1.0.0. The specified value must be greater than or equal to 14.1.0.0. You can specify this value when your package relies on a new feature of SAS/IML software.

SOURCEFILES: Specify a list of the source filenames for the package, with one filename per line. The case (uppercase, lowercase, or mixed case) of this keyword value is important because certain file systems (such as Linux) are case-sensitive. The source files usually have a .sas or .iml extension.

If a source file uses a specific character encoding, you can add an equal sign (=) and a value that indicates the character encoding after the name of the source file. For example, the following statement indicates that the file contains characters in the Windows Latin1 encoding:

```plaintext
File1.iml = wlatin1
```

It is not necessary to indicate the encoding of UTF-8 or UTF-16 files if the files begin with a byte-order mark. For more information about character encoding in SAS, see the section “Encoding Values in SAS Language Elements” in SAS National Language Support: Reference Guide.

Copyright: Specify copyright information for the package.

License: Specify an open-source license, such as those approved by the Open Source Initiative (https://opensource.org/licenses).

Dependencies: Specify other packages that your package requires. Each package must be written on a separate line. A user must install the packages in this dependency list before installing the current package.

Notes: Specify other information that the user needs to know in order to use the package.
For example, the keyword-value pairs in the following statements define a valid info.txt file for the Right-Triangle package. To create this file, create a plain text file in the righttriangle directory, paste in the following text, and save the file.

```plaintext
# SAS/IML Package Information File Format 1.0
# Do NOT edit the line above!

Name: RightTriangle
Description: Computes side lengths for right triangles
Author: SAS/IML Development Team
Version: 1.0
SourceFiles: RightTriangle.iml
Notes: An example package from the SAS/IML documentation
```

Step 3: Create the Source Files

Usually the first files that you create are the source files that define the SAS/IML modules that you will distribute.

You can use .sas or .iml as the extension for a source file. For more information about file extensions, see the section “Naming Source Files” on page 175. This documentation uses the .iml extension.

In the source directory, create a file named RightTriangle.iml. (Notice that the case of this filename matches the case that was specified in the info.txt file.) Include the following SAS/IML statements in the file. Notice that the file does not contain the PROC IML or QUIT statements.

```sas
/ * Modules for the RightTriangle package */
/ * Do NOT include the PROC IML or QUIT statements! */

/ * Given a vector that contains the three side lengths of a 
 triangle, this function returns 1 if the triangle is a right 
 triangle and 0 otherwise. */
start IsRightTriangle(vert);
  v = colvec(vert);
  call sort(v, 1);
  a = v[1]; b = v[2]; c = v[3];
  return ( a##2 + b##2 = c##2 );
finish;

/ * Given the lengths of the hypotenuse and a leg of a right 
 triangle, this function finds the length of the other leg. */
start FindLeg(v);
  b = min(v); c = max(v);
  d = c##2 - b##2;
  if d>0 then return( sqrt(d) );
  else return( . );
finish;

/ * Given the lengths of two legs of a right triangle, 
 this function finds the length of the hypotenuse. */
```
Step 4: Create a Program File

Examples are very useful to the programmers who will download and use your package. Create a file named Example.sas in the programs directory. Include the following SAS/IML statements in the file and save the file:

```sas
/* Examples of calling modules in the RightTriangle package. If you have not installed the package, modify and run the following statements: */
proc iml;
    package install "C:\<path>\righttriangle.zip";
quit;
/*
proc iml;
    package load RightTriangle;
*/
Rt = IsRightTriangle({3 4 5}); /* 1 = valid lengths */
NotRt = IsRightTriangle({5 6 7}); /* 0 = not valid lengths */
print Rt NotRt;

leg = FindLeg({3 5}); /* find 2nd leg from hypotenuse and leg */
hypot = FindHypotenuse({3 4}); /* find hypotenuse from legs */
print leg hypot; /* correct answer is {4 5} */
quit;
```

The Example.sas file contains an example of calling each function in the package, and the comments provide the correct answer to each call. Programmers who want to use the package can study the program and modify it for their own use. The program also serves as a simple test program.

Step 5: Create a Help File

Every package should contain help in at least two formats: a short plain text file that describes the syntax of functions, and a PDF or HTML file that contains the complete documentation. The root name for the PDF and plain-text help files must match the case that you specified for the NAME keyword in the info.txt file. For example, the help files for the RightTriangle package must be RightTriangle.pdf and RightTriangle.txt. If you create an HTML file, the name of the file must be index.html or index.htm. All help files should be in the help subdirectory.

An example of a PDF help file is included with the AboveBelow package, which is distributed with SAS/IML software and is installed in the SYSTEM collection.
For simplicity, this step creates only a plain text file that documents the syntax of the functions in the RightTriangle package. Navigate to the help subdirectory, and use a text editor to create a file called RightTriangle.txt. Insert the following text and save the file:

RightTriangle Package

Description: Computes side lengths for right triangles

Modules:

ISRIGHTTRIANGLE(v);
Given a three-element vector that contains the three side lengths of a triangle, this function returns 1 if the triangle is a right triangle and 0 otherwise.

FINDLEG(v);
Given a two-element vector that contains the lengths of the hypotenuse and a leg of a right triangle, this function finds the length of the other leg.

FINDHYPOTENUSE(v);
Given a two-element vector that contains the lengths of two legs of a right triangle, this function finds the length of the hypotenuse.

The PACKAGE HELP statement displays a help file for an installed package. The file that is displayed depends on how you are running the SAS/IML software:

- The SAS/IML Studio application searches the help subdirectory for one of the following help files: `PkgName.pdf`, `index.html`, `index.htm`, or `PkgName.txt`, where `PkgName` is the name of your package. If a PDF or an HTML file is found, then that file is displayed.

- In PROC IML, the PACKAGE HELP statement displays the `PkgName.txt` file in the SAS Log window. This is a convenient way to see the syntax for the package functions.

- If SAS/IML is installed on a local or networked computer, you can use the PACKAGE INFO statement to discover the location of the directory where the package is installed. After you navigate to that directory, you can use a PDF viewer or a browser to view the documentation in the help subdirectory.

- If you are running a SAS/IML program on a remote SAS server (such as through SAS Enterprise Guide or SAS Studio), you might not be able to navigate to the location of the help subdirectory. You might want to keep a copy of the package files (or the ZIP file) in a local directory so that you can browse the help files and view the source code.

Step 6: Create a ZIP File

All packages are distributed as ZIP files. The filename of the ZIP file must be the name of the package followed by the `.zip` extension.

This section assumes that you have created a directory hierarchy and that you have created source files, help files, program files, and an `info.txt` file, as described in the previous sections. For the RightTriangle package, the directories and files are arranged as shown in the Figure 11.5.
Figure 11.5 RightTriangle Directory Structure

```
| info.txt |
| data     |
| help     |
| RightTriangle.txt |
| programs  |
| example.sas |
| source    |

RightTriangle.sas
```

This section uses WinZip® software and the Windows operating system to illustrate how to create a ZIP file of the RightTriangle package. If you use other software to create ZIP file, the process will be different.

To create a ZIP file by using WinZip software, use Windows Explorer to navigate to the `righttriangle` directory. Select all the files and subdirectories in the `righttriangle` directory. Right-click on the selected files, and choose WinZip ▶ Add to righttriangle.zip from the pop-up menu, as shown in Figure 11.6.

Figure 11.6 Creating a ZIP File by Using WinZip

The program will create the file `righttriangle.zip`. You can examine the contents of the ZIP file to make sure that all the files are included and that the directory structure was preserved. The ZIP file will look similar to Figure 11.7.

Figure 11.7 Checking the Contents of a ZIP File
So that the ZIP file can be correctly unzipped by the SAS/IML PACKAGE statement, make sure that the ZIP file satisfies the following requirements:

- The ZIP file should preserve the directory hierarchy when the files are unzipped. In WinZip 18.0, click the **Settings** tab and select the **Use Folder Names** option under the **Unzip Settings** menu, as shown in Figure 11.8.

- The ZIP file cannot be password-protected.

- The ZIP file must use the original ZIP compression scheme.

![WinZip Options](image)

Testing a Package

Before you send a ZIP file that contains a SAS/IML package to a colleague or post it to the SAS/IML File Exchange, you are strongly encouraged to install and run the package.

To test the RightTriangle package:

1. Store the ZIP file somewhere on your file system. This example assumes that the ZIP file is located in the directory `C:\Packages`.

2. Run the PACKAGE INSTALL statement to install the package from the ZIP file, as follows:

   ```
   proc iml;
   package install "C:\Packages\righttriangle.zip";
   quit;
   ```

3. Run the following statements to ensure that the package installed correctly:

   ```
   proc iml;
   package list;
   package info RightTriangle;
   package help RightTriangle;
   ```
4 Load the package and run the programs in the `programs` directory, as described in the section “Step 4: Create a Program File” on page 171. For example, the following statements test each function in the RightTriangle package:

```plaintext
package load RightTriangle;
Rt = IsRightTriangle({3 4 5}); /* 1 = valid lengths */
leg = FindLeg({3 5}); /* find 2nd leg from hypotenuse and leg */
hypot = FindHypotenuse({3 4}); /* find hypotenuse from legs */
print Rt leg hypot; /* correct answer is (1 4 5) */
```

Naming Source Files

Some operating systems (notably Linux) are case-sensitive. Make sure that the names of all files in the `source` directory match the case of the names for the SourceFiles keyword in the `info.txt` file.

To ensure that data sets are found on all operating systems, lowercase the names of all data sets in the `data` directory of a package.

Knowing when to use lowercase versus mixed-case file names can be confusing. When it doubt, use lowercase file names.

Another potential source of confusion is whether to use `.iml` or `.sas` as the extension for source files in the `source` directory. The choice of a filename extension does not affect the functionality of a package. However, the choice of an extension does determine which application is used to edit the file. It also determines how that file is displayed by an application.

Under the Windows operating system, double-clicking a file automatically launches the default application that is associated with the file extension. A file with a `.sas` extension might be opened by a program such as the SAS windowing environment or SAS Enterprise Guide. A file with an `.iml` extension is opened by SAS/IML Studio, if it is installed.

Some text editors perform syntax highlighting based on a file’s extension. A file with a `.sas` extension is opened as a SAS file by most program editors. Consequently, SAS/IML statements in the source files might not be colored correctly.

A file with an `.iml` extension is colored according to IMLPlus syntax when the file is opened by the SAS/IML Studio application. The same file might be treated as a plain-text file by other applications. For example, the enhanced editor in the SAS windowing environment does not apply syntax highlighting to a file that has an `.iml` extension.
Overview

Linear algebra is fundamental to regression, principal component analysis, and other multivariate statistical techniques. You can use the functions and high-level operators in SAS/IML software to implement these techniques. The similarity between the SAS/IML syntax and matrix algebra notation often makes it straightforward to translate an algorithm into a SAS/IML program.

The examples in this chapter demonstrate a variety of matrix computations. You can use these examples to gain insight into other complex problems you might need to solve. Some of the examples perform the same analyses as are performed by procedures in SAS/STAT software and are not meant to replace them. The examples are included as learning tools.
Example 12.1: Correlation Computation

The following statements show how you can define modules to standardized columns for a matrix of numeric data. For a more robust implementation, see the `STANDARD` function.

```sas
proc iml;
  /* Standardize data: Assume no column has 0 variance */
  start stdMat(x);
    mean = mean(x);  /* means for columns */
    cx = x - mean;    /* center x to mean zero */
    std = std(x);    /* standard deviation estimate*/
    y = cx / std(x);  /* scaling to std dev 1 */
    return( y );
  finish stdMat;

  x = { 1 2 3,
       3 2 1,
       4 2 1,
       0 4 1,
       24 1 0,
       1 3 8};
  nm = {age weight height};
  std = stdMat(x);
  print std[colname=nm label="Standardized Data"];
```

Output 12.1.1 Standardized Variables

<table>
<thead>
<tr>
<th>Standardized Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>-0.490116</td>
</tr>
<tr>
<td>-0.272287</td>
</tr>
<tr>
<td>-0.163372</td>
</tr>
<tr>
<td>-0.59903</td>
</tr>
<tr>
<td>2.0149206</td>
</tr>
<tr>
<td>-0.490116</td>
</tr>
</tbody>
</table>

The columns shown in **Output 12.1.1** have zero mean and unit variance.

In a similar way, you can define a module that returns the correlation matrix of numeric data. The following module computes the correlation matrix according to a formula that you might see in a statistics textbook. For a more efficient implementation that supports missing values, use the built-in `CORR` function.

```sas
/* Compute correlations: Assume no missing values */
start corrMat(x);
  n = nrow(x);    /* number of observations */
  sum = x[+,:];   /* compute column sums */
  xpx = x`*x - sum`*sum/n;  /* compute sscp matrix */
  s = diag(1/sqrt(vecdiag(xpx)));  /* scaling matrix */
  return( s );
finish corrMat;
```

In a similar way, you can define a module that returns the correlation matrix of numeric data. The following module computes the correlation matrix according to a formula that you might see in a statistics textbook. For a more efficient implementation that supports missing values, use the built-in `CORR` function.
Example 12.2: Newton’s Method for Solving Nonlinear Systems of Equations

This example solves a nonlinear system of equations by Newton’s method. Let the nonlinear system be represented by

\[\mathbf{F}(\mathbf{x}) = 0 \]

where \(\mathbf{x} \) is a vector and \(\mathbf{F} \) is a vector-valued nonlinear function.

Newton’s method is an iterative technique. The method starts with an initial estimate \(\mathbf{x}_0 \) of the root. The estimate is refined iteratively in an attempt to find a root of \(\mathbf{F} \). Given an estimate \(\mathbf{x}_n \), the next estimate is given by

\[\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{J}^{-1}(\mathbf{x}_n)\mathbf{F}(\mathbf{x}_n) \]

where \(\mathbf{J}(\mathbf{x}) \) is the Jacobian matrix of partial derivatives of \(\mathbf{F} \) with respect to \(\mathbf{x} \). (For more efficient computations, use the built-in NLPNRA subroutine.)

For optimization problems, the same method is used, where \(\mathbf{F}(\mathbf{x}) \) is the gradient of the objective function and \(\mathbf{J}(\mathbf{x}) \) becomes the Hessian (Newton-Raphson).

In this example, the system to be solved is

\[
\begin{align*}
x_1 + x_2 - x_1x_2 + 2 &= 0 \\
x_1 \exp(-x_2) - 1 &= 0
\end{align*}
\]
The following statements are organized into three modules, NEWTON, FUN, and DERIV:

```r
procedure iml;
    /************ Newton's Method to Solve a Nonlinear Function ***********/
    /* The user must supply initial values, */
    /* and the FUN and DERIV functions. */
    /* On entry: FUN evaluates the function f in terms of x */
    /* initial values are given to x */
    /* DERIV evaluates Jacobian J */
    /* Tuning parameters: CONVERGE, MAXITER. */
    /* On exit: return x such that FUN(x) is close to 0 */
    start NewtonMethod(x0, maxIter=25, converge=1e-6);
        x = x0;
        f = Fun(x); /* evaluate function at starting values */
        do iter = 1 to maxIter; /* iterate until maxiter */
            while(max(abs(f))>converge); /* or convergence */
            J = Deriv(x); /* evaluate derivatives */
            delta = -solve(J, f); /* solve for correction vector */
            x = x + delta; /* the new approximation */
            f = fun(x); /* evaluate the function */
        end;
        if iter > maxIter then
            x = j(nrow(x0),ncol(x0),.);
        return( x );
    finish NewtonMethod;

    print "Solve the system: X1+X2-X1*X2+2=0, X1*EXP(-X2)-1=0" ;
    x0 = {.1, -2}; /* starting values */
    x = NewtonMethod(x0);
```

Chapter 12: General Statistics Examples
Example 12.3: Regression

This example is a module that calculates statistics that are associated with a linear regression. The following module is similar to the REGRESS module, which is included in the IMLMLIB library:

```plaintext
proc iml;
start regress( x, y, name, tval=, l1=, l2=, l3= );
   n = nrow(x); /* number of observations */
   k = ncol(x); /* number of variables */
   xpx = x` * x; /* cross-products */
   xpy = x` * y;
   xpxi = inv(xpx); /* inverse crossproducts */
   b = xpxi * xpy; /* parameter estimates */
   yhat = x * b; /* predicted values */
   resid = y - yhat; /* residuals */
   sse = resid` * resid; /* sum of squared errors */
   dfe = n - k; /* degrees of freedom error */
   mse = sse / dfe; /* mean squared error */
   rmse = sqrt(mse); /* root mean squared error */
   covb = xpxi # mse; /* covariance of estimates */
   stdb = sqrt(vecdiag(covb)); /* standard errors */
   t = b / stdb; /* ttest for estimates=0 */
   probt = 1 - cdf("F",t#t,1,dfe); /* significance probability */
   paramest = b || stdb || t || probt;
   print paramest[c={"Estimate" "StdErr" "t" "Pr>|t|"}] r=name
               l="Parameter Estimates" f=Best6.];
   s = diag(1/stdb);
   corrbb = s * covb * s; /* correlation of estimates */
   reset fw=6 spaces=3; /* for proper formatting */
   print covb[r=name c=name l="Covariance of Estimates"],
          corrbb[r=name c=name l="Correlation of Estimates"];```

The results are shown in Output 12.2.1. Notice that the NEWTONMETHOD function was called with only a single argument, which causes the module to use the default number of iterations and the default convergence criterion. To change those parameter values, call the module with additional arguments, as follows:

```plaintext
x = NewtonMethod(x0, 15, 0.001);```

Output 12.2.1 Newton’s Method: Results

<table>
<thead>
<tr>
<th>x</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0977731</td>
<td>5.3523E-9</td>
</tr>
<tr>
<td>-2.325106</td>
<td>6.1501E-8</td>
</tr>
</tbody>
</table>
The module accepts up to three matrices for testing the hypothesis that a linear combination of the parameters is zero. For more information about the computation, see the documentation for the TEST statement in the REG procedure in SAS/STAT User’s Guide.

The following statements call the REGRESS module on data that describes the size of the US population during eight decades 1790–1860. The following statements fit a quadratic regression model to the data. The program also tests three hypotheses about the parameters in the model.

```sas
/* Quadratic regression on US population for decades beginning 1790 */
decade = T(1:8);
names= { "Intercept", "Decade", "Decade**2" };
%let x= decade##0 || decade || decade##2;
%let n-p=5 dof at 0.025 level to get 95% confidence interval */
tval = quantile("T", 1-0.025, nrow(x)-ncol(x));
L1 = { 0 1 0 }; /* test hypothesis Lb=0 for linear coef */
L2 = { 0 1 0, 0 0 1}; /* test hypothesis Lb=0 for linear,quad */
L3 = { 0 1 1 }; /* test hypothesis Lb=0 for linear+quad */
%let option linesize=100;
rho = regress( x, y, names, tval, L1, L2, L3 );
```
Example 12.3: Regression

The parameters estimates are shown in the first table in Output 12.3.1. The next two tables show the covariance and correlation of the estimates, respectively.

Output 12.3.1 Regression Results

| Parameter Estimates | Estimate | StdErr | t | Pr>|t| |
|---------------------|----------|--------|----|-------|
| Intercept | 5.0693 | 0.9656 | 5.25| 0.0033|
| Decade | -1.11 | 0.4923 | -2.255| 0.0739|
| Decade**2 | 0.5396 | 0.0534 | 10.106| 0.0002|

Covariance of Estimates

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Decade</th>
<th>Decade**2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.436</td>
<td>-0.346</td>
</tr>
<tr>
<td>Decade</td>
<td>0.2424</td>
<td>0.0428</td>
</tr>
<tr>
<td>Decade**2</td>
<td>0.0428</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

Correlation of Estimates

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Decade</th>
<th>Decade**2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.918</td>
<td>0.8295</td>
</tr>
<tr>
<td>Decade</td>
<td>1</td>
<td>-0.976</td>
</tr>
<tr>
<td>Decade**2</td>
<td>0.8295</td>
<td>1</td>
</tr>
</tbody>
</table>

The predicted values, residuals, leverage, and confidence limits for the mean and individual predictions are shown in Output 12.3.2.

Output 12.3.2 Regression Results: Predicted Values and Residuals

<table>
<thead>
<tr>
<th>y yhat resid</th>
<th>h lowerm upperm lower upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.929 4.499 -0.57 0.7083 3.0017 5.9964 2.1737 6.8244</td>
<td></td>
</tr>
<tr>
<td>5.308 5.008 0.3 0.2798 4.067 5.949 2.9954 7.0207</td>
<td></td>
</tr>
<tr>
<td>7.239 6.5963 0.6427 0.2321 5.7391 7.4535 4.6214 8.5711</td>
<td></td>
</tr>
<tr>
<td>9.638 9.2638 0.3742 0.2798 8.3228 10.205 7.2511 11.276</td>
<td></td>
</tr>
<tr>
<td>12.866 13.011 -0.145 0.2798 12.07 13.952 10.998 15.023</td>
<td></td>
</tr>
<tr>
<td>17.069 17.837 -0.768 0.2321 16.979 18.694 15.862 19.812</td>
<td></td>
</tr>
<tr>
<td>23.191 23.742 -0.551 0.2798 22.801 24.683 21.729 25.755</td>
<td></td>
</tr>
<tr>
<td>31.443 30.727 0.7164 0.7083 29.229 32.224 28.401 33.052</td>
<td></td>
</tr>
</tbody>
</table>

The results of the hypothesis tests are shown in Output 12.3.3. The first hypothesis is that the coefficient of the linear term is 0. This hypothesis is not rejected at the 0.05 significance level. The second hypothesis is that the coefficients of the linear and quadratic terms are simultaneously 0. This hypothesis is soundly rejected. The third hypothesis is that the linear coefficient is equal to the negative of the quadratic coefficient. Given the data, this hypothesis is not rejected.
Example 12.4: Alpha Factor Analysis

This example shows how an algorithm for computing alpha factor patterns (Kaiser and Caffrey 1965) could be implemented in the SAS/IML language. This algorithm is similar to that provided by the METHOD=ALPHA option in the FACTOR procedure.

The following statements define a SAS/IML module for computing an alpha factor analysis. The input is a matrix of correlations. The module computes eigenvalues, communalities, and a factor pattern.
Example 12.4: Alpha Factor Analysis

```plaintext
proc iml;
/* Alpha Factor Analysis */
/* Ref: Kaiser et al., 1965 Psychometrika, pp. 12-13 */
/* Input:  r = correlation matrix */
/* Output: m = eigenvalues */
/* h = communalities */
/* f = factor pattern */
start alpha(m, h, f, r);
    p = ncol(r);
    q = 0;
    h = 0;    /* initialize */
    h2 = I(p) - diag(1/vecdiag(inv(r)));    /* smc=sqrd mult corr */
    do while(max(abs(h-h2))>.001);    /* iterate until converges */
        h = h2;
        hi = diag(sqrt(1/vecdiag(h)));
        g = hi*(r-I(p))*hi + I(p);
        call eigen(m,e,g);    /* get eigenvalues and vecs */
        if q=0 then do;
            q = sum(m>1);    /* number of factors */
            iq = 1:q;
        end;    /* index vector */
        mm = diag(sqrt(m[iq,]));    /* collapse eigvals */
        e = e[,iq ];    /* collapse eigvecs */
        h2 = h*diag((e*mm) [,##]);    /* new communalities */
    end;
    hi = sqrt(h);
    h = vecdiag(h2);    /* communalities as vector */
    f = hi*e*mm;    /* resulting pattern */
finish;
```

The following statements call the ALPHA module on a sample correlation matrix. The results are shown in Output 12.4.1.

```plaintext
/* Correlation Matrix from Harmon, Modern Factor Analysis, */
/* Second edition, page 124, "Eight Physical Variables" */
nm = {Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8};
r = { 1.00 .846 .805 .859 .473 .398 .301 .382 ,
     .846 1.00 .881 .826 .376 .326 .277 .415 ,
     .805 .881 1.00 .801 .380 .319 .237 .345 ,
     .859 .826 .801 1.00 .436 .329 .327 .365 ,
     .473 .376 .380 .436 1.00 .762 .730 .629 ,
     .398 .326 .319 .329 .762 1.00 .583 .577 ,
     .301 .277 .237 .327 .730 .583 1.00 .539 ,
     .382 .415 .345 .365 .629 .577 .539 1.00};
run alpha(Eigenvalues, Communalities, Factors, r);
print Eigenvalues,
    Communalities[ rowname=nm],
    Factors[label="Factor Pattern" rowname=nm];
```
Output 12.4.1 Alpha Factor Analysis: Results

<table>
<thead>
<tr>
<th>Eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.937855</td>
</tr>
<tr>
<td>2.0621956</td>
</tr>
<tr>
<td>0.1390178</td>
</tr>
<tr>
<td>0.0821054</td>
</tr>
<tr>
<td>0.018097</td>
</tr>
<tr>
<td>-0.047487</td>
</tr>
<tr>
<td>-0.09148</td>
</tr>
<tr>
<td>-0.100304</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 0.8381205</td>
</tr>
<tr>
<td>VAR2 0.8905717</td>
</tr>
<tr>
<td>VAR3 0.81893</td>
</tr>
<tr>
<td>VAR4 0.8067292</td>
</tr>
<tr>
<td>VAR5 0.8802149</td>
</tr>
<tr>
<td>VAR6 0.6391977</td>
</tr>
<tr>
<td>VAR7 0.5821583</td>
</tr>
<tr>
<td>VAR8 0.4998126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 0.813386 -0.420147</td>
</tr>
<tr>
<td>VAR2 0.8028363 -0.49601</td>
</tr>
<tr>
<td>VAR3 0.7579087 -0.494474</td>
</tr>
<tr>
<td>VAR4 0.7874461 -0.432039</td>
</tr>
<tr>
<td>VAR5 0.8051439 0.4816205</td>
</tr>
<tr>
<td>VAR6 0.6804127 0.4198051</td>
</tr>
<tr>
<td>VAR7 0.620623 0.4438303</td>
</tr>
<tr>
<td>VAR8 0.6449419 0.2895902</td>
</tr>
</tbody>
</table>

Example 12.5: Categorical Linear Models

This example fits a linear model to a function of the response probabilities

\[K \log \pi = X_\gamma + \epsilon \]

where \(K \) is a matrix that compares each response category to the last category.

First, the Grizzle-Starmer-Koch approach (Grizzle, Starmer, and Koch 1969) is used to obtain generalized least squares estimates of \(\beta \). These form the initial values for the Newton-Raphson solution for the maximum likelihood estimates. The CATMOD procedure can also be used to analyze these binary data (Cox 1970).

```sas
proc iml;
/* Subroutine to compute new probability estimates */
/* Last column not needed since sum of each row is 1 */
start prob(x, beta, q);
   la = exp(x*shape(beta,0,q));
   pi = la / ((1+la[,]+)*repeat(1,1,q));
   return( colvec(pi) );
```

finish prob;

/* Categorical Linear Models */
/* by Least Squares and Maximum Likelihood */
/* Input: */
/* n the s by p matrix of response counts */
/* x the s by r design matrix */
start catlin(n, x);
 s = nrow(n); /* number of populations */
 r = ncol(n); /* number of responses */
 q = r-1; /* number of function values */
 d = ncol(x); /* number of design parameters */
 qd = q*d; /* total number of parameters */

 / * initial (empirical) probability estimates */
 rrown = n+[]; /* row totals */
 pr = n/rown; /* probability estimates */
 print pr[label="Initial Probability Estimates"]; /* function of probabilities */
 p = colvec(pr[,1:q]); /* cut and shaped to vector */
 f = log(p) - log(pr[,r])@repeat(1,q,1);

 /* estimate by the GSK method */
 /* inverse covariance of f */
 si = (diag(p)-p*p')#(diag(rown)@repeat(1,q,q));
 z = x@I(q); /* expanded design matrix */
 h = z'*si*z; /* crossproducts matrix */
 g = z'*si*f; /* cross with f */
 beta = solve(h,g); /* least squares solution */
 stderr = sqrt(vecdiag(inv(h))); /* standard errors */
 pi = prob(x, beta, q);
 est = beta || stderr;
 pr = shape(pi, 0, q);
 print est[colname="beta" stderr"] label="GSK Estimates"]; pr;

 /* ML solution */
 crit = 1;
 do it = 1 to 8 while(crit>.0005); /* iterate until converge*/
 /* block diagonal weighting */
 si = (diag(pi)-pi*pi')#(diag(rown)@repeat(1,q,q));
 g = z'*rown@repeat(1,q,1)#(p-pi)); /* gradient */
 h = z'*si*z; /* hessian */
 delta = solve(h,g); /* correction via Newton's method */
 beta = beta+delta; /* apply the correction */
 pi = prob(x, beta, q); /* compute prob estimates */
 crit = max(abs(delta)); /* convergence criterion */
 end;
 stderr = sqrt(vecdiag(inv(h))); /* standard errors */
 est = beta || stderr;
 pr = shape(pi, 0, q);
 print est[colname="beta" stderr"] label="ML Estimates"]; pr;
 print it[label="Iterations"] crit[label="Criterion"]; finish catlin;
The following statements call the CATLIN module to analyze data from Kastenbaum and Lamphiear (1959):

```plaintext
/* frequency counts*/
n= { 58 11 05,
    75 19 07,
    49 14 10,
    58 17 08,
    33 18 15,
    45 22 10,
    15 13 15,
    39 22 18,
    04 12 17,
    05 15 08};

/* design matrix */
x= { 1 1 1 0 0 0,
    1 -1 1 0 0 0,
    1 1 0 1 0 0,
    1 -1 0 1 0 0,
    1 1 0 0 1 0,
    1 -1 0 0 1 0,
    1 1 0 0 0 1,
    1 -1 0 0 0 1,
    1 1 1 -1 -1 -1,
    1 -1 -1 -1 -1 -1};

run catlin(n, x);
```

The maximum likelihood estimates are shown in **Output 12.5.1**.

Output 12.5.1 Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Initial Probability Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7837838 0.1486486 0.0675676</td>
</tr>
<tr>
<td>0.7425743 0.1881188 0.0693069</td>
</tr>
<tr>
<td>0.6712329 0.1917808 0.1369863</td>
</tr>
<tr>
<td>0.6987952 0.2048193 0.0963855</td>
</tr>
<tr>
<td>0.505272727 0.227272727</td>
</tr>
<tr>
<td>0.5844156 0.2857143 0.1298701</td>
</tr>
<tr>
<td>0.3488372 0.3023256 0.3488372</td>
</tr>
<tr>
<td>0.4936709 0.278481 0.2278481</td>
</tr>
<tr>
<td>0.1212121 0.3636364 0.5151515</td>
</tr>
<tr>
<td>0.1785714 0.5357143 0.2857143</td>
</tr>
</tbody>
</table>
Output 12.5.1 continued

<table>
<thead>
<tr>
<th>GSK Estimates</th>
<th>bet</th>
<th>stderr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9454429</td>
<td>0.1290925</td>
</tr>
<tr>
<td></td>
<td>0.4003259</td>
<td>0.1284867</td>
</tr>
<tr>
<td></td>
<td>-0.277777</td>
<td>0.1164699</td>
</tr>
<tr>
<td></td>
<td>-0.278472</td>
<td>0.1255916</td>
</tr>
<tr>
<td></td>
<td>1.4146936</td>
<td>0.267351</td>
</tr>
<tr>
<td></td>
<td>0.474136</td>
<td>0.294943</td>
</tr>
<tr>
<td></td>
<td>0.8464701</td>
<td>0.2362639</td>
</tr>
<tr>
<td></td>
<td>0.1526095</td>
<td>0.2633051</td>
</tr>
<tr>
<td></td>
<td>0.1952395</td>
<td>0.2214436</td>
</tr>
<tr>
<td></td>
<td>0.0723489</td>
<td>0.2366597</td>
</tr>
<tr>
<td></td>
<td>-0.514488</td>
<td>0.2171995</td>
</tr>
<tr>
<td></td>
<td>-0.400831</td>
<td>0.2285779</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pr</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7402867</td>
<td>0.1674472</td>
</tr>
<tr>
<td></td>
<td>0.7704057</td>
<td>0.1745023</td>
</tr>
<tr>
<td></td>
<td>0.6624811</td>
<td>0.1917744</td>
</tr>
<tr>
<td></td>
<td>0.7061615</td>
<td>0.2047033</td>
</tr>
<tr>
<td></td>
<td>0.516981</td>
<td>0.2648871</td>
</tr>
<tr>
<td></td>
<td>0.5697446</td>
<td>0.2923278</td>
</tr>
<tr>
<td></td>
<td>0.3988695</td>
<td>0.2589096</td>
</tr>
<tr>
<td></td>
<td>0.4667924</td>
<td>0.3034204</td>
</tr>
<tr>
<td></td>
<td>0.1320359</td>
<td>0.3958019</td>
</tr>
<tr>
<td></td>
<td>0.1651907</td>
<td>0.4958784</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ML Estimates</th>
<th>bet</th>
<th>stderr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9533597</td>
<td>0.1286179</td>
</tr>
<tr>
<td></td>
<td>0.4069338</td>
<td>0.1284592</td>
</tr>
<tr>
<td></td>
<td>-0.279081</td>
<td>0.1156222</td>
</tr>
<tr>
<td></td>
<td>-0.280699</td>
<td>0.1252816</td>
</tr>
<tr>
<td></td>
<td>1.4423195</td>
<td>0.2669357</td>
</tr>
<tr>
<td></td>
<td>0.4993123</td>
<td>0.2943437</td>
</tr>
<tr>
<td></td>
<td>0.8411595</td>
<td>0.2363089</td>
</tr>
<tr>
<td></td>
<td>0.1485875</td>
<td>0.2635159</td>
</tr>
<tr>
<td></td>
<td>0.1883383</td>
<td>0.2202755</td>
</tr>
<tr>
<td></td>
<td>0.0667313</td>
<td>0.236031</td>
</tr>
<tr>
<td></td>
<td>-0.527163</td>
<td>0.216581</td>
</tr>
<tr>
<td></td>
<td>-0.414965</td>
<td>0.2299618</td>
</tr>
</tbody>
</table>
Example 12.6: Regression of Subsets of Variables

This example performs regression along with variable selection. Some of the methods used in this example are also used in the REG procedure in SAS/STAT software. The GLMSELECT procedure implements these and other variable selection techniques.

To simplify communication between modules, the modules in this example do not take any arguments. This means that the modules do not use a local symbol table: all variables are defined at the main scope of the program. In this programming technique, modules are used to organize the algorithm and, potentially, to enable code reuse.

```plaintext
proc iml;
/*-------Initialization----------------------------------------*/
| c,csave the crossproducts matrix |
| n number of observations |
| k total number of variables to consider |
| l number of variables currently in model |
| in 0-1 vector of whether variable is in model |
| b print collects results (L MSE RSQ BETAS ) |
*-------------------------------------------------------------*/
start initial;
 n=nrow(x); k=ncol(x); k1=k+1; ik=1:k;
 bnames={nparm mse rsquare} || varnames;
/*--------correct by mean, adjust out intercept parameter--*/
y=y-y[1:n+1]/n; /* correct y by mean */
x=x-repeat(x[1:n+1]/n,n,1); /* correct x by mean */
 xpy=x`*y; /* crossproducts */
 ypy=y`*y;
 xpx=x`*x;
free x y; /* no longer need the data*/
 csave=(xpx || xpy) //
      (xpy` || ypy); /* save copy of crossproducts*/
finish;
```
Example 12.6: Regression of Subsets of Variables

/*-----forward method--*/
start forward;
 print "FORWARD SELECTION METHOD";
 free bprint;
 c=csave; in=repeat(0,k,1); L=0; /* no variables are in */
 dfe=n-1; mse=ypy/dfe;
 sprob=0;
 do while(sprob<.15 & l<k);
 indx=loc(^in); /* where are the variables not in?*/
 cd=vecdiag(c)[indx,]; /* pxp diagonals */
 cb=c[indx,k1]; /* adjusted xpy */
 tsqr=cb#cb/(cd#mse); /* squares of t tests */
 imax=tsqr[>:<,]; /* location of maximum in indx */
 sprob=(1-probt(sqrt(tsqr[imax,]),dfe))*2;
 if sprob<.15 then do; /* if t-test significant */
 ii=indx[,imax]; /* pick most significant */
 run swp; /* routine to sweep */
 run bpr; /* routine to collect results */
 end;
 end;
 print bprint[colname=bnames] ;
finish;

/*-----backward method--*/
start backward;
 print "BACKWARD ELIMINATION ";
 free bprint;
 c=csave; in=repeat(0,k,1);
 ii=1:k; run swp; run bpr; /* start with all variables in*/
 sprob=1;
 do while(sprob>.15 & L>0);
 indx=loc(in); /* where are the variables in? */
 cd=vecdiag(c)[indx,]; /* pxp diagonals */
 cb=c[indx,k1]; /* bvalues */
 tsqr=cb#cb/(cd#mse); /* squares of t tests */
 imin=tsqr[<:>,]; /* location of minimum in indx */
 sprob=(1-probt(sqrt(tsqr[imin,]),dfe))*2;
 if sprob>.15 then do; /* if t-test nonsignificant */
 ii=indx[,imin]; /* pick least significant */
 run swp; /* routine to sweep in variable*/
 run bpr; /* routine to collect results */
 end;
 end;
 print bprint[colname=bnames] ;
finish;

/*-----stepwise method---*/
start stepwise;
 print "STEPWISE METHOD";
 free bprint;
 c=csave; in=repeat(0,k,1); L=0;
dfe=n-1; mse=ypy/dfe;
sprob=0;

do while(sprob<.15 & L<k);
 indx=loc(^in); /* where are the variables not in?*/
 nindx=loc(in); /* where are the variables in? */
 cd=vecdiag(c)[indx,]; /* xpx diagonals */
 cb=c[indx,k1]; /* adjusted xpy */
 tsq=cb#cb/cd/mse; /* squares of t tests */
 imax=tsq[<:>,]; /* location of maximum in indx */
 sprob=(1-probt(sqrt(tsq[imax,]),dfe))*2;
 if sprob<.15 then do; /* if t-test significant */
 ii=indx[,imax]; /* find index into c */
 run swp; /* routine to sweep */
 run backstep; /* check if remove any terms */
 run bpr; /* routine to collect results */
 end;
end;

print bprint[colname=bnames];
finish;

/*----routine to backwards-eliminate for stepwise--*/
start backstep;
 if nrow(nindx)=0 then return;
 bprob=1;
 do while(bprob>.15 & L<k);
 cd=vecdiag(c)[nindx,]; /* xpx diagonals */
 cb=c[nindx,k1]; /* bvalues */
 tsq=cb#cb/(cd#mse); /* squares of t tests */
 imin=tsq[>:<,]; /* location of minimum in nindx*/
 bprob=(1-probt(sqrt(tsq[imin,]),dfe))*2;
 if bprob>.15 then do;
 ii=nindx[,imin];
 run swp;
 run bpr;
 end;
end;
finish;

/*-----search all possible models-------------------*/
start all;
 /*---use method of Schatzoff et al. for search technique---*/
 betak=repeat(0,k,k); /* record estimates for best l-param model*/
 msek=repeat(1e50,k,1); /* record best mse per # parms */
 rsqk=repeat(0,k,1); /* record best rsquare */
 ink=repeat(0,k,k); /* record best set per # parms */
 limit=2##k-1; /* number of models to examine */
 c=csave; in=repeat(0,k,1); /* start with no variables in model*/
 do kk=1 to limit;
 run ztrail; /* find which one to sweep */
 run swp; /* sweep it in */
 bb=bb//((L|mse||rsq||(c[ik,k1]#in`));
 if mse<msek[L,] then do; /* was this best for L parms? */
Example 12.6: Regression of Subsets of Variables

/* record mse */
msek[L] = mse;
/* record rsquare */
rsqk[L] = rsq;
/* record which parms in model */
ink[L] = in;
/* record estimates */
betak[L] = (c[ik,k1]*in);

end;
end;

print "ALL POSSIBLE MODELS IN SEARCH ORDER";
print bb[colname=bnames]; free bb;

bprint=ik | msek | rsqk | betak;
print "THE BEST MODEL FOR EACH NUMBER OF PARAMETERS";
print bprint[colname=bnames];
finish;

/* subroutine to find number of trailing zeros in binary number*/
/* on entry: kk is the number to examine */
/* on exit: ii has the result */
/*---*/
start ztrail;
 ii = 1; zz = kk;
 do while(mod(zz,2)=0); ii=ii+1; zz=zz/2; end;
finish;

/*----- subroutine to sweep in a pivot--------------------------*/
/* on entry: ii has the position(s) to pivot */
/* on exit: in, L, dfe, mse, rsq recalculated */
/*---*/
start swp;
 if abs(c[ii,ii])<1e-9 then do; print "failure", c; stop; end;
 c = sweep(c,ii);
 in[ii] = ^in[ii];
 L = sum(in); dfe = n-1-L;
 sse = c[k1,k1];
 mse = sse/dfe;
 rsq = 1-sse/ypy;
finish;

/*----- subroutine to collect bprint results----------------------*/
/* on entry: L, mse, rsq, and c set up to collect */
/* on exit: bprint has another row */
/*---*/
start bpr;
 bprint = bprint // (L || mse || rsq || (c[ik,k1]*in`));
finish;

/*-- stepwise methods--------------------------*/
/* after a call to the initial routine, which sets up */
/* the data, four different routines can be called */
/* to do four different model-selection methods. */
/*---*/
start seq;
 run initial; /* initialization */
 run all; /* all possible models */
run forward; /* forward selection method */
run backward; /* backward elimination method*/
run stepwise; /* stepwise method */
finish;

The following statements call the SEQ module, which in turn calls modules that perform all-subset regression, forward selection, backward selection, and stepwise selection. The results are shown in Output 12.6.1.

The data on physical fitness are as follows:

```
data =
  { 44 89.47 44.609 11.37 62 178 182 ,
  40 75.07 45.313 10.07 62 185 185 ,
  44 85.84 54.297 8.65 45 156 168 ,
  42 68.15 59.313 8.17 40 166 172 ,
  38 89.02 49.874 9.22 45 156 168 ,
  47 77.45 44.811 11.63 58 176 176 ,
...
  49 73.37 50.388 10.08 45 168 168 ,
  57 73.37 39.407 12.63 58 174 176 ,
  54 79.38 46.080 11.17 62 156 165 ,
  52 76.32 45.441 9.63 48 164 166 ,
  50 70.87 54.625 8.92 48 146 155 ,
  51 67.25 45.118 11.08 48 172 172 ,
  54 91.63 39.203 12.88 44 168 172 ,
  51 73.71 45.790 10.47 59 186 188 ,
  57 79.08 50.545 9.93 49 148 155 ,
  49 76.32 48.673 9.40 56 186 188 ,
  48 61.24 47.920 11.50 52 170 176 ,
  52 82.78 47.467 10.50 53 170 172 };
```

y=data[,3];
x=data[,(1 2 4 5 6 7)];
free data;
Example 12.6: Regression of Subsets of Variables

```plaintext
varnames=(age weight runtime rstpuls runpuls maxpuls);
reset fw=6 linesize=87;
run seq;
```

Output 12.6.1 Model Selection: Results

<table>
<thead>
<tr>
<th>Initial Probability Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7837838 0.1486486 0.0675676</td>
</tr>
<tr>
<td>0.7425743 0.1881188 0.0693069</td>
</tr>
<tr>
<td>0.6712329 0.1917808 0.1369863</td>
</tr>
<tr>
<td>0.6987952 0.2048193 0.0963855</td>
</tr>
<tr>
<td>0.5 0.2727273 0.2272727</td>
</tr>
<tr>
<td>0.5844156 0.2857143 0.1298701</td>
</tr>
<tr>
<td>0.3488372 0.3023256 0.3488372</td>
</tr>
<tr>
<td>0.4936709 0.2784811 0.2278481</td>
</tr>
<tr>
<td>0.1212121 0.3636364 0.5151515</td>
</tr>
<tr>
<td>0.1785714 0.5357143 0.2857143</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GSK Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
</tr>
<tr>
<td>0.9454429</td>
</tr>
<tr>
<td>0.4003259</td>
</tr>
<tr>
<td>-0.277777</td>
</tr>
<tr>
<td>-0.278472</td>
</tr>
<tr>
<td>1.4146936</td>
</tr>
<tr>
<td>0.474136</td>
</tr>
<tr>
<td>0.8464701</td>
</tr>
<tr>
<td>0.1526095</td>
</tr>
<tr>
<td>0.1952395</td>
</tr>
<tr>
<td>0.0723489</td>
</tr>
<tr>
<td>-0.514488</td>
</tr>
<tr>
<td>-0.400831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7402867 0.1674472</td>
</tr>
<tr>
<td>0.7704057 0.1745023</td>
</tr>
<tr>
<td>0.6624811 0.1917744</td>
</tr>
<tr>
<td>0.7061615 0.2047033</td>
</tr>
<tr>
<td>0.516981 0.2648871</td>
</tr>
<tr>
<td>0.5697446 0.2923278</td>
</tr>
<tr>
<td>0.3986695 0.2589096</td>
</tr>
<tr>
<td>0.4667924 0.3034204</td>
</tr>
<tr>
<td>0.1320359 0.3958019</td>
</tr>
<tr>
<td>0.1651907 0.4958784</td>
</tr>
</tbody>
</table>
Example 12.7: Response Surface Methodology

A regression model that has a complete quadratic set of regressions across several factors can be processed to yield the estimated critical values that can optimize a response. First, the regression is performed for two variables according to the following model:

\[y = c + b_1 x_1 + b_2 x_2 + a_{11} x_1^2 + a_{12} x_1 x_2 + a_{22} x_2^2 + e \]

The estimates are then divided into a vector of linear coefficients (estimates), \(\mathbf{b} \), and a matrix of quadratic coefficients, \(\mathbf{A} \). The solution for critical values is

\[\mathbf{x} = -\frac{1}{2} \mathbf{A}^{-1} \mathbf{b} \]

The following program creates a module to perform quadratic response surface regression. For more information about response surface modeling, see the documentation for the RSREG procedure in SAS/STAT User’s Guide.
Example 12.7: Response Surface Methodology

```
proc iml;
/* Quadratic Response Surface Regression */
/* This matrix routine reads in the factor variables and */
/* the response, forms the quadratic regression model and */
/* estimates the parameters, and then solves for the optimal */
/* response, prints the optimal factors and response, and */
/* displays the eigenvalues and eigenvectors of the */
/* matrix of quadratic parameter estimates to determine if */
/* the solution is a maximum or minimum, or saddlepoint, and */
/* which direction has the steepest and gentlest slopes. */
/* */
/* Given: */
/* d contains the factor variables */
/* y contains the response variable */
/* */
start rsm(d, y);
  n=nrow(d);       /* dimensions */
  k=ncol(d);       /* set up design matrix */
  x=j(n,1,1) || d;  /* add quadratic effects */
  do i=1 to k;
    x = x || d[,i] # d[,1:i];
  end;
  beta=solve(x`*x, x`*y); /* estimate parameters */
  names = "b0":("b"+strip(char(nrow(beta)-1)));
  print beta[rowname=names label="Parameter Estimates"];  
  c=beta[1];       /* intercept estimate */
  b=beta[2:(k+1)];  /* linear estimates */
  a=j(k,k,0);      /* form quadratics into matrix */
  L=k+1;           /* add quadratic effects */
  do i=1 to k;
    do j=1 to i;
      L=L+1;
      a[i,j]=beta[L];
    end;
  end;
  a=(a+a`)/2;      /* symmetrize */
  xx = -0.5*solve(a,b); /* solve for critical value */
  print xx[label="Critical Factor Values"];  
  /* Compute response at critical value */
  yopt=c + b`*xx + xx`*a*xx;
  print yopt[label="Response at Critical Value"];  
  call eigen(eval,evec,a);
  if min(eval)>0 then print "Solution Is a Minimum";   
  if max(eval)<0 then print "Solution Is a Maximum";   
finish rsm;
```

The following statements run the RSM module and use sample data that represent the result of a designed experiment with two factors. The results are shown in Output 12.7.1
/* Sample Problem with Two Factors */
d = {-1 -1, -1 0, -1 1,
 0 -1, 0 0, 0 1,
 1 -1, 1 0, 1 1};
y = {71.7, 75.2, 76.3, 79.2, 81.5, 80.2, 80.1, 79.1, 75.8};
run rsm(d,y);

Output 12.7.1 Response Surface Regression: Results

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>81.22222</td>
</tr>
<tr>
<td>b1</td>
<td>1.96666</td>
</tr>
<tr>
<td>b2</td>
<td>0.21666</td>
</tr>
<tr>
<td>b3</td>
<td>-3.93333</td>
</tr>
<tr>
<td>b4</td>
<td>-2.225</td>
</tr>
<tr>
<td>b5</td>
<td>-1.38333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Factor Values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2949376</td>
<td></td>
</tr>
<tr>
<td>-0.158881</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response at Critical Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>81.495032</td>
<td></td>
</tr>
</tbody>
</table>

Solution Is a Maximum

Output 12.7.1 displays the parameter estimates from the regression and shows that the values (0.295, -0.159) are values of the factors that result in a maximum response, based on a quadratic fit of the data. The maximum value of the response is predicted to be about 81.5.

Example 12.8: Logistic and Probit Regression for Binary Response Models

A binary response Y is fit to a linear model according to

$$
\Pr(Y = 1) = F(X\beta) \\
\Pr(Y = 0) = 1 - F(X\beta)
$$

where F is some smooth probability distribution function. In this example, the normal and logistic distributions are used.

The regression computes parameter estimates by using maximum likelihood via iteratively reweighted least squares, as described in Charnes, Frome, and Yu (1976); Jennrich and Moore (1975); Nelder and Wedderburn (1972). Rows are scaled by the derivative of the distribution, which is the density. The weights are assigned by using the expression $w/p(1-p)$, where w is a count or some other weight.
Example 12.8: Logistic and Probit Regression for Binary Response Models

The following statements define the module BINEST, which computes logistic and probit regressions for binary response models:

```plaintext
proc iml;
/* compute density function (PDF) */
start Density(model, z);
   if upcase(model)='LOGIT' then
      return( pdf("Logistic", z) );
   else /* "PROBIT" */
      return( pdf("Normal", z) );
finish;

/* compute cumulative distribution function (CDF) */
start Distrib(model, z);
   if upcase(model)='LOGIT' then
      return( cdf("Logistic", z) );
   else /* "PROBIT" */
      return( cdf("Normal", z) );
finish;

/* routine for estimating binary response models */
/* model is "logit" or "probit" */
/* varNames has the names of the regressor variables */
start BinEst(nEvents, nTrials, data, model, varNames);
   /* set up design matrix */
   n = nrow(data);
   x = j(n,1,1) || data; /* add intercept */
   x = x // x; /* regressors */
   y = j(n,1,1) // j(n,1,0); /* binary response: 1s and 0s */
   wgt = nEvents // (nTrials-nEvents); /* count weights */
   parms = "Intercept" || rowvec(varNames);
   k = ncol(x);
   b = j(k,1,0); /* starting values */
   oldb = b+1;
   results = j(20, 2+k, .); /* store iteration history */
   do iter=1 to nrow(results) while(max(abs(b-oldb))>1e-8);
      oldb = b;
      z = x*b;
      p = Distrib(model, z);
      loglik = sum( wgt#((y=1)#log(p) + (y=0)#log(1-p)) );
      results[iter, ] = iter || loglik || b`;
      w = wgt / (p#(1-p));
      f = Density(model, z);
      xx = f#x;
      xpxi = inv(xx`*(w#xx));
      b = b + xpxi*(xx`*(w#(y-p)));
   end;
   idx = loc(results^=.); /* trim results if few iterations */
   results = shape(results[idx],0,2+ncol(parms));
   colnames = ("Iter" "LogLik") || parms;
   lbl = "Iteration History: " + model + " Model";
   print results[colname=colnames label=lbl];
```

Chapter 12: General Statistics Examples

\[
p_0 = \frac{\text{sum}(y=1 \times \text{wgt})}{\text{sum}(ext{wgt})}; \quad \text{/* average response */}
\]

\[
\log \text{lik}_0 = \text{sum} (\text{wgt} \times (y=1 \times \log(p_0) + (y=0) \times \log(1-p_0)))
\]

\[
\chi^2 = 2 \times (\log \text{lik} - \log \text{lik}_0);
\]

\[
df = k-1;
\]

\[
\text{prob} = 1 - \text{cdf}("\text{ChiSq}", \chi^2, df);
\]

\[
\text{stats} = \chi^2 \mid | | df \mid | | \text{prob};
\]

\[
\text{print stats[colname=\{\text{ChiSq}\,'DF', 'Prob'\},}
\]

\[
\text{label='Likelihood Ratio, Intercept-only Model'}\];
\]

\[
\text{stderr} = \sqrt{\text{vecdiag}(\text{xp}x)};
\]

\[
\text{tRatio} = \frac{\text{b}}{\text{stderr}};
\]

\[
\text{print (parms\') [label='parms'] b stderr tRatio};
\]

finish;

The following statements call the BINEST module to compute a logistic regression for data that appear in Cox and Snell (1989, pp. 10–11). The data consist of the number of ingots that are not ready for rolling (nReady) and the total number tested (nTested) for a number of combinations of heating time and soaking time. The results are shown in Output 12.8.1.

```
data={ 7 1.0 0 10, 14 1.0 0 31, 27 1.0 1 56, 51 1.0 3 13,
      7 1.7 0 17, 14 1.7 0 43, 27 1.7 4 44, 51 1.7 0 1,
      7 2.2 0 7, 14 2.2 2 33, 27 2.2 0 21, 51 2.2 0 1,
      7 2.8 0 12, 14 2.8 0 31, 27 2.8 1 22,
      7 4.0 0 9, 14 4.0 0 19, 27 4.0 1 16, 51 4.0 0 1};
x = data[, 1:2];
parms = {"Heat" "Soak"};
nReady = data[, 3];
nTotal = data[, 4];
run BinEst(nReady, nTotal, x, "Logit", parms); /* run logit model */
```

Output 12.8.1 Logistic Regression: Results

<table>
<thead>
<tr>
<th>Iter</th>
<th>LogLik</th>
<th>Intercept</th>
<th>Heat</th>
<th>Soak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-268.248</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-76.29481</td>
<td>-2.159406</td>
<td>0.0138784</td>
<td>0.0037327</td>
</tr>
<tr>
<td>3</td>
<td>-53.38033</td>
<td>-3.53344</td>
<td>0.0363154</td>
<td>0.0119734</td>
</tr>
<tr>
<td>4</td>
<td>-48.34609</td>
<td>-4.748899</td>
<td>0.0640013</td>
<td>0.0299201</td>
</tr>
<tr>
<td>5</td>
<td>-47.69191</td>
<td>-5.413817</td>
<td>0.0790272</td>
<td>0.04982</td>
</tr>
<tr>
<td>6</td>
<td>-47.67283</td>
<td>-5.553931</td>
<td>0.0819276</td>
<td>0.0564395</td>
</tr>
<tr>
<td>7</td>
<td>-47.67281</td>
<td>-5.55916</td>
<td>0.0820307</td>
<td>0.0567708</td>
</tr>
<tr>
<td>8</td>
<td>-47.67281</td>
<td>-5.55916</td>
<td>0.0820308</td>
<td>0.0567713</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ChiSq</th>
<th>DF</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.64282</td>
<td>2</td>
<td>0.0029634</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>parms</th>
<th>b</th>
<th>stderr</th>
<th>tRatio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-5.559166</td>
<td>1.1196947</td>
<td>-4.964895</td>
</tr>
<tr>
<td>Heat</td>
<td>0.0820308</td>
<td>0.0237345</td>
<td>3.4561866</td>
</tr>
<tr>
<td>Soak</td>
<td>0.0567713</td>
<td>0.3312131</td>
<td>0.1714042</td>
</tr>
</tbody>
</table>
You can use the LOGISTIC procedure in SAS/STAT software to perform a similar analysis. See the section “Getting Started: Logistic Procedure” in SAS/STAT User’s Guide.

In a similar way, you can call the BINEST module and request a probit-model regression. The results, which appear in Output 12.8.2, are consistent with results from the PROBIT procedure.

```plaintext
run BinEst(nReady, nTotal, x, "Probit", parms); /* run probit model */
```

Output 12.8.2 Probit Regression: Results

<table>
<thead>
<tr>
<th>Iter</th>
<th>LogLik</th>
<th>Intercept</th>
<th>Heat</th>
<th>Soak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-268.2248</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-76.29481</td>
<td>-2.159406</td>
<td>0.0138784</td>
<td>0.0037327</td>
</tr>
<tr>
<td>3</td>
<td>-53.38033</td>
<td>-3.53344</td>
<td>0.0363154</td>
<td>0.0119734</td>
</tr>
<tr>
<td>4</td>
<td>-48.34609</td>
<td>-4.748999</td>
<td>0.0640013</td>
<td>0.0299201</td>
</tr>
<tr>
<td>5</td>
<td>-47.69191</td>
<td>-5.413817</td>
<td>0.0790272</td>
<td>0.04982</td>
</tr>
<tr>
<td>6</td>
<td>-47.67283</td>
<td>-5.55931</td>
<td>0.0819276</td>
<td>0.0564395</td>
</tr>
<tr>
<td>7</td>
<td>-47.67281</td>
<td>-5.55916</td>
<td>0.0820307</td>
<td>0.0567708</td>
</tr>
<tr>
<td>8</td>
<td>-47.67281</td>
<td>-5.559166</td>
<td>0.0820308</td>
<td>0.0567713</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likelihood Ratio, Intercept-only Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChiSq</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>11.64282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>parms</th>
<th>b</th>
<th>stderr</th>
<th>tRatio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-5.559166</td>
<td>1.1196947</td>
<td>-4.964895</td>
</tr>
<tr>
<td>Heat</td>
<td>0.0820308</td>
<td>0.0237345</td>
<td>3.4561866</td>
</tr>
<tr>
<td>Soak</td>
<td>0.0567713</td>
<td>0.3312131</td>
<td>0.1714042</td>
</tr>
</tbody>
</table>

Example 12.9: Linear Programming

You can solve the following general linear programming problem by using the LPSOLVE call:

\[
\begin{align*}
\text{max } & \mathbf{c}'\mathbf{x} \\
\text{st. } & A\mathbf{x} \leq, =, \geq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{align*}
\]

Consider the following product mix example (Hadley 1962). A shop that has three machines, A, B, and C, turns out four different products. Each product must be processed on each of the three machines (for example, lathes, drills, and milling machines). The following table shows the number of hours required by each product on each machine:
Output 12.9.1 Product Mix: Optimal Solution

<table>
<thead>
<tr>
<th>Optimal Product Mix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>product 1</td>
<td>294.11765</td>
</tr>
<tr>
<td>product 2</td>
<td>1500</td>
</tr>
<tr>
<td>product 3</td>
<td>0</td>
</tr>
<tr>
<td>product 4</td>
<td>58.823529</td>
</tr>
</tbody>
</table>
The next example shows how to find the minimum cost flow through a network by using linear programming. The network consists of five nodes, named A, B, C, D, and E. Seven arcs connect certain nodes. The arcs are named by the tail and head nodes that define the arc. Output 12.1 shows the network.

![A Network of Nodes and Arcs](image)

Suppose that some nodes have an excess supply of goods whereas others have a deficit of goods, and suppose that you want to transport goods from the nodes that have excess supply to nodes that have the demand. Each route (arc) between nodes has a cost that is associated with it. In Output 12.1, the cost is represented by a number next to an arc. Given a distribution of goods, what is the optimal way to move goods through the network?

This example sets up the problem and calls the LPSOLVE subroutine to find an optimal solution. In the example, two units of goods are located at node A. One unit needs to be moved to node D; the other unit needs to travel to node E.
The first part of the problem requires generating the node-arc incidence matrix.

```plaintext
arcs = { 'ab' 'bd' 'ad' 'bc' 'ce' 'de' 'ae' }; /* decision variables */
n=ncol(arcs); /* number of variables */
nodes = {'a', 'b', 'c', 'd', 'e'};
inode = substr(arcs, 1, 1);
onode = substr(arcs, 2, 1);
/* coefficients of the constraint equation */
A = j(nrow(nodes), n, 0);
do j = 1 to n;
   A[,j] = (inode[j]=nodes) - (onode[j]=nodes);
end;
The matrix A constrains the goods to flow through the existing arcs between nodes. A solution to the problem is a vector that contains the number of goods that flow through each arc. The cost of moving goods is a linear function of a solution. The following statements define the supply and demand of goods within the network and call the LPSOLVE subroutine to obtain a solution that minimizes the cost:

```plaintext
/* coefficients of the linear objective function */
cost = { 1 2 4 3 3 2 9 };
/* right-hand side of constraint equation */
supply = { 2, 0, 0, -1, -1 };
/* operators: 'L' for <=, 'G' for >=, 'E' for = */
ops = repeat('E',nrow(nodes),1);
cntl = j(1,7,.); /* control vector */
cntl[1] = 1; /* 1 for minimum; -1 for maximum */
call lpsolve(rc, value, x, dual, redcost,
 cost, A, supply, cntl, ops);

print value[L='Minimum Cost'];
print x[r=arcs L='Optimal Flow'];
```

The solution is shown in Output 12.9.2. The optimal solution is to move both units along arc AB and then along arc BD. One unit stays at node D, while the other proceeds along arc DE. The minimum cost is 8.

**Output 12.9.2** Minimum Cost Flow: Optimal Solution

<table>
<thead>
<tr>
<th>Minimum Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimal Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
</tr>
<tr>
<td>bd</td>
</tr>
<tr>
<td>ad</td>
</tr>
<tr>
<td>bc</td>
</tr>
<tr>
<td>ce</td>
</tr>
<tr>
<td>de</td>
</tr>
<tr>
<td>ae</td>
</tr>
</tbody>
</table>
Example 12.10: Quadratic Programming

The following quadratic program can be solved by solving an equivalent linear complementarity problem when $H$ is positive semidefinite:

$$\begin{align*}
\min & \quad c'x + x'Hx/2 \\
\text{st.} & \quad Gx \leq \, \leq \, = \, = \, \geq \, b \\
& \quad x \geq 0
\end{align*}$$

This approach is outlined in the discussion of the LCP subroutine.

The following routine solves the quadratic problem:

```plaintext
proc iml;
start qp(names, c, H, G, rel, b, activity);
 if min(eigval(h))<0 then do;
 error={'The minimum eigenvalue of the H matrix is negative.',
 'Thus it is not positive semidefinite.',
 'QP is terminating.'};
 print error;
 stop;
 end;
 nr=nrow(G);
 nc=ncol(G);
 /* Put in canonical form */
 rev = (rel='<=');
 adj = (-1 * rev) + ^rev;
 g = adj# G;
 b = adj # b;
 eq = (rel = '=');
 if max(eq)=1 then do;
 g = g // -(diag(eq)*G)[loc(eq),];
 b = b // -(diag(eq)*b)[loc(eq)];
 end;
 m = (h || -g`) // (g || j(nrow(g),nrow(g),0));
 q = c // -b;
 /* Solve the problem */
 call lcp(rc,w,z,M,q);
 /* Report the solution */
 print (('*************Solution is optimal*************',
 '**********No solution possible***************',
 '**********Solution is numerically unstable*****',
 '**********Not enough memory***************',
 '**********Number of iterations exceeded**********')[rc+1]);
 activity = z[1:nc];
 objval = c`*activity + activity`*H*activity/2;
 print objval[L='Objective Value'],
```

```
As an example, consider the following problem in portfolio selection. Models used in selecting investment portfolios include assessment of the proposed portfolio’s expected gain and its associated risk. One such model seeks to minimize the variance of the portfolio subject to a minimum expected gain. This can be modeled as a quadratic program in which the decision variables are the proportions to invest in each of the possible securities. The quadratic component of the objective function is the covariance of gain between the securities. The first constraint is a proportionality constraint; the second constraint gives the minimum acceptable expected gain.

The following data are used to illustrate the model and its solution:

\[
\begin{align*}
c & = \{ 0, 0, 0, 0 \}; \\
h & = \begin{bmatrix} 1003.1 & 4.3 & 6.3 & 5.9 \\ 4.3 & 2.2 & 2.1 & 3.9 \\ 6.3 & 2.1 & 3.5 & 4.8 \\ 5.9 & 3.9 & 4.8 & 10 \end{bmatrix}, \\
g & = \begin{bmatrix} 1 & 1 & 1 & 1 \\ .17 & .11 & .10 & .18 \end{bmatrix}; \\
\end{align*}
\]

The results in Output 12.10.1 show that the minimum variance portfolio that achieves the 0.10 expected gain is composed of Asset2 and Asset3 in proportions of 0.933 and 0.067, respectively.

Output 12.10.1 Portfolio Selection: Optimal Solution

<table>
<thead>
<tr>
<th>Objective Value</th>
<th>1.0966667</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Variables</td>
<td></td>
</tr>
<tr>
<td>Asset1</td>
<td>0</td>
</tr>
<tr>
<td>Asset2</td>
<td>0.9333333</td>
</tr>
<tr>
<td>Asset3</td>
<td>0.0666667</td>
</tr>
<tr>
<td>Asset4</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 12.11: Regression Quantiles

The technique of estimating parameters in linear models by using regression quantiles is a generalization of the LAE or LAV least absolute value estimation technique. For a given quantile \(q \), the estimate \(b^* \) of \(\beta \) in the model

\[Y = X\beta + \epsilon \]
Example 12.11: Regression Quantiles

is the value of b that minimizes

$$
\sum_{t \in T} q |y_t - x_t b| - \sum_{t \in S} (1 - q) |y_t - x_t b|
$$

where $T = \{ t | y_t \geq x_t b \}$ and $S = \{ t | y_t \leq x_t \}$. For $q = 0.5$, the solution b^* is identical to the estimates that are produced by the LAE. The following routine finds this estimate by using linear programming.

This subroutine follows the approach given in Koenker and Bassett (1978); Bassett and Koenker (1982). When $q = 0.5$, this is equivalent to minimizing the sum of the absolute deviations, which is also known as L1 regression. For L1 regression, a faster and more accurate algorithm is available in the SAS/IML LAV subroutine, which is based on the approach given in Madsen and Nielsen (1993). For more information about quantile regression, see the documentation for the QUANTREG procedure in SAS/STAT User’s Guide.

```plaintext
proc iml;
/*--------------------------------------------------------------------------*/
/* Routine to find regression quantiles */
/* yname: name of dependent variable */
/* y: dependent variable */
/* xname: names of independent variables */
/* X: independent variables */
/* b: estimates */
/* predict: predicted values */
/* error: difference of y and predicted. */
/* q: quantile */
/*--------------------------------------------------------------------------*/
start rq( yname, y, xname, X, b, predict, error, q);

bound=1.0e10;
coef = X`;  
m = nrow(coef);  
n = ncol(coef);

/*-----------------build rhs and bounds-----------------------------*/
e = repeat(1,1,n)`;
r = {0 0} || ((1-q)*coef*e)`;
sign = repeat(1,1,m);
do i=1 to m;
   if r[2+i] < 0 then do;
      sign[i] = -1;
      r[2+i] = -r[2+i];
      coef[i,] = -coef[i,];
   end;
end;
l = repeat(0,1,n) || repeat(0,1,m) || { -bound } || { -bound };
u = repeat(1,1,n) || repeat(0,1,m) || { . };

/*/-----------------build coefficient matrix and basis----------------*/
a = ( y` || repeat(0,1,m) || { -1 0 } ) //
   ( repeat(0,1,n) || repeat(-1,1,m) || { 0 -1 } ) //
   ( coef || I(m) || repeat(0,m,2) ) ;

/*/------------------find the optimal solution-----------------------*/
cost = j(1,n+m+2,0);
cost[n+m+1] = 1.0;
call lpsolve(rc, optimum, p, d, rcost, 
            cost, a, r, -1, j(m+2,1,'E'), l, u);
```
/**---------------- report the solution-----------------------*/
variable = xname`; b=d[3:m+2];
do i=1 to m;
 b[i] = b[i] * sign[i];
end;
predict = X*b;
error = y - predict;
wsum = sum (choose(error<0 , (q-1)*error , q*error)) ;
label = 'Estimation for ' + yname;
desc = q // n // wsum;
rownames = {'Regression Quantile', 'Number of Observations', 'Sum of Weighted Absolute Errors'};
print desc[L=label r=rownames];
print b[r=variable];
print X y predict error;
finish rq;

The following example uses data on the United States population from 1790 to 1970, and compares the L1 residuals to the least square residuals:

```plaintext
z = { 3.929 1790 ,
      5.308 1800 ,
      7.239 1810 ,
      9.638 1820 ,
     12.866 1830 ,
     17.069 1840 ,
     23.191 1850 ,
     31.443 1860 ,
     39.818 1870 ,
     50.155 1880 ,
     62.947 1890 ,
     75.994 1900 ,
     91.972 1910 ,
    105.710 1920 ,
    122.775 1930 ,
    131.669 1940 ,
    151.325 1950 ,
    179.323 1960 ,
    203.211 1970 };
y=z[,1];
x=repeat(1,19,1)||z[,2]||z[,2]##2;
run rq('pop',y,{'intercpt' 'year' 'yearsq'},x,b1,pred,resid,.5);
/* Compare L1 residuals with least squares residuals */
/* Compute the least squares residuals */
LSResid=y-x*inv(x`*x)*x`*y;
L1Resid = resid;
t = z[,2];
create Residuals var{t L1Resid LSResid}; append; close Residuals; quit;

proc sgplot data=Residuals;
  scatter x=t y=L1Resid / LEGENDLABEL= "L(1) residuals";
```
Example 12.11: Regression Quantiles

```sas
scatter x=t y=LSResid / LEGENDLABEL= "Least squares residuals";
yaxis label="Residuals";
reline 0 / axis=y;
run;
```

The results are shown in Output 12.11.1.

Output 12.11.1 Regression Quantiles: Results

<table>
<thead>
<tr>
<th>Regression Quantile</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>19</td>
</tr>
<tr>
<td>Sum of Weighted Absolute Errors</td>
<td>14.826429</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept 21132.758</td>
</tr>
<tr>
<td>year -23.52574</td>
</tr>
<tr>
<td>yearsq 0.006549</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>y</th>
<th>predict</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1790</td>
<td>3204100</td>
<td>3.929</td>
<td>5.4549176</td>
</tr>
<tr>
<td>1 1800</td>
<td>3240000</td>
<td>5.308</td>
<td>5.308</td>
</tr>
<tr>
<td>1 1810</td>
<td>3276100</td>
<td>7.239</td>
<td>6.4708902</td>
</tr>
<tr>
<td>1 1820</td>
<td>3312400</td>
<td>9.638</td>
<td>8.9435882</td>
</tr>
<tr>
<td>1 1830</td>
<td>3348900</td>
<td>12.866</td>
<td>12.726094</td>
</tr>
<tr>
<td>1 1840</td>
<td>3385600</td>
<td>17.069</td>
<td>17.818408</td>
</tr>
<tr>
<td>1 1850</td>
<td>3422500</td>
<td>23.191</td>
<td>24.220529</td>
</tr>
<tr>
<td>1 1860</td>
<td>3459600</td>
<td>31.443</td>
<td>31.932459</td>
</tr>
<tr>
<td>1 1870</td>
<td>3496900</td>
<td>39.818</td>
<td>40.954196</td>
</tr>
<tr>
<td>1 1880</td>
<td>3534400</td>
<td>50.155</td>
<td>51.285741</td>
</tr>
<tr>
<td>1 1890</td>
<td>3572100</td>
<td>62.947</td>
<td>62.927094</td>
</tr>
<tr>
<td>1 1900</td>
<td>3610000</td>
<td>75.994</td>
<td>75.878255</td>
</tr>
<tr>
<td>1 1910</td>
<td>3648100</td>
<td>91.972</td>
<td>90.139224</td>
</tr>
<tr>
<td>1 1920</td>
<td>3686400</td>
<td>105.71</td>
<td>105.71</td>
</tr>
<tr>
<td>1 1930</td>
<td>3724900</td>
<td>122.775</td>
<td>122.59058</td>
</tr>
<tr>
<td>1 1940</td>
<td>3763600</td>
<td>131.669</td>
<td>140.78098</td>
</tr>
<tr>
<td>1 1950</td>
<td>3802500</td>
<td>151.325</td>
<td>160.28118</td>
</tr>
<tr>
<td>1 1960</td>
<td>3841600</td>
<td>179.323</td>
<td>181.09118</td>
</tr>
<tr>
<td>1 1970</td>
<td>3880900</td>
<td>203.211</td>
<td>203.211</td>
</tr>
</tbody>
</table>

The L1 norm (when $q = 0.5$) tends to cause the fit to be better at more points at the expense of causing the fit to be worse at some points, as shown in Output 12.11.2, which shows a plot that compares the L1 residuals with the least squares residuals.
Example 12.12: Simulations of a Univariate ARMA Process

Simulations of time series with known autoregressive moving average (ARMA) structure are often needed as part of other simulations or as sample data sets for developing skills in time series analysis. You can use the ARMASIM function to simulate a univariate series from an ARMA model. The following module shows some of the computations that are required to simulate data from an ARMA model. The module uses many
Example 12.12: Simulations of a Univariate ARMA Process

SAS/IML functions, including the ARMACOV, HANKEL, PRODUCT, RATIO, TOEPLITZ, and ROOT functions. A short simulated ARMA(1,1) series is shown in Output 12.12.1.

```sas
proc iml;
start armasim(y,n,phi,theta,seed);
/*-----------------------------------------------------------*/
/* IML Module: armasim */
/* Purpose: Simulate n data points from ARMA process */
/* exact covariance method */
/* Arguments: */
/* */
/* Input: n : series length */
/* phi : AR coefficients */
/* theta: MA coefficients */
/* seed : integer seed for normal deviate generator */
/* Output: y: realization of ARMA process */
/* ----------------------------------------------------------*/
p = ncol(phi)-1;
q = ncol(theta)-1;
y = normal(j(1,n+q,seed));

/* Pure MA or white noise */
if p=0 then y=product(theta,y)[, q+1:n+q];
else do;
   /* Pure AR or ARMA */
   /* Get the autocovariance function */
call armacov(gamma,cov,ma,phi,theta,p);
   if gamma[1]<0 then do;
      print ({'ARMA parameters not stable.',
             'Execution terminating.'});
      stop;
   end;
   /* Form covariance matrix */
   gamma = toeplitz(gamma);
   /* Generate covariance between initial y and */
   /* initial innovations */
   if q>0 then do;
      psi = ratio(phi,theta,q);
      psi = hankel(psi[,q:1]);
      m = max(1,q-p+1);
      psi = psi[q:m,];
      if p>q then psi = j(p-q,q,0) // psi;
      gamma = (gamma||psi) // (psi`||I(q));
   end;
   /* Use Cholesky root to get startup values */
   gamma = root(gamma);
   startup = y[,1:p+q] * gamma;
   e = y[,p+q+1:n+q];
   /* Generate MA part */
   if q>0 then do;
      e = startup[,p+1:p+q] || e;
```

Example 12.13: Parameter Estimation for a Regression Model with ARMA Errors

Nonlinear estimation algorithms are required for obtaining estimates of the parameters of a regression model with innovations that have an ARMA structure. Three estimation methods used by the ARIMA procedure in SAS/ETS software are implemented in the following SAS/IML program. The implemented algorithms are slightly different from those used by PROC ARIMA, but the results should be similar. This example uses the ARMALIK, PRODUCT, and RATIO functions to perform the estimation. Note the interactive nature of this example, illustrating how you can adjust the estimates when they venture outside the stationary or invertible regions.

```sas
/*-----------------------------*/
/*---- Grunfeld's Investment Models Fit with ARMA Errors ---- */
/*-----------------------------*/
data grunfeld;
  input year gei gef gec wi wf wc;
  label gei='gross investment ge'
    gec='capital stock lagged ge'
run armasim(y,10,{1 -0.8},{1 0.5}, 1234321);
print y[label="Simulated Series"];```

Output 12.12.1  Simulated Series

<table>
<thead>
<tr>
<th>Simulated Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0764594</td>
</tr>
<tr>
<td>1.8931735</td>
</tr>
<tr>
<td>0.9527984</td>
</tr>
<tr>
<td>0.0892395</td>
</tr>
<tr>
<td>-1.811471</td>
</tr>
<tr>
<td>-2.8063</td>
</tr>
<tr>
<td>-2.52739</td>
</tr>
<tr>
<td>-2.865251</td>
</tr>
<tr>
<td>-1.332334</td>
</tr>
<tr>
<td>0.1049046</td>
</tr>
</tbody>
</table>

Example 12.13: Parameter Estimation for a Regression Model with ARMA Errors

Nonlinear estimation algorithms are required for obtaining estimates of the parameters of a regression model with innovations that have an ARMA structure. Three estimation methods used by the ARIMA procedure in SAS/ETS software are implemented in the following SAS/IML program. The implemented algorithms are slightly different from those used by PROC ARIMA, but the results should be similar. This example uses the ARMALIK, PRODUCT, and RATIO functions to perform the estimation. Note the interactive nature of this example, illustrating how you can adjust the estimates when they venture outside the stationary or invertible regions.
gef='value of outstanding shares ge lagged'
wi='gross investment w'
wc='capital stock lagged w'
wf='value of outstanding shares lagged w';
/*--- GE STANDS FOR GENERAL ELECTRIC AND W FOR WESTINGHOUSE ---*/
datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4
1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;
run;

proc iml;
/*****************************************************************************/
/* Estimation for regression model with ARMA errors */
/* The ARMAREG module uses the following global parameters: */
/* x - matrix of predictors. */
/* y - response vector. */
/* iphi - defines indices of nonzero AR parameters, */
/* omit the index 0 which corresponds to the zero */
/* order constant one. */
/* itheta - defines indices of nonzero MA parameters, */
/* omit the index 0 which corresponds to the zero */
/* order constant one. */
/* ml - estimation option: -1 if Conditional Least */
/* Squares, 1 if Maximum Likelihood, otherwise */
/* Unconditional Least Squares. */
/* delta - step change in parameters (default 0.005). */
/* par - initial values of parms. First ncol(iphi) */
/* values correspond to AR parms, next ncol(itheta)*/
/* values correspond to MA parms, and remaining */
/* are regression coefficients. */
/* init - undefined or zero for first call to ARMAREG. */
/* maxit - maximum number of iterations. No other */
/* convergence criterion is used. You can invoke */
/* ARMAREG without changing parameter values to */
/* continue iterations. */
/*****************************************************************************/
/* nopr - undefined or zero implies no printing of */
/* intermediate results. */
/* */
/* Notes: Optimization using Gauss-Newton iterations */
/* */
/* Invertibility and stationarity are not checked during */
/* the estimation process. The parameter array PAR can be */
/* modified after running ARMAREG to place estimates */
/* in the stationary and invertible regions, and then */
/* ARMAREG can be run again. If a nonstationary AR operator */
/* is employed, a PAUSE will occur after calling ARMALIK */
/* because of a detected singularity. Using STOP will */
/* permit termination of ARMAREG so that the AR */
/* coefficients can be modified. */
/* */
/* T-ratios are only approximate and can be undependable, */
/* especially for small series. */
/* */
/* The notation is the same as for the ARMALIK function. */
/* The autoregressive and moving average coefficients have */
/* signs opposite those given by PROC ARIMA. */

/* Begin ARMA estimation modules */

/* Generate residuals */
start gres;
noise=y-x*beta;
previous=noise[:];
if ml=-1 then do; /* Conditional LS */
    noise=j(nrow(y),1,previous)\noise;
    resid=product(phi,noise\[nrow(y)+1:nrow(noise)])
    resid=ratio(theta,resid,ncol(resid));
    resid=resid[,1:ncol(resid)]
end;
else do; /* Maximum likelihood */
    free l;
    call armalik(l,resid,std,noise,phi,theta);

    /* Nonstationary condition produces PAUSE */
    if nrow(l)=0 then do;
        print 'In GRES: Parameter estimates outside stationary region.';
    end;
    else do;
        temp=l[3,]/(2#nrow(resid));
        if ml=1 then resid=resid#exp(temp);
    end;
end;
finish gres; /* finish module GRES */

start getpar; /* get parameters */
if np=0 then phi=1;
else do;
    temp=parm[,1:np];
Example 12.13: Parameter Estimation for a Regression Model with ARMA Errors

phi=1||j(1,p,0);
phi[,iphi] =temp;
end;
if nq=0 then theta=1;
else do;
temp=parm[,np+1:np+nq];
theta=1||j(1,q,0);
theta[,itheta] =temp;
end;
beta=parm[, (np+nq+1):ncol(parm)]`;
finish getpar; /* finish module GETPAR */

/* Get SS Matrix - First Derivatives */
start getss;
parm=par;
run getpar;
run gres;
s=resid;
oldsse=ssq(resid);
do k=1 to ncol(par);
   parm=par;
   parm[,k]=parm[,k]+delta;
   run getpar;
   run gres;
   s=s || ((resid-s[,1])/delta); /* append derivatives */
end;
ss=s`*s;
if nopr^=0 then print ss[L='Gradient Matrix'];
ssave=ss;
do k=1 to 20; /* Iterate if no reduction in SSE */
do ii=2 to ncol(ss);
    ss[ii,ii]=(1+lambda)*ss[ii,ii];
end;
ss=sweep(ss,2:ncol(ss)); /* Gaussian elimination */
delpar=ss[1,2:ncol(ss)]; /* update parm increments */
parm=par+delpar;
run getpar;
run gres;
ss=ssave;
if sse<oldsse then do; /* reduction, no iteration */
    lambda=max(lambda/10,1e-12);
k=21;
end;
else do; /* no reduction */ /* increase lambda and iterate */
if nopr^=0 then
   print lambda[L='Lambda']=] sse oldsse,
   ss[L='Gradient Matrix'];
lambda=min(10*lambda,1e12);
if k=20 then do;
   print ('GETSS: No improvement in SSE after twenty iterations.',['
   'Possible Ridge Problem.']);
return;
end;
end;

if nopr^=0 then print ss[L='Gradient Matrix'];
finish getss;                 /* Finish module GETSS */

start armareg;                /* ARMAREG main module */

/* Initialize options and parameters */
if nrow(delta)=0 then delta=0.005;
if nrow(maxiter)=0 then maxiter=5;
if nrow(nopr)=0 then nopr=0;
if nrow(ml)=0 then ml=1;
if nrow(init)=0 then init=0;
if init=0 then do;
p=max(iphil);
qu=max(ithetag);
np=ncol(iphil);
nq=ncol(ithetag);
end;

/* Make indices one-based */
do k=1 to np;
   iphil[k]=iphil[k]+1;
end;
do k=1 to nq;
   ithetag[k]=ithetag[k]+1;
end;

/* Create row labels for Parameter estimates */
if p>0 then parmname = concat("AR",char(1:p,2));
if q>0 then parmname = parmname||concat("MA",char(1:q,2));
parmname = parmname||concat("B",char(1:ncol(x),2));

/* Create column labels for Parameter estimates */
pname = {"Estimate" "Std. Error" "T-Ratio"};
init=1;
end;

/* Generate starting values */
if nrow(par)=0 then do;
   beta=inv(x`*x)*x`*y;
   if np+nq>0 then par=j(1,np+nq,0)||beta`;
   else par=beta`;
end;

print par [colname=parmname L='Parameter Starting Values'];
lambda=1e-6;                  /* Controls step size */
do iter=1 to maxiter;        /* Do maxiter iterations */
   run getss;
   par=par+delpar;
   if nopr^=0 then do;
      print par[colname=parmname L='Parameter Update'];
      print lambda[L='Lambda='];
   end;
end;
end;
Example 12.13: Parameter Estimation for a Regression Model with ARMA Errors

\[
sighat = \sqrt{\frac{\text{sse}}{(\text{nrow}(y) - \text{ncol}(par))}};
\]

\[
\text{ss} = \text{sweep}((\text{ss}, 2 : \text{ncol}(\text{ss}))); \quad \text{/* Gaussian elimination */}
\]

\[
\text{estm} = \text{par} \cdot \left( \sqrt{\text{diag}((\text{ss}[2 : \text{ncol}(\text{ss}), 2 : \text{ncol}(\text{ss}))])} \right)
\]

\[
\text{estm} = \text{estm} \cdot \left( \frac{\text{estm}[1]}{\text{estm}[2]} \right);
\]

\[
\text{if ml} = 1 \text{ then label} = \text{''Maximum Likelihood Estimation Results''};
\]

\[
\text{else if ml} = -1 \text{ then label} = \text{''Conditional Least Squares Estimation Results''};
\]

\[
\text{else label} = \text{''Unconditional Least Squares Estimation Results''};
\]

\[
\text{print estm [rownames=parmname colnames=pname l=label] ;}
\]

\[
\text{finish armareg;}
\]

/* End of ARMA Estimation modules */

/* Begin estimation for Grunfeld's investment models */

\[
\text{use grunfeld;}
\]

\[
\text{read all var \{gei\} into \text{y};}
\]

\[
\text{read all var \{gef gec\} into \text{x};}
\]

\[
\text{close grunfeld;}
\]

\[
\text{x} = j(\text{nrow}((\text{x}), 1, 1) || \text{x};
\]

\[
\text{iphi} = 1;
\]

\[
\text{itheta} = 1;
\]

\[
\text{maxiter} = 10;
\]

\[
\text{delta} = 0.0005;
\]

\[
\text{ml} = -1;
\]

\[
\text{//----- To prevent overflow, specify starting values -----*/}
\]

\[
\text{par} = (-0.5 \quad 0.5 \quad -9.956306 \quad 0.0265512 \quad 0.1516939);
\]

\[
\text{run armareg;} \quad \text{/*----- Perform CLS estimation -----*/}
\]

The results are shown in Output 12.13.1.

### Output 12.13.1 Conditional Least Squares Results

<table>
<thead>
<tr>
<th>Parameter Starting Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AR 1</strong></td>
</tr>
<tr>
<td>-0.5</td>
</tr>
</tbody>
</table>

GETSS: No improvement in SSE after twenty iterations. Possible Ridge Problem.

GETSS: No improvement in SSE after twenty iterations. Possible Ridge Problem.

GETSS: No improvement in SSE after twenty iterations. Possible Ridge Problem.

<table>
<thead>
<tr>
<th>Innovation Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.653769</td>
</tr>
</tbody>
</table>
Chapter 12: General Statistics Examples

Output 12.13.1  continued

Conditional Least Squares Estimation Results

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>T-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 1</td>
<td>-0.230905</td>
<td>0.3429525</td>
<td>-0.673287</td>
</tr>
<tr>
<td>MA 1</td>
<td>0.69639</td>
<td>0.2480617</td>
<td>2.8073252</td>
</tr>
<tr>
<td>B 1</td>
<td>-20.87774</td>
<td>31.241368</td>
<td>-0.668272</td>
</tr>
<tr>
<td>B 2</td>
<td>0.038706</td>
<td>0.0167503</td>
<td>2.3107588</td>
</tr>
<tr>
<td>B 3</td>
<td>0.1216554</td>
<td>0.0441722</td>
<td>2.7541159</td>
</tr>
</tbody>
</table>

The results are shown in Output 12.13.2.

Output 12.13.2  Maximum Likelihood Results

Parameter Starting Values

<table>
<thead>
<tr>
<th></th>
<th>AR 1</th>
<th>MA 1</th>
<th>B 1</th>
<th>B 2</th>
<th>B 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>-0.230905</td>
<td>0.69639</td>
<td>-20.87774</td>
<td>0.038706</td>
<td>0.1216554</td>
</tr>
</tbody>
</table>

Innovation Standard Deviation

23.039253

Maximum Likelihood Estimation Results

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>T-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 1</td>
<td>-0.196224</td>
<td>0.3510868</td>
<td>-0.558904</td>
</tr>
<tr>
<td>MA 1</td>
<td>0.6816033</td>
<td>0.2712043</td>
<td>2.5132468</td>
</tr>
<tr>
<td>B 1</td>
<td>-26.47514</td>
<td>33.752826</td>
<td>-0.784383</td>
</tr>
<tr>
<td>B 2</td>
<td>0.0392213</td>
<td>0.0165545</td>
<td>2.3692242</td>
</tr>
<tr>
<td>B 3</td>
<td>0.1310306</td>
<td>0.0425996</td>
<td>3.0758622</td>
</tr>
</tbody>
</table>
Example 12.14: Iterative Proportional Fitting

The classical use of iterative proportional fitting is to adjust frequencies to conform to new marginal totals. You can use the IPF subroutine to perform this kind of analysis. You supply a table that contains new margins and a table that contains old frequencies. The IPF subroutine returns a table of adjusted frequencies that preserves any higher-order interactions appearing in the initial table.

This example is a census study that estimates a population distribution according to age and marital status (Bishop, Fienberg, and Holland 1975). Estimates of the distribution are known for the previous year, but only estimates of marginal totals are known for the current year. The following program adjusts the distribution of the previous year to fit the estimated marginal totals of the current year:

```sas
proc iml;
mod={0.01 15}; /* Stopping criteria */
dim={3 8}; /* Marital status has 3 levels; age has 8 */
/* New marginal totals for age by marital status */
table={219 0 0 ,
 209 0 0 ,
 126 276 0 ,
 0 1541 0 ,
 0 1681 0 ,
 0 1532 0 ,
 0 1662 0 ,
 0 5010 2634};
/* Marginal totals are known for both marital status and age */
config={1 2};
/* Use known distribution for initial values */
initab={836 83 0 ,
 619 765 3 ,
 263 1194 9 ,
 173 1372 28 ,
 171 1393 51 ,
 159 1372 81 ,
 208 1350 108 ,
 1116 4100 2329};
call ipf(fit,status,dim,table,config,initab,mod);
c={' SINGLE' ' MARRIED' 'WIDOWED/DIVORCED'};
r={'15 - 19' '20 - 24' '25 - 29' '30 - 34' '35 - 39' '40 - 44'
 '45 - 49' '50 OR OVER'};
print initab [colname=c rowname=r format=8.0
label='Known Distribution (Previous Year)'],
fit [colname=c rowname=r format=8.2
label='Adjusted Estimates (Current Year)'];
```

The results are shown in Output 12.14.1.
Example 12.15: Nonlinear Regression and Specifying a Model at Run Time

This example demonstrates two techniques: The first is an iterative statistical technique for fitting a nonlinear regression model (Hartley 1961). The second is a programming technique for generating modules at run time by using the QUEUE subroutine.

The typical nonlinear regression program defines modules for the regression model and its derivative as follows:

```
start nlfit;
 /* fit model, residuals, and SSE for current parameter values */
finish;
start nlderiv;
 /* evaluate derivatives of model w.r.t parameters */
finish;
```

However, there might be situations in which the regression model is not known until run time. For example, the model might be specified in a file or from an equation that is typed into a dialog box.

In this situation, you can use the QUEUE subroutine to write the NLFIT and NLERIV modules at run time. You can insert equations for the model and its derivative into the module definitions by using the techniques that are described in the section “Statements That Define and Execute Modules” on page 63 in Chapter 6, “Programming Statements.”

The following module specifies the model and its derivatives as character strings:
proc iml;

/* _FUN and _DER are text strings that define model and deriv */
/* _parm contains parm names */
/* _beta contains initial values for parameters */
/* _k is the number of parameters */
start nlinit;
   _dep = "uspop";  /* dependent variable */
   _fun = "a0*exp(a1*time)";  /* nonlinear regression model */
   /* deriv w.r.t. parameters */
   _der = {"exp(a1*time)", "time*a0*exp(a1*time)"};
   _parm = {"a0", "a1"};  /* names of parameters */
   _beta = {3.9, 0};  /* initial guess for parameters */
   _k= nrow(_parm);  /* number of parameters */
finish nlinit;

All variables are global in scope. Consequently, their names are prefixed by an underscore in order to reduce the likelihood of conflicting with other variables in your program.

The following statements use equations for the model to write the NLFIT and NLDERIV modules:

/* Generate the following modules at run time: */
/* NLFIT: evaluate the model. After RUN NLFIT: */
/* _y contains response, */
/* _p contains predictor after call */
/* _r contains residuals */
/* _sse contains sse */
/* NLDERIV: evaluate derivs w.r.t params. After RUN NLDERIV: */
/* _x contains jacobian */
start nlgen;
   call change(_fun, '*', '#', 0);  /* substitute '#' for '*' */
   call change(_der, '*', '#', 0);
   /* Write the NLFIT module at run time */
   call queue('start nlfit;');
   do i=1 to _k;
      call queue(_parm[i], "=_beta[", char(i,2), "]");
   end;
   call queue("_y = ", _dep, ";",
            "_p = ", _fun, ";",
            "_r = _y - _p;",
            "_sse = ssq(_r);",
            "finish;" );

   /* Write the NLDERIV function at run time */
   call queue('start nlderiv; free _NULL_; _x = ');
   do i=1 to _k;
      call queue("(" , _der[i], ")||");
   end;
   call queue("_NULL_; finish;|");

call queue("resume;");  /* Pause to compile the functions */
   pause *;
finish nlgen;
The program proceeds by calling the NLFIT and NLDERIV modules. The algorithm uses a Gauss-Newton nonlinear regression with step-halving to solve the nonlinear least squares estimation problem:

```plaintext
/* Gauss-Newton nonlinear regression with Hartley step-halving */
start nlest;
 run nlfit; /* f, r, and sse for initial beta */

 /* Gauss-Newton iterations to estimate parameters */
 do _iter=1 to 30 until(_eps<1e-8);
 run nlderiv; /* subroutine for derivatives */
 _lastsse = _sse;
 _xpxi=sweep(_x`*_x);
 _delta = _xpxi*_r; /* correction vector */
 _old = _beta; /* save previous parameters */
 _beta = _beta + _delta; /* apply the correction */
 run nlfit; /* compute residual */
 _eps = abs((_lastsse-_sse)) / (_sse+1e-6);
 /* Hartley subiterations */
 do _subit=1 to 10 while(_sse>_lastsse);
 _delta = _delta/2; /* halve the correction vector */
 _beta = _old+_delta; /* apply the halved correction */
 run nlfit; /* find sse et al */
 end;
 /* if no improvement after 10 halvings, exit iter loop */
 if _subit>10 then _eps=0;
 end;
 /* display table of results */
 if _iter < 30 then do; /* convergence */
 _dfe = nrow(_y) - _k;
 _mse = _sse/_dfe;
 _std = sqrt(vecdiag(_xpxi)#_mse);
 _t = _beta/_std;
 _prob = 1 - cdf("F", _t#_t, 1, _dfe);
 print _beta[label="Estimate"] _std[label="Std Error"]
 _t[label="t Ratio"] _prob[format=pvalue6.]
 _iter[label="Iterations"] _lastsse[label="SSE"]; /* convergence */
 end;
 else print "Convergence failed";
finish nlest;
```

Finally, the following statements define the data for the problem. The dependent variable is the US population from 1790–1970. The explanatory variable is the number of years since 1790. The program fits an exponential model \( y = a_0 \exp(a_1 t) + \epsilon \), where \( \epsilon \) is an error term. The program estimates the parameters \( a_0 \) and \( a_1 \). The results are shown in Output 12.15.1.

```plaintext
/* main program: run nonlinear regression on data */
uspop = {3929, 5308, 7239, 9638, 12866, 17069, 23191, 31443, 39818,
 50155, 62947, 75994, 91972, 105710, 122775, 131669, 151325,
 179323, 203211}/1000; /* US population, in thousands */
year = do(1790,1970,10); /* US population, in thousands */
time = year - 1790;
```
run nlinit; /* define strings that define the regression model */
run nlgen; /* write modules that evaluate the model */
run nlest; /* compute param estimates, std errs, and p-values */

**Output 12.15.1** Nonlinear Regression Estimates

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std Error</th>
<th>t Ratio</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.72004</td>
<td>1.2287001</td>
<td>9.5385689</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>0.0160908</td>
<td>0.0006682</td>
<td>24.081729</td>
<td>&lt;.0001</td>
</tr>
</tbody>
</table>

**Iterations**	**SSE**
10 | 1087.2447

Output 12.15.1 shows that the US population data are best fit by the model $y = 11.7 \exp(0.016 \times t)$.

**References**


Chapter 13
Submitting SAS Statements

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Submitting SAS Statements</td>
<td>225</td>
</tr>
<tr>
<td>Calling a Procedure</td>
<td>225</td>
</tr>
<tr>
<td>Passing Parameters from SAS/IML Matrices</td>
<td>227</td>
</tr>
<tr>
<td>Details of Parameter Substitution</td>
<td>228</td>
</tr>
<tr>
<td>Creating Graphics in a SUBMIT Block</td>
<td>230</td>
</tr>
<tr>
<td>Handling Errors in a SUBMIT Block</td>
<td>232</td>
</tr>
</tbody>
</table>

Introduction to Submitting SAS Statements

In 2002, the IML Workshop application (now known as SAS/IML Studio) introduced a mechanism for submitting SAS statements from programs written in the IMLPlus language. As of SAS/IML 9.22, this feature is also available in PROC IML. This chapter shows you how to submit SAS statements from PROC IML by using the SUBMIT and ENDSUBMIT statements. By using these statements, SAS/IML programmers can call any SAS procedure without losing the state of their PROC IML session.

The statements between the SUBMIT and the ENDSUBMIT statements are referred to as a SUBMIT block. The SUBMIT block is processed by the SAS language processor. You can use the SUBMIT statement to call DATA steps, macros, and SAS procedures.

This chapter covers the following topics:

- calling a SAS procedure from PROC IML
- passing parameters into the SUBMIT block
- creating ODS graphics in a SUBMIT block
- handling errors in the SUBMIT block

Calling a Procedure

This section describes how to call a procedure from PROC IML.

Suppose you have data in a SAS/IML matrix that you want to analyze by using a statistical procedure. In general, you can use the following steps to analyze the data:
Chapter 13: Submitting SAS Statements

1. Write the data to a SAS data set by using the `CREATE` and `APPEND` statements.

2. Use the `SUBMIT` statement to call a SAS procedure that analyzes the data.

3. Read the results of the analysis into SAS/IML matrices by using the `USE` and `READ` statements.

4. Use the results in further computations.

Of course, if the data are already in a SAS data set, you can skip the first step. Similarly, if you are solely interested in the printed output from a procedure, you can skip the third and fourth steps.

The following example calls the UNIVARIATE procedure in Base SAS software to compute a regression analysis. In order to tell the SAS/IML language interpreter that you want certain statements to be sent to the SAS System, you must enclose your SAS statements with `SUBMIT` and `ENDSUBMIT` statements. The `ENDSUBMIT` statement must appear on a line by itself.

1. The following statements create a SAS data set from data in a vector:

   ```sas
 proc iml;
 q = {3.7, 7.1, 2, 4.2, 5.3, 6.4, 8, 5.7, 3.1, 6.1, 4.4, 5.4, 9.5, 11.2};
 create MyData var {q};
 append;
 close MyData;

 The MyData data set is used in the rest of this chapter.

2. You can call the UNIVARIATE procedure to analyze these data. The following statements use the ODS SELECT statement to limit the output from the UNIVARIATE procedure. The output is shown in Figure 13.1.

   ```sas
   submit;
   ods select Moments;
   proc univariate data=MyData;
   var q;
   ods output Moments=Moments;
   run;
   endsubmit;
   
   Figure 13.1 Output from the UNIVARIATE Procedure
   
   The UNIVARIATE Procedure
   Variable: Q
   
<table>
<thead>
<tr>
<th>Moments</th>
<th>Sum Weights</th>
<th>Sum Observations</th>
<th>Std Deviation</th>
<th>Variance</th>
<th>Kurtosis</th>
<th>Corrected SS</th>
<th>Uncorrected SS</th>
<th>Coeff Variation</th>
<th>Std Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>14</td>
<td>14</td>
<td>5.86428571</td>
<td>5.77193956</td>
<td>0.34860956</td>
<td>562.31</td>
<td>562.31</td>
<td>42.5264343</td>
<td>0.66651522</td>
</tr>
</tbody>
</table>
The previous statements also used the ODS OUTPUT statement to create a data set named Moments that contains the statistics shown in Figure 13.1. In the data set, the first column of Figure 13.1 is contained in a variable named Label1 and the second column is contained in a variable named nValue1. The following statements read those variables into SAS/IML vectors of the same names and print the values:

```
use Moments;
read all var \{"nValue1" "Label1"\};
close Moments;

labl = "Statistics for " + name(q);
print nValue1[rowname=Label1 label=labl];
```

![Figure 13.2 Statistics Read into SAS/IML Vectors](image)

<table>
<thead>
<tr>
<th>Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>5.8642857</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>2.4938716</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.6640192</td>
</tr>
<tr>
<td>Uncorrected SS</td>
<td>562.31</td>
</tr>
<tr>
<td>Coeff Variation</td>
<td>42.526434</td>
</tr>
</tbody>
</table>

By using this technique, you can read the value of any statistic that is created by any SAS procedure. You can then use these values in subsequent computations in PROC IML. For example, if you want to standardize the $y$ vector, you can use the mean and standard deviation as computed by the UNIVARIATE procedure, as shown in the following statements:

```
mean = nValue1[2];
stddev = nValue1[3];
stdQ = (q - mean)/stddev;
```

---

**Passing Parameters from SAS/IML Matrices**

The SUBMIT statement enables you to substitute the values of a SAS/IML matrix into the statements that are submitted to the SAS System. For example, the following program calls the UNIVARIATE procedure to analyze data in the MyData data set that was created in the section “Calling a Procedure” on page 225. The program submits SAS statements that are identical to the SUBMIT block in that section:

```
table = "Moments";
varName = "q";

submit table varName;
ods select &table;
```
proc univariate data=MyData;
  var &varName;
  ods output &table=&table;
run;
endsubmit;

You can list the names of SAS/IML matrices in the SUBMIT statement and refer to the contents of those matrices inside the SUBMIT block. The syntax is reminiscent of the syntax for macro variables: an ampersand (&) preceding an expression means “substitute the value of the expression.” However, the substitution takes place before the SUBMIT block is sent to the SAS System; no macro variables are actually created.

You can substitute values from character or numeric matrices and vectors. If \( \mathbf{x} \) is a vector, then \&\( \mathbf{x} \) lists the elements of \( \mathbf{x} \) separated by spaces. For example, the following statements compute trimmed means for three separate values of the TRIM= option:

```sas
table = "TrimmedMeans";
varName = "q";
n = {1, 3, 5}; /* number of observations to trim */

submit table varName n;
ods select &table;
proc univariate data=MyData trim=&n;
 var &varName;
run;
endsubmit;
```

The output is shown in Figure 13.3. The values in the column labeled “Number Trimmed in Tail” correspond to the values in the \( n \) matrix. These values were substituted into the TRIM= option in the PROC UNIVARIATE statement.

**Figure 13.3** Statistics Read into SAS/IML Vectors

The **UNIVARIATE** Procedure

Variable: Q

| Percent Trimmed in Tail | Number Trimmed in Tail | Trimmed Mean       | Std Error Trimmed Mean | 95% Confidence Limits | t for H0: Mu=0.00 | Pr > |t| |
|-------------------------|------------------------|-------------------|-----------------------|-----------------------|-------------------|------|---|
| 7.14                    | 1                      | 5.741667          | 0.664486              | 4.279142              | 7.204191         | 11   | 8.64076 <.0001 |
| 21.43                   | 3                      | 5.575000          | 0.587204              | 4.186483              | 6.963517         | 7    | 9.49414 <.0001 |
| 35.71                   | 5                      | 5.625000          | 0.408613              | 4.324612              | 6.925388         | 3    | 13.76609 0.0008 |

**Details of Parameter Substitution**

The SUBMIT statement supports two kinds of parameter substitution: full substitution and specific substitution.
**Full Substitution**

If you want to substitute many values into a SUBMIT block, it can be tedious to explicitly list the name of every SAS/IML matrix that you reference. You can use an asterisk (*) in the SUBMIT statement as a “wildcard character” to indicate that all SAS/IML matrices are available for parameter substitution. This is called *full substitution* and is shown in the following statements:

```sas
proc iml;
DSName = "Sashelp.Class";
NumObs = 1;

submit *;
 proc print data=&DSName(obs=&NumObs);
 run;
endsubmit;
```

![Figure 13.4 Full Substitution](image)

<table>
<thead>
<tr>
<th>Obs</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfred</td>
<td>M</td>
<td>14</td>
<td>69</td>
<td>112.5</td>
</tr>
</tbody>
</table>

If the SUBMIT block contains a parameter reference (that is, a token that begins with an ampersand (&) for which there is no matching SAS/IML matrix, the parameter reference is not modified prior to being sent to the SAS language processor. In this way, you can reference SAS macro variables in a SUBMIT block.

**Specific Substitution**

A SUBMIT statement that contains an explicit list of parameters is easier to understand than a SUBMIT statement that contains only the asterisk wildcard character (*). Specifying an explicit list of parameters is called *specific substitution*. These—and only these—parameters are used to make substitutions into the SUBMIT block.

```sas
proc iml;
DSName = "Sashelp.Class";
NumObs = 2;

submit DSName NumObs;
 proc print data=&DSName(obs=&NumObs);
 run;
endsubmit;
```

![Figure 13.5 Specific Substitution](image)

<table>
<thead>
<tr>
<th>Obs</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfred</td>
<td>M</td>
<td>14</td>
<td>69.0</td>
<td>112.5</td>
</tr>
<tr>
<td>2</td>
<td>Alice</td>
<td>F</td>
<td>13</td>
<td>56.5</td>
<td>84.0</td>
</tr>
</tbody>
</table>

If the SUBMIT block contains a parameter reference (that is, a token that begins with an ampersand (&) for which there is no matching parameter, the parameter reference is not modified prior to being sent to the SAS language processor. In this way, you can reference SAS macro variables in a SUBMIT block.

With specific substitution, you have additional options for specifying the value of a parameter. You can use
any of the following ways to specify the value of a parameter:

- Specify the name of a SAS/IML matrix to use for the value of a parameter, as shown in the following statements:

  ```sas
 s = "Sashelp.Class"; n = 2;
 submit DSName=s NumObs=n;
 proc print data=&DSName(obs=&NumObs);
 run;
 endsSubmit;
  ```

- Specify a literal value to use for the value of a parameter, as shown in the following statements:

  ```sas
 submit DSName="Sashelp.Class" NumObs=2;
 proc print data=&DSName(obs=&NumObs);
 run;
 endsSubmit;
  ```

- Specify a matrix expression that is enclosed in parentheses, as shown in the following statements:

  ```sas
 libref = "Sashelp";
 fname = "Class";
 NumObs = 2;
 submit DSName=(libref+"."+fname) NumObs;
 proc print data=&DSName(obs=&NumObs);
 run;
 endsSubmit;
  ```

---

**Creating Graphics in a SUBMIT Block**

If you use the SUBMIT statement to call a SAS procedure that creates a graph, that graph is sent to the current ODS destination. The following statements call the UNIVARIATE procedure, which creates a histogram as part of the analysis:

```sas
ods graphics on;
proc iml;
msg1 = "First PRINT Statement in PROC IML";
msg2 = "Second PRINT Statement in PROC IML";
print msg1;
submit;
ods select Moments Histogram;
proc univariate data=Sashelp.Class;
```
Creating Graphics in a SUBMIT Block

```plaintext
var Height;
histogram / kernel;
run;
endsubmit;

print msg2;
ods graphics off;
```

When you run the program, the PROC UNIVARIATE output is interleaved with the PROC IML output. The output from the program is shown in Figure 13.6 through Figure 13.8.

**Figure 13.6** Output from PROC IML and from SUBMIT Block

<table>
<thead>
<tr>
<th>msg1</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PRINT Statement in PROC IML</td>
</tr>
</tbody>
</table>

The **UNIVARIATE Procedure**  
Variable: Height

<table>
<thead>
<tr>
<th>Moments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>19</td>
</tr>
<tr>
<td>Sum Weights</td>
<td>19</td>
</tr>
<tr>
<td>Mean</td>
<td>62.3368421</td>
</tr>
<tr>
<td>Sum Observations</td>
<td>1184.4</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>5.12707525</td>
</tr>
<tr>
<td>Variance</td>
<td>26.2869006</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.2596696</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.1389692</td>
</tr>
<tr>
<td>Uncorrected SS</td>
<td>74304.92</td>
</tr>
<tr>
<td>Corrected SS</td>
<td>473164211</td>
</tr>
<tr>
<td>Coeff Variation</td>
<td>8.22479143</td>
</tr>
<tr>
<td>Std Error Mean</td>
<td>1.17623173</td>
</tr>
</tbody>
</table>

**Figure 13.7** Graphic Created in a SUBMIT Block

**Figure 13.8** Further PROC IML Output

<table>
<thead>
<tr>
<th>msg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second PRINT Statement in PROC IML</td>
</tr>
</tbody>
</table>
Handling Errors in a SUBMIT Block

After executing a SUBMIT block, PROC IML continues to execute the remaining statements in the program. However, if there is an error in the SUBMIT block, it might make sense to abort the program or to handle the error in some other way.

The OK= option in the SUBMIT statement provides a limited form of error handling. If you specify the OK= option, then PROC IML sets a matrix to the value 1 if the SUBMIT block executes without error. Otherwise, the matrix is set to the value 0.

The following statements contain an error in a SUBMIT block: two letters are transposed when specifying the name of a data set. Consequently, the `isOK` matrix is set to 0, and the program handles the error.

```sas
DSName = "Sashelp.caless"; /* mistyped name; data set does not exist */

submit DSName / ok=isOK;
proc univariate data=&DSName;
 var Height;
 ods output Moments=Moments;
run;
endsubmit;

if isOK then do; /* handle the no-error case */
 use Moments;
 read all var {"nValue1"} into m;
 close Moments;
 skewness = m[4]; /* get statistic from procedure output */
end;
else
 skewness = .; /* handle an error */

print skewness;
```

Figure 13.9 The Result of Handling an Error in a SUBMIT Block

```
<table>
<thead>
<tr>
<th>skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
</tr>
</tbody>
</table>
```
Chapter 14
Calling Functions in the R Language

Overview of Calling Functions in the R Language

R is a freely available language and environment for statistical computing and graphics. Like the SAS/IML language, the R language has features suitable for developers of statistical algorithms: the ability to manipulate matrices and vectors, a large number of built-in functions for computing statistical quantities, and the capability to extend the basic function library by writing user-defined functions. There are also a large number of user-contributed packages in R that implement specialized computations.

In 2009, the SAS/IML Studio application introduced a mechanism for calling R functions from programs written in the IMLPlus language. As of SAS/IML 9.22, this feature is available in PROC IML. This chapter shows you how to call R functions from PROC IML by using the SUBMIT and ENDSUBMIT statements.
This chapter describes how to configure the SAS system so that you can call functions in the R language. The chapter also describes how to do the following:

- transfer data to R
- call R functions from PROC IML
- transfer the results from R to a number of SAS data structures

You cannot call R from the free SAS University Edition. The SAS University Edition runs on a virtual machine that does not have R installed.

### Installing the R Statistical Software

SAS does not distribute R software. In order to call R software, you must first install R on the same computer that runs SAS software. If you access a SAS workspace server through client software such as SAS Enterprise Guide®, then R must be installed on the SAS server.


In SAS/IML, the interface to R is supported on computers that run a 32-bit or 64-bit Windows operating system or Linux operating systems. If you are using SAS software in a 64-bit Linux environment, you must download a 64-bit binary distribution of R. Otherwise, download a 32-bit binary distribution.

The document “Installing R on Linux Operating Systems” is available on support.sas.com and includes pointers for installing R on Linux that it works with the SAS interface to R.

### The RLANG System Option

The RLANG system option determines whether you have permission to call R from the SAS system. You can determine the value of the RLANG option by submitting the following SAS statements:

```sas
proc options option=RLANG;
run;
```

The result is one of the following statements in the SAS log:

- **NORLANG**  Do not support access to R language interfaces  
  If the SAS log contains this statement, you do not have permission to call R from the SAS system.

- **RLANG**  Support access to R language interfaces  
  If the SAS log contains this statement, you can call R from the SAS system.
Submit R Statements

In order to call R from the SAS system, the R statistical software must be installed on the SAS workspace server and the RLANG system option must be enabled. (See the section “The RLANG System Option” on page 234.)

Chapter 13, “Submitting SAS Statements,” describes how to submit SAS statements from PROC IML. Submitting R statements is similar. You use a SUBMIT statement, but add the R option: SUBMIT / R. All statements in the program between the SUBMIT statement and the next ENDSUBMIT statement are sent to R for execution. The ENDSUBMIT statement must appear on a line by itself.

The simplest program that calls R is one that does not transfer any data between the two environments. In the following program, SAS/IML is used to compute the product of a matrix and a vector. The result is printed. Then the SUBMIT statement with the R option is used to send an equivalent set of statements to R.

```sas
proc iml;
/* Comparison of matrix operations in IML and R */
print "---------- SAS/IML Results -----------------";
 x = 1:3; /* vector of sequence 1,2,3 */
 m = {1 2 3, 4 5 6, 7 8 9}; /* 3 x 3 matrix */
 q = m * t(x); /* matrix multiplication */
print q;
```

The RLANG option can be changed only at SAS start-up. In order to call R, the SAS system must be launched with the -RLANG option. (It is often convenient to insert this option in a SASV9.CFG file.) For security reasons, some system administrators configure the SAS system to start with the -NORLANG option. The RLANG option is similar to the XCMD option in that both options enable SAS users to potentially write or delete important data and system files.

If you attempt to submit R statements on a system that was not launched with the -RLANG option, you get the following error message:

```
ERROR: The RLANG system option must be specified in the SAS configuration file or on the SAS invocation command line to enable the submission of R language statements.
```

Some operating systems do not support the RLANG system option. The RLANG system option is currently supported for the Windows and Linux operating systems. If you attempt to submit R statements on a host that does not support the RLANG option, you get the following warning message:

```
WARNING: SAS option RLANG is not supported on this host.
```
Chapter 14: Calling Functions in the R Language

print "--------------- R Results -------------------";
submit / R;
   rx <- matrix( 1:3, nrow=1) # vector of sequence 1,2,3
   rm <- matrix( 1:9, nrow=3, byrow=TRUE) # 3 x 3 matrix
   rq <- rm %*% t(rx) # matrix multiplication
   print(rq)
endsubmit;

The printed output from R is automatically routed to the SAS output window, as shown in Figure 14.1. As expected, the result of the computation is the same in R as in SAS/IML.

Figure 14.1 Output from SAS/IML and R

<p>|----------| SAS/IML Results |----------|
|----------|------------------|
| q        | 14               |
|          | 32               |</p>
<table>
<thead>
<tr>
<th></th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R Results</td>
</tr>
<tr>
<td>[1,]</td>
<td>14</td>
</tr>
<tr>
<td>[2,]</td>
<td>32</td>
</tr>
<tr>
<td>[3,]</td>
<td>50</td>
</tr>
</tbody>
</table>

Transferring Data between SAS and R Software

Many research statisticians take advantage of special-purpose functions and packages written in the R language. When you call an R function, the data must be accessible to R, either in a data frame or in an R matrix. This section describes how you can transfer data and statistical results (for example, fitted values or parameter estimates) between SAS and R data structures.

You can transfer data to and from the following SAS data structures:

- a SAS data set in a libref
- a SAS/IML matrix

In addition, you can transfer data to and from the following R data structures:

- an R data frame
- an R matrix
Transfer from a SAS Source to an R Destination

Table 14.1 summarizes the subroutines that copy data from a SAS source to an R destination. For more information, see the section “Details of Data Transfer” on page 244.

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>SAS Source</th>
<th>R Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExportDataSetToR</td>
<td>SAS data set</td>
<td>R data frame</td>
</tr>
<tr>
<td>ExportMatrixToR</td>
<td>SAS/IML matrix</td>
<td>R matrix</td>
</tr>
</tbody>
</table>

As a simple example, the following program transfers a data set from the Sashelp libref into an R data frame named df. The program then submits an R statement that displays the names of the variables in the data frame.

```r
proc iml;
 call ExportDataSetToR("Sashelp.Class", "df");
 submit / R;
 names(df)
 endsubmit;
```

The R `names` function produces the output shown in Figure 14.2.

![Figure 14.2 Result of Sending Data to R](image)

Transfer from an R Source to a SAS Destination

You can transfer data and results from R data frames or matrices to a SAS data set or a SAS/IML matrix. Table 14.2 summarizes the frequently used methods that copy from an R source to a SAS destination.

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>R Source</th>
<th>SAS Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImportDataSetFromR</td>
<td>R expression</td>
<td>SAS data set</td>
</tr>
<tr>
<td>ImportMatrixFromR</td>
<td>R expression</td>
<td>SAS/IML matrix</td>
</tr>
</tbody>
</table>

The next section includes an example of calling an R analysis. Some of the results from the analysis are then transferred into SAS/IML matrices.

The result of an R analysis can be a complicated structure. In order to transfer an R object via the previously mentioned methods and modules, the object must be coercible to a data frame. (The R object `m` can be coerced to a data frame provided that the function `as.data.frame(m)` succeeds.) There are many data
structures that cannot be coerced into data frames. As the example in the next section shows, you can use R statements to extract and transfer simpler objects.

---

**Call an R Analysis from PROC IML**

You can use the techniques in Chapter 13, “Submitting SAS Statements,” to perform a linear regression by calling a regression procedure (such as REG, GLM, or MIXED) in SAS/STAT software. This section presents examples of submitting statements to R to perform a linear regression. The first example performs a linear regression on data that are transferred from SAS/IML vectors. The second example performs an identical analysis on data that are transferred from a SAS data set.

---

**Using R to Analyze Data in SAS/IML Matrices**

The program in this section consists of four parts:

1. Read the data into SAS/IML vectors.
2. Transfer the data to R.
3. Call R functions to analyze the data.
4. Transfer the results of the analysis into SAS/IML vectors.

1 **Read the data.** The following statements read the Weight and Height variables from the Sashelp.Class data set into SAS/IML vectors with the same names:

```plaintext
proc iml;
use Sashelp.Class;
read all var {Weight Height};
close Sashelp.Class;
```

2 **Transfer the data to R.** The following statements run the ExportMatrixToR subroutine in order to transfer data from a SAS/IML matrix into an R matrix. The names of the corresponding R vectors that contain the data are \( w \) and \( h \).

```plaintext
/* send matrices to R */
call ExportMatrixToR(Weight, "w");
call ExportMatrixToR(Height, "h");
```

3 **Call R functions to perform some analysis.** The SUBMIT statement with the R option is used to send statements to R. Comments in R begin with a hash mark (\#, also called a number sign or a pound sign).
submit / R;
    Model <- lm(w ~ h, na.action="na.exclude")  # a
    ParamEst <- coef(Model)  # b
    Pred <- fitted(Model)
    Resid <- residuals(Model)
endsubmit;

The R program consists of the following steps:

a. The `lm` function computes a linear model of `w` as a function of `h`. The `na.action=` option specifies how the model handles missing values (which in R are represented by NA). In particular, the `na.exclude` option specifies that the `lm` function should not omit observations with missing values from residual and predicted values. This option makes it easier to merge the R results with the original data when the data contain missing values.

b. Various information is retrieved from the linear model and placed into R vectors named `ParamEst`, `Pred`, and `Resid`.

4 Transfer the data from R. The `ImportMatrixFromR` subroutine transfers the `ParamEst` vector from R into a SAS/IML vector named `pe`. This vector is printed by the SAS/IML PRINT statement. The predicted values (`Pred`) and residual values (`Resid`) can be transferred similarly. The parameter estimates are used to compute the predicted values for a series of hypothetical heights, as shown in Figure 14.3.

```
call ImportMatrixFromR(pe, "ParamEst");
print pe[r={"Intercept" "Height"}];

ht = T(do(55, 70, 5));
A = j(nrow(ht),1,1) || ht;
pred_wt = A * pe;
print ht pred_wt;
```

![Figure 14.3 Results from an R Analysis](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-143.0269</td>
</tr>
<tr>
<td>Height</td>
<td>3.8990303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ht</th>
<th>pred_wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>71.419746</td>
</tr>
<tr>
<td>60</td>
<td>90.914898</td>
</tr>
<tr>
<td>65</td>
<td>110.41005</td>
</tr>
<tr>
<td>70</td>
<td>129.9052</td>
</tr>
</tbody>
</table>

You cannot directly transfer the contents of the `Model` object. Instead, various R functions are used to extract portions of the `Model` object, and those simpler pieces are transferred.
Using R to Analyze Data in a SAS Data Set

As an alternative to the data transfer statements in the previous section, you can call the ExportDataSetToR subroutine to transfer the entire SAS data set to an R data frame. For example, you could use the following statements to create an R data frame named `Class` and to model the `Weight` variable:

```r
call ExportDataSetToR("Sashelp.Class", "Class");
submit / R;
 Model <- lm(Weight ~ Height, data=Class, na.action="na.exclude")
endsubmit;
```

The R language is case-sensitive so you must use the correct case to refer to variables in a data frame. You can use the CONTENTS function in the SAS/IML language to obtain the names and capitalization of variables in a SAS data set.

Passing Parameters to R

The SUBMIT statement supports parameter substitution from SAS/IML matrices as detailed in the section “Passing Parameters from SAS/IML Matrices” on page 227. For example, you can substitute the names of analysis variables into a SUBMIT block by using the following statements:

```r
YVar = "Weight";
XVar = "Height";
submit XVar YVar / R;
 Model <- lm(&YVar ~ &XVar, data=Class, na.action="na.exclude")
 print (Model$call)
endsubmit;
```

Figure 14.4 shows the result of the `print(Model$call)` statement. The output shows that the values of the `YVar` and `XVar` matrices were substituted into the SUBMIT block.

Call R Packages from PROC IML

You do not need to do anything special to call an R package. Provided that an R package is installed, you can call `library(package)` from inside a SUBMIT block to load the package. You can then call the functions in the package.

The example in this section calls an R package and imports the results into a SAS data set. This example is similar to the example in the section “Creating Graphics in a SUBMIT Block” on page 230, which calls the UNIVARIATE procedure to create a kernel density estimate. The program in this section consists of the following steps:
1. Define the data and transfer the data to R.

2. Call R functions to analyze the data.

3. Transfer the results of the analysis into SAS/IML vectors.

1 Define the data in the SAS/IML vector `q` and then transfer the data to R by using the `ExportMatrixToR` subroutine. In R, the data are stored in a vector named `rq`.

```sas
proc iml;
q = {3.7, 7.1, 2, 4.2, 5.3, 6.4, 8, 5.7, 3.1, 6.1, 4.4, 5.4, 9.5, 11.2};
RVar = "rq";
call ExportMatrixToR(q, RVar);
```

2 Load the KernSmooth package. Because the functions in the KernSmooth package do not handle missing values, the nonmissing values in `q` must be copied to a matrix `p`. (There are no missing values in this example.) The Sheather-Jones plug-in bandwidth is computed by calling the `dpik` function in the KernSmooth package. This bandwidth is used in the `bkde` function (in the same package) to compute a kernel density estimate.

```r
submit RVar / R;
library(KernSmooth)
idx <- which(!is.na(&RVar)) # must exclude missing values (NA)
p <- &RVar[idx] # from KernSmooth functions
h = dpik(p) # Sheather-Jones plug-in bandwidth
est <- bkde(p, bandwidth=h) # est has 2 columns
endsubmit;
```

3 Copy the results into a SAS data set or a SAS/IML matrix, and perform additional computations. For example, the following statements use the trapezoidal rule to numerically estimate the density that is contained in the tail of the density estimate of the data:

```sas
call ImportMatrixFromR(m, "est");
/* estimate the density for q >= 8 */
x = m[,1]; /* x values for density */
idx = loc(x>=8); /* find values x >= 8 */
y = m[idx, 2]; /* extract corresponding density values */

/* Use the trapezoidal rule to estimate the area under the density curve. The area of a trapezoid with base w and heights h1 and h2 is w*(h1+h2)/2. */
w = m[2,1] - m[1,1];
h1 = y[1:nrow(y)-1];
h2 = y[2:nrow(y)];
Area = w * sum(h1+h2) / 2;
print Area;
```
The numerical estimate for the conditional density is shown in Figure 14.5. The estimate is shown graphically in Figure 14.6, where the conditional density corresponds to the shaded area in the figure. Figure 14.6 was created by using the SGPLOT procedure to display the density estimate computed by the R package.

**Figure 14.5** Computation That Combines SAS/IML and R Computations

<table>
<thead>
<tr>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2118117</td>
</tr>
</tbody>
</table>

**Figure 14.6** Estimated Density for $x \geq 8$
Call R Graphics from PROC IML

R can create graphics in a separate window which, by default, appears on the same computer on which R is running. If you are running PROC IML and R locally on your desktop or laptop computer, you can display R graphics. However, if you are running client software that connects with a remote SAS server that is running PROC IML and R, then R graphics might be disabled.

The following statements describe some common scenarios for running a PROC IML program:

- If you run PROC IML through a SAS Display Manager Session (DMS), you can create R graphics from your PROC IML program. The graph appears in the standard R graphics window.

- If you run PROC IML through SAS Enterprise Guide, the display of R graphics is disabled because, in general, the SAS server (and therefore R) is running on a different computer than the SAS Enterprise Guide application.

- If you run PROC IML from interactive line mode or from batch mode, then R graphics are disabled.

You can determine whether R graphics are enabled by calling the `interactive` function in the R language.

For example, the previous section used R to compute a kernel density estimate for some data. If you are running PROC IML through SAS DMS, you can create a histogram and overlay the kernel density estimate by using the following statements:

```r
submit / R;
 hist(p, freq=FALSE) # histogram
 lines(est) # kde overlay
endsubmit;
```

The `hist` function creates a histogram of the data in the `p` matrix, and the `lines` function adds the kernel density estimate contained in the `est` matrix. The R graphics window contains the histogram, which is shown in Figure 14.7.
Handling Errors from R

If you submit R code that causes an error, you can attempt to handle the error by using the OK= option in the SUBMIT statement, as described in the section “Handling Errors in a SUBMIT Block” on page 232.

Details of Data Transfer

This section describes how data are transferred between SAS and R software. It includes a discussion of numerical data types, missing values, and data that represent dates and times.
Numeric Data Types

R can store numeric data in either an integer or a double-precision data type. When transferring R data to a SAS data type, integers types are converted to double precision.

Logical Data Types

R provides a logical data type for storing the values TRUE and FALSE. When logical data are transferred to a SAS data type, the value TRUE is converted to the number 1 and the value FALSE to the number 0.

Unsupported Data Types

R provides two data types that are not converted to a SAS data type: complex and raw. It is an error to attempt to transfer data stored in either of these data types to a SAS data type.

Special Numeric Values

The R language has four symbols that are used to represent special numerical values.

- The symbol NA represents a missing value.
- The symbol Inf represents positive infinity.
- The symbol -Inf represents negative infinity.
- The symbol NaN represents a “NaN,” which is a floating-point value that represents an undefined value such as the result of the division 0/0.

The SAS language has 28 symbols that are used to represent special numerical values.

- The symbol . represents a generic missing value.
- The symbols .A–.Z and ._ are also missing values. Some applications use .I to represent positive infinity and use .M to represent negative infinity.

The following table shows how special numeric values in R are converted to SAS missing values:

<table>
<thead>
<tr>
<th>Value in R</th>
<th>SAS Missing Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf</td>
<td>.I</td>
</tr>
<tr>
<td>-Inf</td>
<td>.M</td>
</tr>
<tr>
<td>NA</td>
<td>.</td>
</tr>
<tr>
<td>NaN</td>
<td>.</td>
</tr>
</tbody>
</table>
The following table shows how SAS missing values are converted when data are transferred to R:

<table>
<thead>
<tr>
<th>SAS Missing Value</th>
<th>Value in R</th>
</tr>
</thead>
<tbody>
<tr>
<td>.I</td>
<td>Inf</td>
</tr>
<tr>
<td>.M</td>
<td>–Inf</td>
</tr>
<tr>
<td>All others</td>
<td>NA</td>
</tr>
</tbody>
</table>

### Date, Time, and Datetime Values

R supports date and time data differently than does SAS software. In SAS software, variables that represent dates or times are assigned a format such as DATE9. or TIME5. In R, classes are used to represent dates and times.

When a variable in a SAS data set is transferred to R software, the variable’s format is examined and the following occurs:

- If the format is in the family of date formats (for example, DATEw.d), the variable in R is assigned the “Date” class.
- If the format is in the family of datetime formats (for example, DATETIMEw.d) or time formats (for example, TIMEw.d), the variable in R is assigned the “POSIXct” and “POSIXt” classes.
- In all other cases, the variable in R is assigned the “numeric” class.

When a variable in an R data frame is transferred to SAS software, the variable’s class is examined and the following occurs:

- If the variable’s class is “Date,” the corresponding SAS variable is assigned the DATE9. format.
- If the variable’s class is “POSIXt,” the corresponding SAS variable is assigned the DATETIME19. format.
- In all other cases, the SAS variable is not assigned a format.

### Time Series Data

In SAS, the sampling times for time series data are often stored in a separate variable. In R, the sampling times for a time series object are specified by the `tsp` attribute. When a time series object in R is transferred to SAS software, the following occurs:

- The R `time` function is used to generate a vector of the times at which the time series is sampled.
- A new variable named `VarName_ts` is created, where `VarName` is the name of the time series object in R. The variable contains sampling times for the time series.

No special processing of time series data is performed when data are transferred from SAS to R software.
Data Structures

R provides a wide range of built-in and user-defined data structures. When data are transferred from R to SAS software, the data are coerced to a data frame prior to the transfer. If the coercion fails, the data are not transferred.

The section “Using R to Analyze Data in SAS/IML Matrices” on page 238 presents an example of an R object that cannot be directly imported to SAS software and shows how to use R functions to extract simpler data structures from the R object.

Differences from SAS/IML Studio

This section lists differences between the R option in the SUBMIT statement as implemented in SAS/IML Studio and the same option in PROC IML:

- In PROC IML, R must be installed on the computer that runs the SAS server. In SAS/IML Studio, R must be installed on the computer that runs the SAS/IML Studio application.

- If R is installed on a SAS workspace server and is accessed through SAS Enterprise Guide, everyone that connects to that server uses the same version of R and the same set of installed packages. In SAS/IML Studio, R is installed locally on the client computer, so each user can potentially have a different version of R and different packages.
Overview

SAS/IML has four subroutines that you can use for robust estimation of location and scale, for outlier detection, and for robust regression. The least median of squares (LMS) and least trimmed squares (LTS) subroutines perform robust regression (sometimes called resistant regression). These subroutines can detect outliers and perform a least squares regression on the remaining observations. You can use the minimum volume ellipsoid estimation (MVE) and minimum covariance determinant estimation (MCD) subroutines to find a robust location and a robust covariance matrix that you can use to construct confidence regions, to detect multivariate outliers and leverage points, and to conduct robust canonical correlation and principal component analyses.

The LMS, LTS, MVE, and MCD methods were developed by Rousseeuw (1984) and Rousseeuw and Leroy (1987). All these methods have a high breakdown value. The breakdown value is a measure of the proportion of contamination that a procedure can withstand and still maintain its robustness.

The algorithm that the LMS subroutine uses is based on the program for robust regression (PROGRESS) of Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy (1987). In the special case of regression through the origin for a single regressor, Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in general, find the slope that yields the least median of squares. Starting with SAS/IML 9.2, the LMS subroutine includes the algorithm of Barreto and Maharry (2006) as a special case.

The algorithm that the LTS subroutine uses is based on the FAST-LTS algorithm of Rousseeuw and Van Driessen (2000). The MCD algorithm is based on the FAST-MCD algorithm of Rousseeuw and Van Driessen (1999), which is similar to the FAST-LTS algorithm. The MVE algorithm is based on the
algorithm that is used in the MINVOL program by Rousseeuw (1984). LTS estimation has higher statistical efficiency than LMS estimation. Using the FAST-LTS algorithm, LTS is also faster than LMS for large data sets. Similarly, MCD is faster than MVE for large data sets.

In addition to LTS estimation and LMS estimation, there are other methods for robust regression and outlier detection. For more information, see the documentation of the ROBUSTREG procedure in SAS/STAT User’s Guide. A summary of these robust tools in SAS can be found in Chen (2002).

The four SAS/IML subroutines are designed for the following tasks:

- LMS minimizes the $h$th ordered squared residual.
- LTS minimizes the sum of the $h$ smallest squared residuals.
- MCD minimizes the determinant of the covariance of $h$ points.
- MVE minimizes the volume of an ellipsoid that contains $h$ points.

The value $h$ is the number of observations to use. The value is in the range

$$\frac{N}{2} + 1 \leq h \leq \frac{3N}{4} + \frac{n + 1}{4}$$

where $N$ is the number of observations and $n$ is the number of regressors. (The value of $h$ can be specified, but in most applications the default value works well and the results seem to be quite stable for different choices of $h$.) The value of $h$ determines the breakdown value, which is “the smallest fraction of contamination that can cause the estimator $T$ to take on values arbitrarily far from $T(Z)$” (Rousseeuw and Leroy 1987). Here, $T(Z)$ indicates the result of applying an estimator $T$ to a sample $Z$ that contains $h$ observations.

For a linear regression model that includes the parameter vector $\mathbf{b} = (b_1, \ldots, b_n)$, the residual of observation $i$ is $r_i = y_i - x_i \cdot \mathbf{b}$. Let $(r^2)_1:N \leq \cdots \leq (r^2)_{N:N}$ be the ordered, squared residuals. The objective functions for the LMS, LTS, MCD, and MVE optimization problems are defined as follows. Each algorithm strives to find the parameter vector that minimizes the objective function.

- The objective function for the LMS optimization problem is the $h$th ordered squared residual:

$$F_{\text{LMS}} = (r^2)_{h:N}$$

For $h = N/2 + 1$, the $h$th quantile is the median of the squared residuals. The default $h$ in PROGRESS is an optimal value $h = \left\lceil \frac{N + n + 1}{2} \right\rceil$, which yields the breakdown value $(N - h + 1)/n$, where $[k]$ denotes the integer part of $k$.

- The objective function for the LTS optimization problem is the sum of the $h$ smallest ordered squared residuals:

$$F_{\text{LTS}} = \sqrt{\frac{1}{h} \sum_{i=1}^{h} (r^2)_{i:N}}$$
The objective function for the MCD optimization problem is based on the determinant of the covariance of the selected $h$ points,

$$F_{MCD} = \det(C_h)$$

where $C_h$ is the covariance matrix of the selected $h$ points.

The objective function for the MVE optimization problem is based on the $h$th quantile $d_{h:N}$ of the Mahalanobis-type distances $d = (d_1, \ldots, d_N)$.

$$F_{MVE} = \sqrt{d_{h:N}} \det(C)$$

subject to $d_{h:N} = \sqrt{\chi^2_{n,0.5}}$, where $C$ is the scatter matrix estimate, and the Mahalanobis-type distances are computed as

$$d = \text{diag}(\sqrt{(X - T)^T C^{-1} (X - T)})$$

where $T$ is the location estimate.

Because of the nonsmooth form of these objective functions, the estimates cannot be obtained by using traditional optimization algorithms. For LMS and LTS, the algorithm, as in the PROGRESS program, selects a number of subsets of $n$ observations out of the $N$ specified observations, evaluates the objective function, and saves the subset with the lowest objective function. As long as the problem size enables you to evaluate all such subsets, the result is a global optimum. If computing time does not permit you to evaluate all the different subsets, a random collection of subsets is evaluated. In such a case, you might not obtain the global optimum.

The LMS, LTS, MCD, and MVE subroutines require that the number of observations, $N$, be more than twice the number of explanatory variables, $n$ (including the intercept). That is, the require $N > 2n$.

---

**Using the LMS and LTS Subroutines**

Because of space considerations, the tables that contain residuals and resistant diagnostics are not displayed in this document. The LMS and LTS routines have options for displaying tables. However, you can also obtain relevant information by examining the return values of the subroutines’ first three arguments. Both techniques are shown in this chapter.

---

**Example 15.1: Robust Regression and Leverage Points**

A Hertzsprung-Russell diagram is a scatter plot that shows the relationship between the luminosity of stars and their effective temperatures. The following data correspond to 47 stars of the CYG OB1 cluster in the direction of the constellation Cygnus (Rousseeuw and Leroy 1987; Humphreys 1978; Vansina and De Greve 1982). The regressor variable $x$ (column 2) is the logarithm of the effective temperature at the surface of the star, and the response variable $y$ (column 3) is the logarithm of its light intensity. This data set is remarkable in that it contains four substantial leverage points (observations 11, 20, 30, and 34) that greatly affect the results of $L_2$, and even $L_1$, regression. The high leverage points, which represent giant stars, are shown in Output 15.1.2.

The following SAS/IML statements define the data:
proc iml;
/* Hertzsprung-Russell Star Data */
/* ObsNum LogTemp LogIntensity */

x = hr[,2]; y = hr[,3];

You can call the LMS subroutine to carry out a least median squares regression analysis. In the following statements, the ODS SELECT statement limits the number of tables that are produced by the subroutine:

```plaintext
optn = j(9,1,.);
optn[2]= 1; /* do not print residuals, diagnostics, or history */
optn[3]= 3; /* compute LS, LMS, and weighted LS regression */
ods select LSEst EstCoeff RLSEstLMS;
call lms(sc, coef, wgt, optn, y, x);
ods select all;
```

Output 15.1.1 shows the parameter estimates for three regression models: the least squares (LS) model, the LMS model, and a weighted robust least squares (RLS) model.

**Output 15.1.1** Parameter Estimates from the LMS Subroutine

<table>
<thead>
<tr>
<th>LS Parameter Estimates</th>
<th>Intercep</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>-0.413303861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Coefficients</th>
<th>Intercep</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>3.9705882353</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RLS Parameter Estimates</th>
<th>Intercep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on LMS</td>
<td>3.0461569368</td>
</tr>
</tbody>
</table>
The three regression lines are plotted in Output 15.1.2. The least squares line has a negative slope and a positive intercept. It is highly influenced by the four leverage points in the upper left portion of Output 15.1.2. In contrast, the LMS regression line (whose parameter estimates are shown in the “Estimated Coefficients” table) fits the bulk of the data and ignores the four leverage points.

Similarly, the weighted least squares line (in which the observations 7, 9, 11, 20, 30, and 34 are given zero weight) is less affected by the leverage points. The weights are determined by the size of the scaled residuals for the LMS regression.

In addition to the printed output, the LMS subroutine returns information about the fitted models in the \( \text{sc} \), \( \text{coef} \), and \( \text{wgt} \) matrices. The following statements display some of the values in the \( \text{sc} \) matrix. See Output 15.1.3.

```r
r1 = c("Quantile", "Number of Subsets", "Number of Singular Subsets", "Number of Nonzero Weights", "Objective Function", "Preliminary Scale Estimate", "Final Scale Estimate", "Robust R Squared", "Asymptotic Consistency Factor");
r2 = c("WLS Scale Estimate", "Weighted Sum of Squares", "Weighted R-squared", "F Statistic");
sc1 = sc[1:9];
sc2 = sc[11:14];
print sc1[r=r1 L="LMS Information and Estimates"],
print sc2[r=r2 L="Weighted Least Squares"];```
Output 15.1.3 Details of LMS Regression

<table>
<thead>
<tr>
<th>LMS Information and Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantile</td>
</tr>
<tr>
<td>Number of Subsets</td>
</tr>
<tr>
<td>Number of Singular Subsets</td>
</tr>
<tr>
<td>Number of Nonzero Weights</td>
</tr>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Preliminary Scale Estimate</td>
</tr>
<tr>
<td>Final Scale Estimate</td>
</tr>
<tr>
<td>Robust R Squared</td>
</tr>
<tr>
<td>Asymptotic Consistency Factor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weighted Least Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLS Scale Estimate</td>
</tr>
<tr>
<td>Weighted Sum of Squares</td>
</tr>
<tr>
<td>Weighted R-squared</td>
</tr>
<tr>
<td>F Statistic</td>
</tr>
</tbody>
</table>

Output 15.1.3 shows summary statistics for the analysis. The analysis tries to minimize the \(h \)th ordered residual, where \(h = \left\lceil \frac{N+n+1}{2} \right\rceil = \left\lceil \frac{47+2+1}{2} \right\rceil = 25 \). The LMS algorithm randomly selects 1,081 subsets of three observations. Of these, 45 are singular. The subset that minimizes the 25th ordered residual is found. Based on this subset, six observations are classified as outliers.

The `coef` matrix contains as many columns as there are regressor variables. Rows of the `coef` matrix contain parameter estimates and related statistics. The `wgt` matrix contains as many columns as there are observations. Rows of the `wgt` matrix contain an indicator variable for outliers and residuals for the robust regression.

An alternative to LMS regression is least trimmed squares (LTS) regression. The LTS subroutine implements the FAST-LTS regression algorithm, which improves the Rousseeuw and Leroy (1987) algorithm (called V7 LTS in this chapter) by using techniques called “selective iteration” and “nested extensions.” These techniques are used in the C-steps of the algorithm. See Rousseeuw and Van Driessen (2000) for details. The FAST-LTS algorithm significantly improves the speed of computation.

The LTS subroutine performs least trimmed squares (LTS) robust regression by minimizing the sum of the \(h \) smallest squared residuals. The following statements compute the LTS regression for the Hertzsprung-Russell star data:

```plaintext
optn = j(9,1,.);  
optn[2]= 3;  /* print a maximum amount of information */  
optn[3]= 3;  /* compute LS, LTS, and weighted LS regression */  
ods select BestHalf EstCoeff;  
call lts(sc, coef, wgt, optn, y, x);  
ods select all;
```

The line of best fit for the LTS regression has slope 4.23 and intercept \(-13.624\) as shown in the “Estimated Coefficients” table in Output 15.1.4. This is a steeper line than for the LMS regression, which is shown in Output 15.1.1.
Output 15.1.4 LTS Parameter Estimates

<table>
<thead>
<tr>
<th>Estimated Coefficients</th>
<th>VAR1</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.219182102</td>
<td>-13.6239903</td>
</tr>
</tbody>
</table>

Output 15.1.5 shows the best subset of observations for the Hertzsprung-Russell data. There are $h = 25$ observations in Output 15.1.5.

Output 15.1.5 Observations of the Best Subset

| 2 4 6 10 13 15 17 19 21 22 25 27 28 29 33 36 38 41 42 43 44 45 46 |

Output 15.1.6 shows the geometric meaning of the best subset. In the graph, the selected observations determine the regression line. The observations that are not contained in the best subset are not used to fit the regression line.

Output 15.1.6 LTS Regression Line and Best Subset

Example 15.2: Comparison of LMS and LTS Algorithms

The following example compares the LMS and FAST-LTS subroutines. The data are the stack loss data of Brownlee (1965). The three explanatory variables correspond to measurements for a plant that oxidizes ammonia to nitric acid on 21 consecutive days:

- x_1 represents the air flow to the plant.
- x_2 represents the temperature of cooling water.
- x_3 represents the acid concentration.
The response variable gives the permillage of ammonia lost (stack loss). The following data are also given in Rousseeuw and Leroy (1987) and Osborne (1985):

```plaintext
proc iml;
/* Obs X1 X2 X3 Y Stack Loss data */
SL = { 1 80 27 89 42,
       2 80 27 88 37,
       3 75 25 90 37,
       4 62 24 87 28,
       5 62 22 87 18,
       6 62 23 87 18,
       7 62 24 93 19,
       8 62 24 93 20,
       9 58 23 87 15,
      10 58 18 80 14,
      11 58 18 89 14,
      12 58 17 88 13,
      13 58 18 82 11,
      14 58 19 93 12,
      15 50 18 89 8,
      16 50 18 86 7,
      17 50 19 72 8,
      18 50 19 79 8,
      19 50 20 80 9,
      20 56 20 82 15,
      21 70 20 91 15
};
x = SL[, 2:4]; y = SL[, 5];
```

Rousseeuw and Leroy (1987) cite a large number of papers in which the preceding data were analyzed. They state that most researchers “concluded that observations 1, 3, 4, and 21 were outliers” and that some people also reported observation 2 as an outlier.

LMS Regression with 2,000 Random Subsets

For \(N = 21 \) and \(n = 4 \) (three explanatory variables plus an intercept), there are a total of \(\binom{21}{4} = 5,985 \) different subsets of four observations. If you do not specify OPTN[5], the LMS subroutine draws 2,000 random sample subsets. A large number of subsets are collinear and therefore lead to singular linear systems. To suppress printing these subsets and to reduce other output, choose OPTN[2]=2 as in the following statements:

```plaintext
/* Use 2000 Random Subsets for LMS */
optn = j(9,1,.);
optn[2]= 2; /* print a moderate amount of output */
optn[3]= 1; /* compute only LMS regression */
ods select IterHist0 BestSubset EstCoeff;
call lms(sc, coef, wgt, optn, y, x);
ods select all;
```

Summary statistics are shown in Output 15.2.1. The “IterHist0” table summarizes the process of choosing subsets of four observations. A total of 2,103 subsets are chosen in order to obtain 2,000 nonsingular subsets. The subset that yields the best regression fit consists of observations 10, 11, 15, and 19. The parameter estimates for the LMS regression are \(\hat{\beta}_1 = 0.75, \hat{\beta}_2 = 0.5, \hat{\beta}_3 = 0.0, \) and \(\hat{\beta}_0 = -39.25. \)
The three matrices that are returned by the LMS subroutine contain detailed information about the regression. A few of the results are shown in Output 15.2.2, which is produced by the following statements:

```plaintext
r1 = {"Quantile", "Number of Subsets", "Number of Singular Subsets", "Number of Nonzero Weights", "Min Objective Function", "Preliminary Scale Estimate", "Final Scale Estimate", "Robust R Squared", "Asymptotic Consistency Factor"};
sc1 = sc[1:9];
print sc1[r=r1 L="LMS Information and Estimates"];
```

The matrix that is shown in Output 15.2.2 includes the following information:

- The LMS algorithm minimizes the square of the 13th smallest residual.
- Of the 21 observations in the data, 17 are assigned nonzero weights. Equivalently, four are classified as influential observations and are assigned zero weights.
- The other statistics are described in the documentation for the LMS subroutine.

You can print the `wgt` vector to discover that the observations 1, 3, 4, and 21 have scaled residuals larger than 2.5 (output not shown) and so are classified as outliers.
Chapter 15: Robust Regression Examples

LTS Regression with 500 Random Subsets

The FAST-LTS algorithm uses only 500 random subsets and gets better optimization results, as measured by
the sum of the squared residuals criterion. The following statements call the LTS subroutine:

```plaintext
/* Use 500 random subsets for FAST-LTS algorithm */
optn = j(9,1, .);
optn[2] = 0;  /* suppress output */
optn[3] = 0;  /* compute only LTS regression */
optn[9] = 0;  /* FAST-LTS */

call lts(sc, coef, wgt, optn, y, x);
```

The following statements display information about the LTS algorithm, parameter estimates, and outliers:

```plaintext
r1 = {"Quantile", "Number of Subsets", "Number of Singular Subsets",
     "Number of Nonzero Weights", "Min Objective Function",
     "Preliminary Scale Estimate", "Final Scale Estimate",
     "Robust R Squared", "Asymptotic Consistency Factor"};
scl = sc[1:9];
print scl[r=r1 L="LTS Information and Estimates"];

print {coef[1,]}[L="Estimated Coefficients"
c={"x1" "x2" "x3" "Intercept"}];

outliers = loc(wgt[1,]=0);
print outliers;
```

The results are shown in Output 15.2.3. The LTS algorithm examines 517 subsets of observations, for which
17 are singular, and classifies six observations as outliers. The output also shows the parameter estimates for
the regression model.

Output 15.2.3 Results for LTS Algorithm

<table>
<thead>
<tr>
<th>LTS Information and Estimates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantile</td>
<td>13</td>
</tr>
<tr>
<td>Number of Subsets</td>
<td>517</td>
</tr>
<tr>
<td>Number of Singular Subsets</td>
<td>17</td>
</tr>
<tr>
<td>Number of Nonzero Weights</td>
<td>15</td>
</tr>
<tr>
<td>Min Objective Function</td>
<td>0.4749406</td>
</tr>
<tr>
<td>Preliminary Scale Estimate</td>
<td>0.9888436</td>
</tr>
<tr>
<td>Final Scale Estimate</td>
<td>1.0360273</td>
</tr>
<tr>
<td>Robust R Squared</td>
<td>0.974552</td>
</tr>
<tr>
<td>Asymptotic Consistency Factor</td>
<td>2.0820364</td>
</tr>
</tbody>
</table>

Estimated Coefficients	
x1	0.7409211
x2	0.3915267
x3	0.0111345
Intercept	-37.32333

| outliers | |
| 1 2 3 4 13 21 | |
Robust Regression with All 5,985 Subsets

For a small number of observations, you can generate regression results by considering all possible subsets of observations. For the LMS subroutine, you can set OPTN[5] = −1 to generate all subsets. For the stack loss data, the parameter estimates are identical to Output 15.2.2.

Example 15.3: LMS and LTS Univariate (Location) Problem

If you do not specify a design matrix X for the last input argument, the regression problem reduces to the problem of estimating the location parameter. That is, the “intercept-only” regression model is equivalent to estimating the location parameter for the response variable. For ordinary least squares regression, an intercept-only regression model estimates the mean. For robust regression, it estimates a robust measure of location.

The following example is described in Rousseeuw and Leroy (1987); Barnett and Lewis (1994).

```iml
proc iml;
y = { 3, 4, 7, 8, 10, 949, 951 }; 
optn = j(9,1,.); 
call lms(scLMS, coefLMS, wgtLMS, optn, y); 
call lts(scLTS, coefLTS, wgtLTS, optn, y); 
LMSOutliers = loc(wgtLMS[1,]=0); 
LTSOutliers = loc(wgtLTS[1,]=0); 
print LMSOutliers, LTSOutliers; 

rLoc = {"Mean", "Median", "LMS Location", "LTS Location"}; 
Loc = mean(y) // median(y) // coefLMS[1] // coefLTS[1]; 
print Loc[r=rLoc L="Location Estimates"]; 

rScale = {"StdDev", "MAD", "LMS Scale", "LTS Scale"}; 
Scale = std(y) // mad(y) // scLMS[7] // scLTS[7]; 
print Scale[r=rScale L="Scale Estimates"];
```

Output 15.3.1 shows that the LMS and LTS subroutines both classify observations 6 and 7 as outliers.

Output 15.3.1 Estimates of Location and Scale for Univariate Data

<table>
<thead>
<tr>
<th>LMSOutliers</th>
<th>LTSOutliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Estimates</th>
<th>Scale Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>276</td>
</tr>
<tr>
<td>Median</td>
<td>8</td>
</tr>
<tr>
<td>LMS Location</td>
<td>5.5</td>
</tr>
<tr>
<td>LTS Location</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Output 15.3.1 shows several estimates of the central location of the data. The classical mean (276) is highly influenced by the two large values. In contrast, the median of the data is 8, and the LMS and LTS estimates are both 5.5. Output 15.3.1 also shows estimates of the scale of the data. The classical standard deviation (460.4) is influenced by the two large values. In contrast, the MAD function computes the median absolute deviation to be 4. The LMS and LTS estimates are both 3.05. The scale estimate in the univariate problem is a resistant (high-breakdown) estimator for the dispersion of the data (Rousseeuw and Leroy 1987).

Using the MVE and MCD Subroutines

The MVE subroutine computes the robust estimation of multivariate location and scatter, which are obtained by minimizing the volume of an ellipsoid that contains h points. The MCD subroutine is similar. It minimizes the determinant of the covariance matrix that is computed from h points. In general, the MCD subroutine is faster than the MVE subroutine.

You can use these robust locations and covariance matrices to detect multivariate outliers and leverage points. Both subroutines provide a table of robust distances.

The MVESCATTER and MCDSCATTER modules are used in these examples for plotting the results. These routines are in the *RobustMC.sas* file, which is contained in the SAS/IML sample library.

Example 15.4: Relationship between Brain Mass and Body Mass

This section creates graphs that illustrate the results of the MVE and MCD procedures. The following statements load the *RobustMC.sas* program, which is included in the SAS/IML sample library. The LOAD_MODULES=_ALL_ statement loads modules that are defined in the program. In particular, this section uses the MVESCATTER and MCDSCATTER modules.

```sas
%include sampsrc(robustmc); /* define graphing modules */
proc iml;
load module=_all_; /* load graphing modules */
```

Jerison (1973) reported data for the body mass (in kilograms) and brain mass (in grams) of $N = 28$ animals. These data were further analyzed in Rousseeuw and Leroy (1987). Instead of the original data, the following example uses the logarithms of the measurements of the two variables:
Example 15.4: Relationship between Brain Mass and Body Mass

```plaintext
/* Log(Body Mass) Log(Brain Mass) */
mass={ 0.1303338 0.9084851, 2.6674530 2.6263400,
      1.5602650 2.0773680, 1.4418520 2.0606980,
      0.0170333 0.7403627, 4.0681860 1.6989700,
      3.4060290 3.6630410, 2.720740 2.6221400,
      2.7168380 2.8162410, 1.0000000 2.0606980,
      0.5185139 1.4082400, 2.7234560 2.8325090,
      2.3159700 2.6085260, 1.7929320 3.1205740,
      3.8230830 3.7567880, 3.9731280 1.8450980,
      0.8325089 2.2528530, 1.5440680 1.7481880,
     -0.9208187 0.0000000, -1.6382720 -0.3979400,
      0.3979400 1.0827850, 1.7442930 2.2430380,
      2.0000000 2.1959000, 1.7173380 2.6434530,
      4.9395190 2.1889280, -0.5528420 0.2787536,
     -0.9136401 0.4771213, 2.2833010 2.2552720};
```

By default, the MVE subroutine uses randomly selected subsets rather than all subsets. The following statements specify that all 3,276 subsets of three observations out of 28 observations be generated and evaluated. **Output 15.4.1** shows partial results of the analysis.

```plaintext
optn = j(5,1,.);
optn[1] = 1; /* print basic output */
optn[2] = 1; /* print covariance matrices */
optn[5]= -1; /* nrep: use all subsets */
ods exclude EigenRobust Distances DistrRes;
call mve(sc, xmve, dist, optn, mass);
ods select all;
```

Output 15.4.1 Results of MVE Robust Estimation

Minimum Volume Ellipsoid (MVE) Estimation

Consider Ellipsoids Containing 15 Cases.

<table>
<thead>
<tr>
<th>Classical Covariance Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classical Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
</tbody>
</table>
Chapter 15: Robust Regression Examples

Output 15.4.1 continued
There are 3276 subsets of 3 cases out of 28 cases.
All 3276 subsets will be considered.

Complete Enumeration for MVE
25 % of calculations have been executed.
75 % of calculations have been executed.
Minimum Criterion= 0.439709106
Among 3276 subsets 0 are singular.

<table>
<thead>
<tr>
<th>Initial MVE Location Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 1.3859759333</td>
</tr>
<tr>
<td>VAR2 1.8022650333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial MVE Scatter Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 VAR2</td>
</tr>
<tr>
<td>4.9018525125 3.2937139101</td>
</tr>
<tr>
<td>3.2937139101 2.3400650932</td>
</tr>
</tbody>
</table>

Final MVE Estimates (Using Local Improvement)

Number of Points with Nonzero Weight=24

<table>
<thead>
<tr>
<th>Robust MVE Location Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 1.2952823792</td>
</tr>
<tr>
<td>VAR2 1.8733722792</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Robust MVE Scatter Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 VAR2</td>
</tr>
<tr>
<td>2.056659296 1.5290250177</td>
</tr>
<tr>
<td>1.5290250177 1.2041353589</td>
</tr>
</tbody>
</table>

Distribution of Robust Distances

Cutoff Value = 2.7162030315

The cutoff value is the square root of the 0.975 quantile of the chi square distribution with 2 degrees of freedom.

There are 5 points with large robust distances receiving zero weights. These may include boundary cases. Only points whose robust distances are substantially larger than the cutoff value should be considered outliers.

The MVE routine also returns information in the sc, xmove, and dist matrices. The following statements print some of that information:
Example 15.4: Relationship between Brain Mass and Body Mass

\[
\begin{align*}
& r1 = \{"Quantile", "Number of Subsets", "Number of Singular Subsets",
& \quad "Number of Nonzero Weights", "Min Objective Function",
& \quad "Min Distance", "Chi-Square Cutoff Value"\};
& RobustCenter = x\text{mve}[1,];
& RobustCov = x\text{mve}[3:4,];
& \text{print sc[r=r1],}
& \quad \text{RobustCenter[c=\{"X1","X2"\}],}
& \quad \text{RobustCov[r=\{"X1","X2"\} c=\{"X1","X2"\}];}
& \text{MVEOutliers = loc(dist[3,]=0);}
& \text{print MVEOutliers;}
\end{align*}
\]

Output 15.4.2 Robust Estimates and Outliers

<table>
<thead>
<tr>
<th>sc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantile</td>
<td>15</td>
</tr>
<tr>
<td>Number of Subsets</td>
<td>3276</td>
</tr>
<tr>
<td>Number of Singular Subsets</td>
<td>0</td>
</tr>
<tr>
<td>Number of Nonzero Weights</td>
<td>23</td>
</tr>
<tr>
<td>Min Objective Function</td>
<td>0.4397091</td>
</tr>
<tr>
<td>Min Distance</td>
<td>1.4755584</td>
</tr>
<tr>
<td>Chi-Square Cutoff Value</td>
<td>2.716203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RobustCenter</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1.2952824</td>
<td>1.8733723</td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RobustCov</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>2.0566593</td>
<td>1.529025</td>
</tr>
<tr>
<td>X2</td>
<td>1.529025</td>
<td>1.2041354</td>
</tr>
</tbody>
</table>

| MVEOutliers | 6 | 14 | 16 | 17 | 25 |

The first table in Output 15.4.2 shows some summary statistics about the combinatoric optimization (complete subset sampling) during the MVE algorithm. The algorithm considers subsets of three observations and strives to find the subset that minimizes the volume of an ellipsoid that contains 15 points. The MVE algorithm considers 3,276 subsets, of which zero are singular. The minimum volume is found to be 1.47.

The mean vector is contained in the RobustCenter vector. The covariance matrix is contained in the RobustCov matrix.

Based on that center and covariance matrix, a Mahalanobis-type distance (called the robust distance) that measures each observation’s distance from the robust center is computed. Observations that are more than a certain distance (the “Cutoff Value”) from the center are classified as outliers. For these data, observations 6, 14, 16, 17, and 25 are classified as outliers.

You can call the MVESCATTER subroutine, which is included in the sample library in the file RobustMC.sas, to plot the classical and robust confidence ellipsoids. The LOAD MODULES=_ALL_ statement loads modules that are defined in the program. The following statements create the scatter plot that is shown in Output 15.4.3.
MCD is another subroutine that can be used to compute the robust location and the robust covariance of multivariate data sets. The following statements call the MCD subroutine and produce Output 15.4.4.

```plaintext
/* MCD: Use Random Subsets */
optn = j(5,1,.);
call mcd(sc, xmve, dist, optn, mass);

r1 = {"Quantile", "Number of Subsets", "Number of Singular Subsets",
      "Number of Nonzero Weights", "Min Objective Function",
      "Min Distance", "Chi-Square Cutoff Value"};
RobustCenter = xmve[1,];
RobustCov = xmve[3:4,];
print sc[r=r1],
      RobustCenter[c="X1","X2"],
      RobustCov[r="X1","X2" c="X1","X2"];
```
Output 15.4.4 Results of MCD Robust Estimation

Estimates of Location and Scale (MVE)

<table>
<thead>
<tr>
<th>sc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantile</td>
<td>15</td>
</tr>
<tr>
<td>Number of Subsets</td>
<td>500</td>
</tr>
<tr>
<td>Number of Singular Subsets</td>
<td>0</td>
</tr>
<tr>
<td>Number of Nonzero Weights</td>
<td>23</td>
</tr>
<tr>
<td>Min Objective Function</td>
<td>0.0174302</td>
</tr>
<tr>
<td>Min Distance</td>
<td>1.9190823</td>
</tr>
<tr>
<td>Chi-Square Cutoff Value</td>
<td>2.716203</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RobustCenter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>1.315403</td>
<td>1.8568731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RobustCov</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
</tr>
<tr>
<td>2.1399861</td>
<td>1.6068557</td>
</tr>
<tr>
<td>X2</td>
<td>1.6068557</td>
</tr>
</tbody>
</table>

The results are similar to Output 15.4.1. For the MCD subroutine, 500 random subsets are used for the optimization. The robust center and covariance matrices are slightly different from those found by the MVE subroutine. However, the observations that are classified as outliers (not shown) are the same.

You can call the MCDSCATTER subroutine, which is included in the SAS/IML sample library, to plot the classical and robust confidence ellipsoids, as follows:

```plaintext
call MCDScatter(mass, optn, 0.9, vnam, titl);
```

The plot is shown in Output 15.4.5. It looks very similar to Output 15.4.3.
Example 15.5: Multivariate Location, Scale, and Outliers

This section analyzes the three regressors in the stack loss data of Brownlee (1965), which are defined in Example 15.2. As in the previous section, the LOAD MODULES=_ALL_ statement loads modules that are defined in the RobustMC.sas file.

```sas
%include sampsrc(robustmc); /* define graphing modules */
proc iml;
load module=_all_; /* load graphing modules */
```

By default, the MVE subroutine generates 2,000 randomly selected subsets in its search. The following call to the MVE subroutine uses all 5,985 subsets of four observations that can be chosen from the 21 observations:

```sas
/* Obs X1 X2 X3 Y Stack Loss data */
SL = { 1 80 27 89 42,
2 80 27 88 37,
3 75 25 90 37,
4 62 24 87 28,
5 62 22 87 18,
6 62 23 87 18,
7 62 24 93 19,
8 62 24 93 20,
9 58 23 87 15,
10 58 18 80 14,
11 58 18 89 14,
12 58 17 88 13,
13 58 18 82 11,
14 58 19 93 12,
15 50 18 89 8,
16 50 18 86 7,
17 50 19 72 8,
18 50 19 79 8,
```
Example 15.5: Multivariate Location, Scale, and Outliers

19 50 20 80 9,
20 56 20 82 15,
21 70 20 91 15

x = SL[, 2:4]; y = SL[, 5];

optn = j(5,1,.);
optn[1] = 1; /* print basic output */
optn[2] = 1; /* print covariance matrices */
optn[5]= -1; /* nrep: use all subsets */

ods select ClassicalMean ClassicalCov RobustMVELoc RobustMVEScatter;
call mve(sc, xmve, dist, optn, x);
ods select all;

Output 15.5.1 shows the classical and robust estimates of the location. Output 15.5.2 shows the classical and robust estimates of the scatter.

\textbf{Output 15.5.1} Classical and Robust Estimates of the Location

<table>
<thead>
<tr>
<th>Classical Mean</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>60.428571429</td>
</tr>
<tr>
<td>VAR2</td>
<td>21.095238095</td>
</tr>
<tr>
<td>VAR3</td>
<td>86.285714286</td>
</tr>
</tbody>
</table>

\textbf{Output 15.5.2} Classical and Robust Estimates of the Scatter

<table>
<thead>
<tr>
<th>Classical Covariance Matrix</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>84.057142857</td>
<td>22.657142857</td>
<td>24.571428571</td>
</tr>
<tr>
<td>VAR2</td>
<td>22.657142857</td>
<td>9.9904761905</td>
<td>6.6214285714</td>
</tr>
<tr>
<td>VAR3</td>
<td>24.571428571</td>
<td>6.6214285714</td>
<td>28.714285714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Robust MVE Scatter Matrix</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>23.470588235</td>
<td>7.5735294118</td>
<td>16.102941176</td>
</tr>
<tr>
<td>VAR2</td>
<td>7.5735294118</td>
<td>6.3161764706</td>
<td>5.3676470588</td>
</tr>
<tr>
<td>VAR3</td>
<td>16.102941176</td>
<td>5.3676470588</td>
<td>32.389705882</td>
</tr>
</tbody>
</table>

The following statements generate three bivariate scatter plots of the classical and robust tolerance ellipsoids. The plots are shown in Output 15.5.3, Output 15.5.4, and Output 15.5.5, one plot for each pair of variables.
optn = j(5,1,.); optn[5]= -1;
vnam = {"Rate", "Temperature", "AcidConcent"};
titl = "Stack Loss Data: Use All Subsets";
call MVEScatter(x, optn, 0.9, vnam, titl);

Output 15.5.3 Stack Loss Data: Rate versus Temperature (MVE)

![Stack Loss Data: Rate versus Temperature (MVE)](image)

Output 15.5.4 Stack Loss Data: Rate versus Acid Concentration (MVE)

![Stack Loss Data: Rate versus Acid Concentration (MVE)](image)
You can also use the MCD method for the stack loss data as follows:

```plaintext
optn = j(5,1,.);
optn[1]= 2;    /* print distances */
optn[2]= 1;    /* print covariance matrices */
optn[5]= -1 ;  /* nrep: use all subsets */
call mcd(sc, xmcd, dist, optn, x);
```

The optimization results are displayed in Output 15.5.6. The reweighted results are displayed in Output 15.5.7.

Output 15.5.6 MCD Results of Optimization

Stack Loss Data: Use All Subsets

```
  4  5  6  7  8  9 10 11 12 13 14 20

  MCD Location Estimate
  VAR1  VAR2  VAR3
  59.5  20.833333333  87.333333333

  MCD Scatter Matrix Estimate
  VAR1  VAR2  VAR3
  VAR1  5.1818181818  4.8181818182  4.7272727273
  VAR2  4.8181818182  7.6060606061  5.0606060606
  VAR3  4.7272727273  5.0606060606  19.1515151515

  Consistent Scatter Matrix
  VAR1  VAR2  VAR3
  VAR1  8.6578437815  8.0502757968  7.8983838007
  VAR2  8.0502757968  12.708297013  8.4553211199
  VAR3  7.8983838007  8.4553211199  31.999580526
```
Output 15.5.7 Final Reweighted MCD Results

<table>
<thead>
<tr>
<th>Reweighted Location Estimate</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59.5</td>
<td>20.833333333</td>
<td>87.333333333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reweighted Scatter Matrix</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>5.181818181818</td>
<td>4.8181818182</td>
<td>4.7272727273</td>
</tr>
<tr>
<td>VAR2</td>
<td>4.818181818182</td>
<td>7.6060606061</td>
<td>5.0606060606</td>
</tr>
<tr>
<td>VAR3</td>
<td>4.7272727273</td>
<td>5.0606060606</td>
<td>19.151515152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.191069268</td>
<td>7.3520037086</td>
<td>1.3963209628</td>
</tr>
</tbody>
</table>

The MCD robust distances and outlying diagnostic are displayed in Output 15.5.8. MCD identifies more leverage points than MVE identifies.

Output 15.5.8 MCD Robust Distances

<table>
<thead>
<tr>
<th>Classical Distances and Robust (Rousseeuw) Distances</th>
<th>Unsquared Mahalanobis Distance and Unsquared Rousseeuw Distance of Each Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mahalanobis Distances</td>
</tr>
<tr>
<td>1</td>
<td>2.253603</td>
</tr>
<tr>
<td>2</td>
<td>2.324745</td>
</tr>
<tr>
<td>3</td>
<td>1.593712</td>
</tr>
<tr>
<td>4</td>
<td>1.271898</td>
</tr>
<tr>
<td>5</td>
<td>0.303357</td>
</tr>
<tr>
<td>6</td>
<td>0.772895</td>
</tr>
<tr>
<td>7</td>
<td>1.852661</td>
</tr>
<tr>
<td>8</td>
<td>1.852661</td>
</tr>
<tr>
<td>9</td>
<td>1.360622</td>
</tr>
<tr>
<td>10</td>
<td>1.745997</td>
</tr>
<tr>
<td>11</td>
<td>1.465702</td>
</tr>
<tr>
<td>12</td>
<td>1.841504</td>
</tr>
<tr>
<td>13</td>
<td>1.482649</td>
</tr>
<tr>
<td>14</td>
<td>1.777875</td>
</tr>
<tr>
<td>15</td>
<td>1.690241</td>
</tr>
<tr>
<td>16</td>
<td>1.291934</td>
</tr>
<tr>
<td>17</td>
<td>2.700016</td>
</tr>
<tr>
<td>18</td>
<td>1.503155</td>
</tr>
<tr>
<td>19</td>
<td>1.593221</td>
</tr>
<tr>
<td>20</td>
<td>0.807054</td>
</tr>
<tr>
<td>21</td>
<td>2.176761</td>
</tr>
</tbody>
</table>
The following statements generate three bivariate scatter plots of the classical and robust tolerance ellipsoids:

```plaintext
optn = j(5,1,.); optn[5]= -1;
vnam = {"Rate", "Temperature", "AcidConcent"};
titl = "Stack Loss Data: Use All Subsets";
call MCDScatter(x, optn, 0.9, vnam, titl);
```

Output 15.5.9, Output 15.5.10, and Output 15.5.11 display these plots, one plot for each pair of variables:

Output 15.5.9 Stack Loss Data: Rate versus Temperature (MCD)

![Stack Loss Data: Rate versus Temperature (MCD)](image)

Output 15.5.10 Stack Loss Data: Rate versus Acid Concentration (MCD)

![Stack Loss Data: Rate versus Acid Concentration (MCD)](image)
Diagnostic Plots for Robust Regression

This section is based on Rousseeuw and Van Zomeren (1990). Observations x_i, which are far away from most of the other observations, are called leverage points. One classical method inspects the Mahalanobis distances MD_i to find outliers x_i,

$$ MD_i = \sqrt{(x_i - \mu)C^{-1}(x_i - \mu)^T} $$

where C is the classical sample covariance matrix.

Note that the MVE and MCD subroutines compute the classical Mahalanobis distances MD_i together with the robust distances RD_i. In classical linear regression, the diagonal elements h_{ii} of the hat matrix,

$$ H = X(X^TX)^{-1}X^T $$

are used to identify leverage points. Rousseeuw and Van Zomeren (1990) report the following monotone relationship between the h_{ii} and MD_i:

$$ h_{ii} = \frac{(MD_i)^2}{N-1} + \frac{1}{n} $$

They point out that neither the MD_i nor the h_{ii} are entirely safe for detecting leverage points reliably. Multiple outliers do not necessarily have large MD_i values because of the masking effect.

Therefore, the definition of a leverage point is based entirely on the outlyingness of x_i and is not related to the response value y_i. By including the y_i value in the definition, Rousseeuw and Van Zomeren (1990) distinguish between the following:

- **Good leverage points** are points (x_i, y_i) that are close to the regression plane; that is, good leverage points improve the precision of the regression coefficients.
- **Bad leverage points** are points \((x_i, y_i)\) that are far from the regression plane; that is, bad leverage points reduce the precision of the regression coefficients.

Rousseeuw and Van Zomeren (1990) propose plotting the standardized residuals of robust regression (LMS or LTS) versus the robust distances that are obtained from MVE or MCD. Two horizontal lines that correspond to residual values of +2.5 and −2.5 are useful for distinguishing between small and large residuals, and one vertical line that corresponds to the \(\sqrt{\chi^2_{n,.975}}\) is used to distinguish between small and large distances.

For example, once again consider the stack loss data from Brownlee (1965). The following statements call the RDPLTOT module, which is distributed in the `RobustMC.sas` file. As in the previous section, the LOAD MODULES=_ALL_ statement loads modules that are defined in the `RobustMC.sas` file.

```sas
%include sampsrc(robustmc); /* define graphing modules */
proc iml;
load module=_all_; /* load graphing modules */

/* Obs X1 X2 X3 Y Stack Loss data */
SL = { 1 80 27 89 42,
      2 80 27 88 37,
      3 75 25 90 37,
      4 62 24 87 28,
      5 62 22 87 18,
      6 62 23 87 18,
      7 62 24 93 19,
      8 62 24 93 20,
      9 58 23 87 15,
     10 58 18 80 14,
     11 58 18 89 14,
     12 58 17 88 13,
     13 58 18 82 11,
     14 58 19 93 12,
     15 50 18 89 8,
     16 50 18 86 7,
     17 50 19 72 8,
     18 50 19 79 8,
     19 50 20 80 9,
     20 56 20 82 15,
     21 70 20 91 15};
x = SL[, 2:4]; y = SL[, 5];
LMSOpt = j(9,1,.);
MCDOpt = j(5,1,.);
MCDOpt[5]= -1; /* nrep: all subsets */
run RDPlot("LMS", LMSOpt, MCDOpt, y, x);
```

The diagnostic plot is shown in **Output 15.5.12**. The graph shows the standardized LMS residuals plotted against the robust distances \(RD_i\). The plot shows that observation 4 is a regression outlier but not a leverage point, so it is a vertical outlier. Observations 1, 3, and 21 are bad leverage points, whereas observation 2 is a good leverage point. Notice that observation 2 is very close to the boundary between good and bad leverage points.
If you use the LTS algorithm instead of the LMS algorithm, observation 13 is classified as a vertical outlier and observation 2 is classified as a bad leverage point.

References

Chapter 16

Time Series Analysis and Examples

Contents

<table>
<thead>
<tr>
<th>Overview</th>
<th>277</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Time Series Subroutines</td>
<td>278</td>
</tr>
<tr>
<td>Kalman Filter Subroutines</td>
<td>280</td>
</tr>
<tr>
<td>Getting Started</td>
<td>280</td>
</tr>
<tr>
<td>Syntax</td>
<td>281</td>
</tr>
<tr>
<td>Example 16.1: Kalman Filtering: Likelihood Function Evaluation</td>
<td>282</td>
</tr>
<tr>
<td>Example 16.2: Kalman Filtering: SSM Estimation with the EM Algorithm</td>
<td>285</td>
</tr>
<tr>
<td>Example 16.3: Diffuse Kalman Filtering</td>
<td>291</td>
</tr>
<tr>
<td>Vector Time Series Analysis Subroutines</td>
<td>293</td>
</tr>
<tr>
<td>Getting Started</td>
<td>293</td>
</tr>
<tr>
<td>Syntax</td>
<td>296</td>
</tr>
<tr>
<td>Fractionally Integrated Time Series Analysis</td>
<td>297</td>
</tr>
<tr>
<td>Getting Started</td>
<td>297</td>
</tr>
<tr>
<td>Syntax</td>
<td>300</td>
</tr>
<tr>
<td>Time Series Analysis and Control Subroutines</td>
<td>300</td>
</tr>
<tr>
<td>Getting Started</td>
<td>302</td>
</tr>
<tr>
<td>Syntax</td>
<td>329</td>
</tr>
<tr>
<td>Details</td>
<td>329</td>
</tr>
<tr>
<td>VAR Estimation and Variance Decomposition</td>
<td>350</td>
</tr>
<tr>
<td>References</td>
<td>354</td>
</tr>
</tbody>
</table>

Overview

This chapter describes SAS/IML subroutines that are related to univariate, multivariate, and fractional time series analysis and subroutines for Kalman filtering and smoothing. You can use these subroutines to analyze economic and financial time series. You can develop a model of univariate time series and a model of the relationships between vector time series. The Kalman filter subroutines provide analysis of various time series and are presented as a tool for dealing with state space models.

The subroutines offer the following functionality:

- generating univariate, multivariate, and fractional time series
- computing likelihood function of ARMA, VARMA, and ARFIMA models
computing an autocovariance function of ARMA, VARMA, and ARFIMA models

- checking the stationarity of ARMA and VARMA models

- filtering and smoothing of time series models by using Kalman filters

- fitting time series models, including the AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA models

- handling Bayesian seasonal adjustment models

In addition, SAS/IML software provides decomposition analysis, forecasting of an ARMA model, and fractional differencing of a time series.

Basic Time Series Subroutines

In classical linear regression analysis, the underlying process can often be represented simply by an intercept and slope parameters. A time series can be modeled by a type of regression analysis.

The following subroutines and functions are supported:

- **ARMACOV**: computes an autocovariance sequence for an ARMA model.
- **ARMALIK**: computes the log likelihood and residuals for an ARMA model.
- **ARMASIM**: simulates an ARMA series.

The ARMACOV subroutine provides the pattern of the autocovariance function of AR, MA, and ARMA models and helps identify and fit a proper model.

The ARMALIK subroutine provides the log likelihood of an ARMA model and helps estimate the parameters of an ARMA regression model.

The ARMASIM function generates various time series from the underlying AR, MA, and ARMA models. Simulations of time series that have a known ARMA structure are often needed as part of other simulations or as learning data sets for developing time series analysis skills.

Consider a time series of length 100 from the ARMA(2,1) model

\[y_t = 0.5y_{t-1} - 0.04y_{t-2} + e_t + 0.25e_{t-1} \]

where the error series follows a normal distribution with mean 10 and standard deviation 2.

The following statements generate the ARMA(2,1) model:

```plaintext
proc iml;
   /* ARMA(2,1) model */
   phi = {1 -0.5 0.04};
   theta = {1 0.25};
   mu = 10;
   sigma = 2;
   nobs = 100;
```
seed = 3456;
lag = 10;
yt = armasim(phi, theta, mu, sigma, nobs, seed);

Figure 16.1 Plot of Generated ARMA(2,1) Process (ARMASIM)

The ARMASIM function generates the data shown in Figure 16.1. The following statements compute 10 lags of the autocovariance function of the series. Figure 16.2 displays the autocovariance functions of the ARMA(2,1) model, the covariance functions of the moving-average term with lagged values of the process, and the autocovariance functions of the moving-average term.

call armacov(autocov, cross, convol, phi, theta, lag);
autocov = autocov; cross = cross; convol = convol;
print autocov cross convol;

Figure 16.2 Autocovariance Functions of ARMA(2,1) Model (ARMACOV)

The following statements call the ARMALIK subroutine. The first column of Figure 16.3 contains the log-likelihood function, the estimate of the innovation variance, and the log of the determinant of the variance matrix. The next two columns display part of the standardized residuals and the scale factors that are used to standardize the residuals.
call armalik(lnl, resid, std, yt, phi, theta);
resid=resid[1:9];
std=std[1:9];
print lnl resid std;

Figure 16.3 Log-Likelihood Function of ARMA(2,1) Model (ARMALIK)

<table>
<thead>
<tr>
<th></th>
<th>lnl</th>
<th>resid</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>-154.9148</td>
<td>5.2779797</td>
<td>1.3027971</td>
<td></td>
</tr>
<tr>
<td>22.034073</td>
<td>2.3491607</td>
<td>1.0197</td>
<td></td>
</tr>
<tr>
<td>0.5705918</td>
<td>2.3893996</td>
<td>1.0011951</td>
<td></td>
</tr>
<tr>
<td>8.4086892</td>
<td>1.0000746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.200401</td>
<td>1.0000047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4127254</td>
<td>1.0000003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2756004</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1944693</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9425372</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another example that uses the ARMACOV and ARMALIK subroutines is provided in “Example 12.12: Simulations of a Univariate ARMA Process” on page 210.

Kalman Filter Subroutines

This section describes a collection of Kalman filtering and smoothing subroutines for time series analysis; immediately following are three examples that demonstrate how to use Kalman filtering subroutines. The state space model (SSM) is a method of analyzing a wide range of time series models. When the time series is represented by the state space model, the Kalman filter is used for filtering, prediction, and smoothing of the state vector. The state space model consists of the measurement and transition equations.

SAS/IML software supports the following Kalman filtering and smoothing subroutines:

- KALCVF performs covariance filtering and prediction.
- KALCVS performs fixed-interval smoothing.
- KALDFF performs diffuse covariance filtering and prediction.
- KALDFS performs diffuse fixed-interval smoothing.

Getting Started

The measurement (or observation) equation can be written as

\[y_t = b_t + H_t z_t + \epsilon_t \]

where \(b_t \) is an \(N_y \times 1 \) vector, \(H_t \) is an \(N_y \times N_z \) matrix, the sequence of observation noise \(\epsilon_t \) is independent, \(z_t \) is an \(N_z \times 1 \) state vector, and \(y_t \) is an \(N_y \times 1 \) observed vector.
The transition (or state) equation is denoted as a first-order Markov process of the state vector,

$$z_{t+1} = a_t + F_t z_t + \eta_t$$

where a_t is an $N_z \times 1$ vector, F_t is an $N_z \times N_z$ transition matrix, and the sequence of transition noise η_t is independent. This equation is often called a shifted transition equation, because the state vector is shifted forward one time period. The transition equation can also be denoted by using an alternative specification,

$$z_t = a_t + F_t z_{t-1} + \eta_t$$

There is no real difference between the shifted transition equation and this alternative equation if the observation noise and transition equation noise are uncorrelated—that is, $E(\eta_t \epsilon'_t) = 0$. It is assumed that

$$E(\eta_t \eta'_s) = V_t \delta_{ts}$$
$$E(\epsilon_t \epsilon'_s) = R_t \delta_{ts}$$
$$E(\eta_t \epsilon'_s) = G_t \delta_{ts}$$

where

$$\delta_{ts} = \begin{cases} 1 & \text{if } t = s \\ 0 & \text{if } t \neq s \end{cases}$$

De Jong (1991) proposed a diffuse Kalman filter that can handle an arbitrarily large initial state covariance matrix. The diffuse initial state assumption is reasonable if you encounter the case of parameter uncertainty or SSM nonstationarity. The SSM of the diffuse Kalman filter is written as

$$y_t = X_t \beta + H_t z_t + \epsilon_t$$
$$z_{t+1} = W_t \beta + F_t z_t + \eta_t$$
$$z_0 = a + A \delta$$
$$\beta = b + B \delta$$

where δ is a random variable with a mean of μ and a variance of $\sigma^2 \Sigma$. When $\Sigma \to \infty$, the SSM is said to be diffuse.

The KALCVF call computes the one-step prediction $z_{t+1|t}$ and the filtered estimate $z_{t|t}$, together with their covariance matrices $P_{t+1|t}$ and $P_{t|t}$, by using forward recursions. You can obtain the k-step prediction $z_{t+k|t}$ and its covariance matrix $P_{t+k|t}$ by using the KALCVF call. The KALCVS call uses backward recursions to compute the smoothed estimate $z_{t|T}$ and its covariance matrix $P_{t|T}$ when there are T observations in the complete data.

The KALDFF call produces one-step prediction of the state and the unobserved random vector δ along with their covariance matrices. The KALDFS call computes the smoothed estimate $z_{t|T}$ and its covariance matrix $P_{t|T}$.

Syntax

```plaintext
CALL KALCVF (pred, vpred, filt, vfilt, data, lead, a, f, b, h, var <, z0, vz0>);  
CALL KALCVS (sm, vsm, data, a, f, b, h, var, pred, vpred <, un, vun>);  
CALL KALDFF (pred, vpred, initial, s2, data, lead, int, coef, var, intd, coeffd <, n0, at, mt, qt>);  
CALL KALDFS (sm, vsm, data, int, coef, var, bvec, bmat, initial, at, mt, s2 <, un, vun>);  
```
Example 16.1: Kalman Filtering: Likelihood Function Evaluation

In the following example, the log-likelihood function of the SSM is computed by using a prediction-error decomposition. The data are the annual real gross national product (GNP) for the years 1909–1969. The GNP series y_t can be decomposed as

$$y_t = \mu_t + \epsilon_t$$

where μ_t is a trend component and $\epsilon_t \sim (0, \sigma^2_{\epsilon})$ is a white noise error term. For more information about these data, see Nelson and Plosser (1982). The trend component is assumed to be generated from the stochastic equations

$$\begin{align*}
\mu_t &= \mu_{t-1} + \beta_{t-1} + \eta_{1t} \\
\beta_t &= \beta_{t-1} + \eta_{2t}
\end{align*}$$

where $\eta_{1t} \sim (0, \sigma^2_{\eta_1})$ and $\eta_{2t} \sim (0, \sigma^2_{\eta_2})$ are independent white noise disturbances.

It is straightforward to construct the SSM of the real GNP series,

$$\begin{align*}
y_t &= Hz_t + \epsilon_t \\
z_t &= Fz_{t-1} + \eta_t
\end{align*}$$

where

$$\begin{align*}
H &= (1, 0) \\
F &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \\
z_t &= (\mu_t, \beta_t)' \\
\eta_t &= (\eta_{1t}, \eta_{2t})'
\end{align*}$$

$$\text{Var} \left(\begin{bmatrix} \eta_t \\ \epsilon_t \end{bmatrix} \right) = \begin{bmatrix} \sigma^2_{\eta_1} & 0 & 0 \\ 0 & \sigma^2_{\eta_2} & 0 \\ 0 & 0 & \sigma^2_{\epsilon} \end{bmatrix}$$

When the observation noise ϵ_t is normally distributed, the average log-likelihood function of the SSM is

$$\ell = \frac{1}{T} \sum_{t=1}^{T} \ell_t$$

$$\ell_t = -\frac{N_y}{2} \log(2\pi) - \frac{1}{2} \log(|C_t|) - \frac{1}{2} \hat{\epsilon}_t' C_t^{-1} \hat{\epsilon}_t$$

where C_t is the mean square error matrix of the prediction error $\hat{\epsilon}_t$, such that $C_t = H P_{t|t-1} H' + R_t$.

As an example, consider the following annual real GNP data for 1909–1969:
Example 16.1: Kalman Filtering: Likelihood Function Evaluation

title 'Likelihood Evaluation of SSM';
title2 'DATA: Annual Real GNP 1909-1969';
data gnp;
 input y @@;
datalines;
 116.8 120.1 123.2 130.2 131.4 125.6 124.5 134.3 135.2 151.8 146.4 139.0 127.8 147.0 165.9 165.5 179.4 190.0 189.8 190.9 203.6 183.5 169.3 144.2 141.5 154.3 169.5 193.0 203.2 192.9 209.4 227.2 263.7 297.8 337.1 361.3 355.2 312.6 309.9 323.7 324.1 355.3 383.4 395.1 412.8 406.0 438.0 446.1 452.5 447.3 475.9 487.7 497.2 529.8 551.0 581.1 617.8 658.1 675.2 706.6 724.7
;
In the following program, the LIK module computes the average log-likelihood function. First, the average log-likelihood function is computed by using the default initial values: 0 for Z0 and the diagonal matrix $10^6 I$ for VZ0. The second call of the module LIK produces the average log-likelihood function with the given initial conditions: Z0 = 0 and VZ0 = $10^{-3} I$. Output 16.1.1 shows a sizable difference between the uncertain initial condition (VZ0 = $10^6 I$) and the almost deterministic initial condition (VZ0 = $10^{-3} I$).

proc iml;
start lik(y,a,b,f,h,var,z0,vz0);
 nz = nrow(f); n = nrow(y); k = ncol(y);
 pi = constant('pi');
 const = k*log(2*pi);
 if (sum(z0 = .) | sum(vz0 = .)) then
 call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var);
 else
 call kalcvf(pred,vpred,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);
 et = y - pred*h`;
 sum1 = 0; sum2 = 0;
 do i = 1 to n;
 vpred_i = vpred[(i-1)*nz+1:i*nz,];
 et_i = et[i,];
 ft = h*vpred_i*h` + var[nz+1:nz+k,nz+1:nz+k];
 sum1 = sum1 + log(det(ft));
 sum2 = sum2 + et_i*inv(ft)*et_i`;
 end;
 return(-.5*const-.5*(sum1+sum2)/n);
finish;

use gnp;
read all var {y};
close gnp;

f = {1 1, 0 1};
h = {1 0};
a = j(nrow(f),1,0);
b = j(nrow(h),1,0);
var = diag(j(1,nrow(f)+ncol(y),1e-3));
Chapter 16: Time Series Analysis and Examples

/*-- initial values are computed --*/
z0 = j(1,nrow(f),.);
vz0 = j(nrow(f),nrow(f),.);
logl = lik(y,a,b,f,h,var,z0,vz0);
print 'No initial values are provided', logl;

/*-- initial values are given --*/
z0 = j(1,nrow(f),0);
vz0 = 1e-3#i(nrow(f));
logl = lik(y,a,b,f,h,var,z0,vz0);
print 'Initial values are provided', logl;

Output 16.1.1 Average Log Likelihood of SSM

<table>
<thead>
<tr>
<th>Likelihood Evaluation of SSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA: Annual Real GNP 1909-1969</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No initial values are provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>logl</td>
</tr>
<tr>
<td>-26313.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial values are provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>logl</td>
</tr>
<tr>
<td>-91883.49</td>
</tr>
</tbody>
</table>

The following statements compute one-step predictions, filtered values, and real GNP series under the moderate initial condition (VZ0 = 10I). Output 16.1.2 shows the observed data, the predicted state vectors, and the filtered state vectors for the first 16 observations.

z0 = j(1,nrow(f),0);
vz0 = 10#i(nrow(f));
call kalcvf(pred0,vpred,filt0,vfilt,y,1,a,f,h,var,z0,vz0);

/* print results for the first few observations */
y0 = y;
y = y0[1:16];
pred = pred0[1:16,];
filt = filt0[1:16,];
print y pred filt;
Example 16.2: Kalman Filtering: SSM Estimation with the EM Algorithm

The following example estimates the normal SSM of the mink-muskrat data (Harvey 1989) by using the EM algorithm. The mink-muskrat data are log-counts that have been detrended.

- **title** 'SSM Estimation Using EM Algorithm';
- **data** MinkMuskrat;
 - **input** muskrat mink @;
- **datalines**;

<table>
<thead>
<tr>
<th>y</th>
<th>pred</th>
<th>filt</th>
</tr>
</thead>
<tbody>
<tr>
<td>116.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120.1</td>
<td>116.78832</td>
<td>0</td>
</tr>
<tr>
<td>123.2</td>
<td>123.41035</td>
<td>3.3106857</td>
</tr>
<tr>
<td>130.2</td>
<td>126.41721</td>
<td>3.1938303</td>
</tr>
<tr>
<td>131.4</td>
<td>134.47459</td>
<td>0.3975861</td>
</tr>
<tr>
<td>125.6</td>
<td>135.51391</td>
<td>-0.610017</td>
</tr>
<tr>
<td>124.5</td>
<td>126.75246</td>
<td>-0.610017</td>
</tr>
<tr>
<td>134.3</td>
<td>123.34052</td>
<td>-1.560708</td>
</tr>
<tr>
<td>135.2</td>
<td>135.41265</td>
<td>3.0651076</td>
</tr>
<tr>
<td>151.8</td>
<td>138.21324</td>
<td>-0.37943</td>
</tr>
<tr>
<td>146.4</td>
<td>158.08957</td>
<td>8.7100967</td>
</tr>
<tr>
<td>139</td>
<td>152.25867</td>
<td>7.761324</td>
</tr>
<tr>
<td>127.8</td>
<td>139.54196</td>
<td>-1.82012</td>
</tr>
<tr>
<td>147</td>
<td>123.11568</td>
<td>-6.776195</td>
</tr>
<tr>
<td>165.9</td>
<td>146.04988</td>
<td>3.049584</td>
</tr>
<tr>
<td>165.5</td>
<td>174.04698</td>
<td>11.683345</td>
</tr>
</tbody>
</table>

Output 16.1.2 Filtering and One-Step Prediction
Because this EM algorithm uses filtering and smoothing, you can use the KALCVF and KALCVS calls to analyze the data. Consider the bivariate SSM,

\[y_t = H z_t + \epsilon_t \]
\[z_t = F z_{t-1} + \eta_t \]

where \(H \) is a 2 \(\times \) 2 identity matrix, the observation noise has a time-invariant covariance matrix \(R \), and the covariance matrix of the transition equation is also assumed to be time-invariant. The initial state \(z_0 \) has mean \(\mu \) and covariance \(\Sigma \). For estimation, the \(\Sigma \) matrix is fixed as

\[
\begin{bmatrix}
0.1 & 0.0 \\
0.0 & 0.1
\end{bmatrix}
\]

whereas the mean vector \(\mu \) is updated by the smoothing procedure such that \(\hat{\mu} = z_{0|T} \). Note that this estimation requires an extra smoothing step, because the usual smoothing procedure does not produce \(z_{T|0} \).

The EM algorithm maximizes the expected log-likelihood function, given the current parameter estimates. In practice, the log-likelihood function of the normal SSM is evaluated while the parameters are updated by using the M-step of the EM maximization,

\[
F_{i+1} = \frac{S_i(1)[S_{i-1}(0)]^{-1}}{T}
\]
\[
V_{i+1} = \frac{1}{T} (S_i(0) - S_i(1)[S_{i-1}(0)]^{-1} S'_i(1))
\]
\[
R_{i+1} = \frac{1}{T} \sum_{t=1}^{T} [(y_t - H z_{t|T})(y_t - H z_{t|T})'] + H P_{i|T} H'
\]
\[
\mu_{i+1} = z_{0|T}
\]

where the index \(i \) represents the current iteration number, and

\[
S_i(0) = \sum_{t=1}^{T} (P_{i|T} + z_t z'_t|T)
\]
\[
S_i(1) = \sum_{t=1}^{T} (P_{i,t-1|T} + z_t z'_{t-1|T})
\]

It is necessary to compute the value of \(P_{i,t-1|T} \) recursively such that

\[
P_{i-1,t-2|T} = P_{i-1,t-1|T} P'_{i-2} + P_{i-1} (P_{i,t-1|T} - F P_{i-1|T-1}) P'_{i-2}
\]

where \(P^*_i = P_{i|T} F P'_{i+1} \) and the initial value \(P_{T,T-1|T} \) is derived by using the formula

\[
P_{T,T-1|T} = [I - P_{t|T-1} H' (H P_{t|T-1} H' + R)^{-1} H'] F P_{T-1|T-1}
\]

Note that the initial value of the state vector is updated for each iteration,

\[
z_{1|0} = F \mu^i
\]
\[
P_{1|0} = F^i \Sigma F'^i + V^i
\]
The objective function value is computed as -2ℓ in the SAS/IML module LIK. The log-likelihood function is written as

$$\ell = \frac{1}{2} \sum_{t=1}^{T} \log|C_t| - \frac{1}{2} \sum_{t=1}^{T} (y_t - Hz_{t|t-1})C_t^{-1}(y_t - Hz_{t|t-1})'$$

where $C_t = HP_{t|t-1}H' + R$.

The EM algorithm is implemented by the following statements. The iteration history is shown in Output 16.2.1.

```sas
proc iml;
start lik(y,pred,vpred,h,rt);
    n = nrow(y);
    nz = ncol(h);
    et = y - pred*h`;
    sum1 = 0;
    sum2 = 0;
    do i = 1 to n;
        vpred_i = vpred[(i-1)*nz+1:i*nz,];
        et_i = et[i,];
        ft = h*vpred_i*h` + rt;
        sum1 = sum1 + log(det(ft));
        sum2 = sum2 + et_i*inv(ft)*et_i`;
    end;
    return(sum1+sum2);
finish;
use MinkMuskrat;
read all into y var {muskrat mink};
close MinkMuskrat;
/*--- mean adjust series ---*/
t = nrow(y); ny = ncol(y); nz = ny;
f = i(nz);
h = i(ny);

/*--- observation noise variance is diagonal ---*/
rt = 1e-5#i(ny);

/*--- transition noise variance ---*/
vt = .1#i(nz);
a = j(nz,1,0);
b = j(ny,1,0);
myu = j(nz,1,0);
sigma = .1#i(nz);
converge = 0;
logl0 = 0.0;
do iter = 1 to 100 while( converge = 0 );

/*--- construct big cov matrix ---*/
var = ( vt || j(nz,ny,0) ) //
     ( j(ny,nz,0) || rt );
```
//--- initial values are changed --*/
z0 = myu` * f`;
vz0 = f * sigma * f` + vt;

//--- filtering to get one-step prediction and filtered value --*/
call kalcv(y,pred,vgf,filt,vfilt,y,0,a,f,b,h,var,z0,vz0);

//--- smoothing using one-step prediction values --*/
call kalcvs(sm,vsm,y,a,f,b,h,var,pred,vpred);

//--- compute likelihood values --*/
logl = lik(y,pred,vpred,h,rt);

//--- store old parameters and function values --*/
myu0 = myu;
f0 = f;
vt0 = vt;
rt0 = rt;
diflog = logl - logl0;
logl0 = logl;
itermat = itermat // (iter || logl0 || shape(f0,1) || myu0`);

//--- obtain P*(t) to get P_T_0 and Z_T_0 --*/
//--- these values are not usually needed --*/
//--- See Harvey (1989, p154) or Shumway (1988, p177) --*/
jt1 = sigma * f` * inv(vpred[1:nz,]);
p_t_0 = sigma + jt1*(vsm[1:nz,] - vpred[1:nz,])*jt1`;
z_t_0 = myu + jt1*(sm[1,]` - pred[1,]`);
p_t1_t = vpred[(t-1)*nz+1:t*nz,];
p_t1_t1 = vfilt[(t-2)*nz+1:(t-1)*nz,];
kt = p_t1_t*h`*inv(h*p_t1_t*h`+rt);

//--- obtain P_T_TT1. See Shumway (1988, p180) --*/
p_t_i1 = (i(nz)-kt*h)*f*p_t1_t1;
st0 = vsm[(t-1)*nz+1:t*nz,] + sm[t,]`*sm[t,];
sto = p_t_0 + z_t_0 * z_t_0`;

//--- cov = (y[t,]` - h*sm[t,]`) * (y[t,]` - h*sm[t,]`)` +
// h*vsm[(t-1)*nz+1:t*nz,]*h`;
do i = t to 2 by -1;
p_i1 = vfilt[(i-2)*nz+1:(i-1)*nz,];
p_i1_i = vpred[(i-1)*nz+1:i*nz,];
jt1 = p_i1_i1 * f` * inv(p_i1_i);
p_i1_i = vpred[(i-2)*nz+1:(i-1)*nz,];
if (i > 2) then
 p_i2_i2 = v filt[(i-3)*nz+1:(i-2)*nz,];
else
 p_i2_i2 = sigma;
jt2 = p_i2_i2 * f` * inv(p_i1_i);
p_t_i1i2 = p_i1_i1*jt2` + jt1*(p_t_i11 - f*p_i1_i1)*jt2`;
p_t_i1 = p_t_i112;
temp = vsm[(i-2)*nz+1:(i-1)*nz,];
sml = sm[i-1,];
sto = st0 + (temp + sml * sml`);
if (i > 2) then
 st1 = st1 + (p_t_iil + sml * sm[i-2,]);
else st1 = st1 + (p_t_iil + sml * z_t_0');
st00 = st00 + (temp + sml * sml');
cov = cov + (h * temp * h' +
 (y[i-1,] - h * sml)*(y[i-1,] - h * sml'));
end;

/*** M-step: update the parameters --*/
myu = z_t_0;
f = st1 * inv(st00);
vt = (st0 - st1 * inv(st00) * st1')/t;
rt = cov / t;

/--- check convergence --/
if (max(abs((myu - myu0)/(myu0+1e-6))) < 1e-2 &
 max(abs((f - f0)/(f0+1e-6))) < 1e-2 &
 max(abs((vt - vt0)/(vt0+1e-6))) < 1e-2 &
 max(abs((rt - rt0)/(rt0+1e-6))) < 1e-2 &
 abs((diflog)/(logl0+1e-6)) < 1e-3) then
 converge = 1;
end;

reset noname;
colnm = {'Iter' '-2*log L' 'F11' 'F12' 'F21' 'F22'
 'MYU11' 'MYU22'};
print itermat[colname=colnm format=8.4];

Output 16.2.1 Iteration History

SSM Estimation Using EM Algorithm

<table>
<thead>
<tr>
<th>Iter</th>
<th>-2*log L</th>
<th>F11</th>
<th>F12</th>
<th>F21</th>
<th>F22</th>
<th>MYU11</th>
<th>MYU22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-154.010</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2.0000</td>
<td>-237.962</td>
<td>0.7967</td>
<td>-0.6473</td>
<td>0.3263</td>
<td>0.5143</td>
<td>0.0530</td>
<td>0.0840</td>
</tr>
<tr>
<td>3.0000</td>
<td>-238.083</td>
<td>0.7967</td>
<td>-0.5614</td>
<td>0.3259</td>
<td>0.5142</td>
<td>0.1372</td>
<td>0.0977</td>
</tr>
<tr>
<td>4.0000</td>
<td>-238.126</td>
<td>0.7966</td>
<td>-0.6517</td>
<td>0.3259</td>
<td>0.5139</td>
<td>0.1853</td>
<td>0.1159</td>
</tr>
<tr>
<td>5.0000</td>
<td>-238.143</td>
<td>0.7964</td>
<td>-0.5619</td>
<td>0.3257</td>
<td>0.5138</td>
<td>0.2143</td>
<td>0.1304</td>
</tr>
<tr>
<td>6.0000</td>
<td>-238.151</td>
<td>0.7963</td>
<td>-0.6520</td>
<td>0.3255</td>
<td>0.5136</td>
<td>0.2324</td>
<td>0.1405</td>
</tr>
<tr>
<td>7.0000</td>
<td>-238.153</td>
<td>0.7976</td>
<td>-0.6520</td>
<td>0.3254</td>
<td>0.5135</td>
<td>0.2438</td>
<td>0.1473</td>
</tr>
<tr>
<td>8.0000</td>
<td>-238.155</td>
<td>0.7962</td>
<td>-0.6521</td>
<td>0.3253</td>
<td>0.5135</td>
<td>0.2511</td>
<td>0.1518</td>
</tr>
<tr>
<td>9.0000</td>
<td>-238.155</td>
<td>0.7962</td>
<td>-0.6521</td>
<td>0.3253</td>
<td>0.5134</td>
<td>0.2558</td>
<td>0.1546</td>
</tr>
<tr>
<td>10.0000</td>
<td>-238.155</td>
<td>0.7961</td>
<td>-0.6521</td>
<td>0.3253</td>
<td>0.5134</td>
<td>0.2588</td>
<td>0.1565</td>
</tr>
</tbody>
</table>

The following statements compute the eigenvalues of \(F \). As shown in **Output 16.2.2**, the eigenvalues of \(F \) are within the unit circle, indicating that the SSM is stationary. However, the muskrat series is reported to be difference stationary. The estimated parameters are almost identical to those of the VAR(1) estimates. See Harvey (1989).

eval = eigval(f0);
colnm = {'Real' 'Imag' 'MOD'};
eval = eval || sqrt((eval#eval)[,+]);
print eval[colname=colnm];
Finally, multistep forecasts of y_t are computed by calling the KALCVF subroutine. The predicted values of the state vector z_t and their standard errors are shown in Output 16.2.3.

\[
\text{var} = (\text{vt} || j(nz, ny, 0)) // \\
(j(ny, nz, 0) || rt);
\]

/**-- initial values are changed --*/
\[
z0 = \mu' \cdot f';
\]
\[
vz0 = f \cdot \sigma \cdot f' + \text{vt};
\]
free itermat;

/**-- multistep prediction --*/
call kalcvf(pred, vpred, filt, v filt, y, 15, a, f, b, h, var, z0, vz0);
do i = 1 to 15;
\[
\text{itermat} = \text{itermat} // (i || \text{pred}[t+i,] || \\
\text{sqrt(vecdiag(vpred[(t+i-1)*nz+1:(t+i)*nz,])]));
\]
end;
colnm = {'n-Step' 'Z1_T_n' 'Z2_T_n' 'SE_Z1' 'SE_Z2'};
print itermat[colname=colnm]; quit;

Output 16.2.2 Eigenvalues of F Matrix

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
<th>MOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6547534</td>
<td>0.438317</td>
<td>0.7879237</td>
</tr>
<tr>
<td>0.6547534</td>
<td>-0.438317</td>
<td>0.7879237</td>
</tr>
</tbody>
</table>

Output 16.2.3 Multistep Prediction

<table>
<thead>
<tr>
<th>n-Step</th>
<th>Z1_T_n</th>
<th>Z2_T_n</th>
<th>SE_Z1</th>
<th>SE_Z2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.055792</td>
<td>-0.587049</td>
<td>0.2437666</td>
<td>0.237074</td>
</tr>
<tr>
<td>2</td>
<td>0.3384325</td>
<td>-0.319505</td>
<td>0.3140478</td>
<td>0.290662</td>
</tr>
<tr>
<td>3</td>
<td>0.4778022</td>
<td>-0.053949</td>
<td>0.3669731</td>
<td>0.3104052</td>
</tr>
<tr>
<td>4</td>
<td>0.4155731</td>
<td>0.1276996</td>
<td>0.4021048</td>
<td>0.3218256</td>
</tr>
<tr>
<td>5</td>
<td>0.2475671</td>
<td>0.2007098</td>
<td>0.419699</td>
<td>0.3319293</td>
</tr>
<tr>
<td>6</td>
<td>0.0661993</td>
<td>0.1835492</td>
<td>0.4268943</td>
<td>0.3396153</td>
</tr>
<tr>
<td>7</td>
<td>-0.067001</td>
<td>0.1157541</td>
<td>0.430752</td>
<td>0.3438409</td>
</tr>
<tr>
<td>8</td>
<td>-0.128831</td>
<td>0.0376316</td>
<td>0.4341532</td>
<td>0.3456312</td>
</tr>
<tr>
<td>9</td>
<td>-0.127107</td>
<td>-0.022581</td>
<td>0.4369411</td>
<td>0.3465325</td>
</tr>
<tr>
<td>10</td>
<td>-0.086466</td>
<td>-0.052931</td>
<td>0.4385978</td>
<td>0.3473038</td>
</tr>
<tr>
<td>11</td>
<td>-0.034319</td>
<td>-0.055293</td>
<td>0.4393282</td>
<td>0.3479612</td>
</tr>
<tr>
<td>12</td>
<td>0.0087379</td>
<td>-0.039546</td>
<td>0.4396666</td>
<td>0.3483717</td>
</tr>
<tr>
<td>13</td>
<td>0.0327466</td>
<td>-0.017459</td>
<td>0.439936</td>
<td>0.3485586</td>
</tr>
<tr>
<td>14</td>
<td>0.0374564</td>
<td>0.0016876</td>
<td>0.4401753</td>
<td>0.3486415</td>
</tr>
<tr>
<td>15</td>
<td>0.0287193</td>
<td>0.0130482</td>
<td>0.440335</td>
<td>0.3487034</td>
</tr>
</tbody>
</table>
Example 16.3: Diffuse Kalman Filtering

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call KALDFF. The transition equation is generated by using the formula

\[
\begin{bmatrix}
 z_{1t} \\
 z_{2t}
\end{bmatrix} =
\begin{bmatrix}
 1.5 & -0.5 \\
 1.0 & 0.0
\end{bmatrix}
\begin{bmatrix}
 z_{1t-1} \\
 z_{2t-1}
\end{bmatrix}
+ \begin{bmatrix}
 \eta_{1t} \\
 0
\end{bmatrix}
\]

where \(\eta_{1t} \sim N(0, 1) \). The transition equation is nonstationary because the transition matrix \(F \) has one unit root. The following program simulates a time series:

```plaintext
title 'Diffuse Kalman Filtering';
proc iml;
T = 20;
y = j(T,1);
burnIn = 10;
z_1 = 0; z_2 = 0;
do i = 1-burnIn to T;
  z = 1.5*z_1 - 0.5*z_2 + rannor(1234567);
  z_2 = z_1; z_1 = z;
  x = z + 0.8*rannor(1234567);
  if ( i > 0 ) then
    y[i] = x;
end;
The KALDFF and KALCVF calls produce one-step prediction, and the following program shows that two predictions coincide after the fifth observation. See Output 16.3.1.

h = { 1 0 };
f = { 1.5 -.5, 1 0 };
rt = .64;
vt = diag({1 0});
ny = nrow(h);
nz = ncol(h);
b = nz;
da = nz;
a = j(nz,1,0);
b = j(ny,1,0);
int = j(ny+nz,nb,0);
coef = f // h;
var = ( vt || j(nz,ny,0) ) //
   ( j(ny,nz,0) || rt );
intd = j(nz+nb,1,0);
coefd = i(nz) // j(nb,nd,0);
at = j(t*nz,nd+1,0);
mt = j(t*nz,nz,0);
qt = j(t*(nd+1),nd+1,0);
n0 = -1;
call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,
   coef,var,intd,coefd,n0,at,mt,qt);
call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
print kalcvf_p kaldff_p;
```
The likelihood function for the diffuse Kalman filter under the finite initial covariance matrix Σ_0 is written as

$$\lambda(y) = -\frac{1}{2}[y^\# \log(\hat{\delta}^2) + \sum_{t=1}^{T} \log(|D_t|)]$$

where $y^\#$ is the dimension of the matrix $(y_1^\prime, \ldots, y_T^\prime)'$. The likelihood function for the diffuse Kalman filter under the diffuse initial covariance matrix ($\Sigma_0 \to \infty$) is computed as $\lambda(y) - \frac{1}{2} \log(|S|)$, where the S matrix is the upper $N_\delta \times N_\delta$ matrix of Q_t. Output 16.3.2 displays the log likelihood and the diffuse log likelihood, as computed by the following statements:

```plaintext
  d = 0;
  do i = 1 to t;
    dt = h*mt[(i-1)*nz+1:i*nz,]*h` + rt;
    d = d + log(det(dt));
  end;
  s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
  log_l = -(t*log(s2) + d)/2;
  dff_logl = log_l - log(det(s))/2;
  print log_l[L='Log L'] dff_logl[L='Diffuse Log L'];
quit;
```
Vector Time Series Analysis Subroutines

Vector time series analysis involves more than one dependent time series variable, with possible interrelations or feedback between the dependent variables.

The VARMASIM subroutine generates various time series from the underlying VARMA models. Simulation of time series that have a known VARMA structure enables you to develop analytical skills for vector time series.

The VARMACOV subroutine provides the pattern of the autocovariance function of VARMA models and helps you identify and fit a proper model.

The VARMALIK subroutine provides the log likelihood of a VARMA model and helps you obtain estimates of the parameters of a regression model.

The following subroutines are supported:

- VARMACOV computes the theoretical cross covariances for a multivariate ARMA model.
- VARMALIK evaluates the log-likelihood function for a multivariate ARMA model.
- VARMASIM generates a multivariate ARMA time series.
- VNORMAL generates a multivariate normal random series.
- VTSROOT computes the characteristic roots of a multivariate ARMA model.

Getting Started

Stationary VAR Process

The following equation describes a first-order stationary vector autoregressive model with zero mean:

\[
y_t = \begin{pmatrix} 1.2 & -0.5 \\ 0.6 & 0.3 \end{pmatrix} y_{t-1} + \epsilon_t \quad \text{with} \quad \Sigma = \begin{pmatrix} 1.0 & 0.5 \\ 0.5 & 1.25 \end{pmatrix}
\]

The following statements simulate 100 observations for the model:

```plaintext
proc iml;
    /* stationary VAR(1) model */
    sig = {1.0 0.5, 0.5 1.25};
    phi = {1.2 -0.5, 0.6 0.3};
    call varmasim(yt,phi) sigma=sig n=100 seed=3243;
```

The stationary VAR(1) process is shown in Output 16.3.3.
The following statements compute the roots of the characteristic function:

```plaintext
call vtsroot(root,phi);
print root[c=(R I 'Mod' 'ATan' 'Deg')];
```

In Output 16.3.4, the first column displays the real part (R) of the root of the characteristic function, and the second column shows the imaginary part (I). The third column displays the modulus, the square root of $R^2 + I^2$. The fourth column shows the $\tan^{-1}(I/R)$, measured in radians, and the last column shows the same measurement in degrees. The third column shows that the moduli are less than 1, so the series is stationary.

The following statements compute five lags of cross-covariance matrices:

```plaintext
call varmacov(crosscov,phi) sigma=sig lag=5;
lag = {'0','','1','','2','','3','','4','','5',''};
print lag crosscov;
```
Output 16.3.5 Cross-Covariance Matrices of VAR(1) Model (VARMACOV)

<table>
<thead>
<tr>
<th>lag</th>
<th>crosscov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.3934173 3.8597124</td>
</tr>
<tr>
<td></td>
<td>3.8597124 5.0342051</td>
</tr>
<tr>
<td>1</td>
<td>4.5422445 4.3939641</td>
</tr>
<tr>
<td></td>
<td>2.1145523 3.826089</td>
</tr>
<tr>
<td>2</td>
<td>3.2537114 4.0435359</td>
</tr>
<tr>
<td></td>
<td>0.6244183 2.4165581</td>
</tr>
<tr>
<td>3</td>
<td>1.8826857 3.1652876</td>
</tr>
<tr>
<td></td>
<td>-0.458977 1.0996184</td>
</tr>
<tr>
<td>4</td>
<td>0.676579 2.0791977</td>
</tr>
<tr>
<td></td>
<td>-1.100582 0.0544993</td>
</tr>
<tr>
<td>5</td>
<td>-0.227704 1.0297067</td>
</tr>
<tr>
<td></td>
<td>-1.347948 -0.643999</td>
</tr>
</tbody>
</table>

In each matrix in Output 16.3.5, the diagonal elements correspond to the autocovariance functions of each time series. The off-diagonal elements correspond to the cross-covariance functions between the two series.

The following statements evaluate the log-likelihood function of the VAR(1) model:

```sas
   call varmalik(lnl,yt,phi) sigma=sig;
   labl = {"LogLik", "SumLogDet", "SSE"};
   print lnl[rowname=labl];
```

Output 16.3.6 Log-Likelihood Function of VAR(1) Model (VARMALIK)

<table>
<thead>
<tr>
<th>Inl</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogLik</td>
</tr>
<tr>
<td>-113.4708</td>
</tr>
<tr>
<td>SumLogDet</td>
</tr>
<tr>
<td>2.5058678</td>
</tr>
<tr>
<td>SSE</td>
</tr>
<tr>
<td>224.43567</td>
</tr>
</tbody>
</table>

In Output 16.3.6, the first row displays the value of log-likelihood function; the second row shows the sum of the log determinant of the innovation variance; the last row displays the weighted sum of squares of residuals.

Nonstationary VAR Process

The following equation describes an error-correction model with a cointegrated rank of 1:

\[(1 - B)y_t = \begin{pmatrix} -0.4 \\ 0.1 \end{pmatrix} (1 - 2)y_{t-1} + \epsilon_t\]

with

\[
\Sigma = \begin{pmatrix} 100 & 0 \\ 0 & 100 \end{pmatrix} \quad \text{and} \quad y_0 = 0
\]

In the equation, \(y_t\) is a 2 \times 1 vector. On the right hand side of the equation, the 1 \times 2 row vector \((1 - 2)\) multiplies the vector \(y_{t-1}\) to form a scalar linear combination of components.

The following statements generate simulated data:
proc iml;
/* nonstationary model */
sig = 100*i(2);
phi = {0.6 0.8, 0.1 0.8}; /* derived model */
call varmasim(yt,phi) sigma=sig n=100 seed=1324;

Output 16.3.7 Plot of Generated Nonstationary Vector Process (VARMASIM)

The nonstationary correlated processes are shown in Output 16.3.7.

The following statements compute the roots of the characteristic function:

call vtsroot(root,phi);
print root[c=(R I 'Mod' 'ATan' 'Deg')];

Output 16.3.8 Roots of Nonstationary VAR(1) Model (VTSROOT)

<table>
<thead>
<tr>
<th>root</th>
<th>R</th>
<th>I</th>
<th>Mod</th>
<th>ATan</th>
<th>Deg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In Output 16.3.8, the first column displays the real part (R) of the root of the characteristic function, and the second column displays the imaginary part (I). The third column shows that a modulus is greater than or equal to 1, so the series is nonstationary.

Syntax

CALL VARMACOV (cov, phi, theta, sigma <, p, q, lag>);

CALL VARMALIK (inl, series, phi, theta, sigma <, p, q, opt>);
Fractionally Integrated Time Series Analysis

This section describes subroutines that are related to fractionally integrated time series analysis. The phenomenon of long memory can be observed in hydrology, finance, economics, and other fields. Unlike what occurs in a stationary process, the correlations between observations of a long-memory series slowly decay to zero.

The following subroutines are supported:

- **FARMACOV** computes the autocovariance function for a fractionally integrated ARMA model.
- **FARMAFIT** estimates the parameters for a fractionally integrated ARMA model.
- **FARMALIK** computes the log-likelihood function for a fractionally integrated ARMA model.
- **FARMASIM** generates a fractionally integrated ARMA process.
- **FDIF** computes a fractionally differenced process.

Getting Started

The fractional differencing enables the degree of differencing d to take any real value rather than being restricted to integer values. The fractionally differenced processes are capable of modeling long-term persistence. The process

$$(1 - B)^d y_t = \epsilon_t$$

is known as a fractional Gaussian noise process or an ARFIMA($0, d, 0$) process, where $d \in (-1, 1) \setminus \{0\}$, ϵ_t is a white noise process with mean 0 and variance σ^2, and B is the backshift operator such that $B^j y_t = y_{t-j}$.

An ARFIMA(p, d, q) model extends the ARFIMA($0, d, 0$) model and combines fractional differencing with an ARMA(p, q) model.

Consider an ARFIMA($0, 0.4, 0$) model that is represented as $(1 - B)^{0.4} y_t = \epsilon_t$, where $\epsilon_t \sim$ iid $N(0, 2)$. The following statements accomplish several tasks:

- generate 300 observations of simulated data
- obtain the fractionally differenced data
- compute the autocovariance function
- compute the log-likelihood function
- fit a fractionally integrated time series model to the data

The output is shown in Output 16.3.9 through Output 16.3.13.
proc iml;
/* ARFIMA(0,0.4,0) */
lag = (0:12)``;
call farmacov(autocov_D_IS_04, 0.4);
call farmacov(D_IS_005, 0.05);
print lag autocov_D_IS_04 D_IS_005;

d = 0.4;
call farmasim(yt, d) n=300 sigma=2 seed=5345;
call fdif(zt, yt, d);

call farmalik(lnl, yt, d);
print lnl;

call farmafit(d, ar, ma, sigma, yt);
print d sigma;

The FARMASIM function generates the data shown in **Output 16.3.9**.

Output 16.3.9 Plot of Generated ARFIMA(0,0.4,0) Process (FARMASIM)

The FDIF function creates the fractionally differenced process. **Output 16.3.10** shows a white noise series.
In **Output 16.3.11**, the first column displays the autocovariance function of the ARFIMA(0,0.4,0) model, and the second column displays the autocovariance function of the ARFIMA(0,0.05,0) model. The first column decays to zero more slowly than the second column.

Output 16.3.11 Autocovariance Functions of ARFIMA(0,0.4,0) and ARFIMA(0,0.05,0) Models (FARMA-COV)

<table>
<thead>
<tr>
<th>lag</th>
<th>autocov_D_IS_04</th>
<th>D_IS_005</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0700983</td>
<td>1.0044485</td>
</tr>
<tr>
<td>1</td>
<td>1.3800656</td>
<td>0.0528657</td>
</tr>
<tr>
<td>2</td>
<td>1.2075574</td>
<td>0.0284662</td>
</tr>
<tr>
<td>3</td>
<td>1.1146683</td>
<td>0.0197816</td>
</tr>
<tr>
<td>4</td>
<td>1.0527423</td>
<td>0.0152744</td>
</tr>
<tr>
<td>5</td>
<td>1.0069709</td>
<td>0.0124972</td>
</tr>
<tr>
<td>6</td>
<td>0.9710077</td>
<td>0.0106069</td>
</tr>
<tr>
<td>7</td>
<td>0.9415832</td>
<td>0.0092333</td>
</tr>
<tr>
<td>8</td>
<td>0.9168047</td>
<td>0.008188</td>
</tr>
<tr>
<td>9</td>
<td>0.8954836</td>
<td>0.0073647</td>
</tr>
<tr>
<td>10</td>
<td>0.8768277</td>
<td>0.0066985</td>
</tr>
<tr>
<td>11</td>
<td>0.8602838</td>
<td>0.006148</td>
</tr>
<tr>
<td>12</td>
<td>0.8454513</td>
<td>0.0056849</td>
</tr>
</tbody>
</table>

In **Output 16.3.12**, the first row value is the log-likelihood function of the ARFIMA(0,0.4,0) model. Because the default option of the estimates method is the conditional sum of squares, the last two rows of **Output 16.3.12** contain missing values.
Output 16.3.12 Log-Likelihood Function of ARFIMA(0,0.4,0) Model (FARMALIK)

```
   Inl
-101.0599
```

Output 16.3.13 shows parameter estimates for the simulated data. The parameter estimates are \(d = 0.387 \) and \(\sigma^2 = 1.96 \), whereas the true parameters of the data generating process are \(d = 0.4 \) and \(\sigma^2 = 2 \).

Output 16.3.13 Parameter Estimation of ARFIMA(0,0.4,0) Model (FARMAFIT)

```
<table>
<thead>
<tr>
<th>d</th>
<th>sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.386507</td>
<td>1.9610507</td>
</tr>
</tbody>
</table>
```

Syntax

- **CALL FARMACOV** `(cov, d < , phi, theta, sigma, p, q, lag>)`;
- **CALL FARMAFIT** `(d, phi, theta, sigma, series < , p, q, opt>)`;
- **CALL FARMALIK** `(Inl, series, d < , phi, theta, sigma, p, q, opt>)`;
- **CALL FARMASIM** `(series, d < , phi, theta, mu, sigma, n, p, q, initial, seed>)`;
- **CALL FDIF** `(out, series, d)`;

Time Series Analysis and Control Subroutines

This section describes an adaptation of parts of the Time Series Analysis and Control (TIMSAC) package, which was developed by the Institute of Statistical Mathematics (ISM) in Japan (Kitagawa and Akaike 1981; Ishiguro 1987).

Selected routines from the TIMSAC package were converted by SAS Institute staff into SAS/IML routines under an agreement between SAS Institute and ISM. Credit for authorship of these TIMSAC SAS/IML routines goes to ISM, which has agreed to make them available to SAS users without charge.

There are four packages of TIMSAC programs. For more information about the TIMSAC package produced by ISM, see the section “ISM TIMSAC Packages” on page 348. Because these SAS/IML time series analysis subroutines are adapted from the corresponding FORTRAN subroutines in the TIMSAC package produced by ISM, they are collectively referred to in this chapter as “the TIMSAC subroutines.”

The output of these routines is not integrated into the SAS ODS system because the FORTRAN routines print directly to the SAS listing. The output appears on the Results tab in SAS Enterprise Guide software or in the Output window of the SAS windowing environment. (Select View►Output to display the Output window.) The output also appears in the Output window of SAS/IML Studio. However, you cannot use the ODS system to select or exclude output from these routines, nor can you view the output in ODS destinations such as HTML, PDF, or RTF.
The subroutines analyze and forecast univariate and multivariate time series data. They also analyze nonstationary time series and seasonal adjustment models. These subroutines contain the Bayesian modeling of seasonal adjustment and changing spectrum estimation.

Discrete time series modeling has been widely used to analyze dynamic systems in economics, engineering, and statistics. The Box-Jenkins and Box-Tiao approaches are classical examples of unified time series analysis through identification, estimation, and forecasting (or control). The ARIMA procedure in SAS/ETS software uses these approaches. Bayesian methods are being increasingly applied despite the controversial issues that arise in choosing a prior distribution.

The fundamental idea of the Bayesian method is that uncertainties can be explained by probabilities. If there is a class model \(\Omega \) that consists of sets of member models \(\omega \), you can describe the uncertainty of \(\Omega \) by using a prior distribution of \(\omega \). The member model \(\omega \) is directly related to model parameters. Let the prior probability density function be \(p(\omega) \). When you observe the data \(y \) that are generated from the model \(\Omega \), the data distribution is described as \(p(Y | \omega) \), given the unknown \(\omega \) with a prior probability density \(p(\omega) \), where the function \(p(Y | \omega) \) is the usual likelihood function. Then the posterior distribution is the updated prior distribution, given the sample information. The posterior probability density function is proportional to observed likelihood function \(\times \) prior density function.

The TIMSAC subroutines contain various time series analysis and Bayesian models. Most of the subroutines are based on the minimum Akaike information criterion (AIC) or on the minimum Akaike Bayesian information criterion (ABIC) method to determine the best model among alternative models. The TSBAYSEA subroutine is a typical example of Bayesian modeling. The following subroutines are supported:

- **CALL TSBAYSEA** Bayesian seasonal adjustment modeling
- **CALL TSDECOMP** time series decomposition analysis
- **CALL TSMLOCAR** locally stationary univariate AR model fitting
- **CALL TSMLOMAR** locally stationary multivariate AR model fitting
- **CALL TSMULMAR** multivariate AR model fitting
- **CALL TSPEARS** periodic AR model fitting
- **CALL TSPRED** ARMA model forecasting and forecast error variance
- **CALL TSROOT** polynomial roots or ARMA coefficients computation
- **CALL TSTVCAR** time-varying coefficient AR model estimation
- **CALL TSUNIMAR** univariate AR model fitting

For univariate and multivariate autoregressive model estimation, the least squares method is used. The least squares estimate is an approximate maximum likelihood estimate if error disturbances are assumed to be Gaussian. The least squares method is performed by using the Householder transformation method. For more information, see the section “Least Squares and Householder Transformation” on page 342.

The TSUNIMAR and TSMULMAR subroutines estimate the autoregressive models and select the appropriate AR order automatically by using the minimum AIC method. The TSMLOCAR and TSMLOMAR subroutines analyze the nonstationary time series data. The Bayesian time-varying AR coefficient model (TSTVCAR) offers another nonstationary time series analysis method. The state space and Kalman filter method is systematically applied to the smoothness priors models (TSDECOMP and TSTVCAR), which have stochastically perturbed difference equation constraints. The TSBAYSEA subroutine provides a way of handling Bayesian seasonal adjustment, and it can be an alternative to the X11 procedure in SAS/ETS. The
TSBAYSEA subroutine employs the smoothness priors idea through constrained least squares estimation, whereas the TSDECOMP and TSTVCAR subroutines estimate the smoothness trade-off parameters by using the state space model and Kalman filter recursive computation. The TSPRED subroutine computes the one-step or multistep predicted values of the ARMA time series model. In addition, the TSPRED subroutine computes forecast error variances and impulse response functions. The TSROOT subroutine computes the AR and MA coefficients, given the characteristic roots of the polynomial equation and the characteristic roots of the AR or MA model.

Getting Started

Minimum AIC Model Selection

The time series model is automatically selected by using the AIC. The TSUNIMAR call estimates the univariate autoregressive model and computes the AIC. You need to specify the maximum lag or order of the AR process by using the MAXLAG= option or position the maximum lag as the sixth argument of the TSUNIMAR call.

Univariate AR Model

The following statements define and graph a time series, which is shown in Output 16.3.14:

```
proc iml;
       2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
       2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
       1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
       3.000 3.201 3.424 3.531 };
  call series(1:ncol(y), y);
```
You can select the order of the AR process by finding the lag that minimizes the AIC. The following statements fit the various AR models. Notice that the first 20 observations are used as presample values. Output 16.3.15 shows that a model with a lag of 11 is the model that minimizes the AIC. The minimum AIC value is approximately −298.1. The innovation variance of that model is 0.03. Output 16.3.16 shows the parameter estimates for the model.

```plaintext
call tsunimar(arcoef, ev, nar, aic) data=y opt={-1 1} maxlag=20;
print nar aic ev, arcoef;
```

Output 16.3.15 Time Series Statistics

<table>
<thead>
<tr>
<th>nar</th>
<th>aic</th>
<th>ev</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>-298.1301</td>
<td>0.0331856</td>
</tr>
</tbody>
</table>

Output 16.3.16 Parameter Estimates

<table>
<thead>
<tr>
<th>arcoef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.181322</td>
</tr>
<tr>
<td>-0.551571</td>
</tr>
<tr>
<td>0.2313716</td>
</tr>
<tr>
<td>-0.17804</td>
</tr>
<tr>
<td>0.019874</td>
</tr>
<tr>
<td>-0.062573</td>
</tr>
<tr>
<td>0.0285691</td>
</tr>
<tr>
<td>-0.05071</td>
</tr>
<tr>
<td>0.1998957</td>
</tr>
<tr>
<td>0.1618192</td>
</tr>
<tr>
<td>-0.339066</td>
</tr>
</tbody>
</table>
Alternatively, you can invoke the TSUNIMAR subroutine as follows:

```plaintext
call tsunimar(arcoef, ev, nar, aic, y, 20, {-1 1});
```

The optional arguments can be omitted. In this example, the argument MISSING is omitted, and thus the default value (MISSING=0) is used.

You can estimate the AR(11) model directly by specifying OPT={-1 0} and using the first 11 observations as presample values. The AR(11) estimates that are shown in Output 16.3.17 are different from the minimum AIC estimates in Output 16.3.16 because the samples are slightly different. The following statements estimate and print the AR(11) estimates:

```plaintext
call tsunimar(arcoef11, ev, nar, aic, y, 11, {-1 0});
print arcoef11;
```

Output 16.3.17 Parameter Estimates for AR(11) Model

<table>
<thead>
<tr>
<th>arcoef11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1494157</td>
</tr>
<tr>
<td>-0.533719</td>
</tr>
<tr>
<td>0.2763117</td>
</tr>
<tr>
<td>-0.32642</td>
</tr>
<tr>
<td>0.1693359</td>
</tr>
<tr>
<td>-0.164108</td>
</tr>
<tr>
<td>0.0731226</td>
</tr>
<tr>
<td>-0.030428</td>
</tr>
<tr>
<td>0.151227</td>
</tr>
<tr>
<td>0.1928076</td>
</tr>
<tr>
<td>-0.3402</td>
</tr>
</tbody>
</table>

Multivariate VAR Model

The minimum AIC procedure can also be applied to the vector autoregressive (VAR) model by using the TSMULMAR subroutine. The following DATA step defines a time series in three variables: investment, durable consumption, and consumption expenditures. The data are found in the appendix to Lütkepohl (1993). The series is plotted in **Output 16.3.18**.

```plaintext
data var3;
  input invest income consum @@;
  n = _N_;
datalines;
180 451 415 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487
231 548 497 229 558 510 234 574 516 237 583 525
206 591 529 250 599 538 259 610 546 263 627 555
264 642 574 280 653 574 282 660 586 292 694 602
286 709 617 302 734 639 304 751 653 307 763 668
317 766 679 314 779 686 306 808 697 304 785 688
292 794 704 275 799 699 273 799 709 301 812 715
280 837 724 289 853 746 303 876 758 322 897 779
315 922 798 339 949 816 364 979 837 371 988 858
375 1025 881 432 1063 905 453 1104 934 460 1131 968
475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064
```
The following statements model the three variables as described in the section “Multivariate Time Series Analysis” on page 338. The maximum lag is specified as 10.

```plaintext
proc iml;
use var3;
read all var{invest income consum} into y;
close var3;
mdel = 1; maice = 2; misw = 0;
opt = mdel || maice || misw;
maxlag = 10; miss = 0; print = 1;
call tsmulmar(ar_coef, variance, nar, aic, y, maxlag, opt, miss, print);
print nar aic;
```
Output 16.3.19 shows that the VAR(3) model minimizes the AIC and is selected as an appropriate model. However, the LISTING output from the AICs of the VAR(4) and VAR(5) models (not shown) indicates little difference from VAR(3). You can also choose VAR(4) or VAR(5) as an appropriate model in the context of minimum AIC because this AIC difference is much less than 1.

The TSMULMAR subroutine estimates the instantaneous response model with diagonal error variance. For more information about the instantaneous response model, see the section “Multivariate Time Series Analysis” on page 338. Therefore, it is possible to select the minimum AIC model independently for each equation. The best model is selected by specifying MAXLAG=5, as shown in the following statements:

```plaintext
call tsmulmar(arcoef, variance, nar, aic) data=y maxlag=5
   opt={1 1 0} print=1;
print variance, arcoef[c={"invest" "income" "consum"}];
```

Output 16.3.20 Model Selection via Instantaneous Response Model: Variance

<table>
<thead>
<tr>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>256.64375 29.803549 76.846777</td>
</tr>
<tr>
<td>29.803549 228.97341 119.60387</td>
</tr>
<tr>
<td>76.846777 119.60387 134.21764</td>
</tr>
</tbody>
</table>

Output 16.3.21 Model Selection via Instantaneous Response Model: Estimates

<table>
<thead>
<tr>
<th>arcoef</th>
</tr>
</thead>
<tbody>
<tr>
<td>invest income consum</td>
</tr>
<tr>
<td>13.312109 1.5459098 15.963897</td>
</tr>
<tr>
<td>0.8257397 0.2514803 0</td>
</tr>
<tr>
<td>0.0958916 1.0057088 0</td>
</tr>
<tr>
<td>0.0320985 0.3544346 0.4698934</td>
</tr>
<tr>
<td>0.044719 -0.201035 0</td>
</tr>
<tr>
<td>0.0051931 -0.023346 0</td>
</tr>
<tr>
<td>0.1169858 -0.060196 0.0483318</td>
</tr>
<tr>
<td>0.1867829 0 0</td>
</tr>
<tr>
<td>0.0216907 0 0</td>
</tr>
<tr>
<td>-0.117786 0 0.3500366</td>
</tr>
<tr>
<td>0.1541108 0 0</td>
</tr>
<tr>
<td>0.0178966 0 0</td>
</tr>
<tr>
<td>0.0461454 0 -0.191437</td>
</tr>
<tr>
<td>-0.389644 0 0</td>
</tr>
<tr>
<td>-0.045249 0 0</td>
</tr>
<tr>
<td>-0.116671 0 0</td>
</tr>
</tbody>
</table>
The error variance matrix is shown in Output 16.3.20. The AR coefficient matrix is shown in Output 16.3.21. You can print the intermediate results of the minimum AIC procedure by using the PRINT=2 option.

Notice that the AIC value depends on the MAXLAG=lag option and the number of parameters that are estimated. The minimum AIC VAR estimation procedure (MAICE=2) uses the following AIC formula:

\[(T - \text{lag}) \log(|\hat{\Sigma}|) + 2(pn^2 + n\delta) \]

In this formula, \(p \) is the order of the \(n \)-variate VAR process, and \(\delta = 1 \) if the intercept is specified; otherwise, \(\delta = 0 \). When you specify MAICE=1 or MAICE=0, the AIC is computed as the sum of AIC for each response equation. Consequently, there is an AIC difference of \(n(n - 1) \), because the instantaneous response model contains the additional \(n(n - 1)/2 \) response variables as regressors.

The following statements estimate the instantaneous response model. The results are shown in Output 16.3.22.

```
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3 opt={1 0 0};
print nar aic, arcoef[c={"invest" "income" "consum"}];
```

Output 16.3.22
AIC from Instantaneous Response Model

<table>
<thead>
<tr>
<th>nar</th>
<th>aic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1403.0762</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>arcoef</th>
<th>invest</th>
<th>income</th>
<th>consum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8245814</td>
<td>5.3559216</td>
<td>17.066894</td>
<td></td>
</tr>
<tr>
<td>0.8855926</td>
<td>0.3401741</td>
<td>-0.014398</td>
<td></td>
</tr>
<tr>
<td>0.1684523</td>
<td>1.0502619</td>
<td>0.107064</td>
<td></td>
</tr>
<tr>
<td>0.0891034</td>
<td>0.4591573</td>
<td>0.4473672</td>
<td></td>
</tr>
<tr>
<td>-0.059195</td>
<td>-0.298777</td>
<td>0.1629818</td>
<td></td>
</tr>
<tr>
<td>0.1128625</td>
<td>-0.044039</td>
<td>-0.088186</td>
<td></td>
</tr>
<tr>
<td>0.1684932</td>
<td>-0.025847</td>
<td>-0.025671</td>
<td></td>
</tr>
<tr>
<td>0.0637227</td>
<td>-0.196504</td>
<td>0.0695746</td>
<td></td>
</tr>
<tr>
<td>-0.226559</td>
<td>0.0532467</td>
<td>-0.099808</td>
<td></td>
</tr>
<tr>
<td>-0.303697</td>
<td>-0.139022</td>
<td>0.2576405</td>
<td></td>
</tr>
</tbody>
</table>

The following statements estimate the VAR model. The results are shown in Output 16.3.23.

```
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3 opt={1 2 0};
print nar aic, arcoef[c={"invest" "income" "consum"}];
```
Output 16.3.23 AIC from VAR Model

<table>
<thead>
<tr>
<th>nar</th>
<th>aic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1397.0762</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>arcoef</th>
<th>invest</th>
<th>income</th>
<th>consum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8245814</td>
<td>5.3559216</td>
<td>17.066894</td>
<td></td>
</tr>
<tr>
<td>0.8855926</td>
<td>0.3401741</td>
<td>-0.014398</td>
<td></td>
</tr>
<tr>
<td>0.1684523</td>
<td>1.0502619</td>
<td>0.107064</td>
<td></td>
</tr>
<tr>
<td>0.0891034</td>
<td>0.4591573</td>
<td>0.4473672</td>
<td></td>
</tr>
<tr>
<td>-0.059195</td>
<td>-0.298777</td>
<td>0.1629818</td>
<td></td>
</tr>
<tr>
<td>0.1128625</td>
<td>-0.044039</td>
<td>-0.088186</td>
<td></td>
</tr>
<tr>
<td>0.1684932</td>
<td>-0.025847</td>
<td>-0.025671</td>
<td></td>
</tr>
<tr>
<td>0.0637227</td>
<td>-0.196504</td>
<td>0.0695746</td>
<td></td>
</tr>
<tr>
<td>-0.226559</td>
<td>0.0532467</td>
<td>-0.099808</td>
<td></td>
</tr>
<tr>
<td>-0.303697</td>
<td>-0.139022</td>
<td>0.2576405</td>
<td></td>
</tr>
</tbody>
</table>

The AIC that is computed from the instantaneous response model is greater than that obtained from the VAR model estimation by 6. Output 16.3.23 differs from Output 16.3.19 because different observations are used for estimation.

Nonstationary Data Analysis

The following examples show how to manage nonstationary data by using TIMSAC calls. In practice, time series are considered to be stationary when the expected values of first and second moments of the series do not change over time. This weak or covariance stationarity can be modeled by using the TSMLOCAR, TSMLOMAR, TSDECOMP, and TSTVCAR subroutines.

Univariate Stationary Data Analysis

Output 16.3.24 shows the time series to be analyzed. The series consists of 1,000 observations.

```plaintext
data nonsta;
  input y @@;
  N = _N_;
datalines;
  .21232e1  .47451  -.171e-2  -.84434  -.10876e1
  -.84429  -.15320e1  -.21097e1  -.28282e1  -.30424e1
  ... more lines ...
;
proc sgplot data=nonsta;
  reline 0 / axis=y;
  series x=N y=y;
run;
```
The following statements estimate the locally stationary model. The whole series (1,000 observations) is divided into three blocks of size 300 and one block of size 90, and the minimum AIC procedure is applied to each block of the data set. See the section “Nonstationary Time Series” on page 334 for more details.

```plaintext
proc iml;
   use nonsta; read all var{y}; close nonsta;

   mdel = -1;
   lspan = 300; /* local span of data */
   maice = 1;
   opt = mdel || lspan || maice;
   call tsmlocar(arcoef,ev,nar,aic,first,last)
      data=y maxlag=10 opt=opt print=2;
```

Estimation results are displayed with the graphs of power spectrum \(\log_{10}(f_{YY}(g))\), where \(f_{YY}(g)\) is a rational spectral density function. See the section “Spectral Analysis” on page 339. The estimates for the first block and third block are shown in Output 16.3.25 and Output 16.3.28, respectively. Because the first block and the second block do not have any sizable difference, the pooled model (AIC=45.892) is selected instead of the moving model (AIC=46.957) in Output 16.3.26. However, you can notice a slight change in the shape of the spectrum of the third block of the data (observations 611 through 910). See Output 16.3.27 and Output 16.3.29 for comparison. The moving model is selected since the AIC (106.830) of the moving model is smaller than that of the pooled model (108.867).
Chapter 16: Time Series Analysis and Examples

Output 16.3.25 Locally Stationary Model for First Block

INITIAL LOCAL MODEL: N_CURR = 300
NAR_CURR = 8 AIC = 37.583203

..................CURRENT MODEL..................

. . .

. M AR Coefficients: AR(M) .

. . .

. 1 1.605717 .
. 2 -1.245350 .
. 3 1.014847 .
. 4 -0.931554 .
. 5 0.394230 .
. 6 -0.004344 .
. 7 0.111608 .
. 8 -0.124992 .

. . .

. AIC = 37.5832030 .
. Innovation Variance = 1.067455 .

. . .

. INPUT DATA START = 11 FINISH = 310 .

..
--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 300)
 NAR_CURR = 7 AIC = 46.957398
CONSTANT MODEL: N_POOLED = 600
 NAR_POOLED = 8 AIC = 45.892350

***** CONSTANT MODEL ADOPTED *****

..CURRENT MODEL..

. . .
. . .
. . .
. . .
M AR Coefficients: AR(M) .
. . .
1 1.593890 .
2 -1.262379 .
3 1.013733 .
4 -0.926052 .
5 0.314480 .
6 0.193973 .
7 -0.058043 .
8 -0.078508 .
. . .
AIC = 45.8923501 .
Innovation Variance = 1.047585 .
. . .
INPUT DATA START = 11 FINISH = 610 .
..
Output 16.3.27 Power Spectrum for First and Second Blocks
--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: \((N_{\text{PREV}} = 600, N_{\text{CURR}} = 300)\)
 \[\text{NAR}_{\text{CURR}} = 7 \quad \text{AIC} = 106.829869\]

CONSTANT MODEL: \(N_{\text{POOLED}} = 900\)
 \[\text{NAR}_{\text{POOLED}} = 8 \quad \text{AIC} = 108.867091\]

***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL..........................

.
.
.
. M AR Coefficients: AR(M)
.
. 1 1.648544
. 2 -1.201812
. 3 0.674933
. 4 -0.567576
. 5 -0.018924
. 6 0.516627
. 7 -0.283410
.
. AIC = 60.9375188
. Innovation Variance = 1.161592
.
. INPUT DATA START = 611 FINISH = 910 .

..
Output 16.3.29 Power Spectrum for Third Block
The moving model is selected because there is a structural change in the last block of data. (The FIRST and LAST variables contain the values 911 and 1,000, respectively; this correspond to observations 911 through 1,000.) The final estimates are stored in variables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum are given in Output 16.3.30 and Output 16.3.31, respectively. The power spectrum of the final model (Output 16.3.31) is significantly different from that of the first and second blocks (see Output 16.3.27).

Output 16.3.30 Locally Stationary Model for Last Block

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 300, N_CURR = 90)
 NAR_CURR = 6 AIC = 139.579012

CONSTANT MODEL: N_POOLED = 390
 NAR_POOLED = 9 AIC = 167.783711

***** ****
***** NEW MODEL ADOPTED *****
***** ****

..........................CURRENT MODEL.........................

. .
. .
. .
. M AR Coefficients: AR(M)
. .
. 1 1.181022
. 2 -0.321178
. 3 -0.113001
. 4 -0.137846
. 5 -0.141799
. 6 0.260728
. .
. AIC = 78.6414932
. Innovation Variance = 2.050818
. .
. .
. .
. INPUT DATA START = 911 FINISH = 1000

...
Multivariate Stationary Data Analysis

The multivariate analysis for locally stationary data is a straightforward extension of the univariate analysis. This section uses data related to the rudder setting and yaw of an aircraft. A plot of the data is shown in Output 16.3.32.
The following statements estimate bivariate locally stationary VAR models. The selected model is the VAR(7) process with some zero coefficients over the last block of data. There seems to be a structural difference between observations from 11 to 610 and those from 611 to 896.

```sas
proc iml;
use Aircraft;
read all var {rudder yawing} into y;
close Aircraft;

c = {0.01795 0.02419};
y = y # c; /*--- calibration of data ---*/
mdl = -1;
lspan = 300; /* local span of data */
maice = 1;
```
call tsmlomar(arcoef, ev, nar, aic, first, last) data=y maxlag=10
 opt = (mdel || lspan || maice) print=1;

The results of the analysis are shown in Output 16.3.33.

Output 16.3.33 Locally Stationary VAR Model Analysis

--- THE FOLLOWING TWO MODELS ARE COMPARED ---

MOVING MODEL: (N_PREV = 600, N_CURR = 286)
 NAR_CURR = 7 AIC = -823.845234
CONSTANT MODEL: N_POOLED = 886
 NAR_POOLED = 10 AIC = -716.818588

***** *****
***** NEW MODEL ADOPTED *****
***** *****

..........................CURRENT MODEL.........................

. .
. .
. .
. .
. M AR Coefficients
. .
. 1 0.932904 -0.130964
 -0.024401 0.599483
. 2 0.163141 0.266876
 -0.135605 0.377923
. 3 -0.322283 0.178194
 0.188603 -0.081245
. 4 0.166094 -0.304755
 -0.084626 -0.180638
. 5 0 0
 0 -0.036958
. 6 0 0
 0 0.034578
. 7 0 0
 0 0.268414
. .
. .
. .
. .
. .
. AIC = -114.6911872
. .
. Innovation Variance
. .
. 1.069929 0.145558
 0.145558 0.563985
. .
. .
. .
. .
. .
. INPUT DATA START = 611 FINISH = 896

A Time Series Decomposition

Consider the time series decomposition

\[y_t = T_t + S_t + u_t + \epsilon_t \]

where \(T_t \) and \(S_t \) are trend and seasonal components, respectively, and \(u_t \) is a stationary AR(\(p \)) process. The annual real GNP series in Example 16.1 is analyzed under second difference stochastic constraints on the trend component and the stationary AR(2) process.

\[
T_t = 2T_{t-1} - T_{t-2} + w_{1t} \\
u_t = \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + w_{2t}
\]

The seasonal component is ignored if you specify SORDER=0. Therefore, the following state space model is estimated:

\[
y_t = Hz_t + \epsilon_t \\
z_t = Fz_{t-1} + w_t
\]

where

\[
H = \begin{bmatrix}
1 & 0 & 1 & 0
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
2 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & \alpha_1 & \alpha_2 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
z_t = (T_t, T_{t-1}, u_t, u_{t-1})' \\
w_t = (w_{1t}, 0, w_{2t}, 0)' \sim \begin{bmatrix}
\sigma_1^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \sigma_2^2 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The parameters of this state space model are \(\sigma_1^2, \sigma_2^2, \alpha_1, \) and \(\alpha_2 \). The following statements compute the decomposition:

```plaintext
proc iml;
use gnp;
read all var {y};
close gnp;
mdel = 0; trade = 0; year = 0;
period= 0; log = 0; maxit = 100;
update = .; /* use default update method */
line = .; /* use default line search method */
sigmax = 0; /* no upper bound for variances */
back = 100;
opt = mdel || trade || year || period || log || maxit ||
      update || line || sigmax || back;
```
The estimated parameters are printed when you specify the PRINT= option. In Output 16.3.34, the estimated variances are printed under the title of TAU2(I), showing that \(\hat{\sigma}_1^2 = 2.915 \) and \(\hat{\sigma}_2^2 = 113.9577 \). The AR coefficient estimates are \(\hat{\alpha}_1 = 1.397 \) and \(\hat{\alpha}_2 = -0.595 \). These estimates are also stored in the output matrix COEF.

Output 16.3.34 Nonstationary Time Series and State Space Modeling

<table>
<thead>
<tr>
<th>I</th>
<th>TAU2(I)</th>
<th>AR(I)</th>
<th>PARCOR(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.915075</td>
<td>1.397374</td>
<td>0.876163</td>
</tr>
<tr>
<td>2</td>
<td>113.957607</td>
<td>-0.594879</td>
<td>-0.594879</td>
</tr>
</tbody>
</table>

The trend and stationary AR components are estimated by using the smoothing method, and out-of-sample forecasts are computed by using a Kalman filter prediction algorithm. The trend and AR components are stored in the matrix CMP since the ICMP={1 3} option is specified. The last 10 observations of the original series Y and the last 15 observations of two components are shown in Output 16.3.35. Note that the first column of CMP is the trend component and the second column is the AR component. The last 5 observations of the CMP matrix are out-of-sample forecasts.

```R
y = y[52:61];
cmp = cmp[52:66,];
obs = T(52:66);
print obs y cmp;
```
Output 16.3.35 Smoothed and Predicted Values of Two Components

<table>
<thead>
<tr>
<th>obs</th>
<th>y</th>
<th>cmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>487.7</td>
<td>-41.37417</td>
</tr>
<tr>
<td>53</td>
<td>497.2</td>
<td>201.99968</td>
</tr>
<tr>
<td>54</td>
<td>529.8</td>
<td>-31.05757</td>
</tr>
<tr>
<td>55</td>
<td>551</td>
<td>209.65589</td>
</tr>
<tr>
<td>56</td>
<td>581.1</td>
<td>-17.65476</td>
</tr>
<tr>
<td>57</td>
<td>617.8</td>
<td>217.82432</td>
</tr>
<tr>
<td>58</td>
<td>658.1</td>
<td>-17.0613</td>
</tr>
<tr>
<td>59</td>
<td>675.2</td>
<td>226.44692</td>
</tr>
<tr>
<td>60</td>
<td>706.6</td>
<td>-30.21502</td>
</tr>
<tr>
<td>61</td>
<td>724.7</td>
<td>235.85739</td>
</tr>
<tr>
<td>62</td>
<td>-27.7061</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>245.85384</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>-17.31128</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>256.43509</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>6.1997939</td>
<td></td>
</tr>
</tbody>
</table>

Seasonal Adjustment

Consider the simple time series decomposition

\[y_t = T_t + S_t + \epsilon_t \]

The TSBAYSEA subroutine computes seasonally adjusted series by estimating the seasonal component. The seasonally adjusted series is computed as \(y_t^* = y_t - \hat{S}_t \). The details of the adjustment procedure are given in the section “Bayesian Seasonal Adjustment” on page 333.

The monthly labor force series (1972–1978) are analyzed. You do not need to specify the options vector if you want to use the default options. However, you should change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED= option produces the multistep forecasts for the trend and seasonal components. The stochastic constraints are specified as ORDER=2 and SORDER=1.

\[
T_t = 2T_{t-1} - T_{t-2} + w_{1t} \\
S_t = -S_{t-1} - \cdots - S_{t-11} + w_{2t}
\]

In **Output 16.3.36**, the first column shows the trend components; the second column shows the seasonal components; the third column shows the forecasts; the fourth column shows the seasonally adjusted series; the last column shows the value of ABIC. The last 12 rows are the forecasts. The output is generated by using the following statements:
proc iml;
y = { 5447 5412 5215 4697 4344 5426
 5173 4857 4658 4470 4268 4116
 4675 4845 4512 4174 3799 4847
 4550 4208 4165 3763 4056 4058
 5008 5140 4755 4301 4144 5380
 5260 4885 5202 5044 5685 6106
 8180 8309 8359 7820 7623 8569
 8209 7696 7522 7244 7231 7195
 8174 8033 7525 6890 6304 7655
 7577 7322 7026 6833 7095 7022
 7848 8109 7556 6568 6151 7453
 6941 6757 6437 6221 6346 5880 }`;
call tsbaysea(trend,season,series,adj,abic)
data=y order=2 sorder=1 npred=12 print=2;
print trend season series adj abic;

Output 16.3.36 Trend and Seasonal Component Estimates and Forecasts

<table>
<thead>
<tr>
<th>obs</th>
<th>trend</th>
<th>season</th>
<th>series</th>
<th>adj</th>
<th>abic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4843.2502</td>
<td>576.86675</td>
<td>5420.1169</td>
<td>4870.1332</td>
<td>874.04585</td>
</tr>
<tr>
<td>2</td>
<td>4848.6664</td>
<td>612.79607</td>
<td>5461.4624</td>
<td>4799.2039</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4871.2876</td>
<td>324.02004</td>
<td>5195.3077</td>
<td>4890.98</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4896.6633</td>
<td>-198.7601</td>
<td>4697.9032</td>
<td>4895.7601</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4922.9458</td>
<td>-572.5562</td>
<td>4350.3896</td>
<td>4916.5562</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>6551.6017</td>
<td>-266.2162</td>
<td>6285.3855</td>
<td>6612.2162</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>6388.9012</td>
<td>-440.3472</td>
<td>5948.5539</td>
<td>6320.3472</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>6226.2006</td>
<td>650.7707</td>
<td>6876.9713</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>6063.5001</td>
<td>800.93733</td>
<td>6864.4374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5900.7995</td>
<td>396.19866</td>
<td>6296.9982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>5738.099</td>
<td>-340.2852</td>
<td>5397.8137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>5575.3984</td>
<td>-719.1146</td>
<td>4856.2838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>5412.6979</td>
<td>553.19764</td>
<td>5965.8955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5249.9973</td>
<td>202.06582</td>
<td>5452.0631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>5087.2968</td>
<td>-54.44768</td>
<td>5032.8491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>4924.5962</td>
<td>-295.2747</td>
<td>4629.3215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4761.8957</td>
<td>-487.6621</td>
<td>4274.2336</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>4599.1951</td>
<td>-266.1917</td>
<td>4333.0034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4436.4946</td>
<td>-440.3354</td>
<td>3996.1591</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The estimated spectral density function of the irregular series \(\hat{e}_t \) is shown in Output 16.3.37 and Output 16.3.38.
Output 16.3.37 Spectrum of Irregular Component

<table>
<thead>
<tr>
<th>I</th>
<th>Rational</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.366798E+00</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>1.571261E+00</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>2.414836E+00</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>5.151906E+00</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>1.634887E+01</td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>8.085674E+01</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>3.805530E+02</td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td>8.082536E+02</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>6.366350E+02</td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td>4.479435E+02</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>3.872650E+02</td>
<td>*</td>
</tr>
<tr>
<td>11</td>
<td>1.264805E+03</td>
<td>*</td>
</tr>
<tr>
<td>12</td>
<td>1.726138E+04</td>
<td>*</td>
</tr>
<tr>
<td>13</td>
<td>1.559041E+03</td>
<td>*</td>
</tr>
<tr>
<td>14</td>
<td>1.276516E+03</td>
<td>*</td>
</tr>
<tr>
<td>15</td>
<td>3.861089E+03</td>
<td>*</td>
</tr>
<tr>
<td>16</td>
<td>9.593184E+03</td>
<td>*</td>
</tr>
<tr>
<td>17</td>
<td>3.662145E+03</td>
<td>*</td>
</tr>
<tr>
<td>18</td>
<td>5.499783E+03</td>
<td>*</td>
</tr>
<tr>
<td>19</td>
<td>4.443303E+03</td>
<td>*</td>
</tr>
<tr>
<td>20</td>
<td>1.238135E+03</td>
<td>*</td>
</tr>
<tr>
<td>21</td>
<td>8.392131E+02</td>
<td>*</td>
</tr>
<tr>
<td>22</td>
<td>1.258933E+03</td>
<td>*</td>
</tr>
<tr>
<td>23</td>
<td>2.932003E+03</td>
<td>*</td>
</tr>
<tr>
<td>24</td>
<td>1.857923E+03</td>
<td>*</td>
</tr>
<tr>
<td>25</td>
<td>1.171437E+03</td>
<td>*</td>
</tr>
<tr>
<td>26</td>
<td>1.611958E+03</td>
<td>*</td>
</tr>
<tr>
<td>27</td>
<td>4.822498E+03</td>
<td>*</td>
</tr>
<tr>
<td>28</td>
<td>4.464961E+03</td>
<td>*</td>
</tr>
<tr>
<td>29</td>
<td>1.951547E+03</td>
<td>*</td>
</tr>
<tr>
<td>30</td>
<td>1.653182E+03</td>
<td>*</td>
</tr>
<tr>
<td>31</td>
<td>2.308152E+03</td>
<td>*</td>
</tr>
<tr>
<td>32</td>
<td>5.475758E+03</td>
<td>*</td>
</tr>
<tr>
<td>33</td>
<td>2.349584E+04</td>
<td>*</td>
</tr>
<tr>
<td>34</td>
<td>5.266969E+03</td>
<td>*</td>
</tr>
<tr>
<td>35</td>
<td>2.058667E+03</td>
<td>*</td>
</tr>
<tr>
<td>36</td>
<td>2.215595E+03</td>
<td>*</td>
</tr>
<tr>
<td>37</td>
<td>8.181540E+03</td>
<td>*</td>
</tr>
<tr>
<td>38</td>
<td>3.077329E+03</td>
<td>*</td>
</tr>
<tr>
<td>39</td>
<td>7.577961E+02</td>
<td>*</td>
</tr>
<tr>
<td>40</td>
<td>5.057636E+02</td>
<td>*</td>
</tr>
<tr>
<td>41</td>
<td>7.312090E+02</td>
<td>*</td>
</tr>
<tr>
<td>42</td>
<td>3.131377E+03</td>
<td>*</td>
</tr>
<tr>
<td>43</td>
<td>8.173276E+03</td>
<td>*</td>
</tr>
<tr>
<td>44</td>
<td>1.958359E+03</td>
<td>*</td>
</tr>
<tr>
<td>45</td>
<td>2.216458E+03</td>
<td>*</td>
</tr>
<tr>
<td>46</td>
<td>4.215465E+03</td>
<td>*</td>
</tr>
<tr>
<td>47</td>
<td>9.658520E+03</td>
<td>*</td>
</tr>
<tr>
<td>48</td>
<td>3.758466E+02</td>
<td>*</td>
</tr>
<tr>
<td>49</td>
<td>2.849326E+02</td>
<td>*</td>
</tr>
<tr>
<td>50</td>
<td>3.617848E+02</td>
<td>*</td>
</tr>
<tr>
<td>51</td>
<td>7.658939E+02</td>
<td>*</td>
</tr>
<tr>
<td>52</td>
<td>3.191969E+03</td>
<td>*</td>
</tr>
</tbody>
</table>
Output 16.3.38 continued

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>1.768107E+04</td>
<td>*</td>
</tr>
<tr>
<td>54</td>
<td>5.281385E+03</td>
<td>*</td>
</tr>
<tr>
<td>55</td>
<td>2.959704E+03</td>
<td>*</td>
</tr>
<tr>
<td>56</td>
<td>3.783522E+03</td>
<td>*</td>
</tr>
<tr>
<td>57</td>
<td>1.896625E+04</td>
<td>*</td>
</tr>
<tr>
<td>58</td>
<td>1.041753E+04</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>2.038940E+03</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1.347568E+03</td>
<td>*</td>
</tr>
</tbody>
</table>

X: If peaks (troughs) appear
at these frequencies,
try lower (higher) values
of rigid and watch ABIC

T: If a peaks appears here
try trading-day adjustment

Miscellaneous Time Series Analysis Tools

The **TSPRED Subroutine**

The forecast values of multivariate time series are computed by using the TSPRED call. In the following example, the multistep-ahead forecasts are produced from the VARMA(2,1) estimates. Because the VARMA model is estimated by using the mean deleted series, you should specify the CONSTANT = −1 option. You need to provide the original series instead of the mean deleted series to get the correct predictions. The forecast variance MSE and the impulse response function IMPULSE are also produced.

The VARMA(p, q) model is written

$$y_t + \sum_{i=1}^{p} A_i y_{t-i} = \epsilon_t + \sum_{i=1}^{q} M_i \epsilon_{t-i}$$

Then the COEF matrix is constructed by stacking matrices A_1, \ldots, A_p, M_1, \ldots, M_q. The following statements analyze the data, which contains 40 observations and four variables:
proc iml;

C = { 264 235 239 239 275 277 274 334 334 306
 308 309 295 271 277 221 223 227 215 223
 241 250 270 303 311 307 322 335 335 334
 309 262 228 191 188 215 215 249 291 296 };

F = { 690 690 688 690 694 702 702 702 700 702
 702 694 708 702 708 700 702 694
 698 694 700 702 700 702 708 708 710 704
 704 700 700 694 702 694 710 710 710 708 };

T = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464
 1560 1376 1336 1336 1296 1280 1264 1280 1272
 1344 1328 1352 1480 1472 1600 1512 1456 1368 1280
 1224 1112 1112 1048 1064 1168 1280 1336 1248 };

P = { 254.14 253.12 251.85 250.41 249.09 249.19 249.52 250.19
 248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33
 251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19
 249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80
 254.92 254.96 254.96 254.96 254.96 254.96 254.54 253.21 252.08 };

Y = C` || F` || T` || P`;

/* AR coefficients */
ar = { .82028 -.97167 .079386 -.5.4382,
 -.39983 .94448 .027938 -1.7477,
 -.42278 -2.3314 1.4682 -70.996,
 .031038 -.019231 -.0004904 1.3677,
 -.029811 .89262 -.047579 4.7873,
 .31476 .0061959 -.012221 1.4921,
 .3813 2.7182 -.52993 67.711,
 -.020818 .01764 .00037981 -.38154 };

/* AR coefficients */
ma = { .083035 -1.0509 .055898 -3.9778,
 -.40452 .36876 .026369 -.81146,
 .062379 -2.6506 .80784 -.76.952,
 .03273 -.031555 -.00019776 -.025205 };

coef = ar // ma; /* stack the coefficients */

/* AR coefficients */
ev = { 188.55 6.8082 42.385 .042942,
 6.8082 32.169 37.995 -.062341,
 42.385 37.995 5138.8 -.10757,
 .042942 -.062341 -.10757 .34313 };

/* AR coefficients */

nar = 2; nma = 1;

call tspred(forecast, impulse, mse, y, coef, nar, nma, ev,
 5, nrow(y), -1);

If you write the data and the predicted values to a SAS data set, you can use the SGPANEL procedure to visualize the original series and the forecasts. The result is shown in Output 16.3.39.
The forecast variable contains 45 observations. The first 40 rows are one-step predictions. The last five rows contain the five-step forecast values of the variables C, F, T, and P. You can construct the confidence interval for these forecasts by using the mean square error matrix, MSE. See the section “Multivariate Time Series Analysis” on page 338 for more details about impulse response functions and the mean square error matrix.

The TSROOT Subroutine

The TSROOT call computes the polynomial roots of the AR and MA equations. When the AR(p) process is written

\[y_t = \sum_{i=1}^{p} \alpha_i y_{t-i} + \epsilon_t \]

you can specify the following polynomial equation:

\[z^p - \sum_{i=1}^{p} \alpha_i z^{p-i} = 0 \]
When all \(p \) roots of the preceding equation are inside the unit circle, the AR(\(p \)) process is stationary. The MA(\(q \)) process is invertible if the following polynomial equation has all roots inside the unit circle:

\[
z^q + \sum_{i=1}^{q} \theta_i z^{q-i} = 0
\]

where \(\theta_i \) are the MA coefficients.

For example, the following program analyzes the time series data that are shown in Output 16.3.14. The TSUNIMAR subroutine (see Output 16.3.40) selects the best AR model and estimates the AR coefficients, as shown in Output 16.3.40.

```iml
proc iml;
2.718 1.991 2.265 2.446 2.612 2.359 3.429 3.533 3.261 2.612
2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557
2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690
1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588
3.000 3.201 3.424 3.531};
call tsunimar(ar,innov_var,nar,aic) data=y maxlag=5
   opt=({-1 1}) print=0;
lag = (1:5)```

```iml
 print lag ar, aic innov_var;
```

**Output 16.3.40** Minimum AIC AR Estimation

<table>
<thead>
<tr>
<th>lag</th>
<th>ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3003068</td>
</tr>
<tr>
<td>2</td>
<td>-0.72328</td>
</tr>
<tr>
<td>3</td>
<td>0.2421928</td>
</tr>
<tr>
<td>4</td>
<td>-0.378757</td>
</tr>
<tr>
<td>5</td>
<td>0.1377273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>aic innov_var</th>
</tr>
</thead>
<tbody>
<tr>
<td>-318.6138 0.0490554</td>
</tr>
</tbody>
</table>

You can obtain the associated roots by calling the TSROOT subroutine. The TSROOT subroutine expects to receive complex AR or MA coefficients, whereas the matrix from the TSUNIMAR subroutine contains real coefficients. To represent complex coefficients, append a column of zeros (the value of the imaginary coefficients) and pass in the two-column matrix to the TSROOT subroutine by using the MATIN= argument, as follows:
Chapter 16: Time Series Analysis and Examples

```latex
/*-- set up complex coefficient matrix --*/
ar_cx = ar || j(nrow(ar),1,0);
call tsroot(root) matin=ar_cx nar=nar nma=0;
```

The output of the TSROOT subroutine is the ROOT matrix, which has two columns and five rows. Each row contains the real and imaginary parts of the roots of the characteristic polynomial $z^5 - \alpha_1 z^4 - \alpha_2 z^3 - \alpha_3 z^2 - \alpha_4 z - \alpha_5$, where the $\alpha_i$ are the AR coefficients. Sometimes it is useful to display other information about the roots, as shown in Output 16.3.4 and Output 16.3.8. The following module prints the roots, their moduli, and their angles in the complex plane.

```latex
start PrintRootInfo(z); /* print Re(z), Im(z), |z|, and Arg(z) */
m = j(nrow(z), 6);
m[,1] = t(1:nrow(z));
m[,{2 3}] = z;
m[,4] = sqrt(z[,##]); /* modulus */
m[,5] = atan2(z[,2], z[,1]); /* atan(I/R) */
m[,6] = m[,5] * 180 / constant('pi'); /* degree */
print m[L="Roots of AR Characteristic Polynomial"
 c={I "Real" "Imaginary" "MOD(z)" "ATan(I/R)" "Deg"}];
finish;
run PrintRootInfo(root);
```

The result is shown in Output 16.3.41. All roots are within the unit circle. The modulus values of the fourth and fifth roots are sizable (0.9194).

**Output 16.3.41**  Roots of AR Characteristic Polynomial Equation

<table>
<thead>
<tr>
<th></th>
<th>Real</th>
<th>Imaginary</th>
<th>MOD(z)</th>
<th>ATan(I/R)</th>
<th>Deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>-0.2975546</td>
<td>0.5599112</td>
<td>0.6340618</td>
<td>2.0592605</td>
<td>117.98694</td>
</tr>
<tr>
<td>ROW2</td>
<td>-0.2975546</td>
<td>-0.5599111</td>
<td>0.6340618</td>
<td>-2.059261</td>
<td>-117.98694</td>
</tr>
<tr>
<td>ROW3</td>
<td>3</td>
<td>0</td>
<td>0.4052936</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ROW4</td>
<td>4</td>
<td>0.7450529</td>
<td>0.5386556</td>
<td>0.9193768</td>
<td>0.6259805</td>
</tr>
<tr>
<td>ROW5</td>
<td>5</td>
<td>0.7450529</td>
<td>-0.5386556</td>
<td>0.9193768</td>
<td>-0.62598</td>
</tr>
</tbody>
</table>

The TSROOT subroutine can also recover the polynomial coefficients if the roots are provided as an input. Specify the QCOEF=1 option when you want to compute the polynomial coefficients instead of polynomial roots. The results are shown in Output 16.3.42, which you should compare with Output 16.3.40.

```latex
call tsroot(ar_cx) matin=root nar=nar qcoef=1 nma=0;
reset fuzz;
print (lag || ar_cx)[L="Polynomial Coefficients"
 c="I" "AR(real)" "AR(imag)"];
```

**Output 16.3.40**  Polynomial Coefficients

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>AR(real)</th>
<th>AR(imag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>1</td>
<td>-0.2975546</td>
<td>0.5599112</td>
</tr>
<tr>
<td>ROW2</td>
<td>2</td>
<td>-0.2975546</td>
<td>-0.5599111</td>
</tr>
<tr>
<td>ROW3</td>
<td>3</td>
<td>0</td>
<td>0.4052936</td>
</tr>
<tr>
<td>ROW4</td>
<td>4</td>
<td>0.7450529</td>
<td>0.5386556</td>
</tr>
<tr>
<td>ROW5</td>
<td>5</td>
<td>0.7450529</td>
<td>-0.5386556</td>
</tr>
</tbody>
</table>
Output 16.3.42  Polynomial Coefficients

<table>
<thead>
<tr>
<th>Polynomial Coefficients</th>
<th>I</th>
<th>AR(real)</th>
<th>AR(imag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3003068</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.72328</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.2421928</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.378757</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1377273</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

TIMSAC routines are controlled by the following statements:

- **CALL TSBAYSEA** *(trend, season, series, adjust, abic, data <,order, sorder, rigid, npred, opt, cntl, print >)*
- **CALL TSDECOMP** *(comp, est, aic, data <,xdata, order, sorder, nar, npred, init, opt, icmp, print >)*
- **CALL TSMLOCAR** *(arcoef, ev, nar, aic, start, finish, data <,maxlag, opt, missing, print >)*
- **CALL TSMLOMAR** *(arcoef, ev, nar, aic, start, finish, data <,maxlag, opt, missing, print >)*
- **CALL TSMULMAR** *(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print >)*
- **CALL TSPEARS** *(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print >)*
- **CALL TSPRED** *(forecast, impulse, mse, data, coef, nar, nma <,ev, npred, start, constant >)*
- **CALL TSROOT** *(matout, matin, nar, nma <,qcoef, print >)*
- **CALL TSTVCAR** *(arcoef, variance, est, aic, data <,nar, init, opt, outlier, print >)*
- **CALL TSUNIMAR** *(arcoef, ev, nar, aic, data <,maxlag, opt, missing, print >)*

Details

This section presents an introductory description of the important topics that are directly related to TIMSAC IML subroutines. The computational details, including algorithms, are described in the section “Computational Details” on page 342. A detailed explanation of each subroutine is not given; instead, basic ideas and common methodologies for all subroutines are described first and are followed by more technical details. Finally, missing values are discussed in the section “Missing Values” on page 347.

Minimum AIC Procedure

The AIC statistic is widely used to select the best model among alternative parametric models. The minimum AIC model selection procedure can be interpreted as a maximization of the expected entropy (Akaike 1981). The entropy of a true probability density function (PDF) $\varphi$ with respect to the fitted PDF $f$ is written as

$$B(\varphi, f) = -I(\varphi, f)$$
where $I(\varphi, f)$ is a Kullback-Leibler information measure, which is defined as

$$I(\varphi, f) = \int \left[ \log \left( \frac{\varphi(z)}{f(z)} \right) \right] \varphi(z) dz$$

where the random variable $Z$ is assumed to be continuous. Therefore,

$$B(\varphi, f) = E_Z \log f(Z) - E_Z \log \varphi(Z)$$

where $B(\varphi, f) \leq 0$ and $E_Z$ denotes the expectation concerning the random variable $Z$. $B(\varphi, f) = 0$ if and only if $\varphi = f$ (a.s.). The larger the quantity $E_Z \log f(Z)$, the closer the function $f$ is to the true PDF $\varphi$. Given the data $y = (y_1, \ldots, y_T)'$ that has the same distribution as the random variable $Z$, let the likelihood function of the parameter vector $\theta$ be $Q(\theta | y) = \prod_{t=1}^{T} f(y_t | \theta)$. Then the average of the log-likelihood function $\frac{1}{T} \sum_{t=1}^{T} \log f(y_t | \theta)$ is an estimate of the expected value of $\log f(Z)$.

Akaike (1981) derived the alternative estimate of $E_Z \log f(Z)$ by using the Bayesian predictive likelihood. The AIC is the bias-corrected estimate of $-2T E_Z \log f(Z)$, where $\hat{\theta}$ is the maximum likelihood estimate.

$$\text{AIC} = -2(\text{maximum log likelihood}) + 2(\text{number of free parameters})$$

Let $\theta = (\theta_1, \ldots, \theta_K)'$ be a $K \times 1$ parameter vector that is contained in the parameter space $\Theta_K$. Given the data $y$, the log-likelihood function is

$$\ell(\theta) = \sum_{t=1}^{T} \log f(y_t | \theta)$$

Suppose the probability density function $f(y | \theta)$ has the true PDF $\varphi(y) = f(y | \theta^0)$, where the true parameter vector $\theta^0$ is contained in $\Theta_K$. Let $\hat{\theta}_K$ be a maximum likelihood estimate. The maximum of the log-likelihood function is denoted as $\ell(\hat{\theta}_K) = \max_{\theta \in \Theta_K} \ell(\theta)$. The expected log-likelihood function is defined by

$$\ell^*(\theta) = T E_Z \log f(Z | \theta)$$

The Taylor series expansion of the expected log-likelihood function around the true parameter $\theta^0$ gives the following asymptotic relationship:

$$\ell^*(\theta) \overset{A}{=} \ell^*(\theta^0) + T (\theta - \theta^0)' E_Z \frac{\partial \log f(Z | \theta^0)}{\partial \theta} - \frac{T}{2} (\theta - \theta^0)' I(\theta^0)(\theta - \theta^0)$$

where $I(\theta^0)$ is the information matrix and $\overset{A}{=} \text{stands for asymptotic equality}$. Note that $\frac{\partial \log f(z | \theta^0)}{\partial \theta} = 0$ since $\log f(z | \theta)$ is maximized at $\theta^0$. By substituting $\hat{\theta}_K$, the expected log-likelihood function can be written as

$$\ell^*(\hat{\theta}_K) \overset{A}{=} \ell^*(\theta^0) - \frac{T}{2} (\hat{\theta}_K - \theta^0)' I(\theta^0)(\hat{\theta}_K - \theta^0)$$

The maximum likelihood estimator is asymptotically normally distributed under the regularity conditions

$$\sqrt{T} I(\theta^0)^{1/2}(\hat{\theta}_K - \theta^0) \overset{d}{\rightarrow} N(0, I_K)$$

Therefore,

$$T(\hat{\theta}_K - \theta^0)' I(\theta^0)(\hat{\theta}_K - \theta^0) \overset{a}{\sim} \chi^2_K$$
The mean expected log-likelihood function, $\ell^*(K) = E_Y \ell^*(\hat{\theta}_K)$, becomes

$$\ell^*(K) \overset{A}{=} \ell^*(\theta^0) - \frac{K}{2}$$

When the Taylor series expansion of the log-likelihood function around $\hat{\theta}_K$ is used, the log-likelihood function $\ell(\theta)$ is written

$$\ell(\theta) \overset{A}{=} \ell(\hat{\theta}_K) + (\theta - \hat{\theta}_K) \left. \frac{\partial \ell(\theta)}{\partial \theta} \right|_{\hat{\theta}_K} + \frac{1}{2} (\theta - \hat{\theta}_K) \left. \frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta'} \right|_{\hat{\theta}_K} (\theta - \hat{\theta}_K)$$

Since $\ell(\hat{\theta}_K)$ is the maximum log-likelihood function, $\left. \frac{\partial \ell(\theta)}{\partial \theta} \right|_{\hat{\theta}_K} = 0$. Notice that $\lim \left[ -\frac{1}{T} \left. \frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta'} \right|_{\hat{\theta}_K} \right] = I(\theta^0)$ if the maximum likelihood estimator $\hat{\theta}_K$ is a consistent estimator of $\theta$. Replacing $\theta$ with the true parameter $\theta^0$ and taking expectations with respect to the random variable $Y$,

$$E_Y \ell(\theta^0) \overset{A}{=} E_Y \ell(\hat{\theta}_K) - \frac{K}{2}$$

Consider the following relationship:

$$\ell^*(\theta^0) = T E_Z \log f(Z|\theta^0) = E_Y \sum_{t=1}^{T} \log f(Y_t|\theta^0) = E_Y \ell(\theta^0)$$

From the previous derivation,

$$\ell^*(K) \overset{A}{=} \ell^*(\theta^0) - \frac{K}{2}$$

Therefore,

$$\ell^*(K) \overset{A}{=} E_Y \ell(\hat{\theta}_K) - K$$

The natural estimator for $E_Y \ell(\hat{\theta}_K)$ is $\ell(\hat{\theta}_K)$. Using this estimator, you can write the mean expected log-likelihood function as

$$\ell^*(K) \overset{A}{=} \ell(\hat{\theta}_K) - K$$

Consequently, the AIC is defined as an asymptotically unbiased estimator of $-2(\text{mean expected log-likelihood})$

$$\text{AIC}(K) = -2\ell(\hat{\theta}_K) + 2K$$

In practice, the previous asymptotic result is expected to be valid in finite samples if the number of free parameters does not exceed $2\sqrt{T}$ and the upper bound of the number of free parameters is $\frac{T}{2}$. It is worth noting that the amount of AIC is not meaningful in itself, since this value is not the Kullback-Leibler information measure. The difference of AIC values can be used to select the model. The difference of the two AIC values is considered insignificant if it is far less than 1. It is possible to find a better model when the minimum AIC model contains many free parameters.
**Smoothness Priors Modeling**

Consider the time series \( y_t \):

\[
y_t = f(t) + \epsilon_t
\]

where \( f(t) \) is an unknown smooth function and \( \epsilon_t \) is an iid random variable with zero mean and positive variance \( \sigma^2 \). Whittaker (1923) provides the solution, which balances a tradeoff between closeness to the data and the \( k \)th-order difference equation. For a fixed value of \( \lambda \) and \( k \), the solution \( \hat{f} \) satisfies

\[
\min_{f} \sum_{t=1}^{T} \left\{ [y_t - f(t)]^2 + \lambda^2 [\nabla^k f(t)]^2 \right\}
\]

where \( \nabla^k \) denotes the \( k \)-order difference operator. The value of \( \lambda \) can be viewed as the smoothness tradeoff measure. Akaike (1980a) proposed the Bayesian posterior PDF to solve this problem.

\[
\ell(f) = \exp \left\{ -\frac{1}{2\sigma^2} \sum_{t=1}^{T} [y_t - f(t)]^2 \right\} \exp \left\{ -\frac{\lambda^2}{2\sigma^2} \sum_{t=1}^{T} [\nabla^k f(t)]^2 \right\}
\]

Therefore, the solution can be obtained when the function \( \ell(f) \) is maximized.

Assume that time series is decomposed as follows:

\[
y_t = T_t + S_t + \epsilon_t
\]

where \( T_t \) denotes the trend component and \( S_t \) is the seasonal component. The trend component follows the \( k \)th-order stochastically perturbed difference equation.

\[
\nabla^k T_t = w_{1t}, w_{1t} \sim N(0, \tau_1^2)
\]

For example, the polynomial trend component for \( k = 2 \) is written as

\[
T_t = 2T_{t-1} - T_{t-2} + w_{1t}
\]

To accommodate regular seasonal effects, the stochastic seasonal relationship is used.

\[
\sum_{i=0}^{L-1} S_{t-i} = w_{2t}, w_{2t} \sim N(0, \tau_2^2)
\]

where \( L \) is the number of seasons within a period. In the context of Whittaker and Akaike, the smoothness priors problem can be solved by the maximization of

\[
\ell(f) = \exp \left[ -\frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - T_t - S_t)^2 \right] \exp \left[ -\frac{\tau_1^2}{2\sigma^2} \sum_{t=1}^{T} (\nabla^k T_t)^2 \right] \times \exp \left[ -\frac{\tau_2^2}{2\sigma^2} \sum_{t=1}^{T} \left( \sum_{i=0}^{L-1} S_{t-i} \right)^2 \right]
\]

The values of hyperparameters \( \tau_1^2 \) and \( \tau_2^2 \) refer to a measure of uncertainty of prior information. For example, the large value of \( \tau_1^2 \) implies a relatively smooth trend component. The ratio \( \frac{\tau_i^2}{\sigma^2} \) \((i = 1, 2)\) can be considered as a signal-to-noise ratio.
Kitagawa and Gersch (1984) use the Kalman filter recursive computation for the likelihood of the tradeoff parameters. The hyperparameters are estimated by combining the grid search and optimization method. The state space model and Kalman filter recursive computation are discussed in the section “State Space and Kalman Filter Method” on page 345.

Bayesian Seasonal Adjustment

Seasonal phenomena are frequently observed in many economic and business time series. For example, consumption expenditure might have strong seasonal variations because of Christmas spending. The seasonal phenomena are repeatedly observed after a regular period of time. The number of seasons within a period is defined as the smallest time span for this repetitive observation. Monthly consumption expenditure shows a strong increase during the Christmas season, with 12 seasons per period.

There are three major approaches to seasonal time series: the regression model, the moving average model, and the seasonal ARIMA model.

**Regression Model**

Let the trend component be \( T_t = \sum_{i=1}^{m_\alpha} \alpha_i U_{it} \) and the seasonal component be \( S_t = \sum_{j=1}^{m_\beta} \beta_j V_{jt} \). Then the additive time series can be written as the regression model

\[
y_t = \sum_{i=1}^{m_\alpha} \alpha_i U_{it} + \sum_{j=1}^{m_\beta} \beta_j V_{jt} + \epsilon_t
\]

In practice, the trend component can be written as the \( m_\alpha \)-th-order polynomial, such as

\[
T_t = \sum_{i=0}^{m_\alpha} \alpha_i t^i
\]

The seasonal component can be approximated by the seasonal dummies \((D_{jt})\)

\[
S_t = \sum_{j=1}^{L-1} \beta_j D_{jt}
\]

where \( L \) is the number of seasons within a period. The least squares method is applied to estimate parameters \( \alpha_i \) and \( \beta_j \).

The seasonally adjusted series is obtained by subtracting the estimated seasonal component from the original series. Usually, the error term \( \epsilon_t \) is assumed to be white noise, while sometimes the autocorrelation of the regression residuals needs to be allowed. However, the regression method is not robust to the regression function type, especially at the beginning and end of the series.

**Moving Average Model**

If you assume that the annual sum of a seasonal time series has small seasonal fluctuations, the nonseasonal component \( N_t = T_t + \epsilon_t \) can be estimated by using the moving average method.

\[
\hat{N}_t = \sum_{i=-m}^{m} \lambda_i y_{t-i}
\]

where \( m \) is the positive integer and \( \lambda_i \) is the symmetric constant such that \( \lambda_i = \lambda_{-i} \) and \( \sum_{i=-m}^{m} \lambda_i = 1 \).
When the data are not available, either an asymmetric moving average is used, or the forecast data are augmented to use the symmetric weight. The X-11 procedure is a complex modification of this moving-average method.

**Seasonal ARIMA Model**

The regression and moving-average approaches assume that the seasonal component is deterministic and independent of other nonseasonal components. The time series approach is used to handle the stochastic trend and seasonal components.

The general ARIMA model can be written

\[
\left(\prod_{j=1}^{m} \phi_j(B) \prod_{i=1}^{k} (1 - B^{s_i})^{d_i} \right) \tilde{y}_t = \theta_0 + \prod_{i=1}^{q} \theta_i(B) \epsilon_t
\]

where \(B\) is the backshift operator and

\[
\phi_j(B) = 1 - \phi_1 B - \cdots - \phi_j B^{p_j}
\]

\[
\theta_i(B) = 1 - \theta_1 B - \cdots - \theta_i B^{q_i}
\]

and \(\tilde{y}_t = y_t - E(Y_t)\) if \(d_i = 0\;\text{or}\; s_i = 0\); otherwise, \(\tilde{y}_t = y_t\). The power of \(B, s_i, d_i\), can be considered as a seasonal factor. Specifically, the Box-Jenkins multiplicative seasonal ARIMA \((p, d, q)(P, D, Q)\) model is written as

\[
\phi_p(B) \Phi_P(B^s)(1 - B)^d(1 - B^s)^D \tilde{y}_t = \theta_q(B) \Theta_Q(B^s) \epsilon_t
\]

ARIMA modeling is appropriate for particular time series and requires burdensome computation. The TSBAYSEA subroutine combines the simple characteristics of the regression approach and time series modeling. The TSBAYSEA and X-11 procedures use the model-based seasonal adjustment. The symmetric weights of the standard X-11 option can be approximated by using the integrated MA form

\[
(1 - B)(1 - B_{12}^{12}) y_t = \theta(B) \epsilon_t
\]

With a fixed value \(\phi\), the TSBAYSEA subroutine is approximated as

\[
(1 - \phi B)(1 - B)(1 - B_{12}^{12}) y_t = \theta(B) \epsilon_t
\]

The subroutine is flexible enough to handle trading-day or leap-year effects, the shift of the base observation, and missing values. The TSBAYSEA-type modeling approach has some advantages: it clearly defines the statistical model of the time series; modification of the basic model can be an efficient method of choosing a particular procedure for the seasonal adjustment of a given time series; and the use of the concept of the likelihood provides a minimum AIC model selection approach.

**Nonstationary Time Series**

The subroutines TSMLOCAR, TSMLOMAR, and TSTVCAR are used to analyze nonstationary time series models. The AIC statistic is extensively used to analyze the locally stationary model.
**Locally Stationary AR Model**

When the time series is nonstationary, the TSMLOCAR (univariate) and TSMLOMAR (multivariate) subroutines can be employed. The whole span of the series is divided into locally stationary blocks of data, and then the TSMLOCAR and TSMLOMAR subroutines estimate a stationary AR model by using the least squares method on this stationary block. The homogeneity of two different blocks of data is tested by using the AIC.

Given a set of data \( \{y_1, \ldots, y_T\} \), the data can be divided into \( k \) blocks of sizes \( t_1, \ldots, t_k \), where \( t_1 + \cdots + t_k = T \), and \( k \) and \( t_i \) are unknown. The locally stationary model is fitted to the data

\[
y_t = \alpha_0^i + \sum_{j=1}^{p_i} \alpha_j^i y_{t-j} + \epsilon_t^i
\]

where

\[
T_{i-1} = \sum_{j=1}^{i-1} t_j < t \leq T_i = \sum_{j=1}^{i} t_j \text{ for } i = 1, \ldots, k
\]

where \( \epsilon_t^i \) is a Gaussian white noise with \( \text{E}(\epsilon_t^i) = 0 \) and \( \text{E}(\epsilon_t^i)^2 = \sigma_i^2 \). Therefore, the log-likelihood function of the locally stationary series is

\[
\ell = -\frac{1}{2} \sum_{i=1}^{k} \left[ t_i \log(2\pi \sigma_i^2) + \frac{1}{\sigma_i^2} \sum_{t=T_{i-1}+1}^{T_i} \left( y_t - \alpha_0^i - \sum_{j=1}^{p_i} \alpha_j^i y_{t-j} \right)^2 \right]
\]

Given \( \alpha_j^i, j = 0, \ldots, p_i \), the maximum of the log-likelihood function is attained at

\[
\hat{\sigma}_i^2 = \frac{1}{T_i} \sum_{t=T_{i-1}+1}^{T_i} \left( y_t - \hat{\alpha}_0^i - \sum_{j=1}^{p_i} \hat{\alpha}_j^i y_{t-j} \right)^2
\]

The concentrated log-likelihood function is given by

\[
\ell^* = -\frac{T}{2} \left[ 1 + \log(2\pi) \right] - \frac{1}{2} \sum_{i=1}^{k} t_i \log(\hat{\sigma}_i^2)
\]

Therefore, the maximum likelihood estimates, \( \hat{\alpha}_j^i \) and \( \hat{\sigma}_i^2 \), are obtained by minimizing the following local SSE:

\[
\text{SSE} = \sum_{t=T_{i-1}+1}^{T_i} \left( y_t - \hat{\alpha}_0^i - \sum_{j=1}^{p_i} \hat{\alpha}_j^i y_{t-j} \right)^2
\]

The least squares estimation of the stationary model is explained in the section “Least Squares and Householder Transformation” on page 342.

The AIC for the locally stationary model over the pooled data is written as

\[
\sum_{i=1}^{k} t_i \log(\hat{\sigma}_i^2) + 2 \sum_{i=1}^{k} (p_i + \delta + 1)
\]
where $\delta = 1$ if the intercept term ($\alpha_i^0$) is estimated; otherwise, $\delta = 0$. The number of stationary blocks ($k$), the size of each block ($t_i$), and the order of the locally stationary model is determined by the AIC. Consider the autoregressive model fitted over the block of data, $\{y_1, \ldots, y_T\}$, and let this model $M_1$ be an AR($p_1$) process. When additional data, $\{y_{T+1}, \ldots, y_{T+T_1}\}$, are available, a new model $M_2$, an AR($p_2$) process, is fitted over this new data set, assuming that these data are independent of the previous data. Then AICs for models $M_1$ and $M_2$ are defined as

$$AIC_1 = T \log(\sigma_1^2) + 2(p_1 + \delta + 1)$$
$$AIC_2 = T_1 \log(\sigma_2^2) + 2(p_2 + \delta + 1)$$

The joint model AIC for $M_1$ and $M_2$ is obtained by summation

$$AIC_J = AIC_1 + AIC_2$$

When the two data sets are pooled and estimated over the pooled data set, $\{y_1, \ldots, y_{T+T_1}\}$, the AIC of the pooled model is

$$AIC_A = (T + T_1) \log(\sigma_A^2) + 2(p_A + \delta + 1)$$

where $\sigma_A^2$ is the pooled error variance and $p_A$ is the order chosen to fit the pooled data set.

**Decision**

- If $AIC_J < AIC_A$, switch to the new model, since there is a change in the structure of the time series.
- If $AIC_J \geq AIC_A$, pool the two data sets, since two data sets are considered to be homogeneous.

If new observations are available, repeat the preceding steps to determine the homogeneity of the data. The basic idea of locally stationary AR modeling is that, if the structure of the time series is not changed, you should use the additional information to improve the model fitting, but you need to follow the new structure of the time series if there is any change.

**Time-Varying AR Coefficient Model**

Another approach to nonstationary time series, especially those that are nonstationary in the covariance, is time-varying AR coefficient modeling. When the time series is nonstationary in the covariance, the problem in modeling this series is related to an efficient parameterization. It is possible for a Bayesian approach to estimate the model with a large number of implicit parameters of the complex structure by using a relatively small number of hyperparameters.

The TSTVCAR subroutine uses smoothness priors by imposing stochastically perturbed difference equation constraints on each AR coefficient and frequency response function. The variance of each AR coefficient distribution constitutes a hyperparameter included in the state space model. The likelihood of these hyperparameters is computed by the Kalman filter recursive algorithm.

The time-varying AR coefficient model is written

$$y_t = \sum_{i=1}^{m} \alpha_{it} y_{t-i} + \epsilon_t$$
where time-varying coefficients $\alpha_{it}$ are assumed to change gradually with time. The following simple stochastic difference equation constraint is imposed on each coefficient:

$$\nabla^k \alpha_{it} = w_{it}, w_{it} \sim N(0, \tau^2), i = 1, \ldots, m$$

The frequency response function of the AR process is written

$$A(f) = 1 - \sum_{j=1}^{m} \alpha_{jt} \exp(-2\pi j f)$$

The smoothness of this function can be measured by the $k$th derivative smoothness constraint,

$$R_k = \int^{-1/2}_{1/2} \left| \frac{d^k A(f)}{df^k} \right|^2 df = (2\pi)^{2k} \sum_{j=1}^{m} j^{2k} \alpha_{jt}^2$$

Then the TSTVCAR call imposes zero and second derivative smoothness constraints. The time-varying AR coefficients are the solution of the following constrained least squares:

$$\sum_{t=1}^{T} \left( y_t - \sum_{i=1}^{m} \alpha_{it} y_{t-i} \right)^2 + \tau^2 \sum_{t=1}^{T} \sum_{i=1}^{m} (\nabla^k \alpha_{it})^2 + \lambda^2 \sum_{t=1}^{T} \sum_{i=1}^{m} i^2 \alpha_{it}^2 + \nu^2 \sum_{t=1}^{T} \sum_{i=1}^{m} \alpha_{it}^2$$

where $\tau^2, \lambda^2$, and $\nu^2$ are hyperparameters of the prior distribution.

Using a state space representation, the model is

$$\begin{align*}
x_t &= F x_{t-1} + G w_t \\
y_t &= H_t x_t + \epsilon_t
\end{align*}$$

where

$$\begin{align*}
x_t &= (\alpha_{1t}, \ldots, \alpha_{mt}, \ldots, \alpha_{1,t-k+1}, \ldots, \alpha_{m,t-k+1})' \\
H_t &= (y_{t-1}, \ldots, y_{t-m}, \ldots, 0, \ldots, 0) \\
w_t &= (w_{1t}, \ldots, w_{mt})' \\
k &= 1 : F = I_m G = I_m \\
k &= 2 : F = \begin{bmatrix} 2I_m & -I_m \\ I_m & 0 \end{bmatrix} G = \begin{bmatrix} I_m \\ 0 \end{bmatrix} \\
k &= 3 : F = \begin{bmatrix} 3I_m & -3I_m & I_m \\ I_m & 0 & 0 \\ 0 & I_m & 0 \end{bmatrix} G = \begin{bmatrix} I_m \\ 0 \\ 0 \end{bmatrix} \\
\begin{bmatrix} w_t \\ \epsilon_t \end{bmatrix} &\sim N(0, \begin{bmatrix} \tau^2 I & 0 \\ 0 & \sigma^2 \end{bmatrix})
\end{align*}$$

The computation of the likelihood function is straightforward. See the section “State Space and Kalman Filter Method” on page 345 for the computation method.
Multivariate Time Series Analysis

The subroutines TSMULMAR, TSLOMAR, and TSPRED analyze multivariate time series. The periodic AR model, TSPEARS, can also be estimated by using a vector AR procedure, since the periodic AR series can be represented as the covariance-stationary vector autoregressive model.

The stationary vector AR model is estimated and the order of the model (or each variable) is automatically determined by the minimum AIC procedure. The stationary vector AR model is written

\[
y_t = A_0 + A_1 y_{t-1} + \cdots + A_p y_{t-p} + \epsilon_t
\]

\[
\epsilon_t \sim N(0, \Sigma)
\]

Using the LDL' factorization method, the error covariance is decomposed as

\[
\Sigma = LDL'
\]

where \( L \) is a unit lower triangular matrix and \( D \) is a diagonal matrix. Then the instantaneous response model is defined as

\[
Cy_t = A_0^* + A_1^* y_{t-1} + \cdots + A_p^* y_{t-p} + \epsilon_t^*
\]

where \( C = L^{-1}, A_i^* = L^{-1} A_i \) for \( i = 0, 1, \ldots, p \), and \( \epsilon_t^* = L^{-1} \epsilon_t \). Each equation of the instantaneous response model can be estimated independently, since its error covariance matrix has a diagonal covariance matrix \( D \). Maximum likelihood estimates are obtained through the least squares method when the disturbances are normally distributed and the presample values are fixed.

The TSMULMAR subroutine estimates the instantaneous response model. The VAR coefficients are computed by using the relationship between the VAR and instantaneous models.

The general VARMA model can be transformed as an infinite-order MA process under certain conditions.

\[
y_t = \mu + \epsilon_t + \sum_{m=1}^{\infty} \Psi_m \epsilon_{t-m}
\]

In the context of the VAR(\( p \)) model, the coefficient \( \Psi_m \) can be interpreted as the \( m \)-lagged response of a unit increase in the disturbances at time \( t \).

\[
\Psi_m = \frac{\partial y_{t+m}}{\partial \epsilon_t^*}
\]

The lagged response on the one-unit increase in the orthogonalized disturbances \( \epsilon_t^* \) is denoted

\[
\frac{\partial y_{t+m}}{\partial \epsilon_{jt}^*} = \frac{\partial \mathbb{E}(y_{t+m}|y_{jt}, y_{j-1}, \ldots, X_t)}{\partial y_{jt}} = \Psi_m L_j
\]

where \( L_j \) is the \( j \)th column of the unit triangular matrix \( L \) and \( X_t = [y_{t-1}, \ldots, y_{t-p}] \). When you estimate the VAR model by using the TSMULMAR call, it is easy to compute this impulse response function.

The MSE of the \( m \)-step prediction is computed as

\[
\mathbb{E}(y_{t+m} - y_{t+m|t})(y_{t+m} - y_{t+m|t})' = \Sigma + \Psi_1 \Sigma \Psi_1' + \cdots + \Psi_{m-1} \Sigma \Psi_{m-1}'
\]
Note that $\epsilon_t = \mathbf{L}\epsilon_t^\ast$. Then the covariance matrix of $\epsilon_t$ is decomposed

$$
\Sigma = \sum_{i=1}^{n} \mathbf{L}_i \mathbf{L}_i' d_{ii}
$$

where $d_{ii}$ is the $i$th diagonal element of the matrix $\mathbf{D}$ and $n$ is the number of variables. The MSE matrix can be written

$$
\sum_{i=1}^{n} d_{ii} [\mathbf{L}_i \mathbf{L}_i' + \mathbf{\Psi}_1 \mathbf{L}_i \mathbf{L}_i' \mathbf{\Psi}_{1}' + \cdots + \mathbf{\Psi}_{m-1} \mathbf{L}_i \mathbf{L}_i' \mathbf{\Psi}_{m-1}']
$$

Therefore, the contribution of the $i$th orthogonalized innovation to the MSE is

$$
\mathbf{V}_i = d_{ii} [\mathbf{L}_i \mathbf{L}_i' + \mathbf{\Psi}_1 \mathbf{L}_i \mathbf{L}_i' \mathbf{\Psi}_{1}' + \cdots + \mathbf{\Psi}_{m-1} \mathbf{L}_i \mathbf{L}_i' \mathbf{\Psi}_{m-1}']
$$

The $i$th forecast error variance decomposition is obtained from diagonal elements of the matrix $\mathbf{V}_i$.

The nonstationary multivariate series can be analyzed by the TSMLOMAR subroutine. The estimation and model identification procedure is analogous to the univariate nonstationary procedure, which is explained in the section “Nonstationary Time Series” on page 334.

A time series $y_t$ is periodically correlated with period $d$ if $E \mathbf{y}_t = E \mathbf{y}_{t+d}$ and $E \mathbf{y}_t \mathbf{y}_t = E \mathbf{y}_{t+d} \mathbf{y}_{t+d}$. Let $y_t$ be autoregressive of period $d$ with AR orders $(p_1, \ldots, p_d)$—that is,

$$
y_t = \sum_{j=1}^{p_t} \alpha_{jt} y_{t-j} + \epsilon_t
$$

where $\epsilon_t$ is uncorrelated with mean zero and $E \epsilon_t^2 = \sigma_t^2$, $p_t = p_{t+d}$, $\sigma_t^2 = \sigma_{t+d}^2$, and $\alpha_{jt} = \alpha_{j,t+d}$ ($j = 1, \ldots, p_t$). Define the new variable such that $x_{jt} = y_{j+d(t-1)}$. The vector series, $\mathbf{x}_t = (x_{1t}, \ldots, x_{dt})'$, is autoregressive of order $p$, where $p = \max_j \text{int}\{(p_j - j)/d\} + 1$. The TSPEARS subroutine estimates the periodic autoregressive model by using minimum AIC vector AR modeling.

The TSPRED subroutine computes the one-step or multistep forecast of the multivariate ARMA model if the ARMA parameter estimates are provided. In addition, the subroutine TSPRED produces the (intermediate and permanent) impulse response function and performs forecast error variance decomposition for the vector AR model.

**Spectral Analysis**

The autocovariance function of the random variable $Y_t$ is defined as

$$
C_{YY}(k) = E(Y_{t+k}Y_t)
$$

where $EY_t = 0$. When the real valued process $Y_t$ is stationary and its autocovariance is absolutely summable, the population spectral density function is obtained by using the Fourier transform of the autocovariance function

$$
f(g) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} C_{YY}(k) \exp(-igk) - \pi \leq g \leq \pi
$$

where $i = \sqrt{-1}$ and $C_{YY}(k)$ is the autocovariance function such that $\sum_{k=-\infty}^{\infty} |C_{YY}(k)| < \infty$. 
Consider the autocovariance generating function
\[
\gamma(z) = \sum_{k=-\infty}^{\infty} C_{YY}(k)z^k
\]
where \(C_{YY}(k) = C_{YY}(-k)\) and \(z\) is a complex scalar. The spectral density function can be represented as
\[
f(g) = \frac{1}{2\pi} \gamma(e^{-ig})
\]
The stationary ARMA\((p, q)\) process is denoted
\[
\phi(B)y_t = \theta(B)\epsilon_t \sim (0, \sigma^2)
\]
where \(\phi(B)\) and \(\theta(B)\) do not have common roots. Note that the autocovariance generating function of the linear process \(y_t = \psi(B)\epsilon_t\) is given by
\[
\gamma(B) = \sigma^2 \psi(B)\psi(B^{-1})
\]
For the ARMA\((p, q)\) process, \(\psi(B) = \frac{\theta(B)}{\phi(B)}\). Therefore, the spectral density function of the stationary ARMA\((p, q)\) process becomes
\[
f(g) = \frac{\sigma^2}{2\pi} \left| \frac{\theta(e^{-ig})\theta(e^{ig})}{\phi(e^{-ig})\phi(e^{ig})} \right|^2
\]
The spectral density function of a white noise is a constant.
\[
f(g) = \frac{\sigma^2}{2\pi}
\]
The spectral density function of the AR(1) process \((\phi(B) = 1 - \phi_1 B)\) is given by
\[
f(g) = \frac{\sigma^2}{2\pi(1 - \phi_1 \cos(g) + \phi_1^2)}
\]
The spectrum of the AR(1) process has its minimum at \(g = 0\) and its maximum at \(g = \pm \pi\) if \(\phi_1 < 0\), while the spectral density function attains its maximum at \(g = 0\) and its minimum at \(g = \pm \pi\), if \(\phi_1 > 0\). When the series is positively autocorrelated, its spectral density function is dominated by low frequencies. It is interesting to observe that the spectrum approaches \(\frac{\sigma^2}{4\pi(1 - \cos(g))}\) as \(\phi_1 \to 1\). This relationship shows that the series is difference-stationary if its spectral density function has a remarkable peak near 0.

The spectrum of AR(2) process \((\phi(B) = 1 - \phi_1 B - \phi_2 B^2)\) equals
\[
f(g) = \frac{\sigma^2}{2\pi} \left\{ -4\phi_2 \left[ \cos(g) + \frac{\phi_1(1-\phi_2)}{4\phi_2} \right]^2 + \frac{(1+\phi_2)^2(4\phi_2+\phi_1^2)}{4\phi_2} \right\}
\]
Refer to Anderson (1971) for details of the characteristics of this spectral density function of the AR(2) process.

In practice, the population spectral density function cannot be computed. There are many ways of computing the sample spectral density function. The TSBAYSEA and TSMLOCAR subroutines compute the power spectrum by using AR coefficients and the white noise variance.
The power spectral density function of $Y_t$ is derived by using the Fourier transformation of $C_{YY}(k)$.

$$f_{YY}(g) = \sum_{k=-\infty}^{\infty} \exp(-2\pi i g k) C_{YY}(k), -\frac{1}{2} \leq g \leq \frac{1}{2}$$

where $i = \sqrt{-1}$ and $g$ denotes frequency. The autocovariance function can also be written as

$$C_{YY}(k) = \int_{-1/2}^{1/2} \exp(2\pi i g k) f_{YY}(g) dg$$

Consider the following stationary AR($p$) process:

$$y_t - \sum_{i=1}^{p} \phi_i y_{t-i} = \epsilon_t$$

where $\epsilon_t$ is a white noise with mean zero and constant variance $\sigma^2$.

The autocovariance function of white noise $\epsilon_t$ equals

$$C_{\epsilon\epsilon}(k) = \delta_{k0} \sigma^2$$

where $\delta_{k0} = 1$ if $k = 0$; otherwise, $\delta_{k0} = 0$. Therefore, the power spectral density of the white noise is

$$f_{\epsilon\epsilon}(g) = \sigma^2, -\frac{1}{2} \leq g \leq \frac{1}{2}.$$ Note that, with $\phi_0 = -1$,

$$C_{\epsilon\epsilon}(k) = \sum_{m=0}^{p} \sum_{n=0}^{p} \phi_m \phi_n C_{YY}(k - m + n)$$

Using the following autocovariance function of $Y_t$,

$$C_{YY}(k) = \int_{-1/2}^{1/2} \exp(2\pi i g k) f_{YY}(g) dg$$

the autocovariance function of the white noise is denoted as

$$C_{\epsilon\epsilon}(k) = \sum_{m=0}^{p} \sum_{n=0}^{p} \phi_m \phi_n \int_{-1/2}^{1/2} \exp(2\pi i g (k - m + n)) f_{YY}(g) dg$$

$$= \int_{-1/2}^{1/2} \exp(2\pi i g k) \left| 1 - \sum_{m=1}^{p} \phi_m \exp(-2\pi i g m) \right|^2 f_{YY}(g) dg$$

On the other hand, another formula of the $C_{\epsilon\epsilon}(k)$ gives

$$C_{\epsilon\epsilon}(k) = \int_{-1/2}^{1/2} \exp(2\pi i g k) f_{\epsilon\epsilon}(g) dg$$

Therefore,

$$f_{\epsilon\epsilon}(g) = \left| 1 - \sum_{m=1}^{p} \phi_m \exp(-2\pi i g m) \right|^2 f_{YY}(g)$$

Since $f_{\epsilon\epsilon}(g) = \sigma^2$, the rational spectrum of $Y_t$ is

$$f_{YY}(g) = \frac{\sigma^2}{1 - \sum_{m=1}^{p} \phi_m \exp(-2\pi i g m)}^2$$

To compute the power spectrum, estimated values of white noise variance $\hat{\sigma}^2$ and AR coefficients $\hat{\phi}_m$ are used. The order of the AR process can be determined by using the minimum AIC procedure.
Computational Details

Least Squares and Householder Transformation

Consider the univariate AR($p$) process

$$y_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i y_{t-i} + \epsilon_t$$

Define the design matrix $X$.

$$X = \begin{bmatrix}
1 & y_p & \cdots & y_1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & y_{T-1} & \cdots & y_{T-p}
\end{bmatrix}$$

Let $y = (y_{p+1}, \ldots, y_n)'$. The least squares estimate, $\hat{a} = (X'X)^{-1}X'y$, is the approximation to the maximum likelihood estimate of $a = (\alpha_0, \alpha_1, \ldots, \alpha_p)$ if $\epsilon_t$ is assumed to be Gaussian error disturbances. Combining $X$ and $y$ as

$$Z = [X : y]$$

the $Z$ matrix can be decomposed as

$$Z = QU = Q \begin{bmatrix}
R & w_1 \\
0 & w_2
\end{bmatrix}$$

where $Q$ is an orthogonal matrix and $R$ is an upper triangular matrix, $w_1 = (w_1, \ldots, w_{p+1})'$, and $w_2 = (w_{p+2}, 0, \ldots, 0)'$.

$$Q'y = \begin{bmatrix}
w_1 \\
w_2 \\
\vdots \\
w_{T-p}
\end{bmatrix}$$

The least squares estimate that uses Householder transformation is computed by solving the linear system

$$Ra = w_1$$
The unbiased residual variance estimate is

$$\hat{\sigma}^2 = \frac{1}{T - p} \sum_{i=p+2}^{T-p} w_i^2 = \frac{w_{p+2}^2}{T - p}$$

and

$$\text{AIC} = (T - p) \log(\hat{\sigma}^2) + 2(p + 1)$$

In practice, least squares estimation does not require the orthogonal matrix $Q$. The TIMSAC subroutines compute the upper triangular matrix without computing the matrix $Q$.

**Bayesian Constrained Least Squares**

Consider the additive time series model

$$y_t = T_t + S_t + \epsilon_t, \epsilon_t \sim N(0, \sigma^2)$$

Practically, it is not possible to estimate parameters $a = (T_1, \ldots, T_T, S_1, \ldots, S_T)'$, since the number of parameters exceeds the number of available observations. Let $\nabla_L^m$ denote the seasonal difference operator with $L$ seasons and degree of $m$; that is, $\nabla_L^m = (1 - B^L)^m$. Suppose that $T = L \times n$. Some constraints on the trend and seasonal components need to be imposed such that the sum of squares of $\nabla^k T_t, \nabla_L^m S_t$, and $(\sum_{i=0}^{L-1} S_{t-i})$ is small. The constrained least squares estimates are obtained by minimizing

$$\sum_{t=1}^{T} \left[ (y_t - T_t - S_t)^2 + d^2 \left[ s^2 (\nabla^k T_t)^2 + (\nabla_L^m S_t)^2 + z^2 (S_t + \cdots + S_{t-L+1})^2 \right] \right]$$

Using matrix notation,

$$(y - Ma)'(y - Ma) + (a - a_0)'D'D(a - a_0)$$

where $M = [I_T : I_T]$, $y = (y_1, \ldots, y_T)'$, and $a_0$ is the initial guess of $a$. The matrix $D$ is a $3T \times 2T$ control matrix in which structure varies according to the order of differencing in trend and season.

$$D = d \begin{bmatrix} E_m & 0 \\ zF & 0 \\ 0 & sG_k \end{bmatrix}$$
where

\[
E_m = C_m \otimes I_L, m = 1, 2, 3 \\
F = \begin{bmatrix} 1 & 0 & \cdots & 0 \\
1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
1 & 1 & 1 & \end{bmatrix}^{T \times T} \\
G_1 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 1 \end{bmatrix}^{T \times T} \\
G_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & \ddots & \vdots \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & -2 & 1 \end{bmatrix}^{T \times T} \\
G_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
-3 & 1 & 0 & 0 & \ddots & \vdots \\
3 & -3 & 1 & 0 & \ddots & \vdots \\
-1 & 3 & -3 & 1 & \ddots & \vdots \\
0 & \cdots & 0 & -1 & 3 & -3 & 1 \end{bmatrix}^{T \times T}
\]

The \( n \times n \) matrix \( C_m \) has the same structure as the matrix \( G_m \), and \( I_L \) is the \( L \times L \) identity matrix. The solution of the constrained least squares method is equivalent to that of maximizing the function

\[
L(a) = \exp \left\{ -\frac{1}{2\sigma^2} (y - Ma)'(y - Ma) \right\} \exp \left\{ -\frac{1}{2\sigma^2} (a - a_0)'D'D(a - a_0) \right\}
\]

Therefore, the PDF of the data \( y \) is

\[
f(y|\sigma^2, a) = \left( \frac{1}{2\pi} \right)^{T/2} \left( \frac{1}{\sigma} \right)^T \exp \left\{ -\frac{1}{2\sigma^2} (y - Ma)'(y - Ma) \right\}
\]

The prior PDF of the parameter vector \( a \) is

\[
\pi(a|D, \sigma^2, a_0) = \left( \frac{1}{2\pi} \right)^{2T} \left( \frac{1}{\sigma} \right)^{2T} |D'D| \exp \left\{ -\frac{1}{2\sigma^2} (a - a_0)'D'D(a - a_0) \right\}
\]

When the constant \( d \) is known, the estimate \( \hat{a} \) of \( a \) is the mean of the posterior distribution, where the posterior PDF of the parameter \( a \) is proportional to the function \( L(a) \). It is obvious that \( \hat{a} \) is the minimizer of
\|g(a|d)\|^2 = (\tilde{y} - \tilde{D}a)'(\tilde{y} - \tilde{D}a), \text{ where }

\begin{align*}
\tilde{y} &= \begin{bmatrix} y \\ Da_0 \end{bmatrix} \\
\tilde{D} &= \begin{bmatrix} M \\ D \end{bmatrix}
\end{align*}

The value of \(d\) is determined by the minimum ABIC procedure. The ABIC is defined as

\[
\text{ABIC} = T \log \left[ \frac{1}{T} \|g(a|d)\|^2 \right] + 2\{\log[\det(D'D + M'M)] - \log[\det(D'D)]\}
\]

### State Space and Kalman Filter Method

In this section, the mathematical formulas for state space modeling are introduced. The Kalman filter algorithms are derived from the state space model. As an example, the state space model of the TSDECOMP subroutine is formulated.

Define the following state space model:

\[
\begin{align*}
x_t &= Fx_{t-1} + Gw_t \\
y_t &= Htx_t + \epsilon_t
\end{align*}
\]

where \(\epsilon_t \sim N(0, \sigma^2)\) and \(w_t \sim N(0, Q)\). If the observations, \((y_1, \ldots, y_T)\), and the initial conditions, \(x_{0|0}\) and \(P_{0|0}\), are available, the one-step predictor \((x_{t|t-1})\) of the state vector \(x_t\) and its mean square error (MSE) matrix \(P_{t|t-1}\) are written as

\[
\begin{align*}
x_{t|t-1} &= Fx_{t-1|t-1} \\
P_{t|t-1} &= FP_{t-1|t-1}F' + GQG'
\end{align*}
\]

Using the current observation, the filtered value of \(x_t\) and its variance \(P_{t|t}\) are updated.

\[
\begin{align*}
x_{t|t} &= x_{t|t-1} + K_t\epsilon_t \\
P_{t|t} &= (I - K_tH_t)P_{t|t-1}
\end{align*}
\]

where \(\epsilon_t = y_t - Htx_{t|t-1}\) and \(K_t = P_{t|t-1}H_t'[H_tP_{t|t-1}H_t' + \sigma^2I]^{-1}\). The log-likelihood function is computed as

\[
\ell = -\frac{1}{2} \sum_{t=1}^{T} \log(2\pi v_{t|t-1}) - \sum_{t=1}^{T} \frac{\epsilon_t^2}{2v_{t|t-1}}
\]

where \(v_{t|t-1}\) is the conditional variance of the one-step prediction error \(\epsilon_t\).

Consider the additive time series decomposition

\[
y_t = T_t + S_t + TD_t + u_t + x_t'\beta_t + \epsilon_t
\]
where $x_t$ is a $(K \times 1)$ regressor vector and $\beta_t$ is a $(K \times 1)$ time-varying coefficient vector. Each component has the following constraints:

$$\nabla^k T_t = w_{1t}, w_{1t} \sim N(0, \tau_1^2)$$
$$\nabla^m_L S_t = w_{2t}, w_{2t} \sim N(0, \tau_2^2)$$
$$u_t = \sum_{i=1}^{p} \alpha_i u_{t-i} + w_{3t}, w_{3t} \sim N(0, \tau_3^2)$$
$$\beta_{jt} = \beta_{j,t-1} + w_{3+j,t}, w_{3+j,t} \sim N(0, \tau_{3+j}^2), j = 1, \cdots, K$$
$$\sum_{i=1}^{7} \gamma_{it} TD_t(i) = \sum_{i=1}^{6} \gamma_{it}(TD_t(i) - TD_t(7))$$
$$\gamma_{it} = \gamma_{i,t-1}$$

where $\nabla^k = (1 - B)^k$ and $\nabla^m_L = (1 - B^L)^m$. The AR component $u_t$ is assumed to be stationary. The trading-day component $TD_t(i)$ represents the number of the $i$th day of the week in time $t$. If $k = 3, p = 3, m = 1,$ and $L = 12$ (monthly data),

$$T_t = 3T_{t-1} - 3T_{t-2} + T_{t-3} + w_{1t}$$
$$\sum_{i=0}^{11} S_{t-i} = w_{2t}$$
$$u_t = \sum_{i=1}^{3} \alpha_i u_{t-i} + w_{3t}$$

The state vector is defined as

$$x_t = (T_t, T_{t-1}, T_{t-2}, S_t, \ldots, S_{t-11}, u_t, u_{t-1}, u_{t-2}, \gamma_{1t}, \ldots, \gamma_{6t})'$$

The matrix $F$ is

$$F = \begin{bmatrix} F_1 & 0 & 0 & 0 \\ 0 & F_2 & 0 & 0 \\ 0 & 0 & F_3 & 0 \\ 0 & 0 & 0 & F_4 \end{bmatrix}$$

where

$$F_1 = \begin{bmatrix} 3 & -3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$F_2 = \begin{bmatrix} -1' & -1 \\ I_{10} & 0 \end{bmatrix}$$
$$F_3 = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
\[ F_4 = I_6 \]
\[ 1' = (1, 1, \ldots, 1) \]

The matrix \( G \) can be denoted as
\[
G = \begin{bmatrix}
g_1 & 0 & 0 \\
0 & g_2 & 0 \\
0 & 0 & g_3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

where
\[
g_1 = g_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}'
\]
\[
g_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}'
\]

Finally, the matrix \( H_t \) is time-varying,
\[
H_t = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & h_t'
\end{bmatrix}
\]

where
\[
h_t = \begin{bmatrix} D_t(1) & D_t(2) & D_t(3) & D_t(4) & D_t(5) & D_t(6) \end{bmatrix}'
\]
\[
D_t(i) = TD_t(i) - TD_t(7), \quad i = 1, \ldots, 6
\]

**Missing Values**

The TIMSAC subroutines skip any missing values at the beginning of the data set. When the univariate and multivariate AR models are estimated via least squares (TSMLOCAR, TSMLOMAR, TSUNIMAR, TSMULMAR, and TSPEARS), there are three options available; that is, MISSING=0, MISSING=1, or MISSING=2. When the MISSING=0 (default) option is specified, the first contiguous observations with no missing values are used. The MISSING=1 option specifies that only nonmissing observations should be used by ignoring the observations with missing values. If the MISSING=2 option is specified, the missing values are filled with the sample mean. The least squares estimator with the MISSING=2 option is biased in general.

The BAYSEA subroutine assumes the same prior distribution of the trend and seasonal components that correspond to the missing observations. A modification is made to skip the components of the vector \( g(a|d) \) that correspond to the missing observations. The vector \( g(a|d) \) is defined in the section “Bayesian Constrained Least Squares” on page 343. In addition, the TSBAYSEA subroutine considers outliers as missing values. The TSDECOMP and TSTVCAR subroutines skip the Kalman filter updating equation when the current observation is missing.
ISM TIMSAC Packages

A description of each TIMSAC package follows. Each description includes a list of the programs provided in the TIMSAC version.

TIMSAC-72

The TIMSAC-72 package analyzes and controls feedback systems (for example, a cement kiln process). Univariate- and multivariate-AR models are employed in this original TIMSAC package. The final prediction error (FPE) criterion is used for model selection.

- AUSPEC estimates the power spectrum by the Blackman-Tukey procedure.
- AUTCOR computes autocovariance and autocorrelation.
- DECONV computes the impulse response function.
- FFTCOR computes autocorrelation and crosscorrelation via the fast Fourier transform.
- FPEAUT computes AR coefficients and FPE for the univariate AR model.
- FPEC computes AR coefficients and FPE for the control system or multivariate AR model.
- MULCOR computes multiple covariance and correlation.
- MULNOS computes relative power contribution.
- MULRSP estimates the rational spectrum for multivariate data.
- MULSPE estimates the cross spectrum by Blackman-Tukey procedure.
- OPTDES performs optimal controller design.
- OPTSIM performs optimal controller simulation.
- RASPEC estimates the rational spectrum for univariate data.
- SGLFRE computes the frequency response function.
- WNOISE performs white noise simulation.

TIMSAC-74

The TIMSAC-74 package estimates and forecasts univariate and multivariate ARMA models by fitting the canonical Markovian model. A locally stationary autoregressive model is also analyzed. Akaike’s information criterion (AIC) is used for model selection.

- AUTARM performs automatic univariate ARMA model fitting.
- BISPEC computes bispectrum.
- CANARM performs univariate canonical correlation analysis.
- CANOCA performs multivariate canonical correlation analysis.
- COVGEN computes the covariance from gain function.
- FRDPLY plots the frequency response function.
- MARKOV performs automatic multivariate ARMA model fitting.
- NONST estimates the locally stationary AR model.
- PRDCTR performs ARMA model prediction.
- PWDPLY plots the power spectrum.
- SIMCON performs optimal controller design and simulation.
- THIRMO computes the third-order moment.
TIMSAC-78

The TIMSAC-78 package uses the Householder transformation to estimate time series models. This package also contains Bayesian modeling and the exact maximum likelihood estimation of the ARMA model. Minimum AIC or Akaike Bayesian information criterion (ABIC) modeling is extensively used.

- BLOCAR estimates the locally stationary univariate AR model by using the Bayesian method.
- BLOMAR estimates the locally stationary multivariate AR model by using the Bayesian method.
- BSUBST estimates the univariate subset regression model by using the Bayesian method.
- EXSAR estimates the univariate AR model by using the exact maximum likelihood method.
- MLOCAR estimates the locally stationary univariate AR model by using the minimum AIC method.
- MLOMAR estimates the locally stationary multivariate AR model by using the minimum AIC method.
- MULBAR estimates the multivariate AR model by using the Bayesian method.
- MULMAR estimates the multivariate AR model by using the minimum AIC method.
- NADCON performs noise adaptive control.
- PERARS estimates the periodic AR model by using the minimum AIC method.
- UNIBAR estimates the univariate AR model by using the Bayesian method.
- UNIMAR estimates the univariate AR model by using the minimum AIC method.
- XSARMA estimates the univariate ARMA model by using the exact maximum likelihood method.

In addition, the following test subroutines are available: TSSBST, TSWIND, TSROOT, TSTIMS, and TSCANC.

TIMSAC-84

The TIMSAC-84 package contains the Bayesian time series modeling procedure, the point process data analysis, and the seasonal adjustment procedure.

- ADAR estimates the amplitude dependent AR model.
- BAYSEA performs Bayesian seasonal adjustments.
- BAYTAP performs Bayesian tidal analysis.
- DECOMP performs time series decomposition analysis by using state space modeling.
- EPTREN estimates intensity rates of either the exponential polynomial or exponential Fourier series of the nonstationary Poisson process model.
- LINLIN estimates linear intensity models of the self-exciting point process with another process input and with cyclic and trend components.
- LINSIM performs simulation of the point process estimated by the subroutine LINLIN.
- LOCCAR estimates the locally constant AR model.
- MULCON performs simulation, control, and prediction of the multivariate AR model.
- NONSPA performs nonstationary spectrum analysis by using the minimum Bayesian AIC procedure.
VAR Estimation and Variance Decomposition

In this example, a VAR(3) model is estimated and forecast. The data are investment, durable consumption, and consumption expenditures from Lütkepohl (1993). These data were previously analyzed in the section “Minimum AIC Model Selection” on page 302.

The stationary VAR(3) process is specified as

\[ y_t = A_0 + A_1 y_{t-1} + A_2 y_{t-2} + A_3 y_{t-3} + \epsilon_t \]

Output 16.3.43 shows that the matrix VARCOEF contains the AR coefficients \((A_1, A_2, A_3)\). An intercept vector \(A_0\) is included in the first row of the matrix VARCOEF if OPT[1]=1 is specified.

```plaintext
proc iml;
use var3;
read all var{invest income consum} into y;
close var3;
mdel = 1; maice = 0; misw = 0;
call tsmulmar(varCoef,ev,nar,aic) data=y maxlag=3
 opt=(mdel || maice || misw) print=1;
print varCoef[c={"invest" "income" "consum"}];
```

**Output 16.3.43** VAR Estimates

<table>
<thead>
<tr>
<th></th>
<th>invest</th>
<th>income</th>
<th>consum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8245814</td>
<td>5.3559216</td>
<td>17.066894</td>
<td></td>
</tr>
<tr>
<td>0.8855926</td>
<td>0.3401741</td>
<td>-0.014398</td>
<td></td>
</tr>
<tr>
<td>0.1684523</td>
<td>1.0502619</td>
<td>0.107064</td>
<td></td>
</tr>
<tr>
<td>0.0891034</td>
<td>0.4591573</td>
<td>0.4473672</td>
<td></td>
</tr>
<tr>
<td>-0.059195</td>
<td>-0.298777</td>
<td>0.1629818</td>
<td></td>
</tr>
<tr>
<td>0.1128625</td>
<td>-0.044039</td>
<td>-0.088186</td>
<td></td>
</tr>
<tr>
<td>0.1684932</td>
<td>-0.025847</td>
<td>-0.025671</td>
<td></td>
</tr>
<tr>
<td>0.0637227</td>
<td>-0.196504</td>
<td>0.0695746</td>
<td></td>
</tr>
<tr>
<td>-0.226559</td>
<td>0.0532467</td>
<td>-0.099808</td>
<td></td>
</tr>
<tr>
<td>-0.303697</td>
<td>-0.139022</td>
<td>0.2576405</td>
<td></td>
</tr>
</tbody>
</table>
To obtain the unit triangular matrix $L^{-1}$ and diagonal matrix $D_t$, you need to estimate the instantaneous response model. When you specify the OPT[3]=1 option, the first row of the output matrix EV contains error variances of the instantaneous response model, while the unit triangular matrix is in the second through fourth rows, as shown in Output 16.3.45.

```sas
misw = 1; /*--- instantaneous model ---*/
call tsmulmar(instCoef,ev,nar,aic) data=y maxlag=3
 opt=(mdel || maice || misw) print=1;
print instCoef[c={"invest" "income" "consum"}], ev;
```

**Output 16.3.44** Instantaneous Response Model Estimates

<table>
<thead>
<tr>
<th></th>
<th>invest</th>
<th>income</th>
<th>consum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8245814</td>
<td>5.2478984</td>
<td>13.147895</td>
<td></td>
</tr>
<tr>
<td>0.8855926</td>
<td>0.3401741</td>
<td>-0.014398</td>
<td></td>
</tr>
<tr>
<td>0.1486237</td>
<td>1.0426454</td>
<td>0.1073864</td>
<td></td>
</tr>
<tr>
<td>-0.222272</td>
<td>-0.154018</td>
<td>0.3974399</td>
<td></td>
</tr>
<tr>
<td>-0.059195</td>
<td>-0.298777</td>
<td>0.1629818</td>
<td></td>
</tr>
<tr>
<td>0.1141878</td>
<td>-0.037349</td>
<td>-0.091835</td>
<td></td>
</tr>
<tr>
<td>0.1277453</td>
<td>0.0727963</td>
<td>-0.023287</td>
<td></td>
</tr>
<tr>
<td>0.0637227</td>
<td>-0.196504</td>
<td>0.0695746</td>
<td></td>
</tr>
<tr>
<td>-0.227986</td>
<td>0.0576464</td>
<td>-0.101366</td>
<td></td>
</tr>
<tr>
<td>-0.20657</td>
<td>-0.115316</td>
<td>0.2897901</td>
<td></td>
</tr>
</tbody>
</table>

**Output 16.3.45** Error Variance and Unit Triangular Matrix

<table>
<thead>
<tr>
<th>ev</th>
</tr>
</thead>
<tbody>
<tr>
<td>295.21042</td>
</tr>
<tr>
<td>1 0 0</td>
</tr>
<tr>
<td>-0.02239</td>
</tr>
<tr>
<td>-0.256341</td>
</tr>
</tbody>
</table>

There is a relationship between the instantaneous response model and the VAR model. The VAR coefficients are computed as $A_i = L A_i^*$ ($i = 0, 1, 2, 3$), where $A_i^*$ is a coefficient matrix of the instantaneous model. For example, you can verify this result by using the first lag coefficient matrix ($A_1$) in Output 16.3.46.

\[
\begin{bmatrix}
0.886 & 0.340 & -0.014 \\
0.168 & 1.050 & 0.107 \\
0.089 & 0.459 & 0.447 \\
\end{bmatrix}
= \begin{bmatrix}
1.000 & 0 & 0 \\
-0.022 & 1.000 & 0 \\
-0.256 & -0.501 & 1.000 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
0.886 & 0.340 & -0.014 \\
0.149 & 1.043 & 0.107 \\
-0.222 & -0.154 & 0.397 \\
\end{bmatrix}
\]

When the VAR estimates are available, you can forecast the future values by using the TSPRED call. As a default, the one-step predictions are produced until the START= point is reached. The NPRED= h option specifies how far you want to predict. The prediction error covariance matrix MSE contains $h$ mean square error matrices. The output matrix IMPULSE contains the estimate of the coefficients ($\Psi_i$) of the infinite MA process. The following SAS/IML statements estimate the VAR(3) model and perform a 10-step-ahead prediction. Output 16.3.46 displays the first few rows of the matrix IMPULSE.
The lagged effects of a unit increase in the error disturbances are included in the matrix IMPULSE. For example:

$$\frac{\partial y_{t+2}}{\partial \epsilon^*_t} = \begin{bmatrix} 0.7811 & 0.3531 & 0.1802 \\ 0.4485 & 1.1655 & 0.0697 \\ 0.3646 & 0.6921 & 0.2223 \end{bmatrix}$$

In addition, you can compute the lagged response on the one-unit increase in the orthogonalized disturbances $\epsilon^*_t$.

$$\frac{\partial y_{t+m}}{\partial \epsilon^*_{jt}} = \frac{\partial \mathbb{E}(y_{t+m}|y_{jt}, y_{j-1:t-1}, \ldots, X_t)}{\partial y_{jt}} = \Psi_m L_j$$

When the error matrix EV is obtained from the instantaneous response model, you need to convert the matrix IMPULSE. The first few rows of the matrix ORTH_IMP are shown in Output 16.3.47. Note that the matrix constructed from the last three rows of EV become the matrix $L^{-1}$. The following statements compute the matrix ORTH_IMP:

```plaintext
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3 opt={1 0 1};
lmtx = inv(ev[2:nrow(ev),]);
orth_impulse = impulse * lmtx;
orth_imp = orth_impulse[1:12,];
print orth_imp[r=lag f=6.4];
```
Output 16.3.47  Transformed Moving-Average Coefficients

<table>
<thead>
<tr>
<th>orth_imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1.0000 0.0000 0.0000</td>
</tr>
<tr>
<td>0.0224 1.0000 0.0000</td>
</tr>
<tr>
<td>0.2676 0.5008 1.0000</td>
</tr>
<tr>
<td>1 0.8894 0.3330 -0.0144</td>
</tr>
<tr>
<td>0.2206 1.1039 0.1071</td>
</tr>
<tr>
<td>0.2191 0.6832 0.4474</td>
</tr>
<tr>
<td>2 0.8372 0.4434 0.1802</td>
</tr>
<tr>
<td>0.4933 1.2004 0.0697</td>
</tr>
<tr>
<td>0.4396 0.8035 0.2223</td>
</tr>
<tr>
<td>3 0.8980 0.3896 0.2915</td>
</tr>
<tr>
<td>0.5254 1.3534 -0.0182</td>
</tr>
<tr>
<td>0.3984 0.9502 0.3885</td>
</tr>
</tbody>
</table>

You can verify the result for the case of

$$\frac{\partial y_{t+2}}{\partial \varepsilon_{2t}^2} = \frac{\partial E(y_{t+2}|y_{2t}, y_{1t}, \ldots, X_t)}{\partial y_{2t}} = \Psi_2 L_2$$

by using the simple computation

$$\begin{bmatrix} 0.4434 \\ 1.2004 \\ 0.8035 \end{bmatrix} = \begin{bmatrix} 0.7811 & 0.3531 & 0.1802 \\ 0.4485 & 1.1655 & 0.0697 \\ 0.3646 & 0.6921 & 0.2223 \end{bmatrix} \begin{bmatrix} 0.0000 \\ 1.0000 \\ 0.5008 \end{bmatrix}$$

The contribution of the $i$th orthogonalized innovation to the mean square error matrix of the 10-step forecast is computed by using the formula

$$d_{ij}[L_i L_i' + \Psi_1 L_i L_i' \Psi_1' + \ldots + \Psi_9 L_i L_i' \Psi_9']$$

In Output 16.3.48, diagonal elements of each decomposed MSE matrix are displayed as the matrix CONTRIB as well as those of the MSE matrix (VAR). The following statements compute the matrices:

```plaintext
contrib = j(3,3); do j = 1 to 3; /* for each variable */ mse_j = j(3,3,0); /* initial value for sum */ do i = 1 to 10; /* accumulate 10 steps */ /* accumulate matrix sum */ psi = impulse[(i-1)*3+1:3*i,]; mse_j = mse_j + psi*lmtx[,]*lmtx[,]`*psi`; end; mse_j = ev[1,j] # mse_j; contrib[,] = vecdiag(mse_j); end; var = vecdiag(mse[28:30,]); print contrib var;
```
### Output 16.3.48 Orthogonal Innovation Contribution

<table>
<thead>
<tr>
<th>contrib</th>
<th>var</th>
</tr>
</thead>
<tbody>
<tr>
<td>1879.3774</td>
<td>238.08543 46.247569 2163.7104</td>
</tr>
<tr>
<td>935.54383</td>
<td>3636.8824 1.5546701 4573.9809</td>
</tr>
<tr>
<td>452.67794</td>
<td>1916.1676 97.660432 2466.506</td>
</tr>
</tbody>
</table>

The investment innovation contribution to its own variable is 1879.3774, and the income innovation contribution to the consumption expenditure is 1916.1676. It is easy to understand the contribution of innovations in the $i$th variable to MSE when you compute the innovation account. In Output 16.3.49, innovations in the first variable (investment) explain 20.45% of the error variance of the second variable (income), while the innovations in the second variable explain 79.5% of its own error variance. It is straightforward to construct the general multistep forecast error variance decomposition, as follows:

```r
count = 100 * contrib / var;
print account;
```

### Output 16.3.49 Innovation Account

<table>
<thead>
<tr>
<th>account</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.859008 11.003572 2.137496</td>
</tr>
<tr>
<td>20.453602 79.512409 0.0339894</td>
</tr>
<tr>
<td>18.353004 77.687531 3.9594646</td>
</tr>
</tbody>
</table>

### References


Overview

The IML procedure offers a set of optimization subroutines for minimizing or maximizing a continuous nonlinear function \( f = f(x) \) of \( n \) parameters, where \( x = (x_1, \ldots, x_n)^T \). The parameters can be subject to boundary constraints and linear or nonlinear equality and inequality constraints. The following set of optimization subroutines is available:
The following subroutines are provided for solving nonlinear least squares problems:

- **NLPLM** Levenberg-Marquardt Least Squares Method
- **NLPHQN** Hybrid Quasi-Newton Least Squares Methods

A least squares problem is a special form of minimization problem where the objective function is defined as a sum of squares of other (nonlinear) functions.

\[ f(x) = \frac{1}{2}\left( f_1^2(x) + \cdots + f_m^2(x) \right) \]

Least squares problems can usually be solved more efficiently by the least squares subroutines than by the other optimization subroutines.

The following subroutines are provided for the related problems of computing finite difference approximations for first- and second-order derivatives and of determining a feasible point subject to boundary and linear constraints:

- **NLPFDD** Approximate Derivatives by Finite Differences
- **NLPFEA** Feasible Point Subject to Constraints

Each optimization subroutine works iteratively. If the parameters are subject only to linear constraints, all optimization and least squares techniques are feasible-point methods; that is, they move from feasible point \( x^{(k)} \) to a better feasible point \( x^{(k+1)} \) by a step in the search direction \( s^{(k)} \), \( k = 1, 2, 3, \ldots \). If you do not provide a feasible starting point \( x^{(0)} \), the optimization methods call the algorithm used in the NLPFEA subroutine, which tries to compute a starting point that is feasible with respect to the boundary and linear constraints.

The NLPNMS and NLPQN subroutines permit nonlinear constraints on parameters. For problems with nonlinear constraints, these subroutines do not use a feasible-point method; instead, the algorithms begin with whatever starting point you specify, whether feasible or infeasible.

Each optimization technique requires a continuous objective function \( f = f(x) \), and all optimization subroutines except the NLPNMS subroutine require continuous first-order derivatives of the objective function \( f \). If you do not provide the derivatives of \( f \), they are approximated by finite-difference formulas. You can use the NLPFDD subroutine to check the correctness of analytical derivative specifications.

Most of the results obtained from the IML procedure optimization and least squares subroutines can also be obtained by using the OPTMODEL procedure or the NLP procedure in SAS/OR software.

The advantages of the IML procedure are as follows:

- You can use matrix algebra to specify the objective function, nonlinear constraints, and their derivatives in IML modules.
The IML procedure offers several subroutines that can be used to specify the objective function or nonlinear constraints, many of which would be very difficult to write for the NLP procedure.

You can formulate your own termination criteria by using the “"ptit” module argument.

The advantages of the NLP procedure are as follows:

- Although identical optimization algorithms are used, the NLP procedure can be much faster because of the interactive and more general nature of the IML product.
- Analytic first- and second-order derivatives can be computed with a special compiler.
- Additional optimization methods are available in the NLP procedure that do not fit into the framework of this package.
- Data set processing is much easier than in the IML procedure. You can save results in output data sets and use them in subsequent runs.
- The printed output contains more information.

**Unconstrained Rosenbrock Function**

The Rosenbrock function is defined as

\[
  f(x) = \frac{1}{2} (100(x_2 - x_1^2)^2 + (1 - x_1)^2)
  = \frac{1}{2} (f_1^2(x) + f_2^2(x)), \quad x = (x_1, x_2)
\]

The minimum function value \(f^* = f(x^*) = 0\) is at the point \(x^* = (1, 1)\).

The following code calls the NLPTR subroutine to solve the optimization problem:

```plaintext
proc iml;
start F_ROSEN(x);
y2 = 1. - x[1];
f = .5 * (y1 * y1 + y2 * y2);
return(f);
finish F_ROSEN;

start G_ROSEN(x);
g = j(1,2,0.);
g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
g[2] = 100.*(x[2]-x[1]*x[1]);
return(g);
finish G_ROSEN;
```

\begin{verbatim}
x = {-1.2 1.};
optn = {0 2};
call nlptr(rc,xres,"F_ROSEN",x,optn) grd="G_ROSEN";
quit;
\end{verbatim}

The NLPTR is a trust-region optimization method. The F_ROSEN module represents the Rosenbrock function, and the G_ROSEN module represents its gradient. Specifying the gradient can reduce the number of function calls by the optimization subroutine. The optimization begins at the initial point \( x = (-1.2, 1) \). For more information about the NLPTR subroutine and its arguments, see the section “NLPTR Call” on page 901. For details about the options vector, which is given by the OPTN vector in the preceding code, see the section “Options Vector” on page 381.

A portion of the output produced by the NLPTR subroutine is shown in Figure 17.1.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{nlptr_solution}
\caption{NLPTR Solution to the Rosenbrock Problem}
\end{figure}

Value of Objective Function = 12.1

Trust Region Optimization

Without Parameter Scaling

CRP Jacobian Computed by Finite Differences

\begin{verbatim}
Parameter Estimates 2

Optimization Start
Active Constraints 0 Objective Function 12.1
Max Abs Gradient Element 107.8 Radius 1
\end{verbatim}
### Figure 17.1 continued

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Lambda</th>
<th>Trust Region Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2.36594</td>
<td>9.7341</td>
<td>2.3189</td>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>2.05926</td>
<td>0.3067</td>
<td>5.2875</td>
<td>0.385</td>
<td>1.526</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1.74390</td>
<td>0.3154</td>
<td>5.9934</td>
<td>0</td>
<td>1.086</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>1.43279</td>
<td>0.3111</td>
<td>6.5134</td>
<td>0.918</td>
<td>0.372</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>1.13242</td>
<td>0.3004</td>
<td>4.9245</td>
<td>0</td>
<td>0.373</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0.86905</td>
<td>0.2634</td>
<td>2.9302</td>
<td>0</td>
<td>0.291</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0.66711</td>
<td>0.2019</td>
<td>3.6584</td>
<td>0</td>
<td>0.205</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0.47959</td>
<td>0.1875</td>
<td>1.7354</td>
<td>0</td>
<td>0.208</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0.36337</td>
<td>0.1162</td>
<td>1.7589</td>
<td>2.916</td>
<td>0.132</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0.26903</td>
<td>0.0943</td>
<td>3.4089</td>
<td>0</td>
<td>0.270</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0.16280</td>
<td>0.1062</td>
<td>0.6902</td>
<td>0</td>
<td>0.201</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0.11590</td>
<td>0.0469</td>
<td>1.1456</td>
<td>0</td>
<td>0.316</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0.07616</td>
<td>0.0397</td>
<td>0.8462</td>
<td>0.931</td>
<td>0.134</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0.04873</td>
<td>0.0274</td>
<td>2.8063</td>
<td>0</td>
<td>0.276</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0.01862</td>
<td>0.0301</td>
<td>0.2290</td>
<td>0</td>
<td>0.232</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0.01005</td>
<td>0.00858</td>
<td>0.4553</td>
<td>0</td>
<td>0.256</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0.00414</td>
<td>0.00590</td>
<td>0.4297</td>
<td>0.247</td>
<td>0.104</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0.00100</td>
<td>0.00314</td>
<td>0.4323</td>
<td>0.0453</td>
<td>0.104</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0.0000961</td>
<td>0.000906</td>
<td>0.1134</td>
<td>0</td>
<td>0.104</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>1.67873E-6</td>
<td>0.000094</td>
<td>0.0224</td>
<td>0</td>
<td>0.0569</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>6.9582E-10</td>
<td>1.678E-6</td>
<td>0.000336</td>
<td>0</td>
<td>0.0248</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>1.3128E-16</td>
<td>6.96E-10</td>
<td>1.977E-7</td>
<td>0</td>
<td>0.00314</td>
</tr>
</tbody>
</table>

#### Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Function Calls</th>
<th>Hessian Calls</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Lambda</th>
<th>Actual Over Pred Change</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>32</td>
<td>23</td>
<td>1.312814E-16</td>
<td>1.9773384E-7</td>
<td>0</td>
<td>0</td>
<td>0.003140192</td>
</tr>
</tbody>
</table>

ABSGCONV convergence criterion satisfied.

#### Optimization Results

**Parameter Estimates**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1.000000</td>
<td>0.0000000198</td>
</tr>
<tr>
<td>X2</td>
<td>1.000000</td>
<td>-0.000000105</td>
</tr>
</tbody>
</table>

Value of Objective Function = 1.312814E-16
Since \( f(x) = \frac{1}{2} \{ f_1^2(x) + f_2^2(x) \} \), you can also use least squares techniques in this situation. The following code calls the NLPLM subroutine to solve the problem. The output is shown in Figure 17.2.

```plaintext
proc iml;
start F_ROSEN_LS(x);
 y = j(1,2,0.);
 y[2] = 1. - x[1];
 return(y);
finish F_ROSEN_LS;

x = {-1.2 1.};
optn = {2 2};
call nlplm(rc,xres,"F_ROSEN_LS",x,optn);
quit;
```

**Figure 17.2** NLPLM Solution Using the Least Squares Technique

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>-1.200000</td>
<td>-107.7999999</td>
</tr>
<tr>
<td>X2</td>
<td>1.000000</td>
<td>-44.0000000</td>
</tr>
</tbody>
</table>

Value of Objective Function = 12.1

**Levenberg-Marquardt Optimization**

Scaling Update of More (1978)

Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

| Parameter Estimates | 2 |
| Functions (Observations) | 2 |

**Optimization Start**

Active Constraints 0  Objective Function 12.1

Max Abs Gradient Element 107.79999987  Radius 2626.5613171
The Levenberg-Marquardt least squares method, which is the method used by the NLPLM subroutine, is a modification of the trust-region method for nonlinear least squares problems. The F_ROSEN module represents the Rosenbrock function. Note that for least squares problems, the $m$ functions $f_1(x), \ldots, f_m(x)$ are specified as elements of a vector; this is different from the manner in which $f(x)$ is specified for the other optimization techniques. No derivatives are specified in the preceding code, so the NLPLM subroutine computes finite-difference approximations. For more information about the NLPLM subroutine, see the section “NLPLM Call” on page 883.

Constrained Betts Function

The linearly constrained Betts function (Hock and Schittkowski 1981) is defined as

$$f(x) = 0.01x_1^2 + x_2^2 - 100$$
The boundary constraints are

\[
\begin{align*}
2 & \leq x_1 \leq 50 \\
-50 & \leq x_2 \leq 50
\end{align*}
\]

The linear constraint is

\[10x_1 - x_2 \geq 10\]

The following code calls the NLPCG subroutine to solve the optimization problem. The infeasible initial point \(x^0 = (-1, -1)\) is specified, and a portion of the output is shown in Figure 17.3.

```
proc iml;
start F_BETTS(x);
return(f);
finish F_BETTS;
con = { 2. -50. . ., 50. 50. . ., 10. -1. 1. 10.};
x = {-1. -1.};
optn = {0 2};
ods select ParameterEstimates LinCon ProblemDescription
IterStart IterHist IterStop LinConSol;
call nlpcg(rc,xres,"F_BETTS",x,optn,con);
quit;
```

The NLPCG subroutine performs conjugate gradient optimization. It requires only function and gradient calls. The F_BETTS module represents the Betts function, and since no module is defined to specify the gradient, first-order derivatives are computed by finite-difference approximations. For more information about the NLPCG subroutine, see the section “NLPCG Call” on page 873. For details about the constraint matrix, which is represented by the CON matrix in the preceding code, see the section “Parameter Constraints” on page 379.

**Figure 17.3** NLPCG Solution to Betts Problem

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>Optimization Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Gradient</td>
</tr>
<tr>
<td>X1</td>
<td>6.800000</td>
</tr>
<tr>
<td>X2</td>
<td>-1.000000</td>
</tr>
</tbody>
</table>

**Linear Constraints**

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>
Since the initial point \((-1, -1)\) is infeasible, the subroutine first computes a feasible starting point. Convergence is achieved after three iterations, and the optimal point is given to be \(x^* = (2, 0)\) with an optimal function value of \(f^* = f(x^*) = -99.96\). For more information about the printed output, see the section “Printing the Optimization History” on page 394.

**Rosen-Suzuki Problem**

The Rosen-Suzuki problem is a function of four variables with three nonlinear constraints on the variables. It is taken from problem 43 of Hock and Schittkowski (1981). The objective function is

\[
f(x) = x_1^2 + x_2^2 + 2x_3^2 + x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4
\]

The nonlinear constraints are

\[
\begin{align*}
0 & \leq 8 - x_1^2 - x_2^2 - x_3^2 - x_4^2 - x_1 + x_2 - x_3 + x_4 \\
0 & \leq 10 - x_1^2 - 2x_2^2 - x_3^2 - 2x_4^2 + x_1 + x_4 \\
0 & \leq 5 - 2x_1^2 - x_2^2 - x_3^2 - 2x_1 + x_2 + x_4
\end{align*}
\]

Since this problem has nonlinear constraints, only the NLPQN and NLPNMS subroutines are available to perform the optimization. The following code solves the problem with the NLPQN subroutine:
Chapter 17: Nonlinear Optimization Examples

```plaintext
proc iml;
start F_HS43(x);
f = x*x` + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
return(f);
finish F_HS43;
start C_HS43(x);
c = j(3,1,0.);
return(c);
finish C_HS43;
x = j(1,4,1);
odr select ProblemDescription IterStart IterHist IterStop ParameterEstimates;
call nlpqn(rc,xres,"F_HS43",x,optn) nlc="C_HS43";
```

The `F_HS43` module specifies the objective function, and the `C_HS43` module specifies the nonlinear constraints. The `OPTN` vector is passed to the subroutine as the OPT input argument. See the section “Options Vector” on page 381 for more information. The value of OPTN[10] represents the total number of nonlinear constraints, and the value of OPTN[11] represents the number of equality constraints. In the preceding code, OPTN[10]=3 and OPTN[11]=0, which indicate that there are three constraints, all of which are inequality constraints. In the subroutine calls, instead of separating missing input arguments with commas, you can specify optional arguments with keywords, as in the CALL NLPQN statement in the preceding code. For details about the CALL NLPQN statement, see the section “NLPQN Call” on page 893.

The initial point for the optimization procedure is \( x = (1, 1, 1, 1) \), and the optimal point is \( x^* = (0, 1, 2, -1) \), with an optimal function value of \( f(x^*) = -44 \). Part of the output produced is shown in Figure 17.4.

**Figure 17.4** Solution to the Rosen-Suzuki Problem by the NLPQN Subroutine

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>Gradient Objective Function</th>
<th>Gradient Lagrange Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Parameter</td>
<td>Estimate</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>1.000000</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Parameter Estimates | 4
Nonlinear Constraints | 3

<table>
<thead>
<tr>
<th>Optimization Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Maximum Constraint Violation</td>
</tr>
<tr>
<td>Maximum Gradient of the Lagran Func</td>
</tr>
</tbody>
</table>
In addition to the standard iteration history, the NLPQN subroutine includes the following information for problems with nonlinear constraints:

- **CONMAX** is the maximum value of all constraint violations.
- **PRED** is the value of the predicted function reduction used with the GTOL and FTOL2 termination criteria.
- **ALFA** is the step size $\alpha$ of the quasi-Newton step.
- **LFGMAX** is the maximum element of the gradient of the Lagrange function.
Chapter 17: Nonlinear Optimization Examples

Details

Global versus Local Optima

All the IML optimization algorithms converge toward local rather than global optima. The smallest local minimum of an objective function is called the global minimum, and the largest local maximum of an objective function is called the global maximum. Hence, the subroutines can occasionally fail to find the global optimum. Suppose you have the function \( f(x) = \frac{1}{27} (3x_1^4 - 28x_1^3 + 84x_1^2 - 96x_1 + 64) + x_2^2 \), which has a local minimum at \( f(1, 0) = 1 \) and a global minimum at the point \( f(4, 0) = 0 \).

The following statements use two calls of the NLPTR subroutine to minimize the preceding function. The first call specifies the initial point \( x_a = (0.5, 1.5) \), and the second call specifies the initial point \( x_b = (3, 1) \). The first call finds the local optimum \( x = (1, 0) \), and the second call finds the global optimum \( x = (4, 0) \).

```plaintext
proc iml;
start F_GLOBAL(x);
 f=(3*x[1]**4-28*x[1]**3+84*x[1]**2-96*x[1]+64)/27 + x[2]**2;
 return(f);
finish F_GLOBAL;
xa = {.5 1.5};
xb = {3 -1};
optn = {0 2};
call nlptr(rca,xra,"F_GLOBAL",xa,optn);
call nlptr(rcb,xrb,"F_GLOBAL",xb,optn);
print xra, xrb;
```

Figure 17.5 Two Minima

<table>
<thead>
<tr>
<th>xra</th>
<th>1 -6.517E-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>xrb</td>
<td>4.0000002 -7.451E-9</td>
</tr>
</tbody>
</table>

One way to find out whether the objective function has more than one local optimum is to run various optimizations with a pattern of different starting points.

For a more mathematical definition of optimality, refer to the Kuhn-Tucker theorem in standard optimization literature. Using rather nonmathematical language, a local minimizer \( x^* \) satisfies the following conditions:

- There exists a small, feasible neighborhood of \( x^* \) that does not contain any point \( x \) with a smaller function value \( f(x) < f(x^*) \).
- The vector of first derivatives (gradient) \( g(x^*) = \nabla f(x^*) \) of the objective function \( f \) (projected toward the feasible region) at the point \( x^* \) is zero.
- The matrix of second derivatives \( G(x^*) = \nabla^2 f(x^*) \) (Hessian matrix) of the objective function \( f \) (projected toward the feasible region) at the point \( x^* \) is positive definite.
A local maximizer has the largest value in a feasible neighborhood and a negative definite Hessian.

The iterative optimization algorithm terminates at the point $x^t$, which should be in a small neighborhood (in terms of a user-specified termination criterion) of a local optimizer $x^*$. If the point $x^t$ is located on one or more active boundary or general linear constraints, the local optimization conditions are valid only for the feasible region. That is,

- the projected gradient, $Z^T g(x^t)$, must be sufficiently small
- the projected Hessian, $Z^T G(x^t) Z$, must be positive definite for minimization problems or negative definite for maximization problems

If there are $n$ active constraints at the point $x^t$, the nullspace $Z$ has zero columns and the projected Hessian has zero rows and columns. A matrix with zero rows and columns is considered positive as well as negative definite.

**Kuhn-Tucker Conditions**

The nonlinear programming (NLP) problem with one objective function $f$ and $m$ constraint functions $c_i$, which are continuously differentiable, is defined as follows:

\[
\begin{align*}
\text{minimize } & f(x), \quad x \in \mathbb{R}^n, \text{ subject to} \\
& c_i(x) = 0, \quad i = 1, \ldots, m_e \\
& c_i(x) \geq 0, \quad i = m_e + 1, \ldots, m
\end{align*}
\]

In the preceding notation, $n$ is the dimension of the function $f(x)$, and $m_e$ is the number of equality constraints. The linear combination of objective and constraint functions

\[L(x, \lambda) = f(x) - \sum_{i=1}^m \lambda_i c_i(x)\]

is the *Lagrange function*, and the coefficients $\lambda_i$ are the *Lagrange multipliers*.

If the functions $f$ and $c_i$ are twice differentiable, the point $x^*$ is an isolated local minimizer of the NLP problem, if there exists a vector $\lambda^* = (\lambda_1^*, \ldots, \lambda_m^*)$ that meets the following conditions:

- **Kuhn-Tucker conditions**
  \[c_i(x^*) = 0, \quad i = 1, \ldots, m_e\]
  \[c_i(x^*) \geq 0, \quad \lambda_i^* \geq 0, \quad \lambda_i^* c_i(x^*) = 0, \quad i = m_e + 1, \ldots, m\]
  \[\nabla_x L(x^*, \lambda^*) = 0\]

- **second-order condition**
  Each nonzero vector $y \in \mathcal{R}^n$ with
  \[y^T \nabla_x c_i(x^*) = 0 \quad i = 1, \ldots, m_e, \quad \text{and } \forall i \in m_e + 1, \ldots, m: \lambda_i^* > 0\]
  satisfies
  \[y^T \nabla_x^2 L(x^*, \lambda^*) y > 0\]
In practice, you cannot expect the constraint functions $c_i(x^*)$ to vanish within machine precision, and determining the set of active constraints at the solution $x^*$ might not be simple.

**Definition of Return Codes**

The return code, which is represented by the output parameter $rc$ in the optimization subroutines, indicates the reason for optimization termination. A positive value indicates successful termination, while a negative value indicates unsuccessful termination. Table 17.1 gives the reason for termination associated with each return code.

**Table 17.1** Summary of Return Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Reason for Optimization Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABSTOL criterion satisfied (absolute F convergence)</td>
</tr>
<tr>
<td>2</td>
<td>ABSFTOL criterion satisfied (absolute F convergence)</td>
</tr>
<tr>
<td>3</td>
<td>ABSGTOL criterion satisfied (absolute G convergence)</td>
</tr>
<tr>
<td>4</td>
<td>ABSXTOL criterion satisfied (absolute X convergence)</td>
</tr>
<tr>
<td>5</td>
<td>FTOL criterion satisfied (relative F convergence)</td>
</tr>
<tr>
<td>6</td>
<td>GTOL criterion satisfied (relative G convergence)</td>
</tr>
<tr>
<td>7</td>
<td>XTOL criterion satisfied (relative X convergence)</td>
</tr>
<tr>
<td>8</td>
<td>FTOL2 criterion satisfied (relative F convergence)</td>
</tr>
<tr>
<td>9</td>
<td>GTOL2 criterion satisfied (relative G convergence)</td>
</tr>
<tr>
<td>10</td>
<td>$n$ linear independent constraints are active at $x_r$ and none of them could be released to improve the function value</td>
</tr>
<tr>
<td>-1</td>
<td>objective function cannot be evaluated at starting point</td>
</tr>
<tr>
<td>-2</td>
<td>derivatives cannot be evaluated at starting point</td>
</tr>
<tr>
<td>-3</td>
<td>objective function cannot be evaluated during iteration</td>
</tr>
<tr>
<td>-4</td>
<td>derivatives cannot be evaluated during iteration</td>
</tr>
<tr>
<td>-5</td>
<td>optimization subroutine cannot improve the function value (this is a very general formulation and is used for various circumstances)</td>
</tr>
<tr>
<td>-6</td>
<td>there are problems in dealing with linearly dependent active constraints (changing the LCSING value in the par vector can be helpful)</td>
</tr>
<tr>
<td>-7</td>
<td>optimization process stepped outside the feasible region and the algorithm to return inside the feasible region was not successful (changing the LCEPS value in the par vector can be helpful)</td>
</tr>
<tr>
<td>-8</td>
<td>either the number of iterations or the number of function calls is larger than the prespecified values in the tc vector (MAXIT and MAXFU)</td>
</tr>
<tr>
<td>-9</td>
<td>this return code is temporarily not used (it is used in PROC NLP where it indicates that more CPU than a prespecified value was used)</td>
</tr>
<tr>
<td>-10</td>
<td>a feasible starting point cannot be computed</td>
</tr>
</tbody>
</table>

**Objective Function and Derivatives**

The input argument $fun$ refers to an IML module that specifies a function that returns $f$, a vector of length $m$ for least squares subroutines or a scalar for other optimization subroutines. The returned $f$ contains the
values of the objective function (or the least squares functions) at the point \( x \). Note that for least squares problems, you must specify the number of function values, \( m \), with the first element of the \( opt \) argument to allocate memory for the return vector. All the modules that you can specify as input arguments ("fun," "grd," "hes," "jac," "nle," "jacnlc," and "ptit") accept only a single input argument, \( x \), which is the parameter vector. Using the GLOBAL clause, you can provide more input arguments for these modules. Refer to the section “Numerical Considerations” on page 402 for an example.

All the optimization algorithms assume that \( f \) is continuous inside the feasible region. For nonlinearly constrained optimization, this is also required for points outside the feasible region. Sometimes the objective function cannot be computed for all points of the specified feasible region; for example, the function specification might contain the SQRT or LOG function, which cannot be evaluated for negative arguments. You must make sure that the function and derivatives of the starting point can be evaluated. There are two ways to prevent large steps into infeasible regions of the parameter space during the optimization process:

- The preferred way is to restrict the parameter space by introducing more boundary and linear constraints. For example, the boundary constraint \( x_j \geq 1 \times 10^{-10} \) prevents infeasible evaluations of \( \log(x_j) \). If the function module takes the square root or the log of an intermediate result, you can use nonlinear constraints to try to avoid infeasible function evaluations. However, this might not ensure feasibility.

- Sometimes the preferred way is difficult to implement. An alternative is to make the function module return a missing value for infeasible inputs. This can force the optimization algorithm to reduce the step length or the radius of the feasible region.

All the optimization techniques except the NLPNMS subroutine require continuous first-order derivatives of the objective function \( f \). The NLPTR, NLPNRA, and NLPNRR techniques also require continuous second-order derivatives. If you do not provide the derivatives with the IML modules "grd," "hes," or "jac," they are automatically approximated by finite-difference formulas. Approximating first-order derivatives by finite differences usually requires \( n \) additional calls of the function module. Approximating second-order derivatives by finite differences using only function calls can be extremely computationally expensive. Hence, if you decide to use the NLPTR, NLPNRA, or NLPNRR subroutines, you should specify at least analytical first-order derivatives. Then, approximating second-order derivatives by finite differences requires only \( n \) or \( 2n \) additional calls of the function and gradient modules.

For all input and output arguments, the subroutines assume that

- the number of parameters \( n \) corresponds to the number of columns. For example, \( x \), the input argument to the modules, and \( g \), the output argument returned by the "grd" module, are row vectors with \( n \) entries, and \( G \), the Hessian matrix returned by the "hes" module, must be a symmetric \( n \times n \) matrix.

- the number of functions, \( m \), corresponds to the number of rows. For example, the vector \( f \) returned by the "fun" module must be a column vector with \( m \) entries, and in least squares problems, the Jacobian matrix \( J \) returned by the "jac" module must be an \( m \times n \) matrix.

You can verify your analytical derivative specifications by computing finite-difference approximations of the derivatives of \( f \) with the NLPFDD subroutine. For most applications, the finite-difference approximations of the derivatives are very precise. Occasionally, difficult objective functions and zero \( x \) coordinates cause problems. You can use the \( par \) argument to specify the number of accurate digits in the evaluation of the
objective function; this defines the step size \( h \) of the first- and second-order finite-difference formulas. See the section “Finite-Difference Approximations of Derivatives” on page 377.

**NOTE:** For some difficult applications, the finite-difference approximations of derivatives that are generated by default might not be precise enough to solve the optimization or least squares problem. In such cases, you might be able to specify better derivative approximations by using a better approximation formula. You can submit your own finite-difference approximations by using the IML module “grd,” “hes,” “jac,” or “jacnlc.” See Example 17.3 for an illustration.

In many applications, calculations used in the computation of \( f \) can help compute derivatives at the same point efficiently. You can save and reuse such calculations with the GLOBAL clause. As with many other optimization packages, the subroutines call the “grd,” “hes,” or “jac” modules only after a call of the “fun” module.

The following statements specify modules for the function, gradient, and Hessian matrix of the Rosenbrock problem:

```plaintext
proc iml;
start F_ROSEN(x);
 y2 = 1. - x[1];
 f = .5 * (y1 * y1 + y2 * y2);
 return(f);
finish F_ROSEN;

start G_ROSEN(x);
 g = j(1,2,0.);
 g[1] = -200.*x[1]*(x[2]-x[1]*x[1]) - (1.-x[1]);
 g[2] = 100. *(x[2]-x[1]*x[1]);
 return(g);
finish G_ROSEN;

start H_ROSEN(x);
 h = j(2,2,0.);
 h[1,1] = -200.*(x[2] - 3.*x[1]*x[1]) + 1.;
 h[2,2] = 100.;
 h[1,2] = -200. * x[1];
 h[2,1] = h[1,2];
 return(h);
finish H_ROSEN;
```

Similarly, the following statements specify a module for the Rosenbrock function when considered as a least squares problem. They also specify the Jacobian matrix of the least squares functions.

```plaintext
start F_ROSEN_LS(x);
 y = j(1,2,0.);
 y[2] = 1. - x[1];
 return(y);
finish F_ROSEN_LS;

start J_ROSEN(x);
 jac = j(2,2,0.);
 jac[1,1] = -20. * x[1];
 jac[1,2] = 10.;
 return(jac);
finish J_ROSEN;
```
Diagonal or Sparse Hessian Matrices

In the unconstrained or only boundary constrained case, the NLPNRA algorithm can take advantage of diagonal or sparse Hessian matrices submitted by the "hes" module. If the Hessian matrix $G$ of the objective function $f$ has a large proportion of zeros, you can save computer time and memory by specifying a sparse Hessian of dimension $nn \times 3$ rather than a dense $n \times n$ Hessian. Each of the $nn \times 3$ rows $(i, j, g)$ of the matrix returned by the sparse Hessian module defines a nonzero element $g_{ij}$ of the Hessian matrix. The row and column location is given by $i$ and $j$, and $g$ gives the nonzero value. During the optimization process, only the values $g$ can be changed in each call of the Hessian module "hes;" the sparsity structure $(i, j)$ must be kept the same. That means that some of the values $g$ can be zero for particular values of $x$. To allocate sufficient memory before the first call of the Hessian module, you must specify the number of rows, $nn$, by setting the ninth element of the $opt$ argument.

Example 22 of Moré, Garbow, and Hillstrom (1981) illustrates the sparse Hessian module input. The objective function, which is the Extended Powell’s Singular Function, for $n = 40$ is a least squares problem:

$$f(x) = \frac{1}{2}\{f_1^2(x) + \cdots + f_m^2(x)\}$$

with

$$f_{4i-3}(x) = x_{4i-3} + 10x_{4i-2}$$
$$f_{4i-2}(x) = \sqrt{5}(x_{4i-1} - x_{4i})$$
$$f_{4i-1}(x) = (x_{4i-2} - 2x_{4i-1})^2$$
$$f_{4i}(x) = \sqrt{10}(x_{4i-3} - x_{4i})^2$$

The function and gradient modules are as follows:

```iml
proc iml;
start f_nlp22(x);
 n=ncol(x);
 f = 0.;
 do i=1 to n-3 by 4;
 f1 = x[i] + 10. * x[i+1];
 r2 = x[i+2] - x[i+3];
 f2 = sqrt(5) * r2;
 r3 = x[i+1] - 2. * x[i+2];
 f3 = r3 * r3;
 r4 = x[i] - x[i+3];
 f4 = sqrt(10) * r4 * r4;
 f = f + f1 * f1 + r2 * f2 + r3 * f3 + r4 * r4 * f4;
 end;
 f = 0.5 * f;
 return(f);
finish f_nlp22;

start g_nlp22(x);
 n=ncol(x);
```

```iml
jac[2,1] = -1.;
jac[2,2] = 0.;
return(jac);
finish J_ROSEN;
```
Chapter 17: Nonlinear Optimization Examples

```plaintext
G = j(1, n, 0.);
 do i=1 to n-3 by 4;
 f1 = x[i] + 10. * x[i+1];
 f2 = sqrt(5) * (x[i+2] - x[i+3]);
 r3 = x[i+1] - 2. * x[i+2];
 f3 = r3 * r3;
 r4 = x[i] - x[i+3];
 f4 = sqrt(10) * r4 * r4;
 g[i] = f1 + 2. * r4 * f4;
 g[i+1] = 10. * f1 + 2. * r3 * f3;
 g[i+2] = f2 - 4. * r3 * f3;
 g[i+3] = -f2 - 2. * r4 * f4;
 end;
 return(g);
finish g_nlp22;

You can specify the sparse Hessian with the following module:

start hs_nlp22(x);
 n=ncol(x);
 nnz = 8 * (n / 4);
 h = j(nnz, 3, 0.);
 j = 0;
 do i=1 to n-3 by 4;
 f1 = x[i] + 10. * x[i+1];
 f2 = sqrt(5) * (x[i+2] - x[i+3]);
 r3 = x[i+1] - 2. * x[i+2];
 f3 = r3 * r3;
 r4 = x[i] - x[i+3];
 f4 = sqrt(10) * r4 * r4;
 j= j + 1; h[j, 1] = i; h[j, 2] = i;
 h[j, 3] = 1. + 4. * f4;
 h[j, 3] = h[j, 3] + 2. * f4;
 j= j+1; h[j, 1] = i; h[j, 2] = i+1;
 h[j, 3] = 10.;
 j= j+1; h[j, 1] = i; h[j, 2] = i+3;
 h[j, 3] = -4. * f4;
 j= j+1; h[j, 1] = i+1; h[j, 2] = i+1;
 h[j, 3] = 100. + 4. * f3;
 h[j, 3] = h[j, 3] + 2. * f3;
 j= j+1; h[j, 1] = i+1; h[j, 2] = i+2;
 h[j, 3] = -8. * f3;
 h[j, 3] = h[j, 3] - 4. * f3;
 j= j+1; h[j, 1] = i+2; h[j, 2] = i+2;
 h[j, 3] = 5. + 16. * f3;
 h[j, 3] = h[j, 3] + 8. * f3;
 j= j+1; h[j, 1] = i+2; h[j, 2] = i+3;
 h[j, 3] = -5.;
 j= j+1; h[j, 1] = i+3; h[j, 2] = i+3;
 h[j, 3] = 5. + 4. * f4;
 h[j, 3] = h[j, 3] + 2. * f4;
 end;
 return(h);
```
```
reset hs_nlp22;

n = 40;
x = j(1,n,0.);
do i=1 to n-3 by 4;
 x[i] = 3.; x[i+1] = -1.; x[i+3] = 1.;
end;

opt = j(1,11,.); opt[2]= 3; opt[9]= 8 * (n / 4);
call nlpnra(xr,rc,"f_nlp22",x,opt) grd="g_nlp22" hes="hs_nlp22";

NOTE: If the sparse form of Hessian defines a diagonal matrix (that is, $i = j$ in all nn rows), the NLPNRA algorithm stores and processes a diagonal matrix G. If you do not specify any general linear constraints, the NLPNRA subroutine uses only order n memory.

Finite-Difference Approximations of Derivatives

If the optimization technique needs first- or second-order derivatives and you do not specify the corresponding IML module “grd,” “hes,” “jac,” or “jacnlc,” the derivatives are approximated by finite-difference formulas using only calls of the module “fun.” If the optimization technique needs second-order derivatives and you specify the “grd” module but not the “hes” module, the subroutine approximates the second-order derivatives by finite differences using n or $2n$ calls of the “grd” module.

The eighth element of the opt argument specifies the type of finite-difference approximation used to compute first- or second-order derivatives and whether the finite-difference intervals, h, should be computed by an algorithm of Gill et al. (1983). The value of opt[8] is a two-digit integer, ij.

- If opt[8] is missing or $j = 0$, the fast but not very precise forward-difference formulas are used; if $j \neq 0$, the numerically more expensive central-difference formulas are used.

- If opt[8] is missing or $i \neq 1,2, \text{ or } 3$, the finite-difference intervals h are based only on the information of par[8] or par[9], which specifies the number of accurate digits to use in evaluating the objective function and nonlinear constraints, respectively. If $i = 1, 2, \text{ or } 3$, the intervals are computed with an algorithm by Gill et al. (1983). For $i = 1$, the interval is based on the behavior of the objective function; for $i = 2$, the interval is based on the behavior of the nonlinear constraint functions; and for $i = 3$, the interval is based on the behavior of both the objective function and the nonlinear constraint functions.

Forward-Difference Approximations

- First-order derivatives: n additional function calls are needed.

 $$
 g_i = \frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) - f(x)}{h_i}
 $$

- Second-order derivatives based on function calls only, when the “grd” module is not specified (Dennis and Schnabel 1983): for a dense Hessian matrix, $n + n^2/2$ additional function calls are needed.

 $$
 \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{f(x + h_i e_i + h_j e_j) - f(x + h_i e_i) - f(x + h_j e_j) + f(x)}{h_i h_j}
 $$
• Second-order derivatives based on gradient calls, when the “grd” module is specified (Dennis and Schnabel 1983): \(n \) additional gradient calls are needed.

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{g_i(x + h_j e_j) - g_i(x)}{2h_j} + \frac{g_j(x + h_i e_i) - g_j(x)}{2h_i}
\]

Central-Difference Approximations

• First-order derivatives: \(2n \) additional function calls are needed.

\[
g_i = \frac{\partial f}{\partial x_i} = \frac{f(x + h_i e_i) - f(x - h_i e_i)}{2h_i}
\]

• Second-order derivatives based on function calls only, when the “grd” module is not specified (Abramowitz and Stegun 1972): for a dense Hessian matrix, \(2n + n^2 \) additional function calls are needed.

\[
\frac{\partial^2 f}{\partial x_i^2} = \frac{-f(x + 2h_i e_i) + 16f(x + h_i e_i) - 30f(x) + 16f(x - h_i e_i) - f(x - 2h_i e_i)}{12h_i^2},
\]

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{f(x + h_i e_i + h_j e_j) - f(x + h_i e_i - h_j e_j) - f(x - h_i e_i + h_j e_j) + f(x - h_i e_i - h_j e_j)}{4h_i h_j}
\]

• Second-order derivatives based on gradient calls, when the “grd” module is specified: \(2n \) additional gradient calls are needed.

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{g_i(x + h_j e_j) - g_i(x - h_j e_j)}{4h_j} + \frac{g_j(x + h_i e_i) - g_j(x - h_i e_i)}{4h_i}
\]

The step sizes \(h_j, j = 1, \ldots, n \), are defined as follows:

• For the forward-difference approximation of first-order derivatives using only function calls and for second-order derivatives using only gradient calls, \(h_j = \frac{\eta}{\sqrt{j}} (1 + |x_j|) \).

• For the forward-difference approximation of second-order derivatives using only function calls and for central-difference formulas, \(h_j = \frac{\eta}{\sqrt{j}} (1 + |x_j|) \).

If the algorithm of Gill et al. (1983) is not used to compute \(\eta_j \), a constant value \(\eta = \eta_j \) is used depending on the value of \(\text{par}[8] \).

• If the number of accurate digits is specified by \(\text{par}[8] = k_1 \), then \(\eta \) is set to \(10^{-k_1} \).

• If \(\text{par}[8] \) is not specified, \(\eta \) is set to the machine precision, \(\epsilon \).

If central-difference formulas are not specified, the optimization algorithm switches automatically from the forward-difference formula to a corresponding central-difference formula during the iteration process if one of the following two criteria is satisfied:
The absolute maximum gradient element is less than or equal to 100 times the ABSGTOL threshold.

The term on the left of the GTOL criterion is less than or equal to \(\max(1 \times 10^{-6}, 100 \times \text{GTOL threshold}) \). The 1E–6 ensures that the switch is performed even if you set the GTOL threshold to zero.

The algorithm of Gill et al. (1983) that computes the finite-difference intervals \(h_j \) can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates.

Many applications need considerably more time for computing second-order derivatives than for computing first-order derivatives. In such cases, you should use a quasi-Newton or conjugate gradient technique.

If you specify a vector, \(c \), of \(nc \) nonlinear constraints with the “\(nlc \)” module but you do not specify the “\(jacnlc \)” module, the first-order formulas can be used to compute finite-difference approximations of the \(nc \times n \) Jacobian matrix of the nonlinear constraints.

\[
(\nabla c_i) = \left(\frac{\partial c_i}{\partial x_j} \right), \quad i = 1, \ldots, nc, \quad j = 1, \ldots, n
\]

You can specify the number of accurate digits in the constraint evaluations with \(\text{par}[9] \). This specification also defines the step sizes \(h_j, j = 1, \ldots, n \).

Note: If you are not able to specify analytic derivatives and if the finite-difference approximations provided by the subroutines are not good enough to solve your optimization problem, you might be able to implement better finite-difference approximations with the “\(\text{grd} \)” “\(\text{hes} \)” “\(\text{jac} \)” and “\(\text{jacnlc} \)” module arguments.

Parameter Constraints

You can specify constraints in the following ways:

- The matrix input argument “\(\text{blc} \)” enables you to specify boundary and general linear constraints.
- The IML module input argument “\(\text{nlc} \)” enables you to specify general constraints, particularly nonlinear constraints.

Specifying the BLC Matrix

The input argument “\(\text{blc} \)” specifies an \(n_1 \times n_2 \) constraint matrix, where \(n_1 \) is two more than the number of linear constraints, and \(n_2 \) is given by

\[
n_2 = \begin{cases}
n & \text{if } 1 \leq n_1 \leq 2 \\
n + 2 & \text{if } n_1 > 2
\end{cases}
\]

The first two rows define lower and upper bounds for the \(n \) parameters, and the remaining \(c = n_1 - 2 \) rows define general linear equality and inequality constraints. Missing values in the first row (lower bounds) substitute for the largest negative floating point value, and missing values in the second row (upper bounds) substitute for the largest positive floating point value. Columns \(n + 1 \) and \(n + 2 \) of the first two rows are not used.
The following c rows of the “blc” argument specify c linear equality or inequality constraints:

$$\sum_{j=1}^{n} a_{ij} x_j \quad (\leq | = | \geq) \quad b_i, \quad i = 1, \ldots, c$$

Each of these c rows contains the coefficients a_{ij} in the first n columns. Column $n + 1$ specifies the kind of constraint, as follows:

- $blc[n + 1] = 0$ indicates an equality constraint.
- $blc[n + 1] = 1$ indicates a \geq inequality constraint.
- $blc[n + 1] = -1$ indicates a \leq inequality constraint.

Column $n + 2$ specifies the right-hand side, b_i. A missing value in any of these rows corresponds to a value of zero.

For example, suppose you have a problem with the following constraints on x_1, x_2, x_3, x_4:

\[
\begin{align*}
2 & \leq x_1 \leq 100 \\
& x_2 \leq 40 \\
0 & \leq x_4 \\
4x_1 + 3x_2 - x_3 & \leq 30 \\
x_2 + 6x_4 & \geq 17 \\
x_1 - x_2 & = 8
\end{align*}
\]

The following statements specify the matrix CON, which can be used as the “blc” argument to specify the preceding constraints:

```plaintext
proc iml;
con = { 2 . . 0 . . ,
      100 40 . . . . ,
      4 3 -1 . -1 30 ,
      . 1 . 6 1 17 ,
      1 -1 . . 0 8 };
```

Specifying the NLC and JACNL Modules

The input argument “nlc” specifies an IML module that returns a vector, c, of length nc, with the values, c_i, of the nc linear or nonlinear constraints

$$
c_i(x) = 0, \quad i = 1, \ldots, nec$$
$$
c_i(x) \geq 0, \quad i = nec + 1, \ldots, nc$$

for a given input parameter point x.

NOTE: You must specify the number of equality constraints, nec, and the total number of constraints, nc, returned by the “nlc” module to allocate memory for the return vector. You can do this with the $opt[11]$ and $opt[10]$ arguments, respectively.
For example, consider the problem of minimizing the objective function $f(x_1, x_2) = x_1 x_2$ in the interior of the unit circle, $x_1^2 + x_2^2 \leq 1$. The constraint can also be written as $c_1(x) = 1 - x_1^2 - x_2^2 \geq 0$. The following statements specify modules for the objective and constraint functions and call the NLPNMS subroutine to solve the minimization problem:

```iml
proc iml;
start F_UC2D(x);
    f = x[1] * x[2];
    return(f);
finish F_UC2D;
start C_UC2D(x);
    c = 1. - x * x`;
    return(c);
finish C_UC2D;

x = j(1,2,1.);
optn= j(1,10,.); optn[2]= 3; optn[10]= 1;
CALL NLPNMS(rc,xres,"F_UC2D",x,optn) nlc="C_UC2D";
```

To avoid typing multiple commas, you can specify the “nlc” input argument with a keyword, as in the preceding code. The number of elements of the return vector is specified by OPTN[10]= 1. There is a missing value in OPTN[11], so the subroutine assumes there are zero equality constraints.

The NLPQN algorithm uses the $nc \times n$ Jacobian matrix of first-order derivatives $$\nabla_x c_i(x) = \left(\frac{\partial c_i}{\partial x_j} \right), \quad i = 1, \ldots, nc, \quad j = 1, \ldots, n$$ of the nc equality and inequality constraints, c_i, for each point passed during the iteration. You can use the “jacnlc” argument to specify an IML module that returns the Jacobian matrix JC. If you specify the “nlc” module without using the “jacnlc” argument, the subroutine uses finite-difference approximations of the first-order derivatives of the constraints.

Note: The COBYLA algorithm in the NLPNMS subroutine and the NLPQN subroutine are the only optimization techniques that enable you to specify nonlinear constraints with the “nlc” input argument.

Options Vector

The options vector, represented by the “opt” argument, enables you to specify a variety of options, such as the amount of printed output or particular update or line-search techniques. Table 17.2 gives a summary of the available options.
Table 17.2 Summary of the Elements of the Options Vector

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>specifies minimization, maximization, or the number of least squares functions</td>
</tr>
<tr>
<td>2</td>
<td>specifies the amount of printed output</td>
</tr>
<tr>
<td>3</td>
<td>NLPDD, NLPLM, NLPNRA, NLPNRR, NLPTR: specifies the scaling of the Hessian matrix (HESCAL)</td>
</tr>
<tr>
<td>4</td>
<td>NLPDG, NLPDD, NLPHQN, NLPQN: specifies the update technique (UPDATE)</td>
</tr>
<tr>
<td>5</td>
<td>NLPDG, NLPHQN, NLPNRA, NLPQN (with no nonlinear constraints): specifies the line-search technique (LIS)</td>
</tr>
<tr>
<td>6</td>
<td>NLPHQN: specifies version of hybrid algorithm (VERSION) NLPQN with nonlinear constraints: specifies version of (\mu) update</td>
</tr>
<tr>
<td>7</td>
<td>NLPDD, NLPHQN, NLPQN: specifies initial Hessian matrix (INHESIAN)</td>
</tr>
<tr>
<td>8</td>
<td>Finite-Difference Derivatives: specifies type of differences and how to compute the difference interval</td>
</tr>
<tr>
<td>9</td>
<td>NLPNRA: specifies the number of rows returned by the sparse Hessian module</td>
</tr>
<tr>
<td>10</td>
<td>NLPNMS, NLPQN: specifies the total number of constraints returned by the “nlc” module</td>
</tr>
<tr>
<td>11</td>
<td>NLPNMS, NLPQN: specifies the number of equality constraints returned by the “nlc” module</td>
</tr>
</tbody>
</table>

The following list contains detailed explanations of the elements of the options vector:

- **opt[1]**
 - indicates whether the problem is minimization or maximization. The default, \(opt[1] = 0 \), specifies a minimization problem, and \(opt[1] = 1 \) specifies a maximization problem. For least squares problems, \(opt[1] = m \) specifies the number of functions or observations, which is the number of values returned by the “fun” module. This information is necessary to allocate memory for the return vector of the “fun” module.

- **opt[2]**
 - specifies the amount of output printed by the subroutine. The higher the value of \(opt[2] \), the more printed output is produced. The following table indicates the specific items printed for each value.

<table>
<thead>
<tr>
<th>Value of (opt[2])</th>
<th>Printed Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No printed output is produced. This is the default.</td>
</tr>
<tr>
<td>1</td>
<td>The summaries for optimization start and termination are produced, as well as the iteration history.</td>
</tr>
<tr>
<td>2</td>
<td>The initial and final parameter estimates are also printed.</td>
</tr>
<tr>
<td>3</td>
<td>The values of the termination criteria and other control parameters are also printed.</td>
</tr>
<tr>
<td>4</td>
<td>The parameter vector, (x), is also printed after each iteration.</td>
</tr>
<tr>
<td>5</td>
<td>The gradient vector, (g), is also printed after each iteration.</td>
</tr>
</tbody>
</table>
- **opt[3]**

 Selects a scaling for the Hessian matrix, G. This option is relevant only for the NLPDD, NLPLM, NLPNRA, NLPNRR, and NLPTR subroutines. If $opt[3] \neq 0$, the first iteration and each restart iteration set the diagonal scaling matrix $D^{(0)} = \text{diag}(d_i^{(0)})$, where

 $$d_i^{(0)} = \sqrt{\max(|G_{i,i}^{(0)}|, \epsilon)}$$

 and $G_{i,i}^{(0)}$ are the diagonal elements of the Hessian matrix, and ϵ is the machine precision. The diagonal scaling matrix $D^{(0)} = \text{diag}(d_i^{(0)})$ is updated as indicated in the following table.

<table>
<thead>
<tr>
<th>Value of $opt[3]$</th>
<th>Scaling Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No scaling is done.</td>
</tr>
<tr>
<td>1</td>
<td>Moré (1978) scaling update: $d_i^{(k+1)} = \max\left(d_i^{(k)}, \sqrt{\max(</td>
</tr>
<tr>
<td>2</td>
<td>Dennis, Gay, and Welsch (1981) scaling update: $d_i^{(k+1)} = \max\left(0.6 \times d_i^{(k)}, \sqrt{\max(</td>
</tr>
<tr>
<td>3</td>
<td>d_i is reset in each iteration: $d_i^{(k+1)} = \sqrt{\max(</td>
</tr>
</tbody>
</table>

 For the NLPDD, NLPNRA, NLPNRR, and NLPTR subroutines, the default is $opt[3] = 0$; for the NLPLM subroutine, the default is $opt[3] = 1$.

- **opt[4]**

 Defines the update technique for (dual) quasi-Newton and conjugate gradient techniques. This option applies to the NLPCG, NLPDD, NLPHQN, and NLPQN subroutines. For the NLPCG subroutine, the following update techniques are available.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>automatic restart method of Powell (1977) and Beale (1972). This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Fletcher-Reeves update (Fletcher 1987)</td>
</tr>
<tr>
<td>3</td>
<td>Polak-Ribiere update (Fletcher 1987)</td>
</tr>
<tr>
<td>4</td>
<td>conjugate-descent update of Fletcher (1987)</td>
</tr>
</tbody>
</table>

 For the unconstrained or linearly constrained NLPQN subroutine, the following update techniques are available.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update of the Cholesky factor of the Hessian matrix. This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>dual Davidon, Fletcher, and Powell (DDFP) update of the Cholesky factor of the Hessian matrix</td>
</tr>
<tr>
<td>3</td>
<td>original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse Hessian matrix</td>
</tr>
<tr>
<td>4</td>
<td>original Davidon, Fletcher, and Powell (DFP) update of the inverse Hessian matrix</td>
</tr>
</tbody>
</table>
For the NLPQN subroutine used with the “nlc” module and for the NLPDD and NLPHQN subroutines, only the first two update techniques in the second table are available.

- **opt[5]** defines the line-search technique for the unconstrained or linearly constrained NLPQN subroutine, as well as the NLPCG, NLPHQN, and NLPNRA subroutines. Refer to Fletcher (1987) for an introduction to line-search techniques. The following table describes the available techniques.

<table>
<thead>
<tr>
<th>Value of opt[5]</th>
<th>Line-Search Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This method needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; it is similar to a method used by the Harwell subroutine library.</td>
</tr>
<tr>
<td>2</td>
<td>This method needs more function than gradient calls for quadratic and cubic interpolation and cubic extrapolation; it is implemented as shown in Fletcher (1987) and can be modified to exact line search with the par[6] argument (see the section “Control Parameters Vector” on page 392). This is the default for the NLPCG, NLPNRA, and NLPQN subroutines.</td>
</tr>
<tr>
<td>3</td>
<td>This method needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; it is implemented as shown in Fletcher (1987) and can be modified to exact line search with the par[6] argument.</td>
</tr>
<tr>
<td>4</td>
<td>This method needs the same number of function and gradient calls for stepwise extrapolation and cubic interpolation.</td>
</tr>
<tr>
<td>5</td>
<td>This method is a modified version of the opt[5]=4 method.</td>
</tr>
<tr>
<td>6</td>
<td>This method is the golden section line search of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
<tr>
<td>7</td>
<td>This method is the bisection line search of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
<tr>
<td>8</td>
<td>This method is the Armijo line-search technique of Polak (1971), which uses only function values for linear approximation.</td>
</tr>
</tbody>
</table>

For the NLPHQN least squares subroutine, the default is a special line-search method that is based on an algorithm developed by Lindström and Wedin (1984). Although it needs more memory, this method sometimes works better with large least squares problems.

- **opt[6]** is used only for the NLPHQN subroutine and the NLPQN subroutine with nonlinear constraints.

In the NLPHQN subroutine, it defines the criterion for the decision of the hybrid algorithm to step in a Gauss-Newton or a quasi-Newton search direction. You can specify one of the three criteria that correspond to the methods of Fletcher and Xu (1987). The methods are HY1 (opt[6]=1), HY2 (opt[6]=2), and HY3 (opt[6]=2), and the default is HY2.

In the NLPQN subroutine with nonlinear constraints, it defines the version of the algorithm used to update the vector μ of the Lagrange multipliers. The default is opt[6]=2, which specifies the approach of Powell (1982a) and Powell (1982b). You can specify the approach of Powell (1978a) with opt[6]=1.

- **opt[7]** defines the type of start matrix, $G^{(0)}$, used for the Hessian approximation. This option applies only to
the NLPDD, NLPHQN, and NLPQN subroutines. If $opt[7]=0$, which is the default, the quasi-Newton algorithm starts with a multiple of the identity matrix where the scalar factor depends on $par[10]$; otherwise, it starts with the Hessian matrix computed at the starting point $x(0)$.

- **opt[8]**

 defines the type of finite-difference approximation used to compute first- or second-order derivatives and whether the finite-difference intervals, h, should be computed by using an algorithm of Gill et al. (1983). The value of $opt[8]$ is a two-digit integer, ij.

 If $opt[8]$ is missing or $j = 0$, the fast but not very precise forward difference formulas are used; if $j \neq 0$, the numerically more expensive central-difference formulas are used.

 If $opt[8]$ is missing or $i \neq 1, 2, \text{ or } 3$, the finite-difference intervals h are based only on the information of $par[8]$ or $par[9]$, which specifies the number of accurate digits to use in evaluating the objective function and nonlinear constraints, respectively. If $i = 1, 2, \text{ or } 3$, the intervals are computed with an algorithm by Gill et al. (1983). For $i = 1$, the interval is based on the behavior of the objective function; for $i = 2$, the interval is based on the behavior of the nonlinear constraint functions; and for $i = 3$, the interval is based on the behavior of both the objective function and the nonlinear constraint functions.

 The algorithm of Gill et al. (1983) that computes the finite-difference intervals h_j can be very expensive in the number of function calls it uses. If this algorithm is required, it is performed twice, once before the optimization process starts and once after the optimization terminates. See the section “Finite-Difference Approximations of Derivatives” on page 377 for details.

- **opt[9]**

 indicates that the Hessian module “hes” returns a sparse definition of the Hessian, in the form of an $nn \times 3$ matrix instead of the default dense $n \times n$ matrix. If $opt[9]$ is zero or missing, the Hessian module must return a dense $n \times n$ matrix. If you specify $opt[9] = nn$, the module must return a sparse $nn \times 3$ table. See the section “Objective Function and Derivatives” on page 372 for more details. This option applies only to the NLPNRA algorithm. If the dense specification contains a large proportion of analytical zero derivatives, the sparse specification can save memory and computer time.

- **opt[10]**

 specifies the total number of nonlinear constraints returned by the “nlc” module. If you specify nc nonlinear constraints with the “nlc” argument module, you must specify $opt[10] = nc$ to allocate memory for the return vector.

- **opt[11]**

 specifies the number of nonlinear equality constraints returned by the “nlc” module. If the first nec constraints are equality constraints, you must specify $opt[11] = nec$. The default value is $opt[11] = 0$.

Termination Criteria

The input argument tc specifies a vector of bounds that correspond to a set of termination criteria that are tested in each iteration. If you do not specify an IML module with the “ptit” argument, these bounds determine when the optimization process stops.
If you specify the “ptit” argument, the “tc” argument is ignored. The module specified by the “ptit” argument replaces the subroutine that is used by default to test the termination criteria. The module is called in each iteration with the current location, \(x \), and the value, \(f \), of the objective function at \(x \). The module must give a return code, \(rc \), that decides whether the optimization process is to be continued or terminated. As long as the module returns \(rc = 0 \), the optimization process continues. When the module returns \(rc \neq 0 \), the optimization process stops.

If you use the \(tc \) vector, the optimization techniques stop the iteration process when at least one of the corresponding set of termination criteria are satisfied. Table 17.3 and Table 17.4 indicate the criterion associated with each element of the \(tc \) vector. There is a default for each criterion, and if you specify a missing value for the corresponding element of the \(tc \) vector, the default value is used. You can avoid termination with respect to the ABSFTOL, ABSGTOL, ABSXTOL, FTOL, FTOL2, GTOL, GTOL2, and XTOL criteria by specifying a value of zero for the corresponding element of the \(tc \) vector.

Table 17.3 Termination Criteria for the NLPNMS Subroutine

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>maximum number of iterations (MAXIT)</td>
</tr>
<tr>
<td>2</td>
<td>maximum number of function calls (MAXFU)</td>
</tr>
<tr>
<td>3</td>
<td>absolute function criterion (ABSTOL)</td>
</tr>
<tr>
<td>4</td>
<td>relative function criterion (FTOL)</td>
</tr>
<tr>
<td>5</td>
<td>relative function criterion (FTOL2)</td>
</tr>
<tr>
<td>6</td>
<td>absolute function criterion (ABSFTOL)</td>
</tr>
<tr>
<td>7</td>
<td>FSIZE value used in FTOL criterion</td>
</tr>
<tr>
<td>8</td>
<td>relative parameter criterion (XTOL)</td>
</tr>
<tr>
<td>9</td>
<td>absolute parameter criterion (ABSXTOL)</td>
</tr>
<tr>
<td>10</td>
<td>size of final trust-region radius (\rho) (COBYLA algorithm)</td>
</tr>
<tr>
<td>11</td>
<td>XSIZE value used in XTOL criterion</td>
</tr>
</tbody>
</table>

Table 17.4 Termination Criteria for Other Subroutines

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>maximum number of iterations (MAXIT)</td>
</tr>
<tr>
<td>2</td>
<td>maximum number of function calls (MAXFU)</td>
</tr>
<tr>
<td>3</td>
<td>absolute function criterion (ABSTOL)</td>
</tr>
<tr>
<td>4</td>
<td>relative gradient criterion (GTOL)</td>
</tr>
<tr>
<td>5</td>
<td>relative gradient criterion (GTOL2)</td>
</tr>
<tr>
<td>6</td>
<td>absolute gradient criterion (ABSGTOL)</td>
</tr>
<tr>
<td>7</td>
<td>relative function criterion (FTOL)</td>
</tr>
<tr>
<td>8</td>
<td>predicted function reduction criterion (FTOL2)</td>
</tr>
<tr>
<td>9</td>
<td>absolute function criterion (ABSFTOL)</td>
</tr>
<tr>
<td>10</td>
<td>FSIZE value used in GTOL and FTOL criterion</td>
</tr>
<tr>
<td>11</td>
<td>relative parameter criterion (XTOL)</td>
</tr>
<tr>
<td>12</td>
<td>absolute parameter criterion (ABSXTOL)</td>
</tr>
<tr>
<td>13</td>
<td>XSIZE value used in XTOL criterion</td>
</tr>
</tbody>
</table>

Criteria Used by All Techniques

The following list indicates the termination criteria that are used with all the optimization techniques:

- **tc[1]**
 - Specifies the maximum number of iterations in the optimization process (MAXIT). The default values are
 - NLPNMS: MAXIT=1000
 - NLPCG: MAXIT=400
 - Others: MAXIT=200

- **tc[2]**
 - Specifies the maximum number of function calls in the optimization process (MAXFU). The default values are
 - NLPNMS: MAXFU=3000
 - NLPCG: MAXFU=1000
 - Others: MAXFU=500

- **tc[3]**
 - Specifies the absolute function convergence criterion (ABSTOL). For minimization, termination requires \(f^{(k)} = f(x^{(k)}) \leq ABSTOL \), while for maximization, termination requires \(f^{(k)} = f(x^{(k)}) \geq ABSTOL \). The default values are the negative and positive square roots of the largest double precision value, for minimization and maximization, respectively.

These criteria are useful when you want to divide a time-consuming optimization problem into a series of smaller problems.

Termination Criteria for NLPNMS

Since the Nelder-Mead simplex algorithm does not use derivatives, no termination criteria are available that are based on the gradient of the objective function.

When the NLPNMS subroutine implements Powell’s COBYLA algorithm, it uses only one criterion other than the three used by all the optimization techniques. The COBYLA algorithm is a trust-region method that sequentially reduces the radius, \(\rho \), of a spheric trust region from the start radius, \(\rho_{\text{beg}} \), which is controlled with the \(\text{par}[2] \) argument, to the final radius, \(\rho_{\text{end}} \), which is controlled with the \(\text{tc}[9] \) argument. The default value for \(\text{tc}[9] \) is \(\rho_{\text{end}} = 1E-4 \). Convergence to small values of \(\rho_{\text{end}} \) can take many calls of the function and constraint modules and might result in numerical problems.

In addition to the criteria used by all techniques, the original Nelder-Mead simplex algorithm uses several other termination criteria, which are described in the following list:

- **tc[4]**
 - Specifies the relative function convergence criterion (FTOL). Termination requires a small relative difference between the function values of the vertices in the simplex with the largest and smallest function values.

\[
\frac{\left| f_{hi}^{(k)} - f_{lo}^{(k)} \right|}{\max(\left| f_{hi}^{(k)} \right|, \text{FSIZE})} \leq FTOL
\]
where \(FSIZE \) is defined by \(tc[7] \). The default value is \(tc[4] = 10^{-FDIGITS} \), where \(FDIGITS \) is controlled by the \(par[8] \) argument. The \(par[8] \) argument has a default value of \(\log_{10}(\epsilon) \), where \(\epsilon \) is the machine precision. Hence, the default value for \(FTOL \) is \(\epsilon \).

- \(tc[5] \) specifies another relative function convergence criterion (\(FTOL2 \)). Termination requires a small standard deviation of the function values of the \(n+1 \) simplex vertices \(x^{(k)}_0, \ldots, x^{(k)}_n \).

\[
\sqrt{\frac{1}{n+1} \sum_l (f(x^{(k)}_l) - \bar{f}(x^{(k)}))^2} \leq FTOL2
\]

where \(\bar{f}(x^{(k)}) = \frac{1}{n+1} \sum_l f(x^{(k)}_l) \). If there are \(a \) active boundary constraints at \(x^{(k)} \), the mean and standard deviation are computed only for the \(n+1-a \) unconstrained vertices. The default is \(tc[5] = 1E^{-6} \).

- \(tc[6] \) specifies the absolute function convergence criterion (\(ABSFTOL \)). Termination requires a small absolute difference between the function values of the vertices in the simplex with the largest and smallest function values.

\[
|f_{hi}^{(k)} - f_{lo}^{(k)}| \leq ABSFTOL
\]

The default is \(tc[6] = 0 \).

- \(tc[7] \) specifies the FSIZE value used in the FTOL termination criterion. The default is \(tc[7] = 0 \).

- \(tc[8] \) specifies the relative parameter convergence criterion (\(XTOL \)). Termination requires a small relative parameter difference between the vertices with the largest and smallest function values.

\[
\frac{\max_j |x^{lo}_j - x^{hi}_j|}{\max(|x^{lo}_j|, |x^{hi}_j|, XSIZE)} \leq XTOL
\]

The default is \(tc[8] = 1E^{-8} \).

- \(tc[9] \) specifies the absolute parameter convergence criterion (\(ABSXTOL \)). Termination requires either a small length, \(\alpha^{(k)} \), of the vertices of a restart simplex or a small simplex size, \(\delta^{(k)} \).

\[
\alpha^{(k)} \leq ABSXTOL
\]

\[
\delta^{(k)} \leq ABSXTOL
\]

where \(\delta^{(k)} \) is defined as the L1 distance of the simplex vertex with the smallest function value, \(y^{(k)} \), to the other \(n \) simplex points, \(x^{(k)}_l \neq y \).

\[
\delta^{(k)} = \sum_{x_l \neq y} \| x^{(k)}_l - y^{(k)} \|_1
\]

The default is \(tc[9] = 1E^{-8} \).
• \texttt{tc[10]}
 specifies the XSIZE value used in the XTOL termination criterion. The default is $tc[10] = 0$.

Termination Criteria for Unconstrained and Linearly Constrained Techniques

• \texttt{tc[4]}
 specifies the relative gradient convergence criterion (GTOL). For all techniques except the NLPCG subroutine, termination requires that the normalized predicted function reduction is small.

 \[
 \frac{g(x^{(k)})^T [G^{(k)}]^{-1} g(x^{(k)})}{\max(|f(x^{(k)})|, FSIZE)} \leq GTOL
 \]

 where $FSIZE$ is defined by $tc[10]$. For the NLPCG technique (where a reliable Hessian estimate is not available),

 \[
 \frac{\| g(x^{(k)}) \|_2}{\| g(x^{(k)}) - g(x^{(k-1)}) \|_2} \leq GTOL
 \]

 is used. The default is $tc[4] = 1E^{-8}$.

• \texttt{tc[5]}
 specifies another relative gradient convergence criterion (GTOL2). This criterion is used only by the NLPLM subroutine.

 \[
 \max_j \frac{|g_j(x^{(k)})|}{f(x^{(k)}) G_{j,j}^{(k)}} \leq GTOL2
 \]

 The default is $tc[5] = 0$.

• \texttt{tc[6]}
 specifies the absolute gradient convergence criterion (ABSGTOL). Termination requires that the maximum absolute gradient element be small.

 \[
 \max_j |g_j(x^{(k)})| \leq ABSGTOL
 \]

 The default is $tc[6] = 1E^{-5}$.

• \texttt{tc[7]}
 specifies the relative function convergence criterion (FTOL). Termination requires a small relative change of the function value in consecutive iterations.

 \[
 \frac{|f(x^{(k)}) - f(x^{(k-1)})|}{\max(|f(x^{(k-1)})|, FSIZE)} \leq FTOL
 \]

 where $FSIZE$ is defined by $tc[10]$. The default is $tc[7] = 10^{-FDIGITS}$, where FDIGITS is controlled by the $par[8]$ argument. The $par[8]$ argument has a default value of $\log_{10}(\epsilon)$, where ϵ is the machine precision. Hence, the default for $FTOL$ is ϵ.

• **tc[8]** specifies another function convergence criterion (FTOL2). For least squares problems, termination requires a small predicted reduction of the objective function, \(df^{(k)} \approx f(x^{(k)}) - f(x^{(k)} + s^{(k)}) \). The predicted reduction is computed by approximating the objective function by the first two terms of the Taylor series and substituting the Newton step, \(s^{(k)} = -G^{(k)-1}g^{(k)} \), as follows:

\[
df^{(k)} = -g^{(k)}T s^{(k)} - \frac{1}{2}s^{(k)}T G^{(k)} s^{(k)}
\]

\[
= -\frac{1}{2}s^{(k)}T g^{(k)}
\]

\[
\leq FTOL2
\]

The FTOL2 criterion is the unscaled version of the GTOL criterion. The default is \(tc[8]=0 \).

• **tc[9]** specifies the absolute function convergence criterion (ABSFTOL). Termination requires a small change of the function value in consecutive iterations.

\[|f(x^{(k-1)}) - f(x^{(k)})| \leq ABSFTOL \]

The default is \(tc[9]=0 \).

• **tc[10]** specifies the FSIZE value used in the GTOL and FTOL termination criteria. The default is \(tc[10]=0 \).

• **tc[11]** specifies the relative parameter convergence criterion (XTOL). Termination requires a small relative parameter change in consecutive iterations.

\[
\max_j \frac{|x_j^{(k)} - x_j^{(k-1)}|}{\max(|x_j^{(k)}|, |x_j^{(k-1)}|, XSIZE)} \leq XTOL
\]

The default is \(tc[11]=0 \).

• **tc[12]** specifies the absolute parameter convergence criterion (ABSXTOL). Termination requires a small Euclidean distance between parameter vectors in consecutive iterations.

\[\| x^{(k)} - x^{(k-1)} \|_2 \leq ABSXTOL \]

The default is \(tc[12]=0 \).

• **tc[13]** specifies the XSIZE value used in the XTOL termination criterion. The default is \(tc[13]=0 \).
Termination Criteria for Nonlinearly Constrained Techniques

The only algorithm available for nonlinearly constrained optimization other than the NLPNMS subroutine is the NLPQN subroutine, when you specify the “nlc” module argument. This method, unlike the other optimization methods, does not monotonically reduce the value of the objective function or some kind of merit function that combines objective and constraint functions. Instead, the algorithm uses the watchdog technique with backtracking of Chamberlain et al. (1982). Therefore, no termination criteria are implemented that are based on the values \(x \) or \(f \) in consecutive iterations. In addition to the criteria used by all optimization techniques, there are three other termination criteria available; these are based on the Lagrange function

\[
L(x, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x)
\]

and its gradient

\[
\nabla_x L(x, \lambda) = g(x) - \sum_{i=1}^{m} \lambda_i \nabla_x c_i(x)
\]

where \(m \) denotes the total number of constraints, \(g = g(x) \) is the gradient of the objective function, and \(\lambda \) is the vector of Lagrange multipliers. The Kuhn-Tucker conditions require that the gradient of the Lagrange function is zero at the optimal point \((x^*, \lambda^*)\), as follows:

\[
\nabla_x L(x^*, \lambda^*) = 0
\]

- **tc[4]**
 specifies the GTOL criterion, which requires that the normalized predicted function reduction be small.

\[
\frac{|g(x^{(k)}) s(x^{(k)})| + \sum_{i=1}^{m} |\lambda_i c_i(x^{(k)})|}{\max(|f(x^{(k)})|, FSIZE)} \leq GTOL
\]

where \(FSIZE \) is defined by the \(tc[10] \) argument. The default is \(tc[4] = 1E-8 \).

- **tc[6]**
 specifies the ABSGTOL criterion, which requires that the maximum absolute gradient element of the Lagrange function be small.

\[
\max_j |\nabla_x L(x^{(k)}, \lambda^{(k)})_j| \leq ABSGTOL
\]

The default is \(tc[6] = 1E-5 \).

- **tc[8]**
 specifies the FTOL2 criterion, which requires that the predicted function reduction be small.

\[
|g(x^{(k)}) s(x^{(k)})| + \sum_{i=1}^{m} |\lambda_i c_i| \leq FTOL2
\]

The default is \(tc[8] = 1E-6 \). This is the criterion used by the programs VMCWD and VF02AD of Powell (1982b).
Control Parameters Vector

For all optimization and least squares subroutines, the input argument \(par \) specifies a vector of parameters that control the optimization process. For the NLPFDD and NLPFEA subroutines, the \(par \) argument is defined differently. For each element of the \(par \) vector there exists a default value, and if you specify a missing value, the default is used. Table 17.5 summarizes the uses of the \(par \) argument for the optimization and least squares subroutines.

Table 17.5 Summary of the Control Parameters Vector

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>specifies the singularity criterion (SINGULAR)</td>
</tr>
<tr>
<td>2</td>
<td>specifies the initial step length or trust-region radius</td>
</tr>
<tr>
<td>3</td>
<td>specifies the range for active (violated) constraints (LCEPS)</td>
</tr>
<tr>
<td>4</td>
<td>specifies the Lagrange multiplier threshold for constraints (LCDEACT)</td>
</tr>
<tr>
<td>5</td>
<td>specifies a criterion to determine linear dependence of constraints (LCS-ING)</td>
</tr>
<tr>
<td>6</td>
<td>specifies the required accuracy of the line-search algorithms (LSPRECISSION)</td>
</tr>
<tr>
<td>7</td>
<td>reduces the line-search step size in successive iterations (DAMPSTEP)</td>
</tr>
<tr>
<td>8</td>
<td>specifies the number of accurate digits used in evaluating the objective function (FDIGITS)</td>
</tr>
<tr>
<td>9</td>
<td>specifies the number of accurate digits used in evaluating the nonlinear constraints (CDIGITS)</td>
</tr>
<tr>
<td>10</td>
<td>specifies a scalar factor for the diagonal of the initial Hessian (DIAHES)</td>
</tr>
</tbody>
</table>

- **\(par[1] \)**

specifies the singularity criterion for the decomposition of the Hessian matrix (SINGULAR). The value must be between zero and one, and the default is \(par[1] = 1E^{-8} \).

- **\(par[2] \)**

specifies different features depending on the subroutine in which it is used. In the NLPNMS subroutine, it defines the size of the start simplex. For the original Nelder-Mead simplex algorithm, the default value is \(par[2] = 1 \); for the COBYLA algorithm, the default is \(par[2] = 0.5 \). In the NLPCG, NLPQN, and NLPHQN subroutines, the \(par[2] \) argument specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is \(par[2] = 1 \). In the NLPR, NLPDD, and NLPLM subroutines, the \(par[2] \) argument specifies a factor for the initial trust-region radius, \(\Delta \). For highly nonlinear functions, the default step length or trust-region radius can result in arithmetic overflows. In that case, you can specify stepwise decreasing values of \(par[2] \), such as \(par[2] = 1E^{-1} \), \(par[2] = 1E^{-2} \), \(par[2] = 1E^{-4} \), until the subroutine starts to iterate successfully.

- **\(par[3] \)**

specifies the range (LCEPS) for active and violated linear constraints. The \(i \)th constraint is considered an active constraint if the point \(x^{(k)} \) satisfies the condition

\[
\sum_{j=1}^{n} a_{ij} x_j^{(k)} - b_i \leq LCEPS(|b_i| + 1)
\]
where \(LCEPS \) is the value of \(\text{par}[3] \) and \(a_{ij} \) and \(b_i \) are defined as in the section “Parameter Constraints” on page 379. Otherwise, the constraint \(i \) is either an inactive inequality or a violated inequality or equality constraint. The default is \(\text{par}[3] = \text{1E}–8 \). During the optimization process, the introduction of rounding errors can force the subroutine to increase the value of \(\text{par}[3] \) by a power of 10, but the value never becomes larger than \(\text{1E}–3 \).

- **par[4]**
specifies a threshold (\(\text{LCDEACT} \)) for the Lagrange multiplier that decides whether an active inequality constraint must remain active or can be deactivated. For maximization, \(\text{par}[4] \) must be positive, and for minimization, \(\text{par}[4] \) must be negative. The default is

\[
\text{par}[4] = \pm \min \left(0.01, \max \left(0.1 \times ABSGTOL, \ 0.001 \times \text{gmax}^{(k)} \right)\right)
\]

where the positive value is for maximization and the negative value is for minimization. \(ABSGTOL \) is the value of the absolute gradient criterion, and \(\text{gmax}^{(k)} \) is the maximum absolute element of the gradient, \(g^{(k)} \), or the projected gradient, \(Z^T g^{(k)} \).

- **par[5]**
specifies a criterion (\(\text{LCSING} \)) used in the update of the QR decomposition that decides whether an active constraint is linearly dependent on a set of other active constraints. The default is \(\text{par}[5] = \text{1E}–8 \). As the value of \(\text{par}[5] \) increases, more active constraints are recognized as being linearly dependent. If the value of \(\text{par}[5] \) is larger than 0.1, it is reset to 0.1, and if it is negative, it is reset to zero.

- **par[6]**
specifies the degree of accuracy (\(\text{LSPRECISION} \)) that should be obtained by the second or third line-search algorithm. This argument can be used with the NLPCG, NLPHQN, and NLPNRA algorithms and with the NLPQN algorithm if the “nlc” argument is specified. Usually, an imprecise line search is computationally inexpensive and successful, but for more difficult optimization problems, a more precise and time consuming line search can be necessary. Refer to Fletcher (1987) for details. If you have numerical problems, you should decrease the value of the \(\text{par}[6] \) argument to obtain a more precise line search. The default values are given in the following table.

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Update Method</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLPCG</td>
<td>All</td>
<td>(\text{par}[6] = 0.1)</td>
</tr>
<tr>
<td>NLPHQN</td>
<td>DBFGS</td>
<td>(\text{par}[6] = 0.1)</td>
</tr>
<tr>
<td>NLPHQN</td>
<td>DDFP</td>
<td>(\text{par}[6] = 0.06)</td>
</tr>
<tr>
<td>NLPNRA</td>
<td>No update</td>
<td>(\text{par}[6] = 0.9)</td>
</tr>
<tr>
<td>NLpqN</td>
<td>BFGS, DBFGS</td>
<td>(\text{par}[6] = 0.4)</td>
</tr>
<tr>
<td>NLPQN</td>
<td>DFP, DDFP</td>
<td>(\text{par}[6] = 0.06)</td>
</tr>
</tbody>
</table>

- **par[7]**
specifies a scalar factor (\(\text{DAMPSTEP} \)) that can be used to reduce the step size in each of the first five iterations. In each of these iterations, the starting step size, \(\alpha^{(0)} \), can be no larger than the value of \(\text{par}[7] \) times the step size obtained by the line-search algorithm in the previous iteration. If \(\text{par}[7] \) is missing or if \(\text{par}[7]=0 \), which is the default, the starting step size in iteration \(t \) is computed as a function of the function change from the former iteration, \(f^{(t-1)} - f^{(t)} \). If the computed value is outside the interval \([0.1, 10.0]\), it is moved to the next endpoint. You can further restrict the starting step size in the first five iterations with the \(\text{par}[2] \) argument.
Chapter 17: Nonlinear Optimization Examples

- **par[8]**
 specifies the number of accurate digits (FDIGITS) used to evaluate the objective function. The default is $-\log_{10}(\epsilon)$, where ϵ is the machine precision, and fractional values are permitted. This value is used to compute the step size h for finite-difference derivatives and the default value for the FTOL termination criterion.

- **par[9]**
 specifies the number of accurate digits (CDIGITS) used to evaluate the nonlinear constraint functions of the “nlc” module. The default is $-\log_{10}(\epsilon)$, where ϵ is the machine precision, and fractional values are permitted. The value is used to compute the step size h for finite-difference derivatives. If first-order derivatives are specified by the “jacnlc” module, the par[9] argument is ignored.

- **par[10]**
 specifies a scalar factor (DIAHES) for the diagonal of the initial Hessian approximation. This argument is available in the NLPDD, NLPQHQN, and NLPQN subroutines. If the opt[7] argument is not specified, the initial Hessian approximation is a multiple of the identity matrix determined by the magnitude of the initial gradient $g(x^{(0)})$. The value of the par[10] argument is used to specify $\text{par}[10] \times I$ for the initial Hessian in the quasi-Newton algorithm.

Printing the Optimization History

Each optimization and least squares subroutine prints the optimization history, as long as opt[2] ≥ 1 and you do not specify the “ptit” module argument. You can use this output to check for possible convergence problems. If you specify the “ptit” argument, you can enter a print command inside the module, which is called at each iteration.

The amount of information printed depends on the opt[2] argument. See the section “Options Vector” on page 381.

The output consists of three main parts:

- **Optimization Start Output**
 The following information about the initial state of the optimization can be printed:

 - the number of constraints that are active at the starting point, or, more precisely, the number of constraints that are currently members of the working set. If this number is followed by a plus sign (+), there are more active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.

 - the value of the objective function at the starting point

 - the value of the largest absolute (projected) gradient element

 - the initial trust-region radius for the NLPTR and NLPLM subroutines

- **General Iteration History**
 In general, the iteration history consists of one line of printed output for each iteration, with the exception of the Nelder-Mead simplex method. The NLPNMS subroutine prints a line only after several internal iterations because some of the termination tests are time-consuming compared to the simplex operations and because the subroutine typically uses many iterations.
The iteration history always includes the following columns:

- \textit{iter} is the iteration number.
- \textit{nrest} is the number of iteration restarts.
- \textit{nfun} is the number of function calls.
- \textit{act} is the number of active constraints.
- \textit{optcrit} is the value of the optimization criterion.
- \textit{difcrit} is the difference between adjacent function values.
- \textit{maxgrad} is the maximum of the absolute (projected) gradient components.

An apostrophe trailing the number of active constraints indicates that at least one of the active constraints was released from the active set due to a significant Lagrange multiplier.

Some subroutines print additional information at each iteration; for details see the entry that corresponds to each subroutine in the section “Nonlinear Optimization and Related Subroutines” on page 870.

- **Optimization Result Output**

 The output ends with the following information about the optimization result:

 - the number of constraints that are active at the final point, or more precisely, the number of constraints that are currently members of the working set. When this number is followed by a plus sign (+), there are more active constraints, at least one of which is temporarily released from the working set due to negative Lagrange multipliers.
 - the value of the objective function at the final point
 - the value of the largest absolute (projected) gradient element

Nonlinear Optimization Examples

Example 17.1: Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming. It appeared originally in Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals that satisfy the mixture’s chemical equilibrium state. The second law of thermodynamics implies that at a constant temperature and pressure, a mixture of chemicals satisfies its chemical equilibrium state when the free energy of the mixture is reduced to a minimum. Therefore, the composition of the chemicals satisfying its chemical equilibrium state can be found by minimizing the free energy of the mixture.

The following notation is used in this problem:

- \(m \) number of chemical elements in the mixture
- \(n \) number of compounds in the mixture
- \(x_j \) number of moles for compound \(j, j = 1, \ldots, n \)
- \(s \) total number of moles in the mixture, \(s = \sum_{i=1}^{n} x_j \)
- \(a_{ij} \) number of atoms of element \(i \) in a molecule of compound \(j \)
- \(b_i \) atomic weight of element \(i \) in the mixture \(i = 1, \ldots, n \)
The constraints for the mixture are as follows. Each of the compounds must have a nonnegative number of moles.

\[x_j \geq 0, \quad j = 1, \ldots, n \]

There is a mass balance relationship for each element. Each relation is given by a linear equality constraint.

\[\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \ldots, m \]

The objective function is the total free energy of the mixture.

\[f(x) = \sum_{j=1}^{n} x_j \left[c_j + \ln \left(\frac{x_j}{s} \right) \right] \]

where

\[c_j = \left(\frac{F_0}{RT} \right)_j + \ln(P) \]

and \((F_0/RT)_j \) is the model standard free energy function for the jth compound. The value of \((F_0/RT)_j \) is found in existing tables. \(P \) is the total pressure in atmospheres.

The problem is to determine the parameters \(x_j \) that minimize the objective function \(f(x) \) subject to the nonnegativity and linear balance constraints. To illustrate this, consider the following situation. Determine the equilibrium composition of compound \(\frac{1}{2}N_2H_4 + \frac{1}{2}O_2 \) at temperature \(T = 3500^\circ K \) and pressure \(P = 750 \) psi. The following table gives a summary of the information necessary to solve the problem.

<table>
<thead>
<tr>
<th>(j)</th>
<th>Compound</th>
<th>((F_0/RT)_j)</th>
<th>(c_j)</th>
<th>(i=1)</th>
<th>(i=2)</th>
<th>(i=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>-10.021</td>
<td>-6.089</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(H_2)</td>
<td>-21.096</td>
<td>-17.164</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(H_2O)</td>
<td>-37.986</td>
<td>-34.054</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>-9.846</td>
<td>-5.914</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(N_2)</td>
<td>-28.653</td>
<td>-24.721</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(NH)</td>
<td>-18.918</td>
<td>-14.986</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(NO)</td>
<td>-28.032</td>
<td>-24.100</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>-14.640</td>
<td>-10.708</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(O_2)</td>
<td>-30.594</td>
<td>-26.662</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(OH)</td>
<td>-26.111</td>
<td>-22.179</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The following statements solve the minimization problem:

```plaintext
proc iml;
c = { -6.089 -17.164 -34.054 -5.914 -24.721
start F_BRACK(x) global(c);
s = x[+];
f = sum(x # (c + log(x / s)));
return(f);
finish F_BRACK;
```
Example 17.1: Chemical Equilibrium

con = {
 ,
 1. 2. 2. . . 1. . . 1. 0. 2. ,
 . . 1. 2. 1. 1. . . 0. 1. ,
 1. 1. 1. 2. 1. 0. 1. },

con[1,1:10] = 1.e-6;

x0 = j(1,10, .1);
optn = {0 3};

title 'NLPTR subroutine: No Derivatives';
call nlptr(xres,rc,"F_BRACK",x0,optn,con);

The F_BRACK module specifies the objective function, f(x). The matrix CON specifies the constraints. The first row gives the lower bound for each parameter, and to prevent the evaluation of the log(x) function for values of x that are too small, the lower bounds are set here to 1E–6. The following three rows contain the three linear equality constraints.

The starting point, which must be given to specify the number of parameters, is represented by X0. The first element of the OPTN vector specifies a minimization problem, and the second element specifies the amount of printed output.

The CALL NLPTR statement runs trust-region minimization. In this case, since no analytic derivatives are specified, the F_BRACK module is used to generate finite-difference approximations for the gradient vector and Hessian matrix.

The output is shown in the following figures. The iteration history does not show any problems.

<table>
<thead>
<tr>
<th>Optimization Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Constraints</td>
</tr>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Max Abs Gradient Element</td>
</tr>
<tr>
<td>Radius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Lambda</th>
<th>Trust Region Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>-47.33413</td>
<td>2.2790</td>
<td>4.3611</td>
<td>2.456</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>-47.70050</td>
<td>0.3664</td>
<td>7.0045</td>
<td>0.909</td>
<td>0.418</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>-47.73117</td>
<td>0.0307</td>
<td>5.3051</td>
<td>0</td>
<td>0.359</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>-47.73426</td>
<td>0.00310</td>
<td>3.7015</td>
<td>0</td>
<td>0.118</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>-47.73982</td>
<td>0.00555</td>
<td>2.3054</td>
<td>0</td>
<td>0.169</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>-47.74846</td>
<td>0.00864</td>
<td>1.3029</td>
<td>90.133</td>
<td>0.00476</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>-47.75796</td>
<td>0.00950</td>
<td>0.5073</td>
<td>0</td>
<td>0.0134</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>-47.76094</td>
<td>0.00297</td>
<td>0.0988</td>
<td>0</td>
<td>0.0124</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>11</td>
<td>3</td>
<td>-47.76109</td>
<td>0.000155</td>
<td>0.00447</td>
<td>0</td>
<td>0.0111</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>12</td>
<td>3</td>
<td>-47.76109</td>
<td>3.386E-7</td>
<td>9.328E-6</td>
<td>0</td>
<td>0.00332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
</tr>
<tr>
<td>Hessian Calls</td>
</tr>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Lambda</td>
</tr>
<tr>
<td>Radius</td>
</tr>
</tbody>
</table>
The output lists the optimal parameters with the gradient.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.040668</td>
<td>-9.785055</td>
</tr>
<tr>
<td>X2</td>
<td>0.147730</td>
<td>-19.570111</td>
</tr>
<tr>
<td>X3</td>
<td>0.783153</td>
<td>-34.792170</td>
</tr>
<tr>
<td>X4</td>
<td>0.001414</td>
<td>-12.968921</td>
</tr>
<tr>
<td>X5</td>
<td>0.485247</td>
<td>-25.937842</td>
</tr>
<tr>
<td>X6</td>
<td>0.000693</td>
<td>-22.753976</td>
</tr>
<tr>
<td>X7</td>
<td>0.027399</td>
<td>-28.190991</td>
</tr>
<tr>
<td>X8</td>
<td>0.017947</td>
<td>-15.222060</td>
</tr>
<tr>
<td>X9</td>
<td>0.037314</td>
<td>-30.444120</td>
</tr>
<tr>
<td>X10</td>
<td>0.096871</td>
<td>-25.007114</td>
</tr>
</tbody>
</table>

The three equality constraints are satisfied at the solution.

1. $\text{ACT} -3.192E-16 = -2.0000 + 1.0000 * X1 + 2.0000 * X2 + 2.0000 * X3 + 1.0000 * X6 + 1.0000 * X10$
2. $\text{ACT} 3.8164E-17 = -1.0000 + 1.0000 * X4 + 2.0000 * X5 + 1.0000 * X6 + 1.0000 * X7$
3. $\text{ACT} -2.637E-16 = -1.0000 + 1.0000 * X3 + 1.0000 * X7 + 1.0000 * X8 + 2.0000 * X9 + 1.0000 * X10$

The Lagrange multipliers and the projected gradient are also printed. The elements of the projected gradient must be small to satisfy a first-order optimality condition.

<table>
<thead>
<tr>
<th>Active Constraint</th>
<th>Lagrange Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear EC [1]</td>
<td>-9.785055</td>
</tr>
<tr>
<td>Linear EC [2]</td>
<td>-12.968922</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Dimension</th>
<th>Projected Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000000142</td>
</tr>
<tr>
<td>2</td>
<td>-0.0000000548</td>
</tr>
<tr>
<td>3</td>
<td>-0.000000472</td>
</tr>
<tr>
<td>4</td>
<td>-0.000006612</td>
</tr>
<tr>
<td>5</td>
<td>-0.000004683</td>
</tr>
<tr>
<td>6</td>
<td>-0.000004373</td>
</tr>
<tr>
<td>7</td>
<td>-0.000001815</td>
</tr>
</tbody>
</table>
Example 17.2: Network Flow and Delay

The following example is taken from the user’s guide of the GINO program (Liebman et al. 1986). A simple network of five roads (arcs) can be illustrated by a path diagram.

The five roads connect four intersections illustrated by numbered nodes. Each minute, \(F \) vehicles enter and leave the network. The parameter \(x_{ij} \) refers to the flow from node \(i \) to node \(j \). The requirement that traffic that flows into each intersection \(j \) must also flow out is described by the linear equality constraint

\[
\sum_i x_{ij} = \sum_i x_{ji}, \quad j = 1, \ldots, n
\]

In general, roads also have an upper limit on the number of vehicles that can be handled per minute. These limits, denoted \(c_{ij} \), can be enforced by boundary constraints:

\[
0 \leq x_{ij} \leq c_{ij}
\]

The goal in this problem is to maximize the flow, which is equivalent to maximizing the objective function \(f(x) \), where \(f(x) \) is

\[
f(x) = x_{24} + x_{34}
\]

The boundary constraints are

\[
0 \leq x_{12}, x_{32}, x_{34} \leq 10 \\
0 \leq x_{13}, x_{24} \leq 30
\]

and the flow constraints are

\[
x_{13} = x_{32} + x_{34} \\
x_{24} = x_{12} + x_{32} \\
x_{12} + x_{13} = x_{24} + x_{34}
\]

The three linear equality constraints are linearly dependent. One of them is deleted automatically by the optimization subroutine. The following notation is used in this example:

\[
X1 = x_{12}, \quad X2 = x_{13}, \quad X3 = x_{32}, \quad X4 = x_{24}, \quad X5 = x_{34}
\]

Even though the NLPCG subroutine is used, any other optimization subroutine would also solve this small problem. The following code finds the maximum flow. The optimal solution is shown in Output 17.2.1.

```sas
proc iml;
start MAXFLOW(x);
  f = x[3] + x[4];
  return(f);
finish MAXFLOW;

/* constraints: lower and upper traffic limits; */
Chapter 17: Nonlinear Optimization Examples

/* what flows into an intersection must flow out */
con = { 0. 0. 0. 0. 0. . ,
       10. 30. 10. 30. 10. . ,
       0. 1. -1. 0. -1. 0. ,
       1. 0. 1. -1. 0. 0. ,
       1. 1. 0. -1. -1. 0. . };

x = j(1,5, 1.);
optn = {1 2};
ods select ParameterEstimates#2;
CALL NLPCG(xres,rc,"MAXFLOW",x,optn,con);

Output 17.2.1 Optimizing Flow

Finding the maximum flow through a network is equivalent to solving a simple linear optimization problem, and for large problems, the LP procedure or the NETFLOW procedure of the SAS/OR product can be used. On the other hand, finding a traffic pattern that minimizes the total delay to move $F$ vehicles per minute from node 1 to node 4 includes nonlinearities that need nonlinear optimization techniques. As traffic volume increases, speed decreases. Let $t_{ij}$ be the travel time on arc $(i,j)$ and assume that the following formulas describe the travel time as decreasing functions of the amount of traffic:

$$
\begin{align*}
t_{12} &= 5 + 0.1x_{12}/(1 - x_{12}/10) \\
t_{13} &= x_{13}/(1 - x_{13}/30) \\
t_{32} &= 1 + x_{32}/(1 - x_{32}/10) \\
t_{24} &= x_{24}/(1 - x_{24}/30) \\
t_{34} &= 5 + x_{34}/(1 - x_{34}/10)
\end{align*}
$$

These formulas use the road capacities (upper bounds), and you can assume that $F = 5$ vehicles per minute have to be moved through the network. The objective is now to minimize

$$
f = f(x) = t_{12}x_{12} + t_{13}x_{13} + t_{32}x_{32} + t_{24}x_{24} + t_{34}x_{34}
$$

The constraints are

$$
\begin{align*}
0 &\leq x_{12}, x_{32}, x_{34} \leq 10 \\
0 &\leq x_{13}, x_{24} \leq 30
\end{align*}
$$
Example 17.2: Network Flow and Delay

\[
\begin{align*}
    x_{13} &= x_{32} + x_{34} \\
    x_{24} &= x_{12} + x_{32} \\
    x_{24} + x_{34} &= F = 5
\end{align*}
\]

In the following code, the NLPNRR subroutine is used to solve the minimization problem. The optimal solution is shown in Output 17.2.2.

```plaintext
title 'Minimize Total Delay in Network';
proc iml;
start MINDEL(x);
 t12 = 5. + .1 * x[1] / (1. - x[1] / 10.);
 return(f);
finish MINDEL;
con = { 0. 0. 0. 0. 0. . . ,
 10. 30. 10. 30. 10. . . ,
 0. 1. -1. 0. -1. 0. 0. ,
 1. 0. 1. -1. 0. 0. 0. ,
 0. 0. 0. 1. 1. 0. 5.);
x = j(1,5, 1.);
opn = {0 3};
call nlpnrr(xres,rc,"MINDEL",x,optn,con);
```

**Output 17.2.2** Parameter Estimates

**Minimize Total Delay in Network**

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
<th>Active Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>2.500001</td>
<td>5.777778</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>2.499999</td>
<td>5.702478</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>-5.55112E-17</td>
<td>1.000000</td>
<td>Lower BC</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>2.500000</td>
<td>5.702481</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>2.499999</td>
<td>5.777778</td>
<td></td>
</tr>
</tbody>
</table>

The active constraints and corresponding Lagrange multiplier estimates (costs) are shown in Output 17.2.3.

**Output 17.2.3** Constraints and Lagrange Multiplier Estimates

**Linear Constraints Evaluated at Solution**

1 ACT -4.441E-16 = 0 + 1.0000 * X2 - 1.0000 * X3 - 1.0000 * X5
2 ACT 4.4409E-16 = 0 + 1.0000 * X1 + 1.0000 * X3 - 1.0000 * X4
3 ACT 4.4409E-16 = -5.0000 + 1.0000 * X4 + 1.0000 * X5
Example 17.3: Compartmental Analysis

Numerical Considerations

An important class of nonlinear models involves a dynamic description of the response rather than an explicit description. These models arise often in chemical kinetics, pharmacokinetics, and ecological compartmental modeling. Two examples are presented in this section. Refer to Bates and Watts (1988) for a more general introduction to the topic.

In this class of problems, function evaluations, as well as gradient evaluations, are not done in full precision. Evaluating a function involves the numerical solution of a differential equation with some prescribed precision. Therefore, two choices exist for evaluating first- and second-order derivatives:

- differential equation approach
- finite-difference approach

In the differential equation approach, the components of the Hessian and the gradient are written as a solution of a system of differential equations that can be solved simultaneously with the original system. However, the size of a system of differential equations, \( n \), would suddenly increase to \( n^2 + 2n \). This huge increase makes the finite difference approach an easier one.

With the finite-difference approach, a very delicate balance of all the precision requirements of every routine must exist. In the examples that follow, notice the relative levels of precision that are imposed on different modules. Since finite differences are used to compute the first- and second-order derivatives, it is incorrect to set the precision of the ODE solver at a coarse level because that would render the numerical estimation of the finite differences worthless.

A coarse computation of the solution of the differential equation cannot be accompanied by very fine computation of the finite-difference estimates of the gradient and the Hessian. That is, you cannot set the precision of the differential equation solver to be 1E–4 and perform the finite difference estimation with a precision of 1E–10. In addition, this precision must be well-balanced with the termination criteria imposed on the optimization process.

In general, if the precision of the function evaluation is \( O(\epsilon) \), the gradient should be computed by finite differences \( O(\sqrt{\epsilon}) \), and the Hessian should be computed with finite differences \( O(\epsilon^{3/2}) \). (You can specify the step size \( h \) in the finite-difference formulas.)
**Diffusion of Tetracycline**

Consider the concentration of tetracycline hydrochloride in blood serum. The tetracycline is administered to a subject orally, and the concentration of the tetracycline in the serum is measured. The biological system to be modeled consists of two compartments: a gut compartment in which tetracycline is injected and a blood compartment that absorbs the tetracycline from the gut compartment for delivery to the body. Let $\gamma_1(t)$ and $\gamma_2(t)$ be the concentrations at time $t$ in the gut and the serum, respectively. Let $\theta_1$ and $\theta_2$ be the transfer parameters. The model is depicted as follows:

**Output 17.3.1 Model of Diffusion**

![Diagram of the model showing two compartments: Gut Compartment (Source) and Blood Compartment (Sink). The concentration in the gut compartment is introduced, and the concentration in the blood compartment is absorbed.](Diagram)

The rates of flow of the drug are described by the following pair of ordinary differential equations:

$$\frac{d\gamma_1(t)}{dt} = -\theta_1 \gamma_1(t)$$

$$\frac{d\gamma_2(t)}{dt} = \theta_1 \gamma_1(t) - \theta_2 \gamma_2(t)$$

The initial concentration of the tetracycline in the gut is unknown, and while the concentration in the blood can be measured at all times, initially it is assumed to be zero. Therefore, for the differential equation, the initial conditions are given by

$$\gamma_1(0) = \theta_3$$

$$\gamma_2(0) = 0$$

Also, a nonnegativity constraint is imposed on the parameters $\theta_1$, $\theta_2$, and $\theta_3$, although for numerical purposes, you might need to use a small value instead of zero for these bounds (such as $1E-7$).

Suppose $y_i$ is the observed serum concentration at time $t_i$. The parameters are estimated by minimizing the sum of squares of the differences between the observed and predicted serum concentrations:

$$\sum_i (y_i - \gamma_2(t_i))^2$$

The following IML program illustrates how to combine the NLPDD subroutine and the ODE subroutine to estimate the parameters $(\theta_1, \theta_2, \theta_3)$ of this model. The input data are the measurement time and the concentration of the tetracycline in the blood. For more information about the ODE call, see the section “ODE Call” on page 904. The output from the optimization process is shown in Output 17.3.2.
data tetra;
   input t c @@;
datalines;
1 0.7  2 1.2  3 1.4  4 1.4  6 1.1 
8 0.8 10 0.6 12 0.5 16 0.3 ;

proc iml;
use tetra;
read all into tetra;
close tetra;

start f(theta) global(thmtrx,t,h,tetra,eps);
   thmtrx = ( -theta[1] || 0 ) //
   c = theta[3]//0 ;
   t = 0 // tetra[,1];
   call ode( r1, "der", c, t, h) j="jac" eps=eps;
   f = ssq((r1[2,])-tetra[,2]);
   return(f);
finish;

start der(t,x) global(thmtrx);
   y = thmtrx*x;
   return(y);
finish;

start jac(t,x) global(thmtrx);
   y = thmtrx;
   return(y);
finish;

h     = {1.e-14 1. 1.e-5};
opt   = {0 2 0 1 };
tc    = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par   = { 1.e-13 . 1.e-10 . . . . };
con   = j(1,3,0.);
itheta = { .1 .3 10};
eps   = 1.e-11;

call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;
Output 17.3.2  Printed Output for Tetracycline Diffusion Problem

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
<th>Lower Bound Constraint</th>
<th>Upper Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.100000</td>
<td>76.484452</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.300000</td>
<td>-48.149258</td>
<td>0</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>10.00000</td>
<td>1.675423</td>
<td>0</td>
<td>.</td>
</tr>
</tbody>
</table>

Value of Objective Function = 4.1469872322

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling

Gradient Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>3</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>0</td>
</tr>
</tbody>
</table>

Optimization Start

Active Constraints 0  Objective Function 4.1469872322
Max Abs Gradient Element 76.484451645  Radius 1
Output 17.3.2 continued

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Lambda</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3.11878</td>
<td>1.0283</td>
<td>124.2</td>
<td>67.146</td>
<td>-8.014</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0.89559</td>
<td>2.2231</td>
<td>14.1614</td>
<td>1.885</td>
<td>-5.015</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.32352</td>
<td>0.5721</td>
<td>3.7162</td>
<td>1.187</td>
<td>-0.787</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0.14619</td>
<td>0.1773</td>
<td>2.6684</td>
<td>0</td>
<td>-0.123</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0.07462</td>
<td>0.0716</td>
<td>2.3061</td>
<td>0</td>
<td>-0.0571</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0.06549</td>
<td>0.00913</td>
<td>1.5874</td>
<td>0</td>
<td>-0.0075</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0.06416</td>
<td>0.00132</td>
<td>1.0928</td>
<td>0</td>
<td>-0.0010</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0.06334</td>
<td>0.000823</td>
<td>0.5649</td>
<td>0</td>
<td>-0.0006</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0.06288</td>
<td>0.000464</td>
<td>0.1213</td>
<td>1.024</td>
<td>-0.0004</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0.06279</td>
<td>0.000092</td>
<td>0.0195</td>
<td>0.321</td>
<td>-0.0001</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0.06276</td>
<td>0.000024</td>
<td>0.0240</td>
<td>0</td>
<td>-199E-7</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0.06275</td>
<td>0.000015</td>
<td>0.0195</td>
<td>0</td>
<td>-875E-8</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0.06269</td>
<td>0.000055</td>
<td>0.0281</td>
<td>0</td>
<td>-366E-7</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>0.06248</td>
<td>0.000209</td>
<td>0.0474</td>
<td>0.283</td>
<td>-0.0001</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0.06190</td>
<td>0.000579</td>
<td>0.1213</td>
<td>0.704</td>
<td>-0.0006</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0.06135</td>
<td>0.000552</td>
<td>0.1844</td>
<td>0</td>
<td>-0.0004</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0.05956</td>
<td>0.00179</td>
<td>0.3314</td>
<td>0.217</td>
<td>-0.0012</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0.05460</td>
<td>0.00496</td>
<td>0.9879</td>
<td>0</td>
<td>-0.0036</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>0.04999</td>
<td>0.00461</td>
<td>1.4575</td>
<td>0</td>
<td>-0.0029</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0.04402</td>
<td>0.00597</td>
<td>1.8484</td>
<td>0</td>
<td>-0.0067</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0.04007</td>
<td>0.00395</td>
<td>0.1421</td>
<td>0</td>
<td>-0.0053</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>0.03865</td>
<td>0.00142</td>
<td>0.3127</td>
<td>0</td>
<td>-0.0008</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0.03755</td>
<td>0.00110</td>
<td>0.8395</td>
<td>0</td>
<td>-0.0019</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0.03649</td>
<td>0.00106</td>
<td>0.2732</td>
<td>0</td>
<td>-0.0010</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0.03603</td>
<td>0.000464</td>
<td>0.1380</td>
<td>0</td>
<td>-0.0003</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0.03580</td>
<td>0.000226</td>
<td>0.1191</td>
<td>0.669</td>
<td>-0.0003</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>0.03571</td>
<td>0.000090</td>
<td>0.0103</td>
<td>0</td>
<td>-581E-7</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0.03565</td>
<td>0.000056</td>
<td>0.00786</td>
<td>0</td>
<td>-334E-7</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>0.03565</td>
<td>4.888E-6</td>
<td>0.00967</td>
<td>1.752</td>
<td>-486E-7</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0.03565</td>
<td>6.841E-7</td>
<td>0.000493</td>
<td>0</td>
<td>-244E-7</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>36</td>
<td>0</td>
<td>0.03565</td>
<td>2.417E-7</td>
<td>0.00270</td>
<td>0</td>
<td>-57E-9</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>0.03565</td>
<td>1.842E-9</td>
<td>0.00179</td>
<td>2.431</td>
<td>-13E-9</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>49</td>
<td>0</td>
<td>0.03565</td>
<td>1.08E-11</td>
<td>0.00212</td>
<td>786.7</td>
<td>-35E-12</td>
</tr>
</tbody>
</table>

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>33</th>
<th>Function Calls</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Calls</td>
<td>35</td>
<td>Active Constraints</td>
<td>0</td>
</tr>
<tr>
<td>Objective Function</td>
<td>0.0356478102</td>
<td>Max Abs Gradient Element</td>
<td>0.0021167366</td>
</tr>
<tr>
<td>Slope of Search Direction</td>
<td>-3.52366E-11</td>
<td>Radius</td>
<td>1</td>
</tr>
</tbody>
</table>

GCONV convergence criterion satisfied.

Note: At least one element of the (projected) gradient is greater than 1e-3.
The differential equation model is linear, and in fact, it can be solved by using an eigenvalue decomposition (this is not always feasible without complex arithmetic). Alternately, the availability and the simplicity of the closed form representation of the solution enable you to replace the solution produced by the ODE routine with the simpler and faster analytical solution. Closed forms are not expected to be easily available for nonlinear systems of differential equations, which is why the preceding solution was introduced.

The closed form of the solution requires a change to the function $f()$. The functions needed as arguments of the ODE routine, namely the `der` and `jac` modules, can be removed. The revised code follows:

```plaintext
proc iml;
use tetra;
read all into tetra;
close tetra;

start f(th) global(theta,tetra);
theta = th;
vv = v(tetra[,1]);
error = ssq(vv-tetra[,2]);
return(error);
finish;

start v(t) global(theta);
v = theta[3]*theta[1]/(theta[2]-theta[1])* (exp(-theta[1]*t)-exp(-theta[2]*t));
return(v);
finish;

h = {1.e-14 1.e-5};
opt = {0 2 0 1};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-8;
par = { 1.e-13 .1.e-10 };
con = j(1,3,0.);
itheta = { .1 .3 10};
eps = 1.e-11;
ods select ParameterEstimates#2;
call nlpdd(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;
```

The parameter estimates, which are shown in Output 17.3.3, are close to those obtained by the first solution.

**Output 17.3.2 continued**

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.182491</td>
<td>0.002117</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.435865</td>
<td>-0.000501</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>6.018219</td>
<td>0.000046711</td>
</tr>
</tbody>
</table>

Value of Objective Function = 0.0356478102
Chapter 17: Nonlinear Optimization Examples

Output 17.3.3  Second Set of Parameter Estimates for Tetracycline Diffusion

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.183024</td>
<td>0.000000111</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.434484</td>
<td>-0.000000115</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>5.995273</td>
<td>9.3860868E-9</td>
</tr>
</tbody>
</table>

Because of the nature of the closed form of the solution, you might want to add an additional constraint to guarantee that $\theta_2 \neq \theta_1$ at any time during the optimization. This prevents a possible division by 0 or a value near 0 in the execution of the $v(\cdot)$ function. For example, you might add the constraint

$$\theta_2 - \theta_1 \geq 10^{-7}$$

Chemical Kinetics of Pyrolysis of Oil Shale

Pyrolysis is a chemical change effected by the action of heat, and this example considers the pyrolysis of oil shale described in Ziegel and Gorman (1980). Oil shale contains organic material that is bonded to the rock. To extract oil from the rock, heat is applied, and the organic material is decomposed into oil, bitumen, and other byproducts. The model is given by

$$\frac{d\gamma_1(t)}{dt} = -(\theta_1 + \theta_4)\gamma_1(t)\iota(t, \theta_5)$$
$$\frac{d\gamma_2(t)}{dt} = [\theta_1\gamma_1(t) - (\theta_2 + \theta_3)\gamma_2(t)]\iota(t, \theta_5)$$
$$\frac{d\gamma_3(t)}{dt} = [\theta_4\gamma_1(t) + \theta_2\gamma_2(t)]\iota(t, \theta_5)$$

with the initial conditions

$$\gamma_1(t) = 100, \quad \gamma_2(t) = 0, \quad \gamma_3(t) = 0$$

A dead time is assumed to exist in the process. That is, no change occurs up to time $\theta_5$. This is controlled by the indicator function $\iota(t, \theta_5)$, which is given by

$$\iota(t, \theta_5) = \begin{cases} 
0 & \text{if } t < \theta_5 \\
1 & \text{if } t \geq \theta_5 
\end{cases}$$

where $\theta_5 \geq 0$. Only one of the cases in Ziegel and Gorman (1980) is analyzed in this report, but the others can be handled in a similar manner. The following program illustrates how to combine the NLPQN subroutine and the ODE subroutine to estimate the parameters $\theta_i$ in this model. The parameter estimates are shown in Output 17.3.4.

```plaintext
data oil(drop=temp);
 input temp time bitumen oil;
cards;
673 5 0. 0.
```
Example 17.3: Compartmental Analysis

673  7  2.2  0.
673  10  11.5  .7
673  15  13.7  7.2
673  20  15.1  11.5
673  25  17.3  15.8
673  50  20.1  32.4
673  60  22.3  38.1
673  80  20.9  43.2
673  100 11.5  49.6
673  120  6.5  51.8
673  150  3.6  54.7

;  

proc iml;
use oil;
read all into a;
close oil;

/****************************************************************/
/* The INS function inserts a value given by FROM into a vector */
/* given by INTO, sorts the result, and posts the global matrix */
/* that can be used to delete the effects of the point FROM.     */
/****************************************************************/
start ins(from,into) global(permm);
  in = into // from;
  x = i(nrow(in));
  permm = inv(x[nrow(in),]);
  return(permm*in);
finish;

start der(t,x) global(thmtrx,thet);
  y = thmtrx*x;
  if ( t <= thet[5] ) then y = 0*y;
  return(y);
finish;

start jac(t,x) global(thmtrx,thet);
  y = thmtrx;
  if ( t <= thet[5] ) then y = 0*y;
  return(y);
finish;

start f(theta) global(thmtrx,thet,time,h,a,eps,permm);
  thet = theta;
  thmtrx = -(theta[1]+theta[4]) || 0 || 0 )/
             (theta[4] || theta[2] || 0 );
  t = ins( theta[5],time);
  c = { 100, 0, 0};
  call ode( r1, "der",c , t , h) j="jac" eps=eps;
/* send the intermediate value to the last column */
   r = (c || r1) * permm;
   m = r[2:3, (2:nrow(time))];
   mm = m' - a[, 2:3];
   call qr(q, r, piv, lindep, mm);
   v = det(r);
   return(abs(v));
   finish;

   opt = {0 2 0 1};
   tc = repeat(., 1, 12);
   tc[1] = 100;
   tc[7] = 1.e-7;
   par = {1.e-13 1.e-10 . . . .};
   con = j(1, 5, 0.);
   h = {1.e-14 1. 1.e-5};
   time = (0 // a[, 1]);
   eps = 1.e-5;
   itheta = {1.e-3 1.e-3 1.e-3 1.e-3 1.};

   ods select ParameterEstimates#2;
   call nlpqn(rc, rx, "f", itheta) blc=con opt=opt tc=tc par=par;

   **Output 17.3.4** Parameter Estimates for Oil Shale Pyrolysis

<table>
<thead>
<tr>
<th>Optimization Results</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradient</td>
</tr>
<tr>
<td></td>
<td>Parameter</td>
</tr>
<tr>
<td>N</td>
<td>X1</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
</tr>
</tbody>
</table>

Again, compare the solution using the approximation produced by the ODE subroutine to the solution obtained through the closed form of the given differential equation. Impose the following additional constraint to avoid a possible division by 0 when evaluating the function:

\[
\theta_2 + \theta_3 - \theta_1 - \theta_4 \geq 10^{-7}
\]

The closed form of the solution requires a change in the function \( f(\cdot) \). The functions needed as arguments of the ODE routine, namely the der and jac modules, can be removed. The revised code follows. The parameter estimates are shown in **Output 17.3.5**.

```plaintext
 proc iml;
 use oil;
 read all into a;
 close oil;

 start ins(from, into) global (permm);
```
Example 17.3: Compartmental Analysis

\[
\text{start } f(\text{thet}) \text{ global(time, a);} \\
\text{do } i = 1 \text{ to } \text{nrow(time);} \\
\quad t = \text{time}[i]; \\
\quad v1 = 100; \\
\quad \text{if ( } t \geq \text{the[5]} \text{ ) then} \\
\quad \quad v1 = 100*\text{ev}(t, \text{thet[1]}, \text{thet[4]}, \text{thet[5]}); \\
\quad v2 = 0; \\
\quad \text{if ( } t \geq \text{the[5]} \text{ ) then} \\
\quad \quad v2 = 100*\text{thet[1]}/(\text{thet[2]}+\text{thet[3]}-\text{thet[1]}-\text{thet[4]})* \\
\quad \quad \quad \text{(} \text{ev}(t, \text{thet[1]}, \text{thet[4]}, \text{thet[5]}) - \\
\quad \quad \quad \quad \text{ev}(t, \text{thet[2]}, \text{thet[3]}, \text{thet[5]})); \\
\quad v3 = 0; \\
\quad \text{if ( } t \geq \text{the[5]} \text{ ) then} \\
\quad \quad v3 = 100*\text{thet[4]}/(\text{thet[1]}+\text{thet[4]})* \\
\quad \quad \quad \text{(} 1. - \text{ev}(t, \text{thet[1]}, \text{thet[4]}, \text{thet[5]})) + \\
\quad \quad \quad \quad \quad 100*\text{thet[1]}*\text{thet[2]}/(\text{thet[2]}+\text{thet[3]}-\text{thet[1]}-\text{thet[4]})* \\
\quad \quad \quad \quad \quad \text{(} 1.-\text{ev}(t, \text{thet[1]}, \text{thet[4]}, \text{thet[5]}))/(\text{thet[1]}+\text{thet[4]}) - \\
\quad \quad \quad \quad \quad \quad \quad \quad \text{ev}(t, \text{thet[2]}, \text{thet[3]}, \text{thet[5]})/(\text{thet[2]}+\text{thet[3]})); \\
\quad y = y // (v1 || v2 || v3); \\
\quad \text{end; } \\
\quad \text{mm = y[,2:3]-a[,2:3]; } \\
\quad \text{call qr(q,r,piv,lindep,mm);} \\
\quad v = \text{det}(r); \\
\quad \text{return(abs(v)); } \\
\text{finish;} \\
\]

\text{start } \text{ev}(t,a,b,c); \\
\quad \text{return(} \text{exp(}-(a+b)*(t-c))\text{); } \\
\text{finish;} \\
\]

\text{opt = } \{0 2 0 1 \}; \\
\text{tc = repeat(.,1,12);} \\
\text{tc[1] = 100;} \\
\text{tc[7] = 1.e-7;} \\
\text{con = } \{0. 0. 0. 0. . . . , \\
\quad . . . . . . . , \\
\quad -1 1 1 -1 . 1 1.e-7 \}; \\
\text{time = a[,1]}; \\
\text{par = } \{1.e-13 . 1.e-10 . . . \}; \\
\text{itheta = } \{1.e-3 1.e-3 1.e-2 1.e-3 1.\}; \\
\text{call nlpqn(rc,rx,"f",itheta) blc=con opt=opt tc=tc par=par;
Output 17.3.5  Second Set of Parameter Estimates for Oil Shale Pyrolysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 X1</td>
<td>0.017178</td>
<td>-0.030690</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.008912</td>
<td>0.070424</td>
</tr>
<tr>
<td>3 X3</td>
<td>0.020007</td>
<td>-0.010621</td>
</tr>
<tr>
<td>4 X4</td>
<td>0.010494</td>
<td>0.206102</td>
</tr>
<tr>
<td>5 X5</td>
<td>7.771458</td>
<td>-0.000062272</td>
</tr>
</tbody>
</table>

Example 17.4: MLEs for Two-Parameter Weibull Distribution

This example considers a data set given in Lawless (1982). The data are the number of days it took rats painted with a carcinogen to develop carcinoma. The last two observations are censored. Maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the Weibull distribution are computed. In the following code, the data set is given in the vector CARCIN, and the variables P and M give the total number of observations and the number of uncensored observations. The set $D$ represents the indices of the observations.

```
proc iml;
 carcin = { 143 164 188 188 190 192 206
 209 213 216 220 227 230 234
 246 265 304 216 244 };
p = ncol(carcin);
m = p - 2;
minx = carcin[<><];
rang = carcin[<><] - minx;
```

The three-parameter Weibull distribution uses three parameters: a scale parameter, a shape parameter, and a location parameter. This example computes MLEs and corresponding 95% confidence intervals for the scale parameter, $\sigma$, and the shape parameter, $c$, for a constant value of the location parameter, $\theta = 0$. The program can be generalized to estimate all three parameters. Note that Lawless (1982) denotes $\sigma$, $c$, and $\theta$ by $\alpha$, $\beta$, and $\mu$, respectively.

The observed likelihood function of the three-parameter Weibull distribution is

$$L(\theta, \sigma, c) = \frac{c^m}{\sigma^m} \prod_{i \in D} \left( \frac{t_i - \theta}{\sigma} \right)^{c-1} \exp \left\{ - \left( \frac{t_i - \theta}{\sigma} \right)^c \right\}$$

The log likelihood, $\ell(\theta, \sigma, c) = \log L(\theta, \sigma, c)$, is

$$\ell(\theta, \sigma, c) = m \log c - mc \log \sigma + (c - 1) \sum_{i \in D} \log(t_i - \theta) - \sum_{i = 1}^{p} \left( \frac{t_i - \theta}{\sigma} \right)^c$$

The log-likelihood function, $\ell(\theta, \sigma, c)$, for $\theta = 0$ is the objective function to be maximized to obtain the MLEs $(\hat{\theta}, \hat{c})$. The following statements define the function:
Example 17.4: MLEs for Two-Parameter Weibull Distribution

Example 17.4: MLEs for Two-Parameter Weibull Distribution

/*--- 1. Two parameter estimation: for \theta = 0 ---*/
start f_weib2(x) global(carcin,thet);
/* use x[1]=sig and x[2]=c */
p = ncol(carcin); m = p - 2;
temp = carcin - thet;
sum1 = sum(log(temp[1:m]));
sum2 = sum((temp / x[1])**x[2]);
f = m*log(x[2]) - m*x[2]*log(x[1]) + (x[2]-1)*sum1 - sum2;
return(f);
finish f_weib2;

The derivatives of $\ell$ with respect to the parameters $\theta, \sigma$, and $c$ are given in Lawless (1982). The following code specifies a gradient module, which computes $\partial\ell/\partial\sigma$ and $\partial\ell/\partial c$:

start g_weib2(x) global(carcin,thet);
/* use x[1]=sig and x[2]=c */
p = ncol(carcin); m = p - 2;
g = j(1,2,0.);
temp = carcin - thet;
sum1 = sum(log(temp[1:m]));
sum2 = sum((temp / x[1])**x[2]);
sum3 = sum(((temp / x[1])**x[2]) # (log(temp / x[1])));
g[2] = m / x[2] - m * log(x[1]) + sum1 - sum3;
return(g);
finish g_weib2;

The MLEs are computed by maximizing the objective function with the trust-region algorithm in the NLPTR subroutine. The following code specifies starting values for the two parameters, $c = 0.5$, and to avoid infeasible values during the optimization process, it imposes lower bounds of $c, \sigma > 10^{-6}$. The optimal parameter values are saved in the variable XOPT, and the optimal objective function value is saved in the variable FOPT.

n = 2; thet = 0.;
x0 = j(1,n,.5);
optn = {1 2};
con = { 1.e-6 1.e-6 ,
        1 . . };
CALL NLPTR(rc,xopt,"f_weib2",x0,optn,con,,"g_weib2");
fopt = f_weib2(xopt);

The results shown in Output 17.4.1 are the same as those given in Lawless (1982).

**Output 17.4.1** Parameter Estimates for Carcinogen Data

<table>
<thead>
<tr>
<th>Optimization Results</th>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>N</strong></td>
<td><strong>Parameter</strong></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
</tr>
</tbody>
</table>
The following code computes confidence intervals based on the asymptotic normal distribution. These are compared with the profile-likelihood-based confidence intervals computed in the next example. The diagonal of the inverse Hessian (as calculated by the NLPFDD subroutine) is used to calculate the standard error.

```c
/*--- Compute confidence interval for x at optimum ---*/
/* compute Hessian at optimum */
xopt = xopt`;
call nlpfdd(f,g,hes2,"f_weib2",xopt,",g_weib2");
hin2 = inv(hes2);

/* quantile of normal distribution */
prob = 0.05;
stderr = sqrt(abs(vecdiag(hin2)));
z = quantile("Normal", 1 - prob/2);
xlb = xopt - z * stderr;
xub = xopt + z * stderr;
results = xlb || xopt || xub;
print results[L="Normal Distribution Confidence Interval"
 c="Lower Bound" "Estimate" "UpperBound"
 r="sigma" "c"];
```

**Output 17.4.2** Confidence Interval Based on Normal Distribution

<table>
<thead>
<tr>
<th>Normal Distribution Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
</tr>
<tr>
<td>sigma</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

**Example 17.5: Profile-Likelihood-Based Confidence Intervals**

This example calculates confidence intervals based on the profile likelihood for the parameters estimated in the previous example. The following introduction on profile-likelihood methods is based on the paper of Venzon and Moolgavkar (1988).

Let \( \hat{\theta} \) be the maximum likelihood estimate (MLE) of a parameter vector \( \theta_0 \in \mathbb{R}^n \) and let \( \ell(\theta) \) be the log-likelihood function defined for parameter values \( \theta \in \Theta \subset \mathbb{R}^n \).

The profile-likelihood method reduces \( \ell(\theta) \) to a function of a single parameter of interest, \( \beta = \theta_j \), where \( \theta = (\theta_1, \ldots, \theta_j, \ldots, \theta_n)' \), by treating the others as nuisance parameters and maximizing over them. The profile likelihood for \( \beta \) is defined as

\[
\tilde{\ell}_j(\beta) = \max_{\theta \in \Theta_j(\beta)} \ell(\theta)
\]

where \( \Theta_j(\beta) = \{ \theta \in \Theta : \theta_j = \beta \} \). Define the complementary parameter set \( \omega = (\theta_1, \ldots, \theta_{j-1}, \theta_{j+1}, \ldots, \theta_n)' \) and \( \hat{\omega}(\beta) \) as the optimizer of \( \tilde{\ell}_j(\beta) \) for each value of \( \beta \). Of course, the maximum of function \( \tilde{\ell}_j(\beta) \) is located at \( \beta = \hat{\beta}_j \). The profile-likelihood-based confidence interval for parameter \( \theta_j \) is defined as

\[
\{ \beta : \ell(\hat{\theta}) - \tilde{\ell}_j(\beta) \leq \frac{1}{2} q_1(1 - \alpha) \} 
\]
where \( q_1(1 - \alpha) \) is the \((1 - \alpha)\)th quantile of the \( \chi^2 \) distribution with one degree of freedom. The points \((\beta_l, \beta_u)\) are the endpoints of the profile-likelihood-based confidence interval for parameter \( \beta = \theta_j \). The points \( \beta_l \) and \( \beta_u \) can be computed as the solutions of a system of \( n \) nonlinear equations \( f_i(x) \) in \( n \) parameters, where \( x = (\beta, \omega) \):

\[
\begin{bmatrix}
\ell(\theta) - \ell^* \\
\frac{\partial \ell}{\partial \alpha}(\theta)
\end{bmatrix} = 0
\]

where \( \ell^* \) is the constant threshold \( \ell^* = \ell(\hat{\theta}) - \frac{1}{2} q_1(1 - \alpha) \). The first of these \( n \) equations defines the locations \( \beta_l \) and \( \beta_u \) where the function \( \ell(\theta) \) cuts \( \ell^* \), and the remaining \( n - 1 \) equations define the optimality of the \( n - 1 \) parameters in \( \omega \). Jointly, the \( n \) equations define the locations \( \beta_l \) and \( \beta_u \) where the function \( \hat{\ell}_j(\beta) \) cuts the constant threshold \( \ell^* \), which is given by the roots of \( \hat{\ell}_j(\beta) - \ell^* \). Assuming that the two solutions \( \{\beta_l, \beta_u\} \) exist (they do not if the quantile \( q_1(1 - \alpha) \) is too large), this system of \( n \) nonlinear equations can be solved by minimizing the sum of squares of the \( n \) functions \( f_i(\beta, \omega) \):

\[
F = \frac{1}{2} \sum_{i=1}^{n} f_i^2(\beta, \omega)
\]

For a solution of the system of \( n \) nonlinear equations to exist, the minimum value of the convex function \( F \) must be zero.

The following statements defines the module for the system of \( n = 2 \) nonlinear equations to be solved in terms of the modules that are defined in the previous section:

```plaintext
start f_plwei2(x) global(carcin,ipar,lstar);
 /* use x[1]=sig, x[2]=c, thet */
 like = f_weib2(x);
 grad = g_weib2(x);
 grad[ipar] = like - lstar;
 return(grad`);
finish f_plwei2;
```

The following statements implements the Levenberg-Marquardt algorithm with the NLPLM subroutine to solve the system of two equations for the left and right endpoints of the interval. The starting point is the optimizer \((\hat{\sigma}, \hat{c})\), as computed in the previous example, moved toward the left or right endpoint of the interval by an initial step (refer to Venzon and Moolgavkar (1988)). This forces the algorithm to approach the specified endpoint. The results, shown in Output 17.5.1, are close to the results shown in Output 17.4.2.

```plaintext
/* quantile of chi**2 distribution */
chqua = cinv(1-prob,1); lstar = fopt - .5 * chqua;
/* set number of equations = 2, and print parameter = 0 */
optn = {2 0}; /* Dont print in NLPLM */
do ipar = 1 to 2;
 /* Compute initial step: */
 /* Choose (alfa,delt) to go in right direction */
 /* Venzon & Moolgavkar (1988), p.89 */
 if ipar=1 then ind = 2; else ind = 1;
 delt = - inv(hes2[ind,ind]) * hes2[ind,ipar];
 alfa = - (hes2[ipar,ipar] - delt` * hes2[ind,ipar]);
 if alfa > 0 then do;
 alfa = .5 * sqrt(chqua / alfa);
 end; else do;
```

Example 17.5: Profile-Likelihood-Based Confidence Intervals  ●  415
print "Bad alpha";
alfa = .1 * xopt[ipar];
end;
if ipar=1 then delt = 1 // delt;
else delt = delt // 1;

/* Get upper end of interval */
x0 = xopt + alfa * delt;
/* set lower bound to optimal value */
con2 = con; con2[1,ipar] = xopt[ipar];
CALL NLPLM(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xub[ipar] = xres[ipar];
else xub[ipar] = .;

/* Get lower end of interval */
x0 = xopt - alfa * delt;
/* reset lower bound and set upper bound to optimal value */
con2[1,ipar] = con[1,ipar]; con2[2,ipar] = xopt[ipar];
CALL NLPLM(rc,xres,"f_plwei2",x0,optn,con2);
f = f_plwei2(xres); s = ssq(f);
if (s < 1.e-6) then xlb[ipar] = xres[ipar];
else xlb[ipar] = .;
end;
results = xlb || xopt || xub;
print results[L="Profile-Likelihood Confidence Interval"
c={"Lower Bound" "Estimate" "UpperBound"}
r={"sigma" "c"}];

### Output 17.5.1 Confidence Interval Based on Profile Likelihood

<table>
<thead>
<tr>
<th>Profile-Likelihood Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
</tr>
<tr>
<td>sigma</td>
</tr>
<tr>
<td>c</td>
</tr>
</tbody>
</table>

## Example 17.6: Survival Curve for Interval Censored Data

In some studies, subjects are assessed only periodically for outcomes or responses of interest. In such situations, the occurrence times of these events are not observed directly; instead they are known to have occurred within some time interval. The times of occurrence of these events are said to be interval censored.

A first step in the analysis of these interval censored data is the estimation of the distribution of the event occurrence times.

In a study with $n$ subjects, denote the raw interval censored observations by $\{(L_i, R_i) : 1 \leq i \leq n\}$. For the $i$th subject, the event occurrence time $T_i$ lies in $(L_i, R_i]$, where $L_i$ is the last assessment time at which there was no evidence of the event, and $R_i$ is the earliest time when a positive assessment was noted (if it was observed at all). If the event does not occur before the end of the study, $R_i$ is given a value larger than any assessment time recorded in the data.
A set of nonoverlapping time intervals $I_j = (q_j, p_j]$, $1 \leq j \leq m$, is generated over which the survival curve $S(t) = \Pr[T > t]$ is estimated. Refer to Peto (1973) and Turnbull (1976) for details. Assuming the independence of $T_i$ and $(L_i, R_i]$, and also independence across subjects, the likelihood of the data $\{T_i \in (L_i, R_i], 1 \leq i \leq n\}$ can be constructed in terms of the pseudo-parameters $\theta_j = \Pr[T_i \in I_j], 1 \leq i \leq m$. The conditional likelihood of $\theta = (\theta_1, \ldots, \theta_m)$ is

$$L(\theta) = \prod_{i=1}^{n} \left( \sum_{j=1}^{m} x_{ij} \theta_j \right)$$

where $x_{ij}$ is 1 or 0 according to whether $I_j$ is a subset of $(L_i, R_i]$. The maximum likelihood estimates, $\hat{\theta}_j$, $1 \leq j \leq m$, yield an estimator $\hat{S}(t)$ of the survival function $S(t)$, which is given by

$$\hat{S}(t) = \begin{cases} 
1 & t \leq q_1 \\
\sum_{i=j+1}^{m} \hat{\theta}_i & p_j \leq t \leq q_{j+1}, 1 \leq j \leq m-1 \\
0 & t \geq p_m
\end{cases}$$

$\hat{S}(t)$ remains undefined in the intervals $(q_j, p_j]$ where the function can decrease in an arbitrary way. The asymptotic covariance matrix of $\hat{\theta}$ is obtained by inverting the estimated matrix of second partial derivatives of the negative log likelihood (Peto 1973), (Turnbull 1976). You can then compute the standard errors of the survival function estimators by the delta method and approximate the confidence intervals for survival function by using normal distribution theory.

The following code estimates the survival curve for interval censored data. As an illustration, consider an experiment to study the onset of a special kind of palpable tumor in mice. Forty mice exposed to a carcinogen were palpated for the tumor every two weeks. The times to the onset of the tumor are interval censored data. These data are contained in the data set CARCIN. The variable L represents the last time the tumor was not yet detected, and the variable R represents the first time the tumor was palpated. Three mice died tumor free, and one mouse was tumor free by the end of the 48-week experiment. The times to tumor for these four mice were considered right censored, and they were given an R value of 50 weeks.

data carcin;
  input id l r @@;
datalines;
  1 20 22 11 30 32 21 22 24 31 34 36
  2 22 24 12 32 34 22 22 24 32 34 36
  3 26 28 13 32 34 23 28 30 33 36 38
  4 26 28 14 32 34 24 28 30 34 38 40
  5 26 28 15 34 36 25 32 34 35 38 40
  6 26 28 16 36 38 26 32 34 36 42 44
  7 28 30 17 42 44 27 32 34 37 42 44
  8 28 30 18 30 50 28 32 34 38 46 48
  9 30 32 19 34 50 29 32 34 39 28 50
 10 30 32 20 20 22 30 32 34 40 48 50
;
proc iml;
use carcin;
read all var({l r});
close carcin;

nobs= nrow(l);

/***********************
construct the nonoverlapping intervals (Q,P) and
determine the number of pseudo-parameters (NPARM)
***************************/
pp= unique(r); npp= ncol(pp);
qq= unique(l); nqq= ncol(qq);
q= j(1,npp, .);
do;
  do i= 1 to npp;
    do j= 1 to nqq;
      if ( qq[j] < pp[i] ) then q[i]= qq[j];
    end;
    if q[i] = qq[nqq] then goto lab1;
  end;
lab1:
end;

if i > npp then nq= npp;
else
  nq= i;
q= unique(q[1:nq]);
nparm= ncol(q);
p= j(1,nparm, .);
do i= 1 to nparm;
  do j= npp to 1 by -1;
    if ( pp[j] > q[i] ) then p[i]= pp[j];
  end;
end;

/*******************************
generate the X-matrix for the likelihood
***********************************/
_x= j(nobs, nparm, 0);
do j= 1 to nparm;
  _x[,j]= choose(l <= q[j] & p[j] <= r, 1, 0);
end;

/*******************************
log-likelihood function (LL)
***********************************/
start LL(theta) global(_x,nparm);
  xlt= log(_x * theta`);
  f= xlt[+];
  return(f);
finish LL;

/*******************************
gradient vector (GRAD)
***********************************/
start GRAD(theta) global(_x,nparm);
  g= j(1,nparm,0);
  tmp= _x # (1 / (_x * theta`));
Example 17.6: Survival Curve for Interval Censored Data

```plaintext
 g= tmp[+,];
 return(g);
finish GRAD;

/***/
estimate the pseudo-parameters using quasi-newton technique
/***/
/* options */
optn= {1 2};

/* constraints */
con= j(3, nparm + 2, .);
con[1, 1:nparm]= 1.e-6;
con[2:3, 1:nparm]= 1;
con[3,nparm + 1]=0;
con[3,nparm + 2]=1;

/* initial estimates */
x0= j(1, nparm, 1/nparm);

/* call the optimization routine */
call nlpqn(rc,rx,"LL",x0,optn,con,,,"GRAD");

/***/
survival function estimate (SDF)
/***/
tmp1= cusum(rx[nparm:1]);
sdf= tmp1[nparm-1:1];

/***/
covariance matrix of the first nparm-1 pseudo-parameters (SIGMA2)
/***/
mm= nparm - 1;
_x= _x - _x[,nparm] * (j(1, mm, 1) || {0});
h= j(mm, mm, 0);
ixtheta= 1 / (_x * ((rx[,1:mm]) || {1})`);
if _zfreq then
 do i= 1 to nobs;
 rowtmp= ixtheta[i] # _x[i,1:mm];
 h= h + (_freq[i] # (rowtmp` * rowtmp));
 end;
else do i= 1 to nobs;
 rowtmp= ixtheta[i] # _x[i,1:mm];
 h= h + (rowtmp` * rowtmp);
end;
sigma2= inv(h);

/***/
standard errors of the estimated survival curve (SIGMA3)
/***/
sigma3= j(mm, 1, 0);
tmpl= sigma3;
 do i= 1 to mm;
 tmpl[i]= 1;
```

The iteration history produced by the NLPQN subroutine is shown in Output 17.6.1.

**Output 17.6.1**  Iteration History for the NLPQN Subroutine

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>12</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>12</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>

**Optimization Start**

<table>
<thead>
<tr>
<th>Active Constraints</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Function</td>
<td>-93.3278404</td>
</tr>
<tr>
<td>Max Abs Gradient Element</td>
<td>65.361558529</td>
</tr>
</tbody>
</table>
Example 17.6: Survival Curve for Interval Censored Data

Output 17.6.1 continued

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-88.51201</td>
<td>4.8158</td>
<td>16.6594</td>
<td>0.0256</td>
<td>-305.2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>-87.42665</td>
<td>1.0854</td>
<td>10.8769</td>
<td>1.000</td>
<td>-2.157</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>-87.27408</td>
<td>0.1526</td>
<td>5.4965</td>
<td>1.000</td>
<td>-0.366</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>-87.17314</td>
<td>0.1009</td>
<td>2.2856</td>
<td>2.000</td>
<td>-0.113</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>-87.16611</td>
<td>0.00703</td>
<td>0.3444</td>
<td>1.000</td>
<td>-0.0149</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>-87.16582</td>
<td>0.000287</td>
<td>0.0522</td>
<td>1.001</td>
<td>-0.0006</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>-87.16581</td>
<td>9.128E-6</td>
<td>0.00691</td>
<td>1.133</td>
<td>-161E-7</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>-87.16581</td>
<td>1.712E-7</td>
<td>0.00101</td>
<td>1.128</td>
<td>-303E-9</td>
</tr>
</tbody>
</table>

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Function Calls</th>
<th>Gradient Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Max Abs Gradient Element</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>15</td>
<td>11</td>
<td>1</td>
<td>-87.16581343</td>
<td>0.0010060788</td>
<td>-3.033154E-7</td>
</tr>
</tbody>
</table>

GCONV convergence criterion satisfied.

The estimates of the pseudo-parameter for the nonoverlapping intervals are shown in Output 17.6.2.

Output 17.6.2 Estimates for the Probability of Event Occurrence

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>34</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>48</td>
</tr>
</tbody>
</table>
The survival curve estimates and confidence intervals are displayed in Output 17.6.3.

Output 17.6.3 Survival Estimates and Confidence Intervals

<table>
<thead>
<tr>
<th>Survival Curve Estimates and 95% Confidence Intervals</th>
<th>LEFT</th>
<th>RIGHT</th>
<th>ESTIMATE</th>
<th>LOWER</th>
<th>UPPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td></td>
<td>.</td>
</tr>
<tr>
<td>ROW2</td>
<td>22</td>
<td>22</td>
<td>0.950003</td>
<td>0.8824601</td>
<td>1</td>
</tr>
<tr>
<td>ROW3</td>
<td>24</td>
<td>26</td>
<td>0.8750015</td>
<td>0.7725135</td>
<td>0.9774894</td>
</tr>
<tr>
<td>ROW4</td>
<td>28</td>
<td>28</td>
<td>0.7750037</td>
<td>0.6455975</td>
<td>0.9044099</td>
</tr>
<tr>
<td>ROW5</td>
<td>30</td>
<td>30</td>
<td>0.6716688</td>
<td>0.5251576</td>
<td>0.81818</td>
</tr>
<tr>
<td>ROW6</td>
<td>32</td>
<td>32</td>
<td>0.5910674</td>
<td>0.4363312</td>
<td>0.7458036</td>
</tr>
<tr>
<td>ROW7</td>
<td>34</td>
<td>34</td>
<td>0.3492651</td>
<td>0.1972562</td>
<td>0.501274</td>
</tr>
<tr>
<td>ROW8</td>
<td>36</td>
<td>36</td>
<td>0.2619499</td>
<td>0.1194032</td>
<td>0.4044967</td>
</tr>
<tr>
<td>ROW9</td>
<td>38</td>
<td>38</td>
<td>0.203738</td>
<td>0.072003</td>
<td>0.3354731</td>
</tr>
<tr>
<td>ROW10</td>
<td>40</td>
<td>42</td>
<td>0.1455261</td>
<td>0.0293244</td>
<td>0.2617279</td>
</tr>
<tr>
<td>ROW11</td>
<td>44</td>
<td>46</td>
<td>0.058211</td>
<td>0</td>
<td>0.1360926</td>
</tr>
<tr>
<td>ROW12</td>
<td>48</td>
<td>48</td>
<td>0.0291055</td>
<td>0</td>
<td>0.0851723</td>
</tr>
<tr>
<td>ROW13</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

In this program, the quasi-Newton technique is used to maximize the likelihood function. You can replace the quasi-Newton routine by other optimization routines, such as the NLPNRR subroutine, which performs Newton-Raphson ridge optimization, or the NLPCG subroutine, which performs conjugate gradient optimization. Depending on the number of parameters and the number of observations, these optimization routines do not perform equally well. For survival curve estimation, the quasi-Newton technique seems to work fairly well since the number of parameters to be estimated is usually not too large.

Example 17.7: A Two-Equation Maximum Likelihood Problem

The following example and notation are taken from Bard (1974). A two-equation model is used to fit U.S. production data for the years 1909–1949, where $z_1$ is capital input, $z_2$ is labor input, $z_3$ is real output, $z_4$ is time in years (with 1929 as the origin), and $z_5$ is the ratio of price of capital services to wage scale. The data can be entered by using the following statements:

```plaintext
proc iml;
 z={ 1.33135 0.64629 0.4026 -20 0.24447,
 1.39235 0.66302 0.4084 -19 0.23454,
 1.41640 0.65272 0.4223 -18 0.23206,
 1.48773 0.67318 0.4389 -17 0.22291,
 1.51015 0.67720 0.4605 -16 0.22487,
 1.43385 0.65175 0.4445 -15 0.21879,
 1.48188 0.65570 0.4387 -14 0.23203,
 1.67115 0.71417 0.4999 -13 0.23828,
 1.71327 0.77524 0.5264 -12 0.26571,
 1.76412 0.79465 0.5793 -11 0.23410,
 1.76869 0.71607 0.5492 -10 0.22181,
 1.80776 0.70068 0.5052 -9 0.18157,
 1.54947 0.60764 0.4679 -8 0.22931,
```
Example 17.7: A Two-Equation Maximum Likelihood Problem

The two-equation model in five parameters $c_1, \ldots, c_5$ is

\[
g_1 = c_1 10^{c_2 z_3 z_4} [ c_5 z_1 z_4^{-c_4} + (1 - c_5) z_2 z_4^{-c_4} ]^{-c_3/c_4} - z_3 = 0
\]

\[
g_2 = \left[ \frac{c_5}{1 - c_5} \right] \left( \frac{z_1}{z_2} \right)^{-1-c_4} - z_5 = 0
\]

where the variables $z_1$ and $z_2$ are considered dependent (endogenous) and the variables $z_3$, $z_4$, and $z_5$ are considered independent (exogenous).

Differentiation of the two equations $g_1$ and $g_2$ with respect to the endogenous variables $z_1$ and $z_2$ yields the Jacobian matrix $\partial g_i/\partial z_j$ for $i = 1, 2$ and $j = 1, 2$, where $i$ corresponds to rows (equations) and $j$ corresponds to endogenous variables (refer to Bard (1974)). You must consider parameter sets for which the elements of the Jacobian and the logarithm of the determinant cannot be computed. In such cases, the function module must return a missing value.

Assuming that the residuals of the two equations are normally distributed, the likelihood is then computed as in Bard (1974). The following code computes the logarithm of the likelihood function:
start fiml(pr) global(z);
c1 = pr[1]; c2 = pr[2]; c3 = pr[3]; c4 = pr[4]; c5 = pr[5];
/* 1. Compute Jacobian */
lndet = 0;
do t= 1 to 41;
j11 = (-c3/c4) * c1 * 10 ##(c2 * z[t,4]) * (-c4) * c5 *
z[t,1]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4 -1);
j12 = (-c3/c4) * (-c4) * c1 * 10 ##(c2 * z[t,4]) * (1-c5) *
z[t,2]##(-c4-1) * (c5 * z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4-1) + (1-c5)
z[t,2]##(-c4))##(-c3/c4 -1);
j21 = (-1-c4)*(c5/(1-c5))*z[t,1]##( -2-c4)/ (z[t,2]##(-1-c4));
j22 = (1+c4)*(c5/(1-c5))*z[t,1]##( -1-c4)/ (z[t,2]##(-c4));
j = (j11 || j12 ) // (j21 || j22);
if any(j = .) then detj = 0.;
else detj = det(j);
if abs(detj) < 1.e-30 then do;
    return(.);
end;
lndet = lndet + log(abs(detj));
end;

/* 2. Compute Sigma */
sb = j(2,2,0.);
do t= 1 to 41;
eq_g1 = c1 * 10##(c2 * z[t,4]) * (c5*z[t,1]##(-c4) + (1-c5) *
z[t,2]##(-c4))##(-c3/c4) - z[t,3];
eq_g2 = (c5/(1-c5)) * (z[t,1] / z[t,2])##(-1-c4) - z[t,5];
resid = eq_g1 // eq_g2;
sb = sb + resid * resid;
end;
sb = sb / 41;
/* 3. Compute log L */
const = 41. * (log(2 * 3.1415) + 1.);
lnds = 0.5 * 41 * log(det(sb));
logl = const - lndet + lnds;
return(logl);
finish fiml;

There are potential problems in computing the power and log functions for an unrestricted parameter set. As a result, optimization algorithms that use line search fail more often than algorithms that restrict the search area. For that reason, the NLPDD subroutine is used in the following code to maximize the log-likelihood function. Part of the iteration history is shown in Output 17.7.1.

pr = j(1,5,0.001);
optn = {0 2};
tc = {. . . 0};
call nlpdd(rc, xr,"fiml", pr, optn,,tc);
quit;
Output 17.7.1  Iteration History for Two-Equation ML Problem

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-88.51201</td>
<td>4.8158</td>
<td>16.6594</td>
<td>0.0256</td>
<td>-305.2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>-87.42665</td>
<td>1.0854</td>
<td>10.8769</td>
<td>1.000</td>
<td>-2.157</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>-87.27408</td>
<td>0.1526</td>
<td>5.4965</td>
<td>1.000</td>
<td>-0.366</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>-87.17314</td>
<td>0.1009</td>
<td>2.2856</td>
<td>2.000</td>
<td>-0.113</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>-87.16611</td>
<td>0.00703</td>
<td>0.3444</td>
<td>1.000</td>
<td>-0.0149</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>10</td>
<td>1</td>
<td>-87.16582</td>
<td>0.000287</td>
<td>0.0522</td>
<td>1.001</td>
<td>-0.0006</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>-87.16581</td>
<td>9.128E-6</td>
<td>0.00691</td>
<td>1.133</td>
<td>-161E-7</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>-87.16581</td>
<td>1.712E-7</td>
<td>0.00101</td>
<td>1.128</td>
<td>-303E-9</td>
</tr>
</tbody>
</table>

Optimization Results

- Iterations: 8
- Function Calls: 15
- Gradient Calls: 11
- Active Constraints: 1
- Objective Function: -87.16581343
- Max Abs Gradient Element: 0.0001060788
- Slope of Search Direction: -3.033154E-7

The results are very close to those reported by Bard (1974). Bard also reports different approaches to the same problem that can lead to very different MLEs.

Output 17.7.2  Parameter Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>0.050000</td>
<td>40.000241</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.074999</td>
<td>40.000622</td>
</tr>
<tr>
<td>3</td>
<td>X3</td>
<td>0.099998</td>
<td>40.000887</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>0.103335</td>
<td>39.999422</td>
</tr>
<tr>
<td>5</td>
<td>X5</td>
<td>0.080601</td>
<td>39.999337</td>
</tr>
<tr>
<td>6</td>
<td>X6</td>
<td>0.241802</td>
<td>39.999631</td>
</tr>
<tr>
<td>7</td>
<td>X7</td>
<td>0.087315</td>
<td>40.000599</td>
</tr>
<tr>
<td>8</td>
<td>X8</td>
<td>0.058212</td>
<td>39.999533</td>
</tr>
<tr>
<td>9</td>
<td>X9</td>
<td>0.058212</td>
<td>39.999533</td>
</tr>
<tr>
<td>10</td>
<td>X10</td>
<td>0.087315</td>
<td>40.000599</td>
</tr>
<tr>
<td>11</td>
<td>X11</td>
<td>0.029105</td>
<td>40.000082</td>
</tr>
<tr>
<td>12</td>
<td>X12</td>
<td>0.029105</td>
<td>40.000082</td>
</tr>
</tbody>
</table>
Example 17.8: Time-Optimal Heat Conduction

The following example illustrates a nontrivial application of the NLPQN algorithm that requires nonlinear constraints, which are specified by the \textit{nlc} module. The example is listed as problem 91 in Hock and Schittkowski (1981). The problem describes a time-optimal heating process minimizing the simple objective function

\[ f(x) = \sum_{j=1}^{n} x_j^2 \]

subjected to a rather difficult inequality constraint:

\[ c(x) = 10^{-4} - h(x) \geq 0 \]

where \( h(x) \) is defined as

\[ h(x) = \int_{0}^{1} \left( \sum_{i=1}^{30} \alpha_i(s) \rho_i(x) - k_0(s) \right)^2 ds \]

\[ \alpha_i(s) = \mu_i^2 A_i \cos(\mu_i s) \]

\[ \rho_i(x) = -\mu_i^2 \exp \left( -\mu_i^2 \sum_{j=1}^{n} x_j^2 \right) - 2 \exp \left( -\mu_i^2 \sum_{j=2}^{n} x_j^2 \right) + \cdots \]

\[ + (-1)^{n-1} 2 \exp \left( -\mu_i^2 x_n^2 \right) + (-1)^n \]

\[ k_0(s) = 0.5(1 - s^2) \]

\[ A_i = \frac{2 \sin \mu_i}{\mu_i + \sin \mu_i \cos \mu_i} \]

\[ \mu = (\mu_1, \ldots, \mu_{30})', \text{ where } \mu_i \tan(\mu_i) = 1 \]

The gradient of the objective function \( f, g(x) = 2x \), is easily supplied to the NLPQN subroutine. However, the analytical derivatives of the constraint are not used; instead, finite-difference derivatives are computed.

In the following code, the vector \texttt{MU} represents the first 30 positive values \( \mu_i \) that satisfy \( \mu_i \tan(\mu_i) = 1 \):

```iml
proc iml;
/* Vector mu[30] found by solving mu[j] * tan(mu[j]) = 1 */
mu = {
 8.603358901938E-01, 3.4256184594817E+00,
 6.4372981791719E+00, 9.529334053619E+00,
 1.2645287223856E+01, 1.5771284874815E+01,
 1.8902409956860E+01, 2.2036496727938E+01,
 2.5172446326646E+01, 2.8309642854452E+01,
 3.1447714637546E+01, 3.4586424215288E+01,
 3.7725612827776E+01, 4.0865170330488E+01,
 4.4005017920830E+01, 4.7145097736761E+01,
 5.0285366337773E+01, 5.3425790477394E+01,
};
```
Example 17.8: Time-Optimal Heat Conduction

The vector \( A = (A_1, \ldots, A_{30}) \)' depends only on \( \mu \) and is computed only once, before the optimization starts, as follows:

\[
\begin{align*}
A &= 5.6566344279821E+01, \\
    &  5.9707007305335E+01, \\
    &  6.2847763194454E+01, \\
    &  6.5988598698490E+01, \\
    &  7.2270467060309E+01, \\
    &  7.852545984243E+01, \\
    &  8.483478718042E+01, \\
    &  9.117161394464E+01 
\end{align*}
\]

The constraint is implemented with the QUAD subroutine, which performs numerical integration of scalar functions in one dimension. The subroutine calls the module \texttt{fquad} that supplies the integrand for \( h(x) \). For details about the QUAD call, see the section “QUAD Call” on page 951. Here is the code:

```plaintext
/* This is the integrand used in h(x) */
start fquad(s) global(mu,rho);
 z = (rho * cos(s*mu) - 0.5*(1. - s##2))##2;
 return(z);
finish;

/* Obtain nonlinear constraint h(x) */
start h(x) global(n,nmu,mu,a,rho);
 xx = x##2;
 do i= n-1 to 1 by -1;
 xx[i] = xx[i+1] + xx[i];
 end;
 rho = j(1,nmu,0.);
 do i=1 to nmu;
 mu2 = mu[i]##2;
 sum = 0; t1n = -1.;
 do j=2 to n;
 t1n = -t1n;
 sum = sum + t1n * exp(-mu2*xx[j]);
 end;
 sum = -2*sum + exp(-mu2*xx[1]) + t1n;
 rho[i] = -a[i] * sum;
 end;
 aint = do(0,1,.5);
 call quad(z,"fquad",aint) eps=1.e-10;
 v = sum(z);
 return(v);
finish;
```

The modules for the objective function, its gradient, and the constraint \( c(x) \geq 0 \) are given in the following code:
Chapter 17: Nonlinear Optimization Examples

/* Define modules for NLPQN call: f, g, and c */

start F_HS88(x);
    f = x * x';
    return(f);
finish F_HS88;

start G_HS88(x);
    g = 2 * x;
    return(g);
finish G_HS88;

start C_HS88(x);
    c = 1.e-4 - h(x);
    return(c);
finish C_HS88;

The number of constraints returned by the “nlc” module is defined by opt[10] = 1. The ABSGTOL termination criterion (maximum absolute value of the gradient of the Lagrange function) is set by tc[6] = 1E-4. Here is the code:

title 'Hock & Schittkowski Problem #91 (1981) n=5, INSTEP=1';
or = j(1,10,.);
or[2]=3;
or[10]=1;
tc = j(1,12,.);
tc[6]=1.e-4;
x0 = {.5 .5 .5 .5 .5};
n = ncol(x0);

call nlpqn(rc,rx,"F_HS88",x0,or,,tc) grd="G_HS88" nlc="C_HS88";
quit;

Part of the iteration history and the parameter estimates are shown in Output 17.8.1.

Output 17.8.1  Iteration History and Parameter Estimates

Hock & Schittkowski  Problem #91 (1981) n=5, INSTEP=1

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimization Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Maximum Constraint Violation</td>
</tr>
<tr>
<td>Maximum Gradient of the Lagrange Func</td>
</tr>
</tbody>
</table>
Problems 88 to 92 of Hock and Schittkowski (1981) specify the same optimization problem for $n = 2$ to $n = 6$. You can solve any of these problems with the preceding code by submitting a vector of length $n$ as the initial estimate, $x_0$. 
References


Overview of Statistical Graphics

This chapter describes SAS/IML subroutines that enable you to create high-level statistical graphs. These subroutines use the SUBMIT statement and ENDSUBMIT statement to call the SGPLOT procedure, which displays the graph in the current ODS destination. These subroutines are implemented as part of the IMLMLIB library.

The following subroutines create ODS statistical graphs from data in SAS/IML matrices:

- **BAR call** creates a bar chart.
- **BOX call** creates a box plot.
- **HISTOGRAM call** creates a histogram.
- **SCATTER call** creates a scatter plot.
- **SERIES call** creates a series plot.

In addition, the following subroutines create a heat map to visualize data in a matrix:

- **HEATMAPCONT call** creates a heat map with a continuous color ramp.
- **HEATMAPDISC call** creates a heat map with a discrete color ramp.

The heat map subroutines are described and documented in Chapter 26, “Language Reference.”
How the Graphs Are Created

This section provides a simple example that demonstrates how the ODS statistical graphics subroutines work.

Suppose you want to create a bar chart of some discrete data that are contained in a SAS/IML matrix. One way to create the bar chart would be to write the data to a SAS data set, quit PROC IML, and call the SGPLOT procedure. However, you might prefer to create the bar chart without exiting from PROC IML. You can do this by using the SUBMIT and ENDSUBMIT statements, as follows:

```sas
proc iml;
 x = {7 A 8 B 3 C}; /* repetition factors: 7 As, 8 Bs, and 3 Cs */
 create Bar var {x}; append; close Bar; /* write SAS data set */
submit;
 proc sgplot data=Bar;
 vbar x;
 run;
endsubmit;
```

The result is shown in Figure 18.1. The graph is created by calling the SGPLOT procedure from within a SAS/IML program. Of course, you can also encapsulate these statements into a module that creates a bar chart from the data, as follows:

```sas
/* module to create a bar chart from data in X */
start BarChart(x);
 create Bar var {x}; append; close Bar; /* write SAS data set */
 submit;
 proc sgplot data=Bar; /* create the plot */
 vbar x;
 run;
 endsubmit;
```

Figure 18.1 Bar Chart
call delete("Bar"); /* delete the data set */
finish;

run BarChart(x); /* call the module */

This program illustrates the basic idea of the ODS statistical graphics subroutines that are available in the IMLMLIB module library. The modules write data to a data set and call PROC SGPLOT to create a graph. The subroutines also accept additional parameters that determine options in the graph.

Summary of Graph Options

For each graph type, you must specify a vector of data. The BAR, BOX, and HISTOGRAM subroutines require at least one vector of data; the SCATTER and SERIES subroutines require two vectors of data. The remaining arguments are optional and specify additional data or parameters that set options in the SGPLOT procedure.

Some options are common to all ODS statistical graphics subroutines. The following common options specify options in the XAXIS and YAXIS statements in the SGPLOT procedure:

**GRID=** specifies whether grid lines are displayed for the X and Y axes. This option corresponds to the GRID option in the XAXIS and YAXIS statements.

**LABEL=** specifies axis labels for the X or Y axis. If the argument is a scalar, the value of the argument is used for the X-axis label. If the argument has two elements, the first is used for the X-axis label and the second for the Y-axis label. If this option is not specified, the labels “X” and “Y” are used for labels.

**XVALUES=** specifies a vector of values for ticks for the X axis.

**YVALUES=** specifies a vector of values for ticks for the Y axis.

**PROCOPT=** specifies a character matrix or string literal. The value is used verbatim to specify options in the PROC SGPLOT statement.

**OTHER=** specifies a character matrix or string literal. You can use this option to specify one or more complete statements in the SGPLOT procedure. For example, you can specify multiple REFLINE statements and an INSET statement.

Table 18.1 summarizes options that apply to only certain graph types.

<table>
<thead>
<tr>
<th>Option</th>
<th>BAR</th>
<th>BOX</th>
<th>HISTOGRAM</th>
<th>SCATTER</th>
<th>SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ=</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATEGORY=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REBIN=</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPARM=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ORDER=</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TYPE=</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specify mandatory arguments (the data) in parentheses after the name of the subroutine. Specify options outside the parentheses.

You can add a title and footnotes to a plot by using the global TITLE and FOOTNOTE statements.

---

**Limitations of the ODS Statistical Graphics Subroutines**

The ODS statistical graphics subroutines are intended to enable you to quickly and easily construct basic graphics. They are not intended to be a complete interface to the SGPLOT procedure. If you need to construct a complicated graph from within the SAS/IML language, use the technique that is shown in “How the Graphs Are Created” on page 434.

One of the limitations of the ODS statistical graphics subroutines is that only certain variables are written to a data set by the subroutines. The x and y arguments (the data) are written to a SAS data set. So, too, are the data that are specified by the FREQ=, CATEGORY=, GROUP=, and DATALABEL= options. If you want to use other variables (for example, for the YERRORLOWER= and YERRORUPPER= options in the SCATTER statement), you need to use the method that is shown in “How the Graphs Are Created” on page 434 to write the data set and to create the graph.

Although the ODS statistical graphics subroutines are not comprehensive, they do show how to write modules that create graphs by calling the SGPLOT procedure from the SAS/IML language. The source code for the subroutines are available in the Sashelp.iml catalog.

---

**Examples of Creating Graphs**

**Bar Charts**

You can use the BAR subroutine to create a bar chart. The required argument is a vector that contains values of a discrete variable. These values are used to form the categories of a bar chart. The following statements read the Origin and Type variables from a subset of the Sashelp.Cars data set:

```sas
proc iml;
use Sashelp.Cars where(type ? {"SUV" "Truck" "Sedan"});
read all var {origin type};
close Sashelp.Cars;
```

The following statements create a simple bar chart of the Origin variable, which is shown in Figure 18.2:

```sas
title "Bar Chart with Default Properties";
call Bar(origin);
```
For a more complicated example, the following statements create a bar chart by using the TYPE=, GROUP=, GROUPOPT=, GRID=, and LABEL= options. The result is shown in Figure 18.3.

title "Horizontal Bar Chart, group and order categories";
call Bar(origin) type="HBar" group=type groupopt="Cluster"
   grid="X" label="Origin";

**Figure 18.3** Clustered Bar Chart
The following list explains the options that are used to create Figure 18.3:

- The `TYPE=` option specifies whether to create a vertical bar chart or a horizontal bar chart. Figure 18.3 shows a horizontal bar chart.
- The `GROUP=` option specifies a vector of values that determine groups in the plot. Figure 18.3 shows the bar chart grouped according to a subset of values for the `Type` variable.
- The `GROUPOPT=` option specifies a character vector of values that determine how groups are displayed. Figure 18.3 shows a clustered bar chart.
- The `GRID=` option specifies whether grid lines are displayed for the X and Y axes. Figure 18.3 shows grid lines for the X axis.
- The `LABEL=` option specifies axis labels for the X or Y axis. Figure 18.3 shows that the label “Origin” is used for the X axis.

**Box Plots**

You can use the `BOX` subroutine to create a box plot. The required argument is a vector that contains values of a continuous variable. Optionally, you can specify a categorical variable in order to obtain multiple box plots.

The following statements read several variables from a subset of the `Sashelp.Cars` data set:

```iml
proc iml;
use Sashelp.Cars where(type ? {"SUV" "Truck" "Sedan"});
read all var {MPG_City Origin Type Make Model};
close Sashelp.Cars;
```

The following statements create a simple box plot of the `MPG_City` variable. The box plot is shown in Figure 18.4.

```iml
title "Box Plot with Default Properties";
call Box(MPG_City);
```
Figure 18.4 Box Plot with Default Options

For a more complicated example, the following statements create a box plot by using the CATEGORY=, GRID=, LABEL=, DATALABEL=, and OPTION= options. The result is shown in Figure 18.5.

```plaintext
title "Category and Data Labels";
call Box(MPG_City) Category=Origin grid="y"
 label={"Country of Origin" "MPG City"}
 datalabel=putc(Model,"$10.") option="spread";
```

Figure 18.5 Box Plot with Categorical Variable and Data Labels
The following list explains the options that are used to create Figure 18.5:

- The CATEGORY= option specifies a category variable. A box plot is created for each distinct value of the category variable. Figure 18.5 displays three box plots: one for vehicles that are manufactured in Asia, one for vehicles that are manufactured in Europe, and one for vehicles that are manufactured in the United States.

- The GRID= option specifies whether grid lines are displayed for the X and Y axes. Figure 18.5 displays grid lines for the Y axis.

- The LABEL= option specifies labels for the X and Y axes.

- The DATALABEL= option specifies a vector of values that are used to label outliers. In Figure 18.5, the labels are the first 10 characters of the Model variable in the Sashelp.Cars data set.

- The OPTION= option specifies options in the HBOX or VBOX statement. In this example, the SPREAD option is specified. This option has the effect, shown in Figure 18.5, of separating markers that would otherwise be overplotted.

---

### Histograms

You can use the HISTOGRAM subroutine to create a histogram. The required argument is a vector that contains values of a continuous variable.

The following statements read the MPG_City variable from the Sashelp.Cars data set:

```iml
proc iml;
use Sashelp.Cars;
read all var {MPG_City};
close Sashelp.Cars;
```

The following statements create a simple histogram, which is shown in Figure 18.6:

```iml
title "Histogram with Default Properties";
call Histogram(MPG_City);
```
For a more complicated example, the following statements create a histogram by using the SCALE=, DENSITY=, REBIN=, GRID=, LABEL=, and XVALUES= options: The result is shown in Figure 18.7.

```sas
title "Histogram with Density Curves";
call Histogram(MPG_City)
 scale="Percent"
 density={"Normal" "Kernel"}
 rebin={0 5}
 grid="y"
 label="Miles per Gallon (City)"
 xvalues=do(0, 60, 10);
```

**Figure 18.7** Histogram with Overlaid Densities
The following list explains the options that are used to create Figure 18.7:

- The SCALE= option specifies the scaling that is applied to the vertical axis of the histogram. In Figure 18.6, the vertical axis is scaled to represent the percentage of observations in each bar.

- The DENSITY= option specifies whether to overlay a density estimate on the histogram. In Figure 18.6, a normal density estimate and a kernel density estimate are overlaid.

- The REBIN= option specifies two numerical values that set the location of the first bins and the width of bins. In Figure 18.6, the bins are anchored at the value 0 and have a width of 5 units.

- The GRID= option specifies whether grid lines are displayed for the X and Y axes. Figure 18.6 shows grid lines for the Y axis.

- The LABEL= option specifies axis labels. In Figure 18.6, a label is specified for the X axis.

- The XVALUES= option specifies a vector of values for ticks for the X and Y axes. In Figure 18.6, tick marks are placed every 10 units in the interval [0, 60].

---

**Scatter Plots**

You can use the SCATTER subroutine to create a scatter plot. The subroutine requires two vector arguments: values for the X variable and values for the Y variable.

The following statements read the MPG_City and MPG_Highway variables from the Sashelp.Cars data set and create a simple scatter plot. The plot is shown in Figure 18.8.

```
proc iml;
use Sashelp.Cars;
read all var {MPG_City MPG_Highway Origin};
close Sashelp.Cars;

title "Scatter Plot with Default Properties";
run Scatter(MPG_City, MPG_Highway);
```
For a more complicated example, the following statements create a scatter plot by using the GROUP=, OTHER=, LABEL=, LINEPARM=, and YVALUES= options. The result is shown in Figure 18.9.

```plaintext
title "Scatter Plot with a Diagonal Line";
run Scatter(MPG_City, MPG_Highway)
 group=Origin /* assign color/marker shape */
 other="refline 25 50 /axis=y" /* add reference line */
 label={"MPG_City" "MPG_Highway"}
 lineparm={0 6.15 1.03} /* diagonal line */
 yvalues=do(15,60,15);
```

**Figure 18.9** Marker and Axis Attributes
The following list explains the options that are used to create Figure 18.9:

- The GROUP= option specifies a vector of values that determine groups in the plot. In Figure 18.9, the marker attributes correspond to values of the `Origin` variable.
- The OTHER= option specifies statements in the SGPLOT procedure. In Figure 18.9, the REFLINE statement draws two horizontal lines in the plot.
- The LABEL= option specifies axis labels for the X or Y axis. In Figure 18.9, both axes are labeled.
- The LINEPARM= option specifies a three-element vector whose elements specify a point and a slope for a line. In Figure 18.9, the line goes through the point (0, 6.15) and has a slope of 1.03.
- The YVALUES= option specifies a vector of values for ticks for the Y axes. In Figure 18.9, the tick marks on the vertical axis are spaced 15 units apart in the interval [15, 60].

**Series Plots**

You can use the SERIES subroutine to create a series plot, which is also known as a line plot. The subroutine requires two vector arguments: values for the X variable and values for the Y variable.

The following statements provide a simple example of creating a series plot. The PDF function evaluates the normal density function at evenly spaced points in the interval [−5, 5]. The SERIES subroutine creates the graph that is shown in Figure 18.10.

```iml
proc iml;
 x = do(-5, 5, 0.1);
 y1 = pdf("Normal", x, 0, 1);

 title "Series Plot with Default Properties";
 run Series(x, y1);
```
For a more complicated example, the following statements create a series plot by using the GROUP=, OTHER=, GRID=, LABEL=, XVALUES=, and YVALUES= options. The result is shown in Figure 18.11.

```plaintext
title "Series Plot with Groups and Reference Lines";
y2 = pdf("Normal", x, 0, 1.5);
g = repeat({1,2}, 1, ncol(x)); /* 1,1,1,...,2,2,2 */
x = x || x ;
y = y1 || y2;

call Series(x, y) group=g /* assign color/marker shape */
 other="refline -2 2 / axis=x" /* add reference line */
 grid={X Y}
 label={"X" "Normal Density"}
 xvalues=-4:4
 yvalues=do(0,0.4,0.05);
```

```plaintext```
Figure 18.10 Series Plot

![Series Plot with Default Properties](image)
```plaintext```
Chapter 18: Statistical Graphics

Figure 18.11 Two Curves in a Series Plot

The following list explains the options that are used to create Figure 18.11:

- The GROUP= option specifies a vector of values that determine groups in the plot. In Figure 18.11, the two curves have different values of the grouping variable, which is set by using the $g$ matrix.

- The OTHER= option specifies statements in the SGPLOT procedure. In Figure 18.11, the REFLINE statement draws two horizontal lines on the plot.

- The GRID= option specifies whether grid lines are displayed for the X and Y axes. Figure 18.11 shows grid lines for the Y axis.

- The LABEL= option specifies axis labels for the X and Y axes. In Figure 18.11, both axes are labeled.

- The XVALUES= option specifies a vector of values for ticks for the X axis. In Figure 18.11, the tick marks on the horizontal axis are spaced one unit apart in the interval $[-4, 4]$.

- The YVALUES= option specifies a vector of values for ticks for the Y axis. In Figure 18.11, the tick marks on the vertical axis are spaced 0.05 units apart in the interval $[0, 0.4]$.

Matrix Heat Maps

You can use the HEATMAPCONT subroutine and the HEATMAPDISC subroutine to display a heat map that visualizes a matrix. The HEATMAPCONT subroutine displays a heat map of a numeric matrix whose values are assumed to vary continuously. The HEATMAPDISC subroutine displays a heat map of a numeric or character matrix whose values are assumed to have a small number of discrete values.

The following statements provide a simple example of creating a heat map that shows the relative ages, heights, and weights of 19 children. The SCALE=“Col” option standardizes each column to have zero mean and unit standard deviation.
proc iml;
use Sashelp.Class;
read all var _NUM_ into Students[c=varNames r=Name];
close Sashelp.Class;
/* sort data in descending order according to Age and Height */
call sortndx(idx, Students, 1:2, 1:2);
Students = Students[idx,];
Name = Name[idx];
/* standardize each column */
call HeatmapCont(Students) scale="Col"
    xvalues=varNames yvalues=Name title="Student Data";

Figure 18.12 Heat Map of a Data Matrix

In Figure 18.12, you can see that Philip is the biggest student, Joyce is the smallest, Robert is heavy for his age, and Alfred is tall for his age.

You can also create a heat map of a matrix that contain discrete values. For example, the following statements compute the correlation matrix for variables in the Sashelp.Cars data set. The correlations are then binned into five discrete categories:

use Sashelp.Cars;
read all var _NUM_ into Y[c=varNames];
close Sashelp.Cars;
corr = corr(Y);

/* You can visualize the correlations as a continous heat map: */
call HeatmapCont(corr) xvalues=varNames yvalues=varNames;
Alternatively, bin the values into five categories, as follows: */
idx = bin(corr, {-1, -0.6, -0.2, 0.2, 0.6, 1});
disCorr = shape(Bins[idx], nrow(corr));
The heat map shows strong negative correlations between fuel efficiency and three variables that indicate the size of a vehicle’s engine. There is almost no correlation between the size of a vehicle and the price of the vehicle. There are large positive correlations between the size of a vehicle and the size of its engine.
Chapter 19
Traditional Graphics in the IML Procedure

Contents

Overview .................................................. 449
An Introductory Graph .................................. 450
Details .................................................. 451
  Graphics Segments .................................. 451
  Segment Attributes ................................ 452
  Coordinate Systems ................................ 452
  Windows and Viewports ............................. 454
  Clipping Your Graphs ............................... 462
  Common Arguments ................................. 463
Graphics Examples .................................. 464
  Example 19.1: Scatter Plot Matrix ................. 464
  Example 19.2: Train Schedule .................... 472
  Example 19.3: Fisher's Iris Data .................. 474

Overview

This chapter describes the traditional graphics subroutines in the IML procedure that were developed in the 1980s and '90s. Although these graphics subroutines are still supported in PROC IML, these traditional graphics are no longer developed or recommended. Instead, the SAS programmer is encouraged to use the newer ODS graphics, either by calling PROC SGPLOT or by using the pre-written graphics functions that are described in Chapter 18.

The traditional graphics in PROC IML are a set of graphics primitives that you can use to create customized displays. Basic drawing statements include the GDRAW subroutine, which draws a line, the GPOINT subroutine, which plots points, and the GPOLY subroutine, which draws a polygon. With each drawing statement, you can associate a set of attributes such as a color or a line style.

In this chapter, you learn how to do the following:

- plot simple two-dimensional plots
- name and save a graph
- change attributes such as color and line style
- specify the location and scale of your graph
- add axes and text

The PROC IML graphics subroutines depend on the libraries and device drivers distributed with SAS/GRAPH software, and they do not work unless you have SAS/GRAPH software.

---

### An Introductory Graph

Suppose that you have data for ACME Corporation’s stock price and you want a simple PRICE × DAY graph to see the overall trend of the stock’s price. The data are as follows.

<table>
<thead>
<tr>
<th>Day</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>43.75</td>
</tr>
<tr>
<td>5</td>
<td>48.00</td>
</tr>
<tr>
<td>10</td>
<td>59.75</td>
</tr>
<tr>
<td>15</td>
<td>75.5</td>
</tr>
<tr>
<td>20</td>
<td>59.75</td>
</tr>
<tr>
<td>25</td>
<td>71.50</td>
</tr>
<tr>
<td>30</td>
<td>70.575</td>
</tr>
<tr>
<td>35</td>
<td>61.125</td>
</tr>
<tr>
<td>40</td>
<td>79.50</td>
</tr>
<tr>
<td>45</td>
<td>72.375</td>
</tr>
<tr>
<td>50</td>
<td>67.00</td>
</tr>
<tr>
<td>55</td>
<td>54.125</td>
</tr>
<tr>
<td>60</td>
<td>58.750</td>
</tr>
<tr>
<td>65</td>
<td>43.625</td>
</tr>
<tr>
<td>70</td>
<td>47.125</td>
</tr>
<tr>
<td>75</td>
<td>45.50</td>
</tr>
</tbody>
</table>

To graph a scatter plot of these points, enter the following statements. These statements generate Figure 19.1.

```plaintext
proc iml; /* invoke PROC IML */
call gstart; /* start graphics */
xbox=(0 100 100 0);
ybox=(0 0 100 100);
day=do(0,75,5); /* initialize day */
price={43.75,48,59.75,75.5, / * initialize price */
 59.75,71.5,70.575,
 61.125,79.5,72.375,67,
 54.125,58.75,43.625,
 47.125,45.50};
call gopen; /* start new graph */
call gpoly(xbox,ybox); /* draw a box around plot */
call gpoint(day,price); /* plot the points */
call gshow; /* display the graph */
```
The GSTART statement initializes the graphics session. It is usually called only once. Next, open a graphics segment (that is, begin a new graph) with the GOPEN call. The GPOINT call draws the scatter plot of points of DAY versus PRICE. The GSHOW call displays the graph.

Notice also that, for this example, the $x$ coordinate of the data is DAY and that $0 \leq \text{DAY} \leq 100$. The $y$ coordinate is PRICE, which ranges from $0 \leq \text{PRICE} \leq 100$. The data are displayed properly because the default ranges are from 0 to 100 on both the $x$ and $y$ axes. A later example uses the GWINDOW statement to change the default ranges so that you can handle data with any range of values.

Of course, this graph is quite simple. By the end of this chapter, you will learn how to add axes and titles, scale axes, and connect the points with lines.

---

**Details**

**Graphics Segments**

A graph is saved in a *graphics segment*, which is simply a collection of primitives and their associated attributes.

Graphics segments are stored in a SAS graphics catalog called WORK.GSEG. If you want to store your graphics segments in a permanent SAS catalog, specify the catalog name in the GSTART call. Each graphics
segment has a name. You can use the GOPEN statement to specify a name for a segment. For example, to begin a new segment and name it STOCK1, use the following statement:

```plaintext
call gopen("stock1");
```

If you do not specify a name, the IML procedure automatically generates a segment name. In either case, you can use the name to reuse segments. For example, you can reuse a segment in a subsequent graph by using the GINCLUDE call. You can also manage and replay a segment by using the GREPLAY procedure, or replay it in another PROC IML session by using the GSHOW call.

For more information about SAS catalogs and graphics, refer to the chapter on graphics in *SAS/GRAPH: Reference*.

---

**Segment Attributes**

Each graphics segment is created with a default set of attributes. These attributes are color, line style, line thickness, fill pattern, font, character height, and aspect ratio. You can use the GSET call to change any of these attributes. Some PROC IML graphics subroutines take optional attribute arguments. The values of these arguments affect only the graphics output that are associated with the call.

The PROC IML graphics subsystem uses the same conventions that SAS/GRAPH software uses in setting the default attributes. It also uses the options set in the GOPTIONS statement when applicable. The default values for the GSET call are given by their corresponding GOPTIONS default values. Use the GOPTIONS statement to change the default values. The GOPTIONS statement can also be used to set graphics options not available through the GSET call (for example, the ROTATE option).

For more information about GOPTIONS, refer to the chapter on the GOPTIONS statement in *SAS/GRAPH: Reference*.

---

**Coordinate Systems**

Each PROC IML graph is associated with two independent cartesian coordinate systems, a *world coordinate system* and a *normalized coordinate system*.

**Understanding World Coordinates**

The world coordinate system is the coordinate system defined by the data. The coordinate system can be defined by the observed ranges of data values, or it could be enlarged to include the range of all reasonable values.

For example, the following data are the year-end stock prices for the fictitious ACME Corporation for the years 1971 through 1986:
The actual range of YEAR is from 71 to 86, and the range of PRICE is from $123.625 to $159.50. These are the ranges in world coordinates for the stock data. Alternatively, you could specify that the range for PRICE is $0 to $200. Or, if you were interested only in prices during the 80’s, you could set the range for PRICE to be $123.625 to $152.375.

*Figure 19.2* shows a graph of the stock data with the world coordinates defined by the actual range of the data. The corners of the rectangle correspond to the minimum and maximum values of the data.

*Figure 19.2* World Coordinates
Understanding Normalized Coordinates

A normalized coordinate system is defined relative to your display device. It is always defined with points varying between (0,0) and (100,100), where (0,0) refers to the lower-left corner and (100,100) refers to the upper-right corner.

In summary,

- the world coordinate system is defined relative to your data
- the normalized coordinate system is defined relative to the display device

Figure 19.3 shows the ACME stock data in terms of normalized coordinates. There is a natural mathematical relationship between each point in world and normalized coordinates. The normalized device coordinate system is mapped to the device display area so that (0, 0), the lower-left corner, corresponds to (71, 123.625) in world coordinates, and (100, 100), the upper-right corner, corresponds to (86, 159.5) in world coordinates.

Figure 19.3 Normalized Coordinates

Windows and Viewports

A window defines a rectangular area in world coordinates. You define a window with a GWINDOW statement. You can define the window to be larger than, the same size as, or smaller than the actual range of data values, depending on whether you want to show all of the data or only part of the data.

A viewport defines in normalized coordinates a rectangular area on the display device where the image of the data appears. You define a viewport with the GPORT call. You can have your graph take up the entire display device or show it in only a portion, such as the upper-right part.
Mapping Windows to Viewports

A window and a viewport are related by the linear transformation that maps the window onto the viewport. A line segment in the window is mapped to a line segment in the viewport such that the relative positions are preserved.

You do not have to display all of your data in a graph. In Figure 19.4, the graph on the left displays all of the ACME stock data, and the graph on the right displays only a part of the data. Suppose that you wanted to graph only the last 10 years of the stock data—say, from 1977 to 1986. You would want to define a window where the YEAR axis ranges from 77 to 86, while the PRICE axis could range from 120 to 160. Figure 19.4 shows stock prices in a window defined for data from 1977 to 1986 along the horizontal direction and from 120 to 160 along the vertical direction. The window is mapped to a viewport defined by the points (20, 20) and (70, 60). The appropriate GPORT and GWINDOW specifications are as follows:

```
call gwindow({77 120, 86 160});
call gport({20 20, 70 60});
```

The window defines the portion of the graph that is to be displayed, and the viewport specifies the area on the device on which the image is to appear.

![Figure 19.4 Window to Viewport Mapping](image)

Understanding Windows

Because the default world coordinate system ranges from (0,0) to (100,100), you usually need to define a window in order to set the world coordinates that correspond to your data. A window specifies which part of the data in world coordinate space is to be shown. Sometimes you want all of the data shown; other times, you want to show only part of the data.

A window is defined by an array of four numbers, which define a rectangular area. You define this area by specifying the world coordinates of the lower-left and upper-right corners in the GWINDOW statement, which has the following general form:

```
CALL GWINDOW (minimum-x minimum-y maximum-x maximum-y) ;
```

The argument can be either a matrix or a literal. The order of the elements is important. The array of coordinates can be a $2 \times 2$, $1 \times 4$, or $4 \times 1$ matrix. These coordinates can be specified as matrix literals or as the name of a numeric matrix that contains the coordinates. If you do not define a window, the default is to assume both $x$ and $y$ range between 0 and 100.
In summary, a window

- defines the portion of the graph that appears in the viewport
- is a rectangular area
- is defined by an array of four numbers
- is defined in world coordinates
- scales the data relative to world coordinates

In the previous example, the variable YEAR ranges from 71 to 86, while PRICE ranges from 123.625 to 159.50. Because the data do not fit nicely into the default, you want to define a window that reflects the ranges of the variables YEAR and PRICE. To draw the graph of these data to scale, you can let the YEAR axis range from 70 to 87 and the PRICE axis range from 100 to 200. Use the following statements to draw the graph, shown in Figure 19.5.

```plaintext
call gstart;
xbox={0 100 100 0};
ybox={0 0 100 100};
call gopen("stocks1"); /* begin new graph STOCKS1 */
call gset("height", 2.0);
year=do(71,86,1); /* initialize YEAR */
price={123.75 128.00 139.75 155.50 139.750 151.500
 150.375 149.125 159.500
 152.375 147.000 134.125
 138.750 123.625 127.125
 125.50};
call gwindow({70 100 87 200}); /* define window */
call gpoint(year,price,"diamond","green"); /* graph the points */
call gdraw(year,price,1,"green"); /* connect points */
call gshow; /* show the graph */
```

The example shows how to do the following:

- Use the GOPEN call to associate the name STOCKS1 with this graphics segment.
- Use the GWINDOW call to define a window that reflects the actual ranges of the data.
- Use the GPOINT call to associate a diamond plotting symbol and the color green with the graphics segment.
- Use the GDRAW call to connect the points with line segments. The GDRAW call requests that the line segments be drawn in “style 1” and be green.
Understanding Viewports

A viewport specifies a rectangular area on the display device where the graph appears. You define this area by specifying the normalized coordinates, the lower-left corner and the upper-right corner, in the GPORT call, which has the following general form:

```
CALL GPORT (minimum-x minimum-y maximum-x maximum-y);
```

The argument can be either a matrix or a literal. Note that both x and y must range between 0 and 100. As with the GWINDOW call, you can give the coordinates either as a matrix literal enclosed in braces or as the name of a numeric matrix that contains the coordinates. The array can be any matrix that contains four elements. If you do not define a viewport, the default is to span the entire display device.

In summary, a viewport

- specifies where the image appears on the display
- is a rectangular area
- is specified by an array of four numbers
- is defined in normalized coordinates
- scales the data relative to the shape of the viewport

The following statements create the graph shown in Figure 19.6. The statements define a viewport in order to display the stock price data in a smaller area on the display device. The statements also add axis labels and a title.
Chapter 19: Traditional Graphics in the IML Procedure

/* module centers text strings */
start gscenter(x,y,str);
call gstrlen(len,str);    /* find string length */
call gscript(x-len/2,y,str);    /* print text */
finish gscenter;

call gopen("stocks2");     /* open a new segment */
call gset("font","swiss");    /* set character font */
call gpoly(xbox,ybox);      /* draw a border */
call gwindow((70 100,87 200));    /* define a window */
call gport((15 15,85 85));    /* define a viewport */
call ginclude("stocks1");   /* include segment STOCKS1 */
call gxaxis((70 100),17,18, ,  /* draw x-axis */
"2.",1.5);
call gyaxis((70 100),100,11, ,  /* draw y-axis */
"dollar5.",1.5);
call gset("height",2.0);    /* set character height */
call gtext(77,89,"Year");    /* print horizontal text */
call gvtext(68,200,"Price");   /* print vertical text */
call gscenter(79,210,"ACME Stock Data");  /* print title */
call gshow;

Figure 19.6 Stock Data with Axes and Labels

The following list describes the statements that generate this graph:

- The GOPEN call begins a new graph and names it STOCKS2.
- The GPOLY call draws a box around the display area.
- The GWINDOW call defines the world coordinate space to be larger than the actual range of stock data values.
The GPORT call defines a viewport. It causes the graph to appear in the center of the display, with a border around it for text. The lower-left corner has coordinates (15, 15) and the upper-right corner has coordinates (85, 85).

The GINCLUDE call includes the graphics segment STOCKS1. This saves you from having to plot points you have already created.

The GXAXIS call draws the x axis. It begins at the point (70, 100) and is 17 units (years) long, divided with 18 tick marks. The axis tick marks are printed with the numeric 2.0 format, and they have a height of 1.5 units.

The GYAXIS call draws the y axis. It also begins at (70, 100) but is 100 units (dollars) long, divided with 11 tick marks. The axis tick marks are printed with the DOLLAR5.0 format and have a height of 1.5 units.

The GSET call sets the text font to be Swiss and the height of the letters to be 2.0 units. The height of the characters has been increased because the viewport definition scales character sizes relative to the viewport.

The GTEXT call prints horizontal text. It prints the text string Year beginning at the world coordinate point (77, 89).

The GVTEXT call prints vertical text. It prints the text string Price beginning at the world coordinate point (68, 200).

The GSCENTER call runs the module to print centered text strings.

The GSHOW call displays the graph.

Changing Windows and Viewports

You can change windows and viewports for the graphics segment while the segment is active. Using the stock price example, you can first define a window for the data during the years 1971 to 1974 and map this to the viewport defined on the upper half of the normalized device; then you can redefine the window to enclose the data for 1983 to 1986 and map this to an area in the lower half of the normalized device.

Notice that the viewport affects the appearance of the curve. Changing the viewport can affect the height of any printed characters as well. In this case, you can modify the HEIGHT parameter.

The following statements generate the graph in Figure 19.7:

```plaintext
reset clip; /* clip outside viewport */
call gopen; /* open a new segment */
call gset("color","blue");
call gset("height",2.0);
call gwindow({71 120,74 175}); /* define a window */
call gport({20 55,80 90}); /* define a viewport */
call gpoly({71 74 74 71},{120 120 170 170}); /* draw a border */
call gscript(71.5,162,"Viewport #1 1971-74",, / * print text */
 ,3.0,"complex","red");
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
```
call gblkvpd;
call gwindow((83 120,86 170)); /* define new window */
call gport((20 10,80 45)); /* define new viewport */
call gpoly((83 86 86 83),(120 120 170 170)); /* draw border */
call gpoint(year,price,"diamond","green"); /* draw points */
call gdraw(year,price,1,"green"); /* connect points */
call gscript(83.5,162,"Viewport #2 1983-86",, /* print text */
            3.0,"complex","red");
call gshow;

Figure 19.7  Multiple Viewports

The RESET CLIP statement is necessary because you are graphing only a part of the data in the window. You want to clip the data that falls outside of the window. See the section “Clipping Your Graphs” on page 462 for more about clipping. The following list describes the statements that create Figure 19.7

- Use the GOPEN call to open a new segment.
- Use the GWINDOW call to define the first window for the first four years of data.
- Use the GPORT call to define a viewport in the upper part of the display device.
- Use the GPOLY call to draw a box around the viewport
- Use the GSCRIPT call to add text
- Use the GPOINT call to plot the points and the GDRAW command to connect them.
- Use the GWINDOW call to define the second window for the last four years of data.
- Use the GPORT, GPOLY, GPOINT, GDRAW, and GSCRIPT calls to create the second plot.
- Use the GSHOW call to display the graph.
Stacking Viewports

Viewports can be stacked. That is, a viewport can be defined relative to another viewport so that you have a viewport within a viewport.

A window or a viewport is changed globally through the PROC IML graphics calls: the GWINDOW call for windows, and the GPORT, GPORTSTK, and GPORTPOP calls for viewports. When a window or viewport is defined, it persists until another window- or viewport-altering statement is encountered. Stacking helps you define a viewport without losing the effect of a previously defined viewport. When a stacked viewport is popped, you are placed into the environment of the previous viewport.

Windows and viewports are associated with a particular segment; thus, they automatically become undefined when the segment is closed. A segment is closed whenever PROC IML encounters a GCLOSE call or a GOPEN call. A window or a viewport can also be changed for a single graphics subroutine. Either one can be passed as an argument to a graphics primitive, in which case any graphics output associated with the call is defined in the specified window or viewport. When a viewport is passed as an argument, it is stacked, or defined relative to the current viewport, and popped when the graphics call is complete.

For example, suppose you want to create a legend that shows the low and peak points of the data for the ACME stock graph. Use the following statements to create a graphics segment showing this information:

```plaintext
 call gopen("legend");
 call gset('height',5); /* enlarged to accommodate viewport later */
 call gset('font', 'swiss');
 call gscript(5,75,"Stock Peak: 159.5 in 1979");
 call gscript(5,65,"Stock Low: 123.6 in 1984");
 call gclose;
```

Use the following statements to create a segment that highlights and labels the low and peak points of the data:

```plaintext
 /* Highlight and label the low and peak points of the stock */
 call gopen("labels");
 call gwindow({70 100 87 200}); /* define window */
 call gpoint(84,123.625,"circle","red",4);
 call gtext(84,120,"LOW","red");
 call gpoint(79,159.5,"circle","red",4);
 call gtext(79,162,"PEAK","red");
 call gclose;
```

Next, open a new graphics segment and include the STOCK2 segment that was created earlier in the chapter, placing the segment in the viewport {10 10 90 90}, as shown in the following statements:

```plaintext
 call gopen;
 call gportstk ({10 10 90 90}); /* viewport for the plot itself */
 call ginclude('stocks2');
```

To place the legend in the upper-right corner of this viewport, use the GPORTSTK call instead of the GPORT call to define the legend’s viewport relative to the one used for the plot of the stock data, as follows:
Chapter 19: Traditional Graphics in the IML Procedure

call gportstk ((70 70 100 100)); /* viewport for the legend */
call ginclude("legend");

Now pop the legend’s viewport to get back to the viewport of the plot itself and include the segment that labels and highlights the low and peak stock points. Finally, display the graph, as follows:

call gportpop; /* viewport for the legend */
call ginclude("labels");
call gshow;

Figure 19.8 Stacking Viewports

Clipping Your Graphs

The PROC IML graphics subsystem does not automatically clip the output to the viewport. Thus, it is possible that data are graphed outside the defined viewport. This happens when there are data points lying outside the defined window. For instance, if you specify a window to be a subset of the world, then there will be data lying outside the window and these points will be graphed outside the viewport. This is usually not what you want. To clean up such graphs, you either delete the points you do not want to graph or clip the graph.

There are two ways to clip a graph. You can use the RESET CLIP statement, which clips outside a viewport. The CLIP option remains in effect until you submit a RESET NOCLIP statement. You can also use the GBLKVP call, which clips either inside or outside a viewport. Use the GBLKVP call to define a blanking area in which nothing can be drawn until the blanking area is released. Use the GBLKVPD call to release the blanking area.
Common Arguments

The PROC IML graphics subroutines typically take a set of required arguments followed by a set of optional arguments. All graphics primitives take window and viewport as optional arguments. Some PROC IML graphics subroutines, like GPOINT or GPIE, accept implicit repetition factors in the argument lists. The GPOINT call places as many markers as there are well-defined \((x, y)\) pairs. The GPIE call draws as many slices as there are well-defined pies. In those cases, some of the attribute matrices can have more than one element, which are used in order. If an attribute list is exhausted before the repetition factor is completed, the last element of the list is used as the attribute for the remaining primitives.

The arguments to the PROC IML graphics subroutines are positional. Thus, to skip over an optional argument from the middle of a list, you must specify a comma to hold its place. For example, the following call omits the third argument from the argument list:

```latex
call gpoint(x,y,"red");
```

The following list details the arguments commonly used in PROC IML graphics subroutines:

- **color**
  - is a character matrix or literal that names a valid color as specified in the GOPTIONS statement. The default color is the first color specified in the COLORS= list in the GOPTIONS statement. If no such list is given, PROC IML uses the first default color for the graphics device. Note that color can be specified either as a quoted literal, such as “RED,” a color number, such as 1, or the name of a matrix that contains a reference to a valid color. A color number \(n\) refers to the \(n\)th color in the color list.
  - You can change the default color with the GSET call.

- **font**
  - is a character matrix or quoted literal that specifies a valid font name. The default font is the hardware font, which can be changed by the GSET call unless a viewport is in effect.

- **height**
  - is a numeric matrix or literal that specifies the character height. The unit of height is the gunit of the GOPTIONS statement, when specified; otherwise, the unit is a character cell. The default height is 1 gunit, which you can change by using the GSET call.

- **pattern**
  - is a character matrix or quoted literal that specifies the pattern to fill the interior of a closed curve. You specify a pattern by a coded character string as documented in the V= option in the PATTERN statement (refer to the chapter on the PATTERN statement in SAS/GRAPH: Reference).
  - The default pattern set by the PROC IML graphics subsystem is “E,” that is, empty. The default pattern can be changed by using the GSET call.

- **segment-name**
  - is a character matrix or quoted literal that specifies a valid SAS name used to identify a graphics segment. The segment-name is associated with the graphics segment opened with a GOPEN call. If you do not specify segment-name, PROC IML generates default names. For example, to create a graphics segment called PLOTA, use the following statement:

```
call gopen("plota");
```

- Graphics segments are not allowed to have the same name as an existing segment. If you try to create a second segment named PLOTA (that is, when the replace flag is turned off), then the second segment is named PLOTA1. The replace flag is set by the GOPEN call.
for the segment that is being created. To open a new segment named PLOTA and replace an existing segment with the same name, use the following statement:

```plaintext
call gopen("plota",1);
```

If you do not specify a *replace* argument to the GOPEN call, the default is set by the GSTART call for all subsequent segments that are created. By default, the GSTART call sets the *replace* flag to 0, so that new segments do not replace like-named segments.

*style* is a numeric matrix or literal that specifies an index that corresponds to the line style documented for the SYMBOL statement in the chapter on the SYMBOL statement in *SAS/GRAPH: Reference*. The PROC IML graphics subsystem sets the default line style to be 1, a solid line. The default line style can be changed by using the GSET call.

*symbol* is a character matrix or quoted literal that specifies either a character string that corresponds to a symbol as defined for the V= option of the SYMBOL statement or specifies the corresponding identifying symbol number. STAR is the default symbol used by the PROC IML graphics subsystem.

The PROC IML graphics subroutines are described in detail in Chapter 26, “*Language Reference*.”

For more information, also see *SAS/GRAPH: Reference*.

---

**Graphics Examples**

This section provides programs and code for three examples that involve graphics in PROC IML. The first example shows a $2 \times 2$ matrix of scatter plots and a $3 \times 3$ matrix of scatter plots. A matrix of scatter plots is useful when you have several variables that you want to investigate simultaneously rather than in pairs. The second example draws a grid for representing a train schedule, with arrival and departure dates on the horizontal axis and destinations along the vertical axis. The final example plots Fisher’s iris data. The following example shows how to plot several graphs on one page.

**Example 19.1: Scatter Plot Matrix**

With the viewport capability of the PROC IML graphics subroutine, you can arrange several graphs on a page. In this example, multiple graphs are generated from three variables and are displayed in a scatterplot matrix. For each variable, one contour plot is generated with each of the other variables as the dependent variable. For the graphs on the main diagonal, a box-and-whiskers plot is generated for each variable.

This example takes advantage of user-defined PROC IML modules:

- **BOXWHSKR** computes median and quartiles.
- **GBXWHSKR** draws box-and-whiskers plots.
- **CONTOUR** generates confidence ellipses assuming bivariate normal data.
- **GCONTOUR** draws the confidence ellipses for each pair of variables.
- **GSCATMAT** produces the $n \times n$ scatter plot matrix, where $n$ is the number of variables.
Example 19.1: Scatter Plot Matrix

The code for the five modules and a sample data set follow. The modules produce Figure 19.1.1 and Figure 19.1.2.

```/* This program generates a data set and uses iml graphics */
/* subsystem to draw a scatterplot matrix. */
data factory;
 input recno prod temp a defect mon;
 datalines;
 1 1.82675 71.124 1.12404 1.79845 2
 2 1.67179 70.9245 0.924523 1.05246 3
 3 2.22397 71.507 1.50696 2.36035 4
 4 2.39049 74.8912 4.89122 1.93917 5
 5 2.45503 73.5338 3.53382 2.0664 6
 6 1.68758 71.6764 1.67642 1.90495 7
 7 1.98233 72.4222 2.42221 1.65469 8
 8 1.17144 74.0884 4.08839 1.91366 9
 9 1.32697 71.7609 1.76087 1.21824 10
 10 1.86376 70.3978 0.397753 1.77875 11
 11 1.25541 74.888 4.88795 1.87875 12
 12 1.17617 73.3528 3.35277 1.15393 1
 13 2.38103 77.1762 7.17619 2.26703 2
 14 1.13669 73.0157 3.01566 1.3
 15 1.01569 70.4645 0.464485 1.4
 16 2.36641 74.1699 4.16991 1.73009 5
 17 2.27131 73.1005 3.10048 1.79657 6
 18 1.80597 72.6299 2.62986 1.8497 7
 20 1.69218 71.4521 1.45212 1.47894 9
 21 1.95271 74.8427 4.8427 1.93493 10
 22 1.28452 76.7901 6.79008 2.09208 11
 23 1.51663 83.4782 13.4782 1.81162 12
 24 1.34177 73.4237 3.42369 1.57054 1
 25 1.4309 70.7504 0.750369 1.22444 2
 26 1.84851 72.9226 2.92256 2.04468 3
 27 2.08114 78.4248 8.42476 1.78175 4
 28 1.99175 71.0635 1.06346 1.25951 5
 29 2.01235 72.2634 2.2634 1.36943 6
 30 2.38742 74.2037 4.20372 1.84284 7
 31 1.28055 71.2495 1.24953 1.8286 8
 32 2.05698 76.0557 6.05571 2.03548 9
 33 1.05429 77.721 7.72096 1.57831 10
 34 2.15398 70.8861 0.886068 2.1353 11
 35 2.46624 70.9682 0.968163 2.26856 12
 36 1.4406 73.5243 3.52429 1.72608 1
 37 1.71475 71.527 1.52703 1.72932 2
 38 1.51423 78.5824 8.5824 1.97685 3
 39 2.41538 73.7909 3.79093 2.07129 4
 40 2.28402 71.131 1.13101 2.25293 5
 41 1.70251 72.3616 2.36156 2.04926 6
 42 1.19747 72.3894 2.3894 1.7
 43 1.08089 71.1729 1.17288 1.8
 44 2.21695 72.5905 2.59049 1.50915 9
 45 1.52717 71.1402 1.14023 1.88717 10
 46 1.5463 74.6696 4.66958 1.25725 11
```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>2.34151</td>
<td>90</td>
<td>20</td>
<td>3.57864</td>
<td>12</td>
</tr>
<tr>
<td>48</td>
<td>1.10737</td>
<td>71.1989</td>
<td>1.19893</td>
<td>1.62447</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>2.2491</td>
<td>76.6415</td>
<td>6.64147</td>
<td>2.50868</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>1.76659</td>
<td>71.7038</td>
<td>1.70377</td>
<td>1.231</td>
<td>3</td>
</tr>
<tr>
<td>51</td>
<td>1.25174</td>
<td>76.9657</td>
<td>6.96572</td>
<td>1.99521</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>1.81153</td>
<td>73.0722</td>
<td>3.07225</td>
<td>2.15915</td>
<td>5</td>
</tr>
<tr>
<td>53</td>
<td>1.72942</td>
<td>71.9639</td>
<td>1.96392</td>
<td>1.86142</td>
<td>6</td>
</tr>
<tr>
<td>54</td>
<td>2.17748</td>
<td>78.1207</td>
<td>8.12068</td>
<td>2.54388</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>1.29186</td>
<td>77.0589</td>
<td>7.05886</td>
<td>1.82777</td>
<td>8</td>
</tr>
<tr>
<td>56</td>
<td>1.92399</td>
<td>72.6126</td>
<td>2.61256</td>
<td>1.32816</td>
<td>9</td>
</tr>
<tr>
<td>57</td>
<td>1.33008</td>
<td>70.8872</td>
<td>0.887228</td>
<td>1.37826</td>
<td>10</td>
</tr>
<tr>
<td>58</td>
<td>1.96143</td>
<td>73.8529</td>
<td>3.85289</td>
<td>1.87809</td>
<td>11</td>
</tr>
<tr>
<td>59</td>
<td>1.61795</td>
<td>74.6957</td>
<td>4.69565</td>
<td>1.65806</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>2.02756</td>
<td>75.7877</td>
<td>5.78773</td>
<td>1.72684</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>2.41378</td>
<td>75.9826</td>
<td>5.98255</td>
<td>2.76309</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>1.41413</td>
<td>71.3419</td>
<td>1.34194</td>
<td>1.75285</td>
<td>3</td>
</tr>
<tr>
<td>63</td>
<td>2.31185</td>
<td>72.5469</td>
<td>2.54685</td>
<td>2.27947</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>1.94336</td>
<td>71.5592</td>
<td>1.55922</td>
<td>1.96157</td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td>2.094</td>
<td>74.7338</td>
<td>4.73385</td>
<td>2.07885</td>
<td>6</td>
</tr>
<tr>
<td>66</td>
<td>1.19458</td>
<td>72.233</td>
<td>2.23301</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>67</td>
<td>2.13118</td>
<td>79.1225</td>
<td>9.1225</td>
<td>1.84193</td>
<td>8</td>
</tr>
<tr>
<td>68</td>
<td>1.48076</td>
<td>87.0511</td>
<td>17.0511</td>
<td>2.94927</td>
<td>9</td>
</tr>
<tr>
<td>69</td>
<td>1.98502</td>
<td>79.0913</td>
<td>9.09131</td>
<td>2.47104</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>2.25937</td>
<td>73.8232</td>
<td>3.82322</td>
<td>2.49798</td>
<td>12</td>
</tr>
<tr>
<td>71</td>
<td>1.18744</td>
<td>70.6821</td>
<td>0.682067</td>
<td>1.2848</td>
<td>1</td>
</tr>
<tr>
<td>72</td>
<td>1.20189</td>
<td>70.7053</td>
<td>0.705311</td>
<td>1.33293</td>
<td>2</td>
</tr>
<tr>
<td>73</td>
<td>1.69115</td>
<td>73.9781</td>
<td>3.9781</td>
<td>1.87517</td>
<td>3</td>
</tr>
<tr>
<td>74</td>
<td>1.0556</td>
<td>73.2146</td>
<td>3.21459</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>1.59936</td>
<td>71.4165</td>
<td>1.41653</td>
<td>1.29695</td>
<td>5</td>
</tr>
<tr>
<td>76</td>
<td>1.66044</td>
<td>70.7151</td>
<td>0.715145</td>
<td>1.22362</td>
<td>6</td>
</tr>
<tr>
<td>77</td>
<td>1.79167</td>
<td>74.8072</td>
<td>4.80722</td>
<td>1.86081</td>
<td>7</td>
</tr>
<tr>
<td>78</td>
<td>2.30484</td>
<td>71.5028</td>
<td>1.50285</td>
<td>1.60626</td>
<td>8</td>
</tr>
<tr>
<td>79</td>
<td>2.49073</td>
<td>71.5908</td>
<td>1.59084</td>
<td>1.80815</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>1.32729</td>
<td>70.9077</td>
<td>0.907698</td>
<td>1.12889</td>
<td>10</td>
</tr>
<tr>
<td>81</td>
<td>2.48874</td>
<td>83.0079</td>
<td>13.0079</td>
<td>2.59237</td>
<td>11</td>
</tr>
<tr>
<td>82</td>
<td>2.46786</td>
<td>84.1806</td>
<td>14.1806</td>
<td>3.35518</td>
<td>12</td>
</tr>
<tr>
<td>83</td>
<td>2.12407</td>
<td>73.5826</td>
<td>3.58261</td>
<td>1.98482</td>
<td>1</td>
</tr>
<tr>
<td>84</td>
<td>2.46982</td>
<td>76.6556</td>
<td>6.65559</td>
<td>2.48936</td>
<td>2</td>
</tr>
<tr>
<td>85</td>
<td>1.00777</td>
<td>70.2504</td>
<td>0.250364</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>86</td>
<td>1.93118</td>
<td>73.9276</td>
<td>3.92763</td>
<td>1.84407</td>
<td>4</td>
</tr>
<tr>
<td>87</td>
<td>1.00017</td>
<td>72.6359</td>
<td>2.63594</td>
<td>1.3882</td>
<td>5</td>
</tr>
<tr>
<td>88</td>
<td>1.90622</td>
<td>71.047</td>
<td>1.047</td>
<td>1.7595</td>
<td>6</td>
</tr>
<tr>
<td>89</td>
<td>2.43744</td>
<td>72.321</td>
<td>2.32097</td>
<td>1.67244</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>1.25712</td>
<td>90</td>
<td>20</td>
<td>2.63949</td>
<td>8</td>
</tr>
<tr>
<td>91</td>
<td>1.10811</td>
<td>71.8299</td>
<td>1.82987</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>92</td>
<td>2.25545</td>
<td>71.8849</td>
<td>1.8849</td>
<td>1.94247</td>
<td>10</td>
</tr>
<tr>
<td>93</td>
<td>2.47971</td>
<td>73.4697</td>
<td>3.4697</td>
<td>1.87842</td>
<td>11</td>
</tr>
<tr>
<td>94</td>
<td>1.93378</td>
<td>74.2952</td>
<td>4.2952</td>
<td>1.52478</td>
<td>12</td>
</tr>
<tr>
<td>95</td>
<td>2.17525</td>
<td>73.0547</td>
<td>3.05466</td>
<td>2.23563</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>2.18723</td>
<td>70.8299</td>
<td>0.829929</td>
<td>1.75177</td>
<td>2</td>
</tr>
<tr>
<td>97</td>
<td>1.69984</td>
<td>72.0026</td>
<td>2.00263</td>
<td>1.45564</td>
<td>3</td>
</tr>
<tr>
<td>98</td>
<td>1.12504</td>
<td>70.4229</td>
<td>0.422904</td>
<td>1.06042</td>
<td>4</td>
</tr>
<tr>
<td>99</td>
<td>2.41723</td>
<td>73.7324</td>
<td>3.73238</td>
<td>2.18307</td>
<td>5</td>
</tr>
</tbody>
</table>
Example 19.1: Scatter Plot Matrix

PROC IML;
   CALL GSTART;      /** Load graphics **/  
   /------------------------------*/  
   /** Define modules **/  
   /------------------------------*/  

   /* Module : compute contours */  
   /* This routine computes contours for a scatter plot */  
   /* c returns the contours as consecutive pairs of columns */  
   /* x and y are the x and y coordinates of the points */  
   /* npoints is the number of points in a contour */  
   /* pvalues is a column vector of contour probabilities */  
   /* the number of contours is controlled by the ncol(pvalue) */  
   START contour(c,x,y,npoints,pvalues);
      xx=x||y;
      n=nrow(x);
      /* Correct for the mean */
      mean=mean(xx);
      xx=xx-mean;
      /* Find principal axes of ellipses */
      xx=xx`*xx/n;
      CALL EIGEN(v,e,xx);
      /* Set contour levels */
      c=-2*log(1-pvalues);
      a=sqrt(c*v[1]); b=sqrt(c*v[2]);
      /* Parameterize the ellipse by angle */
      t=((1:npoints)-(1))#atan(1)#8/(npoints-1);
      s=sin(t);
      t=cos(t);
      s=s`*a;
      t=t`*b;
      /* Form contour points */
      s=(e*(shape(s,1)//shape(t,1)))+mean`@j(1,npoints*ncol(c),1));
      c=shape(s,npoints); /* Returned as ncol pairs of columns */
      finish contour;

   /*-- Module : draw contour curves --*/
   START GCONTOUR(t1, t2);
      RUN contour(t12, t1, t2, 30, {.5 .8 .9});
      WINDOW=(min(t12[,{1 3}],t1)||min(t12[,{2 4}],t2))//
            (max(t12[,{1 3}],t1)||max(t12[,{2 4}],t2));
      CALL GWINDOW(WINDOW);
      CALL GDRAW(t12[,1],t12[,2],'blue');
      CALL GDRAW(t12[,3],t12[,4],'blue');
      CALL GDRAW(t12[,5],t12[,6],'blue');
      CALL GPOINT(t1,t2,'red');
      finish gpoint;
   
finish;
/**-- Module : find median, quartiles for box and whisker plot --*/
start boxwhskr(x, u, q2, m, q1, l);
    rx=rank(x);
    s=x;
    s[rx,]=x;
    n=nrow(x);

    /*-- Median --*/
    m=floor(((n+1)/2)||((n+2)/2));
    m=(s[m,])[+]/2;

    /*-- Compute quartiles --*/
    q1=floor(((n+3)/4)||((n+6)/4));
    q1=(s[q1,])[+]/2;
    q2=ceil(((3*n+1)/4)||((3*n-2)/4));
    q2=(s[q2,])[+]/2;
    h=1.5*(q2-q1); /*-- step=1.5*(interquartile range) --*/
    u=q2+h;
    l=q1-h;
    u=(u>s)[+]; /*-- adjacent values ------------------*/
    u=s[u,];
    l=(l>s)[+];
    l=s[l+1,];

finish boxwhskr;

    /*-- Box and Whisker plot --*/
start gbxwhskr(t, ht);
    run boxwhskr(t, up, q2, med, q1, lo);

    /*---Adjust screen viewport and data window */
    y=min(t)//max(t);
    call gwwindow({0, 100} || y);
    mid = 50;
    wlen = 20;

    /*-- Add whiskers */
    wstart=mid-(wlen/2);
    from=(wstart||up)/(wstart||lo);
    to=((wstart//wstart)+wlen)||from[,2];

    /*-- Add box */
    len=50;
    wstart=mid-(len/2);
    wstop=wstart+len;
    from=from//(wstart||q2)//(wstart||q1)//
    (wstart||q2)//(wstop||q2);
    to=to//(wstop||q2)//(wstop||q1)//
    (wstart||q1)//(wstop||q1);

    /*-- Add median line */
    from=from//(wstart||med);
    to=to//(wstop||med);
Example 19.1: Scatter Plot Matrix

```plaintext
/*---Attach whiskers to box */
from=from //(mid||up)//(mid||lo);
to=to //(mid||q2)//(mid||q1);

/*--- Draw box and whiskers */
call gdrawl(from, to,,'red');

/*---Add minimum and maximum data points */
call gpoin tmid, y ,3,'red');

/*---Label min, max, and mean */
y=med//y;
s={'med' 'min' 'max'};
call gset("font","swiss");
call gset('height',13);
call gscript(wstop+ht, y, char(y,5,2),,,,'blue');
call gstrlen(len, s);
call gscript(wstart-len-ht,y,s,.,,,,'blue');
call gset('height');
finish gbxwhskr;

/*-- Module : do scatter plot matrix --*/
start gscatmat(data, vname);
call gopen('scatter');
nv=ncol(vname);
if (nv=1) then nv=nrow(vname);
cellwid=int(90/nv);
dist=0.1*cellwid;
width=cellwid-2*dist;
xstart=int((90 -cellwid * nv)/2) + 5;
xgrid=((0:nv)#cellwid + xstart)```

/*-- Delineate cells */
cell1=xgrid;
cell1=cell1||(cell1[nv+1]//cell1[nv+1-(0:nv-1)]);
cell2=j(nv+1, 1, xstart);
cell2=cell1[,1]||cell2;
call gdrawl(cell1, cell2);
call gdrawl(cell1[,{2 1}], cell2[,{2 1}]));
xstart = xstart + dist; ystart = xgrid[nv] + dist;

/*-- Label variables */
call gset("height", 5);
call gstrlen(len, vname);
where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(where, 0, vname) ;
len=len[nv-(0:nv-1)]]; where=xgrid[1:nv] + (cellwid-len)/2;
call gscript(4,where, vname[nv -(0:nv-1)],90);

/*-- First viewport */
vp=(xstart || ystart)//((xstart || ystart) + width) ;
```
/* Since the characters are scaled to the viewport */
/* (which is inversely proportional to the */
/* number of variables), */
/* enlarge it proportional to the number of variables */

ht=2*nv;
call gset("height", ht);
do i=1 to nv;
do j=1 to i;
call gportstk(vp);
   if (i=j) then run gbxwhskr(data[,i], ht);
   else run gcontour(data[,j], data[,i]);
   /*-- onto the next viewport ---*/
   vp[,1] = vp[,1] + cellwid;
call gportpop;
end;
   vp=(xstart // xstart + width) || (vp[,2] - cellwid);
end;
call gshow;
finish gscatmat;

/*-- Placement of text is based on the character height. */
/* The IML modules defined here assume percent as the unit of */
/* character height for device independent control. */
goptions gunit=pct;

use factory;
vname={prod, temp, defect};
read all var vname into xyz;
run gscatmat(xyz, vname[1:2]); /*-- 2 x 2 scatter plot matrix ---*/
run gscatmat(xyz, vname); /*-- 3 x 3 scatter plot matrix ---*/
quit;

goptions gunit=cell; /*-- reset back to default ---*/
Example 19.1: Scatter Plot Matrix

**Output 19.1.1** 2 × 2 Scatter Plot Matrix

**Output 19.1.2** 3 × 3 Scatter Plot Matrix
Example 19.2: Train Schedule

This example draws a grid on which the horizontal dimension gives the arrival/departure data and the vertical dimension gives the destination. The first section of the code defines the matrices used. The following section generates the graph. The following example code shows some applications of the GGRID, GDRAWL, GSTRLEN, and GSCRIPT subroutines. This code produces Figure 19.2.1.

```sas
proc iml;
 /* Placement of text is based on the character height. */
 /* The graphics segment defined here assumes percent as the */
 /* unit of character height for device independent control. */
 goptions gunit=pct;
 call gstart;
 /* Define several necessary matrices */
 cityloc=(0 27 66 110 153 180);
 cityname=('Paris' 'Montereau' 'Tonnerre' 'Dijon' 'Macon' 'Lyons');
 timeloc=0:30;
 timename=char(timeloc,2,0);
 /* Define a data matrix */
 schedule=
 /* origin dest start end comment */
 { 1 2 11.0 12.5, /* train 1 */
 2 3 12.6 14.9,
 3 4 15.5 18.1,
 4 5 18.2 20.6,
 5 6 20.7 22.3,
 6 5 22.6 24.0,
 5 4 0.1 2.3,
 4 3 2.5 4.5,
 3 2 4.6 6.8,
 2 1 6.9 8.5,
 1 2 19.2 20.5, /* train 2 */
 2 3 20.6 22.7,
 3 4 22.8 25.0,
 4 5 1.0 3.3,
 5 6 3.4 4.5,
 6 5 6.9 8.5,
 5 4 8.6 11.2,
 4 3 11.6 13.9,
 3 2 14.1 16.2,
 2 1 16.3 18.0 };
 xy1=schedule[,3]||cityloc[schedule[,1]];
 xy2=schedule[,4]||cityloc[schedule[,2]];
 call gopen;
 call gwindow((-8 -35, 36 240));
 call ggrid(timeloc,cityloc,1,"red");
 call gdrawl(xy1,xy2,"blue");
```
/*--- center title -- */
s = "Train Schedule: Paris to Lyons";
call gstrlen(m, s,5,"italic");
call gscript(15-m/2,185,s,,5,"italic");

/*--- find max graphics text length of cityname ---*/
call gset("height",3);
call gset("font","italic");
call gstrlen(len, cityname);
m = max(len) +1.0

call gscript(-m, cityloc,cityname);
call gscript(timeloc - .5,-12,timename,-90,90);
call gshow;
quit;
goptions gunit=cell;           /*--- reset back to default ---*/

Output 19.2.1  Train Schedule
Example 19.3: Fisher’s Iris Data

This example generates four scatter plots and prints them on a single page. Scatter plots of sepal length versus petal length, sepal width versus petal width, sepal length versus sepal width, and petal length versus petal width are generated. The following code produces Figure 19.3.1.

data iris;
  title 'Fisher (1936) Iris Data';
  input sepallen sepalwid petallen petalwid spec_no @@;
  if spec_no=1 then species='setosa ';
  if spec_no=2 then species='versicolor';
  if spec_no=3 then species='virginica ';
  label sepallen='sepal length in mm.'
    sepalwid='sepal width in mm.'
    petallen='petal length in mm.'
    petalwid='petal width in mm.';
  datalines;
  50 33 14 02 1 64 28 56 22 3 65 28 46 15 2
  67 31 56 24 3 63 28 51 15 3 46 34 14 03 1
  69 31 51 23 3 62 22 45 15 2 59 32 48 18 2
  46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
  65 30 52 20 3 56 25 39 11 2 65 30 55 18 3
  58 27 51 19 3 68 32 59 23 3 51 33 17 05 1
  57 28 45 13 2 62 34 54 23 3 77 38 67 22 3
  63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
  49 25 45 17 3 55 35 13 02 1 67 30 52 23 3
  70 32 47 14 2 64 32 45 15 2 61 28 40 13 2
  48 31 16 02 1 59 30 51 18 3 55 24 38 11 2
  63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
  49 36 14 01 1 54 30 45 15 2 79 38 64 20 3
  44 32 13 02 1 67 33 57 21 3 50 35 16 06 1
  58 26 40 12 2 44 30 13 02 1 77 28 67 20 3
  63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
  50 23 33 10 2 72 32 60 18 3 48 30 14 03 1
  51 38 16 02 1 61 30 49 18 3 48 34 19 02 1
  50 30 16 02 1 50 32 12 02 1 61 26 56 14 3
  64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
  51 38 19 04 1 67 31 44 14 2 62 28 48 18 3
  49 30 14 02 1 51 35 14 02 1 56 30 45 15 2
  58 27 41 10 2 50 34 16 04 1 46 32 14 02 1
  60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
  50 36 14 02 1 77 30 61 23 3 63 34 56 24 3
  58 27 51 19 3 57 29 42 13 2 72 30 58 16 3
  54 34 15 04 1 52 41 15 01 1 71 30 59 21 3
  64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
  49 24 33 10 2 56 27 42 13 2 57 30 42 12 2
  55 42 14 02 1 49 31 15 02 1 77 26 69 23 3
  60 22 50 15 3 54 39 17 04 1 66 29 46 13 2
  52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
  44 29 14 02 1 50 20 35 10 2 55 24 37 10 2
  58 27 39 12 2 47 32 13 02 1 46 31 15 02 1
Example 19.3: Fisher's Iris Data

69 32 57 23 3 62 29 43 13 2 74 28 61 19 3
59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3
67 25 58 18 3 49 31 15 01 1 67 31 47 15 2
63 23 44 13 2 54 37 15 02 1 56 30 41 13 2
63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3
69 31 54 21 3 54 39 13 04 1 51 35 14 03 1
72 36 61 25 3 65 32 51 20 3 61 29 47 14 2
56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1
48 30 14 01 1 45 23 13 03 1 57 25 50 20 3
57 38 17 03 1 51 38 15 03 1 55 23 40 13 2
66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3
67 30 50 17 2 63 33 60 25 3 53 37 15 02 1
;

proc iml;
use iris; read all;

/*------------------------------------------------------ */
/* Create 5 graphs, PETAL, SEPAL, SPWID, SPLEN, and ALL4 */
/* After the graphs are created, to see any one, type */
/* CALL GSHOW("name"); */
/* where name is the name of any one of the 5 graphs */
/*------------------------------------------------------ */
call gstart;       /**-- always start with GSTART --*/

//**  Spec_no is used as marker index, change 3 to 4 */
//**  1 is + , 2 is x, 3 is *, 4 is a square --------------*/
do i=1 to 150;
   if (spec_no[i] = 3) then spec_no[i] = 4;
end;

//**-- Creates 4 x-y plots stored in 4 different segments */

//**-- Creates a segment called petal, petallen by petalwid --*/
call gopen("petal");
wp = { -10 -5, 90 30};
call gwindow(wp);
call gxaxis((0 0), 75, 6,,,'5.1');
call gyaxis((0 0), 25, 5,,,'5.1');
call gpoint(petallen, petalwid, spec_no, 'blue');
labs = "Petallen vs Petalwid";
call gstrlen(len, labs,2, 'swiss');
call gscript(40-len/2,-4,labs,,2,'swiss');
/**-- Creates a segment called sepal, sepallen by sepalwid --*/
call gopen("sepal");
  ws = {35 15 85 55};
call gwindow(ws);
call gxaxis({40 20}, 40, 9, , '5.1');
call gyaxis({40 20}, 28, 7, , '5.1');
call gpoint(sepallen, sepalwid, spec_no, 'blue');
labs = "Sepallen vs Sepalwid";
call gstrlen(len, labs, 2, 'swiss');
call gscript(60-len/2,16,labs,,,2,'swiss');

/**-- Creates a segment called spwid, petalwid by sepalwid --*/
call gopen("spwid");
  wspwid = {15 -5 55 30};
call gwindow(wspwid);
call gxaxis({20 0}, 28, 7, , '5.1');
call gyaxis({20 0}, 25, 5, , '5.1');
call gpoint(sepalwid, petalwid, spec_no, 'green');
labs = "Sepalwid vs Petalwid";
call gstrlen(len, labs, 2, 'swiss');
call gscript(35-len/2,-4,labs,,,2,'swiss');

/**-- Creates a segment called splen, petallen by sepallen --*/
call gopen("splen");
  wsplen = {35 -15 85 90};
call gwindow(wsplen);
call gxaxis({40 0}, 40, 9, , '5.1');
call gyaxis({40 0}, 75, 6, , '5.1');
call gpoint(sepallen, petallen, spec_no, 'red');
labs = "Sepallen vs Petallen";
call gstrlen(len, labs, 2, 'swiss');
call gscript(60-len/2,-14,labs,,,2,'swiss');

/**-- Create a new segment */
call gopen("all4");
call gport({50 0, 100 50}); /* change viewport, lower right -----*/
call ginclude("sepal"); /* include sepal in this graph -----*/
call gport({0 50, 50 100}); /* change the viewport, upper left */
call ginclude("petal"); /* include petal ------------*/
call gport({0 0, 50 50}); /* change the viewport, lower left */
call ginclude("spwid"); /* include spwid -----------*/
call gport({50 50, 100 100}); /* change the viewport, upper right */
call ginclude("splen"); /* include splen ---------------*/
call gshow("all4");
Output 19.3.1 Petal Length versus Petal Width
Chapter 20
Storage Features

Contents

<table>
<thead>
<tr>
<th>Overview</th>
<th>479</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Catalogs</td>
<td>479</td>
</tr>
<tr>
<td>Catalog Management</td>
<td>480</td>
</tr>
<tr>
<td>Restoring Matrices and Modules</td>
<td>480</td>
</tr>
<tr>
<td>Removing Matrices and Modules</td>
<td>481</td>
</tr>
<tr>
<td>Specifying the Storage Catalog</td>
<td>481</td>
</tr>
<tr>
<td>Listing Storage Entries</td>
<td>482</td>
</tr>
<tr>
<td>Storing Matrices and Modules</td>
<td>482</td>
</tr>
</tbody>
</table>

Overview

SAS/IML software can store user-defined modules and the values of matrices in special library storage on disk for later retrieval. The library storage feature enables you to perform the following tasks:

- store and reload IML modules and matrices
- save work for a later session
- keep records of work
- conserve space by saving large, intermediate results for later use
- communicate data to other applications through the library
- store and retrieve data in general

Storage Catalogs

SAS/IML storage catalogs are specially structured SAS files that are located in a SAS data library. A SAS/IML catalog contains entries that are either matrices or modules. Like other SAS files, SAS/IML catalogs have two-level names in the form libref.catalog. The first-level name, libref, is a name assigned to the SAS data library to which the catalog belongs. The second-level name, catalog, is the name of the catalog file.
Chapter 20: Storage Features

The default libref is initially SASUSER, and the default catalog is IMLSTOR. Thus, the default storage catalog is called SASUSER.IMLSTOR. You can change the storage catalog with the RESET STORAGE command (see the discussion of the RESET statement in Chapter 26).

By using this command, you can change either the catalog or the libref.

When you store a matrix, IML automatically stores the matrix name, its type, its dimension, and its current values. Modules are stored in the form of their compiled code. Once modules are loaded, they do not need to be parsed again, making their use very efficient.

Catalog Management

IML provides you with all the commands necessary to reference a particular storage catalog, to list the modules and matrices in that catalog, to store and remove modules and matrices, and to load modules and matrices back to IML. The following commands enable you to perform all necessary catalog management functions:

- **LOAD** recalls entries from storage.
- **REMOVE** removes entries from storage.
- **RESET STORAGE** specifies the library name.
- **SHOW STORAGE** lists all entries currently in storage.
- **STORE** saves modules or matrices to storage.

Restoring Matrices and Modules

You can restore matrices and modules from storage back into the IML active workspace by using the LOAD command. The LOAD command has the general form

```
LOAD ;
LOAD matrices ;
LOAD MODULE= module ;
LOAD MODULE= (modules) ;
LOAD MODULE= (modules) matrices ;
```

Some examples of valid LOAD commands are as follows:

```
load a b c; /* load matrices A, B, and C */
load module=mymod1; /* load module MYMOD1 */
load module=(mymod1 mymod2) a b; /* load modules and matrices */
```

The special operand _ALL_ can be used to load all matrices or modules, or both. For example, if you want to load all modules, use the following statement:
Removing Matrices and Modules

If you want to load all matrices and modules in storage, use the LOAD command by itself, as follows:

```
load module=_all_; /* loads all matrices and modules */
```

The LOAD command can be used with the STORE statement to save and restore an IML environment between sessions.

### Removing Matrices and Modules

You can remove modules or matrices from the catalog by using the REMOVE command. The REMOVE command has the same form as the LOAD command. Some examples of valid REMOVE statements are as follows:

```
remove a b c; /* remove matrices A, B, and C */
remove module=mymod1; /* remove module MYMOD1 */
remove module=(mymod1 mymod2) a; /* remove modules and matrices */
```

The special operand _ALL_ can be used to remove all matrices or modules, or both. For example, if you want to remove all matrices, use the following statement:

```
remove _all_;
```

If you want to remove everything from storage, use the following statement:

```
remove module=(_all_) _all_;
```

### Specifying the Storage Catalog

To specify the name of the storage catalog, use one of the following general forms of the STORAGE= option in the RESET statement:

```
RESET STORAGE= catalog ;
RESET STORAGE= libref.catalog ;
```

Each time you specify the STORAGE= option, the previously opened catalog is closed before the new one is opened.

You can have any number of catalogs, but you can have only one open at a time. A SAS data library can contain many IML storage catalogs, and an IML storage catalog can contain many entries (that is, many matrices and modules).
For example, you can change the name of the storage catalog without changing the libref by using the following statement:

```plaintext
reset storage=mystor;
```

To change the libref as well, use the following statement:

```plaintext
reset storage=mylib.mystor;
```

### Listing Storage Entries

You can list all modules and matrices in the current storage catalog by using the `SHOW STORAGE` command, which has the general form

```plaintext
SHOW STORAGE ;
```

### Storing Matrices and Modules

You can save modules or matrices in the storage catalog by using the `STORE` command. The `STORE` command has the same general form as the `LOAD` command. Several examples of valid `STORE` statements are as follows:

```plaintext
store a b c; /* store matrices A, B, and C */
store module=mymod1; /* store module MYMOD1 */
store module=(mymod1 mymod2) a; /* storing modules and matrices */
```

The special operand `_ALL_` can be used to store all matrices or modules. For example, if you want to store everything, use the following statement:

```plaintext
store _all_ module=_all_;
```

Alternatively, to store everything, you can also enter the `STORE` command by itself, as follows:

```plaintext
store;
```

This can help you to save your complete IML environment before exiting an IML session. Then you can use the `LOAD` statement in a subsequent session to restore the environment and resume your work.
Chapter 21
Using SAS/IML Software to Generate SAS/IML Statements

Overview

This chapter describes ways of using SAS/IML software to generate and execute statements from within the Interactive Matrix Language. You can execute statements generated at run time, execute global SAS commands under program control, or create statements dynamically to get more flexibility.

Generating and Executing Statements

You can push generated statements into the input command stream (queue) with the PUSH, QUEUE, and EXECUTE subroutines. This can be very useful in situations that require added flexibility, such as menu-driven applications or interrupt handling.

The PUSH command inserts program statements at the front of the input command stream, whereas the QUEUE command inserts program statements at the back. In either case, if they are not input to an interactive application, the statements remain in the queue until IML enters a pause state, at which point they are executed. The pause state is usually induced by a program error or an interrupt control sequence. Any
subsequent RESUME statement resumes execution of the module from the point where the PAUSE command was issued. For this reason, the last statement put into the command stream for PUSH or QUEUE is usually a RESUME command.

The EXECUTE statement also pushes program statements like PUSH and QUEUE, but it executes them immediately and returns. It is not necessary to push a RESUME statement when you use the CALL EXECUTE command.

---

### Executing a String Immediately

The PUSH, QUEUE, and EXECUTE commands are especially useful when used in conjunction with the pause and resume features because they enable you to generate a pause-interrupt command to execute the code you push and return from it via a pushed RESUME statement. In fact, this is precisely how the EXECUTE subroutine is implemented generally.

**CAUTION:** Note that the push and resume features work this way only in the context of being inside modules. You cannot resume an interrupted sequence of statements in immediate mode—that is, not inside a module.

For example, suppose that you collect program statements in a matrix called CODE. You push the code to the command input stream along with a RESUME statement and then execute a PAUSE statement. The PAUSE statement interrupts the execution, parses and executes the pushed code, and returns to the original execution via the RESUME statement. Here is the code:

```iml
proc iml;
start testpush;
 print '*** ENTERING MODULE TESTPUSH ***';
 print '*** I should be 1,2,3: ';
 /* constructed code */
 code = ' do i = 1 to 3; print i; end; ';
 /* push code+resume */
 call push (code, 'resume;');
 /* pause interrupt */
 pause;
 print '*** EXITING MODULE TESTPUSH ***';
finish;
```

When the PAUSE statement interrupts the program, the IML procedure then parses and executes the following line:

```iml
do i=1 to 3; print i; end; resume;
```

The RESUME command then causes the IML procedure to resume the module that issued the PAUSE.

**NOTE:** The EXECUTE routine is equivalent to a PUSH command, but it also adds the push of a RESUME command, then issues a pause automatically.

A CALL EXECUTE command should be used only from inside a module because pause and resume features do not support returning to a sequence of statements in immediate mode.
Feeding an Interactive Program

Suppose that an interactive program gets responses from the statement INFILE CARDS. If you want to feed it under program control, you can push lines to the command stream that is read.

For example, suppose that a subroutine prompts a user to respond YES before performing some action. If you want to run the subroutine and feed the YES response without the user being bothered, you push the response as follows:

```plaintext
/* the function that prompts the user */
start delall;
 file log;
 put 'Do you really want to delete all records? (yes/no)';
 infile cards;
 input answer $;
 if upcase(answer)='YES' then
 do;
 delete all;
 purge;
 print "*** FROM DELALL:
 should see End of File (no records to list)";
 list all;
 end;
 finish;

The latter DO group is necessary so that the pushed YES is not read before the RUN statement. The following example illustrates the use of the preceding module DELALL:

```plaintext
/* Create a dummy data set for delall to delete records */
xnum = {1 2 3, 4 5 6, 7 8 0};
create dsnum1 from xnum;
append from xnum;
do;
  call push ('yes');
  run delall;
end;
```

Calling the Operating System

Suppose that you want to construct and execute an operating system command. Just push it to the token stream in the form of an X statement and have it executed under a pause interrupt.

The following module executes any system command given as an argument:

```plaintext
start system(command);
  call push(" x '",command,"'; resume;");
  pause;
  finish;
  run system('listc');
```
The call generates and executes a LISTC command under MVS as follows:

 x 'listc'; resume;

Calling the SAS Windowing Environment

The same strategy used for calling the operating system works for SAS global statements as well, including calling the SAS windowing environment by generating DM statements.

The following subroutine executes a SAS windowing environment command:

 start dm(command);
 call push(" dm ",command," '; resume;");
 pause;
 finish;

 run dm('log; color source red');

The call generates and executes the following statements:

 dm 'log; color source red'; resume;

These statements take you to the Log window, where all source code is written in red.

Executing Any Command in an EXECUTE Call

The EXECUTE command executes the statements contained in the arguments by using the same facilities as a sequence of CALL PUSH, PAUSE, and RESUME statements. The statements use the same symbol environment as that of the subroutine that calls them. For example, consider the following subroutine:

 proc iml;
 start exectest;
 /* IML STATEMENTS */
 call execute ("xnum = {1 2 3, 4 5 6, 7 8 0};");
 call execute ("create dsnum1 from xnum;");
 call execute ("append from xnum;");
 call execute ("print 'DSNUM should have 3 obs and 3 var:';");
 call execute ("list all;");
 /* global (options) statement */
 call execute ("options linesize=68;");
 call execute ("print 'Linesize should be 68';");
 finish;
 run exectest;

The following output generated from EXECTEST is exactly the same as if you had entered the statements one at a time:
DSNUM should have 3 obs and 3 var:

<table>
<thead>
<tr>
<th>OBS</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>2.0000</td>
<td>3.0000</td>
</tr>
<tr>
<td>2</td>
<td>4.0000</td>
<td>5.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>3</td>
<td>7.0000</td>
<td>8.0000</td>
<td>0</td>
</tr>
</tbody>
</table>

Linesize should be 68

CALL EXECUTE could almost be programmed in IML as shown here; the difference between this and the built-in command is that the following subroutine would not necessarily have access to the same symbols as the calling environment:

```iml
start execute(command1,...);
    call push(command1,...," resume;");
    pause;
finish;
```

Making Operands More Flexible

Suppose that you want to write a program that prompts a user for the name of a data set. Unfortunately the USE, EDIT, and CREATE commands expect the data set name as a hardcoded operand rather than an indirect one. However, you can construct and execute a function that prompts the user for the data set name for a USE statement. Here is the code:

```iml
/* prompt the user to give dsname for use statement */
start flexible;
    file log;
    put 'What data set shall I use?';
    infile cards;
    input dsname $;
    call execute('use', dsname, ';');
finish;
run flexible;
```

If you enter USER.A, the program generates and executes the following line:

```
use user.a;
```

Interrupt Control

Whenever a program error or interrupt occurs, IML automatically issues a pause, which places the module in a paused state. At this time, any statements pushed to the input command queue get executed. Any subsequent RESUME statement (including pushed RESUME statements) resume executing the module from the point where the error or interrupt occurred.
If you have a long application such as reading a large data set and you want to be able to find out where the data processing is just by entering a break-interrupt (sometimes called an attention signal), you push the interrupt text. The pushed text can, in turn, push its own text on each interrupt, followed by a RESUME statement to continue execution.

For example, suppose you have a data set called TESTDATA that has 4096 observations. You want to print the current observation number if an attention signal is given. The following code does this:

```plaintext
start obsnum;
   use testdata;
   brkcode={"print 'now on observation number',i;"
               "if (i<4096) then do;
                   "call push(brkcode);
                   "resume;
               "end;"
         };
   call push(brkcode);
   do i=1 to 4096;
      read point i;
   end;
finish;
run obsnum;
```

After the module has been run, enter the interrupt control sequence for your operating system. Type S to suspend execution. The IML procedure prints a message telling which observation is being processed. Because the pushed code is executed at the completion of the module, the message is also printed when OBSNUM ends.

Each time the attention signal is given, OBSNUM executes the code contained in the variable BRKCODE. This code prints the current iteration number and pushes commands for the next interrupt. Note that the PUSH and RESUME commands are inside a DO group, making them conditional and ensuring that they are parsed before the effect of the PUSH command is realized.

Specific Error Control

A PAUSE command is automatically issued whenever an execution error occurs, putting the module in a holding state. If you have some way of checking for specific errors, you can write an interrupt routine to correct them during the pause state.

In the following example, if a singular matrix is passed to the INV function, the IML procedure pauses and executes the pushed code to set the result for the inverse to missing values. The code uses the variable SINGULAR to detect if the interrupt occurred during the INV operation. This is particularly necessary because the pushed code is executed on completion of the routine, as well as on interrupts.

```plaintext
proc iml;
a = {3 3, 3 3};    /* singular matrix */
/* If a singular matrix is sent to the INV function, */
/* IML normally sets the resulting matrix to be empty */
/* and prints an error message. */
b = inv(a);
```
General Error Control

Sometimes, you might want to process or step over errors. To do this, put all the code into modules and push a code to abort if the error count exceeds some maximum. Often, you might submit a batch job and get a trivial mistake that causes an error, but you do not want to cause the whole run to fail because of it. On the other hand, if you have many errors, you do not want to let the routine run.

In the following example, up to three errors are tolerated. A singular matrix A is passed to the INV function, which would, by itself, generate an error message and issue a pause in the module. This module pushes three RESUME statements, so that the first three errors are tolerated. Messages are printed and execution is resumed. The DO loop in the module OOPS is executed four times, and on the fourth iteration, an ABORT statement is issued and you exit IML.
Chapter 21: Using SAS/IML Software to Generate SAS/IML Statements

```sas
proc iml;
a={3 3, 3 3}; /* singular matrix */
/*
* GENERAL ERROR CONTROL -- exit iml for 3 or more errors *
*/
start; /* module will be named MAIN */
errcode = {
" if errors >= 0 then do;",
" errors = errors + 1;",
" if errors > 2 then abort;",
" else do; call push(errcode); resume; end;",
" end;" } ;
call push (errcode);
errors = 0;
start oops; /* start module OOPS */
do i = 1 to 4;
   b = inv(a);
end;
finish; /* finish OOPS */
run oops;
finish; /* finish MAIN */
errors=-1; /* disable */
run;
```

The output generated from this example is as follows:

ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17 called from module MAIN at line 44 column 10
operation : INV at line 41 column 24 operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.
ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17 called from module MAIN at line 44 column 10
operation : INV at line 41 column 24 operands : A

A 2 rows 2 cols (numeric)

3 3
3 3
stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Resuming execution in module OOPS.

ERROR: (execution) Matrix should be non-singular.

Error occurred in module OOPS at line 41 column 17
called from module MAIN at line 44 column 10
operation : INV at line 41 column 24
operands : A

A 2 rows 2 cols (numeric)

3 3
3 3

stmt: ASSIGN at line 41 column 17

Paused in module OOPS.

Exiting IML.

Actually, in this particular case it would probably be simpler to put three RESUME statements after the RUN statement to resume execution after each of the first three errors.

Macro Interface

The pushed text is scanned by the macro processor; therefore, the text can contain macro instructions. For example, here is an all-purpose routine that shows what the expansion of any macro is, assuming that it does not have embedded double quotes:

```
/* function: y = macxpand(x); */
/* macro-processes the text in x */
/* and returns the expanded text in the result. */
/* Do not use double quotes in the argument. */
/* */

start macxpand(x);
    call execute('Y="',x,'"');
    return(y);
finish;
```

Consider the following statements:

```
%macro verify(index);
    data _null_;
        infile junk&index;
        file print;
        input;
        put _infile_
        run;
```
Chapter 21: Using SAS/IML Software to Generate SAS/IML Statements

%mend;
_y = macxpand('%verify(1)');
print _y;

The output produced is as follows:

```
Y
DATA _NULL_; INFILE JUNK1; FILE PRINT; INPUT;
PUT _INFILE_; RUN;
```

IML Line Pushing Contrasted with Using the Macro Facility

The SAS macro language is a language embedded in and running on top of another language; it generates text to feed the other language. Sometimes it is more convenient to generate the text by using the primary language directly rather than embedding the text generation in macros. The preceding examples show that this can even be done at execution time, whereas pure macro processing is done only at parse time. The advantage of the macro language is its embedded, yet independent, nature: it needs little quoting, and it works for all parts of the SAS language, not just IML. The disadvantage is that it is a separate language that has its own learning burden, and it uses extra reserved characters to mark its programming constructs and variables. Consider the quoting of IML versus the embedding characters of the macro facility: IML makes you quote every text constant, whereas the macro facility makes you use the special characters percent sign (%) and ampersand (&) on every macro item. There are some languages, such as REXX, that give you the benefits of both (no macro characters and no required quotes), but the cost is that the language forces you to discipline your naming so that names are not expanded inadvertently.

Summary

In this chapter you learned how to use SAS/IML software to generate IML statements. You learned how to use the PUSH, QUEUE, EXECUTE, and RESUME commands to interact with the operating system or with the SAS windowing environment. You also saw how to add flexibility to programs by adding interrupt control features and by modifying error control. Finally, you learned how IML compares to the SAS macro language.
Overview

Wavelets are a versatile tool for understanding and analyzing data, with important applications in nonparametric modeling, pattern recognition, feature identification, data compression, and image analysis. Wavelets provide a description of your data that localizes information at a range of scales and positions. Moreover, they can be computed very efficiently, and there is an intuitive and elegant mathematical theory to guide you in applying them.

Some Brief Mathematical Preliminaries

The discrete wavelet transform decomposes a function as a sum of basis functions called wavelets. These basis functions have the property that they can be obtained by dilating and translating two basic types of wavelets known as the scaling function, or father wavelet ϕ, and the mother wavelet ψ. These translations and dilations are defined as follows:

$$
\phi_{j,k}(x) = 2^{j/2}\phi(2^j x - k) \\
\psi_{j,k}(x) = 2^{j/2}\psi(2^j x - k)
$$
Chapter 22: Wavelet Analysis

The index \(j \) defines the dilation or \textit{level} while the index \(k \) defines the translate. Loosely speaking, sums of the \(\phi_{j,k}(x) \) capture low frequencies and sums of the \(\psi_{j,k}(x) \) represent high frequencies in the data. More precisely, for any suitable function \(f(x) \) and for any \(j_0 \),

\[
f(x) = \sum_k c_{j_0,k}^j \phi_{j_0,k}(x) + \sum_{j \geq j_0} \sum_k d_{j,k}^j \psi_{j,k}(x)
\]

where the \(c_{j,k}^j \) and \(d_{j,k}^j \) are known as the scaling coefficients and the detail coefficients, respectively. For orthonormal wavelet families these coefficients can be computed by

\[
c_{j,k}^j = \int f(x) \phi_{j,k}(x) \, dx
\]
\[
d_{j,k}^j = \int f(x) \psi_{j,k}(x) \, dx
\]

The key to obtaining fast numerical algorithms for computing the detail and scaling coefficients for a given function \(f(x) \) is that there are simple recurrence relationships that enable you to compute the coefficients at level \(j - 1 \) from the values of the scaling coefficients at level \(j \). These formulas are

\[
c_{j-1,k}^j = \sum_i h_{i-2k} c_i^j
\]
\[
d_{j-1,k}^j = \sum_i g_{i-2k} c_i^j
\]

The coefficients \(h_k \) and \(g_k \) that appear in these formulas are called \textit{filter coefficients}. The \(h_k \) are determined by the father wavelet and they form a low-pass filter; \(g_k = (-1)^k h_{1-k} \) and form a high-pass filter. The preceding sums are formally over the entire (infinite) range of integers. However, for wavelets that are zero except on a finite interval, only finitely many of the filter coefficients are nonzero, and so in this case the sums in the recurrence relationships for the detail and scaling coefficients are finite.

Conversely, if you know the detail and scaling coefficients at level \(j - 1 \), then you can obtain the scaling coefficients at level \(j \) by using the relationship

\[
c_{j,k}^j = \sum_i h_{k-2i} c_i^{j-1} + \sum_i g_{k-2i} d_i^{j-1}
\]

Suppose that you have data values

\[y_k = f(x_k), \quad k = 0, 1, 2, \cdots, N - 1\]

at \(N = 2^J \) equally spaced points \(x_k \). It turns out that the values \(2^{-J/2} y_k \) are good approximations of the scaling coefficients \(c_k^J \). Then, by using the recurrence formula, you can find \(c_k^{J-1} \) and \(d_k^{J-1} \), \(k = 0, 1, 2, \cdots, N/2 - 1 \). The discrete wavelet transform of the \(y_k \) at level \(J - 1 \) consists of the \(N/2 \) scaling and \(N/2 \) detail coefficients at level \(J - 1 \). A technical point that arises is that in applying the recurrence relationships to finite data, a few values of the \(c_k^J \) for \(k < 0 \) or \(k \geq N \) might be needed. One way to cope with this difficulty is to extend the sequence \(c_k^J \) to the left and right by using some specified boundary treatment.

Continuing by replacing the scaling coefficients at any level \(j \) by the scaling and detail coefficients at level \(j - 1 \) yields a sequence of \(N \) coefficients

\[\{c_0^0, d_0^0, a_0^1, d_1^1, a_0^2, d_2^2, a_1^3, d_1^3, \ldots, d_7^3, \ldots, d_0^{j-1}, \ldots, d_{N/2-1}^{j-1}\}\]
This sequence is the finite discrete wavelet transform of the input data \(\{y_k\} \). At any level \(j_0 \) the finite dimensional approximation of the function \(f(x) \) is

\[
f(x) \approx \sum_k c_k^{j_0} \phi_{j_0,k}(x) + \sum_{j=j_0}^{J-1} \sum_k d_k^j \psi_{j,k}(x)
\]

Getting Started

Fourier Transform Infrared (FT-IR) spectroscopy is an important tool in analytic chemistry. The following example demonstrates wavelet analysis applied to an FT-IR spectrum of quartz (Sullivan 2000). The following DATA step creates a data set that contains the spectrum, expressed as an absorbance value for each of 850 wave numbers.

```
data quartzInfraredSpectrum;
  WaveNumber=4000.6167786 - _N_ *4.00084378;
  input Absorbance @@;
datalines;
4783 4426 4419 4652 4764 4764 4621 4475 4430 4618
4735 4708 4802 4811 4769 4506 4642 4799 4811 4732
4512 4676 4856 4868 4796 4849 4829 4677 4962 4994
4924 4673 4737 5078 5094 4987 4697 4632 5010 5166
5166 4864 4547 4682 5161 5291 5143 4684 4662 5221
5640 5640 5244 4791 4832 5629 5766 5723 5121 4690
5513 6023 6023 5503 4675 5031 6071 6426 6426 5723
5198 5943 6961 7135 6729 5828 6511 7500 7960 7960
7299 6484 7257 8180 8542 8537 7154 7255 8262 8898
8898 8263 7319 7638 8645 8991 8991 8292 7309 8005
9024 9024 8565 7520 7858 8652 8966 8966 8323 7513
8130 8744 8879 8516 7722 8099 8602 8729 8726 8238
7885 8350 8600 8603 8487 7995 8194 8613 8613 8408
7953 8236 8696 8696 8552 8102 7852 8570 8818 8818
8339 7682 8535 9038 9038 8503 7669 7794 8864 9163
9115 8221 7275 8012 9317 9317 8512 7295 7623 9021
9409 9338 8116 6860 7873 9282 9490 9191 7012 7392
9001 9483 9457 8107 6642 7695 9269 9532 9246 7641
6547 8886 9457 9457 8089 6535 7537 9092 9406 9178
7591 6470 7838 9156 9222 7974 6506 7360 8746 9057
8877 7455 6504 7605 8698 8794 8439 7057 7202 8240
8505 8392 7287 6634 7418 8186 8229 7944 6920 6829
7499 7949 7831 7057 6866 7362 7626 7626 7403 6791
7062 7289 7397 7397 7063 6985 7221 7221 7199 6977
7088 7380 7380 7195 6957 6847 7426 7570 7508 6952
6833 7489 7721 7718 7254 6855 7132 7914 8040 7880
7198 6864 7575 8270 8229 7545 7036 7637 8470 8570
8364 7591 7413 8195 8878 8878 8115 7681 8313 9102
9185 8981 8283 8197 8932 9511 9511 9101 8510 8670
9686 9709 9504 8944 8926 9504 9964 9964 9627 9212
9366 9889 10100 9939 9540 9512 9860 10121 10121 9828
9567 9513 9782 9890 9851 9510 9385 9339 9451 9451
```
496 Chapter 22: Wavelet Analysis

19876 17244 15176 12575 10532 8180 6040 4059 2210 575

The following statements produce the line plot of these data, which is displayed in Figure 22.1.

```sas
proc sgplot data=quartzInfraredSpectrum;
  series x=WaveNumber y=Absorbance;
  xaxis reverse min=0;
  yaxis values=(0 to 70000 by 10000);
run;
```

![Figure 22.1 FT-IR Spectrum of Quartz](image)

These data contain information at two distinct scales, namely a low-frequency curve superimposed with a high-frequency oscillation. Notice that the oscillation is not uniform but occurs in several distinct bands. Wavelet analysis is an appropriate tool for providing insight into this type of data, as it enables you to identify the frequencies present in the absorbance data as the wave number changes. This property of wavelets is known as “time frequency localization”; in this case the role of time is played by `WaveNumber`. Also note that the dependent variable `Absorbance` is measured at equally spaced values of the independent variable `WaveNumber`. This condition is necessary for the direct use of the discrete wavelet transform that is implemented in the SAS/IML wavelet functions.

Creating the Wavelet Decomposition

The following SAS code starts the wavelet analysis:

```sas
%wavginit;
proc iml;
%wavinit;
```

Notice that the previous code segment includes two SAS macro calls. You can use the IML wavelet functions without using the WAVGINIT and WAVINIT macros. The macros are called to initialize and load IML modules that you can use to produce several standard wavelet diagnostic plots. These macros have been provided as autocall macros that you can invoke directly in your SAS code.
The WAVGINIT macro must be called prior to invoking PROC IML. This macro defines several macro variables that are used to adjust the size, aspect ratio, and font size for the plots produced by the wavelet plot modules. This macro can also take several optional arguments that control the positioning and size of the wavelet diagnostic plots. See the section “Obtaining Help for the Wavelet Macros and Modules” on page 513 for details about getting help about this macro call.

The WAVGINIT macro must be called from within PROC IML. It loads the IML modules that you can use to produce wavelet diagnostic plots. This macro also defines symbolic macro variables that you can use to improve the readability of your code.

The functions that create wavelet plots use the traditional graphics subroutines and use the ODS LISTING destination.

The following statements read the absorbance variable into an IML vector:

```plaintext
use quartzInfraredSpectrum;
read all var "Absorbance";
close;
```

You can now begin the wavelet analysis. The first step is to set up the options vector that specifies which wavelet and what boundary handling you want to use. You do this as follows:

```plaintext
optn = &waveSpec; /* optn=j(1,4,..); */
optn[&family] = &daubechies; /* optn[3] = 1; */
optn[&member] = 3; /* optn[4] = 3; */
optn[&boundary] = &polynomial; /* optn[1] = 2; */
optn[&degree] = &linear; /* optn[2] = 1; */
```

These statements use macro variables that are defined in the WAVGINIT macro. The equivalent code without using these macro variables is given in the adjacent comments. As indicated by the suggestive macro variable names, this options vector specifies that the wavelet to be used is the third member of the Daubechies wavelet family and that boundaries are to be handled by extending the signal as a linear polynomial at each endpoint.

The next step is to create the wavelet decomposition with the following call:

```plaintext
call wavft(decomp, absorbance, optn);
```

This call computes the wavelet transform specified by the vector `optn` of the input vector `absorbance`. The specified transform is encapsulated in the vector `decomp`. This vector is not intended to be used directly. Rather you use this vector as an argument to other IML wavelet subroutines and plot modules. For example, you use the WAVPRINT subroutine to print the information encapsulated in a wavelet decomposition. The following code produces the output in Figure 22.2.

```plaintext
call wavprint(decomp, &summary);
call wavprint(decomp, &detailCoeffs, 1, 4);
```
Creating the Wavelet Decomposition

Figure 22.2 Output of WAVPRINT Calls

<table>
<thead>
<tr>
<th>Decomposition Name</th>
<th>decomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelet Family</td>
<td>Daubechies Extremal Phase</td>
</tr>
<tr>
<td>Family Member</td>
<td>3</td>
</tr>
<tr>
<td>Boundary Treatment</td>
<td>Recursive Linear Extension</td>
</tr>
<tr>
<td>Number of Data Points</td>
<td>850</td>
</tr>
<tr>
<td>Start Level</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelet Detail Coefficients for decomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translate</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

Usually such displayed output is of limited use. More frequently you want to represent the transformed data graphically or use the results in further computational routines. As an example, you can estimate the noise level of the data by using a robust measure of the standard deviation of the highest-level detail coefficients, as demonstrated in the following statements:

```fortran
  call wavget(tLevel, decomp, &topLevel);
  call wavget(noiseCoeffs, decomp, &detailCoeffs, tLevel-1);
  noiseScale=mad(noiseCoeffs, "nmad");
  print noiseScale[label="Noise Scale"];```

The result is shown in Figure 22.3.

Figure 22.3 Scale of Noise in the Absorbance Data

<table>
<thead>
<tr>
<th>Noise Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>169.18717</td>
</tr>
</tbody>
</table>

The first WAVGET call is used to obtain the top level number in the wavelet decomposition `decomp`. The highest level of detail coefficients is defined at one level below the top level in the decomposition. The second WAVGET call returns these coefficients in the vector `noiseCoeffs`. Finally, the MAD function computes a robust estimate of the standard deviation of these coefficients.
Wavelet Coefficient Plots

Diagnostic plots greatly facilitate the interpretation of a wavelet decomposition. Recall that the diagnostic plots are written to the ODS LISTING destination. The following statement makes sure that the LISTING destination is open:

```ods listing;
```

One standard plot is the detail coefficients arranged by level. By using a module included by the WAVINIT macro call, you can produce the plot shown in Figure 22.4 as follows:

```call coefficientPlot(decomp) header="Quartz Spectrum";
```

**Figure 22.4** Detail Coefficients Scaled by Level

The first argument of the COEFFICIENTPLOT module is required; it specifies the wavelet decomposition. Other arguments are optional and need not be specified. This example uses a named argument to specify the header that appears at the top of the coefficient plot.

You can use the WAVHELP macro to obtain a description of the arguments of this and other wavelet plot modules. The WAVHELP macro is defined in the autocall WAVINIT macro. For example, invoking the WAVHELP macro as follows writes the calling information shown in Figure 22.5 to the SAS log.

```%wavhelp(coefficientPlot);
```
In Figure 22.4, the detail coefficients at each level are scaled independently. The oscillations present in the absorbance data are captured in the detail coefficients at levels 7, 8, and 9. The following statement produces a coefficient plot of just these higher-level detail coefficients and shows them scaled uniformly.

```plaintext
call coefficientPlot(decomp, 7, 'uniform', "Quartz Spectrum");
```

The plot is shown in Figure 22.6.
As noted earlier, noise in the data is captured in the detail coefficients, particularly in the small coefficients at higher levels in the decomposition. By zeroing or shrinking these coefficients, you can get smoother reconstructions of the input data. This is done by specifying a threshold value for each level of detail coefficients and then zeroing or shrinking all the detail coefficients below this threshold value. The IML wavelet functions and modules support several policies for how this thresholding is performed as well as for selecting the thresholding value at each level. See the section “WAVIFT Call” on page 1134 for details.

An options vector is used to specify the desired thresholding; several standard choices are predefined as macro variables in the WAVINIT module. The following statements produce the detail coefficient plot with the “SureShrink” thresholding algorithm of Donoho and Johnstone (1995).

```plaintext
call coefficientPlot(decomp, &SureShrink, 6, , , "Quartz Spectrum");
```

The plot is shown in Figure 22.7.
You can see that “SureShrink” thresholding has zeroed some of the detail coefficients at the higher levels but the larger coefficients that capture the oscillation in the data are still present. Consequently, reconstructions of the input signal using the thresholded detail coefficients still capture the essential features of the data, but are smoother because much of the very fine scale detail has been eliminated.

**Multiresolution Approximation Plots**

One way of presenting reconstructions is in a multiresolution approximation plot. In this plot reconstructions of the input data are shown by level. At any level the reconstruction at that level uses only the detail and scaling coefficients defined below that level.

The following statement produces such a plot, starting at level 3:

```plaintext
call mraApprox(decomp, 3, "Quartz Spectrum");
```

The results are shown in Figure 22.8.
You can see that even at level 3, the basic form of the input signal has been captured. As noted earlier, the oscillation present in the absorbance data is captured in the detail coefficients higher than level 7. Thus, the reconstructions at level 7 and lower are largely free of oscillation since they do not use any of the higher detail coefficients. You can confirm this observation by plotting just this level in the multiresolution analysis as follows:

```plaintext
 call mraApprox(decomp, , 7, 7, "Quartz Spectrum");
```

The results are shown in Figure 22.9.
You can also plot the multiresolution approximations obtained with thresholded detail coefficients. For example, the following statement plots the top-level reconstruction obtained by using the “SureShrink” threshold:

```latex
call mraApprox(decomp, &SureShrink, 10, 10, "Quartz Spectrum");
```

The results are shown in Figure 22.10.

**Figure 22.10** Top Level of Multiresolution Approximation with SureShrink Thresholding Applied

![Multiresolution Approximation](image)

Note that the high-frequency oscillation is still present in the reconstruction even with “SureShrink” thresholding applied.

**Multiresolution Decomposition Plots**

A related plot is the multiresolution decomposition plot, which shows the detail coefficients at each level. For convenience, the starting-level reconstruction at the lowest level of the plot and the reconstruction at the highest level of the plot are also included. Adding suitably scaled versions of all the detail levels to the starting-level reconstruction recovers the final reconstruction. The following statement produces such a plot, yielding the results shown in Figure 22.11.

```latex
call mraDecomp(decomp, 5, , , "Quartz Spectrum");
```
Wavelet Scalograms

Wavelet scalograms communicate the time frequency localization property of the discrete wavelet transform. In this plot each detail coefficient is plotted as a filled rectangle whose color corresponds to the magnitude of the coefficient. The location and size of the rectangle are related to the time interval and the frequency range for this coefficient. Coefficients at low levels are plotted as wide and short rectangles to indicate that they localize a wide time interval but a narrow range of frequencies in the data. In contrast, rectangles for coefficients at high levels are plotted thin and tall to indicate that they localize small time ranges but large frequency ranges in the data. The heights of the rectangles grow as a power of 2 as the level increases. If you include all levels of coefficients in such a plot, the heights of the rectangles at the lowest levels are so small that they are not visible. You can use an option to plot the heights of the rectangles on a logarithmic scale. This results in rectangles of uniform height but requires that you interpret the frequency localization of the coefficients with care.

The following statement produces a scalogram plot of all levels with “SureShrink” thresholding applied:

```matlab
call scalogram(decomp, &SureShrink, , 0.25, 'log','Quartz Spectrum');
```

The sixth argument specifies that the rectangle heights are to be plotted on a logarithmic scale. The role of the fifth argument (0.25) is to amplify the magnitude of the small detail coefficients. This is necessary since the detail coefficients at the lower levels are orders of magnitude larger than those at the higher levels. The amplification is done by first scaling the magnitudes of all detail coefficients to lie in the interval [0, 1] and then raising these scaled magnitudes to the power 0.25. Note that smaller powers yield larger amplification of the small detail coefficient magnitudes. The default amplification is 1/3.

The results are shown in Figure 22.12.
The bar on the left-hand side of the scalogram plot indicates the overall energy of each level. This energy is defined as the sum of the squares of the detail coefficients for each level. These energies are amplified by using the same algorithm for amplifying the detail coefficient magnitudes. The energy bar in Figure 22.12 shows that higher energies occur at the lower levels whose coefficients capture the gross features of the data. In order to interpret the finer-scale details of the data it is helpful to focus on just the higher levels. The following statement produces a scalogram for levels 6 and higher without using a logarithmic scale for the rectangle heights, and using the default coefficient amplification.

\[
\text{call scalogram(decomp, &SureShrink, 6, , , "Quartz Spectrum");}
\]

The result is shown in Figure 22.13.
The scalogram in Figure 22.13 reveals that most of the energy of the oscillation in the data is captured in the detail coefficients at level 8. Also note that many of the coefficients at the higher levels are set to zero by “SureShrink” thresholding. You can verify this by comparing Figure 22.13 with Figure 22.14, which shows the corresponding scalogram except that no thresholding is done. The following statement produces Figure 22.14:

```plaintext
call scalogram(decomp, 6, "Quartz Spectrum");
```

**Figure 22.14** Scalogram of Levels 6 and Higher Using No Thresholding
Reconstructing the Signal from the Wavelet Decomposition

You can use the WAVIFT subroutine to invert a wavelet transformation computed with the WAVFT subroutine. If no thresholding is specified, then up to numerical rounding error this inversion is exact. The following statements provide an illustration of this:

```plaintext
call wavift(reconstructedAbsorbance, decomp);
errorSS=ssq(absorbance-reconstructedAbsorbance);
print errorSS[label="Reconstruction Error Sum of Squares"];```

The output is shown in Figure 22.15.

Figure 22.15 Exact Reconstruction Property of WAVIFT

<table>
<thead>
<tr>
<th>Reconstruction Error Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.28E-16</td>
</tr>
</tbody>
</table>

Usually you use the WAVIFT subroutine with thresholding specified. This yields a smoothed reconstruction of the input data. You can use the following statements to create a smoothed reconstruction of absorbance and add this variable to the QuartzInfraredSpectrum data set.

```plaintext
call wavift(smoothedAbsorbance, decomp, &Sureshrink);
create temp var "smoothedAbsorbance";
   append;
close temp;
quit;

data Spectrum;
   merge quartzInfraredSpectrum temp;
run;
```

The following statements produce the line plot of the smoothed absorbance data shown in Figure 22.16:

```plaintext
proc sgplot data=Spectrum;
   series x=WaveNumber y=smoothedAbsorbance;
   xaxis reverse min=0;
   yaxis values=(0 to 70000 by 10000);
run;
```
You can see by comparing Figure 22.1 with Figure 22.16 that the wavelet smooth of the absorbance data has preserved all the essential features of these data.

Details

Using Symbolic Names

Several of the wavelet subroutines take arguments that are options vectors that specify user input. For example, the third argument in a WAVFT subroutine call is an options vector that specifies which wavelet and which boundary treatment are used in computing the wavelet transform. You could write the following statements that define the options vector:

```plaintext
optn = j(1, 4, .);
optn[1] = 0;
optn[3] = 1;
optn[4] = 3;
```

A problem with such code is that it is not easily readable. You can improve readability by using symbolic names. SAS macro variables provide a convenient mechanism for creating such symbolic names. For example, the previous statements could be replaced by the following:

```plaintext
optn = &waveSpec;
optn[&boundary] = &zeroExtension;
optn[&family] = &daubechies;
optn[&member] = 3;
```
where the symbolic macro variables (names with a preceding ampersand) resolve to the relevant quantities. Symbolic names also improve code readability when substituted for integer arguments that control what actions a multipurpose subroutine performs. Consider the following statements:

```verbatim
call wavget(n, decomposition, 1);
call wavget(fWavelet, decomposition, 8);
```

These statements can be replaced by the following:

```verbatim
call wavget(n, decomposition, &numPoints);
call wavget(fWavelet, decomposition, &fatherWavelet);
```

A set of symbolic names is defined in the autocall WAVINIT macro. The following tables list the symbolic names that are defined in this macro.

<table>
<thead>
<tr>
<th>Table 22.1 Macro Variables for Wavelet Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>&boundary</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>&degree</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>&family</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>&member</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 22.2 Macro Variables for Threshold Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>&policy</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>&method</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>&value</td>
</tr>
<tr>
<td>&levels</td>
</tr>
</tbody>
</table>
Table 22.3 Symbolic Names for the Third Argument of WAVGET

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>&numPoints</td>
<td>1</td>
</tr>
<tr>
<td>&detailCoeffs</td>
<td>2</td>
</tr>
<tr>
<td>&scalingCoeffs</td>
<td>3</td>
</tr>
<tr>
<td>&thresholdingStatus</td>
<td>4</td>
</tr>
<tr>
<td>&specification</td>
<td>5</td>
</tr>
<tr>
<td>&topLevel</td>
<td>6</td>
</tr>
<tr>
<td>&startLevel</td>
<td>7</td>
</tr>
<tr>
<td>&fatherWavelet</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 22.4 Macro Variables for the Second Argument of WAVPRINT

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>&summary</td>
<td>1</td>
</tr>
<tr>
<td>&detailCoeffs</td>
<td>2</td>
</tr>
<tr>
<td>&scalingCoeffs</td>
<td>3</td>
</tr>
<tr>
<td>&thresholdedDetailCoeffs</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 22.5 Macro Variables for Predefined Wavelet Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>&boundary</th>
<th>&degree</th>
<th>&family</th>
<th>&member</th>
</tr>
</thead>
<tbody>
<tr>
<td>&waveSpec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&haar</td>
<td>&periodic</td>
<td></td>
<td>&daubechies</td>
<td>1</td>
</tr>
<tr>
<td>&daubechies3</td>
<td>&periodic</td>
<td></td>
<td>&daubechies</td>
<td>3</td>
</tr>
<tr>
<td>&daubechies5</td>
<td>&periodic</td>
<td></td>
<td>&daubechies</td>
<td>5</td>
</tr>
<tr>
<td>&symmlet5</td>
<td>&periodic</td>
<td></td>
<td>&symmlet</td>
<td>5</td>
</tr>
<tr>
<td>&symmlet8</td>
<td>&periodic</td>
<td></td>
<td>&symmlet</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 22.6 Macro Variables for Predefined Threshold Specifications

<table>
<thead>
<tr>
<th>Name</th>
<th>&policy</th>
<th>&method</th>
<th>&value</th>
<th>&levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>&threshSpec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&RiskShrink</td>
<td>&hard</td>
<td>&minimax</td>
<td>&value</td>
<td>&all</td>
</tr>
<tr>
<td>&VisuShrink</td>
<td>&soft</td>
<td>&universal</td>
<td>&value</td>
<td>&all</td>
</tr>
<tr>
<td>&SureShrink</td>
<td>&soft</td>
<td>&sureHybrid</td>
<td>&value</td>
<td>&all</td>
</tr>
</tbody>
</table>
Obtaining Help for the Wavelet Macros and Modules

The WAVINIT macro that you call to define symbolic macro variables and wavelet plot modules also defines a macro WAVHELP that you can call to obtain help for the wavelet macros and plot modules. The syntax for calling the WAVHELP macro is as follows:

```%WAVHELP < ( name ) > ;```

In the macro call, `name` is either wavginit, wavinit, coefficientPlot, mraApprox, mraDecomp, or scalogram. This macro displays usage and argument information for the specified macro or module. If you call the WAVHELP macro with no arguments, it lists the names of the macros and modules for which help is available. Note that you can obtain help for the built-in IML wavelet subroutines by using the SAS Online Help.

References


Chapter 23
Genetic Algorithms

Contents
Overview .................................................. 515
Formulating a Genetic Algorithm Optimization ........................................ 517
  Choosing the Problem Encoding ........................................ 517
  Defining the Objective Function ........................................ 518
  Controlling the Selection Process ........................................ 519
  Using Crossover and Mutation Operators .................................... 520
Executing a Genetic Algorithm .................................................. 525
  Using the GA Modules to Implement an Optimization ....................... 525
  Incorporating Local Optimization ......................................... 527
  Handling Constraints ....................................................... 527
Examples ....................................................... 527
  Example 23.1: The Traveling Salesman Problem ............................. 528
  Example 23.2: Genetic Algorithm with Local Optimization ................. 531
  Example 23.3: Real-Valued Objective Optimization with Constraints ....... 534
  Example 23.4: Integer Programming Knapsack Problem ..................... 536
  Example 23.5: Optimization with Linear Constraints Using Repair Strategy 539
References ..................................................... 542

Overview
Genetic algorithms (hereafter referred to as GAs) are a family of search algorithms that seek optimal solutions to problems by using the principles of natural selection and evolution. GAs can be applied to almost any optimization problem and are especially useful for problems where calculus-based techniques do not work, such as when the objective function has many local extrema, is not differentiable, or is not continuous. GAs are also useful when the solution vector is constrained to be a sequence of integers.

In many cases GAs require more computation than specialized techniques that take advantage of specific problem structures. However, when no such techniques are available, GAs provide a robust general method of optimization.

In general, GAs use the following procedure to search for an optimum solution:

Initialization: An initial population of solutions is randomly generated, and an objective function is evaluated for each member of the initial population.
Chapter 23: Genetic Algorithms

Regeneration: A new population is generated from the current population. First, individual members are chosen stochastically to parent the next generation such that those who are “fit” (have good values for the objective function) are more likely to be chosen. This process is called selection. Those chosen “parents” are either copied directly to the next generation or can be passed to a crossover operator. The crossover operator combines two or more parents to produce new offspring solutions for the next generation. A fraction of the next-generation solutions, selected according to a user-specified mutation probability, is passed to a mutation operator that introduces random variations in the solutions.

The crossover and mutation operators are commonly called genetic operators. The crossover operator passes characteristics from each parent to the offspring, especially those characteristics shared in common. It is selection and crossover that direct the algorithm toward finding an optimum. Mutation is designed to ensure diversity in the search to prevent premature convergence to a local optimum.

As the final step in regeneration, the current population is replaced by the new members that were generated by selection, crossover, and mutation. The objective function values are evaluated for the new generation. A common variation on this approach is to pass one or more of the best solutions from the current population on to the next population unchanged. This can lead to faster convergence and assures that the best solution generated at any time during the optimization is never lost.

Repeat: After regeneration, the process checks some stopping criterion, such as the number of iterations. If the stopping criterion is not met, then the algorithm loops back to the regeneration step.

Although GAs have been demonstrated to work well for a variety of problems, there is no guarantee of convergence to a global optimum. Also, because the convergence of GAs can be sensitive to the choice of genetic operators, mutation probability, and selection criteria, some experimentation and fine-tuning of these parameters is often required.

In the traditional formulation of GAs, the set of parameters is mapped into finite-length bit strings, and the genetic operators that act on these strings are based on biological processes. Although there is a theoretical basis for the effectiveness of GAs formulated in this way (Goldberg 1989), in practice most problems do not fit naturally into this paradigm. Research has shown that optimizations can be set up by using the natural solution domain (for example, a real vector or integer sequence) and then applying crossover and mutation operators that are analogous to the traditional genetic operators but that are more appropriate to the natural formulation of the problem (Michalewicz 1996). This latter approach is sometimes called evolutionary computing. SAS/IML implements the evolutionary computing approach, which makes it much easier to formulate practical problems that have realistic constraints. Throughout this documentation, the term “genetic algorithm” is to be interpreted as evolutionary computing.

SAS/IML provides a flexible framework for implementing GAs. You can write your own modules for the genetic operators and objective function. You can use standard genetic operators or define your own. This framework enables you to use variations of the usual GA, such as modifying the optimization parameters during the optimization or incorporating problem-specific local optimizations to enhance convergence.

A SAS/IML program that implements GA optimization is structured differently from a program that uses the nonlinear programming (NLP) routines to perform nonlinear optimization. When you use the NLP routines, you define the objective function and constraints and make a single call that runs an optimization algorithm to completion.
Formulating a Genetic Algorithm Optimization

To formulate a GA, you must provide the following parameters:

- **Encoding**: The general structure and form of the solution.
- **Objective function**: The function to be optimized. You can specify whether the function is to be minimized or maximized.
- **Selection**: How members of the current solution population are chosen to be parents for the next generation.
- **Crossover operator**: How the attributes of parent solutions are combined to produce new offspring.
- **Mutation operator**: How random variation will be introduced into the new offspring to maintain genetic diversity.

The following sections discuss each of these items.

Choosing the Problem Encoding

Problem encoding refers to the structure or type of solution space that is to be searched, such as real-valued fixed-length vectors or integer sequences. The GA routines offer the following built-in encoding options:

- **General numeric matrix**: With this encoding, solutions can take the form of a numeric matrix of any shape. Also, different solutions can have different dimensions. This is the most flexible option. When you use this encoding, there are no assumptions about the form of the solution, so you must specify user modules for crossover and mutation operators and a user module for creating the initial solution population.

- **Real-valued fixed-length row vector**: If you use this encoding, you must also specify the number of components in the solution vector. When you use this encoding, you can use built-in crossover and mutation operators, or you can supply custom modules. You can specify upper and lower bounds for each component and SAS/IML will generate a random initial population between the bounds. If you do not explicitly set crossover and mutation operators, default operators are used. This type of encoding is often used for general nonlinear optimization problems.

- **Integer-valued fixed-length row vector**: This option is similar to the real-valued fixed-length encoding, except that the built-in genetic operators and initialization process will preserve and generate integer solutions. This type of encoding is useful for an assignment problem in which the positions within the vector represent...
different tasks and the integer values represent different machines or other resources that can be applied to each task.

**Integer fixed-length sequence:** In this encoding, each solution is composed of a sequence of integers ranging from 1 to the length of the sequence. Different solutions correspond to different permutations of the elements. For example, the following $s_1$ and $s_2$ are two integer sequences of length 6:

$$s_1 = \{1 \ 2 \ 3 \ 4 \ 5 \ 6\};$$

$$s_2 = \{2 \ 6 \ 5 \ 3 \ 4 \ 1\};$$

This type of encoding is often used for routing problems (such as the traveling salesman problem, where each element represents a city in a circular route) or scheduling problems.

---

**Defining the Objective Function**

Before executing a GA, you must specify the objective function. Two options are currently available: a user-defined function module and a built-in traveling salesman problem (TSP) objective function.

**User function module:** The module must take exactly one parameter, which is a potential solution, and return a scalar value, which is the objective function evaluated at the parameter. The module can have a global clause, which can be used to pass in other information that is necessary to evaluate the objective function. If global parameters are used, you must be careful about changing them after the optimization has been initialized. If a change in a global parameter affects the objective function values, you must reevaluate the entire solution population (see the GAREEVAL call) to ensure that the values are consistent with the changed global parameter.

The parameter that is passed to the routine is copied to the solution population when the module exits, so take care not to unintentionally modify the parameter. However, it is permissible (and might be very effective) to add logic to the module to improve the solution through some heuristic technique or local optimization, and deliberately copy that improved solution to the solution population by updating the parameter before returning. Using this hybrid approach might significantly improve the convergence of the GA, especially in later stages when solutions might be near an optimum.

**TSP objective function:** An objective function for the traveling salesman problem can be specified by using integer sequence encoding. For the TSP, a solution sequence represents a circular route. For example, a solution $s$ that has the following value represents a route going from location 2 to location 4, then to 3, to 1, to 5, and finally back to 2:

$$s = \{2 \ 4 \ 3 \ 1 \ 5\};$$

You must also specify a cost matrix $c$, where $c[i,j]$ is the cost of going from location $i$ to location $j$. The objective function is just the cost of traversing the route that is determined by $s$, and is equivalent to the following SAS/IML statements:
The built-in “order operator” for crossover and “invert operator” for mutation are especially appropriate for the TSP and other routing problems.

Controlling the Selection Process

Two competing factors need to be balanced in the selection process, the selective pressure and genetic diversity. Selective pressure, the tendency to select only the best members of the current generation to propagate to the next, is required to direct the GA to an optimum. Genetic diversity, the maintenance of a diverse solution population, is required to ensure that the solution space is adequately searched, especially in the earlier stages of the optimization process. Too much selective pressure can lower the genetic diversity so that the global optimum is overlooked and the GA converges to a local optimum. However, with too little selective pressure the GA might not converge to an optimum in a reasonable time. A proper balance between the selective pressure and genetic diversity must be maintained for the GA to converge in a reasonable time to a global optimum.

The GA routines offer two variants of tournament selection (Miller and Goldberg 1995), a standard technique for the selection process. In general, the tournament selection process randomly chooses a group of members from the current population, compares their objective values, and chooses the one that has the best objective value to be a parent for the next generation. Tournament selection is one of the fastest selection methods and offers good control over the selection pressure.

In the first variant of tournament selection, you can control the selective pressure by specifying the tournament size, which is the number of members that are chosen to compete for parenthood in each tournament. This number should be two or greater, where smaller numbers provide less selection pressure. Tournament sizes from two to 10 have been successfully applied to various GA optimizations; sizes over four or five are considered to represent strong selective pressure.

The second variant of tournament selection provides weaker selective pressure than the first variant. The tournament size is set to two, and the member that has the best objective value is chosen according to a probability that you specify. This best-player-wins probability can range from 0.5 to 1.0, where 1.0 implies that the best member is always chosen (equivalent to a conventional tournament of size two) and 0.5 implies an equal chance of either member being chosen, which is equivalent to pure random selection. You could set the best-player-wins probability close to 0.5 in the initial stages of the optimization and gradually increase it to strengthen the selective pressure as the optimization progresses, which results in an algorithm that is similar to the simulated annealing optimization technique.
Another important selection option is the \textit{elite} parameter. If an elite value of \( n \) is specified, then the best \( n \) solutions will be carried over to the next generation unchanged, with the rest of the new population filled in by tournament selection, crossover, and mutation. Setting the elite parameter to 1 or greater will therefore guarantee that the best solution is never lost through selection and propagation, which often improves the convergence of the algorithm.

\textbf{Using Crossover and Mutation Operators}

You can define modules for crossover and mutation operators, or you can choose from the built-in operators. The built-in operators are tied to the problem encoding options; the GA routines verify that a specified operator is appropriate for the problem encoding. You can turn off crossover, in which case the current population passes to the next generation subject only to mutation. Mutation can be turned off by setting the mutation probability to 0.

The valid crossover and mutation operators for each problem encoding are summarized in Table 23.1.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Encoding} & \textbf{Crossover} & \textbf{Mutation} \\
\hline
General & User module & User module \\
Fixed-length real vector & User module & User module & \text{Simple} & Uniform & \text{Two-point} & Delta & \text{Arithmetic} & Heuristic \\
Fixed-length integer vector & User module & User module & \text{Simple} & Uniform & \text{Two-point} & Delta & \text{Arithmetic} \\
Fixed-length integer sequence & User module & User module & \text{User module} & \text{Pmatch} & \text{Swap} & \text{Order} & \text{Invert} & \text{Cycle} \\
\hline
\end{tabular}
\caption{Valid Genetic Operators for Each Encoding}
\end{table}

The built-in genetic operators are described in the following sections.

\textbf{Crossover Operators}

The crossover operators are as follows:

\textit{Simple}: This operator is defined for integer and real encodings. To apply this operator, a position \( k \) within a vector of length \( n \) is chosen at random, such that \( 1 \leq k < n \). Then for parents \( p1 \) and \( p2 \) the offspring are

\begin{align*}
c1 &= p1[1:k] \ || \ p2[k+1:n] \\
c2 &= p2[1:k] \ || \ p1[k+1:n]
\end{align*}
For real encoding, you can specify an additional parameter, $a$, where $a$ is a scalar and $0 < a \leq 1$. It modifies the offspring as follows:

\[
\begin{align*}
    x_2 &= a \ast p_2 + (1-a) \ast p_1; \\
    c_1 &= p_1[1:k] || x_2[k+1:n]; \\
    x_1 &= a \ast p_1 + (1-a) \ast p_2; \\
    c_2 &= p_2[1:k] || x_1[k+1:n];
\end{align*}
\]

Note that for $a = 1$, which is the default value, $x_2$ and $x_1$ are the same as $p_2$ and $p_1$. Small values of $a$ reduce the difference between the offspring and parents. For integer encoding, $a$ is always 1.

**Two-point:** This operator is defined for real and integer encodings. Let $n \geq 3$ be the length of the solution vector. To apply this operator, two positions $k_1$ and $k_2$ within the vector are chosen at random, such that $1 \leq k_1 < k_2 < n$. Element values between those positions are swapped between parents. For parents $p_1$ and $p_2$ the offspring are:

\[
\begin{align*}
    c_1 &= p_1[1:k_1] || p_2[k_1+1:k_2] || p_1[k_2+1:n]; \\
    c_2 &= p_2[1:k_1] || p_1[k_1+1:k_2] || p_2[k_2+1:n];
\end{align*}
\]

For real encoding, you can specify an additional parameter, $a$, where $0 < a \leq 1$. It modifies the offspring as follows:

\[
\begin{align*}
    x_2 &= a \ast p_2 + (1-a) \ast p_1; \\
    c_1 &= p_1[1:k_1] || x_2[k_1+1:k_2] || p_1[k_2+1:n]; \\
    x_1 &= a \ast p_1 + (1-a) \ast p_2; \\
    c_2 &= p_2[1:k_1] || x_1[k_1+1:k_2] || p_2[k_2+1:n];
\end{align*}
\]

Note that for $a = 1$, which is the default value, $x_2$ and $x_1$ are the same as $p_2$ and $p_1$. Small values of $a$ reduce the difference between the offspring and parents. For integer encoding, $a$ is always 1.

**Arithmetic:** This operator is defined for real and integer vector encodings. This operator computes offspring of parents $p_1$ and $p_2$ as:

\[
\begin{align*}
    c_1 &= a \ast p_1 + (1-a) \ast p_2; \\
    c_2 &= a \ast p_2 + (1-a) \ast p_1;
\end{align*}
\]

where $a$ is a random number between 0 and 1. For integer encoding, each component is rounded to the nearest integer. This operator has the advantage that it will always produce feasible offspring for a convex solution space. A disadvantage is that it will tend to produce offspring toward the interior of the search region, so that it might be less effective if the optimum lies on or near the search region boundary.

**Heuristic:** This operator is defined for real vector encodings. It computes the first offspring from the two parents $p_1$ and $p_2$ as:

\[
\begin{align*}
    c_1 &= a \ast (p_2 - p_1) + p_2;
\end{align*}
\]
where \( p^2 \) is the parent that has the better objective value, and \( a \) is a random number between 0 and 1. The second offspring is computed as in the arithmetic operator:

\[
c2 = (1 - a) \times p1 + a \times p2;
\]

This operator is unusual in that it uses the objective value. It has the advantage of directing the search in a promising direction and automatically fine-tuning the search in an area where solutions are clustered. If the solution space has upper- and lower-bound constraints, the offspring will be checked against the bounds. Any component outside its bound will be set equal to that bound. The heuristic operator performs best when the objective function is smooth, and might not work well if the objective function or its first derivative is discontinuous.

**Pmatch:**

The partial match operator is defined for sequence encoding. It produces offspring by transferring a subsequence from one parent and filling the remaining positions in a way that is consistent with the position and ordering in the other parent. Start with two parents and randomly chosen cutpoints as follows:

\[
p1 = \{1 2|3 4 5 6|7 8 9\};
p2 = \{8 7|9 3 4 1|2 5 6\};
\]

The first step is to cross the selected segments. A dot (.) indicates positions yet to be determined:

\[
c1 = {\cdot \cdot 9 3 4 1 \cdot \cdot \cdot};;
c2 = {\cdot \cdot 3 4 5 6 \cdot \cdot \cdot};;
\]

Next, define a mapping according to the two selected segments:

9-3, 3-4, 4-5, 1-6

Next, fill in the positions where there is no conflict from the corresponding parent:

\[
c1 = {\cdot 2 9 3 4 1 7 8 \cdot};;
c2 = {8 7 3 4 5 6 2 \cdot \cdot};;
\]

Last, fill in the remaining positions from the subsequence mapping. In this case, for the first child 1 \( \rightarrow \) 6 and 9 \( \rightarrow \) 3, and for the second child 5 \( \rightarrow \) 4, 4 \( \rightarrow \) 3, 3 \( \rightarrow \) 9, and 6 \( \rightarrow \) 1.

\[
c1 = {6 2 9 3 4 1 7 8 5};;
c2 = {8 7 3 4 5 6 2 9 1};;
\]

This operator tends to maintain similarity of both the absolute position and relative ordering of the sequence elements and is useful for a wide range of sequencing problems.

**Order:**

This operator is defined for sequence encoding. It produces offspring by transferring a subsequence of random length and position from one parent and filling the remaining positions according to the order from the other parent. For parents \( p1 \) and \( p2 \), first choose a subsequence:

\[
p1 = \{1 2|3 4 5 6|7 8 9\};
p2 = \{8 7|9 3 4 1|2 5 6\};
\]

\[
c1 = {\cdot \cdot 3 4 5 6 \cdot \cdot \cdot};;
c2 = {\cdot \cdot 9 3 4 1 \cdot \cdot \cdot};;
\]
Starting at the second cutpoint, the order of the elements of $p2$ is as follows (cycling back to the beginning):

2 5 6 8 7 9 3 4 1

After removing 3, 4, 5 and 6, which have already been placed in $c1$, you have

2 8 7 9 1

Placing these back in order starting at the second cutpoint yields

$c1 = \{9\ 1\ 3\ 4\ 5\ 6\ 2\ 8\ 7\};$

Applying this logic to $c2$ yields

$c2 = \{5\ 6\ 9\ 3\ 4\ 1\ 7\ 8\ 2\};$

This operator maintains the similarity of the relative order (also called adjacency) of the sequence elements of the parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman problem.

In the example, the order is as follows:

$2\ 5\ 6\ 8\ 7\ 9\ 3\ 4\ 1$

After removing 3, 4, 5 and 6, you have

$2\ 8\ 7\ 9\ 1$

Placing these back in order starting at the second cutpoint yields

$c1 = \{9\ 1\ 3\ 4\ 5\ 6\ 2\ 8\ 7\};$

Applying this logic to $c2$ yields

$c2 = \{5\ 6\ 9\ 3\ 4\ 1\ 7\ 8\ 2\};$

This operator maintains the similarity of the relative order (also called adjacency) of the sequence elements of the parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman problem.

**Cycle:**

This operator is defined for sequence encoding. It produces offspring such that the position of each element value in the offspring comes from one of the parents. For example, start with parents $p1$ and $p2$:

$p1 = \{1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\};$
$p2 = \{8\ 7\ 9\ 3\ 4\ 1\ 2\ 5\ 6\};$

For the first child, choose the first element from the first parent:

$c1 = \{1\ \ldots\ \ldots\ \ldots\ \ldots\};$

To maintain the condition that the position of each element value must come from one of the parents, the position of the 8 value must come from $p1$, because the 8 position in $p2$ is already taken by the 1 in $c1$:

$c1 = \{1\ \ldots\ \ldots\ 8\ \ldots\};$

Now the position of 5 must come from $p1$, and so on until the process returns to the first position:

$c1 = \{1\ 3\ 4\ 5\ 6\ 8\ 9\};$

At this point, choose the remaining element positions from $p2$:

$c1 = \{1\ 7\ 3\ 4\ 5\ 6\ 2\ 8\ 9\};$

For the second child, starting with the first element from the second parent, similar logic produces

$c2 = \{8\ 2\ 9\ 3\ 4\ 1\ 7\ 5\ 6\};$
Chapter 23: Genetic Algorithms

This operator is most useful when the absolute position of the elements is of the greatest importance to the objective value.

A user-defined module for a crossover operator must be a subroutine that has four parameters. The module should compute and return two new offspring solutions in the first two parameters, based on the two parent solutions, which are passed into the module in the last two parameters. The module should not modify the parent solutions. A global clause can be used to pass in any additional information that the module might need.

**Mutation Operators**

The mutation operators are as follows:

**Uniform:** This operator is defined for real or integer encodings that have specified upper and lower bounds. To apply this operator, a position \( k \) is randomly chosen within the solution vector \( v \), and \( v[k] \) is modified to a random value between the upper and lower bounds for element \( k \). This operator might prove especially useful in early stages of the optimization, since it tends to distribute solutions widely across the search space and avoid premature convergence to a local optimum. However, in later stages of an optimization, when the search needs to home in on an optimum, the uniform operator might hinder the optimization.

**Delta:** This operator is defined for real and integer encodings. It first chooses an element of the solution at random, and then perturbs that element by a fixed amount, which is set by a \( \delta \) input parameter. \( \delta \) has the same dimension as the solution vectors. To apply the mutation, a randomly chosen element \( k \) of the solution vector \( v \) is modified such that

\[
\begin{align*}
v[k] &= v[k] + \delta[k]; \quad /* \text{with probability 0.5} */ \\
or \\
v[k] &= v[k] - \delta[k];
\end{align*}
\]

If upper and lower bounds are specified for the problem, then \( v[k] \) is adjusted as necessary to fit within the bounds. This operator enables you to control the scope of the search by using the \( \delta \) vector. One possible strategy is to start with a larger \( \delta \) value and then reduce it as the search progresses and begins to converge to an optimum. This operator is also useful if the optimum is known to be on or near a boundary, in which case \( \delta \) can be set large enough to always perturb the solution element to a boundary.

**swap:** This operator is defined for sequence problem encoding. It chooses two random locations in the solution vector, and swaps their value. You can also specify that multiple swaps be made for each mutation.

**invert:** This operator is defined for sequence encoding. It chooses two locations at random, and then reverses the order of elements between them. This operator is most often applied to the traveling salesman problem.

A user-defined module for a mutation operator must be a subroutine that has exactly one parameter, which contains the solution that is to be mutated. The module replaces the parameter with the new mutated value. As with crossover, a global clause can be used to pass in any additional information that the module needs.
Executing a Genetic Algorithm

The following sections describe how to set up a genetic algorithm and how to handle constraints. Several examples are presented.

Using the GA Modules to Implement an Optimization

After you formulate the GA optimization problem, executing the genetic algorithm is simple and straightforward. Table 23.2 summarizes the GA modules that you can use to set each of the optimization parameters. Some modules support default values for parameters that are not specified, and these default values are also listed. Parameters shown in italics are not required in all cases.

<table>
<thead>
<tr>
<th>Type</th>
<th>Set By</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoding</td>
<td>GASETUP</td>
<td>Encoding</td>
<td>0 (general)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (real vector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (integer vector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 (integer sequence)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>size</td>
<td>Size of vector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>seed</td>
<td>Initial random seed</td>
</tr>
<tr>
<td>Objective</td>
<td>GASETOBJ</td>
<td>id</td>
<td>Returned from GASETUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>objtype</td>
<td>0 (minimize user module)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (maximize user module)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (traveling salesman problem)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parm</td>
<td>If objtype = 0 or 1, user module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If objtype = 2, cost coefficients</td>
</tr>
<tr>
<td>Selection</td>
<td>GASETSEL</td>
<td>id</td>
<td>Returned from GASETUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elite</td>
<td>Integer in [0, population size]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>0 (conventional tournament)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (dual tournament with BPW problem)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parm</td>
<td>If type = 0, tournament size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If type = 1, real number in [0.5,1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default if</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not set</td>
<td>Conventional tournament</td>
</tr>
<tr>
<td>Crossover</td>
<td>GASETTCRO</td>
<td>id</td>
<td>Returned from GASETUP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crossprob</td>
<td>Crossover probability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>type</td>
<td>0 (user module)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (simple)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (two-point)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 (arithmetic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 (heuristic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 (pmatch)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 (cycle)</td>
</tr>
</tbody>
</table>
Table 23.2 (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Set By</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>parm</td>
<td>7 (order) Module name for type = 0 0 &lt; val ≤ 1 if encoding = 1, 0 &lt; type &lt; 3 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>crossprob</td>
<td></td>
</tr>
<tr>
<td>Default if type</td>
<td>Not set</td>
<td></td>
<td>Heuristic if encoding = 1 Simple if encoding = 2 Pmatch if encoding = 3, objtype 0 Order if objtype = 2 (TSP)</td>
</tr>
<tr>
<td>Mutation</td>
<td>GASETMIN id Returned from GASETUP</td>
<td>mutprob Mutation probability</td>
<td>type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mutprob</td>
<td>0 (user module) 1 (uniform) 2 (delta) 3 (swap) 4 (invert)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parm</td>
<td>Delta value if type = 2 Number of swaps if type = 3</td>
</tr>
<tr>
<td>Default if mutprob</td>
<td>Not set</td>
<td>type</td>
<td>0.05 Uniform if encoding = 1 or 2, bounded Delta if encoding = 1 or 2, no bounds Swap if encoding = 3, not TSP Invert if objtype = 1 (TSP)</td>
</tr>
</tbody>
</table>

After setting the optimization parameters, you can run the GA. First, use the GAINIT call to implement the initialization phase of the GA. The GAINIT call generates an initial solution population and evaluates the objective value of each member solution. In the GAINIT call, you specify the population size and any constant bounds for the solution domain.

Next implement a loop such as a DO loop or a DO WHILE loop. Put a GAREGEN call and a GAGETVAL call inside the loop. The GAREGEN call implements the regeneration phase of the GA, which generates a new solution population based on selection, crossover, and mutation of the current solution population. The GAREGEN call replaces the current population with the new population and computes the new objective function values. The GAGETVAL call retrieves the objective function values for the current population. This enables you to monitor the convergence of the GA. You might check the average value of the objective population, or check only the best value. If the elite parameter is 1 or more, then it is easy to check the best member of the population, because it will always be the first member retrieved.

Typically the loop ends when a stopping criterion is satisfied. After the loop, you can retrieve the members of the solution population by using the GAGETMEM call. To end the optimization, you should always use the GAEND call to free up memory resources that were allocated to the GA.
Incorporating Local Optimization

One commonly used technique is to combine the GA with a local optimization technique that is specific to the problem being solved. This can be done within the GA framework by incorporating a local optimization into the objective function evaluation. You can return a locally optimized objective value and optionally replace the original solution with the optimized solution.

If you always replace the original solution with the locally optimized solution, convergence occurs faster, but the algorithm is more likely to converge prematurely to a local optimum. One way to reduce this possibility is to not replace the original solution in every case, but to replace it with some probability $p$. For some problems, values of $p$ from 5 to 15 percent have been shown to significantly improve convergence, while avoiding premature convergence to a local optimum (Michalewicz 1996).

Handling Constraints

In practice, optimization problems often include constraints, which can make the problem difficult to solve. Constraints are handled in GAs in a variety of ways.

If it is possible, the most straightforward approach is to set the problem encoding, genetic operators, and initialization such that the constraints are automatically met. For example, a nonlinear optimization of $n$ variables that have upper and lower bounds is easily formulated by using real vector encoding, arithmetic crossover, and uniform mutation. The arithmetic crossover operator can be used without modification in any optimization over a convex solution space, when the optimum is expected to be an interior point of the domain.

Another approach to constrained optimization is to repair solutions only after genetic operators have been applied. This is what the GA routines do when you use the heuristic crossover operator or delta mutation operator with fixed bounds; any individual component that violates an upper or lower bound is adjusted. You can repair a solution inside a user-defined crossover or mutation module, or you can make repairs by modifying the solution in a user-defined objective function, as was described in the previous section.

Another technique is to allow solutions to violate constraints, but to impose a penalty in the objective function for unsatisfied constraints. If the penalty is severe enough, the algorithm should converge to an optimum point within the constraints. This approach should be used carefully. If most of the points in the solution space violate the constraints, then this technique might converge prematurely to the first feasible solution found. Also, convergence might be poor to a solution that lies on or near a constraint boundary.

Examples

This section provides examples of using a genetic algorithm to solve optimization problems.
Example 23.1: The Traveling Salesman Problem

To illustrate how to set up and execute a genetic algorithm, the following example searches for a solution to the traveling salesman problem. In this problem, cities are located on a two-by-five grid. The cost of traveling from one city to the next is given by the “taxicab distance” between the cities, also known as the Manhattan distance or the $L_1$ distance. The cost coefficients (the “distances”) are stored in the `coeffs` matrix. The optimal route has a total distance of 10.

```plaintext
proc iml;
/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1, 1 0 1 2 3 4 5 4 3 2, 2 1 0 1 2 3 4 5 4 3, 3 2 1 0 1 2 3 4 5 4, 4 3 2 1 0 1 2 3 4 5, 5 4 3 2 1 0 1 2 3 4, 4 5 4 3 2 1 0 1 2 3, 3 4 5 4 3 2 1 0 1 2, 2 3 4 5 4 3 2 1 0 1, 1 2 3 4 5 4 3 2 1 0 };

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
 10, /* number of locations */
 1234); /* initial seed */

/* set objective function */
call gasetobj(id,
 2, /* 2 -> traveling salesman problem */
 coeffs); /* cost coefficient matrix */

/* initialization phase */
call gainit(id,
 100); /* initial population size */

/* execute regeneration loop */
Niter = 20; /* number of iterations */
BestValue = j(Niter,1); /* allocate vector for results */

call gagetval(value, id, 1); /* gets first value */
BestValue[1] = value;

do i = 2 to Niter;
 call garegen(id);
 call gagetval(value, id, 1);
 BestValue[i] = value;
end;

/* print solution history */
print (t(1:Niter))[L="Iteration"] BestValue;

/* print final solution */
```

call gagetmem(bestMember, value, id, 1);
print bestMember[f=3.0 L="Best Member"], value[L="Final Best Value"];
call gaend(id);

For this test case, there is no call to GASETSEL. Therefore, the algorithm uses the default selection parameters, namely an elite value of 1 and a conventional tournament of size 2. Also, since there is no GASETTCRO or GASETMTUT call, the algorithm uses the default genetic operators: the “order” operator for crossover and the “invert” operator for mutation. The default mutation probability is 0.05. The output is shown in Figure 23.1.1.

**Output 23.1.1 Solution of a Traveling Salesman Problem**

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

**Best Member**

4 5 6 7 8 9 10 1 2 3

**Final Best Value**

10

The optimal value was reached after 19 iterations. Because the elite value was 1, the best solution was retained and passed on to each successive generation, and therefore never lost. Notice that out of 3,628,800 possible solutions (representing 362,800 unique paths), the GA found the optimum after only 1,900 function evaluations without using any problem-specific information to assist the optimization.

As an experiment, you can specify different genetic operators that override the default operators. The following statements use the GASETTCRO and GASETMTUT calls to set the crossover and mutation operators, respectively. The GASETSEL call is used to specify the selection parameters.
Chapter 23: Genetic Algorithms

/* alternate problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
10, /* number of locations */
1234); /* initial seed */

/* set objective function */
call gasetobj(id,
2, /* 2 -> traveling salesman problem */
coeffs); /* cost coefficient matrix */

call gasetcro(id,
1.0, /* crossover probability = 1 */
5); /* 5 -> pmatch operator */
call gasetmut(id,
0.05, /* mutation probability */
3); /* 3 -> swap operator */
call gasetsel(id,
3, /* set elite to 3 */
1, /* dual tournament */
0.95); /* best-player-wins probability = 0.95 */

The remainder of the program is the same:

/* initialization phase */
call gainit(id,
100); /* initial population size */

/* execute regeneration loop */
niter = 15; /* number of iterations */
BestValue = j(niter,1); /* allocate vector for results */

call gagetval(value, id, 1); /* gets first value */
BestValue[1] = value;

do i = 2 to niter;
    call garegen(id);
    call gagetval(value, id, 1);
    BestValue[i] = value;
end;

/* print solution history */
print (t(1:niter))[L="Iteration"] BestValue;

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print bestMember[f=3.0 L="Best Member"], value[L="Final Best Value"];

call gaend(id);

The output of this program is shown in Figure 23.1.2.
Example 23.2: Genetic Algorithm with Local Optimization

Output 23.1.2  Alternate Solution of a Traveling Salesman Problem

<table>
<thead>
<tr>
<th>Iteration</th>
<th>BestValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 10 1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

| Final  
<table>
<thead>
<tr>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Notice that the convergence was faster than for the previous case, reaching an optimum after 13 iterations. This illustrates that the convergence of a GA might be sensitive to the choice of genetic operators and selection parameters. In general, changing the optimization parameters affects the convergence.

Example 23.2: Genetic Algorithm with Local Optimization

For the symmetric traveling salesman problem, a simple local optimization is to check each pair of adjacent locations in the solution and swap their positions if that improves the objective function value. The following program repeats Example 23.1 but uses a modified objective function that implements this strategy. The optimized solution is not written back out to the solution population except to get the final solution at the end.

```sas
proc iml;
/* cost coefficients for TSP problem */
coeffs = { 0 1 2 3 4 5 4 3 2 1, 1 0 1 2 3 4 5 4 3 2, 2 1 0 1 2 3 4 5 4 3, 3 2 1 0 1 2 3 4 5 4, 4 3 2 1 0 1 2 3 4 5, 5 4 3 2 1 0 1 2 3 4, 4 5 4 3 2 1 0 1 2 3, 3 4 5 4 3 2 1 0 1 2, 2 3 4 5 4 3 2 1 0 1, 1 2 3 4 5 4 3 2 1 0 };```

/* define objective function with local optimization */
start TSPObjectiveFunction(r) global(coeffs, p);
 s = r;
 nc = ncol(s);
 /* local optimization: assume symmetric cost coefficients */
 do i = 1 to nc;
 city1 = s[i];
 inext = 1 + mod(i,nc);
 city2 = s[inext];
 if i=1 then
 before = s[nc];
 else
 before = s[i-1];
 after = s[1 + mod(inext,nc)];
 if (coeffs[before,city1] + coeffs[city2, after]) >
 (coeffs[before,city2] + coeffs[city1, after]) then do;
 s[i] = city2;
 s[inext] = city1;
 end;
 end;
 /* compute objective function */
 cost = coeffs[s[nc], s[1]];
 do i = 1 to nc-1;
 cost = cost + coeffs[s[i], s[i+1]];
 end;
 if uniform(1234)<=p then
 r = s;
 return (cost);
finish;

/* problem setup */
id = gasetup(3, /* 3 -> integer sequence encoding */
 10, /* number of locations */
 123); /* initial seed */
/* set objective function */
call gasetobj(id,
 0, /* 0 -> minimize a user-defined module */
 "TSPObjectiveFunction");
call gasetcro(id, 1.0, 6);
call gasetmut(id, 0.05, 4);
call gasetsel(id, 1, 1, 0.95);
p = 0; /* probability of writing locally optimized
 * solution back out to population */

/* initialization phase */
call gainit(id,
 100); /* initial population size */

/* execute regeneration loop */
niter = 10; /* number of iterations */
BestValue = j(niter,1); /* allocate vector for results */
call gagetval(value, id, 1); /* gets first (and best) value */
Example 23.2: Genetic Algorithm with Local Optimization

```plaintext
BestValue[1] = value;

do i = 2 to niter;
    call garegen(id);
    call gagetval(value, id, 1);
    BestValue[i] = value;
end;

/* print solution history */
print (t(1:niter))[L="Iteration"] BestValue;

/* write local optimization back to all solutions */
p = 1.; /* set global probability to 1 */
call gareeval(id);

/* print final solution */
call gagetmem(bestMember, value, id, 1);
print bestMember[f=3.0 L="Best Member"], value[L="Final Best Value"];

call gaend(id);
```

The results of running this program are shown in **Output 23.2.1**.

Output 23.2.1 Solution with Custom Objective Function

<table>
<thead>
<tr>
<th>Iteration</th>
<th>BestValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4 5 6 7 8 9 10 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Convergence is much improved by the local optimization, which reaches the optimum in just 5 iterations, as compared to 13 when there was no local optimization. Writing some of the optimized solutions back to the solution population, by setting the global probability \(p \) to 0.05 or 0.15, will improve convergence even more.
Example 23.3: Real-Valued Objective Optimization with Constraints

The following example illustrates some of the strengths and weaknesses of the arithmetic and heuristic crossover operators. The objective function to be minimized has a minimum at \(x = x_{opt} \) but is not differentiable at all points. The following program sets \(x_{opt} = 0 \) and specifies constant boundary constraints such that the optimum is in the interior of the search space. The heuristic crossover operator is used.

```iml
proc iml;

/* objective function, has minimum value at \( x = x_{opt} \) */
start sin_obj(x) global(xopt);
    r = abs(sin(sum(abs(x-xopt))));
    return(r);
finish;

xopt = { 0 0 0 };  
optimum = xopt;  
optval = sin_obj(optimum);

id = gasetup(1, 3, 1234);  
call gasetobj(id, 0, "sin_obj");  
call gasetcro(id, 0.9, 4);  
call gassetmut(id, 0.05, 2);  
call gasetsel(id, 5, 1, 0.95);

bounds = {-1 -1 -1, 1 1 1};  
call gainit(id, 200, bounds);

summary = j(20,2);  
matttrib summary [c = {"BestValue", "AvgValue"}];  
call gagetval(value, id);  
summary[1,1] = value[1];  
summary[1,2] = value[2];

do i = 2 to 20;  
call garegen(id);  
call gagetval(value, id);
```

```
Example 23.3: Real-Valued Objective Optimization with Constraints

```plaintext
summary[i,1] = value[1];
summary[i,2] = value[:];
end;

call gaend(id);
```

The output results are shown in Output 23.3.1.

### Output 23.3.1 Solution of a Vector Encoding Problem

<table>
<thead>
<tr>
<th>Iteration</th>
<th>BestValue</th>
<th>AvgValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1840732</td>
<td>0.8926763</td>
</tr>
<tr>
<td>2</td>
<td>0.14112</td>
<td>0.7445004</td>
</tr>
<tr>
<td>3</td>
<td>0.14112</td>
<td>0.590506</td>
</tr>
<tr>
<td>4</td>
<td>0.14112</td>
<td>0.4736059</td>
</tr>
<tr>
<td>5</td>
<td>0.14112</td>
<td>0.4167638</td>
</tr>
<tr>
<td>6</td>
<td>0.14112</td>
<td>0.3648824</td>
</tr>
<tr>
<td>7</td>
<td>0.1161997</td>
<td>0.3521076</td>
</tr>
<tr>
<td>8</td>
<td>0.0853626</td>
<td>0.3376295</td>
</tr>
<tr>
<td>9</td>
<td>0.0853626</td>
<td>0.3232832</td>
</tr>
<tr>
<td>10</td>
<td>0.0853626</td>
<td>0.3421653</td>
</tr>
<tr>
<td>11</td>
<td>0.0853626</td>
<td>0.3535389</td>
</tr>
<tr>
<td>12</td>
<td>0.0853626</td>
<td>0.3491909</td>
</tr>
<tr>
<td>13</td>
<td>0.0846332</td>
<td>0.322776</td>
</tr>
<tr>
<td>14</td>
<td>0.0846332</td>
<td>0.3172681</td>
</tr>
<tr>
<td>15</td>
<td>0.0846332</td>
<td>0.2877799</td>
</tr>
<tr>
<td>16</td>
<td>0.0811054</td>
<td>0.2990599</td>
</tr>
<tr>
<td>17</td>
<td>0.0811054</td>
<td>0.2643643</td>
</tr>
<tr>
<td>18</td>
<td>0.0622256</td>
<td>0.2759049</td>
</tr>
<tr>
<td>19</td>
<td>0.0600092</td>
<td>0.2714607</td>
</tr>
<tr>
<td>20</td>
<td>0.0600092</td>
<td>0.2112439</td>
</tr>
</tbody>
</table>
```

To show the convergence of the overall population, the average value of the objective function for the whole population is printed. The optimum value for this formulation is 0, and the optimum solution is (0 0 0). The output shows the convergence of the GA to be slow, especially as the solutions get near the optimum. This is the result of applying the heuristic crossover operator to an ill-behaved objective function.

You can change the crossover to the arithmetic operator by changing the following GASETFCRO call:

```plaintext
call gasetcro(id,
0.9,       /* crossover probability */
3);        /* 3-> arithmetic crossover operator */
```

The new results are shown in Output 23.3.2. Choosing the arithmetic operator has resulted in improved convergence.
Suppose you change the problem characteristics again by changing the constraints so that the optimum lies on a boundary. The following statement moves the optimum to a boundary:

```
bounds = {0 0 0,
          1 1 1};
```

If you use the arithmetic operator, the algorithm fails to converge to the true optimum. This is a characteristic of the arithmetic operator, which converges to interior points. However, if you revert to the heuristic crossover operator, the algorithm rapidly converges to the optimum.

This example illustrates that the results of a GA are operator-dependent. For complicated problems that have an unknown solution, you might need to try a number of different combinations of parameters in order to have confidence that the algorithm has converged to a true global optimum.

Example 23.4: Integer Programming Knapsack Problem

The following example uses the integer encoding and user-defined modules for crossover and mutation. It formulates the knapsack problem by using integer encoding. The integer solution s is a vector of ones and zeros, where $s[i]=1$ implies that item i is packed in the knapsack. The weight constraints of the problem are not handled explicitly, but are accounted for by including a penalty for overweight in the objective function. The crossover operator randomly chooses a value for each element of the solution vector from each parent. The mutation operator randomly changes the values of a user-defined number of elements in the solution vector. For this problem, the value of the global optimum is 18.
Example 23.4: Integer Programming Knapsack Problem

```plaintext
proc iml;
/* weight: weight of each of 15 objects
reward: value of each of 15 objects
limit: maximum weight that can be put in the backpack */
weight = {2 3 4 4 1 1 1 1 1 1 1 1 1 1 1};
reward = {6 6 6 5 1.3 1.2 1.1 1.0 1.1 1.3 1.0 1.0 0.9 0.8 0.6};
limit = 9;  /* weight limit */
nswitches = 3;  /* number of mutation sites */

start knapsack( x ) global( weight, reward, limit);
  wsum = sum(weight # x);
  rew = sum(reward # x);
  if wsum>limit then  /* penalty for exceeding weight */
    rew = rew - 5 * (wsum - limit);
  return(rew);
finish;

start switch_mut(s) global(nswitches);
  n = ncol(s);
  do i = 1 to nswitches;
    k = ceil(n * uniform(1234)); /* choose a random element */
    if s[k]=0 then  /* if item is not in knapsack, */
      s[k] = 1;  /* put it in */
    else  /* if item is in knapsack, */
      s[k] = 0;  /* remove it */
  end;
finish;

start uniform_cross(child1, child2, parent1, parent2);
  child1 = parent1;
  child2 = parent2;
  b = (uniform(j(ncol(parent1),1,1234)) <= 0.5); /* 0/1 vector */
  idx = loc(b=1);  /* locations to cross */
  if ncol(idx)>0 then do;
    child1[idx] = parent2[idx];
    child2[idx] = parent1[idx];
  end;
finish;

id = gasetup(2, /* 2-> integer vector encoding */
  15, /* size of vector */
  123);
call gasetobj(id, 1, "knapsack"); /* maximize objective module */
call gasetcro(id,
  1.0, /* crossover probability */
  0, "uniform_cross"); /* user crossover module */
call gasetmut(id,
  0.20, /* mutation probabilty */
  0, "switch_mut"); /* user mutation module */
call gasetsel(id,
  3, /* carry 3 elites to next generation */
  1, /* dual tournament */
```
0.95); /* best-player-wins probability */
call gainit(id, 100, /* initial population size */
 {0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, /* lower bounds */
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1}); /* upper bounds */

niter = 20;
summary = j(niter,2);
mattrib summary [c = {"BestValue", "AvgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
call garegen(id);
call gagetval(value, id);
summary[i,1] = value[1];
summary[i,2] = value[:];
end;
call gagetmem(mem, value, id, 1);
print mem[f=1.0 L="Best Member"], value[L="Final Best Value"];
print (t(1:niter))[L="Iteration"] summary;
call gaend(id);

The output results are shown in Output 23.4.1.

Output 23.4.1 Solution of a Knapsack Problem

<table>
<thead>
<tr>
<th>Best Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
</tbody>
</table>
Note that for this problem, the mutation parameters are set higher than is often seen for GAs because higher values are necessary to prevent premature convergence.

Example 23.5: Optimization with Linear Constraints Using Repair Strategy

This problem seeks a minimum within a convex domain that is specified by a convex hull. All points in the search space are normalized linear combinations of the vertices of the convex hull. Each solution is represented by a set of weights \(w \) such that there is one \(w_i \) for each point in the convex hull, \(0 \leq w_i \leq 1 \), and \(\sum w_i = 1 \). In this example the feasible region is the rectangular region that is the convex hull defined by the vertices \((-3, -2), (3, -2), (-3, 2), \) and \((3, 2)\). The objective function is a six-hump camelback function (Michalewicz 1996, Appendix B) that has a known global minimum value of \(-1.0316\) at two different points, \((-0.0898, 0.7126)\) and \((0.0898, -0.7126)\). A user-defined mutation module is specified, and the simple crossover operator is used. Both the mutation operator and the crossover operator can produce solutions that violate the constraints, so in the objective function each solution is checked and renormalized to bring it back within the convex hull.

```
proc iml;
/* Objective function has global minimum value of -1.0316
   at x = (-0.0898 0.7126) and x = (0.0898 -0.7126)
*/
start sixhump(w) global(cvxhull);
    sum = w[+];
    /* guard against remote possibility of all-zero weights */
    if sum<=0 then do;
```
nc = ncol(w);
 w = j(1, nc, 1/nc);
 sum = 1;
end;

w = w / sum; /* normalize weights */
x = (w * cvxhull)[+,:]; /* convert to x-coordinate form */
x1 = x[1]; x2 = x[2];

/* compute objective value */
r = (4 - 2.1*x1##2 + x1##4/3)*x1##2 + x1*x2 +
 (-4 + 4*x2*x2)*x2##2;
return(r);
finish;

/* each row is one point on the boundary of the convex hull */
cvxhull = {-3 -2,
 3 -2,
 -3 2,
 3 2};

/* initialization module */
start cvxinit(w) global(cvxhull);
 a = j(1, nrow(cvxhull), 1234);
 r = uniform(a);
 w = r / sum(r);
finish;

/* mutation module */
start cvxmut(w) global(cvxhull);
 row = ceil(nrow(cvxhull) * uniform(1234)); /* random row */
 w[row] = uniform(1234); /* random weight */
finish;

id = gasetup(1, /* 1-> real encoding */
 nrow(cvxhull), /* size of weight vector */
 1234);
call gasetobj(id,
 0, "sixhump"); /* minimize objective function */
call gasetsel(id,
 5, /* carry 5 elites to next generation */
 1, /* dual tournament */
 0.95); /* best-player-wins probability */
call gasetcro(id,
 0.8, /* crossover probability */
 1); /* simple crossover operator */
call gasetmut(id,
 0.05, /* mutation probability */
 0, "cvxmut"); /* user mutation module */
call gainit(id,
 100, /* initial population size */
 , /* not using constant bounds */
 "cvxinit"); /* initialization module */
niter = 25; /* number of iterations */
summary = j(niter, 2);
mattrib summary [c = {"BestValue", "AvgValue"}];
call gagetval(value, id);
summary[1,1] = value[1];
summary[1,2] = value[:];

do i = 1 to niter;
 call garegen(id);
 call gagetval(value, id);
 summary[i,1] = value[1];
 summary[i,2] = value[:];
end;
call gagetmem(mem, value, id, 1);
bestX = (mem * cvxhull)[+,:];
print bestX[L="Best X"], value[L="Best Value"];
print (t(1:nIter))[L="Iteration"] summary;
call gaend(id);

The output results are shown in Output 23.5.1.

Output 23.5.1 Solution of Linearly Constrained Problem

<table>
<thead>
<tr>
<th>Best X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0898406</td>
</tr>
<tr>
<td>-0.712662</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Best Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.031628</td>
</tr>
</tbody>
</table>
Any problem that has linear constraints could be formulated in this way, provided that you can specify the convex hull that corresponds to the constraints. The genetic operators and the repair strategy are straightforward to apply. Nevertheless, this example shows that the GA can converge to a global optimum.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>BestValue</th>
<th>AvgValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.985455</td>
<td>2.0177322</td>
</tr>
<tr>
<td>2</td>
<td>-0.985455</td>
<td>0.6105985</td>
</tr>
<tr>
<td>3</td>
<td>-1.024093</td>
<td>0.1397269</td>
</tr>
<tr>
<td>4</td>
<td>-1.02568</td>
<td>0.0689685</td>
</tr>
<tr>
<td>5</td>
<td>-1.031271</td>
<td>-0.135728</td>
</tr>
<tr>
<td>6</td>
<td>-1.031271</td>
<td>-0.12105</td>
</tr>
<tr>
<td>7</td>
<td>-1.031559</td>
<td>-0.332686</td>
</tr>
<tr>
<td>8</td>
<td>-1.031559</td>
<td>-0.462081</td>
</tr>
<tr>
<td>9</td>
<td>-1.031615</td>
<td>-0.477367</td>
</tr>
<tr>
<td>10</td>
<td>-1.031615</td>
<td>-0.372083</td>
</tr>
<tr>
<td>11</td>
<td>-1.031615</td>
<td>-0.742889</td>
</tr>
<tr>
<td>12</td>
<td>-1.031615</td>
<td>-0.915004</td>
</tr>
<tr>
<td>13</td>
<td>-1.031615</td>
<td>-0.853187</td>
</tr>
<tr>
<td>14</td>
<td>-1.031615</td>
<td>-0.775164</td>
</tr>
<tr>
<td>15</td>
<td>-1.031627</td>
<td>-0.850093</td>
</tr>
<tr>
<td>16</td>
<td>-1.031628</td>
<td>-0.955901</td>
</tr>
<tr>
<td>17</td>
<td>-1.031628</td>
<td>-0.885712</td>
</tr>
<tr>
<td>18</td>
<td>-1.031628</td>
<td>-0.775301</td>
</tr>
<tr>
<td>19</td>
<td>-1.031628</td>
<td>-0.972326</td>
</tr>
<tr>
<td>20</td>
<td>-1.031628</td>
<td>-0.900013</td>
</tr>
<tr>
<td>21</td>
<td>-1.031628</td>
<td>-0.962367</td>
</tr>
<tr>
<td>22</td>
<td>-1.031628</td>
<td>-0.850106</td>
</tr>
<tr>
<td>23</td>
<td>-1.031628</td>
<td>-0.884873</td>
</tr>
<tr>
<td>24</td>
<td>-1.031628</td>
<td>-0.635121</td>
</tr>
<tr>
<td>25</td>
<td>-1.031628</td>
<td>-0.754293</td>
</tr>
</tbody>
</table>

References

Chapter 24
Sparse Matrix Algorithms

Contents

Overview ... 543
Iterative Methods ... 544
Input Data Description ... 545
Example: Conjugate Gradient Algorithm 545
Example: Minimum Residual Algorithm 547
Example: Biconjugate Gradient Algorithm 548
Symbolic LDL and Cholesky Factorizations 549
References ... 549

Overview

This chapter documents direct and iterative algorithms for large sparse systems of linear equations:

\[Ax = b, \quad A \in \mathbb{R}^{n \times n}, \quad x, b \in \mathbb{R}^n \]

where \(A \) is a nonsingular square matrix.

The ITSOLVER call supports the following classes of iterative solvers:

- conjugate gradient for symmetric positive-definite systems
- conjugate gradient squared for general nonsingular systems
- minimum residual for symmetric indefinite systems
- biconjugate gradient for general nonsingular systems

Iterative algorithms incur zero or controlled amounts of fill-in, have relatively small working memory requirements, and can converge as fast as \(O(n) \) or \(O(n^2) \) versus direct dense methods that are typically \(O(n^3) \). Each iteration of an iterative algorithm is very inexpensive and typically involves a single matrix-vector multiplication and a pair of forward/backward substitutions.

Convergence of an iterative method depends upon the distribution of eigenvalues for the matrix \(A \), and can be rather slow for badly conditioned matrices. For such cases SAS/IML offers hybrid algorithms, which combine an incomplete factorization (a modified direct method) used in the preconditioning phase with an iterative refinement procedure. The following preconditioners are supported:

- incomplete Cholesky factorization ("IC")
• diagonal Jacobi preconditioner ("DIAG")
• modified incomplete LU factorization ("MILU")

For more information, see the description of the `precond` parameter in the section “Input Data Description” on page 545.

The SOLVELIN call supports the following direct sparse solvers for symmetric positive-definite systems:

• symbolic LDL
• Cholesky

Classical factorization-based algorithms share one common complication: the matrix A usually suffers fill-in, which means additional operations and computer memory are required to complete the algorithm. A symmetric permutation of matrix rows and columns can lead to a dramatic reduction of fill-in. To compute such a permutation, SAS/IML implements a minimum degree ordering algorithm, which is an automatic step in the SOLVELIN subroutine.

Iterative Methods

The conjugate gradient algorithm can be interpreted as the following optimization problem: minimize $\phi(x)$ defined by

$$
\phi(x) = \frac{1}{2} x^T A x - x^T b
$$

where $b \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ are symmetric and positive definite.

At each iteration $\phi(x)$ is minimized along an A-conjugate direction, constructing orthogonal residuals:

$$
r_i \perp \mathcal{K}_i(A; r_0), \quad r_i = A x_i - b
$$

where \mathcal{K}_i is a Krylov subspace:

$$
\mathcal{K}_i(A; r) = \text{span}\{r, A r, A^2 r, \ldots, A^{i-1} r\}
$$

Minimum residual algorithms work by minimizing the Euclidean norm $\|Ax - b\|_2$ over \mathcal{K}_i. At each iteration, x_i is the vector in \mathcal{K}_i that gives the smallest residual.

The biconjugate gradient algorithm belongs to a more general class of Petrov-Galerkin methods, where orthogonality is enforced in a different i-dimensional subspace (x_i remains in \mathcal{K}_i):

$$
r_i \perp \{w, A^T w, (A^T)^2 w, \ldots, (A^T)^{i-1} w\}
$$
Input Data Description

The ITSOLVER call has the following syntax and arguments:

```fortran
CALL ITSOLVER(x, error, iter, method, A, b <, precon> <, tol> <, maxiter> <, start> <, history> ;
```

The conjugate gradient and minimum residual algorithms (method = 'CG' or method = 'MINRES') require \(A \) to be symmetric; hence you must specify only the lower triangular part of \(A \), while the remaining algorithms require all nonzero coefficients to be listed. The following table lists valid values for the precond parameter for each class of algorithm.

<table>
<thead>
<tr>
<th>Method Value</th>
<th>Algorithm</th>
<th>Preconditioners</th>
</tr>
</thead>
<tbody>
<tr>
<td>"CG"</td>
<td>conjugate gradient</td>
<td>"NONE" "IC" "DIAG"</td>
</tr>
<tr>
<td>"MINRES"</td>
<td>minimum residual</td>
<td>"NONE" "IC" "DIAG"</td>
</tr>
<tr>
<td>"BICG"</td>
<td>biconjugate gradient</td>
<td>"NONE" "MILU"</td>
</tr>
<tr>
<td>"CGS"</td>
<td>conjugate gradient squared</td>
<td>"NONE"</td>
</tr>
</tbody>
</table>

\(x \) solution vector

\(error \) final solution error (optional)

\(iter \) resultant number of iterations (optional)

\(A \) three-column matrix of triplets, where the first column contains the value, the next column contains the row indices, and the third column contains the column indices of the nonzero matrix coefficients. The order in which triplets are listed is insignificant. For symmetric matrices specify only the lower triangular part, including the main diagonal (row indices must be greater than or equal to the corresponding column indices). Zero coefficients should not be included. No missing values or duplicate entries are allowed.

\(b \) the right-hand-side vector

\(precond \) preconditioner, default value "NONE"

\(tol \) desired tolerance, default value \(10^{-7} \)

\(maxiter \) maximum number of iterations, default value \(10^5 \)

\(start \) initial guess

\(history \) the history of errors for each iteration

Example: Conjugate Gradient Algorithm

Consider the following small example: \(Ax = b \), where

\[
A = \begin{pmatrix}
3 & 1 & 0 & 0 \\
1 & 4 & 1 & 3 \\
0 & 1 & 10 & 0 \\
0 & 0 & 3 & 0 & 3
\end{pmatrix}
\]
and the vector of right-hand sides $b = (1 \ 1 \ 1)^T$. Since the matrix is positive definite and symmetric, you can apply the conjugate gradient algorithm to solve the system. Remember that you must specify only the lower-triangular part of the matrix (so row indices must be greater than or equal to the corresponding column indices.)

The program for this example follows:

```c
/* value row col */
A = { 3 1 1,
     1 2 1,
     4 2 2,
     1 3 2,
     3 4 2,
     10 3 3,
     3 4 4 };

b = {1, 1, 1, 1}; /* right-hand sides */
tol = 1e-7; /* desired solution tolerance (optional) */
maxit = 200; /* maximum number of iterations (optional) */
hist = j(50, 1); /* allocate iteration progress (optional) */
start = {2, 3, 4, 5}; /* provide an initial guess (optional) */

/* call conjugate gradient method */
call itsolver(
    x, st, it, /* output parameters */
    'cg', A, b, 'ic', /* input parameters */
    tol, /* optional control parameters */
    maxit,
    start,
    hist
);

/* print solution, tolerance, and number of iterations */
print x, st, it;
```

Notice that the example used an incomplete Cholesky preconditioner, which is recommended. Figure 24.1 shows the results of the program:

Figure 24.1 Conjugate Gradient Solution of a Linear System

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5882353</td>
</tr>
<tr>
<td>-0.764706</td>
</tr>
<tr>
<td>0.1764706</td>
</tr>
<tr>
<td>1.0980392</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.145E-16</td>
</tr>
</tbody>
</table>

The conjugate gradient method converged successfully within three iterations. You can also print out the `hist` (iteration progress) array. Different starting points result in different iterative histories.
Example: Minimum Residual Algorithm

For symmetric indefinite matrices it is best to use the minimum residual algorithm. The following example is slightly modified from the previous example by negating the first matrix element. The other data and options are unchanged:

```plaintext
/* minimum residual algorithm */
/* value   row   col */
A = { -3  1  1,
     1  2  1,
     4  2  2,
     1  3  2,
     3  4  2,
     10 3  3,
     3  4  4};

b = {1, 1, 1, 1};  /* right-hand sides */
tol = 1e-7;       /* desired solution tolerance (optional) */
maxit = 200;      /* maximum number of iterations (optional) */
hist = j(50, 1);  /* allocate iteration progress (optional) */
start = {2, 3, 4, 5}; /* provide an initial guess (optional) */

/* call minimum residual method */
call itsolver(
    x, st, it,       /* output parameters */
    'minres', a, b, 'ic',      /* input parameters */
    tol,             /* optional control parameters */
    maxit,
    start,
    hist);          /* print solution, tolerance, and number of iterations */
print x, st, it;
```

Figure 24.2 Minimum Residual Solution of a Linear System

<table>
<thead>
<tr>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.27027</td>
<td></td>
</tr>
<tr>
<td>0.1891892</td>
<td></td>
</tr>
<tr>
<td>0.0810811</td>
<td></td>
</tr>
<tr>
<td>0.1441441</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>st</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.325E-15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>it</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Example: Biconjugate Gradient Algorithm

The biconjugate gradient algorithm is meant for general sparse linear systems. Matrix symmetry is no longer assumed, and a complete list of nonzero coefficients must be provided. Consider the following matrix:

\[
A = \begin{pmatrix}
10 & 0 & 0.2 \\
0.1 & 3 & 0 \\
0 & 0 & 4
\end{pmatrix}
\]

with \(b = (1 \ 1 \ 1)^T \).

The program for this example follows. The output is shown in Figure 24.3. It is important to look at the actual tolerance in order to know how effective the solution is.

```c
/* biconjugate gradient algorithm */
/* value row column */
A = { 10 1 1, 
     3 2 2, 
     4 3 3, 
     0.1 2 1, 
     0.2 1 3 }; 

b = { 1, 1, 1 }; /* right-hand sides */
tol = 1e-9; /* desired solution tolerance (optional) */
maxit = 10000; /* maximum number of iterations (optional) */
hist = j(50, 1); /* allocate iteration progress (optional) */
start = { 2, 3, 4 }; /* provide an initial guess (optional) */

/* call biconjugate gradient subroutine */
call itsolver( 
x, st, it, /* output parameters */
'bicg', a, b, 'milu', /* input parameters */
tol, /* optional control parameters */
maxit,
start,
hist ); 

/* print solution, tolerance, and number of iterations */
print x, st, it;
```

Figure 24.3 Biconjugate Gradient Solution of a Linear System

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
</table>
| 0.095
| 0.3301667
| 0.25 |

<table>
<thead>
<tr>
<th>st</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.421E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
Symbolic LDL and Cholesky Factorizations

Symbolic LDL and Cholesky factorization algorithms are meant for symmetric positive definite systems; hence, again, only the lower-triangular part of the matrix must be provided. The SAS/IML function SOLVELIN provides an interface to both algorithms; the minimum degree ordering heuristic is invoked automatically as follows:

```
CALL SOLVELIN(x, status, A, b, method);
```

- `x` solution vector
- `status` status indicator 0 success, 1 matrix is not positive-definite, 2 out of memory
- `A` sparse matrix (lower-triangular part)
- `b` vector of right-hand sides
- `method` a character string, which specifies factorization type, possible values: "LDL" for LDL factorization, and "CHOL" for Cholesky.

The program for this example follows. The output is shown in Figure 24.3.

```plaintext
A = ( 3 1 1, 1 2 1, 4 2 2, 1 3 2, 3 4 2, 10 3 3, 3 4 4 );

b = {1, 1, 1, 1};   /* right-hand sides */

call solvelin (x, status, a, b, "LDL");

print x;          /* print solution */
```

Figure 24.4 Symbolic LDL Solution of a Linear System

```
   x
0.5882353
-0.764706
0.1764706
1.0980392
```

References

Memory and Workspace

SAS/IML matrices are kept in RAM. Memory is automatically allocated when needed. If you are interested in how memory is used and allocated in PROC IML, the following sections explain the details.

There are two logical areas of memory: the symbol space and the workspace. The symbol space contains memory that is associated with the symbol table and compiled statements. The workspace contains all values in SAS/IML matrices. The workspace itself is divided into one or more blocks of memory.

At the start of a PROC IML session, the symbol space and the first workspace block are allocated automatically. If matrix operations consume the available workspace, more memory is allocated. The SYMSIZE= and WORKSIZE= options in the PROC IML statement give you control over the size of symbol space and the size of each extent of workspace. If you do not specify these options, PROC IML uses host-dependent defaults. For example, you can begin an IML session and set the SYMSIZE= and WORKSIZE= options with the statement

```
proc iml symsize=n1 worksize=n2;
```

where n1 and n2 are specified in kilobytes.

If the symbol space memory becomes full, more memory is allocated automatically. The symbol space is stable memory and is not compressible like workspace memory. Symbol space is recycled whenever possible. For example, temporary symbols can be deleted after they are used in evaluating an expression. The symbol space formerly used by these temporary variables is added to a list of free symbol-table nodes. When allocating temporary variables to evaluate another expression, PROC IML looks for symbol-table nodes in this list first before consuming unused symbol space.

Workspace memory is compressible. As matrices are assigned, the workspace memory fills up. As you free matrices (or as PROC IML frees temporary intermediate results), holes appear in the memory blocks. When a
memory block does not have room to store a new matrix, compression reclaims the holes that have appeared in the memory. If compression does not reclaim enough memory for the current allocation, IML allocates a new block of memory. This procedure results in the existence of a list of extents, each of which contains a mixture of active memory and holes of unused memory. There is always a current extent, the one in which the last allocation was made.

For a new allocation, the search for free space begins in the current extent and proceeds around the extent list until finding enough memory or returning to the current extent. If the search returns to the current extent, IML begins a second transversal of the extent list, compressing each extent until either finding sufficient memory or returning to the current extent. If the second search returns to the current extent, IML opens a new extent and makes it the current one.

If the SAS System cannot provide enough memory to open a new extent with the full extent size, IML repeatedly reduces its request by 2K. In this case, the successfully opened extent is smaller than the standard size.

If a single allocation is larger than the standard extent size, IML requests an allocation large enough to hold the matrix.

The WORKSIZE= and SYMSIZE= options offer tools for tuning memory usage. For data-intensive applications that involve a few large matrices, use a high WORKSIZE= value and a low SYMSIZE= value. For symbol-intensive applications that involve many matrices, perhaps through the use of many IML modules, use a high SYMSIZE= value.

You can use the SHOW SPACE command to display the current status of IML memory usage. This command also lists the total number of compressions done on all extents.

Setting the DETAILS option in the RESET command prints messages in the output file when IML compresses an extent, opens a new extent, allocates a large object, or acquires more symbol space. These messages can be useful because these actions normally occur without the user’s knowledge. The information can be used to tune WORKSIZE= and SYMSIZE= values for an application. However, the default WORKSIZE= and SYMSIZE= values should be appropriate in most applications.

Do not specify a very large value in the WORKSIZE= and SYMSIZE= options unless absolutely necessary. Many of the native functions and all of the DATA step functions used are dynamically loaded at execution time. If you use a large amount of the memory for symbol space and workspace, there might not be enough remaining to load these functions, resulting in the error message

```
Unable to load module module-name.
```

Should you run into this problem, issue a SHOW SPACE command to examine current usage. You might be able to adjust the SYMSIZE= or WORKSIZE= values.

The amount of memory your system can provide depends on the capacity of your computer and on the products installed. The following techniques for efficient memory use are recommended when memory is at a premium:

- Free matrices as they are no longer needed by using the FREE command.
- Store matrices you will need later in external library storage by using the STORE command, and then FREE their values. You can restore the matrices later by using the LOAD command. See Chapter 20.
- Plan your work to use smaller matrices.
Accuracy

All numbers are stored and all arithmetic is done in double precision. The algorithms used are generally very accurate numerically. However, when many operations are performed or when the matrices are ill-conditioned, matrix operations should be used in a numerically responsible way because numerical errors add up.

Error Diagnostics

When an error occurs, a message is displayed in the SAS log. The message includes a description of the error, the operation being performed, and the line and column number of the statement in which the error occurred. The names of matrices that are involved in the operation are also displayed. Matrix names that begin with a number sign (#) or an asterisk (*) are temporary names that the IML procedure assigns.

Some errors can be caught at parse time. For example, syntax errors such as an incorrect number of arguments, unbalanced parentheses, and a missing semicolon are detected when the program is parsed.

When an error occurs, the operation is not completed and the result (if any) is not assigned a value. If an error occurs during execution of statements inside a module, a PAUSE statement is automatically issued. You can correct the error and resume execution of statements inside a module by submitting a RESUME statement.

The following list describes common errors and their associated error messages:

- Referencing a matrix that has not been set to a value. For example, the following statement references a matrix that has no value:

  ```
  y = EmptyMatrix + 1;
  ERROR: (execution) Matrix has not been set to a value.
  ```

- Making a subscripting error. For example, the following statements refer to an element that is not present in a matrix:

  ```
  x = 1:3; x[4] = 1;
  ERROR: (execution) Invalid subscript or subscript out of range.
  ```

- Performing an operation that involves nonconformable matrix arguments. When you add, subtract, or multiply matrices, the dimensions of the matrices must satisfy certain conditions. Otherwise, the matrix operation is not defined. Let A and B be matrices. Then the following conditions must hold:

 - The elementwise operations A + B, A - B, A # B, and A / B are defined if A and B are the same dimensions. If A is an n x p matrix, the operations are also defined if B is a 1 x p row vector, an n x 1 column vector, or a 1 x 1 scalar. Similarly, if B is a matrix, A can be a vector of appropriate dimensions or a scalar.

 - The matrix multiplication A * B is defined if the number of columns of A equals the number of rows of B.

 - The horizontal concatenation operation A || B is defined if the number of rows of A equals the number of rows of B.
The vertical concatenation operation $A \parallel B$ is defined if the number of columns of A equals the number of columns of B.

For example, the following statements generate an error:

```matlab
x = 1:3; y = 1:4; m = x+y;
ERROR: (execution) Matrices do not conform to the operation.
```

- Passing a matrix of the wrong dimensions to function. For example, the following statement passes a vector to a function that is expecting a scalar argument:
  ```matlab
d = do(1, 2, 1:3); /* third arg must be scalar */
ERROR: (execution) Argument should be a scalar.
```

- Passing a matrix that is not square to a function (such as INV, DET, or SOLVE) that requires a square matrix. For example:
  ```matlab
v = eigval(1:3);
ERROR: (execution) Matrix should be square.
```

- Passing a matrix that is not symmetric to a function that requires a symmetric matrix. For example:
  ```matlab
call geneig(M, E, 1 2, 3 4, 1 2, 2 1);
ERROR: (execution) Matrix should be symmetric.
```

- Passing a matrix that is singular to functions that require a nonsingular matrix. For example:
  ```matlab
A = inv(1 1, 2 2);
ERROR: (execution) Matrix should be non-singular.
```

- Passing a matrix that is not positive definite or positive semidefinite to functions that require such matrices. For example:
  ```matlab
G = root(1 2, 2 3);
ERROR: (execution) Matrix should be positive definite.
```

- Attempting to allocate a matrix for which there is not enough RAM. (See the section “Memory and Workspace” on page 551.) For example:
  ```matlab
X = j(1e6, 1e6);
ERROR: (execution) Unable to allocate sufficient memory.
```

- Passing a numerical matrix to a function that expects a character matrix, or passing a character matrix to a function that expects a numerical matrix. For example:
  ```matlab
v = eigval(A B, C D);
ERROR: (execution) Character argument should be numeric.
```
Efficiency

The Interactive Matrix Language is an interpretive language executor that can be characterized as follows:

- efficient and inexpensive to compile
- inefficient and expensive for the number of operations executed
- efficient and inexpensive within each operation

Therefore, you should try to substitute matrix operations for iterative loops. There is a high overhead involved in executing each instruction; however, within the instruction IML runs very efficiently.

Consider the following four methods of summing the elements of a matrix:

```plaintext
s = 0; /* method 1 */
do i = 1 to m;
   do j = 1 to n;
      s = s + x[i,j];
   end;
end;
s = j[1,m] * x * j[n,1]; /* method 2 */
s = x[+,+]; /* method 3 */
s = sum(x); /* method 4 */
```

Method 1 is the least efficient, method 2 is more efficient, method 3 is more efficient yet, and method 4 is the most efficient. The greatest advantage of using IML is reducing human programming labor.

Missing Values

An IML numeric element can have a special value called a missing value that indicates that the value is unknown or unspecified. (A matrix with missing values should not be confused with an empty or unvalued matrix—that is, a matrix with 0 rows and 0 columns.) A numeric matrix can have any mixture of missing and nonmissing values.

SAS/IML software supports missing values for certain operations. The operators in the following list recognize missing values and propagate them. For example, matrix multiplication of a matrix with missing values is not supported. Most matrix operators and functions do not support missing values. Furthermore, many linear algebraic operations are not mathematically defined for a matrix with missing values. For example, the inverse of a matrix with missing values is meaningless.

Missing values are coded in the bit pattern of very large negative numbers, as an IEEE “NAN” code, or as a special string, depending on the host system.

In literals, a numeric missing value is specified as a single period. In data processing operations, you can add or delete missing values. All operations that move values around move missing values properly. The following arithmetic operators propagate missing values.
addition (+) subtraction (−)
multiplication (#) division (/)
maximum (<>) minimum (><)
modulo (MOD) exponentiation (##)

The comparison operators treat missing values as large negative numbers. The logical operators treat missing values as zeros. The operators SUM, SSQ, MAX, and MIN check for and exclude missing values.

The subscript reduction operators exclude missing values from calculations. If all of a row or column that is being reduced is missing, then the operator returns the result indicated in the following table.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Result If All Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>addition (+)</td>
<td>0</td>
</tr>
<tr>
<td>multiplication (#)</td>
<td>1</td>
</tr>
<tr>
<td>maximum (<>)</td>
<td>large negative value</td>
</tr>
<tr>
<td>minimum (><)</td>
<td>large positive value</td>
</tr>
<tr>
<td>sum squares (##)</td>
<td>0</td>
</tr>
<tr>
<td>index maximum (<<)</td>
<td>1</td>
</tr>
<tr>
<td>index minimum (>:<)</td>
<td>1</td>
</tr>
<tr>
<td>mean (:)</td>
<td>missing value</td>
</tr>
</tbody>
</table>

Also note that, unlike the SAS DATA step, IML does not distinguish between special and generic missing values; it treats all missing values alike.

Principles of Operation

This section presents various technical details about the operation of SAS/IML software. Statements in IML go through three phases:

- The parsing phase includes text acquisition, word scanning, recognition, syntactical analysis, and enqueuing on the statement queue. This is performed immediately as IML reads the statements.

- The resolution phase includes symbol resolution, label and transfer resolution, and function and call resolution. Symbol resolution connects the symbolic names in the statement with their descriptors in the symbol table. New symbols can be added or old ones recognized. Label and transfer resolution connects statements and references affecting the flow of control. This connects LINK and GOTO statements with labels; it connects IF with THEN and ELSE clauses; it connects DO with END. Function-call resolution identifies functions and call routines and loads them if necessary. Each reference is checked with respect to the number of arguments allowed. The resolution phase begins after a module definition is finished or a DO group is ended. For all other statements outside any module or DO group, resolution begins immediately after parsing.

- The execution phase occurs when the statements are interpreted and executed. There are two levels of execution: statement and operation. Operation-level execution involves the evaluation of expressions within a statement.
Operation-Level Execution

Operations are executed from a chain of operation elements created at parse time and resolved later. For each operation, the interpreter performs the following steps:

1. Prints a record of the operation if the FLOW option is on.

2. Looks at the operands to make sure they have values. Only certain special operators are allowed to tolerate operands that have not been set to a value. The interpreter checks whether any argument has character values.

3. Inspects the operator and gives control to the appropriate execution routine. A separate set of routines is invoked for character values.

4. Checks the operands to make sure they are valid for the operation. Then the routine allocates the result matrix and any extra workspace needed for intermediate calculations. Then the work is performed. Extra workspace is freed. A return code notifies IML if the operation was successful. If unsuccessful, it identifies the problem. Control is passed back to the interpreter.

5. Checks the return code. If the return code is nonzero, diagnostic routines are called to explain the problem to the user.

6. Associates the results with the result arguments in the symbol table. By keeping results out of the symbol table until this time, the operation does not destroy the previous value of the symbol if an error has occurred.

7. Prints the result if RESET PRINT or RESET PRINTALL is specified. The PRINTALL option prints intermediate results as well as end results.

8. Moves to the next operation.
Chapter 26
Language Reference

Contents

Overview .. 569
Statements, Functions, and Subroutines by Category 569
Operators .. 584
 Addition Operator: + 584
 Comparison Operators: <, <=, >, >=, =, ^= 585
 Concatenation Operator, Horizontal: || 586
 Concatenation Operator, Vertical: // 587
 Direct Product Operator: @ 588
 Division Operator: / 589
 Element Maximum Operator: <> 590
 Element Minimum Operator: <= 591
 Index Creation Operator: : 592
 Logical Operators: &, |, ^ 593
 Multiplication Operator, Elementwise: # 594
 Multiplication Operator, Matrix: * 596
 Power Operator, Elementwise: ## 596
 Power Operator, Matrix: ** 597
 Sign Reversal Operator: - 598
 Subscripts: [] ... 599
 Subtraction Operator: - 600
 Transpose Operator: ` 601
Statements, Functions, and Subroutines 602
 ABORT Statement .. 602
 ABS Function .. 603
 ALL Function ... 603
 ALLCOMB Function ... 604
 ALLPERM Function ... 605
 ANY Function .. 606
 APPCORT Call .. 607
 APPEND Statement .. 608
 APPLY Function ... 611
 ARMACOV Call ... 612
 ARMALIK Call ... 614
 ARMASIM Function .. 615
 BAR Call ... 617
BIN Function ... 621
BLANKSTR Function ... 623
BLOCK Function ... 623
BOX Call ... 624
BRANKS Function .. 627
BSPLINE Function .. 628
BTRAN Function ... 630
BYTE Function .. 631
CALL Statement ... 632
CHANGE Call .. 632
CHAR Function .. 633
CHOOSE Function .. 634
CLOSE Statement ... 635
CLOSEFILE Statement .. 635
COL Function ... 636
COLVEC Function .. 637
COMPORT Call .. 638
CONCAT Function .. 641
CONTENTS Function .. 642
CONVEXIT Function ... 642
CORR Function ... 643
CORR2COV Function .. 645
COUNTMISS Function .. 646
COUNTN Function ... 647
COUNTUNIQUE Function .. 648
COV Function ... 649
COV2CORR Function ... 649
COVLAG Function ... 650
CREATE Statement ... 651
CSHAPE Function ... 653
CUSUM Function .. 655
CUPROD Function ... 656
CV Function ... 656
CVEXHULL Function ... 657
DATASETS Function ... 657
DELETE Call ... 658
DELETE Statement .. 659
DESIGN Function .. 660
DESIGNF Function .. 660
DET Function .. 661
DIAG Function .. 662
DIF Function ... 663
DIMENSION Function ... 663
DISTANCE Function .. 664
<table>
<thead>
<tr>
<th>Line</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO Function</td>
<td>665</td>
</tr>
<tr>
<td>DO Statement</td>
<td>666</td>
</tr>
<tr>
<td>DO Statement, Iterative</td>
<td>667</td>
</tr>
<tr>
<td>DO DATA Statement</td>
<td>668</td>
</tr>
<tr>
<td>DO Statement with an UNTIL Clause</td>
<td>669</td>
</tr>
<tr>
<td>DO Statement with a WHILE Clause</td>
<td>669</td>
</tr>
<tr>
<td>DURATION Function</td>
<td>670</td>
</tr>
<tr>
<td>ECHELON Function</td>
<td>671</td>
</tr>
<tr>
<td>EDIT Statement</td>
<td>672</td>
</tr>
<tr>
<td>EIGEN Call</td>
<td>673</td>
</tr>
<tr>
<td>EIGVAL Function</td>
<td>677</td>
</tr>
<tr>
<td>EIGVEC Function</td>
<td>678</td>
</tr>
<tr>
<td>ELEMENT Function</td>
<td>678</td>
</tr>
<tr>
<td>END Statement</td>
<td>679</td>
</tr>
<tr>
<td>ENDSUBMIT Statement</td>
<td>679</td>
</tr>
<tr>
<td>EXECUTE Call</td>
<td>679</td>
</tr>
<tr>
<td>EXECUTEFILE Call</td>
<td>680</td>
</tr>
<tr>
<td>EXP Function</td>
<td>683</td>
</tr>
<tr>
<td>EXPMATRIX Function</td>
<td>683</td>
</tr>
<tr>
<td>EXPANDGRID Function</td>
<td>684</td>
</tr>
<tr>
<td>EXPORTDATASETTER Call</td>
<td>684</td>
</tr>
<tr>
<td>EXPORTMATRIXTOR Call</td>
<td>685</td>
</tr>
<tr>
<td>FARMACOV Call</td>
<td>686</td>
</tr>
<tr>
<td>FARMAFIT Call</td>
<td>688</td>
</tr>
<tr>
<td>FARMALIK Call</td>
<td>689</td>
</tr>
<tr>
<td>FARMASIM Call</td>
<td>691</td>
</tr>
<tr>
<td>FDIF Call</td>
<td>692</td>
</tr>
<tr>
<td>FFT Function</td>
<td>693</td>
</tr>
<tr>
<td>FILE Statement</td>
<td>695</td>
</tr>
<tr>
<td>FIND Statement</td>
<td>696</td>
</tr>
<tr>
<td>FINISH Statement</td>
<td>697</td>
</tr>
<tr>
<td>FORCE Statement</td>
<td>697</td>
</tr>
<tr>
<td>FORWARD Function</td>
<td>698</td>
</tr>
<tr>
<td>FREE Statement</td>
<td>698</td>
</tr>
<tr>
<td>FROOT Function</td>
<td>699</td>
</tr>
<tr>
<td>FULL Function</td>
<td>700</td>
</tr>
<tr>
<td>GAEND Call</td>
<td>702</td>
</tr>
<tr>
<td>GAGETMEM Call</td>
<td>702</td>
</tr>
<tr>
<td>GAGETVAL Call</td>
<td>703</td>
</tr>
<tr>
<td>GAINIT Call</td>
<td>703</td>
</tr>
<tr>
<td>GAREEVAL Call</td>
<td>704</td>
</tr>
<tr>
<td>GAREGEN Call</td>
<td>705</td>
</tr>
<tr>
<td>GASET CRO Call</td>
<td>705</td>
</tr>
<tr>
<td>GASETMUT Call</td>
<td>709</td>
</tr>
</tbody>
</table>
GASETOBJ Call .. 711
GASETSEL Call 712
GASETUP Function 713
GBLKVP Call .. 715
GBLKVPD Call ... 716
GCLOSE Call .. 716
GDELETE Call .. 716
GDRAW Call ... 717
GDRAWL Call .. 717
GENEIG Call ... 718
GEOMEAN Function 719
GGRID Call .. 720
GINCLUDE Call .. 721
GINV Function .. 721
GOPEN Call .. 723
GOTO Statement 724
GPIE Call .. 725
GPIEXY Call ... 726
GPOINT Call .. 727
GPOLY Call .. 728
GPORT Call .. 729
GPORTPOP Call 729
GPORTSTK Call 729
GSCALE Call .. 730
GSCRIPT Call .. 731
GSET Call .. 732
GSHOW Call .. 733
GSORTH Call .. 733
GSTART Call .. 735
GSTOP Call .. 736
GSTRLEN Call .. 736
GTEXT and GVTEXT Calls 737
GWINDOW Call .. 738
GXAXIS and GYAXIS Calls 738
HADAMARD Function 740
HALF Function ... 741
HANKEL Function 741
HARMEAN Function 742
HDIR Function ... 743
HEATMAPCONT Call 743
HEATMAPDISC Call 747
HERMITE Function 749
HISTOGRAM Call 750
HOMOGEN Function 752
I Function ... 753
IF-THEN/ELSE Statement ... 754
IFFT Function .. 755
IMPORTDATASETFROMR Call ... 756
IMPORTMATRIXFROMR Call .. 758
INDEX Statement ... 759
INFILE Statement ... 760
INPUT Statement .. 761
INSERT Function ... 763
INV Function .. 764
INVUPDT Function .. 766
IPF Call ... 768
ISEMPTY Function .. 779
ISSKIPPED Function ... 779
ITSOLVER Call .. 780
J Function ... 784
JROOT Function .. 784
KALCVF Call ... 785
KALCVS Call .. 789
KALdff Call .. 792
KALDFS Call .. 795
KURTOSIS Function .. 797
LAG Function .. 797
LAV Call ... 798
LCP Call ... 802
LENGTH Function ... 805
LINK Statement .. 805
LIST Statement .. 806
LISTADDITEM Call ... 807
LISTCREATE Function ... 807
LISTDELETEITEM Call ... 808
LISTDELETEITEMNAME Call .. 809
LISTGETALLENAMES Function 809
LISTGETITEM Function ... 810
LISTGETNAME Function .. 811
LISTGETSUBITEM Function ... 812
LISTINDEX Function .. 812
LISTINSERTITEM Call .. 813
LISTLEN Function .. 814
LISTSETITEM Call .. 814
LISTSETITEMNAME Call .. 815
LISTSETSUBITEM Call .. 815
LMS Call ... 816
LOAD Statement .. 825
LOC Function .. 825
LOG Function .. 826
LOGABSDET Function .. 827
LP Call ... 827
LPSOLVE Call ... 828
LTS Call ... 830
LUPDT Call .. 837
MAD Function .. 838
MAGIC Function .. 840
MAHALANOBIS Function .. 841
MARG Call .. 842
MATRIB Statement ... 844
MAX Function ... 846
MAXQFORM Call .. 846
MCD Call ... 849
MEAN Function .. 853
MEDIAN Function .. 855
MILPSOLVE Call ... 855
MIN Function ... 859
MOD Function .. 859
MODULEI Call .. 860
MODULEIC Function ... 861
MODULEIN Function ... 861
MVE Call ... 862
NAME Function .. 867
NCOL Function ... 868
NDX2SUB Function ... 868
NLENG Function ... 870
Nonlinear Optimization and Related Subroutines ... 870
NLPCG Call .. 873
NLPPD Call .. 874
NLPPFD Call .. 876
NLPEA Call .. 880
NLPHQN Call .. 881
NLPLM Call .. 883
NLPNMS Call ... 884
NLPNRA Call .. 888
NLPNRR Call .. 891
NLPM Call .. 893
NLQPQN Call .. 898
NLQUA Call .. 901
NLPT Call .. 902
NORM Function ... 902
NORMAL Function .. 903
RANK Function .. 984
RANKTIE Function .. 986
RATES Function .. 988
RATIO Function .. 989
RDODT and RUPDT Calls ... 990
READ Statement .. 994
REMOVE Function .. 995
REMOVE Statement ... 996
RENAME Call ... 996
REPEAT Function .. 996
REPLACE Statement ... 997
RESET Statement .. 998
RESUME Statement ... 1000
RETURN Statement ... 1000
ROOT Function ... 1001
ROW Function ... 1003
ROWCAT Function ... 1003
ROWCATC Function ... 1004
ROWVEC Function ... 1005
RSUBSTR Function .. 1005
RUN Statement ... 1006
RUPDT Call ... 1006
RZLIND Call ... 1007
SAMPLE Function .. 1019
SAVE Statement ... 1020
SCATTER Call ... 1021
SEQ, SEQSCALE, and SEQSHIFT Calls 1024
SEQSCALE Call ... 1035
SEQSHIFT Call ... 1035
SERIES Call ... 1036
SETDIF Function .. 1038
SETIN Statement .. 1039
SETOUT Statement .. 1040
SHAPE Function ... 1041
SHAPECOL Function ... 1042
SHOW Statement .. 1043
SKEWNESS Function .. 1045
SOLVE Function .. 1045
SOLVE LIN Call .. 1046
SORT Call ... 1047
SORT Statement .. 1048
SORTNDX Call ... 1049
SOUND Call ... 1050
SPARSE Function ... 1051
<table>
<thead>
<tr>
<th>Call</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLINE and SPLINEC Calls</td>
<td>1052</td>
</tr>
<tr>
<td>SPLINEV Function</td>
<td>1060</td>
</tr>
<tr>
<td>SPOT Function</td>
<td>1061</td>
</tr>
<tr>
<td>SQRSYM Function</td>
<td>1062</td>
</tr>
<tr>
<td>SQR Function</td>
<td>1062</td>
</tr>
<tr>
<td>SQRVECH Function</td>
<td>1063</td>
</tr>
<tr>
<td>SSQ Function</td>
<td>1063</td>
</tr>
<tr>
<td>STANDARD Function</td>
<td>1064</td>
</tr>
<tr>
<td>START Statement</td>
<td>1064</td>
</tr>
<tr>
<td>STD Function</td>
<td>1066</td>
</tr>
<tr>
<td>STOP Statement</td>
<td>1066</td>
</tr>
<tr>
<td>STORAGE Function</td>
<td>1067</td>
</tr>
<tr>
<td>STORE Statement</td>
<td>1067</td>
</tr>
<tr>
<td>SUB2NDX Function</td>
<td>1068</td>
</tr>
<tr>
<td>SUBMIT Statement</td>
<td>1069</td>
</tr>
<tr>
<td>SUBSTR Function</td>
<td>1071</td>
</tr>
<tr>
<td>SUM Function</td>
<td>1072</td>
</tr>
<tr>
<td>SUMMARY Statement</td>
<td>1072</td>
</tr>
<tr>
<td>SVD Call</td>
<td>1075</td>
</tr>
<tr>
<td>SWEEP Function</td>
<td>1077</td>
</tr>
<tr>
<td>SYMSQR Function</td>
<td>1078</td>
</tr>
<tr>
<td>T Function</td>
<td>1079</td>
</tr>
<tr>
<td>TABLEADDVAR Call</td>
<td>1079</td>
</tr>
<tr>
<td>TABLECREATE Function</td>
<td>1081</td>
</tr>
<tr>
<td>TABLECREATEFROMDATASET Function</td>
<td>1081</td>
</tr>
<tr>
<td>TABLEGETVARDATA Function</td>
<td>1082</td>
</tr>
<tr>
<td>TABLEGETVARFORMAT Function</td>
<td>1082</td>
</tr>
<tr>
<td>TABLEGETVARINDEX Function</td>
<td>1083</td>
</tr>
<tr>
<td>TABLEGETVARINFORMAT Function</td>
<td>1084</td>
</tr>
<tr>
<td>TABLEGETVARLABEL Function</td>
<td>1084</td>
</tr>
<tr>
<td>TABLEGETVARNAMESPACE Function</td>
<td>1085</td>
</tr>
<tr>
<td>TABLEGETVARTYPE Function</td>
<td>1086</td>
</tr>
<tr>
<td>TABLEISEXISTINGVAR Function</td>
<td>1086</td>
</tr>
<tr>
<td>TABLEISVARNUMERIC Function</td>
<td>1087</td>
</tr>
<tr>
<td>TABLEPRINT Call</td>
<td>1087</td>
</tr>
<tr>
<td>TABLERENAMEVAR Call</td>
<td>1090</td>
</tr>
<tr>
<td>TABLESETVARFORMAT Call</td>
<td>1091</td>
</tr>
<tr>
<td>TABLESETVARINFORMAT Call</td>
<td>1092</td>
</tr>
<tr>
<td>TABLESETVARLABEL Call</td>
<td>1092</td>
</tr>
<tr>
<td>TABLEWRITEVARDATASET Call</td>
<td>1093</td>
</tr>
<tr>
<td>TABULATE Call</td>
<td>1094</td>
</tr>
<tr>
<td>TOEPLITZ Function</td>
<td>1094</td>
</tr>
<tr>
<td>TPSPLINE Call</td>
<td>1096</td>
</tr>
<tr>
<td>TPSPLINEV Call</td>
<td>1098</td>
</tr>
</tbody>
</table>
Chapter 26: Language Reference

TRACE Function ... 1101
TRISOLV Function .. 1101
TSBAYSEA Call .. 1102
TSDECOMP Call .. 1104
TSMLOCAR Call .. 1107
TSMLOMAR Call .. 1108
TSMULMAR Call .. 1109
TSPEARS Call .. 1110
TSPRED Call ... 1111
TSROOT Call .. 1112
TSTVCAR Call .. 1112
TSUNIMAR Call .. 1113
TYPE Function ... 1114
UNIFORM Function ... 1115
UNION Function .. 1115
UNIQUE Function .. 1115
UNIQUEBY Function ... 1115
USE Statement .. 1117
VALSET Call .. 1118
VALUE Function .. 1119
VAR Function ... 1120
VARMACOV Call ... 1120
VARMALIK Call .. 1122
VARMASIM Call .. 1123
VECDIAG Function .. 1125
VECH Function .. 1126
VNORMAL Call .. 1126
VTSROOT Call ... 1128
WAVFT Call ... 1129
WAVGET Call ... 1132
WAVIFT Call .. 1134
WAVPRINT Call .. 1136
WAVTHRSH Call ... 1137
XMULT Function .. 1137
XSECT Function .. 1138
YIELD Function .. 1138

Base SAS Functions Accessible from SAS/IML Software 1139

Bitwise Logical Operation Functions 1140
Character and Formatting Functions 1140
Character String Matching Functions and Subroutines 1144
Combinatorial Functions .. 1144
Date and Time Functions .. 1145
Descriptive Statistics Functions and Subroutines 1146
Double-Byte Character String Functions 1147
Overview

This chapter describes all operators, statements, functions, and subroutines that can be used in SAS/IML software. This chapter is divided into the following sections:

- The first section lists all statements, functions, and subroutines available in SAS/IML software, grouped by functionality.
- The second section contains descriptions of operators, ordered alphabetically by the name of the operator.
- The third section contains descriptions of statements, functions, and subroutines ordered alphabetically by name.

Statements, Functions, and Subroutines by Category

Mathematical Functions

- **ABS function** computes the absolute value
- **EXP function** applies the exponential function
- **EXPMATRIX function** returns the exponential of a matrix
- **INT function** truncates a value
- **LOG function** computes the natural logarithm
- **LOGABSDET** computes the natural logarithm of the absolute value of the determinant
- **MOD function** computes the modulo (remainder)
Chapter 26: Language Reference

SQRT function computes the square root

You can also call any function in Base SAS software, such as those documented in the following sections:

- “Mathematical Functions and Subroutines” on page 1150
- “Probability Functions” on page 1151
- “Quantile Functions” on page 1152
- “Trigonometric and Hyperbolic Functions” on page 1153
- “Truncation Functions” on page 1154

Reduction Functions

MAX function finds the maximum value of a matrix
MIN function finds the smallest element of a matrix
PROD function multiplies all elements
SSQ function computes the sum of squares of all elements
SUM function sums all elements

Matrix Inquiry Functions

ALL function checks for all nonzero elements
ANY function checks for any nonzero elements
COL function returns a matrix, M, that is the same size as the input matrix and such that $M[i, j] = j$.
COUNTMISS function returns the number of missing values
COUNTN function returns the number of nonmissing values
COUNTUNIQUE function returns the number of unique values
CHOOSE function evaluates a logical matrix and returns values based on whether each element is true or false
DIMENSION function returns the number of rows and columns of a matrix
ISEMPTY function returns 1 if the argument is an empty matrix (zero rows and columns) and 1 otherwise
LOC function finds indices for the nonzero elements of a matrix
NCOL function finds the number of columns of a matrix
NLENG function finds the size of an element
NROW function finds the number of rows of a matrix
ROW function returns a matrix, M, that is the same size as the input matrix and such that $M[i, j] = i$.
TYPE function determines the type of a matrix
Matrix Sorting and BY-Group Processing Functions

SORT call sorts a matrix by specified columns
SORTNDX call creates a sorted index for a matrix
UNIQUEBY function finds locations of unique BY groups in a sorted or indexed matrix

Matrix Reshaping Functions

BLOCK function forms block-diagonal matrices
BTRAN function computes a block transpose
COLVEC function converts a matrix into a column vector
DIAG function creates a diagonal matrix
DO function produces an arithmetic series
EXPANDGRID function returns a matrix that contains all combinations of elements from specified vectors
FULL function converts a matrix stored in a sparse format into a full (dense) matrix
I function creates an identity matrix
INSERT function inserts one matrix inside another
J function creates a matrix of identical values
MAGIC function returns a magic square of a given size
REMOVE function discards elements from a matrix
REPEAT function creates a new matrix of repeated values
ROWVEC function converts a matrix into a row vector
SHAPE function reshapes and repeats values
SHAPECOL function reshapes and repeats values by columns
SPARSE function converts a matrix that contains many zeros into a matrix stored in a sparse format
SQRSYM function converts a symmetric matrix to a square matrix
SQRVECH function converts a symmetric matrix which is stored columnwise to a square matrix
SYMSQR function converts a square matrix to a symmetric matrix
T function transposes a matrix
VECH function creates a vector from the columns of the lower triangular elements of a matrix
VECDIAG function creates a vector from a diagonal

Combinatorial Functions

ALLCOMB function generates all combinations of n elements taken k at a time
ALLPERM function generates all permutations of n elements
RANCOMB function returns random combinations of n elements taken k at a time
RANPERK function returns generates a random permutation of k elements from a finite set of n elements, $k \leq n$
RANPERM function returns random permutations of n elements
Character Manipulation Functions

- **BLANKSTR function**: returns a blank string of a specified length.
- **BYTE function**: translates numbers to ordinal characters
- **CHANGE call**: replaces text
- **CHAR function**: produces a character representation of a matrix
- **CONCAT function**: concatenates elementwise strings
- **CSHAPE function**: reshapes and repeats character values
- **LENGTH function**: finds the lengths of character matrix elements
- **NAME function**: lists the names of arguments
- **NUM function**: produces a numeric representation of a character matrix
- **ROWCAT function**: concatenates rows without using blank compression
- **ROWCATC function**: concatenates rows by using blank compression
- **SUBSTR function**: takes substrings of matrix elements

You can also call functions in Base SAS software such as those documented in the sections “Character and Formatting Functions” on page 1140 and “Character String Matching Functions and Subroutines” on page 1144.

Functions for Generating Random Numbers and Simulations

- **NORMAL function**: (deprecated) generates a pseudorandom normal deviate
- **RANDFUN function**: returns a matrix of random numbers from a specified distribution
- **RANDGEN call**: generates pseudorandom numbers from specified distributions
- **RANDSEED call**: initializes seed for subsequent RANDGEN calls
- **SAMPLE function**: generates a random sample of a finite set
- **UNIFORM function**: (deprecated) generates pseudorandom uniform deviates

You can also call functions in Base SAS software such as those documented in the section “Random Number Functions and Subroutines” on page 1152.

For sampling from multivariate distributions, you can use the following functions:

- **RANDDIRICHLET**: generates a random sample from a Dirichlet distribution
- **RANDMULTINOMIAL**: generates a random sample from a multinomial distribution
- **RANDMVT**: generates a random sample from a multivariate Student’s t distribution
- **RANDNORMAL**: generates a random sample from a multivariate normal distribution
- **RANDWISHART**: generates a random sample from a Wishart distribution
Statistical Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN function</td>
<td>divides numeric values into a set of disjoint intervals</td>
</tr>
<tr>
<td>BRANKS function</td>
<td>computes bivariate ranks</td>
</tr>
<tr>
<td>CORR function</td>
<td>computes correlation statistics</td>
</tr>
<tr>
<td>CORR2COV function</td>
<td>scales a correlation matrix into a covariance matrix</td>
</tr>
<tr>
<td>COUNTMISS function</td>
<td>counts the number of missing values</td>
</tr>
<tr>
<td>COUNTN function</td>
<td>counts the number of nonmissing values</td>
</tr>
<tr>
<td>COUNTUNIQUE function</td>
<td>counts the number of unique values</td>
</tr>
<tr>
<td>COV function</td>
<td>computes the sample variance-covariance matrix</td>
</tr>
<tr>
<td>COV2CORR function</td>
<td>scales a covariance matrix into a correlation matrix</td>
</tr>
<tr>
<td>CUSUM function</td>
<td>computes cumulative sums</td>
</tr>
<tr>
<td>CUPROD function</td>
<td>computes cumulative products</td>
</tr>
<tr>
<td>CV function</td>
<td>computes the sample coefficient of variation</td>
</tr>
<tr>
<td>DESIGN function</td>
<td>creates a design matrix</td>
</tr>
<tr>
<td>DESIGNF function</td>
<td>creates a full-rank design matrix</td>
</tr>
<tr>
<td>DISTANCE function</td>
<td>computes pairwise distances between rows of a matrix</td>
</tr>
<tr>
<td>GEOMEAN function</td>
<td>computes geometric means</td>
</tr>
<tr>
<td>HADAMARD function</td>
<td>creates a Hadamard matrix</td>
</tr>
<tr>
<td>HARMEAN function</td>
<td>computes harmonic means</td>
</tr>
<tr>
<td>IPF call</td>
<td>performs an iterative proportional fit of a contingency table</td>
</tr>
<tr>
<td>KURTOSIS function</td>
<td>computes the sample kurtosis</td>
</tr>
<tr>
<td>LAV call</td>
<td>performs linear least absolute value regression by solving the L_1 norm minimization problem</td>
</tr>
<tr>
<td>LMS call</td>
<td>performs robust least median of squares (LMS) regression</td>
</tr>
<tr>
<td>LTS call</td>
<td>performs robust least trimmed squares (LTS) regression</td>
</tr>
<tr>
<td>MAD function</td>
<td>finds the univariate (scaled) median absolute deviation</td>
</tr>
<tr>
<td>Mahalanobis function</td>
<td>computes Mahalanobis distance</td>
</tr>
<tr>
<td>MARG call</td>
<td>evaluates marginal totals in a multiway contingency table</td>
</tr>
<tr>
<td>MAXQFORM call</td>
<td>computes the subsets of a matrix system that maximize the quadratic form</td>
</tr>
<tr>
<td>MCD call</td>
<td>finds the minimum covariance determinant estimator</td>
</tr>
<tr>
<td>MEAN function</td>
<td>computes sample means</td>
</tr>
<tr>
<td>MVE call</td>
<td>finds the minimum volume ellipsoid estimator</td>
</tr>
<tr>
<td>OPSCAL function</td>
<td>rescales qualitative data to be a least squared fit to qualitative data</td>
</tr>
<tr>
<td>QNTL call</td>
<td>computes sample quantiles (percentiles)</td>
</tr>
<tr>
<td>QUARTILE function</td>
<td>computes the five-number summary</td>
</tr>
</tbody>
</table>
Chapter 26: Language Reference

RANGE function returns the range of values for a set of matrices.

RANK function ranks elements of a matrix, breaking ties arbitrarily.

RANKTIE function ranks elements of a matrix.

SEQ call performs discrete sequential tests.

SEQSCALE call performs estimates of scales associated with discrete sequential tests.

SEQSHIFT call performs estimates of means associated with discrete sequential tests.

SKEWNESS function computes the sample skewness.

STD function computes the sample standard deviation.

TABULATE call counts the number of unique values in a vector.

SWEEP function sweeps a matrix.

VAR function computes the sample variance.

You can also call functions in Base SAS software such as those documented in the section “Descriptive Statistics Functions and Subroutines” on page 1146.

Time Series Functions

ARMACOV call computes an autocovariance sequence for an autoregressive moving average (ARMA) model.

ARMALIK call computes the log likelihood and residuals for an ARMA model.

ARMASIM function simulates an ARMA series.

CONVEXIT function computes convexity of a noncontingent cash flow.

COVLAG function computes autocovariance estimates for a vector time series.

DIF function computes the difference between a value and a lagged value.

DURATION function computes modified duration of a noncontingent cash flow.

FARMACOV call computes the autocovariance function for an autoregressive fractionally integrated moving average (ARFIMA) model of the form ARFIMA(p, d, q).

FARMAFIT call estimates the parameters of an ARFIMA(p, d, q) model.

FARMALIK call computes the log-likelihood function of an ARFIMA(p, d, q) model.

FARMASIM call generates an ARFIMA(p, d, q) process.

FDIF call computes a fractionally differenced process.

FORWARD function computes forward rates.

KALCVF call computes the one-step prediction $z_{t+1|t}$ and the filtered estimate $z_{t|t}$, in addition to their covariance matrices. The call uses forward recursions, and you can also use it to obtain k-step estimates.

KALCVS call uses backward recursions to compute the smoothed estimate $z_{t|T}$ and its covariance matrix, $P_{t|T}$, where T is the number of observations in the complete data set.
KALDFF call computes the one-step forecast of state vectors in a state space model (SSM) by using the diffuse Kalman filter. The call estimates the conditional expectation of z_t, and it also estimates the initial random vector, δ, and its covariance matrix.

KALDFS call computes the smoothed state vector and its mean squares error matrix from the one-step forecast and mean squares error matrix computed by the KALDFF subroutine.

LAG function computes lagged values

PV function computes the present value

RATES function converts interest rates from one base to another

SPOT function computes spot rates

TSBAYSEA call performs Bayesian seasonal adjustment modeling

TSDECOMP call analyzes nonstationary time series by using smoothness priors modeling

TSMLOCAR call analyzes nonstationary or locally stationary time series by using a method that minimizes Akaike's information criterion (AIC)

TSMLOMAR call analyzes nonstationary or locally stationary multivariate time series by using a method that minimizes Akaike's information criterion (AIC)

TSMULMAR call estimates vector autoregressive (VAR) processes by minimizing the AIC

TSPEARS call analyzes periodic autoregressive (AR) models by minimizing the AIC

TSPRED call provides predicted values of univariate and multivariate ARMA processes when the ARMA coefficients are given

TSROOT call computes AR and moving average (MA) coefficients from the characteristic roots of the model, or computes the characteristic roots of the model from the AR and MA coefficients

TSTVCAR call analyzes time series that are nonstationary in the covariance function

TSUNIMAR call determines the order of an AR process by minimizing the AIC, and estimates the AR coefficients

VARMACOV call computes the theoretical cross-covariance matrices for a stationary vector autoregressive moving average (VARMA(p, q)) model

VARMALIK call computes the log-likelihood function for a VARMA(p, q) model

VARMASIM call generates VARMA(p, q) time series

VNORMAL call (deprecated) generates multivariate normal random series

VTSROOT call computes the characteristic roots for a VARMA(p, q) model

YIELD function computes yield-to-maturity of a cash-flow stream

You can also call functions in Base SAS software such as those documented in the section “Financial Functions” on page 1149.
Numerical Analysis Functions

BSPLINE function computes a B-spline basis

FFT function performs the finite Fourier transform

FROOT function finds zeros of a univariate function by using a numerical root-finding method

IFFT function computes the inverse finite Fourier transform

JROOT function computes the first nonzero roots of a Bessel function of the first kind and the derivative of the Bessel function at each root

NORM function computes a vector or matrix norm

ODE call performs numerical integration of first-order vector differential equations with initial boundary conditions

ORPOL function generates orthogonal polynomials on a discrete set of data

ORTVEC call provides columnwise orthogonalization by the Gram-Schmidt process and stepwise QR decomposition by the Gram-Schmidt process

POLYROOT function finds zeros of a real polynomial

PRODUCT function multiplies matrices of polynomials

QUAD call performs numerical integration of scalar functions in one dimension over infinite, connected semi-infinite, and connected finite intervals

RATIO function divides matrix polynomials

SPLINE call fits a cubic spline to data

SPLINEC call fits a cubic spline to data and returns the spline coefficients

SPLINEV function evaluates a cubic spline at new data points

TPSPLINE call computes thin-plate smoothing splines

TPSPLNEV call evaluates the thin-plate smoothing spline at new data points

Linear Algebra functions

APPCORT call computes a complete orthogonal decomposition

COMPORT call computes a complete orthogonal decomposition by Householder transformations

CVEXHULL function finds a convex hull of a set of planar points

DET function computes the determinant of a square matrix

ECHELON function reduces a matrix to row-echelon normal form

EIGEN call computes eigenvalues and eigenvectors

EIGVAL function computes eigenvalues

EIGVEC function computes eigenvectors

GENEIG call computes eigenvalues and eigenvectors of a generalized eigenproblem

GINV function computes a generalized inverse

GSORTH call computes the Gram-Schmidt orthonormalization
HALF function computes the Cholesky decomposition
HANKEL function generates a Hankel matrix
HDIR function performs a horizontal direct product
HERMITE function reduces a matrix to Hermite normal form
HOMOGEN function solves homogeneous linear systems
INV function computes the inverse
INVUPDT function updates a matrix inverse
ITSOLVER call solves a sparse general linear system by iteration
LUPDT call provides updating and downdating for rank-deficient linear least squares solutions, complete orthogonal factorization, and Moore-Penrose inverses
QR call computes the QR decomposition of a matrix by Householder transformations
RDODT call downdates and updates QR and Cholesky decompositions
ROOT function performs the Cholesky decomposition of a matrix
RUPDT call updates QR and Cholesky decompositions
RZLIND call updates QR and Cholesky decompositions
SOLVE function solves a system of linear equations
SOLVELIN call solves a sparse symmetric system of linear equations by direct decomposition
SVD call computes the singular value decomposition
TOEPLITZ function generates a Toeplitz or block-Toeplitz matrix
TRACE function sums diagonal elements
TRISOLV function solves linear systems with triangular matrices
XMULT function performs extended-precision matrix multiplication

Optimization Subroutines

LCP call solves the linear complementarity problem
LP call solves the linear programming problem
LPSOLVE call solves the linear programming problem
MILPSOLVE call solves the mixed integer linear programming problem
NLPCG call performs nonlinear optimization by conjugate gradient method
NLPDD call performs nonlinear optimization by double-dogleg method
NLPFDD call approximates derivatives by finite-differences method
NLPFEA call computes feasible points subject to constraints
NLPHQZN call computes hybrid quasi-Newton least squares
NLPPLM call computes Levenberg-Marquardt least squares
NLPNMS call performs nonlinear optimization by Nelder-Mead simplex method
NLPNRA call performs nonlinear optimization by Newton-Raphson method
Chapter 26: Language Reference

- **NLPNRR call** performs nonlinear optimization by Newton-Raphson ridge method
- **NLPQN call** performs nonlinear optimization by quasi-Newton method
- **NLPQUA call** performs nonlinear optimization by quadratic method
- **NLPTR call** performs nonlinear optimization by trust-region method

Nonlinear optimization and related subroutines lists the nonlinear optimization and related subroutines in SAS/IML software

Set functions
- **ELEMENT function** finds elements that are contained in a set
- **SETDIF function** compares elements of two matrices
- **UNION function** performs unions of sets
- **UNIQUE function** sorts and removes duplicates
- **XSECT function** intersects sets

Control Statements
- **CALL statement** calls a subroutine or function
- **DO statement** groups statements as a unit
- **DO statement, iterative** iteratively executes a DO group
- **DO UNTIL statement** iteratively executes statements until a condition is satisfied
- **DO WHILE statement** iteratively executes statements while a condition is satisfied
- **END statement** ends a DO loop or DO statement
- **FREE statement** deletes a matrix from memory
- **GOTO statement** jumps to a new statement
- **IF-THEN/ELSE statement** conditionally executes statement
- **LINK statement** jumps to another statement
- **MATRIB statement** associates printing attributes with matrices
- **PRINT statement** prints matrix values
- **REMOVE statement** removes matrices from storage
- **RESET statement** sets processing options
- **RUN statement** executes statements in a module
- **SHOW statement** prints system information
- **SOUND call** produces a tone
- **VALSET call** performs indirect assignment
- **VALUE function** retrieves values by indirect reference
Data Set and File Statements

- **APPEND statement**: adds observations to SAS data set
- **CLOSE statement**: closes a SAS data set
- **CLOSEFILE statement**: closes a file
- **CONTENTS function**: returns the variables in a SAS data set
- **CREATE statement**: creates a new SAS data set
- **DATASETS function**: obtains the names of SAS data sets
- **DELETE call**: deletes a SAS data set
- **DELETE statement**: marks observations in a data set for deletion
- **DO DATA statement**: repeats a loop until an end of file occurs
- **EDIT statement**: opens a SAS data set for editing
- **FILE statement**: opens or points to an external file
- **FIND statement**: finds observations
- **FORCE statement**: is an alias for the **SAVE** statement
- **INDEX statement**: indexes a variable in a SAS data set
- **INFILE statement**: opens a file for input
- **INPUT statement**: inputs data
- **LIST statement**: displays observations of a data set
- **PUT statement**: writes data to an external file
- **READ statement**: reads observations from a data set
- **RENAME call**: renames a SAS data set
- **REPLACE statement**: replaces values in observations and updates observations
- **SAVE statement**: saves data
- **SETIN statement**: makes a data set current for input
- **SETOUT statement**: makes a data set current for output
- **SORT statement**: sorts a SAS data set
- **SUMMARY statement**: computes summary statistics for SAS data sets
- **PURGE statement**: removes observations marked for deletion and renumbers records
- **USE statement**: opens a SAS data set for reading

Defining, Storing, and Loading Modules

- **FINISH statement**: denotes the end of a module
- **ISSKIPPED function**: returns whether an optional argument to a user-defined module was skipped when the modules was called
- **LOAD statement**: loads modules and matrices from library storage
Chapter 26: Language Reference

PARENTNAME function returns the name of the matrix passed into a module
RETURN statement returns to caller
START statement defines a module
STORAGE function lists names of matrices and modules in storage
STORE statement stores matrices and modules in library storage

Mixed-Type Tables

TABLEADDVAR call adds columns from a matrix to a table
TABLECREATE function creates a table from a matrix
TABLECREATEFROMDATASET function creates a table from a SAS data set
TABLEGETVARDATA function creates a matrix from columns of a table
TABLEGETVARIANT FUNCTION returns the formats of the specified columns
TABLEGETVARIANTINDEX function returns the column indices for specified names
TABLEGETVARIANTINFORMAT function returns the informats of the specified columns
TABLEGETVARNAMESPACE function returns the names of the specified columns
TABLEGETVARTYPE function returns the types of the specified columns
TABLEISEXISTINGVAR function indicates whether the specified column names exist
TABLEISVARNUMERIC function returns a binary vector that indicates whether the specified columns are numeric
TABLERENAMENAMESPACE call changes the names of columns
TABLESETVARIANT FUNCTION sets the formats of the specified columns
TABLESETVARIANTINFORMAT function sets the informats of the specified columns
TABLESETVARIANTLABEL function sets the labels of the specified columns
TABLEWRITEGOTODATASET call creates a SAS data set from a table

Lists and Data Structures

LISTADDITEM call adds a new item to the end of a list
LISTCREATE function creates a new list
LISTDELETEITEM call deletes an item from a list
LISTDELETEMNAME call removes the name of an item
LISTGETALLELEMENTS function gets names for all named elements
LISTGETITEM function gets the value of an item
LISTGETNAME function gets the names used in a list
LISTGETSUBITEM function gets the value of an item in a nested sublist
LISTINDEX function gets the numeric positions of items
LISTINSERTITEM call inserts an item at a specified position
LISTLEN function gets the number of items in a list
LISTSETITEM call sets the value of an existing list item
LISTSETNAME call sets the name of an item
LISTSETSUBITEM call sets the value of an item in a nested sublist

Packages and Executing Statements

APPLY function applies a module to arguments
EXECUTE call executes statements at run time
EXECUTEFILE call executes statements at run time
PACKAGE HELP statement displays help for a package
PACKAGE INFO statement displays information about a package
PACKAGE INSTALL statement installs a package
PACKAGE LIBNAME statement provides access to data in a package
PACKAGE LIST statement lists the names of installed packages
PACKAGE LOAD statement loads a package
PACKAGE UNINSTALL statement uninstalls a package
PUSH call pushes statements to the beginning of the command input stream
QUEUE call queues statements at the end of the command input stream
RESUME statement resumes execution

Statistical Graphics

BAR call creates a bar chart
BOX call creates a box plot
HEATMAPCONT call creates a heat map with a continuous color ramp
HEATMAPDISC call creates a heat map with a discrete color ramp
HISTOGRAM call creates a histogram
ODSGRAPH call renders a graph by using ODS Statistical Graphics
PALETTE function returns a discrete color palette that is suitable for visualizing categorical data
SCATTER call creates a scatter plot
SERIES call creates a series plot
Termination Statements

- **ABORT statement**: ends PROC IML
- **PAUSE statement**: interrupts module execution
- **QUIT statement**: exits from PROC IML
- **STOP statement**: stops execution of statements

Traditional Graphics and Window functions

- **GBLKVP call**: defines a blanking viewport
- **GBLKVPD call**: deletes the blanking viewport
- **GCLOSE call**: closes the graphics segment
- **GDELETE call**: deletes a graphics segment
- **GDRAW call**: draws a polyline
- **GDRAWL call**: draws individual lines
- **GGRID call**: draws a grid
- **GINCLUDE call**: includes a graphics segment
- **GOPEN call**: opens a graphics segment
- **GPIE call**: draws pie slices
- **GPIEXY call**: converts from polar to world coordinates
- **GPOINT call**: plots points
- **GPOLY call**: draws and fills a polygon
- **GPORT call**: defines a viewport
- **GPORTPOP call**: pops the viewport
- **GPORTSTK call**: stacks the viewport
- **GSCALE call**: computes round numbers for labeling axes
- **GSCRIPT call**: writes multiple text strings with special fonts
- **GSET call**: sets attributes for a graphics segment
- **GSHOW call**: shows a graph
- **GSTART call**: initializes the graphics system
- **GSTOP call**: deactivates the graphics system
- **GSTRLEN call**: finds the string length
- **GTEXT call**: places text horizontally on a graph
- **GVTEXT call**: places text vertically on a graph
- **GWINDOW call**: defines the data window
- **GXAXIS call**: draws a horizontal axis
- **GYAXIS call**: draws a vertical axis
Wavelet Analysis functions

- WAVFT call computes a wavelet transform of one dimensional data
- WAVGET call returns requested information about a wavelet transform
- WAVIFT call inverts a wavelet transform after applying thresholding to the detail coefficients
- WAVPRINT call displays information about a wavelet transform
- WAVTHRSH call applies specified thresholding to the detail coefficients of a wavelet transform

Genetic Algorithm functions

- GAEND call terminates a genetic algorithm and frees memory resources
- GAGETMEM call gets requested members and objective values from the current solution population
- GAGETVAL call gets objective function values for a requested member of current solution population
- GAINIT call initializes the initial solution population
- GAREEVAL call reevaluates the objective function for all solutions in the current population
- GASETRO call specifies a current crossover operator
- GASETMLT call specifies a current mutation operator
- GASET OBJ call specifies a current objective function
- GASETSEI call specifies a current selection parameters
- GASETUP function sets up a specific genetic algorithm optimization problem

Calling External Modules

- MODULEI call calls an external routine that has no return code
- MODULEIC function calls an external routine that returns a character
- MODULEIN function calls an external routine that returns a numeric value

Calling SAS statements or R Functions

- SUBMIT statement calls SAS procedures, DATA steps, or macros. You can also use the R option to call functions in the R language.
- ENDSUBMIT statement defines a block of submitted statements. All statements between the SUBMIT and ENDSUBMIT statements are sent to the SAS System or R for processing.
- EXPORTDATASETTO call transfers data from a SAS data set into an R data frame
- EXPORTMATRIXTOR call transfers data from a SAS/IML matrix into an R matrix
- IMPORTDATASETFROMR call transfers data from a matrix or data frame into a SAS data set
- IMPORTMATRIXTFROMR call transfers data from a matrix or data frame into a SAS/IML matrix
Operators

This section describes all operators that are available in SAS/IML software. Each section shows how the operator is used, followed by a description of the operator.

In addition to the matrix operators described in this section, SAS/IML supports subscript reduction operators that make it easy to compute basic descriptive statistics on rows and columns of a matrix.

Addition Operator: +

```sas
matrix1 + matrix2 ;
matrix + scalar ;
matrix + vector ;
```

The addition operator (+) computes a new matrix that contains elements that are the sums of the corresponding elements of `matrix1` and `matrix2`. If `matrix1` and `matrix2` are both $n \times p$ matrices, then the addition operator adds the element in the ith row and jth column of the first matrix to the element in the ith row and jth column of the second matrix, for $i = 1 \ldots n, j = 1 \ldots p$.

For example, the following statements add two matrices and store the result in the matrix `c`, shown in Figure 26.1:

```sas
a = {1 2,
     3 4};
b = {1 1,
     1 1};
c = a + b;
print c;
```

You can also use the addition operator to conveniently add a value to each element of a matrix, to each column of a matrix, or to each row of a matrix.

- When you use the `matrix + scalar` form, the scalar value is added to each element of the matrix.
- When you use the `matrix + vector` form, the vector is added to each row or column of the $n \times p$ matrix.
 - If you add an $n \times 1$ column vector, each row of the vector is added to each row of the matrix.
 - If you add a $1 \times p$ row vector, each column of the vector is added to each column of the matrix.

For example, you can obtain the same result as the previous example with any of the following statements:
c = a+1;
c = a+(1 1);
c = a+(1,1);

When an element of a matrix contains a missing value, the corresponding element of the sum is also a missing value.

You can also use the addition operator on character operands. In this case, the operator implements elementwise concatenation exactly as the CONCAT function.

Comparison Operators: <, <=, >, >=, =, ^=

```
matrix1 < matrix2;
matrix1 <= matrix2;
matrix1 > matrix2;
matrix1 >= matrix2;
matrix1 = matrix2;
matrix1 ^= matrix2;
```

Comparison operators compare two matrices element by element and compute a new matrix that contains only zeros and ones. If an element comparison is true, the corresponding element of the new matrix is 1. If the comparison is not true, the corresponding element is 0. Unlike in the SAS DATA step, the SAS/IML language does not accept the English equivalents GT and LT for the greater than and less than operators.

For example, the following statements assign the matrix `c`, shown in Figure 26.2:

```
a = {1 7 3,
     6 2 4};
b = {0 8 2,
     4 1 3};
c = a>b;
print c;
```

![Figure 26.2 Results of a Matrix Comparison](image)

You can also use the comparison operators to conveniently compare all elements of a matrix with a scalar.

- If either argument is a scalar, then an elementwise comparison is performed between each element of the matrix and the scalar.
- You can also compare an $n \times p$ matrix with a row or column vector.
 - If the comparison is with an $n \times 1$ column vector, each row of the vector is compared to each row of the matrix.
– If the comparison is with a $1 \times p$ row vector, each column of the vector is compared to each column of the matrix.

For example, the following statements assign the matrix d, shown in Figure 26.3:

```plaintext
d = (a>=4); /* the parentheses are not necessary */
print d;
```

![Figure 26.3 Results of a Comparison with a Scalar](image)

<table>
<thead>
<tr>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0</td>
</tr>
<tr>
<td>1 0 1</td>
</tr>
</tbody>
</table>

When you are making conditional comparisons, all values of the result must be nonzero for the condition to be evaluated as true, as shown in the following statements:

```plaintext
if a>=b then do;
    /* more statements */
end;
```

The previous DO block is executed only if every element of a is greater than or equal to the corresponding element in b. For the a and b matrices defined in this section, the DO block is not executed. See the descriptions of the ALL function and the ANY function.

If a numeric missing value occurs in a matrix, the inequality comparison operators treat it as a value that is less than any valid nonmissing value.

You can compare elements of a character matrix. Character values are compared in ASCII order. In ASCII order, numerals precede uppercase letters, which precede lowercase letters. If the element lengths of two character matrices are different, the shorter elements are padded on the right with blanks for the comparison.

Concatenation Operator, Horizontal: $||$

```plaintext
matrix1 || matrix2 ;
```

The horizontal concatenation operator (||) produces a new matrix by horizontally joining $matrix1$ and $matrix2$. The matrices must have the same number of rows, which is also the number of rows in the new matrix. The number of columns in the new matrix is the number of columns in $matrix1$ plus the number of columns in $matrix2$.

For example, the following statements produce the matrix c, shown in Figure 26.4:

```plaintext
a = {1 1 1,
     7 7 7};
b = {0 0 0,
     8 8 8};
c = a||b;
print c;
```
For character operands, the element size in the result matrix is the larger of the two operands. For example, the following statements produce a matrix `f` which has elements of size 2, which are shown in Figure 26.5:

```c
    d = {A B C,  
         D E F};
    e ={"GH" "IJ",  
         "KL" "MN"};
    f = d||e;
    print f;
```

You can use the horizontal concatenation operator when one of the arguments has no value. For example, if `X` has not been defined and `Y` is a matrix, `X||Y` results in a new matrix equal to `Y`, as shown in the following statements:

```c
    x = {};    /* define empty matrix */
    y = 1:3;
    z = x || y;
    print z;
```

The vertical concatenation operator (`//`) produces a new matrix by vertically joining `matrix1` and `matrix2`. The matrices must have the same number of columns, which is also the number of columns in the new matrix. The number of rows in the new matrix is the number of rows in `matrix1` plus the number of rows in `matrix2`.

For example, the following statements produce the matrix `c`, shown in Figure 26.7:

```c
    a = {1 1 1,  
         7 7 7};
    b = {0 0 0,  
         8 8 8};
```
\[c = a / b; \]
\[\text{print } c; \]

Figure 26.7 Result of Vertical Concatenation

<table>
<thead>
<tr>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
</tr>
<tr>
<td>7 7 7</td>
</tr>
<tr>
<td>0 0 0</td>
</tr>
<tr>
<td>8 8 8</td>
</tr>
</tbody>
</table>

For character matrices, the element size of the result matrix is the larger of the element sizes of the two operands, as shown in **Figure 26.8**:

\[
d = \{"AB" \ "CD",
"EF" \ "GH"\};
e = \{"I" \ "J",
"K" \ "L",
"M" \ "N"\};\]
\[f = d // e; \]
\[\text{print } f; \]

Figure 26.8 Result of Vertical Concatenation

<table>
<thead>
<tr>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB CD</td>
</tr>
<tr>
<td>EF GH</td>
</tr>
<tr>
<td>I J</td>
</tr>
<tr>
<td>K L</td>
</tr>
<tr>
<td>M N</td>
</tr>
</tbody>
</table>

You can use the vertical concatenation operator when one of the arguments has not been assigned a value. For an example, see the horizontal concatenation operator.

Direct Product Operator:

\[\text{matrix1 @ matrix2 ;} \]

The direct product operator (@) computes a new matrix that is the direct product (also called the *Kronecker product*) of \textit{matrix1} and \textit{matrix2}. For matrices \textbf{A} and \textbf{B}, the direct product is denoted by \(\textbf{A} \otimes \textbf{B} \). The number of rows in the new matrix equals the product of the number of rows in \textit{matrix1} and the number of rows in \textit{matrix2}; the number of columns in the new matrix equals the product of the number of columns in \textit{matrix1} and the number of columns in \textit{matrix2}.

Specifically, if \(\textbf{A} \) is an \(n \times p \) matrix and \(\textbf{B} \) is a \(m \times q \) matrix, then the Kronecker product \(\textbf{A} \otimes \textbf{B} \) is the following \(nm \times pq \) block matrix:

\[
\textbf{A} \otimes \textbf{B} = \begin{bmatrix}
A_{11} \textbf{B} & \cdots & A_{1p} \textbf{B} \\
\vdots & \ddots & \vdots \\
A_{n1} \textbf{B} & \cdots & A_{np} \textbf{B}
\end{bmatrix}
\]
For example, the following statements compute the matrices c and d, which are shown in Figure 26.9:

```plaintext
a = {{1, 2},
     {3, 4}};
b = {0, 2};
c = a@b;
d = b@a;
print c, d;
```

![Figure 26.9](image)

Results of Direct Product Computation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Notice that the direct product of two matrices is not commutative.

The direct product is used in several areas of statistics. For example, in complete balanced designs the sums of squares and the covariance matrices can be expressed in terms of direct products (Hocking 1985).

Division Operator: /

- `matrix1 / matrix2`;
- `matrix / scalar`;
- `matrix / vector`;

The division operator (/) divides each element of `matrix1` by the corresponding element of `matrix2`, producing a matrix of quotients.

You can also use the division operator to conveniently divide all elements of a matrix, each column of a matrix, or each row of a matrix.

- When you use the `matrix / scalar` form, each element of the matrix is divided by the scalar value.
- When you use the `matrix / vector` form, each row or column of the $n \times p$ matrix is divided by a corresponding element of the vector.
 - If you divide by an $n \times 1$ column vector, each row of the matrix is divided by the corresponding row of the vector.
 - If you divide by a $1 \times p$ row vector, each column of the matrix is divided by the corresponding column of the vector.

When an element of a matrix contains a missing value, the corresponding element of the quotient is also a missing value.
If a divisor is zero, the operation displays a warning and assigns a missing value for the corresponding element in the result.

The following statements compute the matrices \(c \) and \(d \), shown in Figure 26.10:

```plaintext
a = {1 2,
    3 4};
b = {5 6,
    7 8};
c = a/b;
d = a/4;
print c, d;
```

Figure 26.10 Results of Division

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.3333333</td>
</tr>
<tr>
<td>0.4285714</td>
<td>0.5</td>
</tr>
</tbody>
</table>

```
print c, d;
```

Element Maximum Operator: <>

- \(matrix1 <> matrix2 ; \)
- \(matrix <> scalar ; \)
- \(matrix <> vector ; \)

The element maximum operator (<>) compares each element of \(matrix1 \) to the corresponding element of \(matrix2 \). The two matrices must be conformable. The operator computes a new matrix that contains the larger of the two values that are being compared.

- If either argument is a scalar, then an elementwise comparison is performed between each element of the matrix and the scalar.
- You can also compare a matrix with a row or column vector, in which case the comparison is performed between the vector and each row or column of the \(n \times p \) matrix.
 - If you compare with an \(n \times 1 \) column vector, each row of the matrix is compared with the corresponding row of the vector.
 - If you compare with a \(1 \times p \) row vector, each column of the matrix is compared with the corresponding column of the vector.

If a numeric missing value occurs in a matrix, the operator treats it as a value that is less than any valid nonmissing value.

The element maximum operator can take as operands two character matrices or a character matrix and a character string. Character values are compared in ASCII order. In ASCII order, numerals precede uppercase
letters, which precede lowercase letters. If the element lengths of character operands are different, the shorter elements are padded on the right with blanks. The element length of the result is the longer of the two operand element lengths.

For example, the following statements compute the matrix \(\mathbf{c} \), shown in Figure 26.11:

```plaintext
a = { 2 4 6,
     10 11 12};
b = { 1 9 2,
     20 10 40};
c = a<>b;
print c;
```

Figure 26.11 Maximum Elements

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>40</td>
</tr>
</tbody>
</table>

Element Minimum Operator: \(<>\)

- `matrix1 <> matrix2`;
- `matrix1 <> scalar`;
- `matrix1 <> vector`;

The element minimum operator \(<>\) compares each element of \(\mathbf{matrix1} \) with the corresponding element of \(\mathbf{matrix2} \). The two matrices must be conformable. The operator computes a new matrix that contains the smaller of the two values that are being compared.

- If either argument is a scalar, then an elementwise comparison is performed between each element of the matrix and the scalar.

- You can also compare a matrix with a row or column vector, in which case the comparison is performed between the vector and each row or column of the \(n \times p \) matrix.
 - If you compare with an \(n \times 1 \) column vector, each row of the matrix is compared with the corresponding row of the vector.
 - If you compare with a \(1 \times p \) row vector, each column of the matrix is compared with the corresponding column of the vector.

If a numeric missing value occurs in a matrix, the operator treats it as a value that is less than any valid nonmissing value.

The element minimum operator can take as operands two character matrices or a character matrix and a character string. Character values are compared in ASCII order. In ASCII order, numerals precede uppercase letters, which precede lowercase letters. If the element lengths of character operands are different, the shorter elements are padded on the right with blanks. The element length of the result is the longer of the two operand element lengths.
For example, the following statements compute the matrix \(c \), shown in **Figure 26.11**:

\[
\begin{align*}
\mathbf{a} &= \begin{bmatrix} 2 & 4 & 6 \\ 10 & 11 & 12 \end{bmatrix} \\
\mathbf{b} &= \begin{bmatrix} 1 & 9 & 2 \\ 20 & 10 & 40 \end{bmatrix} \\
\mathbf{c} &= \mathbf{a} \times \mathbf{b} \\
\end{align*}
\]

\[\text{print } \mathbf{c};\]

Figure 26.12 Minimum Elements

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Index Creation Operator

\(\text{value1 : value2 ;} \)

The index creation operator \((:) \) creates a row vector with a first element that is \(\text{value1} \). The second element is \(\text{value1} + 1 \), and so on, until the last element which is less than or equal to \(\text{value2} \).

For example, the following statement creates the vector \(\mathbf{s} \) which contains consecutive integers, shown in **Figure 26.13**:

\[
\mathbf{s} = 7:10; \\
\text{print } \mathbf{s};
\]

Figure 26.13 Increasing Sequence

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

If \(\text{value1} \) is greater than \(\text{value2} \), a reverse-order index is created. For example, the following statement creates the vector \(\mathbf{r} \) which contains a decreasing sequence of integers, shown in **Figure 26.14**:

\[
\mathbf{r} = 10:6; \\
\text{print } \mathbf{r};
\]

Figure 26.14 Decreasing Sequence

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Neither \(\text{value1} \) nor \(\text{value2} \) is required to be an integer. Use the **DO function** if you want an increment other than 1 or \(-1\).

The index creation operator also works on character arguments with a numeric suffix. For example, the following statements create a sequence of values that begin with the prefix “var”, shown in **Figure 26.15**:
varList = "var1":"var5";
print varList;

Figure 26.15 Sequence of Character Values

<table>
<thead>
<tr>
<th>varList</th>
</tr>
</thead>
<tbody>
<tr>
<td>var1 var2 var3 var4 var5</td>
</tr>
</tbody>
</table>

Sequences of character values are often used to assign names to variables. You can use the string concatenation operator to dynamically determine the length of a sequence, as shown in the following statements:

```r
x = {1 2 3 4,
     5 6 7 8,
     7 6 5 4};
numVar = ncol(x);               /* 4 columns */
varNames = "X1":"X"+strip(char(numVar)); /* "X1":"X4" */
print x[colname=varNames];
```

Figure 26.16 Sequence of Variable Names

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
</tr>
<tr>
<td>1 2 3 4</td>
</tr>
<tr>
<td>5 6 7 8</td>
</tr>
<tr>
<td>7 6 5 4</td>
</tr>
</tbody>
</table>

Lastly, you can use the index operator to create a sequence of English letters, in either increasing or descending order, as follows:

```r
a = "a":"h";
b = "P":"L";
print a, b;
```

Figure 26.17 Sequence of Letters

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e f g h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>P O N M L</td>
</tr>
</tbody>
</table>

Logical Operators: &, |, ^

`matrix1 & matrix2 ;`

`matrix & scalar ;`

`matrix & vector ;`

`matrix1 | matrix2 ;`
Chapter 26: Language Reference

The logical operators compare two matrices element by element and create a new matrix. For logical comparisons, a missing value is handled as if it is a zero value. That is, in the text that follows in this section, “nonzero” really means “nonzero and nonmissing.”

An element of the new matrix computed by the OR operator (|) is 1 if either of the corresponding elements of matrix1 and matrix2 is nonzero. If both are zero (or missing), the new element is zero.

An element of the new matrix computed by the AND logical operator (&) is 1 if the corresponding elements of matrix1 and matrix2 are both nonzero; otherwise, it is zero.

If either operand is a scalar, the OR and AND operators perform a logical comparison between each element and the scalar value. If either operand is a row or column vector, then the operation is performed by using that vector on each of the rows or columns of the matrix.

The NOT prefix operator (^) examines each element of a matrix and computes a new matrix that contains elements that are ones and zeros. If an element of matrix is zero or missing, the corresponding element in the new matrix is 1. If an element of matrix is nonzero, the corresponding element in the new matrix is 0.

The following statements illustrate the use of these logical operators. The results are shown in Figure 26.18:

```plaintext
x = {0 1 0 1 . .};
y = {1 1 0 0 1 0};
u = x|y;
v = x&y;
w = ^x;
print u, v, w;
```

Figure 26.18 Results of Logical Comparisons

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 1 0 1 1 0</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>0 1 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>1 0 1 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Multiplication Operator, Elementwise:

The elementwise multiplication operator (#) computes a new matrix with elements that are the products of the corresponding elements of matrix1 and matrix2.
For example, the following statements compute the matrix \(ab \), shown in Figure 26.19:

```plaintext
a = {1 2,
     3 4};
b = {4 8,
     0 5};
ab = a#b;
print ab;
```

Figure 26.19 Results of Elementwise Multiplication

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

In addition to multiplying matrices that have the same dimensions, you can use the elementwise multiplication operator to multiply a matrix and a scalar.

- When either argument is a scalar, each element in *matrix* is multiplied by the scalar value.
- When you use the *matrix # vector* form, each row or column of the \(n \times p \) matrix is multiplied by a corresponding element of the vector.
 - If you multiply by an \(n \times 1 \) column vector, each row of the matrix is multiplied by the corresponding row of the vector.
 - If you multiply by a \(1 \times p \) row vector, each column of the matrix is multiplied by the corresponding column of the vector.

For example, a \(2 \times 3 \) matrix can be multiplied on either side by a \(2 \times 3, 1 \times 3, 2 \times 1, \) or \(1 \times 1 \) matrix. The following statements multiply the \(2 \times 2 \) matrix \(a \) by a column vector and a row vector. The results are shown in Figure 26.20.

```plaintext
c = {10, 100};    /* column vector */
r = {10 100};     /* row vector */
ac = a#c;
ar = a#r;
print ac, ar;
```

Figure 26.20 Elementwise Multiplication with Vectors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ac</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>30</td>
<td>400</td>
</tr>
</tbody>
</table>

Elementwise multiplication is mathematically equivalent to multiplying by a diagonal matrix. However, the elementwise operation is more efficient, as shown by the following statements:
A = j(5,5,1);
B = diag(v); /* 5x5 diagonal matrix */

/* multiply columns by constants */
B = A*D; /* less efficient */
B = v # A; /* more efficient */

/* multiply rows by constants */
B = D*A; /* less efficient */
B = A # v`; /* more efficient */

Elementwise multiplication is also known as the Schur or Hadamard product. Elementwise multiplication (which uses the # operator) should not be confused with matrix multiplication (which uses the * operator).

When an element of a matrix contains a missing value, the corresponding element of the product is also a missing value.

**Multiplication Operator, Matrix: **

*

`matrix1 * matrix2 ;`

The matrix multiplication operator (*) computes a new matrix by performing matrix multiplication. The first matrix must have the same number of columns as the second matrix has rows. The new matrix has the same number of rows as the first matrix and the same number of columns as the second matrix. That is, if \(A \) is an \(n \times p \) matrix and \(B \) is a \(p \times m \) matrix, then the product \(A \times B \) is an \(n \times m \) matrix. The \((i, j)\) element of the product is the sum \(\sum_{k=1}^{p} A_{ik} B_{kj} \).

The matrix multiplication operator does not support missing values.

The following statements multiply matrices. The results are shown in **Figure 26.21**.

```
a = {1 2,    
    3 4};
b = {1 2};
c = b*a;
d = a*b';
print c, d;
```

Figure 26.21 Result of Matrix Multiplication

```
     c
     7 10

     d
     5
     11
```

**Power Operator, Elementwise: **

```
matrix1 ## matrix2 ;
```
matrix ## scalar ;
matrix ## vector ;

The elementwise power operator (##) creates a new matrix with elements that are the elements of matrix1 raised to the power of the corresponding element of matrix2. If any value in matrix1 is negative, the corresponding element in matrix2 must be an integer.

The elementwise power operator enables either operand to be a scalar or a row or column vector.

- If either operand is scalar, the operation applies the power operator to each element and the scalar value.
- When you use the matrix vector form, each row or column of the n x p matrix is raised to a power given by a corresponding element of the vector.

When an element of either matrix contains a missing value, the corresponding element of the result is also a missing value.

For example, the following statements raise each element of a matrix to a power, as shown in Figure 26.22:

```plaintext
a = {1 2 3};
b = a##3;
c = a##0.5;
print b, c;
```

Figure 26.22 Result of Raising Each Element to a Power

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1.4142136</td>
</tr>
</tbody>
</table>

Power Operator, Matrix: **

matrix ** scalar ;

The matrix power operator (**) creates a new matrix that is matrix multiplied by itself scalar times. The matrix argument must be square; scalar must be an integer greater than or equal to −1. If the scalar is not an integer, it is truncated to an integer.

For example, the following statements compute a matrix that is the result of multiplying a matrix by itself. The result is shown in Figure 26.23:

```plaintext
a = {1 2,
     1 1};
c = a**2;
print c;
```
Note that the expression \(a^{(-1)}\) is shorthand for matrix inversion, as shown by the following statements:

\[
\text{inv} = a^{(-1)}; \quad \text{/* shorthand for matrix inversion */} \\
\text{ident} = \text{inv} \times a; \\
\text{print inv, ident;}
\]

The matrix power operator does not support missing values.

Raising a matrix to a large power can cause numerical precision problems. If the matrix is symmetric, it is preferable to operate on its eigenvalues (see the EIGEN call) rather than to use the matrix power operator directly on the matrix, as shown in the following example:

\[
\begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\]

call eigen(lambda, E, b); \quad \text{/* recall that }b = E \times \text{diag}(\text{lambda}) \times E^\top\text{ */} \\
\text{power} = 20; \\
\text{d} = \text{lambda}^{\text{#power}}; \\
\text{a20} = E \times \text{diag(d)} \times E^\top; \quad \text{/* }a^{20}\text{ since }E^\top E = \text{Identity */} \\
\text{print a20;}
\]

Sign Reversal Operator: –

–matrix ;

The sign reversal operator (–) computes a new matrix that contains elements that are formed by reversing the sign of each element in matrix. The sign reversal operator is also called the unary minus operator.

When an element of the matrix contains a missing value, the corresponding element of the result also contains a missing value.
The following statements reverse the signs of each element of a matrix, as shown in Figure 26.26:

```plaintext
a = {-1 7 6, 2 0 -8};
b = -a;
print b;
```

Figure 26.26 The Result of a Sign Reversal Operator

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -7 -6</td>
</tr>
<tr>
<td>-2 0 8</td>
</tr>
</tbody>
</table>

Subscripts: `[]`

- `matrix[rows, columns]`
- `matrix[elements]`

Subscripts are used with matrices to select submatrices, where `rows` and `columns` are expressions that evaluate to scalars or vectors. If these expressions are numeric, they must contain valid subscript values of rows and columns in the argument matrix.

For example, the following statements select elements from the second row of the matrix `x`:

```plaintext
x = {1 2 3, 4 5 6, 7 8 9};
a = 3;
y = x[2, a];
b = 1:3;
z = x[2, b];
w = x[{4 6}];
print y, z, w;
```

Figure 26.27 Submatrices Formed by Specifying Indices

<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

The output is shown in Figure 26.27. The matrix `y` contains the element of `x` from the second row and the third column. The matrix `z` contains the entire second row of `x`. The matrix `w` contains the fourth and sixth elements of `x`. Because SAS/IML software store matrices in row-major order, `w` contains the first and third elements from the second row of `x`.

The output is shown in Figure 26.27. The matrix `y` contains the element of `x` from the second row and the third column. The matrix `z` contains the entire second row of `x`. The matrix `w` contains the fourth and sixth elements of `x`. Because SAS/IML software store matrices in row-major order, `w` contains the first and third elements from the second row of `x`.

The output is shown in Figure 26.27. The matrix `y` contains the element of `x` from the second row and the third column. The matrix `z` contains the entire second row of `x`. The matrix `w` contains the fourth and sixth elements of `x`. Because SAS/IML software store matrices in row-major order, `w` contains the first and third elements from the second row of `x`.
If a row or column expression is a character matrix, then it refers to columns or rows in the argument matrix that are assigned corresponding labels by a MATTRIB statement or READ statement. For example, the following statements select elements from the second row of \(x \), and from the first and third columns:

\[
x = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{bmatrix};
c = "col1":"col3";
r = "row1":"row3";
mattrib x colname=c rowname=r;
a = {"col1" "col3"};
m = x["row2", a];
print m;
\]

![Figure 26.28 Submatrices Formed by Specifying Column Names](image)

A subscripted matrix can appear on the left side of the equal sign. The dimensions of the target submatrix must conform to the dimensions of the source matrix, as shown in the following statements:

\[
x[1, \{1 3\}] = .;
x[{1 2}, 2] = \{0, 1\};
x[7] = -1;
print x;
\]

![Figure 26.29 Result of Assigning Submatrices of an Existing Matrix](image)

See the section “Using Matrix Expressions” on page 44 for further information about matrix subscripts.

Subtraction Operator: \(-\)

\[
\text{matrix1} - \text{matrix2} \\
\text{matrix} - \text{scalar} \\
\text{matrix} - \text{vector}
\]

The subtraction operator \((-\) computes a new matrix that contains elements that are formed by subtracting the corresponding elements of \(\text{matrix2}\) from those of \(\text{matrix1}\).

In addition to subtracting conformable matrices, you can also use the subtraction operator to subtract a scalar from a matrix or subtract a vector from a matrix.
- When either argument is a scalar, the subtraction is performed between the scalar and each element of the matrix argument. For example, when you use the `matrix – scalar` form, the scalar value is subtracted from each element of the matrix.

- When you use the `matrix – vector` form, the vector is subtracted from each row or column of the $n \times p$ matrix.
 - If you subtract an $n \times 1$ column vector, each row of the vector is subtracted from each row of the matrix.
 - If you subtract a $1 \times p$ row vector, each column of the vector is subtracted from each column of the matrix.

When an element of the matrix contains a missing value, the corresponding element of the result also contains a missing value.

For example, the following statements subtract two matrices and store the result in the matrix c, shown in Figure 26.30:

```plaintext
a = {1 2,
    3 4};
b = {1 1,
    1 1};
c = a-b;
print c;
```

Figure 26.30 Difference of Two Matrices

```
c
0 1
2 3
```

The transpose operator, denoted by the backquote character (’), exchanges the rows and columns of `matrix`, producing the transpose of `matrix`. If v is the value in the ith row and jth column of `matrix`, then the transpose of `matrix` contains v in the jth row and ith column. If `matrix` contains n rows and p columns, the transpose has p rows and n columns.

For example, the following statements transpose the matrix a, shown in Figure 26.31:

```plaintext
a = {1 2,
    3 4,
    5 6};
b = a’;
print b;
```
Chapter 26: Language Reference

Figure 26.31 Transpose of a Matrix

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

You can also transpose a matrix with the T function.

Statements, Functions, and Subroutines

This section presents descriptions of all statements, functions, and subroutines that are available in SAS/IML software.

ABORT Statement

```
ABORT <error-message> ;
```

The ABORT statement instructs PROC IML to stop executing statements. It also stops PROC IML from parsing any further statements, causing PROC IML to close its files and exit. See also the description of the STOP statement.

If you specify the optional *error-message*, the message is written to the SAS Log.

The ABORT statement is the run-time equivalent of the QUIT statement. That is, you can use the ABORT statement as part of logical statements such as IF-THEN/ELSE statements, as shown in the following statements:

```
proc iml;
  do i = 1 to 10;
    if i>2 then
      abort;
    print i;
  end;
quit;
```

Figure 26.32 Result of Aborting a Computation

<table>
<thead>
<tr>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>i</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
ABS Function

\[\text{ABS}(\text{matrix}); \]

The ABS function returns the absolute value of every element of the argument matrix, as shown in the following statements:

\[
\begin{align*}
x &= -2:2; \\
a &= \text{abs}(x); \\
\text{print } a;
\end{align*}
\]

![Figure 26.33 Absolute Values](image)

\[
\begin{array}{c}
a \\
2 \ 1 \ 0 \ 1 \ 2
\end{array}
\]

ALL Function

\[\text{ALL}(\text{matrix}); \]

The ALL function returns a value of 1 if all elements in \text{matrix} are nonzero. If any element of \text{matrix} is zero or missing, the ALL function returns a value of 0.

You can use the ALL function to express the results of a comparison operator as a single 1 or 0. For example, the following statement compares elements in two matrices:

\[
\begin{align*}
a &= \{ \ 1 \ 2, \ 3 \ 4 \}; \\
b &= \{-1 \ 0, \ 0 \ 1\}; \\
\text{if all}(a>b) & \text{ then} \\
\quad \text{msg} = "a[i,j] > b[i,j] \text{ for all } i,j"; \\
\text{else} \\
\quad \text{msg} = "\text{for some element, } a[i,j] \text{ is not greater than } b[i,j]"; \\
\text{print } \text{msg};
\end{align*}
\]

![Figure 26.34 Result of Comparing All Elements](image)

\[
\begin{array}{c}
\text{msg} \\
\text{a[i,j] > b[i,j] for all i,j}
\end{array}
\]

In the preceding statements, the comparison operation \(a>b\) creates a matrix of zeros and ones. The ALL function returns a value of 1 because every element of \(a\) is greater than the corresponding element of \(b\).

The ALL function is implicitly applied to the evaluation of all conditional expressions, so in fact the previous IF-THEN statement is equivalent to the following:

\[
\begin{align*}
\text{if } a>b & \text{ then } /* \text{implicit ALL } */ \\
\quad \text{msg} = "a[i,j] > b[i,j] \text{ for all } i,j";
\end{align*}
\]
ALLCOMB Function

\[
\text{ALLCOMB}(n, k);
\]
\[
\text{ALLCOMB}(n, \text{comb}, <, \text{idx} >);
\]

The ALLCOMB function generates all combinations of \(k\) elements taken from a set of \(n\) numerical indices. The combinations are produced in the same order and using the same algorithm (Nijenhuis and Wilf 1978) as the ALLCOMBI function in Base SAS software. In particular, the function returns indices in the range 1–\(n\), and each combination is in sorted order.

By default, the ALLCOMB function returns a matrix with \(n^k\) rows and \(k\) columns. Each row of the returned matrix represents a single combination. The following statements generate all combinations of two elements from the set \(\{1, 2, 3, 4\}\):

\[
\begin{align*}
n &= 4; & \text{/* used throughout this example */} \\
k &= 2; & \text{/* used throughout this example */} \\
c &= \text{allcomb}(n, k);
\end{align*}
\]

\textbf{Figure 26.35} All Pairwise Combinations of Four Items

\[
\begin{array}{c}
\text{c} \\
1 & 2 \\
2 & 3 \\
1 & 3 \\
3 & 4 \\
2 & 4 \\
1 & 4
\end{array}
\]

The second argument can be a scalar or a vector. If it is a vector, it must contain a valid combination of the set \(\{1, 2, \ldots, n\}\). (To be valid, the \text{comb} elements must be in increasing order.) The number of elements in the vector determines the value of \(k\). For example, the following statements generate all combinations of length two from a set with four elements, beginning with the third combination that is shown in Figure 26.35:

\[
d = \text{allcomb}(4, \{1 \ 3\});
\]

To obtain all combinations in order, initialize the \text{comb} argument to \(1:k\) or to the zero vector with \(k\) elements.

The optional third argument, \text{idx}, controls the number of rows in the output of the function. If you specify \text{idx}, then the sequence is initialized with the \text{comb} argument and the first row of the output is the combination that occurs after the \text{comb} argument. For example, the following statements generate five pairwise combinations, beginning after the third combination shown in Figure 26.35:

\[
e = \text{allcomb}(n, \{1 \ 3\}, 1:5);
\]

The \text{idx} argument must consist of consecutive integers; you cannot use it to randomly access combinations that are out of sequence. The \text{idx} argument is often used to generate one or more combinations in a loop so that you do not need to allocate a huge matrix that contains all of the combinations at once. The following statements illustrate this usage. Notice that you should initialize the \text{comb} argument to the zero vector if you want the first result to be the combination \(1:k\).
\begin{verbatim}
ncomb = comb(n, k);
comb = j(1, k, 0);
do i=1 to ncomb;
 comb = allcomb(n, comb, i);
 /* do something with the i_th combination */
end;

If you want the combinations in lexicographic order, generate the combinations and then use the SORT subroutine, as follows:

 c = allcomb(n, k);
call sort(c, 1:k);
\end{verbatim}

\section*{ALLPERM Function}

\begin{verbatim}
ALLPERM(n);

ALLPERM(set, <, idx>);
\end{verbatim}

The ALLPERM function generates all permutations of a set with n elements. The permutations are produced in the same order and using the same algorithm (Trotter 1962) as the ALLPERM function in Base SAS software.

By default, the ALLPERM function returns a matrix with $n!$ rows and n columns. Each row of the returned matrix represents a single permutation. The following statements generate all permutations of the set $\{1, 2, 3\}$:

\begin{verbatim}
n = 3;
p = allperm(n);
print p;
\end{verbatim}

\begin{figure}[h]
\centering
\begin{tabular}{ccc}
\hline
 p \\
1 & 2 & 3 \\
1 & 3 & 2 \\
3 & 1 & 2 \\
3 & 2 & 1 \\
2 & 3 & 1 \\
2 & 1 & 3 \\
\hline
\end{tabular}
\caption{All Permutations of Three Items}
\end{figure}

The first argument can be a scalar or a vector. If it is a vector, the number of elements in the vector determines the value of n. The ALLPERM function can compute permutations of arbitrary numeric or character matrices. For example, the following statements compute permutations of an unsorted character vector:

\begin{verbatim}
a = allperm({C B A});
print a;
\end{verbatim}
Figure 26.37 All Permutations of a Character Vector

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C B A</td>
</tr>
<tr>
<td>C A B</td>
</tr>
<tr>
<td>A C B</td>
</tr>
<tr>
<td>A B C</td>
</tr>
<tr>
<td>B A C</td>
</tr>
<tr>
<td>B C A</td>
</tr>
</tbody>
</table>

The optional second argument, `idx`, can be used to control the number of rows in the output of the function. The argument must consist of consecutive integers; you cannot use it to randomly access permutations that are out of sequence. The second argument is often used to generate one or more permutations in a loop so that you do not need to allocate a huge matrix that contains all of the permutations at once. The following statements illustrate this usage:

```plaintext
perm = 1:n;
do i=1 to fact(n);  
    perm = allperm(perm, i);  
    /* do something with the i_th permutation */  
end;
```

If you want the permutations in lexicographic order, generate the permutations and then use the SORT subroutine, as follows:

```plaintext
p = allperm(n);  
call sort(p, 1:n);
```

ANY Function

\[\text{ANY}(\text{matrix}); \]

The ANY function returns a value of 1 if any of the elements in `matrix` are nonzero. If all the elements of `matrix` are zero or missing, the ANY function returns a value of 0.

You can use the ANY function to compare elements in two matrices, as shown in the following statements:

```plaintext
a = {1 2, 3 4};
b = {3 2, 1 0};
if any(a=b) then  
    msg = "for some element, a[i,j] equals b[i,j]";  
else  
    msg = "a ^= b";
print msg;
```

Figure 26.38 Result of Comparing Elements

<table>
<thead>
<tr>
<th>msg</th>
</tr>
</thead>
<tbody>
<tr>
<td>for some element, a[i,j] equals b[i,j]</td>
</tr>
</tbody>
</table>
In the preceding statements, the IF-THEN expression is true if at least one element in \(a \) is the same as the corresponding element in \(b \). You can use the \textsc{all} function to compare all of the elements in two matrices.

APPCORT Call

```
CALL APPCORT(prqb, lindep, a, b, <, sing>);
```

If \(A \) is rank-deficient, then the least squares problem \(\min_x \| Ax - b \|_2^2 \) has infinitely many solutions (Golub and Van Loan 1989, p. 241). However, there is a unique solution which has the smallest Euclidean norm. The \texttt{APPCORT} subroutine computes the minimum Euclidean-norm solution of the (rank-deficient) least squares problem by applying a complete orthogonal decomposition by Householder transformations to the vector \(b \).

The input arguments to the \texttt{APPCORT} subroutine are as follows:

- \(a \) is an \(m \times n \) matrix \(A \), with \(m \geq n \), which is to be decomposed into the product of the \(m \times m \) orthogonal matrix \(Q \), the \(n \times n \) upper triangular matrix \(R \), and the \(n \times n \) orthogonal matrix \(P \),

 \[A = Q \begin{bmatrix} R \ & \ 0 \\ 0 \ & \ \end{bmatrix} \Pi' \Pi \]

- \(b \) is a \(m \times p \) matrix, \(B \).

- \(\text{sing} \) is an optional scalar that specifies a singularity criterion.

The \texttt{APPCORT} subroutine returns the following values:

- \(\text{prqb} \) is an \(n \times p \) matrix product

 \[PP \begin{bmatrix} (L')^{-1} & 0 \\ 0 & \ 0 \ & \ \end{bmatrix} Q'B \]

 which is the minimum Euclidean-norm solution of the rank-deficient least squares problem

 \(\| Ax - b \|_2^2 \).

- \(\text{lindep} \) is the number of linearly dependent columns in the matrix \(A \) that are detected by applying the \(r \) Householder transformations. That is, \(\text{lindep} = n - r \), where \(r \) is the numerical rank of \(A \).

See the section “\textsc{COMPORT Call}” on page 638 for information about complete orthogonal decomposition.

The following example uses the \texttt{APPCORT} call to solve a rank-deficient least squares problem:

```c
/* compute solution for rank-deficient least squares problem:  
   \min |Ax-b|^2  
   The range of A is a line; b is a point not on the line. */
A = {1 2,
   2 4,
   -1 -2};
b = {1, 3, -2};
call appcort(x,lindep,A,b);
print x;
```
The argument \(b \) can also be a matrix. If \(b \) is an identity matrix, then you can use the APPCORT subroutine to form a generalized inverse, as shown in the following example:

```plaintext
/* A has only four linearly independent columns */
A = {1 0 1 0 0,
     1 0 0 1 0,
     0 1 0 1 0,
     0 1 0 0 1};

/* compute Moore-Penrose generalized inverse */
b = i(nrow(A)); /* identity matrix */
call appcort(Ainv, lindep, A, b);
print Ainv;

/* verify generalized inverse conditions (Golub & Van Loan, p. 243) */
eps = 1e-12;
if any(A*Ainv*A-A > eps) | any((A*Ainv)`-A*Ainv > eps) | any((Ainv*A)`-Ainv*A > eps) then
   msg = "Pseudoinverse conditions not satisfied";
else
   msg = "Pseudoinverse conditions satisfied";
print msg;
```

Figure 26.40 Generalized Inverse

<table>
<thead>
<tr>
<th>Ainv</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>0.0666667</td>
</tr>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>-0.0666667</td>
</tr>
<tr>
<td>-0.0666667</td>
</tr>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>0.2666667</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>-0.1</td>
</tr>
<tr>
<td>-0.1</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>-0.1</td>
</tr>
<tr>
<td>-0.1</td>
</tr>
<tr>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>msg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoinverse conditions satisfied</td>
</tr>
</tbody>
</table>

APPEND Statement

```plaintext
APPEND < VAR operand> ;

APPEND FROM matrix < [ROWNAME=row-name]> ;
```
The APPEND statement adds observations to the end of a SAS data set.

The arguments to the APPEND statement are as follows:

- **operand** specifies a set of variables. You can specify variables by using any of the methods described in the section “Select Variables with the VAR Clause” on page 103.
- **matrix** is the name of a matrix that contains data to append. Each column of the matrix becomes a variable in the data set.
- **row-name** is a character matrix or quoted literal that contains descriptive row names.

You can use the APPEND statement to add data to the end of the current output data set. The appended observations are from either the variables specified in the VAR clause or variables created from the columns of matrix. You cannot use the FROM clause and the VAR clause in the same statement.

The APPEND statement is usually used without any arguments. A common practice is to specify the data in the CREATE statement, as shown in the following example:

```sas
proc iml;
    x = {1,2,3,4}; /* 4 x 1 vector */
    y = {4 3,2 1}; /* 2 x 2 matrix */
    z = {2,3,4}; /* 3 x 1 vector */
    c = {A,B,C,D}; /* 4 x 1 character vector */
    create Temp1 var {x y}; /* Temp1 contains two variables */
    append; /* appends data from x and y */
    close Temp1;
    quit;

    proc print data=Temp1 noobs;
    run;
```

The values in the Temp1 data set are shown in Figure 26.41. Notice that the 2×2 matrix y is written to the data set in row-major order.

![Figure 26.41 Data Set Created from Matrices](image)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

If you omit the VAR (and FROM) clause in the CREATE statement, then the new data set contains a variable for each SAS/IML matrix that is in scope. You can use the VAR clause in the APPEND statement to write specific variables. Variables that are not explicitly specified receive missing values, as shown in the following statements:

```sas
proc iml;
    x = {1,2,3,4}; /* 4 x 1 vector */
    y = {4 3,2 1}; /* 2 x 2 matrix */
    z = {2,3,4}; /* 3 x 1 vector */
    c = {A,B,C,D}; /* 4 x 1 character vector */
```
create Temp2; /* Temp2 contains a variable for each matrix */
append var {c x z}; /* y gets missing values */
close Temp2;
quit;

proc print data=Temp2 noobs;
run;

The values in the Temp2 data set are shown in Figure 26.42. The data set contains four observations because that is the number of elements in the matrix with the greatest number of elements. Elements are appended in row-major order. Notice that the variable z contains a missing value at the end because the variable was created from a SAS/IML matrix that contained fewer than four elements.

Figure 26.42 Data Set Created from All Matrices

<table>
<thead>
<tr>
<th>c</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>.</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>.</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>.</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

As shown in the previous example, the default variables for the APPEND statement are all matrices that match variables in the current data set with respect to name and type.

The ROWNAME= option in the FROM clause specifies the name of a character matrix to contain row titles. Use this option in conjunction with the identical option in the FROM clause of the CREATE statement, as shown in the following statements:

```
proc iml;
VarName = {"x" "y"};
w = {3 96, 4 90, 2 100, 4 92}; /* data matrix */
cov = cov(w); /* sample covariance matrix of data */
create Temp3 from cov[rowname=VarName colname=VarName];
append from cov[rowname=VarName];
close Temp3;
quit;

proc print data=Temp3 noobs; 
run;
```

The values in the Temp3 data set are shown in Figure 26.43. The matrix cov contains the data that are saved to the Temp3 data set. The character vector VarName contains the names of the variables for the Temp3 data set. (If you use the FROM clause in the CREATE statement, but do not specify the COLNAME= option, then the variables are named COL1, COL2, and so on.) The ROWNAME= option enables you to specify a single character variable when you are creating a data set from a numerical matrix. This is useful for specifying variable names in a correlation or covariance matrix, but can also be used more generally to specify a row label for each observation.
If you do not specify the ROWNAME= option in the CREATE statement, then you do not need to specify the ROWNAME= option in the APPEND statement, as shown in the following example:

```plaintext
create Temp3 from cov[colname=VarName];
append from cov;
close Temp3;
```

You can also use the APPEND statement with the EDIT statement. See the documentation for the EDIT statement for examples.

APPLY Function

 APPLY(modname, argument1 <, argument2, . . . , argument14>);

The APPLY function applies a user-defined module to each element of the argument matrix or matrices and returns a matrix of results.

The arguments to the APPLY statement are as follows:

- **modname** specifies the name of an existing function module. You can specify the module name as a literal string or as matrix that contains the module name. The module should return a numeric value.
- **argument** specifies an argument passed to the module. You must have at least one argument. You can specify up to 15 arguments.

The first argument to APPLY is the name of a function module that returns a numeric value. The module must take scalar arguments and must already be defined before the APPLY function is executed. The subsequent arguments to the APPLY function are the arguments passed to the module. They all must have the same dimension.

If the function module takes n scalar arguments, $argument1$ through $argumentn$ should be passed to APPLY where $1 \leq n \leq 14$. The APPLY function calls the module one time for each element in its input arguments. The result has the same dimension as the input arguments, and each element of the result corresponds to the module applied to the corresponding elements of the argument matrices. The APPLY function accepts either numeric or character arguments. For example, the following statements define module ABC and then call the APPLY function, with matrix a as an argument:

```plaintext
start abc(x);
    r = x + 100;
    return (r);
finish abc;

a = {6 7 8,
     9 10 11};
```
s = apply("ABC", a);
print s;

The result is shown in Figure 26.44.

Figure 26.44 Result of a Module Applied to Each Argument in a Matrix

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>109</td>
<td>110</td>
<td>111</td>
</tr>
</tbody>
</table>

The module can also alter the contents of the arguments. In the following example, the statements define the module `ABSDIFF` and call the `APPLY` function:

```plaintext
/* compute abs(x-y); permute elements of x and y so that x[i] >= y[i] */
start AbsDiff(x, y);
   if x<y then do; /* swap x and y */
      t = x;
      x = y;
      y = t;
   end;
   return( x-y );
finish;

a = {-1 0 1};
b = {-2 0 2};
mod = "AbsDiff";
r = apply(mod, a, b);
print a, b, r;
```

Notice that the third element of the \(a\) and \(b\) arguments are exchanged, as shown in Figure 26.45.

Figure 26.45 Result of a Module Applied to Each Argument in a Matrix

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

The `APPLY` function is provided as a convenience, but it is usually unnecessary. It is usually more efficient to write your functions to take vector, rather than scalar, arguments.

ARMACOV Call

```plaintext
CALL ARMACOV(auto, cross, convol, phi, theta, num);
```
The ARMACOV subroutine computes an autocovariance sequence for an autoregressive moving average (ARMA) model. The input arguments to the ARMACOV subroutine are as follows:

- \(\phi \) refers to a \(1 \times (p + 1) \) matrix that contains the autoregressive parameters. The first element is assumed to have the value 1.
- \(\theta \) refers to a \(1 \times (q + 1) \) matrix that contains the moving average parameters. The first element is assumed to have the value 1.
- \(num \) refers to a scalar that contains \(n \), the number of autocovariances to be computed, which must be a positive number.

The ARMACOV subroutine returns the following values:

- \(\text{auto} \) specifies a variable to contain the returned \(1 \times n \) matrix that contains the autocovariances of the specified ARMA model, assuming unit variance for the innovation sequence.
- \(\text{cross} \) specifies a variable to contain the returned \(1 \times (q + 1) \) matrix that contains the covariances of the moving-average term with lagged values of the process.
- \(\text{convol} \) specifies a variable to contain the returned \(1 \times (q + 1) \) matrix that contains the autocovariance sequence of the moving-average term.

The ARMACOV subroutine computes the autocovariance sequence that corresponds to a given autoregressive moving-average (ARMA) time series model. An arbitrary number of terms in the sequence can be requested. Two related covariance sequences are also returned.

The model notation for the ARMACOV subroutine is the same as for the ARMALIK subroutine. The ARMA\((p, q)\) model is denoted

\[
\sum_{j=0}^{p} \phi_j y_{t-j} = \sum_{i=0}^{q} \theta_i \epsilon_{t-i}
\]

with \(\theta_0 = \phi_0 = 1 \). The notation is the same as that of Box and Jenkins (1976) except that the model parameters are opposite in sign. The innovations \(\{\epsilon_t\} \) satisfy \(E(\epsilon_t) = 0 \) and \(E(\epsilon_t \epsilon_{t-k}) = 1 \) if \(k = 0 \), and are zero otherwise. The formula for the \(k \)th element of the \(\text{convol} \) argument is

\[
\sum_{i=k-1}^{q} \theta_i \theta_{i-k+1}
\]

for \(k = 1, 2, \ldots, q + 1 \). The formula for the \(k \)th element of the \(\text{cross} \) argument is

\[
\sum_{i=k-1}^{q} \theta_i \psi_{i-k+1}
\]

for \(k = 1, 2, \ldots, q + 1 \), where \(\psi_i \) is the \(i \)th impulse response value. The \(\psi_i \) sequence, if desired, can be computed with the \textit{RATIO} function. It can be shown that \(\psi_k \) is the same as \(E(Y_{t-k}\epsilon_t^2)/\sigma \), which is used by Box and Jenkins (1976) in their formulation of the autocovariances. The \(k \)th autocovariance, denoted \(\gamma_k \) and returned as the \(k + 1 \) element of the \(\text{auto} \) argument (\(k = 0, 1, \ldots, n - 1 \)), is defined implicitly for \(k > 0 \) by

\[
\sum_{i=0}^{p} \gamma_{k-i} \Phi_i = \eta_k
\]
where η_k is the kth element of the `cross` argument. See Box and Jenkins (1976) or McLeod (1975) for more information.

Consider the model

$$y_t = 0.5y_{t-1} + e_t + 0.8e_{t-1}$$

To compute the autocovariance function at lags zero through four for this model, use the following statements:

```plaintext
/* an ARMA(1,1) model */
phi = {1 -0.5};
theta = {1 0.8};
call armacov(auto, cross, convol, phi, theta, 5);
print auto, cross convol;
```

The result is shown in Figure 26.46.

![Figure 26.46 Result of the ARMACOV Subroutine](image)

ARMALIK Call

```plaintext
CALL ARMALIK(lnl, resid, std, x, phi, theta);
```

The ARMALIK subroutine computes the log likelihood and residuals for an autoregressive moving average (ARMA) model. The input arguments to the ARMALIK subroutine are as follows:

- **x** is an $n \times 1$ or $1 \times n$ matrix that contains values of the time series (assuming mean zero).
- **phi** is a $1 \times (p + 1)$ matrix that contains the autoregressive parameter values. The first element is assumed to have the value 1.
- **theta** is a $1 \times (q + 1)$ matrix that contains the moving average parameter values. The first element is assumed to have the value 1.

The ARMALIK subroutine returns the following values:

- **lnl** specifies a 3×1 matrix that contains the log likelihood concentrated with respect to the innovation variance; the estimate of the innovation variance (the unconditional sum of squares divided by n); and the log of the determinant of the variance matrix, which is standardized to unit variance for the innovations.
- **resid** specifies an $n \times 1$ matrix that contains the standardized residuals. These values are uncorrelated with a constant variance if the specified ARMA model is the correct one.
- **std** specifies an $n \times 1$ matrix that contains the scale factors used to standardize the residuals. The actual residuals from the one-step-ahead predictions that use the past values can be computed as `std # resid`.

```plaintext
...
The ARMALIK subroutine computes the concentrated log-likelihood function for an ARMA model. The unconditional sum of squares is readily available, as are the one-step-ahead prediction residuals. Factors that can be used to generate confidence limits associated with prediction from a finite past sample are also returned.

The notational conventions for the ARMALIK subroutine are the same as those used by the ARMACOV subroutine. See the description of the ARMACOV call for the model employed. In addition, the condition $\sum_{i=0}^{q} \theta_i^2 \neq 0$ for $|z| < 1$ should be satisfied to guard against floating-point overflow.

If the column vector $x$ contains $n$ values of a time series and the variance matrix is denoted $\Sigma = \sigma^2 V$, where $\sigma^2$ is the variance of the innovations, then, up to additive constants, the log likelihood, concentrated with respect to $\sigma^2$, is

\[-\frac{n}{2} \log (x'V^{-1}x) - \frac{1}{2} \log |V|\]

The matrix $V$ is a function of the specified ARMA model parameters. If $L$ is the lower Cholesky root of $V$ (that is, $V = LL'$), then the standardized residuals are computed as $resid = L^{-1}x$. The elements of $std$ are the diagonal elements of $L$. The variance estimate is $x'V^{-1}x/n$, and the log determinant is $\log |V|$. See Ansley (1979) for further details. Consider the following model:

$$y_t - y_{t-1} + 0.25y_{t-2} = e_t + 0.5e_{t-1}$$

To compute the log likelihood for this model, use the following statements:

```plaintext
phi = {1 -1 0.25};
theta = {1 0.5};
x = {1 2 3 4 5};
call armalik(lnl, resid, std, x, phi, theta);
print lnl resid std;
```

**Figure 26.47** Results from an ARMALIK Call

<table>
<thead>
<tr>
<th>lnl</th>
<th>resid</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.822608</td>
<td>0.4057513</td>
<td>2.4645637</td>
</tr>
<tr>
<td>0.8721154</td>
<td>0.9198158</td>
<td>1.2330147</td>
</tr>
<tr>
<td>2.3293833</td>
<td>0.8417343</td>
<td>1.0419028</td>
</tr>
<tr>
<td></td>
<td>1.0854175</td>
<td>1.0098042</td>
</tr>
<tr>
<td></td>
<td>1.2096421</td>
<td>1.0024125</td>
</tr>
</tbody>
</table>

**ARMASIM Function**

```plaintext
ARMASIM(phi, theta, mu, sigma, n < , seed >);
```

The ARMASIM function simulates a univariate series from an autoregressive moving average (ARMA) model. The arguments to the ARMASIM function are as follows:

- $phi$ is a $1 \times (p + 1)$ matrix that contains the autoregressive parameters. The first element is assumed to have the value 1.
theta is a $1 \times (q + 1)$ matrix that contains the moving average parameters. The first element is assumed to have the value 1.

mu is a scalar that contains the overall mean of the series.

sigma is a scalar that contains the standard deviation of the innovation series.

n is a scalar that contains $n$, the length of the series. The value of $n$ must be greater than 0.

seed is a scalar that contains the random number seed. At the first execution of the function, the seed variable is used as follows:

- If $\text{seed} > 0$, the input seed is used for generating the series.
- If $\text{seed} = 0$, the system clock is used to generate the seed.
- If $\text{seed} < 0$, the value $-\text{seed}$ is used for generating the series.

If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls to the function, the seed variable is used as follows:

- If $\text{seed} > 0$, the seed remains unchanged.
- In other cases, after each execution of the function, the current seed is updated internally.

The ARMASIM function generates a series of length $n$ from a given autoregressive moving average (ARMA) time series model and returns the series in an $n \times 1$ matrix. The notational conventions for the ARMASIM function are the same as those used by the ARMACOV subroutine. See the description of the ARMACOV call for the model employed. The ARMASIM function uses an exact simulation algorithm as described in Woodfield (1988). A sequence $Y_0, Y_1, \ldots, Y_{p+q-1}$ of starting values is produced by using an expanded covariance matrix, and then the remaining values are generated by using the following recursion form of the model:

$$ Y_t = -\sum_{i=1}^{p} \phi_i Y_{t-i} + \epsilon_t + \sum_{i=1}^{q} \theta_i \epsilon_{t-i} \quad t = p + q, p + q + 1, \ldots, n - 1 $$

The random number generator RANNOR is used to generate the noise component of the model. Note that the following statement returns $n$ standard normal pseudorandom deviates:

$$ y = \text{armasim}(1, 1, 0, 1, n, \text{seed}); $$

For example, consider the following model:

$$ y_t = 0.5y_{t-1} + \epsilon_t + 0.8\epsilon_{t-1} $$

To generate a time series of length 10 from this model, use the following statements to produce the result shown in Figure 26.48:

```r
phi = c(1, -0.5);
theta = c(1, 0.8);
y = armasim(phi, theta, 0, 1, 10, -1234321);
print(y);
```
The BAR subroutine displays a bar chart by calling the SGPLOT procedure. The argument $x$ is a vector that contains character or (discrete) numeric data to plot. The BAR subroutine is not a comprehensive interface to the SGPLOT procedure. It is intended for creating simple bar charts for exploratory data analysis. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

A simple example follows:

```
use Sashelp.Cars;
read all var {origin};
close Sashelp.Cars;

title "Bar Chart with Default Properties";
call Bar(origin);
```
Specify the \( x \) vector inside parentheses and specify all options outside the parentheses. Use the global TITLE and FOOTNOTE statements to specify titles and footnotes. Each option corresponds to a statement or option in the SGPLOT procedure.

Valid values for the TYPE= option are “VBar” and “HBar.” The “VBar” value creates a vertical bar chart and corresponds to the VBAR statement in PROC SGPLOT. The “HBar” value creates a horizontal bar chart and corresponds to the HBAR statement.

The following options correspond to options in the VBAR and HBAR statements in the SGPLOT procedure:

- **GROUP=** specifies a vector of values that determine groups in the plot. You can use a numeric or character vector. This option corresponds to the GROUP= option in the VBAR and HBAR statements.

- **GROUPOPT=** specifies a character vector of values that determine how groups are displayed. This option is ignored if the GROUP= option is not specified. You can specify the following values:
  - “Stack” or “Cluster” specifies how to display grouped bars. These values correspond to the GROUPDISPLAY= option in the VBAR and HBAR statements in PROC SGPLOT. The default value is “Stack.”
  - “Ascending,” “Descending,” or “Data” specifies how to display grouped bars. These values correspond to the GROUPORDER= option in the VBAR and HBAR statements in PROC SGPLOT. The default value is “Ascending.”

For example, a valid call is \texttt{GROUPOPT=\{"Cluster" "Data"\}};

- **FREQ=** specifies a vector of numerical values that are used as frequencies for each corresponding value of the \( x \) variable. This option corresponds to the FREQ= option in the VBAR and HBAR statements in PROC SGPLOT.
Some options are common to all of the ODS graphics routines. The following common options specify options in the XAXIS and YAXIS statements in the SGPLOT procedure:

**ORDER=** specifies the order in which discrete tick values are to be placed on the categorical axis. Valid options are “DATA” and “UNFORMATTED.” This option corresponds to the DISCRETE-ORDER= option in the XAXIS and YAXIS statements.

**GRID=** specifies whether to display grid lines for the X or Y axis. This option corresponds to the GRID option in the XAXIS and YAXIS statements. Valid values follow:

- **GRID=(:X)** displays grid lines for the X axis.
- **GRID=(:Y)** displays grid lines for the Y axis.
- **GRID=(:X, :Y)** displays grid lines for both axes.

**LABEL=** specifies axis labels for the X or Y axis. If the argument is a scalar, the value of the argument is used for the X axis label. If the argument has two elements, the first is used for the X axis label and the second for the Y axis label. If this option is not specified, the labels “X” and “Y” are used for labels.

**XVALUES=** specifies a vector of values for ticks for the X axis.

**YVALUES=** specifies a vector of values for ticks for the Y axis.

In addition, the following common options specify additional options and statements in the SGPLOT procedure:

**PROCOPT=** specifies a character matrix or string literal. The value is used verbatim to specify options in the PROC SGPLOT statement.

**OTHER=** specifies a character matrix or string literal. You can use this option to specify one or more complete statements in the SGPLOT procedure. For example, you can specify multiple REFLINE statements and an INSET statement.

The following example shows how to create a bar chart that uses the GROUP=, GROUPOPT=, GRID=, and LABEL= options:

```plaintext
use Sashelp.Cars where(type ? {"SUV" "Truck" "Sedan"});
read all var {origin type};
close Sashelp.Cars;

title "Horizontal Bar Chart, group and order categories";
/* 1. Use the GROUP= option to assign a group to each observation
 * 2. Use the GROUPOPT= option to specify the grouping options
 * 3. Use the GRID= and LABEL= options to improve the appearance
 */
call Bar(origin) type="HBar" group=type groupopt="Cluster"
 grid="X" label="Origin";
```
Notice that the TYPE="HBar" option results in the bars being drawn horizontally, as shown in Figure 26.50. Also, because the categories are displayed on the vertical axis, the LABEL= option changes the label on the vertical axis.

The next example shows how to create a bar chart from tabulated data. The frequencies for each category are precomputed. The FREQ= option specifies the vector of frequencies. The ORDER= option requests that the categories be displayed in the same order as they appear in the data.

```sas
y = {3 2 1 .};
freq = {30 20 10 5};
title "Freq and Missing Category";
call Bar(y) freq=freq order="Data";
```

Figure 26.51 Bar Chart from Summarized Data
The BIN function divides numeric values into a set of disjoint intervals called bins. The BIN function returns a matrix that is the same shape as \( x \) and that indicates which elements of \( x \) are contained in each bin. The arguments are as follows:

\( x \) specifies a numerical vector or matrix.

\( \text{cutpoints} \) specifies the intervals into which to bin the data. This argument can have a vector or a scalar value. A vector defines the endpoints of the intervals; a scalar value specifies the number of evenly spaced intervals into which the range of the data is divided.

\( \text{closed} \) is an optional argument that specifies whether the bins are open on the right or left sides. The following values are valid:

- “Left” specifies that the bins are closed on the left and open on the right. The last interval is closed on both sides. This is the default value.
- “Right” specifies that the intervals are open on the left and closed on the right. The first interval is closed on both sides.

If \( \text{cutpoints} \) is a vector, then it must be ordered so that the first element is the smallest and the last element is the largest. The ordered values define the intervals that are used to bin the values. For example, the following statements bin \( x \) into the intervals \( I_1 = [0, 1) \), \( I_2 = [1, 1.8) \), \( I_3 = [1.8, 2) \), and \( I_4 = [2, 4] \), and return the bin numbers for each element of \( x \):

\[
\begin{align*}
    &x = \{0, 0.5, 1, 1.5, 2, 2.5, 3, 0.5, 1.5, 3, 3, 1\}; \\
    &\text{cutpoints} = \{0 1 1.8 2 4\}; \\
    &b = \text{bin}(x, \text{cutpoints}); \\
    &\text{print } x, b;
\end{align*}
\]

**Figure 26.52 Bins for Each Observation**

<table>
<thead>
<tr>
<th>x</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

You can use the special missing values .M and .I to specify unbounded intervals. A missing value of .M in the first element is interpreted as \(-\infty\), and a missing value of .I in the last element is interpreted as \(+\infty\).
For example, the following statements are all valid specifications of the `cutpoints` argument:

```
c = {.M -2 -1 0 1 2};
c = {.M -2 -1 0 1 2 .I};
c = {-2 -1 0 1 2 .I};
```

If `cutpoints` is a positive integer, $n$, then the interval $[\min(x), \max(x)]$ is divided into $n$ intervals of width $\Delta = (\max(x) - \min(x))/n$ and the data are binned into these intervals. For example, the following statements bin the elements of $x$ into one of three intervals $[0, 1)$, $[1, 2)$, or $[2, 3)$:

```
bin = bin(x, 3);
print x bin;
```

**Figure 26.53** Bins That Are Associated with Each Value

<table>
<thead>
<tr>
<th>x</th>
<th>bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Notice in **Figure 26.53** that the value 3 is placed into the third interval because the last interval is closed on the right.

The BIN function returns missing values for data values that are not contained in any bin. Missing values are also returned for missing values in the data.

You can use the BIN function in conjunction with the TABULATE function to count the number of observations in each interval. The following statements sample from the standard normal distribution and count the number of observations in a set of evenly spaced intervals:

```
z = rannor(j(1000, 1, 1));
set = do(-3.5, 3.5, 1);
b = bin(z, set);
call tabulate(levels, count, b);
/* label counts by the center of each interval */
intervals = char(do(-3, 3, 1), 2);
print count[colname=intervals];
```

**Figure 26.54** Bins Counts for Evenly Spaced Intervals

<table>
<thead>
<tr>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
</tr>
<tr>
<td>-2</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>241</td>
</tr>
<tr>
<td>385</td>
</tr>
<tr>
<td>235</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
BLANKSTR Function

BLANKSTR(n);

The BLANKSTR function returns a blank character string of a specified length. You can use the BLANKSTR function in conjunction with the J function to allocate character arrays, as follows:

```plaintext
/* combine colors and objects */
color = {"Red" "Green" "Blue"}; /* nleng(color) =5 */
object = {"Balloon" "Leaf" "Marble"}; /* nleng(object)=7 */

/* compute maximum length of a color/object combination */
len = nleng(color) + nleng(object) + 1;
items = j(3, 3, BlankStr(len)); /* allocate char vector */
do i = 1 to ncol(color);
 do j = 1 to ncol(object);
 items[i,j] = color[i] + " " + object[j]; /* concatenate strings */
 end;
end;
print items;
```

Figure 26.55  Filling an Allocated Character Matrix

<table>
<thead>
<tr>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Balloon</td>
</tr>
<tr>
<td>Red Leaf</td>
</tr>
<tr>
<td>Red Marble</td>
</tr>
<tr>
<td>Green Balloon</td>
</tr>
<tr>
<td>Green Leaf</td>
</tr>
<tr>
<td>Green Marble</td>
</tr>
<tr>
<td>Blue Balloon</td>
</tr>
<tr>
<td>Blue Leaf</td>
</tr>
<tr>
<td>Blue Marble</td>
</tr>
</tbody>
</table>

BLOCK Function

BLOCK(matrix1 <, matrix2, ..., matrix15>);

The BLOCK function forms a block-diagonal matrix. The blocks are defined by the arguments to the function. Up to 15 matrices can be specified. Empty matrices are supported, but have no effect. The matrices are combined diagonally to form a new matrix.

For example, if A, B, and C are any matrices, then the block matrix formed from these matrices has the following form:

```
[A 0 0]
[0 B 0]
[0 0 C]
```

The following statements produce a block-diagonal matrix composed of three blocks, shown in Figure 26.56:

```plaintext
a = 1;
b = { 2 2,
 3 3};
c = { 4 4 4,
 5 5 5};
```
d = block(a, b, c);
print d;

Figure 26.56  Block Matrix

<table>
<thead>
<tr>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>0 2 2 0 0</td>
</tr>
<tr>
<td>0 3 3 0 0</td>
</tr>
<tr>
<td>0 0 4 4 4</td>
</tr>
<tr>
<td>0 0 5 5 5</td>
</tr>
</tbody>
</table>

**BOX Call**

```latex
CALL BOX(x) < TYPE="VBox" | "HBox" >
 < CATEGORY=CategoryVector >
 < GROUP=GroupVector >
 < GROUPOPT=GroupOption >
 < DATALABEL=DataLabelVector >
 < OPTION=BoxOption >
 < ORDER="DATA" | "UNFORMATTED" >
 < GRID={"X" <, "Y"}> >
 < LABEL={XLabel <, YLabel}> >
 < XVALUES=xValues >
 < YVALUES=yValues >
 < PROCOPT=ProcOption >
 < OTHER=Stmts > ;
```

The BOX subroutine displays a bar chart by calling the SGPLOT procedure. The argument `x` is a vector that contains character or (discrete) numeric data to plot. The BOX subroutine is not a comprehensive interface to the SGPLOT procedure. It is intended for creating simple bar charts for exploratory data analysis. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

A simple example follows:

```latex
use Sashelp.Cars where(type $ {"SUV" "Truck" "Sedan"});
read all var {MPG_City Origin Type Make Model};
close Sashelp.Cars;

title "Box Plot for Each Category";
call Box(MPG_City) Category=Origin;
```
Specify the x vector inside parentheses and specify all options outside the parentheses. Use the global TITLE and FOOTNOTE statements to specify titles and footnotes. Each option corresponds to a statement or option in the SGPlot procedure.

Valid values for the TYPE= option are “VBox” and “HBox.” The “VBox” value creates a vertical box plot and corresponds to the VBOX statement in PROC SGPLOT. The “HBox” value creates a horizontal box plot and corresponds to the HBOX statement.

The following options correspond to options in the VBOX and HBOX statements in the SGPLOT procedure:

**CATEGORY=** specifies a vector of values that define a category variable for the plot. A box plot is created for each distinct value of the category variable.

**GROUP=** specifies a vector of values that determine groups in the plot. You can use a numeric or character vector. This option corresponds to the GROUP= option in the VBOX and HBOX statements.

**GROUPOPT=** specifies a character vector of values that determine how groups are displayed. This option is ignored if the GROUP= option is not specified. You can specify one or both of the following values:

- “Cluster” or “Overlay” specifies how to display grouped boxes. This option corresponds to the GROUPDISPLAY= option in the VBOX and HBOX statements in PROC SGPLOT. The default value is “Cluster.”
- “Ascending,” “Descending,” or “Data” specifies how to display grouped boxes. This option corresponds to the GROUPORDER= option in the VBOX and HBOX statements in PROC SGPLOT. The default value is “Ascending.”

For example, a valid call is `GROUPOPT=("Cluster" "Data");`

**DATALABEL=** specifies a vector of values that are used to label outliers.

---

**Figure 26.57** A Box Plot

![Box Plot for Each Category](image)
Chapter 26: Language Reference

**OPTION=** specifies a character matrix or string literal. This option is used verbatim to specify options in the HBOX or VBOX statement.

The BOX subroutine also supports the following options. The **BAR subroutine** documents these options and gives an example of their usage.

- **ORDER=** specifies the order in which discrete tick values are to be placed on the categorical axis.
- **GRID=** specifies whether to display grid lines for the X or Y axis.
- **LABEL=** specifies axis labels for the X or Y axis.
- **XVALUES=** specifies a vector of values for ticks for the X axis.
- **YVALUES=** specifies a vector of values for ticks for the Y axis.
- **PROCOPT=** specifies options in the PROC SGPLOT statement.
- **OTHER=** specifies statements in the SGPLOT procedure.

If you use the **LABEL=** option to specify a single label, that label is used to label the interval axis that shows the distribution of data values. If you specify two labels, the first labels the categorical variable (if you use the **CATEGORY=** option) and the second labels the data axis.

The following statements provide additional examples of creating box plots:

```plaintext
title "Category and Group Variables";
call Box(MPG_City) Type="HBox" Category=Origin group=Type grid="x"
 label="{"Country of Origin" "MPG City"}"
 other="refline 22 / axis=x;"

title "Data Labels and Jittering";
call Box(MPG_City) Category=Type label="{"Vehicle Type" "MPG City"}"
 datalabel=putc(Model,"$10.") option="spread";
```

**Figure 26.58** Horizontal Box Plot with Categorical and Group Variables
The BRANKS function computes the tied ranks and the bivariate ranks for an $n \times 2$ matrix and returns an $n \times 3$ matrix of these ranks. The tied ranks of the first column of $matrix$ are contained in the first column of the result matrix; the tied ranks of the second column of $matrix$ are contained in the second column of the result matrix; and the bivariate ranks of $matrix$ are contained in the third column of the result matrix.

The tied rank of an element $x_j$ of a vector is defined as

$$ R_i = \frac{1}{2} + \sum_j u(x_i - x_j) $$

where

$$ u(t) = \begin{cases} 1 & \text{if } t > 0 \\ \frac{1}{2} & \text{if } t = 0 \\ 0 & \text{if } t < 0 \end{cases} $$

The bivariate rank of a pair $(x_j, y_j)$ is defined as

$$ Q_i = \frac{3}{4} + \sum_j u(x_i - x_j) u(y_i - y_j) $$

The results of the BRANKS function can be used to compute rank-based correlation coefficients such as the Spearman rank-order correlation and Hoeffding’s $D$ statistic.

The following statements compute the bivariate ranks of two columns of data:
\[ z = \begin{array}{cccc}
1 & 2 \\
2 & 1 \\
3 & 3 \\
3 & 5 \\
4 & 4 \\
5 & 4 \\
5 & 4 \\
4 & 5 \\
\end{array} \]

\[ b = \text{branks}(z); \]
\[ \text{print } b; \]

**Figure 26.60** Tied Ranks and Bivariate Ranks

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 1</td>
</tr>
<tr>
<td>2 1 1</td>
</tr>
<tr>
<td>3.5 3 3</td>
</tr>
<tr>
<td>3.5 7.5 3.5</td>
</tr>
<tr>
<td>5.5 5 4</td>
</tr>
<tr>
<td>7.5 5 4.75</td>
</tr>
<tr>
<td>7.5 5 4.75</td>
</tr>
<tr>
<td>5.5 7.5 5</td>
</tr>
</tbody>
</table>

---

**BSPLINE Function**

**BSPLINE** \( x, d, k <, i > \);

The BSPLINE function computes a B-spline basis. The arguments to the BSPLINE function are as follows:

- \( x \) is an \( m \times 1 \) or \( 1 \times m \) numeric vector.
- \( d \) is a nonnegative numeric scalar value that specifies the degree of the B-spline. The order of a B-spline is one greater than the degree.
- \( k \) is a numeric vector of size \( n \) that contains the B-spline knots or a scalar that denotes the number of interior knots. When \( n > 1 \), the elements of the knot vector must be nondecreasing, \( k_{j-1} \leq k_j \) for \( j = 2, \ldots, n \).
- \( i \) is an optional argument that specifies the number of interior knots when \( n = 1 \) and \( k \) contains a missing value. In this case the BSPLINE function constructs a vector of knots as follows: If \( x_{(1)} \) and \( x_{(m)} \) are the smallest and largest value in the \( x \) vector, then interior knots are placed at

\[ x_{(1)} + j(x_{(m)} - x_{(1)})/(k + 1), \quad j = 1, \ldots, k \]

In addition, \( d \) exterior knots are placed under \( x_{(1)} \) and \( \max(d,1) \) exterior knots are placed over \( x_{(m)} \). The exterior knots are evenly spaced and start at \( x_{(1)} - 1E-12 \) and \( x_{(m)} + 1E-12 \). In this case the BSPLINE function returns a matrix with \( m \) rows and \( i + d + 1 \) columns.

The BSPLINE function computes B-splines of degree \( d \). Suppose that \( B_j^d(x) \) denotes the \( j \)th B-spline of degree \( d \) in the knot sequence \( k_1, \ldots, k_n \). De Boor (1978) defines the splines based on the following
relationships:

\[ B^0_j(x) = \begin{cases} 
1 & k_j \leq x < k_{j+1} \\
0 & \text{otherwise}
\end{cases} \]

and for \( d > 0 \)

\[ B^d_j(x) = w^d_j(x)B^{d-1}_j(x) + (1 - w^d_{j+1}(x))B^{d-1}_{j+1}(x) \]

\[ w^d_j(x) = \frac{x - k_j}{k_{j+d} - k_j} \]

Note that De Boor (1978) expresses B-splines in terms of order rather than degree; in his notation \( B_{j,d} = B_{j}^{d-1} \). B-splines have many interesting properties, including the following:

- \( \sum_j B^d_j = 1 \)
- The sequence \( B^d_j \) is positive on \( d + 1 \) knots and zero elsewhere.
- The B-spline \( B^d_j \) is a piecewise polynomial of at most \( d + 1 \) pieces.
- If \( k_j = k_{j+d} \), then \( B^d_{j} = 0 \).

See De Boor (1978) for more details. The BSPLINE function defines B-splines of degree 0 as nonzero if \( k_j < x \leq k_{j+1} \).

A typical knot vector for calculating B-splines consists of \( d \) exterior knots smaller than the smallest data value, and \( \max\{d,1\} \) exterior knots larger than the largest data value. The remaining knots are the interior knots.

For example, the following statements creates a B-spline basis with three interior knots. The BSPLINE function returns a matrix with \( 3 + d + 1 = 7 \) columns, shown in Figure 26.62.

```plaintext
x = [2.5 3 4.5 5.1]; /* data range is [2.5, 5.1] */
knots = [0 1 2 3 4 5 6 7 8]; /* three interior knots at x=3, 4, 5 */
bsp = bspline(x, 3, knots);
print bsp[format=best7.];
```

![Figure 26.61 B-Spline Basis](image)

If you pass an \( x \) vector of data values, you can also rely on the BSPLINE function to compute a knot vector for you. For example, the following statements compute B-splines of degree 2 based on four equally spaced interior knots:
n = 15;
x = ranuni(J(n, 1, 45));
bsp2 = bspline(x, 2, ., 4);
print bsp2[format=8.3];

The resulting matrix is shown in Figure 26.62.

**Figure 26.62** B-Spline Basis with Four Interior Knots

<table>
<thead>
<tr>
<th>bsp2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 0.104 0.748 0.147 0.000 0.000 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.286 0.684 0.030 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.000 0.000 0.517 0.483</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.217 0.725 0.058 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.239 0.713 0.048 0.000 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.446 0.553 0.002 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.394 0.600 0.006 0.000 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.000 0.064 0.729 0.207</td>
</tr>
<tr>
<td>0.000 0.389 0.604 0.007 0.000 0.000 0.000</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.000 0.000 0.500 0.500</td>
</tr>
<tr>
<td>0.000 0.000 0.000 0.000 0.210 0.728 0.062</td>
</tr>
<tr>
<td>0.000 0.000 0.014 0.639 0.347 0.000 0.000</td>
</tr>
<tr>
<td>0.000 0.001 0.546 0.453 0.000 0.000 0.000</td>
</tr>
<tr>
<td>0.500 0.500 0.000 0.000 0.000 0.000 0.000</td>
</tr>
<tr>
<td>0.304 0.672 0.024 0.000 0.000 0.000 0.000</td>
</tr>
</tbody>
</table>

**BTRAN Function**

**BTRAN(x, n, m);**

The BTRAN function computes the block transpose of a partitioned matrix. The arguments to the BTRAN function are as follows:

- **x** is an $(i n) \times (j m)$ numeric matrix.
- **n** is a scalar with a value that specifies the row dimension of the submatrix blocks.
- **m** is a scalar with a value that specifies the column dimension of the submatrix blocks.

The argument $x$ is a partitioned matrix formed from submatrices of dimension $n \times n$. If the $i$th, $j$th submatrix of the argument $x$ is denoted $A_{ij}$, then the $i$th, $j$th submatrix of the result is $A_{ji}$.

The value returned by the BTRAN function is a $(jn) \times (im)$ matrix, the block transpose of $x$, where the blocks are $n \times m$.

For example, the following statements compute the block transpose of a matrix:

```plaintext
all = {1 1,
 1 1,
 1 1};
/* a 3 x 2 matrix */
av2 = 1 + all;
```
\[ a_{13} = 2 + a_{11}; \]
\[ a_{21} = 3 + a_{11}; \]
\[ a_{22} = 4 + a_{11}; \]
\[ a_{23} = 5 + a_{11}; \]
\[ x = (a_{11} \ |\ | a_{12} \ |\ | a_{13}) \]
\[ (a_{21} \ |\ | a_{22} \ |\ | a_{23}); \]
\[ z = \text{btran}(x, 3, 2); \]
\[ \text{print } z; \]

**Figure 26.63** Block Transpose of a Partitioned Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

**BYTE Function**

```BYTE(matrix)```

The BYTE function returns values in a computer's character set. The input to the function is a numeric matrix, each element of which specifies the position of a character in the computer's character set. These numeric elements should generally be in the range 0 to 255. The BYTE function returns a character matrix with the same shape as the numeric argument.

For example, in the ASCII character set, the following two statements are equivalent:

\[a_{1} = \text{byte}(47); \]
\[a_{2} = ";"; \]
\[\text{print } a_{1} a_{2}; \]

Figure 26.64 Specifying the Slash Character

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>a2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

The lowercase English letters can be generated with the following statement, shown in **Figure 26.65**:

\[y = \text{byte}(97:122); \]
\[\text{print } y; \]
The BYTE function simplifies the use of special characters and control sequences that cannot be entered directly into SAS/IML programs by using the keyboard. Consult the character set tables for your computer to determine the printable and control characters that are available and their ordinal positions.

CALL Statement

\[
\text{CALL name } < (\text{arguments}) > ;
\]

The CALL statement enables you to call a built-in or user-defined subroutine.

The arguments to the CALL statement are as follows:

- **name** is the name of a built-in subroutine or a user-defined module.
- **arguments** are arguments to the module or subroutine.

The CALL statement executes a subroutine. If you define a module that has the same name as a built-in subroutine, the CALL statement can be used to call the built-in subroutine.

See also the section on the RUN statement.

CHANGE Call

\[
\text{CALL CHANGE}(\text{matrix, old, new } <, \text{ numchange } >);
\]

The CHANGE subroutine searches for and replaces text in a character matrix. The arguments to the CHANGE call are as follows:

- **matrix** is a character matrix.
- **old** is the string to be changed.
- **new** is the string to replace the old string.
- **numchange** is the number of times to make the change.

The CHANGE subroutine changes the first numchange occurrences of the substring old in each element of the character array matrix to the form new. If numchange is not specified, the routine defaults to 1. If numchange is 0, the routine changes all occurrences of old. If no occurrences are found, the matrix is not changed.

For example, consider the following statements:
a = "It was a dark and stormy night.";
call change(a, "night", "day");
print a;

The result of these statements is shown in Figure 26.66.

Figure 26.66 New String

\[
\begin{array}{l}
\text{a} \\
\text{It was a dark and stormy day.}
\end{array}
\]

In the old operand, the following characters are reserved:

\[
\% \$ [] \{ \} <>\!\ ?\# @ ‘(backquote)’
\]

CHAR Function

\[
\text{CHAR}(\text{matrix} <, w> <, d>);
\]

The CHAR function produces a character representation of a numeric matrix. Essentially, the CHAR function is equivalent to applying a \(w.d\) format to each element of a numeric matrix.

The arguments to the CHAR function are as follows:

- \text{matrix} \quad \text{is a numeric matrix or literal.}
- \text{w} \quad \text{is the field width.}
- \text{d} \quad \text{is the number of decimal positions.}

The CHAR function takes a numeric matrix as an argument and, optionally, a field width \text{w} and a number of decimal positions \text{d}. The CHAR function produces a character matrix with the same dimensions as the argument matrix, and with elements that are character representations of the corresponding numeric elements.

If the \text{w} argument is not supplied, the system default field width is used. If the \text{d} argument is not supplied, the best representation is used. See also the description of the NUM function, which converts a character matrix into a numeric matrix.

For example, the following statements produce the output shown in Figure 26.67:

\[
a = \{-1.1 \ 0 \ 3.1415 \ 4\};
\text{reset print}; \quad \text{/* display values and type of matrices */}
m = \text{char}(a, \ 4, \ 1);
\]

Figure 26.67 Character Matrix

\[
\begin{array}{llll}
m & 1 \text{ row} & 4 \text{ cols} & \text{(character, size 4)} \\
\hline
-1.1 & 0.0 & 3.1 & 4.0
\end{array}
\]

CHOOSE Function

\[
\text{CHOOSE}(\text{condition, result-for-true, result-for-false});
\]

The CHOOSE function examines each element of the first argument for being true (nonzero and not missing) or false (zero or missing). For each true element, it returns the corresponding element in the second argument. For each false element, it returns the corresponding element in the third argument.

The arguments to the CHOOSE function are as follows:

- \textit{condition} is checked for being true or false for each element.
- \textit{result-for-true} is returned when \textit{condition} is true.
- \textit{result-for-false} is returned when \textit{condition} is false.

Each argument must be conformable with the others (or be a scalar value).

For example, suppose that you want to choose between \(x\) and \(y\) according to whether \(x \# y\) is odd or even, respectively. You can use the following statements to execute this task, as shown in Figure 26.68:

```plaintext
x = {1, 2, 3, 4, 5};
y = {101, 205, 133, 806, 500};
r = choose(mod(x#y,2)=1, x, y);
print x y r;
```

Figure 26.68 Result of the CHOOSE Function

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>3</td>
<td>133</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>806</td>
<td>806</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

As another example, the following statements replace all missing values in the matrix \(z\) with zeros, as shown in Figure 26.69:

```plaintext
z = {1 2 ., 100 . -90, . 5 8};
newZ = choose(z=., 0, z);
print z, newZ;
```

Figure 26.69 Replacement of Missing Values

<table>
<thead>
<tr>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 .</td>
</tr>
<tr>
<td>100 . -90</td>
</tr>
<tr>
<td>. 5 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>newZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 0</td>
</tr>
<tr>
<td>100 0 -90</td>
</tr>
<tr>
<td>0 5 8</td>
</tr>
</tbody>
</table>
CLOSE Statement

CLOSE < SAS-data-set> ;
CLOSE (matrix) ;

The CLOSE statement is used to close one or more SAS data sets opened with the USE, EDIT, or CREATE statement.

The optional argument specifies the name of one or more SAS data sets. The data sets can be specified with a literal value or with an expression that resolves to the name of a SAS data set. You can specify a one-level name (for example, A) or a two-level name (for example, Sasuser.A). For example, the following statements are valid:

```sas
use Sashelp.Class;
close Sashelp.Class;/* literal value */
f = "Sashelp.Class";
use (f);
close (f); /* expression */
```

If you do not specify a data set name, the current data set is closed. For more information about specifying SAS data sets, refer to Chapter 7, “Working with SAS Data Sets.”

You can use the SHOW DATASETS statement to find the names of open data sets.

SAS/IML software automatically closes all open data sets when a QUIT statement is executed.

The following statements provide examples of using the CLOSE statement:

```sas
use Sashelp.Class;
read all var _NUM_ into x[colname=VarName];

corr = corr(x);
create ClassCorr from corr[rowname=VarName colname=VarName];
append from corr[rowname=VarName];

show datasets;
close Sashelp.Class ClassCorr;
```

It is good programming practice to close data sets when you are finished using them.

CLOSEFILE Statement

CLOSEFILE files ;

Figure 26.70 Open Data Sets

<table>
<thead>
<tr>
<th>LIBNAME</th>
<th>MEMNAME</th>
<th>OPEN MODE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHELP</td>
<td>CLASS</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>WORK</td>
<td>CLASSCORR</td>
<td>Update</td>
<td>Current Input/Output</td>
</tr>
</tbody>
</table>
Chapter 26: Language Reference

The CLOSEFILE statement is used to close files opened by the INFILE or FILE statement.

The statement arguments specify the name of one or more file specifications. You can specify names (for defined filenames), literals, or expressions in parentheses (for pathnames). Each file specification should be the same as when the file was opened.

To find out what files are open, use the SHOW FILES statement. For further information, see Chapter 8. See also the description of the SAVE statement.

SAS/IML software automatically closes all files when a QUIT statement is executed.

The following example opens and closes an external file named MyData.txt that resides in the current directory. (If you run PROC IML through a SAS Display Manager Session (DMS), you can change the current directory by selecting Tools Options Change Current Folder from the main menu.)

```sas
filename MyFile 'MyData.txt';
infile MyFile;
show files;
closefile MyFile;
```

![Figure 26.71 Open External File](image1)

<table>
<thead>
<tr>
<th>FILE NAME</th>
<th>MODE</th>
<th>EOF</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILENAME:MYFILE</td>
<td>Current Input</td>
<td>no eof</td>
<td>lrec1=32767</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STOPOVER</td>
</tr>
</tbody>
</table>

Alternatively, you can specify the full path of the file, as shown in the following statements:

```sas
src = "C:\My Data\MyData.txt";
infile (src);
show files;
closefile (src);
```

![Figure 26.72 Open File Specified by a Full Path](image2)

<table>
<thead>
<tr>
<th>FILE NAME</th>
<th>MODE</th>
<th>EOF</th>
<th>OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:\My Data\MyData.txt</td>
<td>Current Input</td>
<td>no eof</td>
<td>lrec1=32767</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STOPOVER</td>
</tr>
</tbody>
</table>

COL Function

```sas
COL(x);
```

The COL function is part of the IMLMLIB library. The COL function returns a matrix that has the same dimensions as the x matrix and whose jth column has the value j. You can use the COL and ROW function to extract elements of a matrix. For example, the following statements fill the subdiagonal, superdiagonal, and main diagonal of a matrix with a sequence of numbers:
x = j(5, 5, 0); /* allocate 5 x 5 matrix of zeros */
r = row(x); /* create helper matrices */
c = col(x);
idx = loc(abs(r-c)<= 1); /* indices of sub-, super-, and main diagonal */
x[idx] = 1:ncol(idx); /* fill with 1,2,3,... */
print x[format=Best3.];

Figure 26.73 A Tridiagonal Matrix

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

If r = row(m) and c = col(m) are two matrices, then you can use logical comparisons of r and c to
describe certain submatrices, such as in Table 26.1:

<table>
<thead>
<tr>
<th>Submatrix</th>
<th>Index by LOC of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>r = c</td>
</tr>
<tr>
<td>Upper triangular</td>
<td>r < c</td>
</tr>
<tr>
<td>Lower triangular</td>
<td>r > c</td>
</tr>
<tr>
<td>Banded with radius d</td>
<td>abs(r-c) <= d</td>
</tr>
<tr>
<td>Antidiagonal</td>
<td>r + c - 1 = ncol(r)</td>
</tr>
</tbody>
</table>

You can also use the COL function to generate an ID variable when you convert data from a wide format to
a long format. For example, the following statements show how to generate a column vector with values
\{1, 2, 3, 1, 2, 3, \ldots, 1, 2, 3\}:

NumSubjects = 5; /* number of subjects */
NumRepeated = 3; /* number of repeated obs per subject */
Y = col(j(NumSubjects, NumRepeated));
Repl = shape(Y, 0, 1); /* \{1, 2, 3, 1, 2, 3, \ldots, 1, 2, 3\} */

COLVEC Function

COLVEC(*matrix*);

The COLVEC function is part of the IMLMLIB library. The COLVEC function converts a matrix into a
column vector. If *matrix* is any \(n \times m\) matrix, the COLVEC function returns an \(nm \times 1\) vector that contains
the elements of *matrix* in row-major order. The first \(m\) elements in the vector correspond to the first row of
the input matrix, the next \(m\) elements correspond to the second row, and so on, as shown in the following
example.
\[
x = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}; \\
y = \text{colvec}(x); \\
\text{print } y;
\]

See the \texttt{ROWVEC} function for converting a matrix into a row vector.

COMPORT Call

\[
\text{CALL COMPORT} (q, r, p, \text{piv}, \text{lindep}, a <, b > <, \text{sing}>);
\]

The COMPORT subroutine provides the complete orthogonal decomposition by Householder transformations of a matrix \(A \).

The subroutine returns the following values:

- \(q \) is a matrix. If \(b \) is not specified, \(q \) is the \(m \times m \) orthogonal matrix \(Q \) that is the product of the \(\min(m, n) \) separate Householder transformations. If \(b \) is specified, \(q \) is the \(m \times p \) matrix \(Q'B \) that has the transposed Householder transformations \(Q' \) applied to the \(p \) columns of the argument matrix \(B \).

- \(r \) is the \(n \times n \) upper triangular matrix \(R \) that contains the \(r \times r \) nonsingular upper triangular matrix \(L' \) of the complete orthogonal decomposition, where \(r \leq n \) is the rank of \(A \). The full \(m \times n \) upper triangular matrix \(R \) of the orthogonal decomposition of matrix \(A \) can be obtained by vertical concatenation of the \((m - n) \times n \) zero matrix to the result \(r \).

- \(p \) is an \(n \times n \) matrix that is the product \(PP \) of a permutation matrix \(\Pi \) with an orthogonal matrix \(P \). The permutation matrix is determined by the vector \(\text{piv} \).

- \(\text{piv} \) is an \(n \times 1 \) vector of permutations of the columns of \(A \). That is, the QR decomposition is computed, not of \(A \), but of the matrix with columns \([A_{piv[1]} \ldots A_{piv[n]}]\). The vector \(\text{piv} \) corresponds to an \(n \times n \) permutation matrix, \(\Pi \), of the pivoted QR decomposition in the first step of orthogonal decomposition.

- \(\text{lindep} \) specifies the number of linearly dependent columns in the matrix \(A \) detected by applying the \(r \) Householder transformation in the order specified by the argument \(\text{piv} \). That is, \(\text{lindep} \) is \(n - r \).

The input arguments to the COMPORT subroutine are as follows:
a specifies the \(m \times n \) matrix \(A \), with \(m \geq n \), which is to be decomposed into the product of the \(m \times m \) orthogonal matrix \(Q \), the \(n \times n \) upper triangular matrix \(R \), and the \(n \times n \) orthogonal matrix \(P \),

\[
A = Q \begin{bmatrix} R & 0 \\ 0 & P' \end{bmatrix} \Pi' \Pi
\]

b specifies an optional \(m \times p \) matrix \(B \) that is to be left-multiplied by the transposed \(m \times m \) matrix \(Q' \).

sing is an optional scalar that specifies a singularity criterion.

The complete orthogonal decomposition of the singular matrix \(A \) can be used to compute the Moore-Penrose inverse \(A^\dagger \), \(r = \text{rank}(A) < n \), or to compute the minimum Euclidean-norm solution of the rank-deficient least squares problem \(\|Ax - b\|_2^2 \).

1. Use the QR decomposition of \(A \) with column pivoting,

\[
A = Q \begin{bmatrix} R & 0 \\ 0 & \Pi' \end{bmatrix} = \begin{bmatrix} \text{\textbf{Y}} & \text{\textbf{Z}} \end{bmatrix} \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix} \Pi'
\]

where \(R = \begin{bmatrix} R_1 & R_2 \end{bmatrix} \in \mathcal{R}^{r \times t} \) is upper trapezoidal, \(R_1, R_2 \in \mathcal{R}^{r \times r} \) is upper triangular and invertible, \(R_2 \in \mathcal{R}^{p \times s} \), \(Q = \begin{bmatrix} \text{\textbf{Y}} & \text{\textbf{Z}} \end{bmatrix} \) is orthogonal, \(\text{\textbf{Y}} \in \mathcal{R}^{t \times r} \), \(Z \in \mathcal{R}^{t \times s} \), and \(\Pi \) permutes the columns of \(A \).

2. Use the transpose \(L_{12} \) of the upper trapezoidal matrix \(R = \begin{bmatrix} R_1 & R_2 \end{bmatrix} \),

\[
L_{12} = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} = R' \in \mathcal{R}^{t \times r}
\]

with \(\text{rank}(L_{12}) = \text{rank}(L_1) = r \), \(L_1, L_2 \in \mathcal{R}^{s \times r} \) lower triangular, \(L_2 \in \mathcal{R}^{p \times s} \). The lower trapezoidal matrix \(L_{12} \in \mathcal{R}^{t \times r} \) is premultiplied with \(r \) Householder transformations \(P_1, \ldots, P_r \),

\[
P_r \ldots P_1 \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} = \begin{bmatrix} L \\ 0 \end{bmatrix}
\]

each zeroing out one of the \(r \) columns of \(L_2 \) and producing the nonsingular lower triangular matrix \(L \in \mathcal{R}^{t \times r} \). Therefore, you obtain

\[
A = Q \begin{bmatrix} L' & 0 \\ 0 & 0 \end{bmatrix} \Pi'P' = \begin{bmatrix} \text{\textbf{Y}} & \text{\textbf{L}}' \\ I_r & 0 \end{bmatrix} \Pi'P'
\]

with \(P = \Pi P_r \ldots P_1 \in \mathcal{R}^{t \times t} \) and upper triangular \(L' \). This second step is described in Golub and Van Loan (1989).

3. Compute the Moore-Penrose inverse \(A^\dagger \) explicitly:

\[
A^\dagger = PP' \begin{bmatrix} (L')^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q' = PP' \begin{bmatrix} (L')^{-1} \\ 0 \end{bmatrix} \text{\textbf{Y}}
\]

(a) Obtain \(\text{\textbf{Y}} \) in \(Q = \begin{bmatrix} \text{\textbf{Y}} & \text{\textbf{Z}} \end{bmatrix} \) explicitly by applying the \(r \) Householder transformations obtained in the first step to \(\begin{bmatrix} I_r \\ 0 \end{bmatrix} \).
(b) Solve the $r \times r$ lower triangular system $(L')^{-1}Y'$ with t right-hand sides by using backward substitution, which yields an $r \times t$ intermediate matrix.

(c) Left-apply the r Householder transformations in P on the $r \times t$ intermediate matrix \[
\begin{bmatrix}
(L')^{-1}Y' \\
0
\end{bmatrix},
\]
which results in the symmetric matrix $A^- \in \mathbb{R}^{r \times r}$.

The GINV function computes the Moore-Penrose inverse A^- by using the singular value decomposition of A. Using complete orthogonal decomposition to compute A^- usually requires far fewer floating-point operations. However, it can be slightly more sensitive to rounding errors, which can disturb the detection of the true rank of A, than the singular value decomposition.

The following example demonstrates some uses of the COMPORT subroutine:

```plaintext
/* Only four linearly independent columns */
A = {1 0 1 0 0,
     1 0 0 1 0,
     1 0 0 0 1,
     0 1 1 0 0,
     0 1 0 1 0,
     0 1 0 0 1};
m = nrow(A);
n = ncol(A);
call comport(q,r,p,piv,lindep,A);
fullR = r // j(m-n, n, 0);
perm = i(n);
perm[piv,] = i(n);
/* recover A from factorization */
A2 = q*fullR*p`*perm`;
reset fuzz;
print A2;

/* compute Moore-Penrose generalized inverse */
rankA = n - lindep;
subR = R[1:rankA, 1:rankA];
fullRinv = j(n, n, 0);
fullRinv[1:rankA, 1:rankA] = inv(subR);
Ainv = perm*p*fullRinv*q[,1:n]`;
print Ainv;

/* verify generalized inverse */
eps = 1e-12;
if any(A*Ainv*A-A > eps) |
    any(Ainv*A+Ainv-A > eps) |
    any((A*Ainv)`-A*Ainv > eps) |
    any((Ainv*A)`-Ainv*A > eps) then
    msg = "Pseudoinverse conditions not satisfied";
else
    msg = "Pseudoinverse conditions satisfied";
print msg;
```
CONCAT Function

\texttt{CONCAT(argument1, argument2 \ldots , argument15);}

The CONCAT function produces a character matrix that contains elements that are the concatenations of corresponding elements from each argument. The CONCAT function accepts up to 15 arguments, where each argument is a character matrix or a scalar.

All nonscalar arguments must have the same dimensions. Any scalar arguments are used repeatedly to concatenate to all elements of the other arguments. The element length of the result equals the sum of the element lengths of the arguments. Trailing blanks of one matrix argument appear before elements of the next matrix argument in the result matrix.

For example, suppose you specify the following matrices:

\begin{verbatim}
b = {"AB" "C ",
 "DE" "FG"];
c = {"H " "IJ",
 " K" "LM"];
\end{verbatim}

The following statement produces a new 2×2 character matrix, \(a\):

\begin{verbatim}
a = concat(b, c);
print a;
\end{verbatim}
Quotation marks (") are needed only if you want to embed blanks or maintain uppercase and lowercase characters. You can also use the addition operator to concatenate character operands.

CONTENTS Function

 CONTENTS(<libref> <, SAS-data-set>);

The CONTENTS function returns a column vector that contains the variable names for a SAS data set. The vector contains \(n \) rows, where \(n \) is the number of variables in the data set. The variable list is returned in the order in which the variables occur in the data set.

You can specify the SAS data set with a one-level name (for example, A) or with a libref and a SAS data set name (for example, Sashelp.Class). If you specify a one-level name, SAS/IML software uses the default SAS data library (as specified in the DEFLIB= option in the RESET statement.) If no arguments are specified, the current open input data set is used.

The following statements use the CONTENTS function to obtain the names of variables in SAS data sets:

```sas
x = 1:5;
create temp from x;
append from x;
tempVars = contents();  /* use current open input data set */
close temp;

classVars = contents("Sashelp", "Class");  /* contents of data set in */  /* Sashelp library */
print tempVars classVars;
```

Figure 26.77 Names of Variables in SAS Data Sets

<table>
<thead>
<tr>
<th>tempVars</th>
<th>classVars</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1</td>
<td>Name</td>
</tr>
<tr>
<td>COL2</td>
<td>Sex</td>
</tr>
<tr>
<td>COL3</td>
<td>Age</td>
</tr>
<tr>
<td>COL4</td>
<td>Height</td>
</tr>
<tr>
<td>COL5</td>
<td>Weight</td>
</tr>
</tbody>
</table>

See also the description of the SHOW CONTENTS statement.

CONVEXIT Function

 CONVEXIT(times, flows, ytm);

The CONVEXIT function computes and returns a scalar that contains the convexity of a noncontingent cash flow. The arguments to the CONVEXIT function are as follows:

- **times** is an \(n \)-dimensional column vector of times. Elements should be nonnegative.
- **flows** is an \(n \)-dimensional column vector of cash flows.
ytm is the per-period yield-to-maturity of the cash-flow stream. This is a scalar and should be positive.

Convexity is essentially a measure of how duration, the sensitivity of price to yield, changes as interest rates change:

\[
C = \frac{1}{P} \frac{d^2 P}{dy^2}
\]

Under certain assumptions, the convexity of cash flows that are not yield-sensitive is given by

\[
C = \frac{\sum_{k=1}^{K} t_k (l_k + 1) \frac{c(k)}{(1+y)^k}}{P(1+y)^2}
\]

where \(P \) is the present value, \(y \) is the effective per-period yield-to-maturity, \(K \) is the number of cash flows, and the \(k \)th cash flow is \(c(k) \ t_k \) periods from the present.

The following statements compute the convexity of a noncontingent cash flow.

```plaintext
  timesn = T(do(1, 100, 1));
  flows = repeat(10, 100);
  ytm = 0.1;
  convexit = convexit(timesn, flows, ytm);
  print convexit;
```

Figure 26.78 Convexity of a Noncontingent Cash Flow

<table>
<thead>
<tr>
<th>convexit</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.26229</td>
</tr>
</tbody>
</table>

CORR Function

\(\text{CORR}(x <, \text{method} > <, \text{excludemiss} >); \)

The CORR function computes a sample correlation matrix for data. The arguments are as follows:

- **x** specifies an \(n \times p \) numerical matrix of data. The CORR function computes a \(p \times p \) correlation matrix of the data.
- **method** specifies the method used to compute the correlation matrix. The following strings are valid:
 - “Pearson” specifies the computation of Pearson product-moment correlations. The correlations range from \(-1\) to \(1\). This is the default value.
 - “Hoeffding” specifies the computation of Hoeffding’s \(D \) statistics, scaled to range between \(-0.5\) and \(1\).
 - “Kendall” specifies the computation of Kendall’s tau-\(b\) coefficients based on the number of concordant and discordant pairs of observations. Kendall’s tau-\(b\) ranges from \(-1\) to \(1\).
“Spearman” specifies the computation of Spearman correlation coefficients based on the ranks of the variables. The correlations range from −1 to 1.

excludemiss specifies how missing values are handled. The following values are valid:

- “listwise” specifies that observations with missing values are excluded from the analysis. This is the default value.
- “pairwise” specifies that all nonmissing pairs of values for each pair of variables are included in the statistical computations.

The method and excludemiss arguments are not case-sensitive. The first four characters are used to determine the value. For example, “LIST” and “listwise” specify the same option.

The CORR function computes a sample correlation matrix for data, as shown in the following example:

```
x = {5 1 10,
     6 2 3,
     6 8 5,
     6 7 9,
     7 2 13};
corr = corr(x);
spearman = corr(x, "spearman");
print corr, spearman;
```

Figure 26.79 Correlation Matrices

```
   corr
   1  0.1091089  0.265165
  0.1091089  1  -0.289319
  0.265165  -0.289319  1

   spearman
   1  0.3441236  0.2236068
  0.3441236  1  -0.410391
  0.2236068  -0.410391  1
```

The CORR function behaves similarly to the CORR procedure. In particular, the documentation for the CORR procedure in the *Base SAS Procedures Guide: Statistical Procedures* includes details about the various correlation statistics.

The CORR function also handles missing values in the same way as the CORR procedure. In particular, be aware that specifying excludemiss=“pairwise” might result in a correlation matrix that is not nonnegative definite.

You can use the ROWNAME= and COLNAME= options in the MATTRIB statement or the PRINT statement to associate names of variables to rows and columns of the correlation matrix. For example, if the names of the variables in the previous example are X1, X2, and X3, then the following statements associate those names with the matrix returned by the CORR function:
prior to SAS/IML 9.22, there was a module named CORR in the IMLMLIB library. This module has been removed.

CORR2COV Function

CORR2COV(R, sd);

The CORR2COV function is part of the IMLMLIB library. The CORR2COV function converts a correlation matrix into a covariance matrix. The first argument, \(R \), is the correlation matrix, and the second argument, \(sd \), is a vector such that \(sd[j] \) is the standard deviation of the \(j \)th column. An example follows:

\[
\begin{bmatrix}
1.00 & 0.25 & 0.90 \\
0.25 & 1.00 & 0.50 \\
0.90 & 0.50 & 1.00
\end{bmatrix}
\]

\(sd = \{1 4 9\}; \)

\(S = \text{Corr2Cov}(R, sd); \)

Figure 26.81 Covariance Matrix

\[
\begin{bmatrix}
1 & 1 & 8.1 \\
1 & 16 & 18 \\
8.1 & 18 & 81
\end{bmatrix}
\]

The function scales the correlation matrix so that \(S = DRD \), where \(D = \text{diag}(sd) \) is the diagonal matrix of standard deviations.

To convert from a covariance matrix to a correlation matrix, use the COV2CORR function.
COUNTMISS Function

COUNTMISS(x <, method>);

The COUNTMISS function counts the number of missing values in a matrix. The arguments are as follows:

- **x** specifies an \(n \times p \) numerical or character matrix. The COUNTMISS function counts the number of missing values in this matrix.
- **method** specifies the method used to count the missing values. This argument is optional. The following are valid values:
 - “all” specifies that all missing values are counted. This is the default value. The function returns a \(1 \times 1 \) matrix.
 - “row” specifies that the function return an \(n \times 1 \) matrix whose \(i \)th element is the number of missing values in the \(i \)th row of \(x \).
 - “col” specifies that the function return a \(1 \times p \) matrix whose \(j \)th element is the number of missing values in the \(j \)th row of \(x \).

The **method** argument is not case-sensitive. The first three characters are used to determine the value.

For example, the following statements count missing values for the matrix \(x \):

```no-highlight
x = {1 2 3,
    . 0 2,
    1 . .,
    1 0 .};
totalMiss = countmiss(x);
rowMiss = countmiss(x, "ROW");
colMiss = countmiss(x, "COL");
print totalMiss, rowMiss, colMiss;
```

Figure 26.82 Counts of Missing Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>totalMiss</td>
<td>4</td>
</tr>
<tr>
<td>rowMiss</td>
<td>0 1 2</td>
</tr>
<tr>
<td>colMiss</td>
<td>1 1 2</td>
</tr>
</tbody>
</table>
The COUNTN function counts the number of nonmissing values in a matrix. The arguments are as follows:

\[\text{COUNTN}(x <, \text{method}>); \]

- **x** specifies an \(n \times p \) numerical or character matrix. The COUNTN function counts the number of nonmissing values in this matrix.
- **method** specifies the method used to count the nonmissing values. This argument is optional. The following are valid values:
 - "all" specifies that all nonmissing values are counted. This is the default value. The function returns a \(1 \times 1 \) matrix.
 - "row" specifies that the function return an \(n \times 1 \) matrix whose \(i \)th element is the number of nonmissing values in the \(i \)th row of \(x \).
 - "col" specifies that the function return a \(1 \times p \) matrix whose \(j \)th element is the number of nonmissing values in the \(j \)th row of \(x \).

The **method** argument is not case-sensitive. The first three characters are used to determine the value.

For example, the following statements count nonmissing values for a matrix \(x \):

\[
x = \begin{bmatrix} 1 & 2 & 3 \\ . & 0 & 2 \\ 1 & . & . \\ 1 & 0 & . \end{bmatrix};
\]

\[
totalN = \text{countn}(x);
\]
\[
rowN = \text{countn}(x, \text{"ROW"});
\]
\[
colN = \text{countn}(x, \text{"COL"});
\]

```
print totalN, rowN, colN;
```

Figure 26.83 Counts of Nonmissing Values

<table>
<thead>
<tr>
<th></th>
<th>totalN</th>
<th></th>
<th>rowN</th>
<th></th>
<th>colN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 3 2</td>
</tr>
</tbody>
</table>
COUNTUNIQUE Function

\[
\text{COUNTUNIQUE}(x, \text{method})
\]

The COUNTUNIQUE function counts the number of unique values in a matrix. The arguments are as follows:

- **\(x\)** specifies an \(n \times p\) numerical or character matrix. The COUNTUNIQUE function counts the number of unique values in this matrix.

- **\text{method}** specifies the method used to count the missing values. This argument is optional. The following are valid values:
 - "all" specifies that the function counts all unique values in the matrix. This is the default value. The function returns a \(1 \times 1\) matrix.
 - "row" specifies that the function counts the unique values in each row. The function returns an \(n \times 1\) matrix whose \(i\)th element is the number of unique values in the \(i\)th row of \(x\).
 - "col" specifies that the function counts the unique values in each column. The function returns a \(1 \times p\) matrix whose \(j\)th element is the number of unique values in the \(j\)th column of \(x\).

The **\text{method}** argument is not case-sensitive. The first three characters are used to determine the value.

For example, the following statements count unique values for the matrix \(x\):

\[
\begin{align*}
x &= \begin{bmatrix} 1 & 2 & 3, \\
1 & 1 & 2, \\
1 & 1 & 1, \\
1 & 0 & 0 \end{bmatrix}; \\
\text{allUnique} &= \text{countunique}(x); \\
\text{rowUnique} &= \text{countunique}(x, \text{"ROW"}); \\
\text{colUnique} &= \text{countunique}(x, \text{"COL"}); \\
\text{print} \ allUnique, \ rowUnique, \ colUnique;
\end{align*}
\]

Figure 26.84 Counts of Unique Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>allUnique</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>rowUnique</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>colUnique</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
COV Function

```sas
COV(x <, excludemiss>);
```

The COV function computes a sample variance-covariance matrix for data. The arguments are as follows:

- `x` specifies an $n \times p$ numerical matrix of data. The COV function computes a $p \times p$ variance-covariance matrix of the data.
- `excludemiss` specifies how missing values are handled. The following values are valid:
 - “listwise” specifies that observations with missing values are excluded from the analysis. This is the default value.
 - “pairwise” specifies that all nonmissing pairs of values for each pair of variables are included in the statistical computations.

The `excludemiss` argument is not case-sensitive. The first four characters are used to determine the value. For example, “LIST” and “listwise” specify the same option.

The COV function computes a sample variance-covariance matrix for data, as the following example shows:

```sas
x = {5 1 10,
     6 2 3,
     6 8 5,
     6 7 9,
     7 2 13};
cov = cov(x);
print cov;
```

Figure 26.85 Variance-Covariance Matrix

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>0.25</th>
<th>0.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.25</td>
<td>10.5</td>
<td>-3.75</td>
</tr>
<tr>
<td>0.25</td>
<td>10.5</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

The COV function handles missing values in the same way as the CORR procedure. For additional details, see the documentation for the CORR procedure (especially the NOMISS option) in the *Base SAS Procedures Guide: Statistical Procedures*.

It might be useful to use the ROWNAME= and COLNAME= options in the MATTRIB statement or the PRINT statement to associate names of variables to rows and columns of the correlation matrix, as shown in the example for the CORR function.

COV2CORR Function

```sas
COV2CORR(S);
```

The COV2CORR function is part of the IMLMLIB library. A correlation matrix estimates the correlations of centered and standardized variables, where each variable has been scaled by its standard deviation. The
COV2CORR function converts a covariance matrix into a correlation matrix, as in the following example:

\[
S = \begin{bmatrix}
1.0 & 1.0 & 8.1 \\
1.0 & 16.0 & 18.0 \\
8.1 & 18.0 & 81.0
\end{bmatrix};
\]

\[
R = \text{Cov2Corr}(S);
\]

print R;

<table>
<thead>
<tr>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.25 0.9</td>
</tr>
<tr>
<td>0.25 1 0.5</td>
</tr>
<tr>
<td>0.9 0.5 1</td>
</tr>
</tbody>
</table>

The variances of the three variables are found on the diagonal of \(S \). Equivalently, the square roots of the diagonal elements are the standard deviations. The COV2CORR function scales \(S \) so that \(R = D^{-1}SD^{-1} \), where \(D = \text{diag}(sd) \) is the diagonal matrix of standard deviations.

To convert from a correlation matrix to a covariance matrix, use the CORR2COV function.

COVLAG Function

\[
\text{COVLAG}(x, k);
\]

The COVLAG function computes a sequence of lagged crossproduct matrices. This function is useful for computing sample autocovariance sequences for scalar or vector time series.

The arguments to the COVLAG function are as follows:

- \(x \) is an \(n \times nv \) matrix of time series values; \(n \) is the number of observations, and \(nv \) is the dimension of the random vector.
- \(k \) is a scalar, the absolute value of which specifies the number of lags desired. If \(k \) is positive, a mean correction is made. If \(k \) is negative, no mean correction is made.

The value returned by the COVLAG function is an \(nv \times (k + nv) \) matrix. The \(i \)th \(nv \times nv \) block of the matrix is the sum

\[
\frac{1}{n} \sum_{j=i}^{n} x_j \left(x_{j-i+1} - \bar{x} \right) \left(x_{j-i+1} - \bar{x} \right) \text{ if } k < 0
\]

where \(x_j \) is the \(j \)th row of \(x \). If \(k > 0 \), then the \(i \)th \(nv \times nv \) block of the matrix is

\[
\frac{1}{n} \sum_{j=i}^{n} (x_j - \bar{x}) \left(x_{j-i+1} - \bar{x} \right)
\]

where \(\bar{x} \) is a row vector of the column means of \(x \).

For example, the following statements produce a lagged crossproduct matrix:
x = T(do(-9, 9, 2));
cov = covlag(x, 4);
print cov;

Figure 26.87 Lagged Crossproduct Matrix

<table>
<thead>
<tr>
<th>cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
</tr>
<tr>
<td>23.1</td>
</tr>
<tr>
<td>13.6</td>
</tr>
<tr>
<td>4.9</td>
</tr>
</tbody>
</table>

CREATE Statement

CREATE SAS-data-set < VAR operand > ;

CREATE SAS-data-set FROM matrix-name < [COLNAME=column-name ROWNAME=row-name] > ;

The CREATE statement creates a new SAS data set and makes it both the current input and output data sets. The variables in the new SAS data set are either the variables listed in the VAR clause or variables created from the columns of the FROM matrix. The FROM clause and the VAR clause should not be specified together.

When you write to a SAS data set, the variable types and lengths correspond to the attributes of the vectors specified in the VAR clause or the matrix in the FROM clause.

To add observations to your data set, you must use the APPEND statement.

The arguments to the CREATE statement are as follows:

- **SAS-data-set** is the name of a SAS data set. It can be specified with a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set. See the example for the CLOSE statement.
- **operand** specifies a set of existing SAS/IML matrices that contain data. The names of the matrices become the names of the data set variables. If you do not specify the name of a variable, all variables in scope are assumed. You can specify variables by using any of the methods described in the section “Select Variables with the VAR Clause” on page 103.
- **matrix-name** specifies a matrix that contains the data. Each column of the matrix produces a variable in the data set.
- **column-name** is a character matrix or quoted literal that contains names of the data set variables.
- **row-name** is a character matrix or quoted literal that contains text to associate with each observation in the data set.

Writing Data from Vectors

The following example demonstrates ways that you can use the VAR clause:
Chapter 26: Language Reference

x1 = T(1:5);
x2 = T(5:1);
y = {-1,0,1,0,1};
z = {a,b,c,d,e};
create temp var {x1 y z}; /* a literal matrix of names */
append;
close temp;

cvarNames = {"x1" "y" "z"};
ccreate temp var varNames; /* a matrix that contains names */
append;
close temp;
ffree varNames;

ccreate temp var ("x1":"x2"); /* an expression */
append;
close temp;

ccreate temp var _all_; /* all variables in scope */
append;
close temp;

For a more realistic example, the following statements create a new SAS data named Population that contains two numeric and two character variables:

State = {"NC", "NC", "FL", "FL"};
County = {"Chatham", "Wake", "Orange", "Seminole"};
Pop2000 = {49329, 627846, 896344, 365196};
Pop2009 = {64772, 897214, 1086480, 413204};
create Population var {"State" "County" "Pop2000" "Pop2009"};
append;
close Population;

The data come from vectors with the same names. You must initialize the character variables (State and County) prior to calling the CREATE statement. The State variable has length 2 and the County variable has length 8. The Pop2000 and Pop2009 variables are numeric.

Writing Data from a Matrix

The following example uses the FROM clause with the COLNAME= option to create a SAS data set named MyData. The new data set has variables named with the COLNAME= operand. The data are in the FROM matrix x, and there are two observations because x has two rows of data. The COLNAME= operand gives descriptive names to the data set variables, as shown in the following statements:

x = {1 2 3, 4 5 6};
varNames = "x1":"x3";
/* create data set MYDATA with variables X1, X2, X3 */
create MyData from x [colname=varNames];
append from x;
close MyData;

As shown in the example, you can specify a COLNAME= and a ROWNAME= matrix in the FROM clause. The COLNAME= matrix gives names to variables in the SAS data set being created. The COLNAME=
operand specifies the name of a character matrix. The first \(ncol \) values from this matrix provide the variable names in the data set being created, where \(ncol \) is the number of columns in the FROM matrix. The CREATE statement uses the first \(ncol \) elements of the COLNAME= matrix in row-major order.

The ROWNAME= operand adds a variable to the data set that contains labels. The operand must be a character matrix. The length of the resulting data set variable is the length of a matrix element of the operand. The same ROWNAME= matrix should be used in any subsequent APPEND statements for this data set.

Writing Data That Contains Formats

If you associate a format with a matrix by using the MATTRIB statement, then the CREATE statement assigns that format to the corresponding variable in the data set, as shown in the following example:

```plaintext
proc iml;
date = {'20MAR2010'd, '20MAR2011'd, '20MAR2012'd,
       '20MAR2013'd, '20MAR2014'd, '20MAR2015'd};
mattrib date format=WORDDATE.;

/* time of equinox, GMT (Greenwich Mean Time) */
time = {'17:32't, '23:21't, '05:14't,
       '11:02't, '16:57't, '22:45't};
mattrib time format=TIMEAMPM.;

create MarchEquinox var {"Date" "Time"};
append;
close MarchEquinox;

proc print data=MarchEquinox;
run;
```

Figure 26.88 Data Set That Contains Formats

<table>
<thead>
<tr>
<th>Obs</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March 20, 2010</td>
<td>5:32:00 PM</td>
</tr>
<tr>
<td>2</td>
<td>March 20, 2011</td>
<td>11:21:00 PM</td>
</tr>
<tr>
<td>3</td>
<td>March 20, 2012</td>
<td>5:14:00 AM</td>
</tr>
<tr>
<td>4</td>
<td>March 20, 2013</td>
<td>11:02:00 AM</td>
</tr>
<tr>
<td>5</td>
<td>March 20, 2014</td>
<td>4:57:00 PM</td>
</tr>
<tr>
<td>6</td>
<td>March 20, 2015</td>
<td>10:45:00 PM</td>
</tr>
</tbody>
</table>

CSHAPE Function

CSHAPE(matrix, nrow, ncol, size <, padchar>);

The CSHAPE function changes the shape of a character matrix by redefining the matrix dimensions.

The arguments to the CSHAPE function are as follows:

- **matrix** is a character matrix or quoted literal.
- **nrow** is the number of rows.
`ncol` is the number of columns.

`size` is the element length.

`padchar` is an optional padding character.

The dimension of the matrix created by the CSHAPE function is specified by `nrow` (the number of rows), `ncol` (the number of columns), and `size` (the element length). A padding character is specified by `padchar`.

The CSHAPE function works by looking at the source matrix as if the characters of the source elements had been concatenated in row-major order. The source characters are then regrouped into elements of length `size`. These elements are assigned to the result matrix, once again in row-major order.

If there are not enough characters for the result matrix, the source of the remaining characters depends on whether padding was specified with `padchar`. If no padding was specified, the characters in the source matrix are cycled through again. If a padding character was specified, the remaining characters are all the padding character.

If one of the size arguments (`nrow`, `ncol`, or `size`) is zero, the CSHAPE function computes the dimension of the output matrix by dividing the number of elements of the input matrix by the product of the nonzero arguments.

For example, the following statement produces a 2×2 matrix:

```plaintext
a = cshape("abcd", 2, 2, 1);
print a;
```

![Figure 26.89 Reshaped Character Matrix](image)

The following statement rearranges the 12 characters in the input matrix into a 2×2 matrix with three characters in each element:

```plaintext
m = {"ab" "cd",
     "ef" "gh",
     "ij" "kl"};
b = cshape(m, 2, 2, 3);
print b;
```

![Figure 26.90 Reshaped Character Matrix](image)

The following statement uses the `size` argument to specify the length of the result matrix. Notice that the characters in the `matrix` argument are reused in order to form a 2×2 matrix with three characters in each element.
c = cshape("abcde", 2, 2, 3);
print c;

Figure 26.91 Reusing Characters

\[
\begin{array}{ccc}
 & \text{c} & \\
\text{abc} & \text{dea} & \\
\text{bcd} & \text{eab} & \\
\end{array}
\]

The next example is similar, except that the optional \textit{padchar} argument is used to specify what character to use after the characters in the \textit{matrix} argument are each used once:

d = cshape("abcde", 2, 2, 3, ";");
print d;

Figure 26.92 Using a Pad Character

\[
\begin{array}{ccc}
 & \text{d} & \\
\text{abc} & \text{de;} & \\
\text{***} & \text{***} & \\
\end{array}
\]

See also the description of the \textit{SHAPE function}, which is used with numeric data.

\section*{CUSUM Function}

\texttt{CUSUM(matrix);}

The CUSUM function computes cumulative sums. The argument to this function is a numeric matrix or literal.

The CUSUM function returns a matrix of the same dimension as the argument matrix. The result contains the cumulative sums obtained by adding the nonmissing elements of the argument in row-major order.

For example, the following statements compute cumulative sums:

\begin{verbatim}
a = cusum((1 2 4 5));
b = cusum((5 6, 3 4));
print a, b;
\end{verbatim}

Figure 26.93 Cumulative Sums

<table>
<thead>
<tr>
<th>a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
</tr>
</tbody>
</table>
CUPROD Function

\texttt{CUPROD}\,(\texttt{matrix});

The CUPROD function computes cumulative products. The argument to this function is a numeric matrix or literal.

The CUPROD function returns a matrix of the same dimension as the argument matrix. The result contains the cumulative products obtained by multiplying the nonmissing elements of the argument in row-major order.

For example, the following statements compute cumulative products:

\begin{verbatim}
a = cuprod({1 2 4 5});
b = cuprod({5 6, . 4});
print a, b;
\end{verbatim}

\textbf{Figure 26.94} Output from the CUPROD Function

\begin{tabular}{l}
a \\
1 2 8 40 \\
\hline \\
b \\
5 30 \\
30 120 \\
\end{tabular}

CV Function

\texttt{CV}\,(\texttt{x});

The CV function is part of the \texttt{IMLMLIB library}. The CV function returns the sample coefficient of variation for each column of a matrix.

The coefficient of variation (CV) is the ratio of the standard deviation to the arithmetic mean. Conceptually, it is a measure of the variability; it is expressed in units of the mean. For univariate data, the CV is the quantity \(100\frac{s}{\bar{x}}\), where \(s\) is the sample standard deviation and \(\bar{x}\) is the sample mean.

The following example computes the CV for each column of a matrix:

\begin{verbatim}
x = {1 0,
 2 1,
 4 2,
 8 3,
 16 .};
cv = cv(x);
print cv;
\end{verbatim}

\textbf{Figure 26.95} Sample Coefficient of Variation of Two Columns

\begin{tabular}{l}
\texttt{cv} \\
98.373875 86.066297 \\
\end{tabular}
CVEXHULL Function

\texttt{CVEXHULL(matrix);} \\

The CVEXHULL function finds a convex hull of a set of planar points.

The \textit{matrix} argument is an \(n \times 2 \) matrix of \((x, y) \) points.

The CVEXHULL function returns an \(n \times 1 \) matrix of indices. The indices of points in the convex hull in counterclockwise order are returned as the first part of the result matrix, and the negative of the indices of the internal points are returned as the remaining elements of the result matrix. Any points that lie on the convex hull but lie on a line segment joining two other points on the convex hull are not included as part of the convex hull.

The result matrix can be split into positive and negative parts by using the \texttt{LOC} function. For example, the following statements find the index vector for the convex hull and print the associated points:

\begin{verbatim}
points = {0 2, 0.5 2, 1 2, 0.5 1, 0 0, 0.5 0, 1 0,
2 -1, 2 0, 2 1, 3 0, 4 1, 4 0, 4 -1,
5 2, 5 1, 5 0, 6 0};
indices = cvexhull(points);
hullIndices = indices[loc(indices>0)];
convexHull = points[hullIndices,];
print convexHull;
\end{verbatim}

\textbf{Figure 26.96} Convex Hull of a Planar Set of Points

\begin{tabular}{ll}
\hline
\texttt{convexHull} & \\
0 & 2 \\
0 & 0 \\
2 & -1 \\
4 & -1 \\
6 & 0 \\
5 & 2 \\
\hline
\end{tabular}

DATASETS Function

\texttt{DATASETS(< libref>);}

The DATASETS function returns a character matrix that contains the names of the SAS data sets in the specified SAS data library. The result is a character matrix with \(n \) rows and one column, where \(n \) is the number of data sets in the library. If no argument is specified, SAS/IML software uses the default libref. (See the DEFLIB= option in the description of the \texttt{RESET} statement.)

For more information about specifying a SAS data library, see Chapter 7.

Recall that SAS distributes sample data sets in the Sashelp library. The following statements list the names of the first few data sets in the library:
lib = "Sashelp";
a = datasets(lib);
First5 = a[1:5];
print First5;

Figure 26.97 Several Data Sets in the Sashelp Library

<table>
<thead>
<tr>
<th>First5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AACP</td>
</tr>
<tr>
<td>AARFM</td>
</tr>
<tr>
<td>ADSMSG</td>
</tr>
<tr>
<td>AFMSG</td>
</tr>
<tr>
<td>AIR</td>
</tr>
</tbody>
</table>

DELETE Call

CALL DELETE(<libref,> member-name);

The DELETE call deletes one or more SAS data sets. The arguments to the DELETE subroutine are as follows:

* libref is a character matrix or quoted literal that contains the name of one or more SAS data libraries.

* member-names is a character matrix or quoted literal that contains the names of one or more data sets.

The DELETE subroutine deletes SAS data sets in a specified library. If you omit the *libref* argument, the default SAS data library is used. (See the DEFLIB= option in the description of the **RESET** statement.)

The following statements use the DATA step to create several data sets and then delete them by using the DELETE subroutine in SAS/IML software:

```sas
data a b c d e; /* create data sets in WORK */
x=1;
run;

proc iml;
call delete(work,a); /* deletes WORK.A */
reset deflib=work; /* sets default libref to WORK */
call delete(b); /* deletes WORK.B */
members = {"c" "d"};
call delete(members); /* deletes WORK.C and WORK.D */

ds = datasets("work"); /* returns all data sets in WORK */
call delete("work",ds[1]); /* deletes first data set */
```
DELETE Statement

DELETE <range> <WHERE(expression)> ;

The DELETE statement marks observations (also called records) in the current output data set for deletion. To actually delete the records and renumber the remaining observations, use the PURGE statement.

The arguments to the DELETE statement are as follows:

- **range** specifies a range of observations. You can specify a range of observations by using the ALL, CURRENT, NEXT, AFTER, and POINT keywords, as described in the section “Process a Range of Observations” on page 102.
- **expression** specifies a criterion by which certain observations are selected. The optional WHERE clause conditionally selects observations that are contained within the range specification. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

The following statements show examples of using the DELETE statement:

```iml
proc iml;
/* create sample data set */
sex = { M, M, M, F, F, F};
age = {34, 28, 38, 32, 24, 18};
create MyData var {"Sex" "Age"};
append;
close MyData;

/* delete observations in data set */
edit MyData;
delete; /* marks the current obs */
delete point 3; /* marks obs 3 */
delete all where(age<21); /* marks obs where age<21 */
purge; /* deletes all marked obs */
close MyData;

proc print data=MyData;
run;
```

Figure 26.98 Observations That Remain after Deletion

<table>
<thead>
<tr>
<th>Obs</th>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>24</td>
</tr>
</tbody>
</table>

Notice that observations marked for deletion by using the DELETE statement are not physically removed from the data set until a PURGE statement is executed.
DESIGN Function

\[
\text{DESIGN}(\text{column-vector});
\]

The DESIGN function creates a design matrix of zeros and ones from the column vector specified by \textit{column-vector}. Each unique value of the column vector generates a column of the design matrix. The columns are arranged in the sort order of the original values. If \(x_i \) is the \(i \)th sorted value in the column vector, \(x \), then the \(i \)th column of the design matrix contains ones in rows for which \(x \) has the value \(x_i \), and contains zeros elsewhere.

For example, the following statements produce a design matrix for a column vector that contains three unique values. The first column corresponds to the ‘A’ level, the second column corresponds to the ‘B’ level, and the third column corresponds to the ‘C’ level.

\[
x = \{C, A, B, B, A, A\};
m = \text{design}(x);
\]

\[
cols = \text{unique}(x);
\]

\[
\text{print } m[\text{colname}=\text{cols}];
\]

\begin{figure}[h]
\centering
\begin{tabular}{ccc}
\hline
\textbf{m} & A & B & C \\
\hline
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\hline
\end{tabular}
\caption{Design Matrix for a Vector with Three Unique Values}
\end{figure}

The design matrix that is returned by the DESIGN function corresponds to the GLM parameterization of classification variables as documented in the section “Parameterization of Model Effects” in the \textit{SAS/STAT User’s Guide}. See also the documentation for the DESIGNF function.

DESIGNF Function

\[
\text{DESIGNF}(\text{column-vector});
\]

The DESIGNF function creates a design matrix of zeros and ones from the column vector specified by \textit{column-vector}. The DESIGNF function is similar to the DESIGN function. The difference is that the matrix returned by the DESIGNF function is one column smaller than the matrix returned by the DESIGN function. The result of the DESIGNF function is obtained by subtracting the last column of the DESIGN function matrix from the other columns.

For example, the following statements produce a design matrix for a column vector that contains three unique values:
\[\begin{align*}
\mathbf{x} &= \{C, A, B, B, A, A\}; \\
\mathbf{m} &= \text{designf}(\mathbf{x}); \\
\mathbf{cols} &= \text{unique}(\mathbf{x}); \\
\text{print } \mathbf{m}[\text{colname} = \mathbf{cols}];
\end{align*} \]

Figure 26.100 Design Matrix for Vector with Three Unique Values

\[
\begin{array}{ccc}
A & B \\
-1 & -1 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0 \\
\end{array}
\]

The matrix that is returned by the DESIGNF function can be used to produce full-rank designs. The matrix corresponds to the EFFECT parameterization of classification variables as documented in the section “Parameterization of Model Effects” in the *SAS/STAT User’s Guide*.

DET Function

\[
\text{DET(square-matrix);} \\
\]

The DET function computes the determinant of a square matrix. The determinant, the product of the eigenvalues, is a scalar numeric value. If the determinant of a matrix is zero, then the matrix is singular. A singular matrix does not have an inverse.

The DET function performs an LU decomposition and collects the product of the diagonals (Forsythe, Malcom, and Moler 1967). For a matrix with \(n\) rows, the DET function allocates a temporary \(n^2\) array in order to compute the determinant.

The following statements compute the determinant of a matrix:

\[
\begin{align*}
\mathbf{a} &= \begin{bmatrix} 1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \end{bmatrix}; \\
\mathbf{d} &= \text{det}(\mathbf{a}); \\
\text{print } \mathbf{d};
\end{align*}
\]

Figure 26.101 Determinant of a Matrix

\[
\begin{array}{c}
\mathbf{d} \\
2
\end{array}
\]

The DET function uses a criterion to determine whether the input matrix is singular. See the INV function for details.
DIAG Function

`DIAG(matrix);`

The DIAG function creates a diagonal matrix. The `matrix` argument can be either a numeric square matrix or a vector.

If `matrix` is a square matrix, the DIAG function creates a matrix with diagonal elements equal to the corresponding diagonal elements. All off-diagonal elements in the new matrix are zeros.

If `matrix` is a vector, the DIAG function creates a matrix with diagonal elements that are the values in the vector. All off-diagonal elements are zeros.

For example, the following statements produce a diagonal matrix by extracting the diagonal elements of a square matrix:

```plaintext
a = {4 3,
    2 1};
c = diag(a);
print c;
```

![Figure 26.102 Diagonal Matrix Obtained from a Full Matrix](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>4 0</td>
</tr>
<tr>
<td></td>
<td>0 1</td>
</tr>
</tbody>
</table>

The following statements produce a diagonal matrix by using the elements of a vector:

```plaintext
b = {1 2 3};
d = diag(b);
print d;
```

![Figure 26.103 Diagonal Matrix Obtained from a Vector](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1 0 0</td>
</tr>
<tr>
<td></td>
<td>0 2 0</td>
</tr>
<tr>
<td></td>
<td>0 0 3</td>
</tr>
</tbody>
</table>

The DIAG function is useful, but is not always necessary. Most multiplication operations with diagonal matrices can be accomplished by using the *elementwise multiplication operator*. To add or subtract from the diagonal of a matrix, you can directly reference the matrix elements, as shown in the following example:

```plaintext
A = j(5,5,1);
v = T(1:5);
D = diag(v);

/* overwrite A with A + diag(v) */
/* method 1: less efficient */
A = j(5,5,1);
A = A + diag(v); /* explicitly form 5x5 diagonal matrix */
```
DIMENSION Function

DIMENSION(x);

The DIMENSION function returns the dimensions of the \(x \) matrix. The total number of elements in a matrix is \(\text{prod} (\text{dimension}(x)) \).

The returned vector is a \(1 \times 2 \) vector. The first element is the number of rows in \(x \), and the second element is the number of columns, as shown in the following example:

DIF Function

\[
\text{DIF}(x <, \text{lags}>);
\]

The DIF function computes the differences between data values and one or more lagged (shifted) values for time series data. The arguments are as follows:

- \(x \): specifies a \(n \times 1 \) numerical matrix of time series data.
- \(\text{lags} \): specifies integer lags. The \(\text{lags} \) argument can be an integer matrix with \(d \) elements. If so, the DIF function returns an \(n \times d \) matrix where the \(i \)th column represents the difference between the time series and the lagged data for the \(i \)th lag. If the \(\text{lags} \) argument is not specified, a value of 1 is used.

The values of the \(\text{lags} \) argument are usually positive integers. A positive lag shifts the time series data backwards in time. A lag of 0 represents the original time series. A negative value for the \(\text{lags} \) argument shifts the time series data forward in time; this is sometimes called a lead effect. The DIF function is related to the LAG function.

For example, the following statements compute the difference between the time series and the lagged data:

\[
\begin{align*}
\text{x} & = \{1,3,4,7,9\}; \\
\text{dif} & = \text{dif}(\text{x}, \{0 1 3\}); \\
\text{print} \ \text{dif};
\end{align*}
\]

This produces the output in Figure 26.104:

\[
\begin{array}{c}
\text{dif} \\
0 . . \\
0 2 . \\
0 1 . \\
0 3 6 \\
0 2 6 \\
\end{array}
\]
x = {1 2, 3 4, 5 6};
d = dimension(x);
print d;

Figure 26.105 The Dimensions of a Matrix

<table>
<thead>
<tr>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2</td>
</tr>
</tbody>
</table>

DISTANCE Function

DISTANCE(x, <, method>);

The DISTANCE function computes the pairwise distances between rows of \(x \). The distances depend on the metric specified by the method argument. The arguments are as follows:

- **x** specifies an \(n \times p \) numerical matrix that contains \(n \) points in \(p \)-dimensional space.
- **method** is an optional argument that specifies the method used to specify the distance between pairs of points. The method argument is either a numeric value, \(\text{method} \geq 1 \), or a case-insensitive character value. Only the first four character values are used. The following are valid options:
 - “L2” specifies that the function compute the Euclidean (\(L_2 \)) distance between two points. This is the default value. An equivalent alias is “Euclidean”.
 - “L1” specifies that the function compute the Manhattan (\(L_1 \)) distance between two points. An equivalent alias is “CityBlock” or “Manhattan”.
 - “LInf” specifies that the function compute the Chebyshev (\(L_\infty \)) distance between two points. An equivalent alias is “Chebyshev”.
- \(p \) is a numeric value, \(p \geq 1 \), that specifies the \(L_p \)-norm.

The DISTANCE function returns an \(n \times n \) symmetric matrix. The \((i, j)\) element is the distance between the \(i \)th and \(j \)th rows of \(x \).

If \(u \) and \(v \) are two \(p \)-dimensional points, then the following formulas are used to compute the distance between \(u \) and \(v \):

- The Euclidean distance: \(\|u - v\|_2 = (\Sigma_k |u_k - v_k|^2)^{1/2} \).
- The \(L_1 \) distance: \(\|u - v\|_1 = \Sigma_k |u_k - v_k| \).
- The \(L_\infty \) distance: \(\|u - v\|_\infty = \max(|u_1 - v_1|, |u_2 - v_2|, \ldots, |u_p - v_p|) \).
- The \(L_p \) distance: \(\|u - v\|_p = \left(\Sigma_k |u_k - v_k|^p\right)^{1/p} \).

The following statements illustrate the DISTANCE function:
\[x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}; \]
\[d2 = \text{distance}(x, "L2"); \]
\[\text{print } d2[\text{format=best5.}]; \]

Figure 26.106 Euclidean Distance Between Pairs of Points

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.414</td>
<td>2 1.414</td>
</tr>
<tr>
<td>1.414</td>
<td>0 1.414</td>
<td>2</td>
</tr>
<tr>
<td>2 1.414</td>
<td>0 1.414</td>
<td></td>
</tr>
<tr>
<td>1.414</td>
<td>2 1.414</td>
<td>0</td>
</tr>
</tbody>
</table>

The \(i\)th column of \(d2\) contains the distances between the \(i\)th row of \(x\) and the other rows. Notice that the \(d2\) matrix has zeros along the diagonal.

You can also compute non-Euclidean distances, as follows:

\[d1 = \text{distance}(x, "L1"); \]
\[dInf = \text{distance}(x, "LInfinity"); \]
\[\text{print } d1, dInf; \]

Figure 26.107 Distance Between Pairs of Points

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

If a row contains a missing value, all distances that involve that row are assigned a missing value.

DO Function

\[
\text{DO}(\text{start, stop, increment});
\]

The DO function creates a row vector that contains a sequence of evenly spaced numbers.

The arguments to the DO function are as follows:
DO Statement

```plaintext
DO;
    statements;
END;
```

The DO statement specifies that the statements that follow the DO statement be executed as a group until a matching END statement appears. DO statements often appear in IF-THEN/ELSE statements, where they designate groups of statements to be performed when the IF condition is true or false.

For example, consider the following statements:

```plaintext
x=0;
y=1;
if x<y then
do;
    z1 = abs(x+y);
    z2 = abs(x-y);
end;
```

The statements between the DO and END statements (called the DO group) are executed only if \(x < y \). That is, they are executed only if all elements of \(x \) are less than the corresponding elements of \(y \). If any element of \(x \) is not less than the corresponding element of \(y \), the statements in the DO group are skipped and the statement that follows the END statement is executed.

It is good practice to indent the statements in a DO group as shown in the preceding example. However, the DO and END statements do not need to be on separate lines. A popular indenting style is to write the DO statement on the same line as the THEN or ELSE clause, as shown in following statements:
if \(x < y \) then do;
 \(z_1 = \text{abs}(x+y) \);
 \(z_2 = \text{abs}(x-y) \);
end;
else do;
 \(z_1 = \text{abs}(x-y) \);
 \(z_2 = \text{abs}(x+y) \);
end;

DO groups can be nested. There is no limit imposed on the number of nested DO groups. The following statements show an example of nested DO groups:

if \(x < y \) then do;
 if \(z_1 > 2 \) then do;
 \(z = z_1 - z_2 \);
 \(w = x \# y \);
 end;
end;

DO Statement, Iterative

\[
\text{DO} \ \text{variable} = \text{start} \ \text{TO} \ \text{stop} < \text{BY} \ \text{increment} > ;
\]

The iterative DO statement executes a group of statements several times.

The arguments to the DO statement are as follows:

- **variable** is the name of a variable that indexes the loop. This variable is sometimes called an *index variable* or a *looping variable*.
- **start** is the starting value for **variable**.
- **stop** is the stopping value for **variable**.
- **increment** is an increment value.

The **start**, **stop**, and **increment** values should be scalars or expressions that yield scalars.

When the DO group has this form, the statements between the DO and END statements are executed iteratively. The number of times the statements are executed depends on the evaluation of the expressions given in the DO statement.

The index variable starts with the **start** value and is incremented by the **increment** value after each iteration. The iterations continue provided that the index variable is less than or equal to the **stop** value. If a negative increment is used, then iterations continue provided that the index variable is greater than or equal to the **stop** value. The **start**, **stop**, and **increment** expressions are evaluated only once before the looping starts.

For example, the following statements print the value of \(i \) three times, as shown in Figure 26.109:

\[
\text{do } i = 1 \text{ to } 5 \text{ by } 2 ;
 \text{print } "\text{The value of } i \text{ is: }" \ i ;
\text{end;}
\]
Figure 26.109 Arithmetic Sequences

<table>
<thead>
<tr>
<th>i</th>
<th>The value of i: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>The value of i: 3</td>
</tr>
<tr>
<td>i</td>
<td>The value of i: 5</td>
</tr>
</tbody>
</table>

DO DATA Statement

DO DATA < variable = start TO stop > ;

The DO DATA statement repeats a loop until an end-of-file condition occurs.

The arguments to the DO DATA statement are as follows:

- **variable** is the name of a variable that indexes the loop.
- **start** is the starting value for the looping variable.
- **stop** is the stopping value for the looping variable.

The DO DATA statement is used for repetitive DO loops that need to be exited upon the occurrence of an end of file for an INPUT, READ, or other I/O statement. This form is common for loops that read data from either a sequential file or a SAS data set.

When an end of file is reached inside the DO DATA group, the program immediately jumps from the group and starts executing the statement that follows the END statement. DO DATA groups can be nested, where each end of file causes a jump from the most local DO DATA group. The DO DATA loop simulates the end-of-file behavior of the SAS DATA step. You should not use GOTO statement and the LINK statement to jump out of a DO DATA group.

The following statements read data from an external file. The example reads the first 100 lines or until the end of file, whichever occurs first.

```plaintext
do data i = 1 to 100;
   input name \$8.;
end;
```

If you are reading data from a SAS data set, then you can use the following statements:

```plaintext
do data; /* read next obs until eof is reached */
   read next var(x); /* read only variable X */
end;
```

Be aware that the ALL keyword does not return an end-of-file condition. Consequently, the READ ALL statement is usually not used inside a DO DATA loop. If you use the READ ALL statement inside a DO DATA loop, you should use a looping variable or a statement that returns an end-of-file condition (such as READ NEXT) in order to avoid creating an infinite loop.
DO Statement with an UNTIL Clause

\[
\text{DO UNTIL (expression) ;}
\]

\[
\text{DO variable = start TO stop < BY increment> UNTIL(expression) ;}
\]

The DO UNTIL statement conditionally executes statements iteratively.

The arguments to the DO UNTIL statement are as follows:

- **expression** is an expression that is evaluated at the bottom of the loop for being true or false.
- **variable** is the name of a variable that indexes the loop.
- **start** is the starting value for the looping variable.
- **stop** is the stopping value for the looping variable.
- **increment** is an increment value.

Using an UNTIL expression enables you to conditionally execute a set of statements iteratively. The UNTIL expression is evaluated at the bottom of the loop, and the statements inside the loop are executed repeatedly as long as the expression yields a zero or missing value. In the following example, the body of the loop executes until the value of X exceeds 100:

\[
x = 1;
\text{do until (x>100);}\quad x = x + 1;\quad \text{end;}
\text{print x;}
\]

Figure 26.110 Result of a DO-UNTIL Statement

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
</tr>
</tbody>
</table>

DO Statement with a WHILE Clause

\[
\text{DO WHILE (expression) ;}
\]

\[
\text{DO variable = start TO stop < BY increment> WHILE(expression) ;}
\]

The DO WHILE statement executes statements iteratively while a condition is true.

The arguments to the DO WHILE statement are as follows:

- **expression** is an expression that is evaluated at the top of the loop for being true or false.
- **variable** is the name of a variable that indexes the loop.
- **start** is the starting value for the looping variable.
- **stop** is the stopping value for the looping variable.
- **increment** is an increment value.
Using a WHILE expression enables you to conditionally execute a set of statements iteratively. The WHILE expression is evaluated at the top of the loop, and the statements inside the loop are executed repeatedly as long as the expression yields a nonzero or nonmissing value.

Note that the incrementing is done before the WHILE expression is tested. The following example demonstrates the incrementing:

\[
x = 1;
\text{do while (x<100)};
\quad x = x + 1;
\text{end;}
\text{print x;}
\]

Figure 26.111 Result of a DO-WHILE Statement

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

The next example increments the starting value by 2:

\[
y = 1;
\text{do i = 1 to 100 by 2 while(y<200)};
\quad y = y + i;
\text{end;}
\text{print i y;}
\]

Figure 26.112 Result of an Iterative DO-WHILE Statement

<table>
<thead>
<tr>
<th>i</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>945</td>
</tr>
</tbody>
</table>

DURATION Function

\[
\text{DURATION(times, flows, ytm)};
\]

The DURATION function returns a scalar value that represents the modified duration of a noncontingent cash flow. The arguments are as follows:

- **times** is an \(n \)-dimensional column vector of times. The \(i \)th time corresponds to the time (often in years) until the \(i \)th cash flow occurs. Elements should be nonnegative.
- **flows** is an \(n \)-dimensional column vector of cash flows.
- **ytm** is the per-period yield-to-maturity of the cash-flow stream. This is a scalar and should be positive.

Duration of a security is generally defined as

\[
D = -\frac{\frac{dP}{dy}}{P}
\]
In other words, it is the relative change in price for a unit change in yield. Since prices move in the opposite
direction to yields, the sign change preserves positivity for convenience. With cash flows that are not
yield-sensitive and the assumption of parallel shifts to a flat term structure, duration is given by

\[D_{\text{mod}} = \frac{\sum_{k=1}^{K} t_k \frac{c(k)}{(1+y)^{t_k}}}{P(1+y)} \]

where \(P \) is the present value, \(y \) is the per-period effective yield-to-maturity, \(K \) is the number of cash flows, and the \(k \)th cash flow is \(c(k) \), \(t_k \) periods from the present. This measure is referred to as *modified duration* to
differentiate it from the *Macaulay duration*:

\[D_{\text{Mac}} = \frac{\sum_{k=1}^{K} t_k \frac{c(k)}{(1+y)^{t_k}}}{P} \]

This expression also reveals the reason for the name duration, since it is a present-value-weighted average of
the duration (that is, timing) of all the cash flows and is hence an “average time-to-maturity” of the bond.

The following statements call the DURATION function:

```plaintext
times = 1;
flow = 10;
ytm = 0.1;
duration = duration(times, flow, ytm);
print duration;
```

Figure 26.113 Duration of a Cash Flow

```
duration
0.9090909
```

ECHELON Function

ECHELON(matrix);

The ECHELON function uses elementary row operations to reduce a matrix to row-echelon normal form, as
in the following example (Graybill 1969):

```plaintext
a = {3  6  9,
    1  2  5,
    2  4 10};
e = echelon(a);
print e;
```

Figure 26.114 Result of the ECHELON Function

```
e
1  2  0
0  0  1
0  0  0
```
If the argument is a square matrix, then the row-echelon normal form can be obtained from the Hermite normal form by rearranging rows that are all zeros. See the HERMITE function for details about the Hermite normal form.

EDIT Statement

EDIT SAS-data-set < VAR operand > < WHERE(expression) > < NOBS name > ;

The EDIT statement opens a SAS data set for reading and updating. If the data set has already been opened, the EDIT statement makes it the current input and output data sets.

The EDIT statement can define a set of variables and the selection criteria that are used to control access to data set observations.

The VAR, WHERE, and NOBS clauses are optional and can be specified in any order.

The arguments to the EDIT statement are as follows:

- **SAS-data-set** specifies a SAS data set. You can specify a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set. See the example for the CLOSE statement.
- **operand** specifies a set of variables to edit. You can specify variables by using any of the methods described in the section “Select Variables with the VAR Clause” on page 103.
- **expression** specifies observations to edit. If you omit the WHERE clause, all observations are selected. For more details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.
- **name** specifies a variable to contain the number of observations. The NOBS clause returns the total number of observations in the data set in the variable name.

For example, to read and update observations for which the Age variable is greater than 30, use the following statements:

```sas
proc iml;
   /* create sample data set */
   sex = { M, M, M, F, F, F};
   age = {34, 28, 38, 32, 24, 18};
   create MyData var {"Sex" "Age"};
   append;
   close MyData;

   edit MyData where (Age>30);
   list all;
   close MyData;
```
To edit the data set `Work.MyData` and obtain the number of observations in the data set, use the following statements:

```sas
edit Work.MyData nobs NumObs;
close Work.MyData;
print NumObs;
```

See Chapter 7 for more information about editing SAS data sets. For additional examples of using the EDIT statement, see the DELETE statement and the REPLACE statement.

EIGEN Call

```
CALL EIGEN(evals, evecs, A) < VECL=vl >;
```

The EIGEN subroutine computes eigenvalues and eigenvectors of an arbitrary square numeric matrix. The EIGEN subroutine will use vendor-supplied eigenvalue routines if they are available on your system. (An example is the Intel Math Kernel Library (MKL), which is tuned to provide optimal performance for a given Intel processor.) Because eigenvectors are not unique, the results of eigenvector computations that use vendor-supplied routines are not necessarily identical to the results from earlier releases. Use the `RESET EIGEN93` statement to prevent SAS/IML from using vendor-supplied routines.

The `A` argument is the input argument to the EIGEN subroutine. The EIGEN call returns the following values:

- `evals` names a matrix to contain the eigenvalues of `A`.
- `evecs` names a matrix to contain the right eigenvectors of `A`.
- `vl` is an optional \(n \times n \) matrix that contains the left eigenvectors of `A` in the same manner that `evecs` contains the right eigenvectors.

The EIGEN subroutine computes `evals`, a matrix that contains the eigenvalues of `A`. If `A` is symmetric, `evals` is the \(n \times 1 \) vector that contains the \(n \) real eigenvalues of `A`. If `A` is not symmetric (as determined by the criteria in the symmetry test described later), `evals` is an \(n \times 2 \) matrix. The first column of `evals` contains the real parts, \(\text{Re}(\lambda) \), and the second column contains the imaginary parts, \(\text{Im}(\lambda) \). Each row represents one eigenvalue, \(\text{Re}(\lambda) + i \text{Im}(\lambda) \).

If `A` is symmetric, the eigenvalues are arranged in descending order. Otherwise, the eigenvalues are sorted first by their real parts, then by the magnitude of their imaginary parts. Complex conjugate eigenvalues,
Re(\(\lambda\)) \pm i Im(\(\lambda\)), are stored in standard order; that is, the eigenvalue of the pair with a positive imaginary part is followed by the eigenvalue of the pair with the negative imaginary part.

The EIGEN subroutine also computes evecs, a matrix that contains the orthonormal column eigenvectors that correspond to evals. If \(A\) is symmetric, then the first column of evecs is the eigenvector that corresponds to the largest eigenvalue, and so forth. If \(A\) is not symmetric, then evecs is an \(n \times n\) matrix that contains the right eigenvectors of \(A\). If the eigenvalue in row \(i\) of evals is real, then column \(i\) of evecs contains the corresponding real eigenvector. If rows \(i\) and \(i + 1\) of evals contain complex conjugate eigenvalues Re(\(\lambda\)) \pm i Im(\(\lambda\)), then columns \(i\) and \(i + 1\) of evecs contain the real part, \(u\), and imaginary part, \(v\), of the two corresponding eigenvectors \(u \pm iv\).

The following paragraphs present some properties of eigenvalues and eigenvectors. Let \(A\) be a general \(n \times n\) matrix. The eigenvalues of \(A\) are the roots of the characteristic polynomial, which is defined as \(p(z) = \det(zI - A)\). The spectrum, denoted by \(\lambda(A)\), is the set of eigenvalues of the matrix \(A\). If \(\lambda(A) = \{\lambda_1, \ldots, \lambda_n\}\), then \(\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n\).

The trace of \(A\) is defined by

\[
\text{tr}(A) = \sum_{i=1}^{n} a_{ii}
\]

and \(\text{tr}(A) = \lambda_1 + \ldots + \lambda_n\).

An eigenvector is a nonzero vector, \(x\), that satisfies \(Ax = \lambda x\) for \(\lambda \in \lambda(A)\). Right eigenvectors satisfy \(Ax = \lambda x\), and left eigenvectors satisfy \(x^H A = \lambda x^H\), where \(x^H\) is the complex conjugate transpose of \(x\). Taking the conjugate transpose of both sides shows that left eigenvectors also satisfy \(A^T x = \bar{\lambda} x\).

The following are properties of the unsymmetric real eigenvalue problem, in which the real matrix \(A\) is square but not necessarily symmetric:

- The eigenvalues of an unsymmetric matrix \(A\) can be complex. If \(A\) has a complex eigenvalue, Re(\(\lambda\)) \pm i Im(\(\lambda\)), then the conjugate complex value Re(\(\lambda\)) \mp i Im(\(\lambda\)) is also an eigenvalue of \(A\).
- The right and left eigenvectors that correspond to a real eigenvalue of \(A\) are real. The right and left eigenvectors that correspond to conjugate complex eigenvalues of \(A\) are also conjugate complex.
- The left eigenvectors of \(A\) are the same as the complex conjugate right eigenvectors of \(A^T\).

The three routines, EIGEN, EIGVAL, and EIGVEC, use the following test of symmetry for a square argument matrix \(A\):

1. Select the entry of \(A\) with the largest magnitude:

\[
amax = \max_{i,j=1,...,n} |a_{i,j}|
\]

2. Multiply the value of \(amax\) by the square root of the machine precision, \(\epsilon\). The value of \(\epsilon\) is the largest value stored in double precision that, when added to 1 in double precision, still results in 1.

3. The matrix \(A\) is considered unsymmetric if there exists at least one pair of symmetric entries that differs in more than \(amax \sqrt{\epsilon}\):

\[
|a_{i,j} - a_{j,i}| > amax \sqrt{\epsilon}
\]
If \(A \) is a symmetric matrix and \(M \) and \(E \) are the eigenvalues and eigenvectors, respectively, of \(A \), then the matrices have the following properties:

\[
A \cdot E = E \cdot \text{diag}(M) \\
E' \cdot E = I
\]

These properties imply the following:

\[
E' = \text{inv}(E) \\
A = E \cdot \text{diag}(M) \cdot E'
\]

The QL method is used to compute the eigenvalues (Wilkinson and Reinsch 1971).

In statistical applications, nonsymmetric matrices for which eigenvalues are desired are usually of the form \(E^{-1}H \), where \(E \) and \(H \) are symmetric. The eigenvalues \(L \) and eigenvectors \(V \) of \(E^{-1}H \) can be obtained by using the GENEIG subroutine, or by using the following statements:

\[
F = \text{root}(\text{einv}) \\
A = F \cdot H \cdot F' \\
\text{call eigen}(L, W, A) \\
V = F' \cdot W
\]

The computation can be checked by forming the residuals, \(r \), as shown in the following statement:

\[
r = \text{einv} \cdot H \cdot V - V \cdot \text{diag}(L)
\]

The values in \(r \) should be of the order of rounding error.

The following statements compute the eigenvalues and left and right eigenvectors of a nonsymmetric matrix with four real and four complex eigenvalues:

\[
A = \begin{pmatrix}
-1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.2379 & 0.5145 & 0.1201 & 0.1275 & 0 & 0 \\
0 & 0 & 0.1943 & 0.4954 & 0.1230 & 0.1873 & 0 & 0 \\
0 & 0 & 0.1827 & 0.4955 & 0.1350 & 0.1868 & 0 & 0 \\
0 & 0 & 0.1084 & 0.4218 & 0.1045 & 0.3653 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & -2 & 0
\end{pmatrix};
\]

\text{call eigen}(\text{val}, \text{rvec}, A) \text{ vecl="lvec"};
\text{print val};

The sorted eigenvalues of the \(A \) matrix are shown in Figure 26.117.
You can verify the correctness of the left and right eigenvector computation by using the following statements:

```plaintext
/>* verify that the right eigenvectors are correct */
vec = rvec;
do j = 1 to ncol(vec);
/>* if eigenvalue is real */
if val[j,2] = 0. then do;
v = A * vec[,j] - val[j,1] * vec[,j];
if any( abs(v) > 1e-12 ) then
  badVectors = badVectors || j;
end;
/>* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
/>* the real part */
rp = val[j,1] * vec[,j] - val[j,2] * vec[,j+1];
v = A * vec[,j] - rp;
/>* the imaginary part */
ip = val[j,1] * vec[,j+1] + val[j,2] * vec[,j];
u = A * vec[,j+1] - ip;
if any( abs(u) > 1e-12 ) | any( abs(v) > 1e-12 ) then
  badVectors = badVectors || j || j+1;
end;
end;
if ncol( badVectors ) > 0 then
  print "Incorrect right eigenvectors:" badVectors;
else print "All right eigenvectors are correct";

Similar statements can be written to verify the left eigenvectors. The statements use the fact that the left eigenvectors of $A$ are the same as the complex conjugate right eigenvectors of $A^\prime$:

```plaintext
/>* verify that the left eigenvectors are correct */
vec = lvec;
do j = 1 to ncol(vec);
/>* if eigenvalue is real */
if val[j,2] = 0. then do;
v = A` * vec[,j] - val[j,1] * vec[,j];
if any(abs(v) > 1e-12) then
 badVectors = badVectors || j;
end;
/>* if eigenvalue is complex with positive imaginary part */
else if val[j,2] > 0. then do;
```

---

**Figure 26.117** Complex Eigenvalues of a Nonsymmetric Matrix

<table>
<thead>
<tr>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1.7320508</td>
</tr>
<tr>
<td>1 -1.732051</td>
</tr>
<tr>
<td>1 0</td>
</tr>
<tr>
<td>0.2087788 0</td>
</tr>
<tr>
<td>0.0222025 0</td>
</tr>
<tr>
<td>0.0026187 0</td>
</tr>
<tr>
<td>-1 2</td>
</tr>
<tr>
<td>-1 -2</td>
</tr>
</tbody>
</table>
The EIGEN call performs most of its computations in the memory allocated for returning the eigenvectors.

**EIGVAL Function**

**EIGVAL(A);**

The EIGVAL function computes the eigenvalues of a square numeric matrix, A. The EIGVAL function returns a matrix that contains the eigenvalues of A. See the description of the EIGEN subroutine for more details.

The EIGVAL function uses vendor-supplied eigenvalue routines if they are available on your system. Use the RESET EIGEN93 statement to prevent SAS/IML from using vendor-supplied routines.

The following statements compute Example 7.1.1 from Golub and Van Loan (1989):

\[
A = \begin{bmatrix}
67.00 & 177.60 & -63.20 \\
-20.40 & 95.88 & -87.16 \\
22.80 & 67.84 & 12.12
\end{bmatrix}
\]

val = eigval(A);
print val;

**Figure 26.118** Eigenvalues

<table>
<thead>
<tr>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>-100</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Notice that the matrix A is not symmetric and that the eigenvalues are complex. The first column of the val matrix is the real part of the three eigenvalues, and the second column is the complex part.

If a matrix is symmetric, it has real eigenvalues and real eigenvectors. The following statements produce a column vector that contains the eigenvalues of a crossproducts matrix:

\[
A = \begin{bmatrix}
4 & 10 \\
10 & 30
\end{bmatrix}
\]

/* A is a symmetric matrix */
rval = eigval(A);
print rval;
**EIGVEC Function**

**EIGVEC(\(A\));**

The EIGVEC function computes the (right) eigenvectors of a square numeric matrix, \(A\). You can obtain the left eigenvectors by first transposing \(A\). See the description of the EIGEN subroutine for more details.

The EIGVEC function uses vendor-supplied eigenvalue routines if they are available on your system. Because eigenvectors are not unique, the results of eigenvector computations that use vendor-supplied routines are not necessarily identical to the results from earlier releases. Use the RESET EIGEN93 statement to prevent SAS/IML from using vendor-supplied routines.

The following example calculates the eigenvectors of a symmetric matrix:

```plaintext
A = {4 10, 10 30}; /* A is a symmetric matrix */
evec = eigvec(A);
print evec;
```

**Figure 26.120 Eigenvectors of a Symmetric Matrix**

<table>
<thead>
<tr>
<th>evec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3220062</td>
</tr>
<tr>
<td>0.3220062</td>
</tr>
<tr>
<td>0.9467376</td>
</tr>
<tr>
<td>0.9467376</td>
</tr>
</tbody>
</table>

**ELEMENT Function**

**ELEMENT(x, y);**

The ELEMENT function returns a matrix that is the same shape as \(x\). The return value indicates which elements of \(x\) are elements of \(y\). In particular, if \(A = \text{element}(x, y)\), then

\[
A_i = \begin{cases} 
1 & \text{if } x_i \in y \\
0 & \text{otherwise}
\end{cases}
\]

The arguments are as follows:

- \(x\) specifies a matrix of elements to test for membership.
- \(y\) specifies a set.

If the intersection between \(x\) and \(y\) is empty, then the ELEMENT function returns a zero matrix. If \(x\) is a proper subset of \(y\), then the ELEMENT function returns a matrix of ones. In general, the ELEMENT function returns 1 for elements in the intersection of \(x\) and \(y\), as shown in the following statements:
\[ x = \{0, 0.5, 1, 1.5, 2, 2.5, 3, 0.5, 1.5, 3, 3, 1\}; \]
\[ \text{set} = \{0 1 3\}; \]
\[ b = \text{element}(x, \text{set}); \]
\[ n = \text{sum}(b); \quad /* \text{number of elements of } X \text{ that are in } \text{SET} */ \]
\[ \text{idx} = \text{t}\left(\text{loc}(b)\right); \quad /* \text{indices of elements of } X \text{ that are in } \text{SET} */ \]
\[ \text{values} = x[\text{idx}]; \quad /* \text{values of elements of } X \text{ that are in } \text{SET} */ \]
\[ \text{print } n \text{ idx values}; \]

**Figure 26.121** Elements That Belong to a Set

<table>
<thead>
<tr>
<th>n</th>
<th>idx</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**END Statement**

**END ;**

The END statement ends a DO loop or DO statement. See the DO statement for details.

**ENDSUBMIT Statement**

**ENDSUBMIT ;**

You can use the ENDSUBMIT statement in conjunction with the SUBMIT statement to submit SAS statements for processing from within a SAS/IML program. All statements between the SUBMIT and the ENDSUBMIT statements are referred to as a **SUBMIT block**. The SUBMIT block is processed by the SAS language processor.

If you use the R option in the SUBMIT statement, you can submit statements to the R statistical software for processing.

The ENDSUBMIT statement must appear on a line by itself. There cannot be any space between the statement and the trailing semicolon.

See Chapter 14, “Calling Functions in the R Language,” and the documentation for the SUBMIT statement for details and examples.

**EXECUTE Call**

**CALL EXECUTE(statements);**
The EXECUTE subroutine immediately executes SAS statements. These can be SAS/IML statements or global SAS statements such as the TITLE statement. The arguments to the EXECUTE subroutine are character matrices or quoted literals that contains valid SAS statements. You can specify up to 15 arguments.

The EXECUTE subroutine pushes character arguments to the input command stream, executes them, and then returns to the calling module. The subroutine should be called from a module rather than from the immediate environment because it uses the RESUME statement that works only from modules. The strings you push do not appear in the log.

Following are examples of valid EXECUTE subroutines:

```sas
/* define a module that writes data to a specified data set */
start WriteData(DSName, x);
 CreateStmt = "create " + DSName + " from x;"; /* build CREATE stmt */
 call execute(CreateStmt); /* run CREATE stmt */
 append from x;
 CloseStmt = "close " + DSName + ";"; /* build CLOSE stmt */
 call execute(CloseStmt); /* run CLOSE stmt */
finish;

y = {1 2 3, 4 5 6, 7 8 0};
run WriteData("MyData", y); /* call the module */
use MyData; list all; close MyData; /* verify contents */
```

**Figure 26.122** Results of Executing SAS/IML Statements

<table>
<thead>
<tr>
<th>OBS</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>2.0000</td>
<td>3.0000</td>
</tr>
<tr>
<td>2</td>
<td>4.0000</td>
<td>5.0000</td>
<td>6.0000</td>
</tr>
<tr>
<td>3</td>
<td>7.0000</td>
<td>8.0000</td>
<td>0</td>
</tr>
</tbody>
</table>

For more details about the EXECUTE subroutine, see Chapter 21, “Using SAS/IML Software to Generate SAS/IML Statements.”

---

**EXECUTEFILE Call**

```
CALL EXECUTEFILE(filename <, encoding>);
```

The EXECUTEFILE subroutine executes SAS/IML statements that are contained in a text file, which is called the *source file*. The statements in the source file can be SAS/IML statements or global SAS statements such as the TITLE statement. The statements in the source file do not appear in the SAS log.

The first argument to the EXECUTEFILE subroutine is a string literal, a character matrix that contains a valid file name, or a SAS fileref that points to a valid file. The argument can refer to an absolute path such as `C:\Temp\commands.sas` or a relative path such as `.\commands2.sas`. Relative paths depend on the current working directory for the SAS session.

The EXECUTEFILE subroutine accepts an optional second argument that specifies the encoding of the source file. You can use this argument when the encoding of the source file is different from the SAS session.
The following DATA step creates a file called `commands.sas` in the current working directory:

```sas
filename ExeFile "./commands.sas";
data _null_; file ExeFile; put 'start MySqr(t); '; put ' return(t##2);'; put 'finish; '; put 'x = {1 2, 3 4}; '; run;
```

The file `commands.sas` contains SAS/IML statements. It is created in the current working directory, assuming that you have permission to write to that directory. The statements define a matrix (x) and a module named MYSQRT. After you use the EXECUTEFILE subroutine to execute the statements in the source file, you can refer to the matrix and call the module, as shown in the following example:

```sas
proc iml;
call executefile("commands.sas");
y = MySqr(x);
print x y;
```

**Figure 26.123** Results of Executing SAS/IML Statements from a Source File

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

**Figure 26.123** shows that the statements in the source file were executed. The matrices and the module are available for use in subsequent SAS/IML statements.

In the preceding example, the statements that reference the x matrix are in the same calling environment (scope) as the EXECUTEFILE statement. In the following program, the EXECUTEFILE subroutine is called from inside a module:

```sas
proc iml;
start MyMod(a);
call executefile("commands.sas"); /* x is defined inside the module, but not outside */
print x[label="x inside module"]; finish;
call MyMod(1);
show modules names;
```
Figure 26.124 Modules and Names Known at Main Scope

<table>
<thead>
<tr>
<th>x inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>module</td>
</tr>
<tr>
<td>1 2</td>
</tr>
<tr>
<td>3 4</td>
</tr>
</tbody>
</table>

Modules:
- MYMOD
- MYSQR

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ROWS</th>
<th>COLS</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of symbols = 0 (includes those without values)

Notice in Figure 26.124 that the matrix \( x \) is not known outside the module. However, the MYSQR module is known because all modules are defined at the main scope, as discussed in the section “Nesting Module Definitions” on page 73.

The EXECUTEFILE subroutine is similar to the %INCLUDE macro statement for including source code into a SAS program. However, the EXECUTEFILE subroutine parses and runs the source file at run time, whereas the %INCLUDE statement inserts the contents of a source file at parse time. One advantage of the EXECUTEFILE statement is that the name of the file does not need to be known until run time. In fact, the file itself does not need to exist until run time, as demonstrated by the DATA step in this section that creates the source file.

Some SAS/IML statements are not supported by the EXECUTEFILE subroutine. The file should not contain the PROC IML statement, the QUIT statement, or other statements that terminate the IML procedure.

In SAS/IML 14.1, there are differences between the implementation of the EXECUTEFILE statement in PROC IML and in the IMLPlus language:

- In PROC IML, the source file should not contain the SUBMIT and ENDSUBMIT statements. An alternative is to use the %INCLUDE statement to include SUBMIT blocks.
- In IMLPlus, filerefs are not supported.
- In IMLPlus, modules that are defined inside a source file are not recognized by the parser until after the EXECUTEFILE subroutine is run.

If a statement in the source file contains an error, an error message appears in the SAS log. However, PROC IML concatenates the source file into a single text string, so the error is always reported as being on “Line 1.” For some kinds of errors, the SAS log displays the message NOTE: Paused in module _EXECUTEFILE. If you see this note, submit the RESUME statement to restore program control to the main scope.
**EXP Function**

\[
\text{EXP}(\text{matrix});
\]

The EXP function applies the exponential function to every element of the argument matrix. The exponential is the natural number \( e \) raised to the indicated power. For example, the following statements compute the exponentials of several numbers:

```r
b = {1 2 3 4};
a = exp(b);
print a;
```

**Figure 26.125** Exponential of Several Numbers

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7182818</td>
</tr>
<tr>
<td>7.3890561</td>
</tr>
<tr>
<td>20.085537</td>
</tr>
<tr>
<td>54.59815</td>
</tr>
</tbody>
</table>

If you want to compute the exponential of a matrix, you can call the EXPMATRIX function in the IMLMLIB module library.

**EXPMATRIX Function**

\[
\text{EXPMATRIX}(\text{matrix});
\]

The EXPMATRIX function is part of the IMLMLIB library. Given an \( n \times n \) matrix \( A \), the EXPMATRIX function returns an \( n \times n \) matrix approximating \( e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} \). The function uses a Padé approximation algorithm as presented in Golub and Van Loan (1989).

Note that this module does not exponentiate each element of a matrix; for that, use the EXP function.

The following example demonstrates the EXPMATRIX function. For the matrix used in the example, \( e^{tA} \) is the matrix \[
\begin{pmatrix}
e^t & te^t \\
0 & e^t
\end{pmatrix}
\]. You can compute the exponential matrix as follows:

```r
A = { 1 1, 0 1 };
t = 3;
X = ExpMatrix(t*A);
ExactAnswer = (exp(t) || t*exp(t)) //
(0 || exp(t));
print X, ExactAnswer;
```

**Figure 26.126** Matrix Exponential

<table>
<thead>
<tr>
<th>X</th>
<th>ExactAnswer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.085537 60.256611</td>
<td>20.085537 60.256611</td>
</tr>
<tr>
<td>0 20.085537</td>
<td>0 20.085537</td>
</tr>
</tbody>
</table>
**EXPANDGRID Function**

```plaintext
EXPANDGRID(x1, x2 <, x3> ... <, x15>);
```

The EXPANDGRID function is part of the **IMLMLIB library**. The arguments to the EXPANDGRID function are \( k \) vectors, \( 2 \leq k \leq 15 \). The EXPANDGRID function returns a matrix that contains the Cartesian product of elements from the specified vectors. If the \( i \)th argument has \( n_i \) elements, the return matrix has \( \Pi_{i \leq k} n_i \) rows and \( k \) columns.

Each row of the result contains a combination of elements of the input vectors. The first row contains the elements \((x1[1], x2[1], \ldots, xk[1])\). The second row contains the elements \((x1[1], x2[1], \ldots, xk[2])\). The first column varies the slowest, and the last column varies the fastest.

The following statement create a matrix of 0s and 1s. Each row is a vertex of the three-dimensional unit cube.

```plaintext
g = ExpandGrid(0:1, 0:1, 0:1);
print g;
```

**Figure 26.127** A Cartesian Product of Three Vectors

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

You can use the EXPANDGRID function to generate a complete factorial design from the set of factors. You can also use it to evaluate a multivariate function on a dense grid of points. For example, the following statements evaluate the bivariate cubic polynomial \( f(x, y) = x^3 - y^2 - 2x + 1 \) on a grid of points in the region \([-2, 2] \times [-2, 2]\):

```plaintext
vx = do(-2, 2, 0.1);
vy = do(-2, 2, 0.1);
g = ExpandGrid(vx, vy); /* grid on [-2,2] x [-2,2] */
x = g[,1]; y = g[,2];
z = x##3 - y##2 - 2*x + 1;
```

**EXPORTDATASET TO Call**

```plaintext
CALL EXPORTDATASET(SAS-data-set, RDataFrame);
```

You can use the EXPORTDATASET TO subroutine to transfer data from a SAS data set to an R data frame. It is easier to read the subroutine name when it is written in mixed case: ExportDataSetToR.

The arguments to the subroutine are as follows:
SAS-data-set       is a literal string or a character matrix that specifies the two-level name of a SAS data set (for example, Sashelp.Class).

RDataFrame         is a literal string or a character matrix that specifies the name of an R data frame.

You can call the subroutine provided that the following statements are true:

1. The R statistical software is installed on the SAS workspace server.
2. The SAS system administrator at your site has enabled the RLANG SAS system option. (See the section “The RLANG System Option” on page 234.)

The following statements copy data from the Sashelp.Class data set into an R data frame called class:

```
proc iml;
 call ExportDataSetToR("Sashelp.Class", "class");
submit / R;
 names(class)
endsubmit;
```

To demonstrate that the data were successfully transferred, the names function in the R language is used to print the names of the variables in the R data frame. The output is shown in Figure 26.128.

![Figure 26.128 Output from R](image)

You can transfer data from an R data frame into a SAS data set by using the IMPORTDATASETFROMR call. See Chapter 14, “Calling Functions in the R Language,” for details about transferring data between R and SAS software.

---

**EXPORTMATRIXTOR Call**

```
CALL EXPORTMATRIXTOR(IMLMatrix, RMatrix);
```

You can use the EXPORTMATRIXTOR subroutine to transfer data from a SAS data set to an R data frame. It is easier to read the subroutine name when it is written in mixed case: ExportMatrixToR.

The arguments to the subroutine are as follows:

- **IMLMatrix** is a SAS/IML matrix that contains the data you want to transfer.
- **RMatrix** is a literal string or a character matrix that specifies the name of an R matrix to contain a copy of the data.

You can call the subroutine provided that the following statements are true:

1. The R statistical software is installed on the SAS workspace server.
2. The SAS system administrator at your site has enabled the RLANG SAS system option. (See the section “The RLANG System Option” on page 234.)
The following statements define a SAS/IML matrix and copy the data from the matrix to an R matrix called m:

```
proc iml;
 a = {1 2 3, 4 . 6};
call ExportMatrixToR(a, "m");

submit / R;
 print(m)
endsubmit;
```

To demonstrate that the data were successfully transferred, the `print` function in the R language is used to print the values of the m matrix. The output is shown in Figure 26.129. Note that the SAS missing value in the SAS/IML matrix was automatically converted to the R missing value (NA).

![Figure 26.129 Output from R](image)

You can transfer data from an R matrix frame into a SAS/IML matrix by using the `IMPORTMATRIXFROMR` call. See Chapter 14, “Calling Functions in the R Language,” for details about transferring data between R and SAS software.

The names of the variables in the R data frame are the same as in the SAS data set.

---

**FARMACOV Call**

```
CALL FARMACOV(cov, d <, phi> <, theta> <, sigma> <, p> <, q> <, lag >);
```

The FARMACOV subroutine computes the autocovariance function for an autoregressive fractionally integrated moving average (ARFIMA) model of the form ARFIMA($p$, $d$, $q$).

The input arguments to the FARMACOV subroutine are as follows:

- $d$ specifies a fractional differencing order. The value of $d$ must be in the open interval $(-0.5, 0.5)$ excluding zero. This input is required.
- $phi$ specifies an $m_p$-dimensional vector that contains the autoregressive coefficients, where $m_p$ is the number of the elements in the subset of the AR order. The default is zero. All the roots of $\phi(B) = 0$ should be greater than one in absolute value, where $\phi(B)$ is the finite-order matrix polynomial in the backshift operator $B$, such that $B^j y_t = y_{t-j}$.
- $theta$ specifies an $m_q$-dimensional vector that contains the moving average coefficients, where $m_q$ is the number of the elements in the subset of the MA order. The default is zero.
- $p$ specifies the subset of the AR order. The quantity $m_p$ is defined as the number of elements of $phi$. If you do not specify $p$, the default subset is $p= \{1, 2, \ldots, m_p\}$.

For example, consider $phi=0.5$. 
If you specify $p=1$ (the default), the FARMACOV subroutine computes the theoretical autocovariance function of an ARFIMA($1, d, 0$) process as $y_t = 0.5 y_{t-1} + \epsilon_t$.

If you specify $p=2$, the FARMACOV subroutine computes the autocovariance function of an ARFIMA($2, d, 0$) process as $y_t = 0.5 y_{t-2} + \epsilon_t$.

$q$ specifies the subset of the MA order. The quantity $m_q$ is defined as the number of elements of $\theta$.

If you do not specify $q$, The default subset is $q = \{1, 2, \ldots, m_q\}$.

The usage of $q$ is the same as that of $p$.

$\text{lag}$ specifies the length of lags, which must be a positive number. The default is $\text{lag}=12$.

The FARMACOV subroutine returns the following value:

$\text{cov}$ is a $\text{lag}+1$ vector that contains the autocovariance function of an ARFIMA($p, d, q$) process.

As an example, consider the following ARFIMA($1, 0.3, 1$) process:

$$(1 - 0.5B)(1 - B)^{0.3} y_t = (1 + 0.1B)\epsilon_t$$

In this process, $\epsilon_t \sim \text{NID}(0, 1.2)$. The following statements compute the autocovariance of this process:

```plaintext
d = 0.3;
phi = 0.5;
theta = -0.1;
sigma = 1.2;
call farmacov(cov, d, phi, theta, sigma) lag=5;
print cov;
```

**Figure 26.130** Autocovariance of an ARFIMA Process

<table>
<thead>
<tr>
<th>cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2493033</td>
</tr>
<tr>
<td>3.5806774</td>
</tr>
<tr>
<td>2.9152846</td>
</tr>
<tr>
<td>2.4381017</td>
</tr>
<tr>
<td>2.1068697</td>
</tr>
<tr>
<td>1.8743199</td>
</tr>
</tbody>
</table>

For $d \in (-0.5, 0.5) \setminus \{0\}$, the series $y_t$ represented as $(1 - B)^d y_t = \epsilon_t$ is a stationary and invertible ARFIMA($0, d, 0$) process with the autocovariance function

$$\gamma_k = \mathbb{E}(y_t y_{t-k}) = \frac{(-1)^k \Gamma(-2d + 1)}{\Gamma(k - d + 1) \Gamma(-k - d + 1)}$$

and the autocorrelation function

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{\Gamma(-d + 1) \Gamma(k + d)}{\Gamma(d) \Gamma(k - d + 1)} \sim \frac{\Gamma(-d + 1)}{\Gamma(d)} k^{2d-1}, \ k \to \infty$$

Notice that $\rho_k$ decays hyperbolically as the lag increases, rather than showing the exponential decay of the autocorrelation function of a stationary ARMA($p, q$) process.
For $d \in (0.5, 0.5) \setminus \{0\}$, the series $y_t$ is a stationary and invertible ARFIMA($p, d, q$) process represented as

$$\phi(B)(1 - B)^d y_t = \theta(B)\epsilon_t$$

where $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \ldots - \phi_p B^p$ and $\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \ldots - \theta_q B^q$ and $\epsilon_t$ is a white noise process; all the roots of the characteristic AR and MA polynomial lie outside the unit circle.

Let $x_t = \theta(B)^{-1} \phi(B) y_t$, so that $x_t$ follows an ARFIMA($0, d, 0$) process; let $z_t = (1 - B)^d y_t$, so that $z_t$ follows an ARMA($p, q$) process; let $\gamma_k^x$ be the autocovariance function of $\{x_t\}$ and $\gamma_k^z$ be the autocovariance function of $\{z_t\}$.

Then the autocovariance function of $\{y_t\}$ is as follows:

$$\gamma_k = \sum_{j=-\infty}^{\infty} \gamma_j^y \gamma_{k-j}^x$$

The explicit form of the autocovariance function of $\{y_t\}$ is given by Sowell (1992).

### FARMAFIT Call

**CALL FARMAFIT($d$, $phi$, $theta$, $sigma$, $series$ <, $p$> <, $q$> <, $opt$> );**

The FARMAFIT subroutine estimates the parameters of an ARFIMA($p, d, q$) model.

The input arguments to the FARMAFIT subroutine are as follows:

- **series** specifies a time series (assuming mean zero).
- **p** specifies the set or subset of the AR order. If you do not specify $p$, the default is $p=0$.
  - If you specify $p=3$, the FARMAFIT subroutine estimates the coefficient of the lagged variable $y_{t-3}$.
  - If you specify $p=\{1, 2, 3\}$, the FARMAFIT subroutine estimates the coefficients of lagged variables $y_{t-1}$, $y_{t-2}$, and $y_{t-3}$.
- **q** specifies the subset of the MA order. If you do not specify $q$, the default value is 0.
  - If you specify $q=2$, the FARMAFIT subroutine estimates the coefficient of the lagged variable $\epsilon_{t-2}$.
  - If you specify $q=\{1, 2\}$, the FARMAFIT subroutine estimates the coefficients of lagged variables $\epsilon_{t-1}$ and $\epsilon_{t-2}$.
- **opt** specifies the method of computing the log-likelihood function.
  - 0 requests the conditional sum of squares function. This is the default.
  - 1 requests the exact log-likelihood function. This option requires that the time series be stationary and invertible.

The FARMAFIT subroutine returns the following values:
As an example, consider the following ARFIMA(1, 0.3, 1) model:

\[(1 - 0.5B)(1 - B)^{0.3} y_t = (1 + 0.1B)\epsilon_t\]

In this model, \(\epsilon_t \sim NID(0, 1)\). The following statements estimate the parameters of this model:

```plaintext
d = 0.3;
phi = 0.5;
theta = -0.1;
call farmasim(yt, d, phi, theta) seed=1234;
call farmafit(d, ar, ma, sigma, yt) p=1 q=1;
print d ar ma sigma;
```

The FARMAFIT subroutine estimates the parameters \(d, \phi(B), \theta(B),\) and \(\sigma^2\) of an ARFIMA\((p, d, q)\) model. The log-likelihood function is solved by iterative numerical procedures such as the quasi-Newton optimization. The starting value \(d\) is obtained by the approach of Geweke and Porter-Hudak (1983); the starting values of the AR and MA parameters are obtained from the least squares estimates.

---

**FARMALIK Call**

```
CALL FARMALIK(lnl, series, d<, phi><, theta><, sigma><, p><, q><, opt>);
```

The FARMALIK subroutine evaluates the log-likelihood function of an ARFIMA\((p, d, q)\) model for a given time series.

The input arguments to the FARMALIK subroutine are as follows:

- **series** specifies a time series (assuming mean zero).
- **d** specifies a fractional differencing order. This argument is required; the value of \(d\) should be in the open interval \((-1, 1)\) excluding zero.
- **phi** specifies an \(m_p\)-dimensional vector that contains the autoregressive coefficients, where \(m_p\) is the number of the elements in the subset of the AR order. The default is zero.
- **theta** specifies an \(m_q\)-dimensional vector that contains the moving average coefficients, where \(m_q\) is the number of the elements in the subset of the MA order. The default is zero.
- **sigma** specifies a variance of the innovation series. The default is one.
- **p** specifies the subset of the AR order. See the FARMACOV subroutine for additional details.
Chapter 26: Language Reference

$q$ specifies the subset of the MA order. See the FARMACOV subroutine for additional details.

$opt$ specifies the method of computing the log-likelihood function. The following are valid values:

- 0 requests the conditional sum of squares function. This is the default.
- 1 requests the exact log-likelihood function. This option requires that the time series be stationary and invertible.

The FARMALIK subroutine returns the following value:

$lnl$ is a three-dimensional vector. If $opt=0$ is specified, the conditional sum of squares function is evaluated and the result returns in $lnl[1]$. Otherwise, $lnl[1]$ contains the log-likelihood function of the model; $lnl[2]$ contains the sum of the log determinant of the innovation variance; and $lnl[3]$ contains the weighted sum of squares of residuals. The log-likelihood function is computed as $-0.5 \times (lnl[2] + lnl[3])$.

As an example, consider the following ARFIMA($1, 0.3, 1$) model:

$$(1 - 0.5B)(1 - B)^{0.3} y_t = (1 + 0.1B)\epsilon_t$$

In this model, $\epsilon_t \sim NID(0,1.2)$. The following statements compute the log-likelihood function of this model:

```plaintext
d = 0.3;
phi = 0.5;
theta = -0.1;
sigma = 1.2;
call farmasim(yt, d, phi, theta, sigma) seed=1234;
call farmalik(lnl, yt, d, phi, theta, sigma);
print (lnl[1])[label="Conditional Sum of Squares"];```

Figure 26.132 Log-Likelihood for an ARFIMA Model

<table>
<thead>
<tr>
<th>Conditional Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>-16.67587</td>
</tr>
</tbody>
</table>

The FARMALIK subroutine computes a log-likelihood function of the ARFIMA(p, d, q) model. The exact log-likelihood function was proposed by Sowell (1992); the conditional sum of squares function was proposed by Chung (1996).

The exact log-likelihood function only considers a stationary and invertible ARFIMA(p, d, q) process with $d \in (-0.5, 0.5) \cap \{0\}$ represented as

$$\phi(B)(1 - B)^d y_t = \theta(B)\epsilon_t$$

where $\epsilon_t \sim NID(0, \sigma^2)$.

Let $Y_T = [y_1, y_2, \ldots, y_T]'$ and the log-likelihood function is as follows without a constant term:

$$\ell = -\frac{1}{2} (\log |\Sigma| + Y_T'\Sigma^{-1}Y_T)$$
where $\Sigma = [y_{i-j}]$ for $i, j = 1, 2, \ldots, T$.

The conditional sum of squares function does not require the normality assumption. The initial observations y_0, y_{-1}, \ldots and $\epsilon_0, \epsilon_{-1}, \ldots$ are set to zero.

Let y_t be an ARFIMA(p, d, q) process represented as

$$\phi(B)(1-B)^d y_t = \theta(B)\epsilon_t$$

Then the conditional sum of squares function is

$$\ell = -\frac{T}{2} \log \left(\frac{1}{T} \sum_{t=1}^{T} \epsilon_t^2 \right)$$

FARMASIM Call

```plaintext
CALL FARMASIM(series, d < , phi > < , theta > < , mu > < , sigma > < , n > < , p > < , q > < , initial > < ,
seed > );
```

The FARMASIM subroutine generates an ARFIMA(p, d, q) process. The input arguments to the FARMASIM subroutine are as follows:

- **d** specifies a fractional differencing order. This argument is required; the value of d should be in the open interval $(-1, 1)$ excluding zero.
- **phi** specifies an m_p-dimensional vector that contains the autoregressive coefficients, where m_p is the number of the elements in the subset of the AR order. The default is zero.
- **theta** specifies an m_q-dimensional vector that contains the moving average coefficients, where m_q is the number of the elements in the subset of the MA order. The default is zero.
- **mu** specifies a mean value. The default is zero.
- **sigma** specifies a variance of the innovation series. The default is one.
- **n** specifies the length of the series. The value of n should be greater than or equal to the AR order. The default is $n = 100$ is used.
- **p** specifies the subset of the AR order. See the FARMACOV subroutine for additional details.
- **q** specifies the subset of the MA order. See the FARMACOV subroutine for additional details.
- **initial** specifies the initial values of random variables. The initial value is used for the nonstationary process. If `initial= a0`, then y_{-p+1}, \ldots, y_0 take the same value a_0. If the `initial` option is not specified, the initial values are set to zero.
- **seed** is a scalar that contains the random number seed. At the first execution of the subroutine, the seed variable is used as follows:
 - If `seed > 0`, the input seed is used for generating the series.
 - If `seed = 0`, the system clock is used to generate the seed.
 - If `seed < 0`, the value $(-1) \times (seed)$ is used for generating the series.
 - If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO-loop-like environment, the seed variable is used as follows: If `seed > 0`, the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.
The FARMASIM subroutine returns the following value:

\[\text{series} \] is an \(n \) vector that contains the generated ARFIMA(\(p, d, q \)) process.

As an example, consider the following ARFIMA(1, 0.3, 1) process:

\[
(1 - 0.5B)(1 - B)^{0.3}(y_t - 10) = (1 + 0.1B)\epsilon_t
\]

In this process, \(\epsilon_t \sim \text{NID}(0, 1.2) \). The following statements generate this process:

```plaintext
d = 0.3;
phi = 0.5;
theta = -0.1;
mu = 10;
sigma = 1.2;
call farmasim(yt, d, phi, theta, mu, sigma, 10) seed=1234;
print yt;
```

Figure 26.133 Data Simulated from a ARFIMA Process

<table>
<thead>
<tr>
<th>(y_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17358</td>
</tr>
<tr>
<td>13.954495</td>
</tr>
<tr>
<td>15.817231</td>
</tr>
<tr>
<td>15.94882</td>
</tr>
<tr>
<td>12.25926</td>
</tr>
<tr>
<td>13.641022</td>
</tr>
<tr>
<td>13.399623</td>
</tr>
<tr>
<td>11.930759</td>
</tr>
<tr>
<td>10.049435</td>
</tr>
<tr>
<td>9.1445036</td>
</tr>
</tbody>
</table>

The FARMASIM subroutine generates a time series of length \(n \) from an ARFIMA(\(p, d, q \)) model. If the process is stationary and invertible, the initial values \(y_{-p+1}, \ldots, y_0 \) are produced by using covariance matrices obtained from FARMACOV. If the process is nonstationary, the time series is recursively generated by using the user-defined initial value or the zero initial value.

To generate an ARFIMA(\(p, d, q \)) process with \(d \in [0.5, 1) \), \(x_t \) is first generated for \(d' \in (-0.5, 0) \), where \(d' = d - 1 \) and then \(y_t \) is generated by \(y_t = y_{t-1} + x_t \).

To generate an ARFIMA(\(p, d, q \)) process with \(d \in (-1, -0.5] \), a two-step approximation based on a truncation of the expansion \((1 - B)^d \) is used; the first step is to generate an ARFIMA(0, \(d, 0 \)) process \(x_t = (1 - B)^{-d}\epsilon_t \), with truncated moving average weights; the second step is to generate \(y_t = \phi(B)^{-1}\theta(B)x_t \).

FDIF Call

```plaintext
CALL FDIF(out, series, d);
```

The FDIF subroutine computes a fractionally differenced process. The input arguments to the FDIF subroutine are as follows:
FFT Function

FFT(x);

The FFT function computes the finite Fourier transform. The argument x is a 1 \times n or n \times 1 numeric vector. The FFT function returns the cosine and sine coefficients for the expansion of a vector into a sum of cosine and sine functions. This is an np \times 2 matrix, where

\[np = \text{floor} \left(\frac{n}{2} + 1 \right) \]

The elements of the first column of the returned matrix are the cosine coefficients; that is, the \(i\)th element of

\[z_{t} = (1 - B)^{0.3} y_{t}; \quad \text{that is, } z_{t} \text{ follows an ARMA(1,1).} \]

The following statements compute the filtered series \(z_{t}\):

\begin{verbatim}
 d = 0.3;
 phi = 0.5;
 theta = -0.1;
 call farmasim(yt, d, phi, theta) n=10 seed=1234;
 call fdif(zt, yt, d);
 print zt;
\end{verbatim}

Figure 26.134 A Fractionally Differenced Process

<table>
<thead>
<tr>
<th>zt</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
</tr>
<tr>
<td>3.0146839</td>
</tr>
<tr>
<td>4.0190575</td>
</tr>
<tr>
<td>3.3402864</td>
</tr>
<tr>
<td>-0.41881</td>
</tr>
<tr>
<td>1.6149336</td>
</tr>
<tr>
<td>1.1998534</td>
</tr>
<tr>
<td>-0.137789</td>
</tr>
<tr>
<td>-1.475051</td>
</tr>
<tr>
<td>-1.670366</td>
</tr>
</tbody>
</table>

series specifies a time series with \(n\) length.

d specifies a fractional differencing order. This argument is required; the value of \(d\) should be in the open interval \((-1, 1)\) excluding zero.

The FDIF subroutine returns the following value:

out is an \(n\) vector that contains the fractionally differenced process.

As an example, consider an ARFIMA(1, 0.3, 1) process

\[(1 - 0.5B)(1 - B)^{0.3} y_{t} = (1 + 0.1B)\varepsilon_{t}\]

Let \(z_{t} = (1 - B)^{0.3} y_{t}\); that is, \(z_{t}\) follows an ARMA(1,1). The following statements compute the filtered series \(z_{t}:

\begin{verbatim}
 d = 0.3;
 phi = 0.5;
 theta = -0.1;
 call farmasim(yt, d, phi, theta) n=10 seed=1234;
 call fdif(zt, yt, d);
 print zt;
\end{verbatim}

FFT Function

FFT(x);

The FFT function computes the finite Fourier transform. The argument x is a 1 \times n or n \times 1 numeric vector. The FFT function returns the cosine and sine coefficients for the expansion of a vector into a sum of cosine and sine functions. This is an np \times 2 matrix, where

\[np = \text{floor} \left(\frac{n}{2} + 1 \right) \]

The elements of the first column of the returned matrix are the cosine coefficients; that is, the \(i\)th element of

\[z_{t} = (1 - B)^{0.3} y_{t}; \quad \text{that is, } z_{t} \text{ follows an ARMA(1,1).} \]

The following statements compute the filtered series \(z_{t}:

\begin{verbatim}
 d = 0.3;
 phi = 0.5;
 theta = -0.1;
 call farmasim(yt, d, phi, theta) n=10 seed=1234;
 call fdif(zt, yt, d);
 print zt;
\end{verbatim}

Figure 26.134 A Fractionally Differenced Process

<table>
<thead>
<tr>
<th>zt</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
</tr>
<tr>
<td>3.0146839</td>
</tr>
<tr>
<td>4.0190575</td>
</tr>
<tr>
<td>3.3402864</td>
</tr>
<tr>
<td>-0.41881</td>
</tr>
<tr>
<td>1.6149336</td>
</tr>
<tr>
<td>1.1998534</td>
</tr>
<tr>
<td>-0.137789</td>
</tr>
<tr>
<td>-1.475051</td>
</tr>
<tr>
<td>-1.670366</td>
</tr>
</tbody>
</table>

FFT Function

FFT(x);

The FFT function computes the finite Fourier transform. The argument x is a 1 \times n or n \times 1 numeric vector. The FFT function returns the cosine and sine coefficients for the expansion of a vector into a sum of cosine and sine functions. This is an np \times 2 matrix, where

\[np = \text{floor} \left(\frac{n}{2} + 1 \right) \]

The elements of the first column of the returned matrix are the cosine coefficients; that is, the \(i\)th element of
the first column is
\[\sum_{j=1}^{n} x_j \cos \left(\frac{2\pi}{n} (i - 1)(j - 1) \right) \]
for \(i = 1, \ldots, np \), where the elements of \(x \) are denoted as \(x_j \). The elements of the second column of the returned matrix are the sine coefficients; that is, the \(i \)th element of the second column is
\[\sum_{j=1}^{n} x_j \sin \left(\frac{2\pi}{n} (i - 1)(j - 1) \right) \]
for \(i = 1, \ldots, np \).

Note: For most efficient use of the FFT function, \(n \) should be a power of 2. If \(n \) is a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z algorithm is used (Monro and Branch 1977).

The FFT function can be used to compute the periodogram of a time series. In conjunction with the inverse finite Fourier transform routine **IFFT**, the FFT function can be used to efficiently compute convolutions of large vectors (Gentleman and Sande 1966; Nussbaumer 1982).

As an example, suppose you measure a signal at constant time intervals. You believe the signal consists of a small number of Fourier components (that is, sines and cosines) corrupted by noise. The following examples use the FFT function to transform the signal into the frequency domain. The example then prints the frequencies with the largest amplitudes in the signal. According to this analysis, the signal is primarily composed of a constant signal, a signal with frequency 4 (for example, \(A \cos(4t) + B \sin(4t) \)), a signal with frequency 1, and a signal with frequency 3. The amplitudes of the remaining Fourier components, are all substantially smaller.

```plaintext
Signal = {
  1.96 1.45 0.86 0.46 0.39 0.54 -1.65 0.60 0.43 0.20
-1.15 1.10 0.42 3.22 2.02 3.41 3.46 3.51 4.33 4.38
  3.92 4.35 2.60 3.95 4.72 4.84 1.62 0.97 0.96 1.10
  2.53 1.09 2.84 2.51 2.38 2.40 2.76 3.42 3.78 4.08
  3.84 5.62 4.33 6.66 5.27 3.14 3.82 5.74 3.45 1.07
  0.31 2.07 0.49 -1.85 0.61 0.35 -0.89 -0.92 0.33 2.31
  1.13 2.28 3.73 3.78 2.63 4.15 5.27 3.62 5.99 3.79
  4.00 3.18 3.03 3.52 2.08 1.70 -1.50 -1.35 -0.34 -1.52
-2.37 -2.84 -1.68 -2.22 -2.49 -3.28 -2.12 -0.81 0.84 1.91
  2.10 2.24 1.24 3.24 2.89 3.14 4.21 2.65 4.67 3.87
};

z = fft(Signal);
Amplitude = z[,1]**2 + z[,2]**2;

// find index into Amplitude so that idx[1] is the largest value, idx[2] is the second largest value, etc. */
call sortndx(idx, Amplitude, 1, 1);

// print the 10 most dominant frequencies */
Amplitude = Amplitude[idx[1:10],];
print (idx[1:10]-1)[label="Freqs"] Amplitude[format=10.2];
```
Based on these results, you might choose to filter the signal to keep only the most dominant Fourier components. One way to accomplish this is to eliminate any frequencies with small amplitudes. When the truncated frequencies are transformed back by using IFFT, you obtain a filtered version of the original signal. The following statements perform these tasks:

```plaintext
/* based on amplitudes, keep only first few dominant frequencies */
NumFreqs = 4;
FreqsToDrop = idx[(NumFreqs+1):nrow(idx)];
z[FreqsToDrop,] = 0;
FilteredSignal = ifft(z) / nrow(Signal);
```

FILE Statement

```plaintext
FILE filename <RECFM=N> <LRECL=operand> ;
```

The FILE statement opens an external file for output.

The arguments to the FILE statement are as follows:

- `filename` is a name (for defined filenames), a quoted literal, or an expression in parentheses (for pathnames).
- `RECFM=N` specifies that the file be written as a pure binary file without record-separator characters.
- `LRECL=operand` specifies the record length of the output file. The default record length is 512.

You can use the FILE statement to open a file for output, or if the file is already open, to make it the current output file so that subsequent PUT statements write to it. The FILE statement is similar in syntax and operation to the INFILE statement. The FILE statement is described in detail in Chapter 8.

The `filename` argument is either a predefined filename or a quoted string or character expression in parentheses referring to the pathname. You can refer to an input or output file two ways: by a pathname or by a filename. The pathname is the name as known to the operating system. The filename is a SAS reference to the file established directly through a connection made with the FILENAME statement. You can specify a file in either way in the FILE and INFILE statements. To specify a filename as the operand, just give the name. The
name must be one already connected to a pathname by a previously issued FILENAME statement. However, two special filenames are recognized by the SAS/IML language: LOG and PRINT. These refer to the standard output streams for all SAS sessions. To specify a pathname, enclose it in quotes or specify an expression in parentheses that yields the pathname.

When the pathname is specified, the operand is limited to 64 characters.

Note that RECFM=U is equivalent to RECFM=N. If an output file is subsequently read by a SAS DATA step, RECFM=N must be specified in the DATA step to guarantee that the file is read properly.

Following are several valid uses of FILE statement:

```plaintext
file "student.dat";  /* by literal pathname */
filename out "student.dat";  /* specify filename OUT */
file out;  /* refer to by filename */
file print;  /* standard print output */
file log;  /* output to log */
file "student.dat" recfm=n;  /* for a binary file */
```

FIND Statement

FIND <range> <WHERE(expression)> INTO matrix-name ;

The FIND statement finds the observation numbers in range that satisfy the conditions of the WHERE clause. The FIND statement places these observation numbers in the numeric matrix whose name follows the INTO keyword.

The arguments to the FIND statement are as follows:

- **range**
 - specifies a range of observations. You can specify a range of observations by using the ALL, CURRENT, NEXT, AFTER, and POINT keywords, as described in the section “Process a Range of Observations” on page 102.

- **expression**
 - specifies a criterion by which certain observations are selected. The optional WHERE clause conditionally selects observations that are contained within the range specification. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

- **matrix-name**
 - names a matrix to contain the observation numbers.

The following statements are valid examples of the FIND statement:

```plaintext
use Sashelp.Class;
find all where(name=:"J") into p;
find point (10:18) where(age>14) into p2;
print p, p2;
close Sashelp.Class;
```

The column vectors p and p2 contain the observation numbers that satisfy the WHERE clause in the given range, as shown in Figure 26.136. The default range is all observations.
The FINISH statement signals the end of a module and the end of module definition mode. Optionally, the FINISH statement can take the module name as its argument. See the description of the START statement and consult Chapter 6 for further information about defining modules.

Some examples follow:

```plaintext
start myAdd(a,b);
   return (a+b);
finish;

start mySubtract(a,b);
   return (a-b);
finish mySubtract;

r = myAdd(5, 3);
s = mySubtract(5, 3);
print r s;
```

Figure 26.137 Results of Calling Modules

<table>
<thead>
<tr>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

FORCE Statement

The FORCE statement is an alias for the SAVE statement.
FORWARD Function

\[
\text{FORWARD}(\text{times}, \text{spot_rates});
\]

The FORWARD function computes a column vector of (per-period) forward rates, given vectors of spot rates and times. The arguments to the function are as follows:

- \textit{times} is an \(n \times 1 \) column vector of times in consistent units. Elements should be nonnegative.
- \textit{spot_rates} is an \(n \times 1 \) column vector of corresponding (per-period) spot rates. Elements should be positive.

The FORWARD function transforms the given spot rates as

\[
f_1 = s_1
\]

\[
f_i = \left(\frac{(1 + s_i)^{t_i}}{(1 + s_{i-1})^{t_{i-1}}} \right)^{\frac{1}{t_i-t_{i-1}}} - 1; \quad i = 2, \ldots, n
\]

For example, the following statements compute forward rates:

```plaintext
time = T(do(1, 5, 1));
spot = T(do(0.05, 0.09, 0.01));
forward = forward(time, spot);
print forward;
```

\textbf{Figure 26.138}
Forward Rates

<table>
<thead>
<tr>
<th>forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.0700952</td>
</tr>
<tr>
<td>0.0902839</td>
</tr>
<tr>
<td>0.1105642</td>
</tr>
<tr>
<td>0.1309345</td>
</tr>
</tbody>
</table>

FREE Statement

\[
\text{FREE matrices ;}
\]

\[
\text{FREE / < keep-matrices > ;}
\]

The FREE statement releases memory associated with matrices. The matrices specified in the FREE statement lose their values; the memory becomes available for other uses. After the FREE statement executes, the matrix is empty. The NROW function and the NCOL function return 0. However, any printing attributes (assigned by the MATTRIB statement) are not released.

The FREE statement is used mostly in large applications or under tight memory constraints to make room for more data (matrices) in the workspace.
For example, the following statement frees the matrices a, b, and c:

```plaintext
free a b c;
```

If you want to free all matrices, specify a slash (/) after the keyword `FREE`. If you want to free all matrices except a few, then list the ones you do not want to free after the slash. For example, the following statement frees all matrices except d and e:

```plaintext
free / d e;
```

For more information, see the discussion of workspace storage in Chapter 25.

FROOT Function

```plaintext
FROOT("fun", bounds <, opt>);
```

The FROOT function finds zeros of the univariate function "fun" by using Brent’s numerical root-finding method (Brent 1973; Moler 2004). Brent’s method uses a combination of bisection, linear interpolation, and quadratic interpolation to converge to a root when given an interval in which the function changes signs.

The arguments are as follows:

- **"fun"**
 is the name of a SAS/IML function module. The module defines the function whose roots you want to compute. The module takes one argument and returns a scalar value. You can use a GLOBAL statement to pass parameters to "fun".

- **bounds**
 is an $n \times 2$ matrix. Each row of `bounds` specifies an interval in which the function changes sign. This implies that there is a root inside the interval. The return value of FROOT is an $n \times 1$ vector, where the ith element contains the root in the interval `bounds[i,]`.

- **opt**
 is an optional vector that contains three elements. Each element specifies a parameter that controls the convergence of Brent’s algorithm. A missing value specifies that the algorithm should use the default parameter value. The parameters are as follows:

 - **`opt[1]`**
 specifies the maximum number of iterations used to search for a root. The default value is 100.

 - **`opt[2]`**
 specifies a tolerance that determines how close the computed root is to the true root. The default value is machine epsilon, which on many computers is approximately 2.2×10^{-16}.

 - **`opt[3]`**
 specifies a tolerance that determines how close the function at the computed root is to zero. The default value is machine epsilon.

Brent’s algorithm starts with an interval in which the function changes signs. At each step, the algorithm computes a smaller interval in which the function also changes signs. (If each interval is half the sign of the previous, this is the bisection method.) The algorithm stops when one of the following conditions is met:

- The algorithm has performed `opt[1]` iterations.
- The bounding interval $[a, b]$ is sufficiently small. If ϵ is the value of `opt[2]`, then the algorithm stops when $\|b - a\| \leq 4\epsilon \max(||b||, 1)$.
The function that is evaluated on the interval is sufficiently small. If \(\delta \) is the value of \(\text{opt}[3] \), then the algorithm stops when \(\| f(b) \| \leq \delta \).

The following program defines a cubic function that has three roots. The roots are contained in the intervals \([-2, 0], [0, 1], \) and \([1, 2]\), as shown by computing the function at the endpoints of these intervals and noticing that the function changes signs on each interval.

```plaintext
start Func(x);
    return( 2 - 3*x - 1*x**2 + x**3 );
finish;

bounds = {-2 0,
          0 1,
          1 2 };;

fBounds = Func(bounds[,1]) || Func(bounds[,2]);
print bounds fBounds;
roots = froot( "Func", bounds);
print roots;

Figure 26.139 Bounding Intervals and Roots

<table>
<thead>
<tr>
<th>bounds</th>
<th>fBounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2 0</td>
<td>-4 2</td>
</tr>
<tr>
<td>0 1</td>
<td>2 -1</td>
</tr>
<tr>
<td>1 2</td>
<td>-1 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.618034</td>
</tr>
<tr>
<td>0.618034</td>
</tr>
</tbody>
</table>

The FROOT function returns a missing value if the search fails to return a root. Usually this indicates that the function does not change signs at the endpoints of the specified interval. For example, the following statement returns a missing value:

```plaintext
r = froot("Func", {3 4});
```
The matrix returned by the FULL function is an $n \times p$ matrix with $k$ nonzero values determined by the $x$ matrix, as shown in the following example:

```plaintext
s = [3 1 1,
 1.1 2 1,
 4 2 2,
 1 3 2,
 10 3 3,
 3.2 4 2,
 3 4 4];
x = full(s);
print x;
```

Figure 26.140  Matrix Converted from Sparse to Dense Storage

```
x
3 0 0 0
1.1 4 0 0
0 1 10 0
0 3.2 0 3
```

In the previous example, the $s$ matrix specifies a lower triangular matrix. However, the $s$ matrix might represent a symmetric matrix rather than a lower triangular matrix, but only the lower triangular entries were stored. (For example, the $s$ matrix might have been created by the SPARSE function by using the “SYM” option; see the SPARSE function documentation.) If that is the case, you can use the following statement to recover the symmetric matrix representation of $s$:

```plaintext
xSym = (x+x\')- diag(x);
print xSym;
```

Figure 26.141  Symmetric Matrix Converted from Sparse Symmetric Storage

```
xSym
3 1.1 0 0
1.1 4 1 3.2
0 1 10 0
0 3.2 0 3
```

By default, the size of the matrix returned by the FULL function is determined by the maximum row and column entry in the first argument. You can override this behavior by specifying values for the number of rows and columns returned by the FULL function, as shown in the following statements:

```plaintext
z = full(s, 5, 6);
print z;
```
**GAEND Call**

```fortran
CALL GAEND(id);
```

The GAEND subroutine ends a genetic algorithm optimization and frees memory resources. The arguments to the GAEND call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAEND call ends the genetic algorithm calculations associated with `id` and frees up all associated memory.

See the GASETUP function for an example.

**GAGETMEM Call**

```fortran
CALL GAGETMEM(members, values, id<, index>);
```

The GAGETMEM subroutine gets members of the current solution population for a genetic algorithm optimization.

The GAGETMEM call returns the following values as output arguments:

- `members` names a matrix that contains the members of the current solution population specified by the `index` parameter.
- `values` names a matrix that contains objective function values, with a value at each row that corresponds to the solution in `members`.

The input arguments to the GAGETMEM call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- `index` is a matrix of indices of the requested solution population members. If `index` is not specified, the entire population is returned.

---

**Figure 26.142** Matrix with Zeros in Last Row or Column

<table>
<thead>
<tr>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 0 0 0 0</td>
</tr>
<tr>
<td>1.1 4 0 0 0 0</td>
</tr>
<tr>
<td>0 1 1 0 0 0</td>
</tr>
<tr>
<td>0 3.2 0 3 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
The GAGETMEM call is used to retrieve members of the solution population and their objective function values. If the *elite* parameter of the GASETSEL call is nonzero, then the first *elite* members of the population have the most optimal objective function values of the population, and those *elite* members are sorted in ascending order of objective function value for a minimization problem and in descending order for a maximization problem.

If a single member is requested, it is returned in `members`. If more than one member is requested in a GAGETMEM call, each row of `members` has one solution, shaped into a row vector. If solutions are not of fixed length, then the number of columns of `members` equals the number of elements of the largest solution and rows that represent solutions with fewer elements have the extra elements filled in with missing values.

See the GASETUP function for an example.

---

**GAGETVAL Call**

```call
call gagetval(values, id<, index>);
```

The GAGETVAL subroutine gets objective function values for members of the population in a genetic algorithm optimization. The GAGETVAL call returns the following output argument:

- `values` names a matrix that contains objective function values for solutions in the current population that are specified by `index`. If `index` is not present, then values for all solutions in the population are returned. Each row in `values` corresponds to one solution.

The input arguments to the GAGETVAL call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- `index` is a matrix of indices of the requested objective function values. If `index` is not specified, then all objective function values are returned.

The GAGETVAL call is used to retrieve objective function values of the current solution population. If the *elite* parameter of the GASETSEL call is nonzero, then the first *elite* members of the population have the most optimal objective function values of the population, and those *elite* members are sorted in ascending order of objective function value for a minimization problem or in descending order for a maximization problem.

See the GASETUP function for an example.

---

**GAINIT Call**

```call
call gainit(id, popsize <, bounds > <, modname >);
```

The GAINIT subroutine creates and initializes a solution population for a genetic algorithm optimization. The input arguments to the GAINIT call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- `popsize` is the size of the solution population.
- `bounds` is a matrix that contains the lower and upper bounds for each variable in the optimization problem.
- `modname` is the name of the module that contains the objective function and constraints.

See the GASETUP function for an example.
Chapter 26: Language Reference

id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

popsize is the number of solution matrices to create and initialize.

bounds is an optional parameter matrix that specifies the lower and upper bounds for each element of a solution matrix. It is used only for integer and real fixed-length vector problem encoding.

modname is the name of a user-written module to be called from GAINIT when it generates the initial members of the solution population.

The GAINIT call creates the members and computes the objective values for an initial solution population for a genetic algorithm optimization. If the problem encoding is specified as a sequence in the corresponding GASETUP function call and no modname parameter is specified, then GAINIT creates an initial population of vectors of randomly ordered integer values ranging from 1 to the size parameter of the GASETUP function call. Otherwise, you control how the population is created and initialized with the bounds and modname parameters.

If real or integer fixed-length vector encoding is specified in the corresponding GASETUP function call, then the bounds parameter can be supplied as a $2 \times n$ matrix, where the dimension $n$ equals the size parameter of the GASETUP function call: the first row specifies the lower bounds of the corresponding vector elements and the second row specifies the upper bounds. The solutions that result from all crossover and mutation operators are checked to ensure they are within the upper and lower bounds, and any solution components that violate the bounds are reset to the bound. However, if user-written modules are provided for these operators, the modules are expected to do the bounds checking internally. If no modname parameter is specified, the initial population is generated by random variation of the solution components between the lower and upper bounds.

For all problem encodings, if the modname parameter is specified, it is expected to be the name of a user-written subroutine module with one parameter. The module should generate and return an individual solution in that parameter. The GAINIT call invokes that module popsize times, once for each member of the initial solution population. The modname parameter is required if the encoding parameter of the corresponding GASETUP function call was 0 or if the bounds parameter is not specified for real or integer fixed-length vector encoding.

See the GASETUP function for an example.

---

**GAREEVAL Call**

```
CALL GAREEVAL(id);
```

The GAREEVAL subroutine reevaluates the objective function values for a solution population of a genetic algorithm optimization. The input arguments to the GAREEVAL call are as follows:

id is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAREEVAL call computes the objective values for a solution population of a genetic algorithm optimization. Since the GAINIT call and the GAREGEN call also evaluate the objective function values, it is usually not necessary to call GAREEVAL. It is provided to handle the situation of a user modifying an objective function independently—for example, adjusting a global variable to relax or tighten a penalty constraint. In such a case, GAREEVAL should be called before the next GAREGEN call.
**GAREGEN Call**

```
CALL GAREGEN(id);
```

The GAREGEN subroutine replaces the current solution population by applying selection, crossover, and mutation for a genetic algorithm optimization problem. The input arguments to the GAREGEN call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.

The GAREGEN call applies the genetic algorithm to create a new solution population from the current population. As the first step, if the `elite` parameter of the corresponding GASETSEL call is nonzero, the best `elite` members of the current population are copied into the new population, sorted by objective value with the best objective value first. If a crossover operator has been specified in a corresponding GASETCRO call or a default crossover operator is in effect, the remaining members of the population are determined by selecting members of the current population, applying the crossover operator to generate offspring, and mutating the offspring according to the mutation probability and mutation operator. Either the mutation probability and operator are specified in the corresponding GASETMUT call or, if no such call is made, a default value of 0.05 is assigned to the mutation probability and a default mutation operator is assigned based on the problem encoding (see the GASETMUT call). The offspring are then transferred to the new population. If the no-crossover option is specified in the GASETCRO call, then only mutation is applied to the non-elite members of the current population to form the new population. After the new population is formed, it becomes the current solution population, and the objective function specified in the GASETOBJ call is evaluated for each member.

See the GASETUP function for an example.

**GASETCRO Call**

```
CALL GASETCRO(id, crossprob, type, parm);
```

The GASETCRO subroutine sets the crossover operator for a genetic algorithm optimization. The input arguments to the GASETCRO call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- `crossprob` is the crossover probability, which has a range from zero to one. It specifies the probability that selected members of the current generation undergo crossover to produce new offspring for the next generation.
- `type` specifies the kind of crossover operator to be used. `type` is used in conjunction with `parm` to specify either a user-written module for the crossover operator or one of several other operators, as explained in the following list.
- `parm` is a matrix whose interpretation depends on the value of `type`, as described in the following list.

The following list specifies the valid values of the `type` parameter and the corresponding crossover operators:
 specifies that no crossover operator be applied and the new population be generated by applying the
mutation operator to the old population, according to the mutation probability.

0 specifies that a user-written module, whose name is passed in the `parm` parameter, be used as the
crossover operator. This module should be a subroutine with four parameters. The module should
return the new offspring solutions in the first two parameters based on the input parent solutions,
which are selected by the genetic algorithm and passed into the module in the last two parameters.
The module is called once for each crossover operation within the `GAREGEN` call to create a new
generation of solutions.

1 specifies the simple operator, defined for fixed-length integer and real vector encoding. To apply this
operator, a position \( k \) within the vector of length \( n \) is chosen at random, such that \( 1 \leq k < n \). Then for
parents \( p_1 \) and \( p_2 \) the offspring are as follows:

\[
\begin{align*}
c1 &= p_1[1,1:k] || p_2[1,k+1:n]; \\
c2 &= p_2[1,1:k] || p_1[1,k+1:n];
\end{align*}
\]

For real fixed-length vector encoding, you can specify an additional parameter, \( a \), with the `parm`
parameter, where \( a \) is a scalar and \( 0 < a \leq 1 \). It modifies the offspring as follows:

\[
\begin{align*}
x2 &= a * p_2 + (1-a) * p_1; \\
c_1 &= p_1[1,1:k] || x_2[1,k+1:n]; \\
x_1 &= a * p_1 + (1-a) * p_2 \\
c_2 &= p_2[1,1:k] || x_1[1,k+1:n];
\end{align*}
\]

Note that for \( a = 1 \), which is the default value, \( x_2 \) and \( x_1 \) are the same as \( p_2 \) and \( p_1 \). Small values of \( a \)
reduce the difference between the offspring and parents. For integer encoding, the `parm` parameter is
ignored and \( a \) is always 1.

2 specifies the two-point operator, defined for fixed-length integer and real vector encoding with length
\( n \geq 3 \). To apply this operator, two positions \( k_1 \) and \( k_2 \) within the vector are chosen at random, such
that \( 1 \leq k_1 < k_2 < n \). Element values between those positions are swapped between parents. For
parents \( p_1 \) and \( p_2 \) the offspring are as follows:

\[
\begin{align*}
c1 &= p_1[1,1:k_1] || p_2[1,k_1+1:k_2] || p_1[1,k_2+1:n]; \\
c2 &= p_2[1,1:k_1] || p_1[1,k_1+1:k_2] || p_2[1,k_2+1:n];
\end{align*}
\]

For real vector encoding, you can specify an additional parameter, \( a \), in the `parm` field, where
\( 0 < a \leq 1 \). It modifies the offspring as follows:

\[
\begin{align*}
x2 &= a * p_2 + (1-a) * p_1; \\
c_1 &= p_1[1,1:k_1] || x_2[1,k_1+1:k_2] || p_1[1,k_2+1:n]; \\
x_1 &= a * p_1 + (1-a) * p_2; \\
c_2 &= p_2[1,1:k_1] || x_1[1,k_1+1:k_2] || p_2[1,k_2+1:n];
\end{align*}
\]

Note that for \( a = 1 \), which is the default value, \( x_2 \) and \( x_1 \) are the same as \( p_2 \) and \( p_1 \). Small values of \( a \)
reduce the difference between the offspring and parents. For integer encoding, the `parm` parameter is
ignored if present and \( a \) is always 1.
specifies the arithmetic operator, defined for real and integer fixed-length vector encoding. This
operator computes offspring of parents \( p_1 \) and \( p_2 \) as follows:

\[
\begin{align*}
    c_1 &= a \ast p_1 + (1-a) \ast p_2; \\
    c_2 &= a \ast p_2 + (1-a) \ast p_1;
\end{align*}
\]

where \( a \) is a random number between 0 and 1. For integer encoding, each component is rounded off to
the nearest integer. An advantage of this operator is that it always produces feasible offspring for a
convex solution space. A disadvantage is that it tends to produce offspring toward the interior of the
search region, so that it can be less effective if the optimum lies on or near the search region boundary.

specifies the heuristic operator, defined for real fixed-length vector encoding. This operator computes
the first offspring from the two parents \( p_1 \) and \( p_2 \) as follows:

\[
\begin{align*}
    c_1 &= a \ast (p_2 - p_1) + p_2; \\
    c_2 &= (1 - a) \ast p_1 + a \ast p_2;
\end{align*}
\]

where \( p_2 \) is the parent with the better objective value and \( a \) is a random number between 0 and 1. The
second offspring is computed as in the arithmetic operator, as follows:

\[
\begin{align*}
    c_2 &= (1 - a) \ast p_1 + a \ast p_2;
\end{align*}
\]

This operator is unusual in that it uses the objective value. It has the advantage of directing the
search in a promising direction and automatically fine-tuning the search in an area where solutions are
clustered. If upper and lower bound constraints are specified in the \texttt{GAINIT} call, the offspring are
checked against the bounds and any component outside its bound is set equal to that bound.

specifies the partial match operator, defined for sequence encoding. This operator produces offspring
by transferring a subsequence from one parent and filling the remaining positions in a way consistent
with the position and ordering in the other parent. Start with two parents and randomly chosen
cut-points as follows:

\[
\begin{align*}
    p_1 &= \{1\ 2|3\ 4\ 5\ 6|7\ 8\ 9\}; \\
    p_2 &= \{8\ 7|9\ 3\ 4\ 1|2\ 5\ 6\};
\end{align*}
\]

The first step is to cross the selected segments; a missing value (.) indicates a position that is not
determined:

\[
\begin{align*}
    c_1 &= \{\ .\ .\ 9\ 3\ 4\ 1\ .\ .\ \}; \\
    c_2 &= \{\ .\ .\ 3\ 4\ 5\ 6\ .\ .\ \};
\end{align*}
\]

Next, define a mapping according to the two selected segments, as follows:

\[
\begin{align*}
    9 &\leftrightarrow 3, 3 &\leftrightarrow 4, 4 &\leftrightarrow 5, 1 &\leftrightarrow 6
\end{align*}
\]

Next, fill in the positions where there is no conflict from the corresponding parent:

\[
\begin{align*}
    c_1 &= \{\ .\ 2\ 9\ 3\ 4\ 1\ 7\ 8\ .\ \}; \\
    c_2 &= \{8\ 7\ 3\ 4\ 5\ 6\ 2\ .\ .\ \};
\end{align*}
\]

Last, fill in the remaining positions from the subsequence mapping. In this case, for the first child
\( 1 \rightarrow 6 \) and \( 9 \rightarrow 3 \), and for the second child \( 5 \rightarrow 4 \), \( 3 \rightarrow 9 \), and \( 6 \rightarrow 1 \):
c1 = {6 2 9 3 4 1 7 8 5};
c2 = {8 7 3 4 5 6 2 9 1};

This operator tends to maintain similarity of both the absolute position and relative ordering of the sequence elements, and is useful for a wide range of sequencing problems.

6 specifies the order operator, defined for sequence encoding. This operator produces offspring by transferring a subsequence of random length and position from one parent and filling the remaining positions according to the order from the other parent. For parents p1 and p2, first choose a subsequence, as follows:

\[
\begin{align*}
p1 &= \{1 2|3 4 5 6|7 8 9\}; \\
p2 &= \{8 7|9 3 4 1|2 5 6\}; \\
c1 &= \{. . 3 4 5 6 . . .\}; \\
c2 &= \{. . 9 3 4 1 . . .\};
\end{align*}
\]

Starting at the second cut-point, the elements of p2 are in the following order (cycling back to the beginning):

2 5 6 8 7 9 3 4 1

After removing 3, 4, 5, and 6, which have already been placed in c1, you have the following:

2 8 7 9 1

Placing these back in order, starting at the second cut-point, yields the following:

\[
c1 = \{9 1 3 4 5 6 2 8 7\};
\]

Applying this logic to c2 yields the following:

\[
c2 = \{5 6 9 3 4 1 7 8 2\};
\]

This operator maintains the similarity of the relative order (also called the adjacency) of the sequence elements of the parents. It is especially effective for circular path-oriented optimizations, such as the traveling salesman problem.

7 specifies the cycle operator, defined for sequence encoding. This operator produces offspring such that the position of each element value in the offspring comes from one of the parents. For example, consider the following parents p1 and p2:

\[
\begin{align*}
p1 &= \{1 2 3 4 5 6 7 8 9\}; \\
p2 &= \{8 7 9 3 4 1 2 5 6\};
\end{align*}
\]

For the first child, pick the first element from the first parent, as follows:
To maintain the condition that the position of each element value must come from one of the parents, the position of the ‘8’ value must come from \( p_1 \), because the ‘8’ position in \( p_2 \) is already taken by the ‘1’ in \( c_1 \):

\[
c_1 = \{1 \ldots 8 \ldots \}
\]

Now the position of ‘5’ must come from \( p_1 \) and so on until the process returns to the first position:

\[
c_1 = \{1 \ 3 \ 4 \ 5 \ 6 \ 8 \ 9 \}
\]

At this point, choose the remaining element positions from \( p_2 \):

\[
c_1 = \{1 \ 7 \ 3 \ 4 \ 5 \ 6 \ 2 \ 8 \ 9 \}
\]

For the second child, starting with the first element from the second parent, similar logic produces the following:

\[
c_2 = \{8 \ 2 \ 9 \ 3 \ 4 \ 1 \ 7 \ 5 \ 6 \}
\]

This operator is most useful when the absolute position of the elements is of most importance to the objective value.

A GASETCRO call is required when 0 is specified for the \textit{encoding} parameter in the GASETUP function. But for fixed-length vector and sequence encoding, a default crossover operator is used in the GAREGEN call when no GASETCRO call is made. For sequence encoding, the default is the partial match operator, unless the traveling salesman option was specified in the GASETOBJ call, in which case the order operator is the default. For integer fixed-length vector encoding, the default is the simple operator. For real fixed-length vector encoding, the default is the heuristic operator.

See the GASETUP function for an example.

**GASETMUT Call**

\[
\text{CALL GASETMUT}(id, \text{mutprob <, type> <, parm>});
\]

The GASETMUT subroutine sets the mutation operator for a genetic algorithm optimization. The input arguments to the GASETMUT call are as follows:

- \textit{id} is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- \textit{mutprob} is the probability for a given solution to undergo mutation, a number between 0 and 1.
- \textit{type} specifies the kind of mutation operator to be used. \textit{type} is used in conjunction with \textit{parm} to specify either a user-written module for the mutation operator or one of several other operators, as explained in the following list.
parm is a matrix whose interpretation depends on the value of type, as described in the following list.

The GASETMUT call enables you to specify the frequency of mutation and the mutation operator to be used in the genetic algorithm optimization problem. If the type parameter is not specified, then the GASETMUT call only alters the mutation probability, without resetting the mutation operator, and any operator set by a previous GASETMUT call remains in effect. You can specify the following mutation operators with the type parameter:

0 specifies that a user-written module, whose name is passed in the parm parameter, be used as the mutation operator. This module should be a subroutine with one parameter, which receives the solution to be mutated. The module is called once for each mutation operation and is expected to modify the input solution according to the desired mutation operation. Any checking of bounds specified in the GAINIT call should be done inside the module; in this case they are not checked by the SAS/IML language.

1 specifies the uniform mutation operator, defined for fixed-length real or integer encoding, with upper and lower bounds specified in the GAINIT call. The parm parameter is not used with this option. To apply this operator, a position \( k \) is randomly chosen within the solution vector \( v \) and \( v[k] \) is modified to a random value between the upper and lower bounds for element \( k \). This operator can prove especially useful in early stages of the optimization, since it tends to distribute solutions widely across the search space and avoid premature convergence to a local optimum. However, in later stages of an optimization with real vector encoding when the search needs to be fine-tuned to home in on an optimum, the uniform operator can hinder the optimization.

2 specifies the delta mutation operator, defined for integer and real fixed-length vector encoding. This operator first chooses an element of the solution at random, and then perturbs that element by a fixed amount, delta, which is set with the parm parameter. delta has the same dimension as the solution vectors, and each element \( \text{delta}[k] \) is set to \( \text{parm}[k] \), unless \( \text{parm} \) is a scalar, in which case all elements are set equal to \( \text{parm} \). For integer encoding, all \( \text{delta}[k] \) are truncated to integers if they are not integers in \( \text{parm} \). To apply the mutation, a randomly chosen element \( k \) of the solution vector \( v \) is modified such that one of the following statements is true:

\[
\begin{align*}
  v[k] &= v[k] + \text{delta}[k]; &\quad \text{with probability 0.5} &\quad \text{or} \\
  v[k] &= v[k] - \text{delta}[k];
\end{align*}
\]

If bounds are specified for the problem in the GAINIT call, then \( v[k] \) is adjusted as necessary to fit within the bounds. This operator enables you to control the scope of the search with the parm matrix. One possible strategy is to start with a larger delta value and then reduce it with subsequent GASETMUT calls as the search progresses and begins to converge to an optimum. This operator is also useful if the optimum is known to be on or near a boundary, in which case delta can be set large enough to always perturb the solution element to a boundary.

3 specifies the swap operator, which is defined for sequence problem encoding. This operator picks two random locations in the solution vector and swaps their values. It is the default mutation operator for sequence encoding, except for when the traveling salesman option is specified in the GASET OBJ call. You can also specify that multiple swaps be made for each mutation with the parm parameter. The number of swaps defaults to 1 if parm is not specified, and is equal to parm otherwise.
The GASETBJ subroutine sets the objective function for a genetic algorithm optimization. The input arguments to the GASETBJ call are as follows:

- **id**: is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- **type**: specifies the type of objective function to be used.
- **parm**: is a matrix whose interpretation depends on the value of **type**, as described in the following list.

You can specify that a user-written module be used to compute the value of the objective function, or you can specify a standard preset function. This is specified with the **type** and **parm** parameters. The following list specifies the valid values of the **type** parameter:

- **0**: specifies that a user-written function module is to be minimized. The name of the module is supplied in the **parm** parameter. The specified module should take a single parameter that represents a given solution, and return a scalar numeric value for the objective function.
- **1**: specifies that a user-written function module be maximized. The name of the module is supplied in the **parm** parameter. The specified module should take a single parameter that represents a given solution, and return a scalar numeric value for the objective function.
- **2**: specifies an objective function from the traveling salesman problem, which is minimized. This option is valid only if three conditions are met: sequence encoding was specified in the GASETUP function call, the solution vector is to be interpreted as a circular route, and each element represents a location.
The `parm` parameter should be a square cost matrix, such that `parm[i, j]` is the cost of going from location `i` to location `j`. The dimension of the matrix should be the same as the `size` parameter of the corresponding GASETUP function call.

The specified objective function is called once for each solution to evaluate the objective values for the GAREGEN call, GAINIT call, and GAREEVAL call. Also, the objective values for the current solution population are reevaluated if GASETOBJ is called after a GAINIT call.

See the GASETUP function for an example.

---

**GASETSEL Call**

```
CALL GASETSEL(id, elite, type, parm);
```

The GASETSEL subroutine sets the selection parameters for a genetic algorithm optimization.

The input arguments to the GASETSEL call are as follows:

- `id` is the identifier for the genetic algorithm optimization problem, which was returned by the GASETUP function.
- `elite` specifies the number of solution population members to carry over unaltered to the next generation in the GAREGEN call. If nonzero, then `elite` members with the best objective function values are carried over without crossover or mutation.
- `type` specifies the selection method to use.
- `parm` is a parameter used to control the selection pressure.

This module sets the selection parameters that are used in the GAREGEN call to select solutions for the crossover operation. You can choose between two variants of the “tournament” selection method in which a group of different solutions is picked at random from the current solution population and the solution from that group with the best objective value is selected. In the first variation, chosen by setting `type` to 0, the most optimal solution is always selected, and the `parm` parameter is used to specify the size of the group, always two or greater. The larger the group size, the greater the selective pressure. In the second variation, chosen by setting `type` to 1, the group size is set to 2 and the best solution is chosen with probability specified by `parm`. If `parm` is 1, the best solution is always picked; a `parm` value of 0.5 is equivalent to pure random selection. The `parm` value must be between 0.5 and 1. When `type` is 0, the selective pressure is greater than when `type` is 1. Higher selective pressure leads to faster convergence of the genetic algorithm, but is more likely to give premature convergence to a local optimum.

In order to ensure that the best solution of the current solution population is always carried over to the next generation, an `elite` value of 1 should be specified. Higher values of `elite` generally lead to faster convergence of the algorithm, but they increase the chances of premature convergence to a local optimum. If GASETSEL is not called, the optimization uses the default values of 1 for `elite`, 1 for `type`, and 2 for `parm`.

See the GASETUP function for an example.
GASETUP Function

**GASETUP**(*encoding*, *size*, *seed*);

The GASETUP function sets up the problem encoding for a genetic algorithm optimization problem. The GASETUP function returns a scalar number that identifies the genetic algorithm optimization problem. This number is used in subsequent calls to carry out the optimization.

The arguments to the GASETUP function are as follows:

- **encoding** is a scalar number used to specify the form or structure of the problem solutions to be optimized. A value of 0 indicates a numeric matrix of arbitrary dimensions, 1 indicates a fixed-length floating-point row vector, 2 indicates a fixed-length integer row vector, and 3 indicates a fixed-length sequence of integers, with alternate solutions distinguished by different sequence ordering.

- **size** is a numeric scalar, whose value is the vector or sequence length, if a fixed-length *encoding* is specified. For arbitrary matrix encoding (*encoding* value of 0), *size* is not used.

- **seed** is an optional initial random number seed to be used for the initialization and the selection process. If *seed* is not specified or its value is 0, an initial seed is derived from the current system time.

GASETUP is the first call that must be made to set up a genetic algorithm optimization problem. It specifies the problem encoding, the size of a population member, and an optional seed that initializes the random number generator used in the selection process. GASETUP returns an identifying number that must be passed to the other modules that specify genetic operators and control the execution of the genetic algorithm. More than one optimization can be active concurrently, and optimization problems with different problem identifiers are completely independent. When a satisfactory solution has been determined, the optimization problem should be terminated with a GAEND call to free up resources associated with the genetic algorithm.

The following example demonstrates the use of several genetic algorithm subroutines:

```plaintext
/* Use a genetic algorithm to explore the solution space for the "traveling salesman" problem. First, define the objective function to minimize:
Compute the sum of distances between sequence of cities */

start EvalFitness(pop) global (dist);
 fitness = j(nrow(pop),1);
 do i = 1 to nrow(pop);
 city1 = pop[i,1];
 city2 = pop[i,ncol(pop)];
 fitness[i] = dist[city1, city2];
 do j = 1 to ncol(pop)-1;
 city1 = pop[i,j];
 city2 = pop[i,j+1];
 fitness[i] = fitness[i] + dist[city1,city2];
 end;
 end;
 return (fitness);
finish;
```
/* Set up parameters for the genetic algorithm */

mutationProb = 0.15; /* prob that a child will be mutated */
umElite = 2; /* copy this many to next generation */
umCities = 15; /* number of cities to visit */
umGenerations = 100; /* number of generations to evolve */
seed = 54321; /* random number seed */

/* fix population size; generate random locations for cities */
popSize = max(30,2*numCities);
locations = uniform( j(numCities,2,seed) );

/* compute distances between cities one time */
dist = j( numCities, numCities, 0 );
do i = 1 to numCities;
do j = 1 to i-1;
v = locations[i,]-locations[j,];
dist[i,j] = sqrt( v[#] );
dist[j,i] = dist[i,j];
end;
end;

/* run the genetic algorithm */
id = gasetup( 3, numCities, seed);
call gasetobj(id, 0, "EvalFitness" );
call gasetcro(id, 1.0, 6);
call gasetmut(id, mutationProb, 3);
call gasetsel(id, numElite, 1, 0.95);
call gainit(id, popSize );

do i = 1 to numGenerations;
  if mod(i,20)=0 then do;
    call gagetval( value, id, 1 );
    print "Iteration:" i "Top value:" value;
  end;
  call garegen(id);
end;

/* report final sequence for cities */
call gagetmem(mem, value, id, 1);
print mem, value;
call gaend(id);

Figure 26.143 Result of a Genetic Algorithm Optimization

<table>
<thead>
<tr>
<th>i</th>
<th>value</th>
</tr>
</thead>
</table>
| Iteration: 20 Top value: 3.6836569
| Iteration: 40 Top value: 3.5567152
| Iteration: 60 Top value: 3.4562136 |
CALL GBLKVP(viewport <, inside >);

The GBLKVP subroutine is a graphical call that defines a blanking viewport. This call is part of the traditional graphics subsystem, which is no longer being developed.

The arguments to the GBLKVP subroutine are as follows:

- **viewport** is a numeric matrix or literal that defines a viewport. This rectangular area’s boundary is specified in normalized coordinates, where you specify the coordinates of the lower left corner and the upper right corner of the rectangular area in the form
  \{ minimum-x minimum-y maximum-x maximum-y \}

- **inside** is a numeric argument that specifies whether the graphics output is to be clipped inside or outside the blanking area. The default is to clip outside the blanking area.

The GBLKVP subroutine defines an area, called the blanking area, in which nothing is drawn until the area is released. This routine is useful for clipping areas outside the graph or for blanking out inner portions of the graph. If inside is set to 0 (the default), no graphics output appears outside the blanking area. Setting inside to 1 clips inside the blanking areas.

The blanking area (as specified by the viewport argument) is defined on the current viewport, and it is released when the viewport is changed or popped. At most one blanking area is in effect at any time. The blanking area can also be released by the GBLKVDP subroutine or another GBLKVP call. The coordinates in use for this graphics command are given in normalized coordinates because they are defined relative to the current viewport.

For example, to blank out a rectangular area with corners at the coordinates (20,20) and (80,80) relative to the currently defined viewport, use the following statement:

```
call gblkvp((20 20 80 80));
```

No graphics or text can be written outside this area until the blanking viewport is ended.
Alternatively, if you want to clip inside the rectangular area, use the *inside* parameter, as follows:

\[
\text{call gblkvp((20 20 80 80), 1);
}\]

See also the description of the CLIP option in the **RESET** statement.

---

**GBLKVPD Call**

**CALL GBLKVPD ;**

The GBLKVPD subroutine is a graphical call that deletes and releases the current blanking area. It enables graphics output to be drawn in the area previously blanked out by a call to the **GBLKVP subroutine**. This call is part of the traditional graphics subsystem, which is no longer being developed.

To release an area previously blanked out, as in the example for the **GBLKVP subroutine**, use the following statement.

\[
\text{/* define blanking viewport */
\text{call gblkvp((20 20, 80 80));
\text{/* more graphics statements... */
\text{*/
\text{ /* now release the blanked out area */
\text{call gblkvpd;
\text{ /* graphics or text can now be written to the area */
\text{ /* continue graphics statements... */}}
\]
\]

See also the description of the CLIP option in the **RESET** statement.

---

**GCLOSE Call**

**CALL GCLOSE ;**

The GCLOSE subroutine is a graphical call that closes the current graphics segment. Once a segment is closed, no other primitives can be added to it. The next call to a graph-generating function begins building a new graphics segment. However, the GCLOSE subroutine does not have to be called explicitly to terminate a segment; the **GOPEN subroutine** causes GCLOSE to be called.

This call is part of the traditional graphics subsystem, which is no longer being developed.

---

**GDELETE Call**

**CALL GDELETE(segment-name);**

The GDELETE subroutine is a graphical call that searches the current catalog and deletes the first segment found with the name **segment-name**. This call is part of the traditional graphics subsystem, which is no longer being developed.

An example of a valid statement follows:
/* SEG_A is defined as a character matrix */
/* that contains the name of the segment to delete */
call gdelete(seg_a);

The segment can also be specified as a quoted literal, as follows:

call delete("plot_13");

---

**GDRAW Call**

CALL GDRAW(x, y <, style> <, color> <, window> <, viewport> );

The GDRAW subroutine is a graphical call that draws a polyline. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GDRAW subroutine are as follows:

- **x** is a vector that contains the horizontal coordinates of points used to draw a sequence of lines.
- **y** is a vector that contains the vertical coordinates of points used to draw a sequence of lines.

The optional arguments to the GDRAW subroutine are as follows:

- **style** is a numeric matrix or literal that specifies an index that corresponds to a valid line style.
- **color** is a valid SAS color, where *color* can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- **window** is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form
  
  \[ \{ \text{minimum-x minimum-y maximum-x maximum-y} \} \]

- **viewport** is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the **window** argument.

The GDRAW subroutine draws a sequence of connected lines from points represented by values in *x* and *y*, which must be vectors of the same length. If *x* and *y* have *n* points, there are *n* − 1 lines. The first line is from the point \((x_1, y_1)\) to \((x_2, y_2)\). The lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates. An example that uses the GDRAW subroutine follows:

```sas
call gstart;
/* line from (50,50) to (75,75) */
call gdraw({50 75},{50 75});
call gshow;
```

---

**GDRAWL Call**

CALL GDRAWL(xy1, xy2 <, style> <, color> <, window> <, viewport> );
The GDRAWL subroutine is a graphical call that draws individual lines. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GDRAWL subroutine are as follows:

- $xy1$ is a matrix of points used to draw a sequence of lines.
- $xy2$ is a matrix of points used to draw a sequence of lines.

The optional arguments to the GDRAWL subroutine are as follows:

- $style$ is a numeric matrix or literal that specifies an index that corresponds to a valid line style.
- $color$ is a valid SAS color, where $color$ can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- $window$ is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form
  \[
  \{ \text{minimum-x} \ \text{minimum-y} \ \text{maximum-x} \ \text{maximum-y} \}
  \]
- $viewport$ is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the $window$ argument.

The GDRAWL subroutine draws a sequence of lines specified by their beginning and ending points. The matrices $xy1$ and $xy2$ must have the same number of rows and columns. The first two columns (other columns are ignored) of $xy1$ give the coordinates of the beginning points of the line segment, and the first two columns of $xy2$ have coordinates of the corresponding endpoints. If $xy1$ and $xy2$ have $n$ rows, $n$ lines are drawn.

The lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates. An example that uses the GDRAWL call follows:

```iml
proc iml;
call gstart;
/* three line segments */
xy1 = { 0 0, 25 50, 50 75};
xy2 = {25 25, 50 50, 75 50};
call gdrawl(xy1, xy2);
call gshow;
```

**GENEIG Call**

CALL GENEIG(eval, evecs, sym-matrix1, sym-matrix2);

The GENEIG subroutine computes eigenvalues and eigenvectors of a generalized eigenproblem.

The input arguments to the GENEIG subroutine are as follows:

- $sym-matrix1$ is a symmetric numeric matrix.
- $sym-matrix2$ is a positive definite symmetric matrix.

The subroutine returns the following output arguments:
evals names a vector in which the eigenvalues are returned.
evecs names a matrix in which the corresponding eigenvectors are returned.

The GENEIG subroutine computes eigenvalues and eigenvectors of the generalized eigenproblem. If $A$ and $B$ are symmetric and $B$ is positive definite, then the vector $M$ and the matrix $E$ solve the generalized eigenproblem provided that

$$A \ast E = B \ast E \ast \text{diag}(M)$$

The vector $M$ contains the eigenvalues arranged in descending order, and the matrix $E$ contains the corresponding eigenvectors in the columns.

The following example is from Wilkinson and Reinsch (1971):

$$A = \begin{bmatrix}
10 & 2 & 3 & 1 & 1 \\
2 & 12 & 1 & 2 & 1 \\
3 & 1 & 11 & 1 & -1 \\
1 & 2 & 1 & 9 & 1 \\
1 & 1 & -1 & 1 & 15
\end{bmatrix}$$

$$B = \begin{bmatrix}
12 & 1 & -1 & 2 & 1 \\
1 & 14 & 1 & -1 & 1 \\
-1 & 1 & 16 & -1 & 1 \\
2 & -1 & -1 & 12 & -1 \\
1 & 1 & 1 & -1 & 11
\end{bmatrix}$$

call geneig(M, E, A, B);
print M, E;

Figure 26.144 Solution of a Generalized Eigenproblem

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4923532</td>
</tr>
<tr>
<td>1.1092845</td>
</tr>
<tr>
<td>0.943859</td>
</tr>
<tr>
<td>0.6636627</td>
</tr>
<tr>
<td>0.4327872</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.076387</td>
</tr>
<tr>
<td>0.142012</td>
</tr>
<tr>
<td>0.19171</td>
</tr>
<tr>
<td>-0.08292</td>
</tr>
<tr>
<td>-0.134591</td>
</tr>
<tr>
<td>0.017098</td>
</tr>
<tr>
<td>0.14242</td>
</tr>
<tr>
<td>-0.158991</td>
</tr>
<tr>
<td>-0.153148</td>
</tr>
<tr>
<td>0.0612947</td>
</tr>
<tr>
<td>-0.066665</td>
</tr>
<tr>
<td>0.1209976</td>
</tr>
<tr>
<td>0.0748391</td>
</tr>
<tr>
<td>0.1186037</td>
</tr>
<tr>
<td>0.1579026</td>
</tr>
<tr>
<td>0.086048</td>
</tr>
<tr>
<td>0.125531</td>
</tr>
<tr>
<td>-0.137469</td>
</tr>
<tr>
<td>0.182813</td>
</tr>
<tr>
<td>-0.109466</td>
</tr>
<tr>
<td>0.2894334</td>
</tr>
<tr>
<td>0.0076922</td>
</tr>
<tr>
<td>0.0889779</td>
</tr>
<tr>
<td>-0.003562</td>
</tr>
<tr>
<td>0.041473</td>
</tr>
</tbody>
</table>

GEOMEAN Function

GEOMEAN(matrix);
The GEOMEAN function returns a scalar that contains the geometric mean of the elements of the input matrix. The geometric mean of a set of nonnegative numbers \( a_1, a_2, \ldots, a_n \) is the \( n \)th root of the product \( a_1 \cdot a_2 \cdots a_n \).

The geometric mean is zero if any of the \( a_i \) are zero. The geometric mean is not defined for negative numbers. If any of the \( a_i \) are missing, they are excluded from the computation.

The geometric mean can be used to compute the average return on an investment. For example, the following data are the annual returns on U.S. Treasury bonds from 1994 to 2004. The following statements compute the average rate of return during this time. The output, shown in Figure 26.145, shows that the average rate of return was 6.43%.

```sas
/* year return% */
TBonds = { 1994 -8.04,
 1995 23.48,
 1996 1.43,
 1997 9.94,
 1998 14.92,
 1999 -8.25,
 2000 16.66,
 2001 5.57,
 2002 15.12,
 2003 0.38,
 2004 4.49};

proportion = 1 + TBonds[,2]/100; /* convert to proportion */
aveReturn = geomean(proportion);
print aveReturn;
```

![Figure 26.145 Average Rate of Return for an Investment](image)

### GGRID Call

```sas
CALL GGRID(x, y <, style > <, color > <, window > <, viewport >);
```

The GGRID subroutine is a graphical call that draws a grid on a graphical window. This call is part of the traditional graphics subsystem, which is no longer being developed. The required arguments to the GGRID subroutine are as follows:

- \( x \) is a vector of points that contains the horizontal coordinates of the grid lines.
- \( y \) is a vector of points that contains the vertical coordinates of the grid lines.

The optional arguments to the GGRID subroutine are as follows:

- \( style \) is a numeric matrix or literal that specifies an index that corresponds to a valid line style.
- \( color \) is a valid SAS color, where \( color \) can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
window is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form

{ minimum-x minimum-y maximum-x maximum-y }

viewport is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the window argument.

The GGRID subroutine draws a sequence of vertical and horizontal lines specified by the x and y vectors, respectively. The start and end of the vertical lines are implicitly defined by the minimum and maximum of the y vector. Likewise, the start and end of the horizontal lines are defined by the minimum and maximum of the x vector. The grid lines are drawn in the same color and line style. The coordinates in use for this graphics command are world coordinates.

For example, use the following statements to place a grid in the lower left corner of the screen:

```
call gstart;
x={10, 20, 30, 40, 50};
y=x;
//* Places a grid in the lower left corner of the screen, */
//* assuming the default window and viewport */
call ggrid(x,y);
call gshow;
```

**GINCLUDE Call**

```
CALL GINCLUDE(segment-name);
```

The GINCLUDE subroutine is a graphical call that includes a previously defined graph in the current graph. The segment that is included is named segment-name and is in the same catalog as the current graph. The included segment is defined in the current viewport but not in the current window. This call is part of the traditional graphics subsystem, which is no longer being developed.

The implementation of the GINCLUDE subroutine makes it possible to include other segments in the current segment and reposition them in different viewports. Furthermore, a segment can be included by different graphs, thus effectively reducing storage space. Examples of valid statements follow:

```
/* segment1 is a character variable */
/* that contains the segment name */
segment1={myplot};
call ginclude(segment1);

/* specify the segment with quoted literal */
call ginclude("myseg");
```

**GINV Function**

```
GINV(matrix);
```
The GINV function computes the Moore-Penrose generalized inverse of matrix. This inverse, known as the four-condition inverse, has these properties:

If \( G = \text{GINV}(A) \) then

\[
AGA = A \quad GAG = G \quad (AG)' = AG \quad (GA)' = GA
\]

The generalized inverse is also known as the pseudoinverse, usually denoted by \( A^- \). It is computed by using the singular value decomposition (Wilkinson and Reinsch 1971).

See Rao and Mitra (1971) for a discussion of properties of this function.

As an example, consider the following model:

\[
Y = X\beta + \epsilon
\]

Least squares regression for this model can be performed by using the quantity \( \text{ginv}(x)^*y \) as the estimate of \( \beta \). This solution has minimum \( b'b \) among all solutions that minimize \( \epsilon'^\epsilon \), where \( \epsilon = Y - Xb \).

Projection matrices can be formed by specifying \( \text{GINV}(X)^*X \) (row space) or \( X^*\text{GINV}(X) \) (column space).

The following program demonstrates some common uses of the GINV function:

```plaintext
A = {1 0 1 0 0,
 1 0 0 1 0,
 1 0 0 0 1,
 0 1 1 0 0,
 0 1 0 1 0,
 0 1 0 0 1 };

/* find generalized inverse */
Ainv = ginv(A);

/* find LS solution: min |Ax-b|^2 */
b = { 3, 2, 4, 2, 1, 3 };
x = Ainv*b;

/* form projection matrix onto row space.
 Note P = P' and P*P = P */
P = Ainv*A;

/* find numerical rank of A */
rankA = round(trace(P));
reset fuzz;
print Ainv, rankA, x, P;
```

**Figure 26.146** Common Uses of the Generalized Inverse
If A is an \( n \times m \) matrix, then, in addition to the memory allocated for the return matrix, the GINV function temporarily allocates an \( n^2 + nm \) array for performing its computation.

---

### GOPEN Call

**CALL GOPEN( <segment-name>, replace, description > );**

The GOPEN subroutine is a graphical call that starts a new graphics segment. This call is part of the traditional graphics subsystem, which is no longer being developed.

The arguments to the GOPEN subroutine are as follows:

- **segment-name** is a character matrix or quoted literal that specifies the name of a graphics segment.
- **replace** is a numeric argument.
- **description** is a character matrix or quoted text string with a maximum length of 40 characters.

The GOPEN subroutine starts a new graphics segment. The window and viewport are reset to the default values (\( \{0 0 100 100\} \)) in both cases. Any attribute modified by using a GSET call is reset to its default value, which is set by the attribute’s corresponding GOPTIONS value.

A nonzero value for **replace** indicates that the new segment should replace the first found segment with the same name, and zero indicates otherwise. If you do not specify the **replace** flag, the flag set by a previous GSTART call is used. By default, the GSTART subroutine sets the flag to NOREPLACE.

The **description** is a text string of up to 40 characters that you want to store with the segment to describe the graph.

Two graphs cannot have the same name. If you try to create a named segment twice, the second segment is given an automatically generated name.
The following statement opens a new segment named “cosine”, replaces the existing segment of the same name, and attaches a description to the segment:

```c
 call gopen("cosine", 1, "Graph of Cosine Curve");
```

---

**GOTO Statement**

```c
 GOTO label;
```

The GOTO statement causes a program to jump to a new statement in the program. When the GOTO statement is executed, the program jumps immediately to the statement with the given `label` and begin executing statements from that point. A label is a name followed by a colon that precedes an executable statement.

GOTO statements are often clauses of IF-THEN statements. For example, the following statements use a GOTO statement to iterate until a condition is satisfied:

```c
 start Iterate;
 x = 1;
 TheStart:
 if x > 10 then
 goto TheEnd;
 x = x + 1;
 goto TheStart;
 TheEnd: print x;
 finish;
 run Iterate;
```

*Figure 26.147  Iteration by Using the GOTO Statement*

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

The function of GOTO statements is usually better performed by DO groups. For example, the preceding statements could be better written as follows:

```c
 x = 1;
 do until(x > 10);
 x = x + 1;
 end;
 print x;
```

*Figure 26.148  Avoiding the GOTO Statement*

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

As good programming practice, you should avoid using a GOTO statement that refers to a label that precedes
the GOTO statement; otherwise, an infinite loop is possible. You cannot use a GOTO statement to jump out of a module; use the RETURN statement instead.

---

**GPIE Call**

```sas
CALL GPIE(x, y, r < , angle1 > < , angle2 > < , color > < , outline > < , pattern > < , window > < , viewport >);
```

The GPIE subroutine is a graphical call that draws pie slices. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GPIE subroutine are as follows:

- **x** is a scalar value that contains the horizontal coordinates of the center of the pie slices. This argument can also be a vector, in which case it defines centers for multiple pie slices.
- **y** is a scalar value that contains the vertical coordinates of the center of the pie slices. This argument can also be a vector, in which case it defines centers for multiple pie slices.
- **r** is a scalar or vector that contains the radii of the pie slices.

The optional arguments to the GPIE subroutine are as follows:

- **angle1** is a scalar or vector that contains the start angles. It defaults to 0.
- **angle2** is a scalar or vector that contains the terminal angles. It defaults to 360.
- **color** is a valid SAS color, where color can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- **outline** is an index that indicates the side of the slice to draw. The default is 3.
- **pattern** is a character matrix or quoted literal that specifies the pattern with which to fill the interior of a closed curve.
- **window** is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form
  ```text
 { minimum-x minimum-y maximum-x maximum-y }
  ```
- **viewport** is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the **window** argument.

The GPIE subroutine draws one or more pie slices. The number of pie slices is the maximum dimension of the first five vectors. The angle arguments are specified in degrees. The start angle (**angle1**) defaults to 0, and the terminal angle (**angle2**) defaults to 360. The **outline** argument is an index that indicates the side of the slice to draw; it can have the following values:

- `< 0` uses absolute value as the line style and draws no line segment from center to arc.
- `0` draws no line segment from center to arc.
- `1` draws an arc and line segment from the center to the starting angle point.
- `2` draws an arc and line segment from the center to the ending angle point.
Chapter 26: Language Reference

3 draws all sides of the slice. This is the default.

The color, outline, and pattern arguments can have more than one element. The coordinates in use for this graphics command are world coordinates. An example that uses the GPIE subroutine follows:

```fortran
 call gstart;
 center = (50 50);
 r = 30;
 angle1 = (0 90 180 270);
 angle2 = (90 180 270 360);
 /* draw a pie with 4 slices of equal size */
 call gpie(center[1], center[2], r, angle1, angle2);
```

---

**GPIEXY Call**

```fortran
 CALL GPIEXY(x, y, fract-radii, angles <, center> <, radius> <, window>);
```

The GPIEXY subroutine is a graphical call that converts from polar to world coordinates. This call is part of the traditional graphics subsystem, which is no longer being developed.

The GPIEXY subroutine returns the following output arguments:

- **x** names a vector to contain the horizontal coordinates returned by GPIEXY.
- **y** names a vector to contain the vertical coordinates returned by GPIEXY.

The required input arguments to the GPIEXY subroutine are as follows:

- **fract-radii** is a vector of fractions of the radius of the reference circle.
- **angles** is the vector of angle coordinates in degrees.

The optional input arguments to the GPIEXY subroutine are as follows:

- **center** defines the reference circle.
- **radius** defines the reference circle.
- **window** is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form

\[
\begin{bmatrix}
  \text{minimum-x} & \text{minimum-y} \\
  \text{maximum-x} & \text{maximum-y}
\end{bmatrix}
\]

The GPIEXY subroutine computes the world coordinates of a sequence of points relative to a circle. The x and y arguments are vectors of new coordinates returned by the GPIEXY subroutine. Together, the vectors fract-radii and angles define the points in polar coordinates. Each pair from the fract-radii and angles vectors yields a corresponding pair in the x and y vectors. For example, suppose fract-radii has two elements, 0.5 and 0.33 and the corresponding two elements of angles are 90 and 30. The GPIEXY subroutine returns two elements in the x vector and two elements in the y vector. The first \((x, y)\) pair locates a point halfway from the center to the reference circle on the vertical line through the center, and the second \((x, y)\) pair locates a point one-third of the way on the line segment from the center to the reference circle, where the line segment slants 30 degrees from the horizontal. The reference circle can be defined by an earlier GPIE call or another GPIEXY call, or it can be defined by specifying center and radius.
Graphics devices can have diverse aspect ratios; thus, a circle can appear distorted when drawn on some devices. The PROC IML graphics subsystem adjusts computations to compensate for this distortion. Thus, for any given point, the transformation from polar coordinates to world coordinates might need an equivalent adjustment. The GPIEXY subroutine ensures that the same adjustment applied in the GPIE subroutine is applied to the conversion. An example that uses the GPIEXY call follows:

```sas
 call gstart;
 center = {50 50};
 r = 30;
 angle1 = {0 90 180 270};
 angle2 = {90 180 270 360};
 call gpie(center[1], center[2], r, angle1, angle2);
 /* add labels to a pie with 4 slices of equal size */
 angle = (angle1+angle2)/2; /* middle of slice */
 call gpiexy(x, y, 1.2, angle, center, r);

 /* adjust for label size: */
 x[1,] = x[1,] - 4;
 x[2,] = x[2,] + 1;
 x[4,] = x[4,] - 3;
 call gscript(x, y, {"QTR1" "QTR2" "QTR3" "QTR4"});
 call gshow;
```

---

**GPOINT Call**

**CALL GPOINT**

The GPOINT subroutine is a graphical call that draws symbols at specified locations. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GPOINT subroutine are as follows:

- **x** is a vector that contains the horizontal coordinates of points.
- **y** is a vector that contains the vertical coordinates of points.

The optional arguments to the GPOINT subroutine are as follows:

- **symbol** is a character vector or quoted literal that specifies a valid plotting symbol or symbols.
- **color** is a valid SAS color, where **color** can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- **height** is a numeric matrix or literal that specifies the character height.
- **window** is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form
  
  \[ \{ {\text{minimum-x minimum-y maximum-x maximum-y}} \} \]

- **viewport** is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the **window** argument.
The GPOINT subroutine marks one or more points with symbols. The \( x \) and \( y \) vectors define the locations of the markers. The symbol and color arguments can have from one to as many elements as there are well-defined points. The coordinates in use for this graphics command are world coordinates.

The following example plots the curve \( y = 50 + 25 \sin(x/10) \) for \( 0 \leq x \leq 100 \):

\[
\begin{align*}
call gstart; \\
x &= 0:100; \\
y &= 50 + 25 \sin(x/10); \\
call gpoint(x, y); \\
call gshow;
\end{align*}
\]

The following example uses the GPOINT subroutine to plot symbols at specific locations on the screen:

\[
\begin{align*}
\text{marker} &= \{a \ b \ c \ d \ e \ '@' \ '#' \ '$' \ '%$' \ '^' \ '&' \ ' ' \ '-' \ '+' \ '='\}; \\
x &= 5 \times (1:\text{ncol(marker)}); \\
y &= x; \\
call gpoint(x, y, marker); \\
call gshow;
\end{align*}
\]

See Chapter 19 for further examples that use the GPOINT subroutine.

---

**GPOLY Call**

\[
\text{CALL GPOLY}(x, y <, \text{style} > <, \text{ocolor} > <, \text{pattern} > <, \text{color} > <, \text{window} > <, \text{viewport} > );
\]

The GPOLY subroutine is a graphical call that draws and fills a polygon. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GPOLY subroutine are as follows:

- \( x \) is a vector that defines the horizontal coordinates of the corners of the polygon.
- \( y \) is a vector that defines the vertical coordinates of the corners of the polygon.

The optional inputs to the GPOLY subroutine are as follows:

- \text{style} is a numeric matrix or literal that specifies an index that corresponds to a valid line style.
- \text{ocolor} is a matrix or literal that specifies a valid outline color. The \text{ocolor} argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- \text{pattern} is a character matrix or quoted literal that specifies the pattern to fill the interior of a closed curve.
- \text{color} is a valid SAS color used in filling the polygon. The \text{color} argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- \text{window} is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form

\[
\{\text{minimum-x minimum-y maximum-x maximum-y}\}
\]
viewport is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the window argument.

The GPOLY subroutine fills an area enclosed by a polygon. The polygon is defined by the set of points given in the vectors $x$ and $y$. The color argument is the color used in shading the polygon, and ocolor is the outline color. By default, the shading color and the outline color are the same, and the interior pattern is empty. The coordinates in use for this graphics command are world coordinates. An example that uses the GPOLY subroutine follows:

```fortran
call gstart;
xd = {20 20 80 80};
yd = {35 85 85 35};
call gpoly (xd, yd, , ,"X", 'red');
call gshow;
```

GPORT Call

```
CALL GPORT(viewport);
```

The GPORT subroutine is a graphical call that defines a viewport. This call is part of the traditional graphics subsystem, which is no longer being developed.

The rectangular viewport boundary is specified in normalized coordinates, where you specify the coordinates of the lower left corner and the upper right corner of the rectangular area in the form

```
{ minimum-x minimum-y maximum-x maximum-y }
```

The GPORT subroutine changes the current viewport. The viewport argument defines the new viewport by using device coordinates (always 0 to 100). Changing the viewport can affect the height of the character fonts; if so, you might want to modify the HEIGHT parameter. An example of a valid statement follows:

```fortran
call gport({20 20 80 80});
```

The default values for viewport are 0 0 100 100.

GPORTPOP Call

```
CALL GPORTPOP ;
```

The GPORTPOP subroutine is a graphical call that deletes the top viewport from the stack. This call is part of the traditional graphics subsystem, which is no longer being developed.

GPORTSTK Call

```
CALL GPORTSTK(viewport);
```

The GPORTSTK subroutine is a graphical call that stacks the viewport defined by the matrix viewport onto the current viewport; that is, the new viewport is defined relative to the current viewport. This call is part of the traditional graphics subsystem, which is no longer being developed.
The *viewport* argument is a numeric matrix or literal defined in normalized coordinates of the form

\{ minimum-x minimum-y maximum-x maximum-y \}

This graphics command uses world coordinates. An example of a valid statement follows:

```plaintext
call gportstk((5 5 95 95));
```

---

**GSOURCE Call**

```plaintext
CALL GSOURCE(scale, x, nincr <, nicenum> <, fixed-end>);
```

The GSOURCE subroutine computes a suitable scale and tick values for labeling axes.

The required arguments to the GSOURCE subroutine are as follows:

- **scale** is a returned vector that contains the scaled minimum data value, the scaled maximum data value, and a grid increment.
- **x** is a numeric matrix or literal.
- **nincr** is the number of intervals desired.

The optional arguments to the GSOURCE subroutine are as follows:

- **nicenum** is numeric and provides up to 10 numbers to use for scaling. By default, nicenum is the vector \{1,2,2.5,5\}.
- **fixed-end** is a character argument that specifies which end of the scale is held fixed. The default is ‘X’.

The GSOURCE subroutine obtains simple (round) numbers with uniform grid interval sizes to use in scaling a linear axis. The GSOURCE subroutine implements Algorithm 463 (Lewart 1973) of the *Collected Algorithms* from the Association for Computing Machinery (ACM). The scale values are integer multiples of the interval size. They are returned in the first argument, a vector with three elements. The first element is the scaled minimum data value. The second element is the scaled maximum data value. The third element is the grid increment.

The required input parameters are **x**, a matrix of data values, and **nincr**, the number of intervals desired. If **nincr** is positive, the scaled range includes approximately **nincr** intervals. If **nincr** is negative, the scaled range includes exactly ABS(**nincr**) intervals. The **nincr** parameter cannot be zero.

The **nicenum** and **fixed-end** arguments are optional. The **nicenum** argument provides up to 10 numbers, all between 1 and 10 (inclusive of the endpoints), to be used for scaling. The default for **nicenum** is 1, 2, 2.5, and 5. The linear scale with this set of numbers is a scale with an interval size that is the product of an integer power of 10 and 1, 2, 2.5, or 5. Changing these numbers alters the rounding of the scaled values.

For **fixed-end**, ‘U’ fixes the upper end; ‘L’ fixes the lower end; ‘X’ allows both ends to vary from the data values. The default is ‘X’. An example that uses the GSOURCE subroutine follows:
\[
x = \text{normal}(\ j(100,1)\ ); \quad /* \text{generate standard normal data */}
call gscale(scale, x, 5); \quad /* \text{ask for about 5 intervals */}
ticks = \text{do}(scale[1], scale[2], scale[3]);
\]

print scale, ticks;

**Figure 26.149** Tick Marks for Standard Normal Data

<table>
<thead>
<tr>
<th>scale</th>
<th>ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

**GSCRIPT Call**

\[
\text{CALL GSCRIPT}(x, y, \text{text}<, \text{angle}<, \text{rotate}<, \text{height}<, \text{font}<, \text{color}<, \text{window}<, \text{viewport}>)
\]

The GSCRIPT subroutine is a graphical call that writes multiple text strings. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GSCRIPT subroutine are as follows:

- \( x \) is a scalar or vector that contains the horizontal coordinates of the lower left starting position of the text string’s first character.

- \( y \) is a scalar or vector that contains the vertical coordinates of the lower left starting position of the text string’s first character.

- \( \text{text} \) is a character vector of text strings.

The optional arguments to the GSCRIPT subroutine are as follows:

- \( \text{angle} \) is the slant of each text string.

- \( \text{rotate} \) is the rotation of individual characters.

- \( \text{height} \) is a real number that specifies the character height.

- \( \text{font} \) is a character matrix or quoted literal that specifies a valid font name.

- \( \text{color} \) is a valid SAS color. The \( \text{color} \) argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.

- \( \text{window} \) is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form:

\[
\{ \text{minimum-x minimum-y maximum-x maximum-y} \}
\]

- \( \text{viewport} \) is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the \( \text{window} \) argument.
The GSCRIPT subroutine writes multiple text strings with special character fonts. The x and y vectors describe the coordinates of the lower left starting position of the text string’s first character. The color argument can have more than one element.

**NOTE:** Hardware characters cannot always be obtained if you change the HEIGHT or ASPECT parameters or if you use a viewport.

The coordinates in use for this graphics command are world coordinates. Examples of valid statements follow:

```plaintext
call gscript(7, y, names);
call gscript(50, 50, "plot of height vs weight");
call gscript(10, 90, "yaxis", -90, 90);
```

---

**GSET Call**

```plaintext
CALL GSET(attribute <, value>);
```

The GSET subroutine is a graphical call that sets attributes for a graphics segment. This call is part of the traditional graphics subsystem, which is no longer being developed.

The arguments to the GSET subroutine are as follows:

- **attribute** is a graphics attribute. This argument can be a character matrix or quoted literal.
- **value** is the value to which the attribute is set. This argument is specified as a matrix or quoted literal.

The GSET subroutine enables you to change the following attributes for the current graphics segment:

- **aspect** a numeric matrix or literal that specifies the aspect ratio (width relative to height) for characters.
- **color** a valid SAS color. The color argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- **font** a character matrix or quoted literal that specifies a valid font name.
- **height** a numeric matrix or literal that specifies the character height.
- **pattern** a character matrix or quoted literal that specifies the pattern to use to fill the interior of a closed curve.
- **style** a numeric matrix or literal that specifies an index that corresponds to a valid line style.
- **thick** an integer that specifies line thickness.

To reset the PROC IML default value for any one of the attributes, omit the second argument. Attributes are reset back to the default with a call to the GOPEN subroutine or the GSTART subroutine. Single or double quotes can be used around this argument. For more information about the attributes, see Chapter 19.

Examples of valid statements follow:
call gset("pattern", "mln45");
call gset("font", "simplex");

f = "font";
s = "simplex";
call gset(f, s);

For example, the following statement resets color to its default:

call gset("color");

---

**GSHOW Call**

CALL GSHOW(<segment-name>);

The GSHOW subroutine is a graphical call that displays a window. If you do not specify `segment-name`, the GSHOW subroutine displays the current graph. This call is part of the traditional graphics subsystem, which is no longer being developed.

If the current graph is active at the time that the GSHOW subroutine is called, it remains active after the call; that is, graphics primitives can still be added to the segment. On the other hand, if you specify `segment-name`, the GSHOW subroutine closes any active graphics segment, searches the current catalog for a segment with the given name, and then displays that graph. Examples of valid statements follow:

```
call gshow;
call gshow("plot_a5");
```

```
seg = {myplot};
call gshow(seg);
```

See Chapter 19 for examples that use the GSHOW subroutine.

---

**GSORTH Call**

CALL GSORTH(P, T, lindep, A);

The GSORTH subroutine computes the Gram-Schmidt orthonormal factorization of the $m \times n$ matrix $A$, where $m$ is greater than or equal to $n$. The GSORTH subroutine implements an algorithm described by Golub (1969).

The GSORTH subroutine has a single input argument:

$A$ is an input $m \times n$ matrix.

The output arguments to the GSORTH subroutine are as follows:

$P$ is an $m \times n$ column-orthonormal output matrix.

$T$ is an upper triangular $n \times n$ output matrix.
lindep is a flag with a value of 0 if columns of A are independent and a value of 1 if they are dependent. The lindep argument is an output scalar.

Specifically, the GSORTH subroutine computes the column-orthonormal \( m \times n \) matrix \( P \) and the upper triangular \( n \times n \) matrix \( T \) such that

\[
A = P \times T
\]

If the columns of \( A \) are linearly independent (that is, \( \text{rank}(A) = n \)), then \( P \) is full-rank column-orthonormal: \( P'P = I_w \). \( T \) is nonsingular, and the value of \( \text{lindep} \) (a scalar) is set to 0. If the columns of \( A \) are linearly dependent (say, \( \text{rank}(A) = k < n \)) then \( n - k \) columns of \( P \) are set to 0, the corresponding rows of \( T \) are set to 0 (\( T \) is singular), and \( \text{lindep} \) is set to 1. The pattern of zero columns in \( P \) corresponds to the pattern of linear dependencies of the columns of \( A \) when columns are considered in left-to-right order.

The following statements call the GSORTH subroutine and print the output parameters to the call:

```plaintext
x = {1 1 3 1 2, 1 0 1 2 3, 1 1 3 3 4, 1 0 1 4 5, 1 1 3 5 6, 1 0 1 6 7};
call gsorth(P, T, lindep, x);
reset fuzz;
print P, T, lindep;
```

Figure 26.150 Results of a Gram-Schmidt Orthonormalization

<table>
<thead>
<tr>
<th>P</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4082483</td>
<td>0.4082483</td>
<td>0 -0.5 0</td>
</tr>
<tr>
<td>0.4082483</td>
<td>-0.408248</td>
<td>0 -0.5 0</td>
</tr>
<tr>
<td>0.4082483</td>
<td>0.4082483</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0.4082483</td>
<td>-0.408248</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0.4082483</td>
<td>0.4082483</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0.4082483</td>
<td>-0.408248</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4494897</td>
<td>1.2247449</td>
<td>4.8989795</td>
</tr>
<tr>
<td>0 1.2247449 2.4494897 -1.224745 -1.224745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0    0   0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 4 4    0   0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0    0   0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| lindep | 1     |

If \( \text{lindep} \) is 1, you can permute the columns of \( P \) and rows of \( T \) so that the zero columns of \( P \) are rightmost—that is, \( P = (P_1, \ldots, P_k, 0, \ldots, 0) \), where \( k \) is the column rank of \( A \) and the equality \( A = P \times T \) is preserved. The following statements show a permutation of columns:
\[
d = \text{loc}(\text{vecdiag}(T) \geq 0) || \text{loc}(\text{vecdiag}(T) = 0);
\]
\[
\text{temp} = P;
\]
\[
P[,d] = \text{temp};
\]
\[
\text{temp} = T;
\]
\[
T[,d] = \text{temp};
\]
\[
\text{print } d, P, T;
\]

**Figure 26.151** Rearranging Columns

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.4082483</th>
<th>0.4082483</th>
<th>-0.5</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4082483</td>
<td>-0.4082483</td>
<td>-0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.4082483</td>
<td>0.4082483</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.4082483</td>
<td>-0.4082483</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.4082483</td>
<td>0.4082483</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.4082483</td>
<td>-0.4082483</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2.4494897</th>
<th>1.2247449</th>
<th>8.5732141</th>
<th>4.8989795</th>
<th>11.022704</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.2247449</td>
<td>-1.224745</td>
<td>2.4494897</td>
<td>-1.224745</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The GSORTH subroutine is not recommended for the construction of matrices of values of orthogonal polynomials; the **ORPOL function** should be used for that purpose.

---

**GSTART Call**

```plaintext
CALL GSTART(<catalog> <, replace>);
```

The GSTART subroutine initializes the graphics system the first time it is called. A catalog is opened to capture any graphics segments generated in the session. If you do not specify a catalog, PROC IML uses the temporary catalog Work.Gseg. This call is part of the traditional graphics subsystem, which is no longer being developed.

The arguments to the GSTART subroutine are as follows:

- **catalog** is a character matrix or quoted literal that specifies the SAS catalog for saving the graphics segments.
- **replace** is a numeric argument.

The **replace** argument is a flag; a nonzero value indicates that the new segment should replace the first found segment with the same name. The **replace** flag set by the GSTART subroutine is a global flag, as opposed to the **replace** flag set by the **GOPEN subroutine**. When set by GSTART, this flag is applied to all subsequent
segments created for this catalog, whereas with GOPEN, the replace flag is applied only to the segment that is being created. The GSTART subroutine sets the replace flag to 0 when the replace argument is omitted. The replace option can be very inefficient for a catalog with many segments. In this case, it is better to create segments with different names (if necessary) than to use the replace option.

The GSTART subroutine must be called at least once to load the graphics subsystem. Any subsequent GSTART calls are generally to change graphics catalogs or reset the global replace flag.

The GSTART subroutine resets the defaults for all graphics attributes that can be changed by the GSET subroutine. It does not reset GOPTIONS to their defaults unless the GOPTION corresponds to a GSET parameter. The GOPEN subroutine also resets GSET parameters.

An example of using the GSTART subroutine is provided in the documentation for the GPOINT subroutine.

---

**GSTOP Call**

```
CALL GSTOP ;
```

The GSTOP subroutine deactivates the graphics system. The graphics subsystem is disabled until the GSTART subroutine is called again. This call is part of the traditional graphics subsystem, which is no longer being developed.

---

**GSTRLEN Call**

```
CALL GSTRLEN(length, text <, height> <, font> <, window>);
```

The GSTRLEN subroutine returns the lengths of text strings represented in a given font and for a given character height. The lengths are given in world coordinates. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GSTRLEN subroutine are as follows:

- `length` is a matrix of lengths specified in world coordinates.
- `text` is a matrix of text strings.

The optional arguments to the GSTRLEN subroutine are as follows:

- `height` is a numeric matrix or literal that specifies the character height.
- `font` is a character matrix or quoted literal that specifies a valid font name.
- `window` is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form
  
  `{ minimum-x minimum-y maximum-x maximum-y }`

The `length` argument is the returned matrix. It has the same shape as the matrix `text`. Thus, if `text` is an \( n \times m \) matrix of text strings, then `length` is an \( n \times m \) matrix of lengths in world coordinates. If you do not specify `font`, the default font is assumed. If you do not specify `height`, the default height is assumed. An example that uses the GSTRLEN subroutine follows:
GTEXT and GVTEXT Calls

CALL GTEXT(x, y, text <, color > <, window > <, viewport > );
CALL GVTEXT(x, y, text <, color > <, window > <, viewport > );

The GTEXT subroutine places text horizontally on a graph; the GVTEXT subroutine places text vertically on a graph. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GTEXT and GVTEXT subroutines are as follows:

- **x** is a scalar or vector that contains the horizontal coordinates of the lower left starting position of the text string’s first character.
- **y** is a scalar or vector that contains the vertical coordinates of the lower left starting position of the text string’s first character.
- **text** is a vector of text strings.

The optional arguments to the GTEXT and GVTEXT subroutines are as follows:

- **color** is a valid SAS color. The color argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.
- **window** is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form

```
{ minimum-x minimum-y maximum-x maximum-y }
```

- **viewport** is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the **window** argument.

The GTEXT subroutine places text horizontally on a graph; the GVTEXT subroutine places text vertically on a graph. Both subroutines use hardware characters when possible. The number of text strings drawn is the maximum dimension of the first three vectors. The color argument can have more than one element. Hardware characters cannot always be obtained if you use a viewport or if you change the HEIGHT or ASPECT parameters by using the GSET subroutine or the GOPTIONS statement. The coordinates in use for this graphics command are world coordinates.

Examples of the GTEXT and GVTEXT subroutines follow:
call gstart;
call gopen;
call gport({0 0 50 50});
call gset("height", 3); /* set character height */
msg = "GTEXT: This will start in the center of the viewport";
call gtext(50, 50, msg);
msg = "GVTEXT: Vertical string";
call gvtext(0.35, 10, msg, 'red', {0.2 -1, 1.5 6.5}, {0 0, 100 100});
call gshow;

**GWINDOW Call**

**CALL GWINDOW(window);**

The GWINDOW subroutine sets up the window for scaling data values in subsequent graphics primitives. This call is part of the traditional graphics subsystem, which is no longer being developed.

The argument *window* is a numeric matrix or literal that specifies a window. The rectangular area’s boundary is given in world coordinates, where you specify the lower left and upper right corners in the form

\[
\{ \text{minimum-x} \ \text{minimum-y} \ \text{maximum-x} \ \text{maximum-y} \}
\]

The window remains until the next GWINDOW call or until the segment is closed. The coordinates in use for this graphics command are world coordinates. An example that uses the GWINDOW subroutine follows:

\[
x = \text{rannor}( j(20,1) );
y = 3 + x + 0.5*\text{rannor}( j(20,1) );
\]

call gstart;
/* define window to contain the data range plus 5% margins */
xMargin = 0.05*({\text{max(x)}} - \text{min(x)});
yMargin = 0.05*({\text{max(y)}} - \text{min(y)});
wd = (\text{min(x)}-xMargin) || (\text{min(y)}-yMargin) ||
       (\text{max(x)}+xMargin) || (\text{max(y)}+yMargin);
call gwindow(wd);
call gpoint(\text{x}, \text{y});
call gshow;

**GXAXIS and GYAXIS Calls**

**CALL GXAXIS(starting-point, length, nincr <, nminor <, noticklab <, format <, height <, font <, color <, fixed-end <, window <, viewport >);**

**CALL GYAXIS(starting-point, length, nincr <, nminor <, noticklab <, format <, height <, font <, color <, fixed-end <, window <, viewport >);**

The GXAXIS subroutine is a graphical call that draws a horizontal axis. The GYAXIS subroutine draws a vertical axis. This call is part of the traditional graphics subsystem, which is no longer being developed.

The required arguments to the GXAXIS and GYAXIS subroutines are as follows:
starting-point is the \((x, y)\) starting point of the axis, specified in world coordinates.

length is a numeric scalar that contains the length of the axis, specified in world coordinates.

nincr is a numeric scalar that contains the number of major tick marks on the axis. The first tick mark corresponds to starting-point.

The optional arguments to the GXAXIS and GYAXIS subroutines are as follows:

nminor is an integer that specifies the number of minor tick marks between major tick marks.

noticklab is a flag that is nonzero if the tick marks are not labeled. The default is to label tick marks.

format is a character scalar that specifies a valid SAS numeric format used in formatting the tick-mark labels. The default format is 8.2.

height is a numeric matrix or literal that specifies the character height. This is used for the tick-mark labels.

font is a character matrix or quoted literal that specifies a valid font name. This is used for the tick-mark labels.

color is a valid color. The color argument can be specified as a quoted text string (such as ‘RED’), the name of a character matrix that contains a valid color as an element, or a color number (such as 1) that refers to a color in the color list.

fixed-end holds one end of the scale fixed. ‘U’ fixes the upper end; ‘L’ fixes the lower end; ‘X’ allows both ends to vary from the data values. In addition, you can specify ‘N’, which causes the axis routines to bypass the scaling routine. The interval between tick marks is length divided by \((nincr-1)\). The default is ‘X’.

window is a numeric matrix or literal that specifies a window. This is given in world coordinates and has the form

\[
\{\text{minimum-x minimum-y maximum-x maximum-y}\}
\]

viewport is a numeric matrix or literal that specifies a viewport. This is given in normalized coordinates and has the same form as the window argument.

The GXAXIS and GYAXIS subroutines use the same scaling algorithm as the GSCALE subroutine. For example, if the \(x\) starting point is 10 and the length of the axis is 44, and if you call the GSCALE subroutine with the \(x\) vector that contains the two elements, 10 and 44, the scale obtained should be the same as that obtained by the GXAXIS subroutine. Sometimes, it can be helpful to use the GSCALE subroutine in conjunction with the axis subroutines to get more precise scaling and labeling.

For example, suppose you want to draw the axis for \(-2 \leq X \leq 2\) and \(-2 \leq Y \leq 2\). The following statements draw these axes. Each axis is four units long. The \(x\) axis begins at the point \((-2, 0)\), and the \(y\) axis begins at the point \((0, -2)\). The tick marks can be set at each integer value, with minor tick marks in between the major tick marks. The tick marks are labeled because the noticklab option has the value 0.

```markdown
call gstart;
call gport({20 20 80 80});
call gwindow({-2 -2 2 2});
call gxaxis({-2,0}, 4, 5, 2, 0);
call gyaxis({0,-2}, 4, 5, 2, 0);
call gshow;
```
HADAMARD Function

HADAMARD(n, <, i>);

The HADAMARD function returns a Hadamard matrix. The arguments to the HADAMARD function are as follows:

- **n** specifies the order of the Hadamard matrix. You can specify that \( n \) is 1, 2, or a multiple of 4. Furthermore, \( n \) must satisfy at least one of the following conditions:
  - \( n \leq 448 \) or \( n \) equals 596, 604, 612, 732, or 756
  - \( n - 1 \) is prime
  - \( (n/2) - 1 \) is prime and \( n/2 = 2 \mod 4 \)
  - \( n = 2^p h \) for some positives integers \( p \) and \( h \), and \( h \) satisfies one of the preceding conditions

When any other \( n \) is specified, the HADAMARD function returns a zero.

- **i** specifies the row number to return. When \( i \) is not specified or \( i \) is negative, the full Hadamard matrix is returned.

The HADAMARD function returns a Hadamard matrix, which is an \( n \times n \) matrix that consists entirely of the values 1 and \(-1\). The columns of a Hadamard matrix are all orthogonal. Hadamard matrices are frequently used to make orthogonal array experimental designs for two-level factors. For example, the following statements create a \( 12 \times 12 \) Hadamard matrix:

```plaintext
h = hadamard(12);
print h[format=2.];
```

The output is shown in Figure 26.152. The first column is an intercept and the next 11 columns form an orthogonal array experimental design for 11 two-level factors in 12 runs, \( 2^{11} \).

**Figure 26.152** A Hadamard Matrix

<table>
<thead>
<tr>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
<tr>
<td>1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</td>
</tr>
</tbody>
</table>

To request the seventeenth row of a Hadamard matrix of order 448, use the following statement:
h17 = hadamard(448, 17);

**HALF Function**

\[ \text{HALF(matrix)}; \]

The HALF function is an alias for the ROOT function, which computes the Cholesky decomposition of a symmetric positive definite matrix.

**HANKEL Function**

\[ \text{HANKEL(matrix)}; \]

The HANKEL function generates a Hankel matrix from a vector or a block Hankel matrix from a matrix. A block Hankel matrix has the property that all matrices on the reverse diagonals are the same. The argument matrix is an \((np) \times p\) or \(p \times (np)\) matrix; the value returned is the \((np) \times (np)\) result.

The Hankel function uses the first \(p \times p\) submatrix \(A_1\) of the argument matrix as the blocks of the first reverse diagonal. The second \(p \times p\) submatrix \(A_2\) of the argument matrix forms the second reverse diagonal. The remaining reverse diagonals are formed accordingly. After the values in the argument matrix have all been placed, the rest of the matrix is filled in with 0. If \(A\) is \((np) \times p\), then the first \(p\) columns of the returned matrix, \(R\), are the same as \(A\). If \(A\) is \(p \times (np)\), then the first \(p\) rows of \(R\) are the same as \(A\).

The HANKEL function is especially useful in time series applications that involve a set of variables that represent the present and past and a set of variables that represent the present and future. In this situation, the covariance matrix between the sets of variables is often assumed to be a block Hankel matrix. If

\[
A = [A_1 | A_2 | A_3 | \cdots | A_n]
\]

and if \(R\) is the matrix formed by the HANKEL function, then

\[
R = \begin{bmatrix}
A_1 & A_2 & A_3 & \cdots & A_n \\
A_2 & A_3 & A_4 & \cdots & 0 \\
A_3 & A_4 & A_5 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_n & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

If

\[
A = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_n
\end{bmatrix}
\]

and if \(R\) is the matrix formed by the HANKEL function, then

\[
R = \begin{bmatrix}
A_1 & A_2 & A_3 & \cdots & A_n \\
A_2 & A_3 & A_4 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_n & 0 & 0 & \cdots & 0
\end{bmatrix}
\]
For example, the following statements produce Hankel matrices, as shown in Figure 26.153:

```plaintext
r1 = hankel({1 2 3 4 5});
r2 = hankel({1 2, 3 4, 5 6, 7 8});
r3 = hankel({1 2 3 4, 5 6 7 8});
print r1, r2, r3;
```

![Figure 26.153 Hankel Matrices](image)

### HARMMEAN Function

**HARMMEAN**(matrix);

The HARMMEAN function returns a scalar that contains the harmonic mean of the elements of the input matrix. The input matrix must contain only nonnegative numbers. The harmonic mean of a set of positive numbers $a_1, a_2, \ldots, a_n$ is $n$ divided by the sum of the reciprocals of $a_i$. That is, $n / \sum a_i^{-1}$.

The harmonic mean is zero if any of the $a_i$ are zero. The harmonic mean is not defined for negative numbers. If any of the $a_i$ are missing, they are excluded from the computation.

The harmonic mean is sometimes used to compute an average sample size in an unbalanced experimental design. For example, the following statements compute an average sample size for five samples:

```plaintext
sizes = { 8, 12, 23, 10, 8 }; /* sample sizes */
aveSize = harmean(sizes);
print aveSize;
```
The HDIR function computes the horizontal direct product of two numeric matrices. This operation is useful in constructing design matrices of interaction effects.

Specifically, the HDIR function performs a direct product on all rows of matrix1 and matrix2 and creates a new matrix by stacking these row vectors into a matrix. The matrix1 and matrix2 arguments must have the same number of rows, which is also the same number of rows in the result matrix. The number of columns in the result matrix is equal to the product of the number of columns in matrix1 and matrix2.

For example, the following statements produce the matrix e, shown in Figure 26.155:

```plaintext
a = {1 2,
 2 4,
 3 6};
b = {0 2,
 1 1,
 0 -1};
c = hdir(a, b);
print c;
```

The HDIR function is useful for constructing crossed and nested effects from main-effect design matrices in ANOVA models.

The HDIR function is useful for constructing crossed and nested effects from main-effect design matrices in ANOVA models.

```
CALL HEATMAPCONT(x) < COLORRAMP=ColorRamp >
 <SCALE=scale >
 <XVALUES=xValues >
 <YVALUES=yValues >
 <XAXISTOP=top >
 <DISPLAYOUTLINES=outlines >
 <TITLE=plotTitle >
 <LEGENDTITLE=legendTitle >
```
The HEATMAPCONT subroutine is part of the IMLMLIB library. The HEATMAPCONT subroutine
displays a heat map of a numeric matrix whose values are assumed to vary continuously. The heat map
is produced by calling the SGRENDER procedure to render a template, which is created at run time. The
argument \( x \) is a matrix that contains numeric data. The ODS statistical graphics subroutines are described in
Chapter 18, “Statistical Graphics.”

A simple example follows. The numeric variables from the Sashelp.Cars data set are read into a matrix and
the CORR function is used to compute the correlation matrix for those variables. The HEATMAPCONT
subroutine creates the image in Figure 26.156, which visualizes the correlations. The correlation matrix has
high values (1) on the main diagonal. There are large negative correlations between horsepower and the fuel
efficiency variables, MPG_City and MPG_Highway.

```
use Sashelp.Cars;
read all var _NUM_ into Y[c=varNames];
close Sashelp.Cars;
corr = corr(Y);
call HeatmapCont(corr) xvalues=varNames yvalues=varNames;
```

---

**Figure 26.156** A Heat Map of a Correlation Matrix

Specify the \( x \) vector inside parentheses and specify all options outside the parentheses. Titles are specified by
using the TITLE= option. Each option corresponds to a statement or option in the graph template language
(GTL).

The following list documents the options to the HEATMAPCONT routine:

```
COLORRAMP= specifies a color ramp that assigns colors to cells in the heat map. You can specify the color ramp in the following ways:

- A character string that matches a predefined color ramp. The “TwoColor” and “ThreeColor” ramps are defined by the current ODS style. Other predefined color ramps are as follows. The first color corresponds to low values; the last color corresponds to high values. Intermediate values are linearly interpolated.
 - “Gray” is a three-color ramp composed of white, gray, and black
 - “BlueRed” is a two-color ramp composed of blue and red
 - “BlueGreenRed” is a four-color ramp composed of blue, cyan, yellow, and red
 - “Rainbow” is a four-color ramp composed of magenta, cyan, yellow, and red
 - “Temperature” is a five-color ramp composed of white, cyan, yellow, red, and black
- A character vector with \(n \) color names that are valid in the GTL. For example, the expression \{lightblue blue black red lightred\} defines a five-color ramp.
- An \(n \times 3 \) matrix that defines a user-defined color ramp with \(n \) colors. Each row specifies an RGB color for the ramp. For example, the expression \{255 0 0, 0 255 136, 136 0 255\} defines a three-color ramp.
- A character vector with \(n \) hexadecimal color values that are valid in the GTL. For example, the expression \{CXA6611A CXDFC27D CXF5F5F5 CX80CDC1 CX018571\} defines a five-color ramp.

SCALE= specifies how the input matrix should be scaled. Valid values are “None” (the default), “Row”, or “Column”. For data matrices, variables often have different scales. The “Column” option standardizes each column to have zero mean and unit standard deviation. The “Row” option standardizes each row to have zero mean and unit standard deviation.

XVALUES= specifies a vector of values for ticks for the X axis. If no values are specified, the column numbers are used. If the vector is a strictly decreasing numerical sequence, then the X axis is reversed.

YVALUES= specifies a vector of values for ticks for the Y axis. If no values are specified, the row numbers are used. If the vector is a strictly decreasing numerical sequence, then the Y axis is reversed.

XAXISTOP= specifies the location of the X axis. The value 0 (the default) specifies that the X axis be displayed at the bottom of the heat map. A nonzero value specifies that the X axis be displayed at the top of the heat map.

DISPLAYOUTLINES= specifies whether to display grid lines for the heat map cells. The value 0 specifies that the no grid lines be displayed. A nonzero value (the default) specifies that grid lines be displayed.

TITLE= specifies a title for the heat map. By default, no title is displayed.

LEGENDTITLE= specifies a title for the legend, which shows the color ramp. By default, no title is displayed.

LEGENDLOC= specifies a location for the legend. Valid values are “Right” (the default), “Left”, “Top”, and “Bottom”.

SHOWLEGEND= specifies whether to display the continuous legend. The default value is 1, which shows the legend. To suppress the legend, specify 0.
RANGE= specifies the range of the color ramp. By default, the range of the data is used. You can specify a two-element array to change the range. For example, RANGE=\{-1, 1\} specifies that the color ramp colors values on the interval \([-1, 1]\). You can use missing values to specify the minimum and maximum values. Thus RANGE=\{-1, .\} specifies that -1 is the lower endpoint of the range and that the maximum data value should be used for the upper endpoint.

OTHER= specifies any valid GTL plot statement that is compatible with the HEATMAPPARM statement. For example, you can specify a vertical reference line by specifying “REFERENCE-LINE x=1;”. You must include the ending semicolon.

The following example shows how to create a heat map that uses the SCALE=, XVALUES=, YVALUES=, and TITLE= options.

```gtl
use Sashelp.Class;
read all var _NUM_ into Students[c=varNames r=Name];
close Sashelp.Class;

/* sort data in descending order according to Age and Height */
call sortndx(idx, Students, 1:2, 1:2);
Students = Students[idx, ];
Name = Name[idx, ];

/* standardize each column */
call HeatmapCont(Students) scale="Col"
   xvalues=varNames yvalues=Name title="Student Data";
```

Figure 26.157 Heat Map of a Data Matrix

In **Figure 26.157**, you can see that Philip is the biggest student, Joyce is the smallest, Robert is heavy for his age, and Alfred is tall for his age.

For a more complicated visualization of a data matrix, the following statements visualize the number of snack items sold at a fictitious store over the course of 1,022 days. The heat map that uses the YVALUES=,
Because the quantity of items sold range over two orders of magnitude (from 0 to 121), a logarithmic transformation is used to transform the data.

```
use Sashelp.Snacks;
read all var {QtySold Date Product};
close Sashelp.Snacks;

QtySold = choose(QtySold>=0, QtySold, .); /* remove invalid quantities */
Names = unique(Product);
x = shape(QtySold, ncol(Names));
```

```
ods graphics / height=800 width=1400;
call HeatmapCont(log10(x+1)) yvalues=Names displayoutlines=0
title="Log10(Items Sold) by Day";
```

Figure 26.158 Time Series Visualization for 35 Snack Items

In Figure 26.158, horizontal white bands indicate periods of time for which a particular snack item was not sold. Vertical white bands indicate days for which the store was closed. Dark shades, such as for “classic potato chips” and “tortilla chips,” indicate items for which the average number of units sold each day was about $10^2 = 100$. Lighter shades, such as for “fiesta sticks” and “stone-ground wheat sticks,” indicate less popular items.
The HEATMAPDISC subroutine is part of the IMLMLIB library. The HEATMAPDISC subroutine displays a heat map of a numeric or character matrix whose values are assumed to have a small number of discrete values. The heat map is produced by calling the SGRENDER procedure to render a template, which is created at run time. The argument \(x \) is a matrix that contains numeric or character data. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

In addition to visualizing matrices with discrete values, you can use the HEATMAPDISC subroutine to visualize quantiles of a continuous variable.

A simple example follows. The HADAMARD function generates an \(8 \times 8 \) matrix, each element is either 1 or \(-1\). The HEATMAPDISC subroutine creates the image in Figure 26.159, which uses two colors to visualize the matrix.

```plaintext
h = hadamard(8);
run HeatmapDisc(h);
```

![Figure 26.159 A Heat Map of a Matrix of Two Values](image)

Specify the \(x \) vector inside parentheses and specify all options outside the parentheses. Titles are specified by using the TITLE= option. Each option corresponds to a statement or option in the graph template language (GTL).

Except for the SCALE= option, the options for the HEATMAPDISC subroutine are the same as for the HEATMAPCONT subroutine.

You can use the PALETTE function to obtain colors from a wide variety of discrete color palettes.

By default, the row and column numbers of a matrix are used to label the heat map that is created by the HEATMAPDISC or HEATMAPCONT subroutine. The heat map is displayed in the same way that a matrix is printed: row 1 is at the top, row 2 is next, and so on. Columns increase from left to right. That means that the Y axis points down by default; the X axis points to the right.

Just as displaying a heat map is similar to printing a matrix, the XVALUES= and YVALUES= options are similar to the COLNAME= and ROWNAME= options (respectively) on the PRINT statement. You can use the XVALUES= and YVALUES= options to change the labels for the axes ticks, but these options do
not change the values of the data. The following program shows a PRINT statement followed by a call to the HEATMAPDISC subroutine. The output is not shown, but in each case the printed output matches the graphical output.

```sas
m = {1 2 3, 4 5 6, 1 2 3, 4 5 6};
XLbl = char(1:ncol(m));
YLbl = char(1:nrow(m));

/* standard printing: row labels increase down the page */
print m[colname=XLbl rowname=YLbl];
run HeatmapDisc(m); /* by default, axes labels are row/col numbers */

/* reverse Y labels; matrix is unchanged! */
Yrev = char(nrow(m):1);
print m[colname=XLbl rowname=Yrev];
run HeatmapDisc(m) yvalues=Yrev;

/* to make the Y axis point up, flip the rows and the labels */
r = m[nrow(m):1, ];
print r[colname=XLbl rowname=Yrev];
run HeatmapDisc(r) yvalues=Yrev;
```

HERMITE Function

HERMITE(matrix);

The HERMITE function uses elementary row operations to compute the Hermite normal form of a matrix. For square matrices this normal form is upper triangular and idempotent.

If the argument is square and nonsingular, the result is the identity matrix. In general the result satisfies the following four conditions (Graybill 1969):

- It is upper triangular.
- It has only values of 0 and 1 on the diagonal.
- If a row has a 0 on the diagonal, then every element in that row is 0.
- If a row has a 1 on the diagonal, then every off-diagonal element is 0 in the column in which the 1 appears.

The following statements compute an example from Graybill (1969):

```sas
a = {3 6 9,
    1 2 5,
    2 4 10};
h = hermite(a);
print h;
```
If the argument is a square matrix, then the Hermite normal form can be transformed into the row-echelon form by rearranging rows in which all values are 0.

Figure 26.160 Hermite Matrix

<table>
<thead>
<tr>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 0</td>
</tr>
<tr>
<td>0 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
</tr>
</tbody>
</table>

HISTOGRAM Call

```
CALL HISTOGRAM(x) < SCALE="Count" | "Percent" | "Proportion" >
   < DENSITY="Normal" | "Kernel" >
   < REBIN=(BinStart, BinWidth) >
   < GRID={"X" <, "Y" >} >
   < LABEL={XLabel <,YLabel>} >
   < XVALUES=xValues >
   < YVALUES=yValues >
   < PROCOPT=ProcOption >
   < OTHER=Stmts > ;
```

The HISTOGRAM subroutine displays a histogram by calling the SGPLOT procedure. The argument `x` is a numeric vector that contains the data to plot. The HISTOGRAM subroutine is not a comprehensive interface to the SGPLOT procedure. It is intended for creating simple histogram for exploratory data analysis. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

A simple example follows:

```nulus
use Sashelp.Cars;
read all var {MPG_City};
close Sashelp.Cars;

title "Histogram with Default Properties";
call Histogram(MPG_City);
```
Specify the x vector inside parentheses and specify all options outside the parentheses. Use the global TITLE and FOOTNOTE statements to specify titles and footnotes. Each option corresponds to a statement or option in the SGPLOT procedure.

The following options correspond to options in the HISTOGRAM or DENSITY statement in the SGPLOT procedure:

- **SCALE=** specifies the scaling to apply to the vertical axis of the histogram. Valid options are “Count” (the default), “Percent,” and “Proportion.”

- **DENSITY=** specifies whether to overlay the density estimate on the histogram. The valid values are as follows:
 - **DENSITY={"Normal"}** overlays a normal density estimate.
 - **DENSITY={"Kernel"}** overlays a kernel density estimate.
 - **DENSITY={"Normal", "Kernel"}** overlays a normal and a kernel density estimate.

- **REBIN=** specifies two numerical values that set the location of the first bins and the width of bins. An option of the form **REBIN={x0, h}** corresponds to the BINSTART=$x0$ and BINWIDTH=h options in the HISTOGRAM statement in PROC SGPLOT.

The HISTOGRAM subroutine also supports the following options. The **BAR subroutine** documents these options and gives an example of their usage.

- **GRID=** specifies whether to display grid lines for the X or Y axis.
- **LABEL=** specifies axis labels for the X or Y axis.
- **XVALUES=** specifies a vector of values for ticks for the X axis.
- **YVALUES=** specifies a vector of values for ticks for the Y axis.
- **PROCOPT=** specifies options in the PROC SGPLOT statement.
OTHER= specifies statements in the SGPLOT procedure.

The following statements create a histogram, overlay density estimates, and specify several options:

```sas
use Sashelp.Cars;
read all var {MPG_City};
close Sashelp.Cars;

title "Histogram with Density Curves";
call Histogram(MPG_City)
  scale = "Percent"
  density={"Normal" "Kernel"}
  rebin={0 5}
  grid="y"
  label="Miles per Gallon (City)"
  xvalues = do(0, 60, 10);
```

![Figure 26.162 A Histogram with Overlaid Densities](image)

HOMOGEN Function

HOMOGEN(matrix);

The HOMOGEN function solves the homogeneous system of linear equations $A \ast X = 0$ for X. For at least one solution vector X to exist, the $m \times n$ matrix A, $m \geq n$, has to be of rank $r < n$. The HOMOGEN function computes an $n \times (n - r)$ column orthonormal matrix X with the properties that $A \ast X = 0$ and $X'X = I$. In other words, the columns of X form an orthonormal basis for the nullspace of A.

If $A' A$ is ill-conditioned, rounding-error problems can occur in determining the correct rank of A and in determining the correct number of solutions X.

The following statements compute an example from Wilkinson and Reinsch (1971):
\[
\begin{align*}
 a &= \begin{bmatrix}
 22 & 10 & 2 & 3 & 7, \\
 14 & 7 & 10 & 0 & 8, \\
 -1 & 13 & -1 & -11 & 3, \\
 -3 & -2 & 13 & -2 & 4, \\
 9 & 8 & 1 & -2 & 4, \\
 9 & 1 & -7 & 5 & -1, \\
 2 & -6 & 6 & 5 & 1, \\
 4 & 5 & 0 & -2 & 2
\end{bmatrix}; \\
 x &= \text{homogen}(a); \\
 \text{print } x;
\end{align*}
\]

\textbf{Figure 26.163} Solutions to a Homogeneous System

\[
\begin{array}{ll}
 x & \\
 -0.419095 & 0 \\
 0.4405091 & 0.4185481 \\
 -0.052005 & 0.3487901 \\
 0.6760591 & 0.244153 \\
 0.4129773 & -0.802217
\end{array}
\]

In addition, you can use the HOMOGEN function to determine the rank of an \(m \times n\) matrix \(A\) where \(m \geq n\) by counting the number of columns in the matrix \(X\).

If \(A\) is an \(n \times m\) matrix, then, in addition to the memory allocated for the return matrix, the HOMOGEN function temporarily allocates an \(n^2 + nm\) array for performing its computation.

I Function

\[
I(dim);
\]

The I function creates an identity matrix with \(dim\) rows and columns. The diagonal elements of an identity matrix are ones; all other elements are zeros. The value of \(dim\) must be an integer greater than or equal to 1. Noninteger operands are truncated to their integer part.

For example, the following statements compute a \(3 \times 3\) identity matrix:

\[
\begin{align*}
 a &= I(3); \\
 \text{print } a;
\end{align*}
\]

\textbf{Figure 26.164} An Identity Matrix

\[
\begin{array}{ccc}
 a & \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{array}
\]
Chapter 26: Language Reference

IF-THEN/ELSE Statement

```
IF expression THEN statement1;

ELSE statement2;
```

The IF-THEN/ELSE statement conditionally executes statements. The ELSE statement is optional.

The arguments to the IF-THEN/ELSE statement are as follows:

- `expression` is an expression that is evaluated for being true or false.
- `statement1` is a statement executed when `expression` is true.
- `statement2` is a statement executed when `expression` is false.

The IF statement contains an expression to be evaluated, the keyword THEN, and an action to be taken when the result of the evaluation is true.

The ELSE statement optionally follows the IF statement and specifies an action to be taken when the IF expression is false. The expression to be evaluated is often a comparison. For example:

```
a = {0, 5, 1, 10};
if max(a)<20 then
  p = 0;
else
  p = 1;
```

The IF statement results in the evaluation of the condition `max(a)<20`. If the largest value found in the matrix `a` is less than 20, the scalar value `p` is set to 0. Otherwise, `p` is set to 1. See the description of the MAX function for details.

When the condition to be evaluated is a matrix expression, the result of the evaluation is another matrix. If all values of the result matrix are nonzero and nonmissing, the condition is true; if any element in the result matrix is 0 or missing, the condition is false. This evaluation is equivalent to using the ALL function.

For example, consider the following statements:

```
a = {1 2, 3 4};
b = {-1 0, 0 1};
if a>b then do;
  /* statements */
end;
```

This code produces the same result as the following statements:

```
if all(a>b) then do;
  /* statements */
end;
```

IF statements can be nested within the clauses of other IF or ELSE statements. There is no limit on the number of nesting levels. Consider the following example:
if a>b then
 if a>abs(b) then do;
 /* statements */
end;

Consider the following statements:

if a^=b then do;
 /* statements */
end;
if ^{(a=b)} then do;
 /* statements */
end;

The two IF statements are equivalent. In each case, the THEN clause is executed only when all corresponding elements of \(a\) and \(b\) are unequal.

Evaluation of the following statement requires only one element of \(a\) and \(b\) to be unequal in order for the expression to be true:

if any(a^=b) then do;
 /* statements */
end;

\[\text{IFFT Function}\]

\[\text{IFFT}(f);\]

The IFFT function computes the inverse finite Fourier transform of a matrix \(f\), where \(f\) is an \(np \times 2\) numeric matrix.

The IFFT function expands a set of sine and cosine coefficients into a sequence equal to the sum of the coefficients times the sine and cosine functions. The argument \(f\) is an \(np \times 2\) matrix; the value returned is an \(n \times 1\) vector.

If the element in the last row and second column of \(f\) is exactly 0, then \(n = 2np - 2\); otherwise, \(n = 2np - 1\).

The inverse finite Fourier transform of a two column matrix \(F\), denoted by the vector \(x\), is

\[x_i = F_{1,1} + 2 \sum_{j=2}^{np} \left(F_{j,1} \cos \left(\frac{2\pi}{n} (j - 1)(i - 1) \right) + F_{j,2} \sin \left(\frac{2\pi}{n} (j - 1)(i - 1) \right) \right) + q_i\]

for \(i = 1, \ldots, n\), where \(q_i = (-1)^{\frac{1}{2}}F_{np,1}\) if \(n\) is even, or \(q = 0\) if \(n\) is odd.

For the most efficient use of the IFFT function, \(n\) should be a power of 2. If \(n\) is a power of 2, a fast Fourier transform is used (Singleton 1969); otherwise, a Chirp-Z algorithm is used (Monro and Branch 1977).

The expression \(\text{IFFT}(\text{FFT}(X))\) returns \(n\) times \(x\), where \(n\) is the dimension of \(x\). If \(f\) is not the Fourier transform of a real sequence, then the vector generated by the IFFT function is not a true inverse Fourier transform. However, applications exist in which the FFT function and the IFFT function can be used for operations on multidimensional or complex data (Gentleman and Sande 1966; Nussbaumer 1982).

As an example, the convolution of two vectors \(x\ (n \times 1)\) and \(y\ (m \times 1)\) can be accomplished by using the following module:
start conv(u,v);
/* w = conv(u,v) convolves vectors u and v.
* Algebraically, convolution is the same operation as
* multiplying the polynomials whose coefficients are the
* elements of u and v. Straight convolution is too slow,
* so use the FFT.
*
* Both of u and v are column vectors.
*/
m = nrow(u);
n = nrow(v);

wn = m + n - 1;
/* find p so that 2**(p-1) < wn <= 2**p */
p = ceil(log(wn)/ log(2));
nice = 2**p;

a = fft(u // j(nice-m,1,0));
b = fft(v // j(nice-n,1,0));
/* complex multiplication of a and b */
wReal = a[,1]#b[,1] - a[,2]#b[,2];
wImag = a[,1]#b[,2] + a[,2]#b[,1];
w = wReal || wImag;
z=ifft(w);
z = z[1:wn,1] / nice; /* take real part and first wn elements */
return (z);
finish;

/* example of convolution of two waveforms */
TimeStep = 0.01;
t = T(do(0,8,TimeStep));

Signal = j(nrow(t),1,5);
Signal[loc(t>4)] = -5;

ImpulseResponse = j(nrow(t),1,0);
ImpulseResponse[loc(t<=2)] = 3;

/* The time domain for this convolution is [0,16]
 with the same time step.
 For waveforms, rescale amplitude by the time step. */
y = conv(Signal,ImpulseResponse) * TimeStep;

Other applications of the FFT and IFFT functions include windowed spectral estimates and the inverse autocorrelation function.

IMPORDDATASETFROMR Call

CALL IMPORTDATASETFROMR(SAS-data-set, RExpr);

You can use the IMPORTDATASETFROMR subroutine to transfer data from an R data frame to a SAS data set. It is easier to read the subroutine name when it is written in mixed case: ImportDataSetFromR.
The arguments for the subroutine are as follows:

- **SAS-data-set** is a literal string or a character matrix that specifies the two-level name of a SAS data set (for example, `Work.MyData`).
- **RExpr** is a literal string or a character matrix that specifies the name of an R data frame or, in general, an R expression that can be coerced to an R data frame.

You can call the subroutine provided that the following statements are true:

1. The R statistical software is installed on the SAS workspace server.
2. The SAS system administrator at your site has enabled the RLANG SAS system option. (See the section “The RLANG System Option” on page 234.)

The following statements create a data frame in R named `RData` and copy the data into `Work.MyData`. The SHOW CONTENTS statement is then used to display attributes of the `Work.MyData` data, which demonstrates that the data were successfully transferred.

```sas
proc iml;
send / R;
z = c('a','b','c','d','e')
RData <- data.frame(x=1:5, y=(1:5)^2, z=z)
endsend;

call ImportDataSetFromR("Work.MyData", "RData");

use Work.MyData;
show contents;
close Work.MyData;
```

Figure 26.165 Contents of a SAS Data Set Created from R Data

<table>
<thead>
<tr>
<th>DATASET</th>
<th>WORK.MYDATA.DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE</td>
<td>TYPE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>num</td>
</tr>
<tr>
<td>Y</td>
<td>num</td>
</tr>
<tr>
<td>Z</td>
<td>char</td>
</tr>
</tbody>
</table>

You can transfer data from a SAS data set into an R data frame by using the `EXPORTDATASET` call. See Chapter 14, “Calling Functions in the R Language,” for details about transferring data between R and SAS software.

The names of the variables in the SAS data set are derived from the names of the variables in the R data frame. The following rules are used to convert an R variable name to a valid SAS variable name:

1. If the name is longer than 32 characters, it is truncated to 32 characters.
2. A SAS variable name must begin with one of the following characters: ‘A’–‘Z’, ‘a’–‘z’, or the underscore (_). Therefore, if the first character is not a valid beginning character, it is replaced by an underscore (_).

3. A SAS variable name can contain only the following characters: ‘A’–‘Z’, ‘a’–‘z’, ‘0’–‘9’, or the underscore (_). Therefore, if any of the remaining characters is not valid in a SAS variable name, it is replaced by an underscore.

4. If the resulting name duplicates an existing name in the data set, a number is appended to the name to make it unique. If appending the number causes the length of the name to exceed 32 characters, the name is truncated to make room for the number.

IMPORTMATRIXFROMR Call

```sas
CALL IMPORTMATRIXFROMR( IMLMatrix, RExpr );
```

You can use the IMPORTMATRIXFROMR subroutine to transfer data from an R data frame to a SAS data set. It is easier to read the subroutine name when it is written in mixed case: ImportMatrixFromR.

The arguments to the subroutine are as follows:

- **IMLMatrix** is a SAS/IML matrix to contain the data you want to transfer.
- **RExpr** is a literal string or a character matrix that specifies the name of an R matrix, data frame, or an R expression that can be coerced to an R data frame.

If the **RExpr** argument is a data frame, then the resulting SAS/IML matrix has columns that correspond to variables from the data frame. If the first variable in the data frame is a numeric variable, a numeric matrix is created from all numeric variables in the data frame. If the first variable in the data frame is a character variable, a character matrix is created from all character variables in the data frame.

You can call the subroutine provided that the following statements are true:

1. The R statistical software is installed on the SAS workspace server.
2. The SAS system administrator at your site has enabled the RLANG SAS system option. (See the section “The RLANG System Option” on page 234.)

The following statements define an R matrix and copy the data from the matrix to a SAS/IML matrix:

```sas
proc iml;
submit / R;
  m <- matrix( c(1,2,3,4,NA,6), nrow=2, byrow=TRUE)
endsubmit;

call ImportMatrixFromR(a, "m");
print a;
```

To demonstrate that the data were successfully transferred, the PRINT statement is used to print the values of the **a** matrix. The output is shown in Figure 26.166. Note that the R missing value (**NA**) in the R matrix **m** was automatically converted to the SAS missing value in the SAS/IML matrix, **a**.
You can transfer data from a SAS/IML matrix into an R matrix frame by using the `EXPORTMATRIXTOR` call. See Chapter 14, “Calling Functions in the R Language,” for details about transferring data between R and SAS software.

INDEX Statement

INDEX variables | NONE ;

The `INDEX` statement creates an index for the named variables in the current input SAS data set. An index is created for each variable listed, provided that the variable does not already have an index. Current retrieval is set to the last variable indexed. Subsequent I/O operations such as `LIST`, `READ`, `FIND`, and `DELETE` can use this index to retrieve observations from the data. The indices are automatically updated when a data set is edited with the `APPEND`, `DELETE`, or `REPLACE` statements. Only one index is in effect at any given time. The `SHOW CONTENTS` command indicates which index is in use.

For example, the following statements copy the `Sasuser.Class` data set and create indexes for the `Name` and `Sex` variables. Current retrieval is set to use the `Sex` variable, as shown in Figure 26.167.

```sas
data class;
   set Sashelp.Class;
run;

proc iml;
use class;
index name sex;
list all;
close class;
```
The INDEX NONE statement can be used to set retrieval back to physical order.

When a WHERE clause is being processed, the SAS/IML language automatically determines which index to use, if any. The decision is based on the variables and operators involved in the WHERE clause, and the decision criterion is based on the efficiency of retrieval.

INFILE Statement

```
INFILE operand <options> ;
```

The INFILE statement opens an external file for input or, if the file is already open, makes it the current input file. A subsequent INPUT statement reads from the specified file.

The arguments to the INFILE statement are as follows:

- **operand** is either a predefined filename or a quoted string that contains in parentheses the filename or character expression that refers to the pathname.

- **options** are explained in the following list.

The valid values for the **options** argument are as follows:

- **LENGTH=variable**
 - specifies a variable into which the length of a record is stored.
RECFM=N
specifies that the file be read in as a pure binary file rather than as a file with record separator characters.
To do this, you must use the byte operand (<) in the INPUT statement to get new records rather than
use separate input statements or the new line (/) operator.

The following keywords control how a program behaves when an INPUT statement tries to read past the end
of a record. The default behavior is STOPOVER.

FLOWOVER
enables the INPUT statement to go to the next record to obtain values for the variables.

MISSOVER
tolerates attempted reading past the end of the record by assigning missing values to variables read
past the end of the record.

STOPOVER
treats going past the end of a record as an error condition, which triggers an end-of-file condition.

Several examples of INFILE statements follow:

filename in1 "student.dat"; /* specify filename IN1 */
infile in1; /* infile pathname */
infile "student.dat"; /* path by quoted literal */
infile "student.dat" missover; /* use missover option */

See Chapter 8 for further information.

INPUT Statement

INPUT < variables > < informats > < record-directives > < positionals > ;

The INPUT statement reads records from the current input file, placing the values into matrices. The INFILE
statement sets up the current input file. See Chapter 8 for details.

The INPUT statement supports the following arguments:

variables
specify the variable or variables you want to read from the current position in
the record. Each variable can be followed immediately by an input format specification.

informats
specify an input format. These are of the form w.d or $w. for standard numeric and
character informats, respectively, where w is the width of the field and d is the decimal
parameter, if any. You can also use a named SAS format such as BESTw.d. Also,
you can use a single $ or & for list input applications. If the width is unspecified,
the informat uses list-input rules to determine the length by searching for a blank (or
comma) delimiter. The special format $RECORD. is used for reading the rest of the
record into one variable. For more information about formats, see SAS Language
Reference: Dictionary.

Record holding is always implied for RECFM=N binary files, as if the INPUT
statement has a trailing @ sign. For more information, see Chapter 8.

Examples of valid INPUT statements follow:
Chapter 26: Language Reference

```plaintext
input x y;
input @1 name $ @20 sex $ @(20+2) age 3.;

eight=8;
input >9 <eight number2 ib8.;
```

The following example uses binary input:

```plaintext
file "out2.dat" recfm=n ;
number=499; at=1;
do i = 1 to 5;
   number=number+1;
   put >at number ib8.; at=at+8;
end;
closefile "out2.dat";

infile "out2.dat" recfm=n;
size=8; /* 8 bytes */
do pos=1 to 33 by size;
   input >pos number ib8.;
   print number;
end;
```

record-directives are used to advance to a new record. **Record-directives** are the following:

- **holding @ sign** is used at the end of an INPUT statement to hold the current record so that you can continue to read from the record with later INPUT statements. Otherwise, the next record is used for the next INPUT statement.

- **/** advances to the next record.

- **> operand** specifies that the next record to be read start at the indicated byte position in the file (for RECFM= N files only). The **operand** is a literal number, a variable name, or an expression in parentheses.

- **< operand** specifies that the indicated number of bytes are read as the next record. The record directive must be specified for binary files (RECFM=N). The **operand** is a literal number, a variable name, or an expression in parentheses.

positionals specifies a specific column on the record. The **positionals** are the following:

- **@ operand** specifies a column, where **operand** is a literal number, a variable name, or an expression in parentheses. For example, @30 means to go to column 30. The operand can also be a character operand when pattern searching is needed. For more information, see Chapter 8.

- **+ operand** skips the indicated number of columns. The **operand** is a literal number, a variable name, or an expression in parentheses.
INSERT Function

\[
\text{INSERT}(x, y, \text{row}<, \text{column}>);
\]

The INSERT function inserts one matrix inside another.

The arguments to the INSERT function are as follows:

- \(x\) is the target matrix. It can be either numeric or character.
- \(y\) is the matrix to be inserted into the target. It can be either numeric or character, depending on the type of the target matrix.
- \(\text{row}\) is the row where the insertion is to be made.
- \(\text{column}\) is the column where the insertion is to be made.

The INSERT function returns the result of inserting the matrix \(y\) inside the matrix \(x\) at the place specified by the \(\text{row}\) and \(\text{column}\) arguments. This is done by splitting \(x\) either horizontally or vertically before the row or column specified and concatenating \(y\) between the two pieces. Thus, if \(x\) has \(m\) rows and \(n\) columns, \(\text{row}\) can range from 0 to \(m + 1\) and \(\text{column}\) can range from 0 to \(n + 1\).

It is not possible to insert in both dimensions simultaneously, so either \(\text{row}\) or \(\text{column}\) must be 0, but not both. The \(\text{column}\) argument is optional and defaults to 0. Also, the matrices must conform in the dimension in which they are joined.

The following statements show two examples of the INSERT function. Figure 26.168 shows that the matrix \(c\) is the result of inserting matrix \(b\) prior to the second row of matrix \(a\). The matrix \(d\) is the result of inserting matrix \(b\) after the second column of matrix \(a\).

\[
\begin{align*}
a &= \{1, 2, 3, 4\}; \\
b &= \{5, 6, 7, 8\}; \\
c &= \text{insert}(a, b, 2, 0); \\
d &= \text{insert}(a, b, 0, 3); \\
\text{print}\ c, d;
\end{align*}
\]

Figure 26.168 Inserted Matrices

\[
\begin{array}{c}
\text{c} \\
1 & 2 \\
5 & 6 \\
7 & 8 \\
3 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
\text{d} \\
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8 \\
\end{array}
\]
INT Function

\[\text{INT}(\text{matrix}); \]

The INT function truncates the decimal portion of the value of the argument. The integer portion of the value of the argument remains. The INT function takes the integer value of each element of the argument matrix, as shown in the following statements:

\begin{verbatim}
y = 2.8;
b = int(y);
x=[12.95 10.99999999999999, -30.5 1e-6];
c = int(x);
print b, c;
\end{verbatim}

Figure 26.169 Truncated Values

\begin{verbatim}
 b 2
 c 12 11
 -30 0
\end{verbatim}

In Figure 26.169, notice that the value 11 is returned as the second element of \(c \). If a value is within \(10^{-12} \) of an integer, the INT function rounds up.

INV Function

\[\text{INV}(\text{matrix}); \]

The INV function computes the inverse of a square and nonsingular matrix.

For \(G = \text{INV}(A) \) the inverse has the properties

\[GA = AG = \text{identity} \]

To solve a system of linear equations \(AX = B \) for \(X \), you can use the expression \(x = \text{inv}(a) * b \). However, the SOLVE function is more accurate and efficient for this task.

The following statements compute a matrix inverse and solve a linear system:

\begin{verbatim}
A = [0 0 1 0 1, 1 0 0 1 0, 0 1 1 0 1, 1 0 0 0 1, 0 1 0 1 0];
b = [9, 4, 10, 8, 2];
/* find inverse and solve linear system */
\end{verbatim}
The INV function uses an LU decomposition followed by back substitution to solve for the inverse, as described in Forsythe, Malcom, and Moler (1967).

The INV function (in addition to the DET function and SOLVE function) uses the following criterion to decide whether the input matrix, \(A = [a_{ij}]_{i,j=1,...,n} \), is singular:

\[
\text{sing} = 100 \times \text{MACHEPS} \times \max_{1 \leq i,j \leq n} |a_{ij}|
\]

where MACHEPS is the relative machine precision.

All matrix elements less than or equal to sing are considered rounding errors of the largest matrix elements, so they are taken to be zero in subsequent computations. For example, if a diagonal or triangular coefficient matrix has a diagonal value that is less than or equal to sing, the matrix is considered singular by the DET, INV, and SOLVE functions.

The criterion is used by some functions to detect a singular matrix and to abort a computation that cannot be performed on a singular matrix. The typical error message is as follows:

ERROR: (execution) Matrix should be non-singular.

If you are getting this error message but believe that your matrix is actually nonsingular, you can try one of the following:

- Center and scale the data.
- Use the GINV function to compute the generalized inverse.
- Examine the size of the singular values returned by the SVD call. The SVD call can be used to compute a generalized inverse with a user-specified singularity criterion.

If \(A \) is an \(n \times n \) matrix, the INV function allocates an \(n \times n \) matrix in order to return the inverse. It also temporarily allocates an \(n^2 \) array in order to compute the inverse.
INVUPDT Function

INVUPDT(matrix, vector<, scalar>);

The INVUPDT function updates a matrix inverse.

The arguments to the INVUPDT function are as follows:

- **matrix** is an \(n \times n \) nonsingular matrix. In most applications \(matrix \) is symmetric positive definite.
- **vector** is an \(n \times 1 \) or \(1 \times n \) vector.
- **scalar** is a numeric scalar.

The Sherman-Morrison-Woodbury formula is

\[
(A + UV')^{-1} = A^{-1} - A^{-1}U(I + V'A^{-1}U)^{-1}V'A^{-1}
\]

where \(A \) is an \(n \times n \) nonsingular matrix and \(U \) and \(V \) are \(n \times k \). The formula shows that a rank \(k \) update to \(A \) corresponds to a rank \(k \) update of \(A^{-1} \).

The INVUPDT function implements the Sherman-Morrison-Woodbury formula for rank-one updates with \(U = wX \) and \(V = X \), where \(X \) is an \(n \times 1 \) vector and \(w \) is a scalar.

If \(M = A^{-1} \), then you can call the INVUPDT function as follows:

\[
R = \text{invupdt}(M, X, w);
\]

This statement computes the following matrix:

\[
R = M - wMX(I + wX'MX)^{-1}X'M
\]

The matrix \(R \) is equivalent to \((A + wXX')^{-1}\). If \(A \) is symmetric positive definite, then so is \(R \).

If \(w \) is not specified, then it is given a default value of 1.

A common use of the INVUPDT function is in linear regression. If \(Z \) is a design matrix, \(M = (Z'Z)^{-1} \) is the associated inverse crossproduct matrix, and \(v \) is a new observation to be used in estimating the parameters of a linear model, then the inverse crossproducts matrix that includes the new observation can be updated from \(M \) by using the following statement:

\[
M2 = \text{invupdt}(M, v);
\]

If \(w \) is 1, the function adds an observation to the inverse; if \(w \) is \(-1\), the function removes an observation from the inverse. If weighting is used, \(w \) is the weight.

To perform the computation, the INVUPDT function uses about \(2n^2 \) multiplications and additions, where \(n \) is the row dimension of the positive definite argument matrix.

The following program demonstrates adding or removing observations from a linear fit and updating the inverse crossproduct matrix:

```c
X = {0, 1, 1, 1, 2, 2, 3, 4, 4};
Y = {1, 1, 2, 6, 2, 3, 3, 3, 4};

/* find linear fit */
```
Z = j(nrow(X), 1, 1) || X; /* design matrix */
M = inv(Z' * Z);

b = M * Z' * Y; /* LS estimate */
resid = Y - Z * b; /* residuals */
print "Original Fit", b resid;

/* residual for observation (1,6) seems too large.
 Take obs number 4 out of data set and refit. */
v = z[4,];
M = invupdt(M, v, -1); /* update inverse crossprod */

keepObs = (1:3) || (5:nrow(X));
Z = Z[keepObs,];
Y = Y[keepObs,];
b = M * Z' * Y; /* new LS estimate */
print "After deleting observation 4", b;

/* Add a new obs (x,y) = (0,2) and refit. */
obs = (0 2);
v = 1 || obs[1]; /* new row in design matrix */
M = invupdt(M, v);

Z = Z // v;
Y = Y // obs[2];
b = M * Z' * Y; /* new LS estimate */
print "After adding observation (0,2)", b;

Figure 26.171 Refitting Linear Regression Models

<table>
<thead>
<tr>
<th>b</th>
<th>resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0277778</td>
<td>-1.027778</td>
</tr>
<tr>
<td>0.375</td>
<td>-1.402778</td>
</tr>
<tr>
<td>-0.402778</td>
<td></td>
</tr>
<tr>
<td>3.5972222</td>
<td></td>
</tr>
<tr>
<td>-0.777778</td>
<td></td>
</tr>
<tr>
<td>0.2222222</td>
<td></td>
</tr>
<tr>
<td>-0.152778</td>
<td></td>
</tr>
<tr>
<td>-0.527778</td>
<td></td>
</tr>
<tr>
<td>0.4722222</td>
<td></td>
</tr>
</tbody>
</table>

After deleting observation 4

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.6470588</td>
</tr>
</tbody>
</table>

After adding observation (0,2)
IPF Call

CALL IPF(fit, status, dim, table, config <, initab> <, mod>);

The IPF subroutine performs an iterative proportional fit of a contingency table. This is a standard statistical technique to obtain maximum likelihood estimates for cells under any hierarchical log-linear model. The algorithm is described in Bishop, Fienberg, and Holland (1975).

The arguments to the IPF subroutine are as follows:

- **fit** is a returned matrix. The matrix fit contains an array of the estimates of the expected number in each cell under the model specified in config. This matrix conforms to table, meaning that it has the same dimensions and order of variables.

- **status** is a returned matrix. The status argument is a row vector of length 3. status[1] is 0 if there is convergence to the desired accuracy, otherwise it is nonzero. status[2] is the maximum difference between estimates of the last two iterations of the IPF algorithm. status[3] is the number of iterations performed.

- **dim** is an input matrix. If the problem contains \(v \) variables, then dim is \(1 \times v \) row vector. The value dim[i] is the number of possible levels for variable \(i \) in a contingency table.

- **table** is an input matrix that specifies an array of the number of observations at each level of each variable. Variables are nested across columns and then across rows.

- **config** is an input matrix that specifies which marginal totals to fit. Each column of config specifies a distinct marginal in the model under consideration. Because the model is hierarchical, all subsets of specified marginals are included in fitting.

- **initab** is an input matrix that specifies initial values for the iterative procedure. If you do not specify values, ones are used. For incomplete tables, initab is set to 1 if the cell is included in the design, and 0 if it is not.

- **mod** is a two-element vector that specifies the stopping criteria. If mod= \{ MaxDev, MaxIter \}, then the procedure iterates either until the maximum difference between estimates of the last two iterations is less than MaxDev or until MaxIter iterations are completed. Default values are MaxDev=0.25 and MaxIter=15.

The matrix table must conform in size to the contingency table as specified in dim. In particular, if table is \(n \times m \), the product of the entries in dim must equal \(nm \). Furthermore, there must be some integer \(k \) such that the product of the first \(k \) entries in dim equals \(m \). If you specify initab, then it must be the same size as table.

Adjusting a Table from Marginals

A common use of the IPF subroutine is to adjust the entries of a table in order to fit a new set of marginals while retaining the interaction between cell entries.
Example 1: Adjusting Marital Status by Age

Bishop, Fienberg, and Holland (1975) present data from D. Friedlander that shows the distribution of women in England and Wales according to their marital status in 1957. One year later, new official marginal estimates were announced. The problem is to adjust the entries in the 1957 table so as to fit the new marginals while retaining the interaction between cells. This problem can arise when you have internal cells that are known from sampling a population and then get margins based on a complete census.

When you want to adjust an observed table of cell frequencies to a new set of margins, you must set the \texttt{initab} parameter to be the table of observed values. The new marginals are specified through the \texttt{table} argument. The particular cell values for \texttt{table} are not important, since only the marginals are used (the proportionality between cells is determined by \texttt{initab}).

There are two easy ways to create a table that contains given margins. Recall that a table of independent variables has an expected cell value \(A_{ij} = \frac{(\text{sum of row } i)(\text{sum of col } j)}{\text{sum of all cells}}\). Thus you could form a table with these cell entries. Another possibility is to use a “greedy algorithm” to assign as many of the marginals as possible to the first cell, then assign as many of the remaining marginals as possible to the second cell, and so on until all of the marginals have been distributed. Both of these approaches are encapsulated into modules in the following program:

```plaintext
/* Return a table such that cell (i,j) has value 
   (sum of row i)(sum of col j)/(sum of all cells) */
start GetIndepTableFromMargins( bottom, side );
   if bottom[+] ^= side[+] then do;
      print "Marginal totals are not equal";
      abort;
   end;
   table = side*bottom/side[+];
   return (table);
finish;

/* Use a "greedy" algorithm to create a table whose 
   marginal totals match given marginal totals. 
Margin1 is the vector of frequencies totaled down 
   each column. Margin1 means that 
   Variable 1 has NOT been summed over. 
Margin2 is the vector of frequencies totaled across 
   each row. Margin2 means that Variable 2 
   has NOT been summed over. 
   After calling, use SHAPE to change the shape of 
   the returned argument. */
start GetGreedyTableFromMargins( Margin1, Margin2 );
   /* copy arguments so they are not corrupted */
   m1 = colvec(Margin1); /* colvec is in IMLMLIB */
   m2 = colvec(Margin2);
   if m1[+] ^= m2[+] then do;
      print "Marginal totals are not equal";
      abort;
   end;
   dim1 = nrow(m1);
   dim2 = nrow(m2);
   table = j(1,dim1*dim2,0);
   /* give as much to cell (1,1) as possible, 
      then as much as remains to cell (1,2), etc,
      etc, etc, */
```

```plaintext/* Return a table such that cell (i,j) has value 
   (sum of row i)(sum of col j)/(sum of all cells) */
start GetIndepTableFromMargins( bottom, side );
   if bottom[+] ^= side[+] then do;
      print "Marginal totals are not equal";
      abort;
   end;
   table = side*bottom/side[+];
   return (table);
finish;

/* Use a "greedy" algorithm to create a table whose 
   marginal totals match given marginal totals. 
Margin1 is the vector of frequencies totaled down 
   each column. Margin1 means that 
   Variable 1 has NOT been summed over. 
Margin2 is the vector of frequencies totaled across 
   each row. Margin2 means that Variable 2 
   has NOT been summed over. 
   After calling, use SHAPE to change the shape of 
   the returned argument. */
start GetGreedyTableFromMargins( Margin1, Margin2 );
   /* copy arguments so they are not corrupted */
   m1 = colvec(Margin1); /* colvec is in IMLMLIB */
   m2 = colvec(Margin2);
   if m1[+] ^= m2[+] then do;
      print "Marginal totals are not equal";
      abort;
   end;
   dim1 = nrow(m1);
   dim2 = nrow(m2);
   table = j(1,dim1*dim2,0);
   /* give as much to cell (1,1) as possible, 
      then as much as remains to cell (1,2), etc,
      etc, etc, */
```
until all the margins have been distributed */
idx = 1;
do i2 = 1 to dim2;
do i1 = 1 to dim1;
t = min(m1[i1],m2[i2]);
table[idx] = t;
idx = idx + 1;
m1[i1] = m1[i1]-t;
m2[i2] = m2[i2]-t;
end;
end;
return (table);
finish;

Mod = {0.01 15}; /* tighten stopping criterion */

Columns = {" Single" " Married" "Widow/Divorced"};
Rows = {"15 - 19" "20 - 24" "25 - 29" "30 - 34"
 "35 - 39" "40 - 44" "45 - 49" "50 Or Over"};

/* Marital status has 3 levels. Age has 8 levels */
Dim = {3 8};

/* Use known distribution for start-up values */
IniTab = { 1306 83 0 ,
 619 765 3 ,
 263 1194 9 ,
 173 1372 28 ,
 171 1393 51 ,
 159 1372 81 ,
 208 1350 108 ,
 1116 4100 2329 };

/* New marginal totals for age by marital status */
NewMarital = { 3988 11702 2634 };
NewAge = {1412, 1402, 1450, 1541, 1681, 1532, 1662, 7644};

/* Create any table with these marginals */
Table = GetGreedyTableFromMargins(NewMarital, NewAge);
Table = shape(Table, nrow(IniTab), ncol(IniTab));

/* Consider all main effects */
Config = {1 2};
call ipf(Fit, Status, Dim, Table, Config, IniTab, Mod);

if Status[1] = 0 then
 print "Known Distribution (1957)",
 IniTab [colname=Columns rowname=Rows format=8.0],,
 "Adjusted Estimates of Distribution (1958)",
 Fit [colname=Columns rowname=Rows format=8.2];
else
 print "IPF did not converge in "
 (Status[3]) " iterations";
The results of this program are shown in Figure 26.172. The same results are obtained if the *table* parameter is formed by using the “independent algorithm.”

Figure 26.172 Iterative Proportional Fitting

<table>
<thead>
<tr>
<th>Known Distribution (1957)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initab</td>
</tr>
<tr>
<td>Single</td>
</tr>
<tr>
<td>15 - 19</td>
</tr>
<tr>
<td>20 - 24</td>
</tr>
<tr>
<td>25 - 29</td>
</tr>
<tr>
<td>30 - 34</td>
</tr>
<tr>
<td>35 - 39</td>
</tr>
<tr>
<td>40 - 44</td>
</tr>
<tr>
<td>45 - 49</td>
</tr>
<tr>
<td>50 Or Over</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjusted Estimates of Distribution (1958)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit</td>
</tr>
<tr>
<td>Single</td>
</tr>
<tr>
<td>15 - 19</td>
</tr>
<tr>
<td>20 - 24</td>
</tr>
<tr>
<td>25 - 29</td>
</tr>
<tr>
<td>30 - 34</td>
</tr>
<tr>
<td>35 - 39</td>
</tr>
<tr>
<td>40 - 44</td>
</tr>
<tr>
<td>45 - 49</td>
</tr>
<tr>
<td>50 Or Over</td>
</tr>
</tbody>
</table>

Example 2: Adjusting Votes by Region A similar technique can be used to standardize data from raw counts into percentages. For example, consider data from a 1836 vote in the U.S. House of Representatives on a resolution that the House should adopt a policy of tabling all petitions for the abolition of slavery. Attitudes toward abolition were different among slaveholding states that would later secede from the Union (“the South”), slaveholding states that refused to secede (“the Border States”), and nonslaveholding states (“the North”).

The raw votes for the resolution are defined in the following statements. The data are hard to interpret because the margins are not homogeneous.

```c
/* Yea Abstain Nay */
Initab = { 61 12 60, /* North */
          17 6 1,    /* Border */
          39 22 7 } ;  /* South */
```

Standardizing the data by specifying homogeneous margins reveals interactions and symmetry that were not apparent in the raw data. Suppose the margins are specified as follows:
Chapter 26: Language Reference

```plaintext
NewVotes = {100 100 100};
NewSection = {100,100,100};
```

In this case, the program for marital status by age can be easily rewritten to adjust the votes into a standardized form. The resulting output is shown in Figure 26.173:

Figure 26.173 Standardizing Counts into Percentages

<table>
<thead>
<tr>
<th></th>
<th>Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yea</td>
<td>20.1</td>
</tr>
<tr>
<td>Abst</td>
<td>10.2</td>
</tr>
<tr>
<td>Nay</td>
<td>69.7</td>
</tr>
</tbody>
</table>

Generating a Table with Given Marginals
The “greedy algorithm” presented in the Marital-Status-By-Age example can be extended in a natural way to the case where you have \(n \) one-way marginals and want to form an \(n \)-dimensional table. For example, a three-dimensional “greedy algorithm” would allocate the vector `table` as `table[j(dim1*dim2*dim3,1,0)]`; and have three nested loops as indicated in the following statements. Afterwards, the `table` parameter can be reshaped by using the SHAPE function.

```plaintext
do i3 = 1 to dim3;
do i2 = 1 to dim2;
do i1 = 1 to dim1;
   t = min(m1[i1],m2[i2],m3[i3]);
   table[idx] = t;
   idx = idx + 1;
   m1[i1] = m1[i1]-t;
   m2[i2] = m2[i2]-t;
   m3[i3] = m3[i3]-t;
end;
end;
end;
```

The idea of the “greedy algorithm” can be extended to marginals that are not one-way. For example, the following three-dimensional table is similar to one that appears in Christensen (1997) based on data from M. Rosenberg. The table presents data on a person’s self-esteem for people classified according to their religion and their father’s educational level.

<table>
<thead>
<tr>
<th>Father's Educational Level</th>
<th>Religion</th>
<th>Self-Esteem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catholic</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jewish</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protestant</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Not HS Grad</th>
<th>HS Grad</th>
<th>Some Coll</th>
<th>Coll Grad</th>
<th>Post Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catholic</td>
<td>575</td>
<td>388</td>
<td>100</td>
<td>77</td>
<td>51</td>
</tr>
<tr>
<td>Low</td>
<td>267</td>
<td>153</td>
<td>40</td>
<td>37</td>
<td>19</td>
</tr>
<tr>
<td>Jewish</td>
<td></td>
<td></td>
<td>117</td>
<td>102</td>
<td>67</td>
</tr>
<tr>
<td>Low</td>
<td>48</td>
<td>35</td>
<td>18</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Protestant</td>
<td>359</td>
<td>233</td>
<td>109</td>
<td>197</td>
<td>90</td>
</tr>
<tr>
<td>Low</td>
<td>159</td>
<td>173</td>
<td>47</td>
<td>82</td>
<td>32</td>
</tr>
</tbody>
</table>

The idea of the “greedy algorithm” can be extended to marginals that are not one-way. For example, the following three-dimensional table is similar to one that appears in Christensen (1997) based on data from M. Rosenberg. The table presents data on a person’s self-esteem for people classified according to their religion and their father’s educational level.
Since the father’s education level is nested across columns, it is Variable 1 with levels that correspond to not finishing high school, graduating from high school, attending college, graduating from college, and attending graduate courses. The variable that varies the quickest across rows is Self-Esteem, so Self-Esteem is Variable 2 with values “High” and “Low.” The Religion variable is Variable 3 with values “Catholic,” “Jewish,” and “Protestant.”

The following program encodes this table by using the MARG call to compute a two-way marginal table by summing over the third variable, and a one-way marginal by summing over the first two variables. Then a new table (NewTable) is created by applying the greedy algorithm to the two marginals. Finally, the marginals of NewTable are computed and compared with those of table.

```plaintext
dim={5 2 3};
table={
  /* Father's Education: */
  NotHSGrad HSGrad Col ColGrad PostCol
  Self-
  Relig Esteem */
  /* Cath- Hi */ 575 388 100 77 51,
  /* olic Lo */ 267 153 40 37 19,
  /* Jew- Hi */ 117 102 67 87 62,
  /* ish Lo */ 48 35 18 12 13,
  /* Prot- Hi */ 359 233 109 197 90,
  /* estant Lo */ 159 173 47 82 32
};
config = { 1 3,
  2 0 };
call marg(locmar, marginal, dim, table, config);
print locmar, marginal, table;

/* Examine marginals: The name indicates the variable(s) that are NOT summed over. The locmar variable tells where to index into the marginal variable. */
Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg,dim[2],dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];

NewTable = j(nrow(table),ncol(table),0);
/* give as much to cell (1,1,1) as possible, then as much as remains to cell (1,1,2), etc, until all the margins have been distributed. */
idx = 1;
do i3 = 1 to dim[3]; /* over Var3 */
do i2 = 1 to dim[2]; /* over Var2 */
do i1 = 1 to dim[1]; /* over Var1 */
  /* Note Var12_Marg has Var1 varying across the columns */
  t = min(Var12_Marg[i2,i1],Var3_Marg[i3]);
  NewTable[idx] = t;
  idx = idx + 1;
```

Fitting a Log-Linear Model to a Table

A second common usage of the IPF algorithm is to hypothesize that the table of observations can be fitted by a model with known effects and to ask whether the observed values indicate that the model hypothesis can be accepted or should be rejected. In this usage, you normally do not specify the \texttt{initab} argument to the IPF subroutine (but see the comment on structural zeros in the section “Additional Details” on page 777).

Example 3: Food Illness

Korff, Taback, and Beard (1952) reported statistics related to the outbreak of food poisoning at a company picnic. A total of 304 people at the picnic were surveyed to determine who had eaten either of two suspect foods: potato salad and crabmeat. The predictor variables are whether the individual ate potato salad (Variable 1: “Yes” or “No”) and whether the person ate crabmeat (Variable 2: “Yes” or “No”). The response variable is whether the person was ill (Variable 3: “Ill” or “Not Ill”). The order
of the variables is determined by the `dim` and `table` arguments to the IPF subroutine. The variables are nested across columns, then across rows.

<table>
<thead>
<tr>
<th>Crabmeat:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ill</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>Not Ill</td>
<td>80</td>
<td>31</td>
</tr>
</tbody>
</table>

The following program defines the variables and observations, and then fits three separate models. How well each model fits the data is determined by computing a Pearson chi-square statistic $\chi^2 = \sum (O - E)^2 / E$, where the sum is over all cells, O stands for the observed cell count, and E stands for the fitted estimate. Other statistics, such as the likelihood-ratio chi-square statistic $G^2 = -2 \sum O \log(E/O)$, could also be used.

The program first fits a model that excludes the three-way interaction. The model fits well, so you can conclude that an association between illness and potato salad does not depend on whether an individual ate crabmeat. The next model excludes the interaction between potato salad and illness. This model is rejected with a large chi-square value, so the data support an association between potato salad and illness. The last model excludes the interaction between the crabmeat and the illness. This model fits moderately well.

```plaintext
/* Compute a chi-square score for a table of observed values, given a table of expected values. Compare this score to a chi-square value with given degrees of freedom at 95% confidence level. */
start ChiSqTest( obs, model, degFreedom );
diff = (obs - model)##2 / model;
chiSq = diff[+];
chiSqCutoff = cinv(0.95, degFreedom);
print chiSq chiSqCutoff;
if chiSq > chiSqCutoff then
   print "Reject hypothesis";
else
   print "No evidence to reject hypothesis";
finish;

dim={2 2 2};

/* Crab meat:      YES     NO  */
<table>
<thead>
<tr>
<th>Potato: Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ill</td>
</tr>
<tr>
<td>Not Ill</td>
</tr>
</tbody>
</table>

crabmeat = "C R A B N O C R A B";
potato = {"YesPot" "NoPot" "YesPot" "NoPot"};
ilness = {"Ill", "Not Ill"};
hypoth = "Hypothesis: no three-factor interaction";
config=(1 1 2,
       2 3 3);
call ipf(fit,status,dim,table,config);

print hypoth, "Fitted Model:",
      fit[label=crabmeat colname=potato
```
/* Test for interaction between Var 3 (Illness) and Var 1 (Potato Salad) */
hypoth = "Hypothesis: no Illness-Potato Interaction"
config={1 2,
 2 3};
call ipf(fit,status,dim,table,config);
print hypoth, "Fitted Model:",
 fit[label=crabmeat colname=potato
 rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

/* Test for interaction between Var 3 (Illness) and Var 2 (Crab meat) */
hypoth = "Hypothesis: no Illness-Crab Interaction"
config={1 1,
 2 3};
call ipf(fit,status,dim,table,config);
print hypoth, "Fitted Model:",
 fit[label=crabmeat colname=potato
 rowname=illness format=6.2];
run ChiSqTest(table, fit, 2); /* 2 deg of freedom */

Figure 26.175 Fitting Log-Linear Models

<table>
<thead>
<tr>
<th>hypoth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis: no three-factor interaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitted Model:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CRAB</th>
<th>NO CRAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>YesPot</td>
<td>NoPot</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Ill</td>
<td>121.08</td>
</tr>
<tr>
<td>Not Ill</td>
<td>78.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chiSq</th>
<th>chiSqCutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7021335</td>
<td>3.8414588</td>
</tr>
</tbody>
</table>

No evidence to reject hypothesis

<table>
<thead>
<tr>
<th>hypoth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis: no Illness-Potato Interaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fitted Model:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CRAB</th>
<th>NO CRAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>YesPot</td>
<td>NoPot</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Ill</td>
<td>105.53</td>
</tr>
<tr>
<td>Not Ill</td>
<td>94.47</td>
</tr>
</tbody>
</table>
Additional Details

Structural versus Random Zeros In the Marital-Status-By-Age example, the initab argument contained a zero for the “15–19 and Widowed/Divorced” category. Because the initab parameter determines the proportionality between cells, the fitted model retains a zero in that category. By contrast, in the Food-Illness example, the table parameter contained a zero for number of illnesses observed among those who did not eat either crabmeat or potato salad. This is a sampling (random) zero. Some models preserve that zero; others do not. If your table has a structural zero (for example, the number of ovarian cancers observed among male patients), then you can use the initab parameter to preserve that zero. see Bishop, Fienberg, and Holland (1975) or the documentation for the CATMOD procedure in the SAS/STAT User’s Guide for more information about structural zeros and incomplete tables.

The config Parameter The columns of this matrix specify which interaction effects should be included in the model. The following table specifies the model and the configuration parameter for common interactions for an $I \times J \times K$ table in three dimensions. The so-called noncomprehensive models that do not include all variables (for example, config = {1}) are not listed in the table, but can be used. You can also specify combinations of main and interaction effects. For example, config = {1 3, 2 0}) specifies all main effects and the 1-2 interaction. Bishop, Fienberg, and Holland (1975) and Christensen (1997) explain how to compute the degrees of freedom associated with any model. For models with structural zeros, computing the degrees of freedom is complicated.
Chapter 26: Language Reference

Model	config	Degrees of Freedom
No three-factor | {1 1 2, 2 3 3} | \((I - 1)(J - 1)(K - 1)\)
One two-factor absent | {1 2, 3 3, 1 2, 2 3, 1 1, 2 3} | \((I - 1)(J - 1)K\), \((I - 1)J(K - 1)\), \((I - 1)(J - 1)K\)
Two two-factor absent | {2, 3, 1 3, 1 2, 1 2} | \((I - 1)(JK - 1)\), \((J - 1)(IK - 1)\), \((K - 1)(IJ - 1)\)
No two-factor | {1 2 3} | \(IJK - (I + J + K) + 2\)
Saturated | {1 2 3} | \(IJK\)

The Shape of the table Parameter Since variables are nested across columns and then across rows, any shape that conforms to the dim parameter is equivalent.

For example, the section “Generating a Table with Given Marginals” on page 772 presents data on a person’s self-esteem for people classified according to their religion and their father’s educational level. To save space, the educational levels are subsequently denoted by labels that indicate the typical number of years spent in school: “<12,” “12,” “<16,” “16,” and “>16.”

The table would be encoded as follows:

```plaintext
dim = [5 2 3];

table = {
    /* Father's Education:
       <12 12 <16 16 >16 */
    Self-
    Relig Esteem */
    /* Cath- Hi */ 575 388 100 77 51,
    /* olic Lo */ 267 153 40 37 19,
    /* Jew- Hi */ 117 102 67 87 62,
    /* ish Lo */ 48 35 18 12 13,
    /* Prot- Hi */ 359 233 109 197 90,
    /* estant Lo */ 159 173 47 82 32
};
```

The same information for the same variables in the same order could also be encoded into an \(n \times m\) table in two other ways. Recall that the product of entries in dim is \(nm\) and that \(m\) must equal the product of the first \(k\) entries of dim for some \(k\). For this example, the product of the entries in dim is 30, and so the table must be 6 \(\times\) 5, 3 \(\times\) 10, or 1 \(\times\) 30. The 3 \(\times\) 10 table is encoded as concatenating rows 1–2, 3–4, and 5–6 to produce the following:

```plaintext
table = {
    /* Esteem: H I G H L O W */
    /* <12 ... >16 <12 ... >16 */
    */
```
The 1×30 table is encoded by concatenating all rows, as follows:

```
575 ... 51 267 ... 19, /* Catholic */
117 ... 62 48 ... 13, /* Jewish */
359 ... 90 159 ... 32 /* Protestant*/
```

The ISEMPTY function is part of the IMLMLIB library. An empty matrix has no rows or columns. The ISEMPTY function returns 1 if its argument is an empty matrix; otherwise, the function returns 0 as shown in the following example:

```
free x; /* an empty matrix */
isX = IsEmpty(x);
y = 1:5;
isY = IsEmpty(y);
print isX isY;
```

Figure 26.176 Results of the ISEMPTY Function

<table>
<thead>
<tr>
<th>isX</th>
<th>isY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The ISSKIPPED function enables you to determine at run time whether any optional argument to a user-defined module was skipped. You can call the function only from within a module.

The ISSKIPPED function returns 0 if the symbol x was provided as an argument in the current call to the module. If the symbol was not provided (that is, it was skipped), the ISSKIPPED function returns 1.

The following module contains one required argument, x. The parameters a and y are optional. The first argument has a default value of 1, which means that a equals 1 if the first argument is not provided to the module. In contrast, the third argument does not have a default value. If the module is called without
specifying the third parameter, the matrix y is the empty matrix. The following statements call the module with different combinations of supplied and skipped arguments.

```plaintext
start axpy(a=1, x, y=);
   if isskipped(y) then z = a#x;
   else z = a#x + y;
return(z);
finish;
```

```plaintext
p = {1,2,3,4};
q = 1;
z1 = axpy( , p);    /* a and y skipped; a has default value */
z2 = axpy(2, p);   /* y skipped */
z3 = axpy(2, p, q); /* no parameter skipped */
print z1 z2 z3;
```

Figure 26.177 Skipping Module Arguments

<table>
<thead>
<tr>
<th>z1</th>
<th>z2</th>
<th>z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

ITSOLVER Call

CALL ITSOLVER(x, error, iter, method, A, b, precon, tol, maxiter, start, history);

The ITSOLVER subroutine solves a sparse linear system by using iterative methods.

The ITSOLVER call returns the following values:

x is the solution to $Ax=b$.

$error$ is the final relative error of the solution.

$iter$ is the number of iterations executed.

The input arguments to the ITSOLVER call are as follows:

$method$ is the type of iterative method to use. The following values are valid:

- “CG” specifies a conjugate gradient algorithm. The matrix A must be symmetric and positive definite.
- “CGS” specifies a conjugate gradient squared algorithm, for general A.
- “MINRES” specifies a minimum residual algorithm, when A is symmetric indefinite.
- “BICG” specifies a biconjugate gradient algorithm, for general A.

A is the sparse coefficient matrix in the equation $Ax=b$. You can use SPARSE function to convert a matrix from dense to sparse storage.
precon is the name of a preconditioning technique to use. The following values are valid:

- **“NONE”** specifies no preconditioning. This is the default behavior if the argument is not specified.
- **“IC”** specifies an incomplete Cholesky factorization. Specify this value when you specify “CG” or “MINRES” for the **method** argument.
- **“DIAG”** specifies a diagonal Jacobi preconditioner. Specify this value when you specify “CG” or “MINRES” for the **method** argument.
- **“MILU”** specifies a modified incomplete LU factorization. Specify this value when you specify “BICG” for the **method** argument.

tol is the relative error tolerance.

maxiter is the iteration limit.

start is a starting point column vector.

history is a matrix to store the relative error at each iteration.

The ITSOLVER call solves a sparse linear system by iterative methods, which involve updating a trial solution over successive iterations to minimize the error. The ITSOLVER call uses the technique specified in the **method** parameter to update the solution.

The input matrix **A** represents the coefficient matrix in sparse format; it is an **n x 3** matrix, where **n** is the number of nonzero elements. The first column contains the nonzero values, and the second and third columns contain the row and column locations for the nonzero elements, respectively. For the algorithms that assume symmetric **A**, only the lower triangular elements should be specified. The algorithm continues iterating to improve the solution until either the relative error tolerance specified in **tol** is satisfied or the maximum number of iterations specified in **maxiter** is reached. The relative error is defined as

\[
\text{error} = \frac{\|Ax - b\|_2}{\|b\|_2 + \epsilon}
\]

where the \(\| \cdot \|_2\) operator is the Euclidean norm and \(\epsilon\) is a machine-dependent epsilon value to prevent any division by zero. If **tol** or **maxiter** is not specified in the call, then a default value of \(10^{-7}\) is used for **tol** and 100,000 for **maxiter**.

The convergence of an iterative algorithm can often be enhanced by preconditioning the input coefficient matrix. The preconditioning option is specified with the **precon** parameter.

A starting trial solution can be specified with the **start** parameter; otherwise the ITSOLVER call generates a zero starting point. You can supply a matrix to store the relative error at each iteration with the **history** parameter. The **history** matrix should be dimensioned with enough elements to store the maximum number of iterations you expect.

You should always check the returned **error** and **iter** parameters to verify that the desired relative error tolerance is reached. If the tolerance is not reached, the program might continue the solution process with another ITSOLVER call, with **start** set to the latest result. You might also try a different **precon** option to enhance convergence.
For example, the following linear system has a coefficient matrix that contains several zeros:

\[
\begin{bmatrix}
3 & 2 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & -10 & 0 \\
0 & 3.2 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\]

You can represent the matrix in sparse form and use the biconjugate gradient algorithm to solve the linear system, as shown in the following statements:

```plaintext
/* value row column */
A = ( 3 1 1,
     2 1 2,
     1.1 2 1,
     4 2 2,
     1 3 2,
     3.2 4 2,
    -10 3 3,
     3 4 4);

/* right hand side */
b = (1, 1, 1, 1);
maxiter = 10;
hist = j(maxiter,1,.);
start = {1,1,1,1};
tol = 1e-10;
call itsolver(x, error, iter, "bicg", A, b, "milu", tol,
maxiter, start, hist);
print x;
print iter error;
print hist;
```

Figure 26.178 Solution of a Linear System
The following linear system also has a coefficient matrix with several zeros:

\[
\begin{bmatrix}
3 & 1.1 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & 10 & 0 \\
0 & 3.2 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\]

The following statements represent the matrix in sparse form and use the conjugate gradient algorithm to solve the symmetric positive definite system:

```c
/* value   row column */
A = { 3  1  1,
     1.1 2  1,
     4  2  2,
     1  3  2,
     3.2 4  2,
     10 3  3,
     3  4  4};

/* right hand side */
b = {1, 1, 1, 1};
call itsolver(x, error, iter, "CG", A, b);
print x, iter, error;
```

Figure 26.179 Solution to Sparse System

<table>
<thead>
<tr>
<th>x</th>
<th>2.68</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6.4</td>
</tr>
<tr>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>7.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iter</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>2.847E-15</td>
</tr>
</tbody>
</table>
J Function

\[J(nrow <, ncol> <, value>); \]

The J function creates a matrix with \(nrow \) rows and \(ncol \) columns with all elements equal to \(value \).

The arguments to the J function are as follows:

- \(nrow \) is a numeric matrix or literal that contains the number of rows.
- \(ncol \) is a numeric matrix or literal that contains the number of columns.
- \(value \) is a numeric or character matrix or literal for filling the rows and columns of the matrix.

If \(ncol \) is not specified, it defaults to \(nrow \). If \(value \) is not specified, it defaults to 1. The REPEAT function and the SHAPE function also perform this operation, and they are more general.

Examples of the J function are as follows:

\[b = j(3, 4); \]
\[c = j(5, 2, "xyz"); \]
\[print b, c; \]

Figure 26.180 Constant Matrices

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>xyz xyz</td>
</tr>
<tr>
<td>xyz xyz</td>
</tr>
<tr>
<td>xyz xyz</td>
</tr>
<tr>
<td>xyz xyz</td>
</tr>
</tbody>
</table>

JROOT Function

\[JROOT(order, n); \]

The JROOT function computes the first nonzero roots of a Bessel function of the first kind and the derivative of the Bessel function at each root. The function returns an \(n \times 2 \) matrix with the computed roots in the first column and the derivatives in the second column. You can evaluate the Bessel function itself by calling the JBESSEL function.

The arguments to the JROOT function are as follows:

- \(order \) is a scalar that denotes the order of the Bessel function, with \(order > -1 \). The order of a Bessel function is often indicated with the Greek subscript \(\nu \), so that \(J_\nu \) indicates the Bessel function of order \(\nu \).
is a positive integer that denotes the number of roots.

The JROOT function returns a matrix in which the first column contains the first \(n \) roots of the Bessel function; these roots are the solutions to the equation

\[
J_{\nu}(x_i) = 0, \ i = 1, \ldots, n
\]

The second column of this matrix contains the derivatives \(J'_{\nu}(x_i) \) of the Bessel function at each of the roots \(x_i \). The expression \(J_{\nu}(x) \) is a solution to the differential equation

\[
x^2 \frac{d^2 J_{\nu}}{dx^2} + x \frac{dJ_{\nu}}{dx} + (x^2 - \nu^2)J_{\nu} = 0
\]

One of the expressions for such a function is given by the series

\[
J_{\nu}(x) = \left(\frac{1}{2}\right)^\nu \sum_{k=0}^{\infty} \frac{(-\frac{1}{4}x^2)^k}{k!\Gamma(\nu + k + 1)}
\]

where \(\Gamma(\cdot) \) is the gamma function. See Abramowitz and Stegun (1972) for more details concerning the Bessel and gamma functions.

The root-finding algorithm is a Newton method coupled with a reasonable initial guess. For large values of \(n \) or \(\nu \), the algorithm could fail due to machine limitations. In this case, JROOT returns a matrix with zero rows and zero columns. The values that cause the algorithm to fail are machine-dependent.

The following statements compute the first few roots for the Bessel function of the first kind:

```plaintext
x = jroot(1, 4);
print x;
```

![Figure 26.181](attachment:roots.png) Roots of a Bessel Function

<table>
<thead>
<tr>
<th>x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.831706</td>
<td>-0.402759</td>
</tr>
<tr>
<td>7.0155867</td>
<td>0.3001158</td>
</tr>
<tr>
<td>10.173468</td>
<td>-0.249705</td>
</tr>
<tr>
<td>13.323692</td>
<td>0.2183594</td>
</tr>
</tbody>
</table>

To obtain only the roots, you can use the following statement, which extracts the first column of the returned matrix:

```plaintext
r = x[,1];
```

KALCVF Call

```plaintext
CALL KALCVF(pred, vpred, filt, vfilt, data, lead, a, f, b, h, var <, z0 <, vz0 >);
```

The KALCVF subroutine computes the one-step prediction \(z_{t+1|t} \) and the filtered estimate \(z_{t|t} \), in addition to their covariance matrices. The call uses forward recursions, and you can also use it to obtain \(k \)-step estimates.

The input arguments to the KALCVF subroutine are as follows:
data is a $T \times N_y$ matrix that contains data $(y_1, \ldots, y_T)'$.

lead is the number of steps to forecast after the end of the data.

a is an $N_z \times 1$ vector for a time-invariant input vector in the transition equation, or a $(T + \text{lead})N_z \times 1$ vector that contains input vectors in the transition equation.

f is an $N_z \times N_z$ matrix for a time-invariant transition matrix in the transition equation, or a $(T + \text{lead})N_z \times N_z$ matrix that contains transition matrices in the transition equation.

b is an $N_y \times 1$ vector for a time-invariant input vector in the measurement equation, or a $(T + \text{lead})N_y \times 1$ vector that contains input vectors in the measurement equation.

h is an $N_y \times N_z$ matrix for a time-invariant measurement matrix in the measurement equation, or a $(T + \text{lead})N_y \times N_z$ matrix that contains measurement matrices in the measurement equation.

var is an $(N_z + N_y) \times (N_z + N_y)$ matrix for a time-invariant variance matrix for the error in the transition equation and the error in the measurement equation, or a $(T + \text{lead})(N_z + N_y) \times (N_z + N_y)$ matrix that contains variance matrices for the error in the transition equation and the error in the measurement equation—that is, $(\eta_t', \epsilon_t')'$.

$z0$ is an optional $1 \times N_z$ initial state vector $z_{1|0}$.

$vz0$ is an optional $N_z \times N_z$ covariance matrix of an initial state vector $P_{1|0}$.

The KALCVF call returns the following values:

pred is a $(T + \text{lead}) \times N_z$ matrix that contains one-step predicted state vectors $(z_{1|0}, \ldots, z_{T+1|T}, z_{T+2|T}, \ldots, z_{T+\text{lead}|T})'$.

vpred is a $(T + \text{lead})N_z \times N_z$ matrix that contains mean square errors of predicted state vectors $(P_{1|0}, \ldots, P_{T+1|T}, P_{T+2|T}, \ldots, P_{T+\text{lead}|T})'$.

filt is a $T \times N_z$ matrix that contains filtered state vectors $(z_{1|1}, \ldots, z_{T|T})'$.

vfilt is a $TN_z \times N_z$ matrix that contains mean square errors of filtered state vectors $(P_{1|1}, \ldots, P_{T|T})'$.

The KALCVF call computes the conditional expectation of the state vector z_t given the observations, assuming that the mean and the variance of the initial state vector are known. The filtered value is the conditional expectation of the state vector z_t given the observations up to time t. For k-step forecasting where $k > 0$, the conditional expectation at time $t + k$ is computed given observations up to t. For notation, V_t and R_t are variances of η_t and ϵ_t, respectively, and G_t is a covariance of η_t and ϵ_t, and A^{-} stands for the generalized inverse of A. The filtered value and its covariance matrix are denoted $z_{t|t}$ and $P_{t|t}$, respectively. For $k > 0$, $z_{t+k|t}$ and $P_{t+k|t}$ stand for the k-step forecast of z_{t+k} and its mean square error. The Kalman
filtering algorithm for one-step prediction and filtering is given as follows:

\[
\begin{align*}
\hat{e}_t &= y_t - b_t - H_t z_{t|t-1} \\
D_t &= H_t P_{t|t-1} H_t' + R_t \\
Z_{t|t} &= Z_{t|t-1} + P_{t|t-1} H_t' D_t^{-1} \hat{e}_t \\
P_{t|t} &= P_{t|t-1} - P_{t|t-1} H_t' D_t^{-1} H_t P_{t|t-1} \\
K_t &= (F_t P_{t|t-1} H_t' + G_t) D_t^{-1} \\
Z_{t+1|t} &= a_t + F_{t} z_{t|t-1} + K_t \hat{e}_t \\
P_{t+1|t} &= F_{t} P_{t|t-1} F_{t}' + V_t - K_t D_t K_t'
\end{align*}
\]

And for \(k \)-step forecasting for \(k > 1 \),

\[
\begin{align*}
Z_{t+k|t} &= a_{t+k-1} + F_{t+k-1} Z_{t+k-1|t} \\
P_{t+k|t} &= F_{t+k-1} P_{t+k-1|t} F_{t+k-1}' + V_{t+k-1}
\end{align*}
\]

When you use the alternative transition equation

\[
z_t = a_t + F_t z_{t-1} + \eta_t
\]

the forward recursion algorithm is written

\[
\begin{align*}
\hat{e}_t &= y_t - b_t - H_t z_{t|t-1} \\
D_t &= H_t P_{t|t-1} H_t' + H_t G_t + G_t' H_t' + R_t \\
Z_{t|t} &= Z_{t|t-1} + (P_{t|t-1} H_t' + G_t) D_t^{-1} \hat{e}_t \\
P_{t|t} &= P_{t|t-1} - (P_{t|t-1} H_t' + G_t) D_t^{-1} (H_t P_{t|t-1} + G_t') \\
K_t &= (F_{t+1} P_{t|t-1} H_t' + G_t) D_t^{-1} \\
Z_{t+1|t} &= a_{t+1} + F_{t+1} z_{t|t-1} + K_t \hat{e}_t \\
P_{t+1|t} &= F_{t+1} P_{t|t-1} F_{t+1}' + V_{t+1} - K_t D_t K_t'
\end{align*}
\]

And for \(k \)-step forecasting \((k > 1)\),

\[
\begin{align*}
Z_{t+k|t} &= a_{t+k} + F_{t+k} Z_{t+k-1|t} \\
P_{t+k|t} &= F_{t+k} P_{t+k-1|t} F_{t+k}' + V_{t+k}
\end{align*}
\]

You can use the KALCVF call when you specify the alternative transition equation and \(G_t = 0 \).

The initial state vector and its covariance matrix of the time-invariant Kalman filters are computed under the stationarity condition

\[
\begin{align*}
Z_{1|0} &= (I - F)^{-1} a \\
P_{1|0} &= (I - F \otimes F)^{-1} \vec(V)
\end{align*}
\]
where F and V are the time-invariant transition matrix and the covariance matrix of transition equation noise, and $\text{vec}(V)$ is an $N_z^2 \times 1$ column vector that is constructed by the stacking N_z columns of matrix V. Note that all eigenvalues of the matrix F are inside the unit circle when the SSM is stationary. When the preceding formula cannot be applied, the initial state vector estimate $z_{1|0}$ is set to a_1 and its covariance matrix $P_{1|0}$ is given by $10^6 I$. Optionally, you can specify initial values.

The KALCVF call accepts missing values in observations. If there is a missing observation, the filtered state vector for the missing observation is given by the one-step forecast.

The following program gives an example of the KALCVF call:

```plaintext
q = 2;
p = 2;
n = 10;
lead = 3;
total = n + lead;

seed = 25735;
x = round(10*normal(j(n, p, seed)))/10;
f = round(10*normal(j(q*total, q, seed)))/10;
a = round(10*normal(j(total*q, 1, seed)))/10;
h = round(10*normal(j(p*total, q, seed)))/10;
b = round(10*normal(j(p*total, 1, seed)))/10;

do i = 1 to total;
    temp = round(10*normal(j(p+q, p+q, seed)))/10;
    var = var//(temp*temp')/10;
end;

call kalcvf(pred, vpred, filt, vfilt, x, lead, a, f, b, h, var);

/* default initial state and covariance */
call kalcvs(sm, vsm, x, a, f, b, h, var, pred, vpred);
print sm[format=9.4] vsm[format=9.4];
```
The KALCVS subroutine uses backward recursions to compute the smoothed estimate $z_{t|T}$ and its covariance matrix, $P_{t|T}$, where T is the number of observations in the complete data set.

The input arguments to the KALCVS subroutine are as follows.

- **data** is a $T \times N_y$ matrix that contains data $(y_1, \ldots, y_T)'$.
- **a** is an $N_z \times 1$ vector for a time-invariant input vector in the transition equation, or a $TN_z \times 1$ vector that contains input vectors in the transition equation.
- **f** is an $N_z \times N_z$ matrix for a time-invariant transition matrix in the transition equation, or a $TN_z \times N_z$ matrix that contains T transition matrices.
- **b** is an $N_y \times 1$ vector for a time-invariant input vector in the measurement equation, or a $TN_y \times 1$ vector that contains input vectors in the measurement equation.
- **h** is an $N_y \times N_z$ matrix for a time-invariant measurement matrix in the measurement equation, or a $TN_y \times N_z$ matrix that contains T time-variant H_t matrices in the measurement equation.
\texttt{var} is an \((N_Z + N_Y) \times (N_Z + N_Y)\) covariance matrix for the errors in the transition and the measurement equations, or a \(T(N_Z + N_Y) \times (N_Z + N_Y)\) matrix that contains covariance matrices in the transition equation and measurement equation noises—that is, \((\eta_t', \epsilon_t')'\).

\texttt{pred} is a \(T \times N_Z\) matrix that contains one-step forecasts \((z_{1|0}, \ldots, z_{T|T-1})'\).

\texttt{vpred} is a \(T N_Z \times N_Z\) matrix that contains mean square error matrices of predicted state vectors \((P_{1|0}, \ldots, P_{T|T-1})'\).

\texttt{un} is an optional \(1 \times N_Z\) vector that contains \(u_T\). The returned value is \(u_0\).

\texttt{vun} is an optional \(N_Z \times N_Z\) matrix that contains \(U_T\). The returned value is \(U_0\).

The \texttt{KALCVS} call returns the following values:

\texttt{sm} is a \(T \times N_Z\) matrix that contains smoothed state vectors \((z_{1|T}, \ldots, z_{T|T})'\).

\texttt{vsm} is a \(T N_Z \times N_Z\) matrix that contains covariance matrices of smoothed state vectors \((P_{1|T}, \ldots, P_{T|T})'\).

When the Kalman filtering is performed in the \texttt{KALCVF} call, the \texttt{KALCVS} call computes smoothed state vectors and their covariance matrices. The fixed-interval smoothing state vector at time \(t\) is obtained by the conditional expectation given all observations.

The smoothing algorithm uses one-step forecasts and their covariance matrices, which are given in the \texttt{KALCVF} call. For notation, \(z_{t|T}\) is the smoothed value of the state vector \(z_t\), and the mean square error matrix is denoted \(P_{t|T}\). For smoothing,

\[
\hat{\epsilon}_t = y_t - b_t - H_t z_{t|t-1}
\]

\[
D_t = H_t P_{t|t-1} H_t' + R_t
\]

\[
K_t = (F_t P_{t|t-1} H_t' + G_t) D_t^{-1}
\]

\[
L_t = F_t - K_t H_t
\]

\[
u_{t-1} = H_t' D_t^{-1} \hat{\epsilon}_t + L_t' u_t
\]

\[
U_{t-1} = H_t' D_t^{-1} H_t + L_t' U_t L_t
\]

\[
z_{t|T} = z_{t|t-1} + P_{t|t-1} u_{t-1}
\]

\[
P_{t|T} = P_{t|t-1} - P_{t|t-1} U_{t-1} P_{t|t-1}
\]

where \(t = T, T - 1, \ldots, 1\). The initial values are \(u_T = 0\) and \(U_T = 0\).

When the SSM is specified by using the alternative transition equation

\[z_t = a_t + F_t z_{t-1} + \eta_t\]
the fixed-interval smoothing is performed by using the following backward recursions:

\[
\begin{align*}
\hat{e}_t & = y_t - bt - H_t z_t | t-1 \\
D_t & = H_t P_{t | t-1} H_t' + R_t \\
K_t & = F_{t+1} P_{t | t-1} H_t' D_t^{-} \\
L_t & = F_{t+1} - K_t H_t \\
u_{t-1} & = H_t' D_t^{-} \hat{e}_t + L_t' b_t \\
U_{t-1} & = H_t' D_t^{-} H_t + L_t' U_t L_t \\
z_{t | T} & = z_{t | t-1} + P_{t | t-1} u_{t-1} \\
P_{t | T} & = P_{t | t-1} - P_{t | t-1} U_{t-1} P_{t | t-1}
\end{align*}
\]

where it is assumed that \(G_t = 0 \).

You can use the KALCVS call regardless of the specification of the transition equation when \(G_t = 0 \). Harvey (1989) gives the following fixed-interval smoothing formula, which produces the same smoothed value:

\[
\begin{align*}
z_{t | T} & = z_{t | t} + P_t^* (z_{t+1 | T} - z_{t+1 | t}) \\
P_{t | T} & = P_{t | t} + P_t^* (P_{t+1 | T} - P_{t+1 | t}) P_t^{*'}
\end{align*}
\]

where

\[
P_t^* = P_{t | t} F_t' P_{t+1 | t}^{-}
\]

under the shifted transition equation, but

\[
P_t^* = P_{t | t} F_{t+1} P_{t+1 | t}^{-}
\]

under the alternative transition equation.

The KALCVS call is accompanied by the KALCVF call, as shown in the following statements. Note that you do not need to specify UN and VUN.

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]

You can also compute the smoothed estimate and its covariance matrix on an observation-by-observation basis. When the SSM is time invariant, the following example performs smoothing. In this situation, you should initialize UN and VUN as matrices of value 0, as shown in the following statements:

\[
call kalcvs(sm, vsm, y, a, f, b, h, var, pred, vpred);
\]
The KALCVF call has an example program that includes the KALCVS call.

The KALDFF subroutine computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The call estimates the conditional expectation of \(z_t \), and also estimates the initial random vector, \(\delta \), and its covariance matrix.

The input arguments to the KALDFF subroutine are as follows:

- **data**: is a \(T \times N_y \) matrix that contains data \((y_1, \ldots, y_T)' \).
- **lead**: is the number of steps to forecast after the end of the data set.
- **int**: is an \((N_z + N_y) \times N_\beta \) matrix for a time-invariant fixed matrix, or a \((T + \text{lead})(N_z + N_y) \times N_\beta \) matrix that contains fixed matrices for the time-variant model in the transition equation and the measurement equation—that is, \((W'_t, X'_t)' \).
- **coef**: is an \((N_z + N_y) \times N_z \) matrix for a time-invariant coefficient, or a \((T + \text{lead})(N_z + N_y) \times N_z \) matrix that contains coefficients at each time in the transition equation and the measurement equation—that is, \((a'_t, b'_t)' \).
- **var**: is an \((N_z + N_y) \times (N_z + N_y) \) matrix for a time-invariant variance matrix for the error in the transition equation and the error in the measurement equation, or a \((T + \text{lead})(N_z + N_y) \times (N_z + N_y) \) matrix that contains covariance matrices for the error in the transition equation and the error in the measurement equation—that is, \((\eta'_t, \epsilon'_t)' \).
- **intd**: is an \((N_z + N_\beta) \times 1 \) vector that contains the intercept term in the equation for the initial state vector \(z_0 \) and the mean effect \(\beta \)—that is, \((a', b')' \).
- **coefd**: is an \((N_z + N_\beta) \times N_\delta \) matrix that contains coefficients for the initial state \(\delta \) in the equation for the initial state vector \(z_0 \) and the mean effect \(\beta \)—that is, \((A', B')' \).
- **n0**: is an optional scalar including an initial denominator. If \(n0 > 0 \), the denominator for \(\hat{\delta}_t^2 \) is \(n0 \) plus the number \(n_t \) of elements of \((y_1, \ldots, y_t)' \). If \(n0 \leq 0 \) or \(n0 \) is not specified, the denominator for \(\hat{\delta}_t^2 \) is \(n_t \). With \(n0 \geq 0 \), the initial values, \(A_1, M_1, \) and \(Q_1 \), are assumed to be known and, hence, \(at, mt, \) and \(qt \) are used for input that contains the initial values. If the value of \(n0 \) is negative or \(n0 \) is not specified, the initial values for \(at, mt, \) and \(qt \) are computed. The value of \(n0 \) is updated as \(\max(n0, 0) + n_t \) after the KALDFF call.
- **at**: is an optional \(kN_z \times (N_\delta + 1) \) matrix. If \(n0 \geq 0 \), \(at \) contains \((A'_1, \ldots, A'_{k})' \). However, only the first matrix \(A_1 \) is used as input. When you specify the KALDFF call, \(at \) returns \((A'_{T-k+\text{lead}+1}, \ldots, A'_{T+\text{lead}})' \). If \(n0 \) is negative or the matrix \(A_1 \) contains missing values, \(A_1 \) is automatically computed.

KALDFF Call

```fortran
CALL KALDFF(pred, vpred, initial, s2, data, lead, int, coef, var, intd, coefd, <, n0 >, at, mt, qt >);
```

The KALDFF subroutine computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The call estimates the conditional expectation of \(z_t \), and also estimates the initial random vector, \(\delta \), and its covariance matrix.

The input arguments to the KALDFF subroutine are as follows:

- **data**: is a \(T \times N_y \) matrix that contains data \((y_1, \ldots, y_T)' \).
- **lead**: is the number of steps to forecast after the end of the data set.
- **int**: is an \((N_z + N_y) \times N_\beta \) matrix for a time-invariant fixed matrix, or a \((T + \text{lead})(N_z + N_y) \times N_\beta \) matrix that contains fixed matrices for the time-variant model in the transition equation and the measurement equation—that is, \((W'_t, X'_t)' \).
- **coef**: is an \((N_z + N_y) \times N_z \) matrix for a time-invariant coefficient, or a \((T + \text{lead})(N_z + N_y) \times N_z \) matrix that contains coefficients at each time in the transition equation and the measurement equation—that is, \((a'_t, b'_t)' \).
- **var**: is an \((N_z + N_y) \times (N_z + N_y) \) matrix for a time-invariant variance matrix for the error in the transition equation and the error in the measurement equation, or a \((T + \text{lead})(N_z + N_y) \times (N_z + N_y) \) matrix that contains covariance matrices for the error in the transition equation and the error in the measurement equation—that is, \((\eta'_t, \epsilon'_t)' \).
- **intd**: is an \((N_z + N_\beta) \times 1 \) vector that contains the intercept term in the equation for the initial state vector \(z_0 \) and the mean effect \(\beta \)—that is, \((a', b')' \).
- **coefd**: is an \((N_z + N_\beta) \times N_\delta \) matrix that contains coefficients for the initial state \(\delta \) in the equation for the initial state vector \(z_0 \) and the mean effect \(\beta \)—that is, \((A', B')' \).
- **n0**: is an optional scalar including an initial denominator. If \(n0 > 0 \), the denominator for \(\hat{\delta}_t^2 \) is \(n0 \) plus the number \(n_t \) of elements of \((y_1, \ldots, y_t)' \). If \(n0 \leq 0 \) or \(n0 \) is not specified, the denominator for \(\hat{\delta}_t^2 \) is \(n_t \). With \(n0 \geq 0 \), the initial values, \(A_1, M_1, \) and \(Q_1 \), are assumed to be known and, hence, \(at, mt, \) and \(qt \) are used for input that contains the initial values. If the value of \(n0 \) is negative or \(n0 \) is not specified, the initial values for \(at, mt, \) and \(qt \) are computed. The value of \(n0 \) is updated as \(\max(n0, 0) + n_t \) after the KALDFF call.
- **at**: is an optional \(kN_z \times (N_\delta + 1) \) matrix. If \(n0 \geq 0 \), \(at \) contains \((A'_1, \ldots, A'_{k})' \). However, only the first matrix \(A_1 \) is used as input. When you specify the KALDFF call, \(at \) returns \((A'_{T-k+\text{lead}+1}, \ldots, A'_{T+\text{lead}})' \). If \(n0 \) is negative or the matrix \(A_1 \) contains missing values, \(A_1 \) is automatically computed.
The KALDFF call returns the following values:

- **pred**: a \((T + \text{lead}) \times N_z\) matrix that contains estimated predicted state vectors \((\hat{z}_{10}, \ldots, \hat{z}_{T+1|T}, \hat{z}_{T+2|T}, \ldots, \hat{z}_{T+\text{lead}|T})'\).

- **vpred**: a \((T + \text{lead}) N_z \times N_z\) matrix that contains estimated mean square errors of predicted state vectors \((P_{10}, \ldots, P_{T+1|T}, P_{T+2|T}, \ldots, P_{T+\text{lead}|T})'\).

- **initial**: an \(N_d \times (N_d + 1)\) matrix that contains an estimate and its variance for initial state \(\delta\), that is, \((\delta_T, \hat{\Sigma}_T)\).

- **s2**: a scalar that contains the estimated variance \(\hat{\sigma}_T^2\).

The KALDFF call computes the one-step forecast of state vectors in an SSM by using the diffuse Kalman filter. The SSM for the diffuse Kalman filter is written

\[
\begin{align*}
y_t &= X_t \beta + H_t z_t + \epsilon_t \\
z_{t+1} &= W_t \beta + F_t z_t + \eta_t \\
z_0 &= a + A \delta \\
\beta &= b + B \delta
\end{align*}
\]

where \(z_t\) is an \(N_z \times 1\) state vector, \(y_t\) is an \(N_y \times 1\) observed vector, and

\[
\begin{bmatrix}
\eta_t \\
\epsilon_t
\end{bmatrix} \sim N\left(0, \sigma^2 \begin{bmatrix}
V_t & G_t \\
G_t' & R_t
\end{bmatrix}\right)
\]

\[
\delta \sim N(\mu, \sigma^2 \Sigma)
\]

It is assumed that the noise vector \((\eta_t', \epsilon_t')'\) is independent and \(\delta\) is independent of the vector \((\eta_t', \epsilon_t')'\). The matrices, \(W_t, F_t, X_t, H_t, a, A, b, B, V_t, G_t, \text{ and } R_t\), are assumed to be known. The KALDFF call estimates the conditional expectation of the state vector \(z_t\) given the observations. The KALDFF subroutine also produces the estimates of the initial random vector \(\delta\) and its covariance matrix. For \(k\)-step forecasting where \(k > 0\), the estimated conditional expectation at time \(t + k\) is computed with observations given up to time \(t\). The estimated \(k\)-step forecast and its estimated MSE are denoted \(z_{t+k|t}\) and \(P_{t+k|t}\) (for \(k > 0\)).
and \(E_t(\delta) \) are last-column-deleted submatrices of \(A_{t+k} \) and \(E_t \), respectively. The algorithm for one-step prediction is given as follows:

\[
E_t = (X_t B, y_t - X_t b) - H_t A_t \\
D_t = H_t M_t H_t' + R_t \\
Q_{t+1} = Q_t + E_t' D_t^{-1} E_t \\
\begin{bmatrix}
S_t & s_t \\
s_t' & q_t
\end{bmatrix} \\
\hat{\delta}_t^2 = (q_t - s_t' S_t^{-1} s_t) / n_t \\
\hat{\delta}_t = S_t^{-1} s_t \\
\hat{\Sigma}_{\delta,t} = \hat{\delta}_t^2 S_t^- \\
K_t = (F_t M_t H_t' + G_t) D_t^- \\
A_{t+1} = W_t(-B, b) + F_t A_t + K_t E_t \\
M_{t+1} = (F_t - K_t H_t) M_t F_t' + V_t - K_t G_t' \\
z_{t+1|t} = A_{t+1}(-\hat{\delta}_t', 1)' \\
P_{t+1|t} = \hat{\delta}_t^2 M_{t+1} + A_{t+1(\delta)} \hat{\Sigma}_{\delta,t} A_{t+1(\delta)}'^{-1}
\]

where \(n_t \) is the number of elements of \((y_1, \ldots, y_t)'\) plus \(\text{max}(n0, 0) \). Unless initial values are given and \(n0 \geq 0 \), initial values are set as follows:

\[
A_1 = W_1(-B, b) + F_1(-A, a) \\
M_1 = V_1 \\
Q_1 = 0
\]

For \(k \)-step forecasting where \(k > 1 \),

\[
A_{t+k} = W_{t+k-1}(-B, b) + F_{t+k-1} A_{t+k-1} \\
M_{t+k} = F_{t+k-1} M_{t+k-1} F_{t+k-1}' + V_{t+k-1} \\
D_{t+k} = H_{t+k} M_{t+k} H_{t+k}' + R_{t+k} \\
z_{t+k|t} = A_{t+k}(-\hat{\delta}_t', 1)' \\
P_{t+k|t} = \hat{\delta}_t^2 M_{t+k} + A_{t+k(\delta)} \hat{\Sigma}_{\delta,t} A_{t+k(\delta)}'^{-1}
\]

If there is a missing observation, the KALDFF call computes the one-step forecast for the observation that follows the missing observation as the two-step forecast from the previous observation.

An example that uses the KALDFF call is in the documentation for the KALDFS call.
The KALDFS subroutine computes the smoothed state vector and its mean square error matrix from the one-step forecast and mean square error matrix computed by KALDFF subroutine.

The input arguments to the KALDFS subroutine are as follows:

data is a $T \times N_y$ matrix that contains data $(y_1, \ldots, y_T)'$.
int is an $(N_z + N_y) \times N_\beta$ vector for a time-invariant intercept, or a $(T + \text{lead})(N_z + N_y) \times N_\beta$ vector that contains fixed matrices for the time-variant model in the transition equation and the measurement equation—that is, $(W_t', X_t')'$.
coef is an $(N_z + N_y) \times N_z$ matrix for a time-invariant coefficient, or a $(T + \text{lead})(N_z + N_y) \times N_z$ matrix that contains coefficients at each time in the transition equation and the measurement equation—that is, $(F_t', H_t')'$.
var is an $(N_z + N_y) \times (N_z + N_y)$ matrix for a time-invariant variance matrix for transition equation noise and the measurement equation noise, or a $(T + \text{lead})(N_z + N_y) \times (N_z + N_y)$ matrix that contains covariance matrices for the transition equation and measurement equation errors—that is, $(\eta_t', \epsilon_t')'$.
bvec is an $N_\beta \times 1$ constant vector for the intercept for the mean effect β.
bmat is an $N_\beta \times N_\delta$ matrix for the coefficient for the mean effect β.
initial is an $N_\delta \times (N_\delta + 1)$ matrix that contains an initial random vector estimate and its covariance matrix—that is, $(\delta_0', \Sigma_{\delta,0})$.
at is a $TN_z \times (N_\delta + 1)$ matrix that contains $(A'_1, \ldots, A'_T)'$.
mt is a $(TN_z) \times N_z$ matrix that contains $(M_1, \ldots, M_T)'$.
s2 is the estimated variance in the end of the data set, $\hat{\sigma}_T^2$.
un is an optional $N_z \times (N_\delta + 1)$ matrix that contains u_T. The returned value is u_0.
vun is an optional $N_z \times N_z$ matrix that contains U_T. The returned value is U_0.

The KALDFS call returns the following values:

sm is a $T \times N_z$ matrix that contains smoothed state vectors $(z_{1|T}, \ldots, z_{T|T})'$.
vsm is a $TN_z \times N_z$ matrix that contains mean square error matrices of smoothed state vectors $(P_{1|T}, \ldots, P_{T|T})'$.

Given the one-step forecast and mean square error matrix in the KALDFF call, the KALDFS call computes a smoothed state vector and its mean square error matrix. Then the KALDFS subroutine produces an estimate of the smoothed state vector at time t—that is, the conditional expectation of the state vector z_t given all observations. Using the notations and results from the KALDFF subroutine section, the backward recursion
algorithm for smoothing is denoted for $t = T, T - 1, \ldots, 1$,

$$
E_t = (X_t B, y_t - X_t b) - H_t A_t \\
D_t = H_t M_t H_t' + R_t \\
L_t = F_t - (F_t M_t H_t' + G_t) D_t^{-1} H_t \\
u_{t-1} = H_t D_t^{-1} E_t + L_t' u_t \\
U_{t-1} = H_t D_t^{-1} H_t + L_t' U_t L_t \\
z_t|T = (A_t + M_t u_{t-1})(-\delta_T, 1)' \\
C_t = A_t + M_t u_{t-1} \\
P_t|T = \frac{\delta}{T} (M_t - M_t R_{t-1} M_t) + C_t(\delta) \Sigma_{\delta, T} C_t'(\delta)
$$

where the initial values are $u_T = b0$ and $U_T = 0$, and $C_t(\delta)$ is the last-column-deleted submatrix of C_t. See De Jong (1991) for details about smoothing in the diffuse Kalman filter.

The KALDFS call is accompanied by the KALDFF call as shown in the following statements:

```fortran
ny = ncol(y);
nz = ncol(coef);
nb = ncol(int);
nd = ncol(coefd);
at = j(nz, nd+1, .);
mt = j(nz, nz, .);
qt = j(nd+1, nd+1, .);
n0 = -1;
call kaldff(pred, vpred, initial, s2, y, 0, int, coef, var, intd, 
    coefd, n0, at, mt, qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
call kaldfs(sm, vsm, x, int, coef, var, bvec, bmat, 
    initial, at, mt, s2);
```

You can also compute the smoothed estimate and its covariance matrix observation by observation. When the SSM is time invariant, the following statements perform smoothing. You should initialize UN and VUN as matrices in which all elements are zero.

```fortran
n = nrow(y);
y = ncol(y);
nz = ncol(coef);
b = ncol(int);
nd = ncol(coefd);
at = j(nz, nd+1, .);
mt = j(nz, nz, .);
qt = j(nd+1, nd+1, .);
n0 = -1;
call kaldff(pred, vpred, initial, s2, y, 0, int, coef, var, intd, 
    coefd, n0, at, mt, qt);
bvec = intd[nz+1:nz+nb,];
bmat = coefd[nz+1:nz+nb,];
un = j(nz, nd+1, 0);
```
KURTOSIS Function

KURTOSIS(x);

The KURTOSIS function is part of the IMLMLIB library. The KURTOSIS function returns the sample kurtosis for each column of a matrix. The sample kurtosis measures the heaviness of the tails of a data distribution. The KURTOSIS function returns an estimate for the excess kurtosis, which is 3 less than the standardized fourth central moment.

The KURTOSIS function returns the same sample kurtosis as the UNIVARIATE procedure. For a formula, see the section “Descriptive Statistics” in the chapter “The UNIVARIATE Procedure” in Base SAS Procedures Guide: Statistical Procedures.

The following example computes the kurtosis for each column of a matrix:

```sas
x = {1 0,
     2 1,
     4 2,
     8 3,
     16 .};
kurt = kurtosis(x);
prient kurt;
```

Figure 26.183 Sample Kurtosis of Two Columns

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kurt</td>
<td></td>
</tr>
<tr>
<td>1.3037634</td>
<td>-1.2</td>
</tr>
</tbody>
</table>

LAG Function

LAG(x <, lags>);

The LAG function computes one or more lagged (shifted) values for time series data. The arguments are as follows:

- **x** specifies an \(n \times 1 \) numerical matrix of time series data.
- **lags** specifies integer lags. The **lags** argument can be an integer matrix with \(d \) elements. If so, the LAG function returns an \(n \times d \) matrix where the \(i \)th column represents the \(i \)th lag applied to the time series. If the **lags** argument is not specified, a value of 1 is used.

The values of the **lags** argument are usually positive integers. A positive lag shifts the time series data backwards in time. A lag of 0 represents the original time series. A negative value for the **lags** argument
shifts the time series data forward in time; this is sometimes called a lead effect. The LAG function is related to the DIF function.

For example, the following statements compute several lags:

```
x = {1,3,4,7,9};
lag = lag(x, {0 1 3});
print lag;
```

![Figure 26.184 Lagged Data](image)

LAV Call

```
CALL LAV(rc, xr, a, b <, x0> <, opt>);
```

The LAV subroutine performs linear least absolute value regression by solving the L_1 norm minimization problem.

The LAV subroutine returns the following values:

- rc is a scalar return code that indicates the reason for optimization termination.

<table>
<thead>
<tr>
<th>rc</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful</td>
</tr>
<tr>
<td>1</td>
<td>Successful, but approximate covariance matrix and standard errors cannot be computed</td>
</tr>
<tr>
<td>−1 or −3</td>
<td>Unsuccessful: error in the input arguments</td>
</tr>
<tr>
<td>−2</td>
<td>Unsuccessful: matrix A is rank-deficient ($\text{rank}(A) < n$)</td>
</tr>
<tr>
<td>−4</td>
<td>Unsuccessful: maximum iteration limit exceeded</td>
</tr>
<tr>
<td>−5</td>
<td>Unsuccessful: no solution found for ill-conditioned problem</td>
</tr>
</tbody>
</table>

- xr specifies a vector or matrix with n columns. If the optimization process is not successfully completed, xr is a row vector with n missing values. If termination is successful and the $\text{opt}[3]$ option is not set, xr is the vector with the optimal estimate, x^*. If termination is successful and the $\text{opt}[3]$ option is specified, xr is an $(n + 2) \times n$ matrix that contains the optimal estimate, x^*, in the first row, the asymptotic standard errors in the second row, and the $n \times n$ covariance matrix of parameter estimates in the remaining rows.

The input arguments to the LAV subroutine are as follows:

- a specifies an $m \times n$ matrix A with $m \geq n$ and full column rank, $\text{rank}(A) = n$. If you want to include an intercept in the model, you must include a column of ones in the matrix A.

Figure 26.184 Lagged Data

<table>
<thead>
<tr>
<th>lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.</td>
</tr>
<tr>
<td>3.1.</td>
</tr>
<tr>
<td>4.3.</td>
</tr>
<tr>
<td>7.4.1</td>
</tr>
<tr>
<td>9.7.3</td>
</tr>
</tbody>
</table>
LAV Call!

specifies the \(m \times 1 \) vector \(b \).

\(x0 \) specifies an optional \(n \times 1 \) vector that specifies the starting point of the optimization.

\(opt \) is an optional vector used to specify options. If an element of the \(opt \) vector is missing, the default value is used.

- \(opt[1] \) specifies the maximum number \(maxi \) of outer iterations (this corresponds to the number of changes of the Huber parameter \(\gamma \)). The default is \(maxi = \min(100, 10n) \).
 (The number of inner iterations is restricted by an internal threshold. If the number of inner iterations exceeds this threshold, a new outer iteration is started with an increased value of \(\gamma \).)

- \(opt[2] \) specifies the amount of printed output. Higher values request additional output and include the output of lower values.

<table>
<thead>
<tr>
<th>(opt[2])</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No output is printed.</td>
</tr>
<tr>
<td>1</td>
<td>Error and warning messages are printed.</td>
</tr>
<tr>
<td>2</td>
<td>The iteration history is printed (this is the default).</td>
</tr>
<tr>
<td>3</td>
<td>The (n) least squares ((L_2) norm) estimates are printed if no starting point is specified, the (L_1) norm estimates are always printed, and if (opt[3]) is set, the estimates are printed together with the asymptotic standard errors.</td>
</tr>
<tr>
<td>4</td>
<td>The (n \times n) approximate covariance matrix of parameter estimates is printed if (opt[3]) is set.</td>
</tr>
<tr>
<td>5</td>
<td>The residual and predicted values for all (m) rows (equations) of (A) are printed.</td>
</tr>
</tbody>
</table>

- \(opt[3] \) specifies which estimate of the variance of the median of nonzero residuals be used as a factor for the approximate covariance matrix of parameter estimates and for the approximate standard errors (ASE). If \(opt[3]=0 \), the McKean-Schrader (1987) estimate is used, and if \(opt[3]>0 \), the Cox-Hinkley (1974) estimate, with \(v = opt[3] \), is used. The default behavior is that the covariance matrix is not computed.

- \(opt[4] \) specifies whether a computationally expensive test for necessary and sufficient optimality of the solution \(x \) is executed. The default behavior (\(opt[4]=0 \)) is that the convergence test is not performed.

Missing values are not permitted in the \(a \) or \(b \) argument. The \(x0 \) argument is ignored if it contains any missing values. Missing values in the \(opt \) argument cause the default value to be used.

The LAV subroutine is designed for solving the unconstrained linear \(L_1 \) norm minimization problem,

\[
\min_x L_1(x) \text{ where } L_1(x) = \|Ax - b\|_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j - b_i
\]

for \(m \) equations with \(n \) (unknown) parameters \(x = (x_1, \ldots, x_n) \). This is equivalent to estimating the unknown parameter vector, \(x \), by least absolute value regression in the model

\[
b = Ax + \epsilon
\]

where \(b \) is the vector of \(n \) observations, \(A \) is the design matrix, and \(\epsilon \) is a random error term.
An algorithm by Madsen and Nielsen (1993) is used, which can be faster for large values of m and n than the Barrodale and Roberts (1974) algorithm. The current version of the algorithm assumes that A has full column rank. Also, constraints cannot be imposed on the parameters in this version.

The L_1 norm minimization problem is more difficult to solve than the least squares (L_2 norm) minimization problem because the objective function of the L_1 norm problem is not continuously differentiable (the first derivative has jumps). A function that is continuous but not continuously differentiable is called nonsmooth.

By using PROC NLP and the nonlinear optimization subroutines, you can obtain the estimates in linear and nonlinear L_1 norm estimation (even subject to linear or nonlinear constraints) as long as the number of parameters, n, is small. Using the nonlinear optimization subroutines, there are two ways to solve the nonlinear L_p norm, $p \geq 1$, problem:

- For small values of n, you can implement the Nelder-Mead simplex algorithm with the NLPNMS subroutine to solve the minimization problem in its original specification. The Nelder-Mead simplex algorithm does not assume a smooth objective function, does not take advantage of any derivatives, and therefore does not require continuous differentiability of the objective function. See the section “NLPNMS Call” on page 884 for details.

- Gonin and Money (1989) describe how an original L_p norm estimation problem can be modified to an equivalent optimization problem with nonlinear constraints which has a simple differentiable objective function. You can invoke the NLPQN subroutine, which implements a quasi-Newton algorithm, to solve the nonlinearly constrained L_p norm optimization problem. See the section “NLPQN Call” on page 893 for details about the NLPQN subroutine.

Both approaches are successful only for a small number of parameters and good initial estimates. If you cannot supply good initial estimates, the optimal results of the corresponding nonlinear least squares (L_2 norm) estimation can provide fairly good initial estimates.

Gonin and Money (1989) show that the nonlinear L_1 norm estimation problem

$$\min_x \sum_{i=1}^m |f_i(x)|$$

can be reformulated as a linear optimization problem with nonlinear constraints in the following ways.

- as a linear optimization problem with $2m$ nonlinear inequality constraints in $m + n$ variables u_i and x_j,

$$\min_x \sum_{i=1}^m u_i \text{ subject to } \begin{cases} f_i(x) - u_i \leq 0 \\ f_i(x) + u_i \geq 0 \\ u_i \geq 0 \end{cases} \quad i = 1, \ldots, m$$

- as a linear optimization problem with $2m$ nonlinear equality constraints in $2m + n$ variables y_i, z_i, and x_j,

$$\min_x \sum_{i=1}^m (y_i + z_i) \text{ subject to } \begin{cases} f_i(x) + y_i - z_i = 0 \\ y_i \geq 0 \\ z_i \geq 0 \end{cases} \quad i = 1, \ldots, m$$
For linear functions \(f_i(x) = \sum_{j=1}^{n} (a_{ij} x_j - b_i) \), \(i = 1, \ldots, m \), you obtain linearly constrained linear optimization problems, for which the number of variables and constraints is on the order of the number of observations, \(m \). The advantage that the algorithm by Madsen and Nielsen (1993) has over the Barrodale and Roberts (1974) algorithm is that its computational cost increases only linearly with \(m \), and it can be faster for large values of \(m \).

In addition to computing an optimal solution \(x^* \) that minimizes \(L_1(x) \), you can also compute approximate standard errors and the approximate covariance matrix of \(x^* \). The standard errors can be used to compute confidence limits.

The following example is the same one used for illustrating the LAV subroutine by Lee and Gentle (1986). \(A \) and \(b \) are as follows:

\[
A = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & 2 \\
1 & 2
\end{bmatrix}, \quad b = \begin{bmatrix}
1 \\
2 \\
1 \\
-1 \\
2 \\
4
\end{bmatrix}
\]

The following statements specify the matrix \(A \), the vector \(b \), and the options vector \(\text{opt} \). The options vector specifies that all output is printed (\(\text{opt}[2]=5 \)), that the asymptotic standard errors and covariance matrix are computed based on the McKean-Schrader (1987) estimate \(\lambda \) of the variance of the median (\(\text{opt}[3]=0 \)), and that the convergence test be performed (\(\text{opt}[4]=1 \)).

```plaintext
a = { 0, 1, -1, -1, 2, 2 }; m = nrow(a); a = j(m, 1, 1.) || a; b = { 1, 2, 1, -1, 2, 4 }; opt = { . 5 0 1 }; call lav(rc, xr, a, b, , opt);
```

The first part of the output is shown in Figure 26.185. This output displays the least squares solution, which is used as the starting point. The estimates of the largest and smallest nonzero eigenvalues of \(A'A \) give only an idea of the magnitude of these values, and they can be very crude approximations.

Figure 26.185 Least Squares Solution

<table>
<thead>
<tr>
<th>LS</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est</td>
<td>1</td>
</tr>
</tbody>
</table>

The second part of the printed output shows the iteration history. It is shown in Figure 26.186.
The third part of the output is shown in Figure 26.187. This output displays the L_1 norm solution (first row) together with asymptotic standard errors (second row) and the asymptotic covariance matrix of parameter estimates. The ASEs are the square roots of the diagonal elements of this covariance matrix.

The last part of the printed output shows the predicted values and residuals, as in Lee and Gentle (1986). It is shown in Figure 26.188.

Figure 26.186 Iteration History

<table>
<thead>
<tr>
<th>Iter</th>
<th>N Huber</th>
<th>Act Eqn</th>
<th>Rank</th>
<th>Gamma</th>
<th>$L_1(x)$</th>
<th>$F(Gamma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.9000</td>
<td>4.000000</td>
<td>2.200000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.0000</td>
<td>4.000000</td>
<td>2.200000</td>
</tr>
</tbody>
</table>

Figure 26.187 Parameter and Covariance Estimates

<table>
<thead>
<tr>
<th>Est</th>
<th>ASE</th>
<th>Cov Matrix:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4482711811</td>
<td>0.3310702082</td>
</tr>
<tr>
<td>ASE</td>
<td>0.2009470518</td>
<td>-0.054803741</td>
</tr>
<tr>
<td></td>
<td>-0.054803741</td>
<td>0.1096074828</td>
</tr>
</tbody>
</table>

Figure 26.188 Predicted and Residual Values

<table>
<thead>
<tr>
<th>Predicted Values and Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

LCP Call

```plaintext
CALL LCP(rc, w, z, m, q <, epsilon>);
```

The LCP subroutine solves the linear complementarity problem:

$$
\begin{align*}
 w &= Mz + q \\
 w'z &= 0 \\
 w, z &\geq 0
\end{align*}
$$
That is, given a matrix M and a vector q, the LCP subroutine computes orthogonal, nonnegative vectors w and z which satisfy the previous equations.

The input arguments to the LCP subroutine are as follows:

m is an \(m \times m \) matrix.

q is an \(m \times 1 \) matrix.

ϵ is a scalar that defines virtual zero. The default value of ϵ is $1E-8$.

The LCP subroutine returns the following matrices:

rc returns one of the following scalar return codes:

<table>
<thead>
<tr>
<th>rc</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A solution is found.</td>
</tr>
<tr>
<td>1</td>
<td>No solution is possible.</td>
</tr>
<tr>
<td>5</td>
<td>The solution is numerically unstable.</td>
</tr>
<tr>
<td>6</td>
<td>The subroutine could not obtain enough memory.</td>
</tr>
</tbody>
</table>

w returns an \(m \)-element column vector

z returns an \(m \)-element column vector

The following statements give a simple example:

```plaintext
q = {1, 1};
m = {1 0,
    0 1};
call lcp(rc, w, z, m, q);
print rc, w, z;
```

Figure 26.189 Solution to a Linear Complementarity Problem

The next example shows the relationship between quadratic programming and the linear complementarity problem. Consider the linearly constrained quadratic program:

\[
\begin{align*}
\min c'x & + \frac{1}{2}x'\mathbf{H}x \\
st. \ Gx & \geq \ b \quad (\text{QP}) \\
x & \geq 0
\end{align*}
\]
If \(H \) is positive semidefinite, then a solution to the Kuhn-Tucker conditions solves QP. The Kuhn-Tucker conditions for QP are

\[
\begin{align*}
 c + Hx &= \mu + G'\lambda \\
 \lambda' (Gx - b) &= 0 \\
 \mu' x &= 0 \\
 Gx &\geq b \\
 x, \mu, \lambda &\geq 0
\end{align*}
\]

In the linear complementarity problem, let

\[
\begin{align*}
 M &= \begin{bmatrix} H & -G' \\ G & 0 \end{bmatrix} \\
 w' &= (\mu' s') \\
 z' &= (x' \lambda') \\
 q' &= (c' - b)
\end{align*}
\]

Then the Kuhn-Tucker conditions are expressed as finding \(w \) and \(z \) that satisfy

\[
\begin{align*}
 w &= Mz + q \\
 w'z &= 0 \\
 w, z &\geq 0
\end{align*}
\]

From the solution \(w \) and \(z \) to this linear complementarity problem, the solution to QP is obtained; namely, \(x \) is the primal structural variable, \(s = Gx - b \) the surpluses, and \(\mu \) and \(\lambda \) are the dual variables. Consider a quadratic program with the following data:

\[
\begin{align*}
 C' &= (1245) \\
 B' &= (11) \\
 H &= \begin{bmatrix}
 100 & 10 & 1 & 0 \\
 10 & 100 & 10 & 1 \\
 1 & 10 & 100 & 10 \\
 0 & 1 & 10 & 100
 \end{bmatrix} \\
 G &= \begin{bmatrix}
 1 & 2 & 3 & 4 \\
 10 & 20 & 30 & 40
 \end{bmatrix}
\end{align*}
\]

This problem is solved by using the LCP subroutine as follows:

```c
/*---- Data for the Quadratic Program -----*/
c = {1, 2, 3, 4};
h = {100 10 1 0, 10 100 10 1, 1 10 100 10, 0 1 10 100};
g = {1 2 3 4, 10 20 30 40};
b = {1, 1};
```
/*----- Express the Kuhn-Tucker Conditions as an LCP ----*/
m = h || -g);
m = m // (g || j(nrow(g),nrow(g),0));
q = c // -b;

/*----- Solve for a Kuhn-Tucker Point --------*/
call lcp(rc, w, z, m, q);

/*----- Extract the Solution to the Quadratic Program --------*/
x = z[1:nrow(h)];
print rc x;

Figure 26.190 Solution to a Quadratic Programming Problem

<table>
<thead>
<tr>
<th>rc</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0307522</td>
<td>0.0619692</td>
</tr>
<tr>
<td>0.0929721</td>
<td>0.1415983</td>
</tr>
</tbody>
</table>

LENGTH Function

LENGTH(matrix);

The LENGTH function takes a character matrix as an argument and produces a numeric matrix as a result. The result matrix has the same dimensions as the argument and contains the lengths of the corresponding string elements in matrix. The length of a string is equal to the position of the rightmost nonblank character in the string. If a string is entirely blank, its length value is set to 1. An example of the LENGTH function follows:

c = {"Hello" "My name is Jenny"};
b = length(c);
print b;

Figure 26.191 Length of Elements of a Character Matrix

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 16</td>
</tr>
</tbody>
</table>

See also the description of the NLENG function.

LINK Statement

LINK(label);
 statements
label:statements ;
The LINK statement provides a way of calling a group of statements as if they were defined as a subroutine. When the LINK statement is executed, the program jumps immediately to the statement with the given label and begins executing statements from that point as it does for the GOTO statement. However, when the program executes a RETURN statement, the program returns to the statement that immediately follows the LINK statement, which is different behavior than the GOTO statement.

The LINK statement can be used only inside modules and DO groups. LINK statements can be nested within other LINK statements to any level. A RETURN statement without a LINK statement is executed the same as the STOP statement.

Instead of using a LINK statement, you can define a module and call the module by using a RUN statement.

An example that uses the LINK statement follows:

```plaintext
start a;
  x=1;
  y=2;
  link sum1; /* go to label; execute until return stmt */
  print z;
  stop;
  sum1:
    z=x+y;
    return;
finish a;

run a;
```

Figure 26.192 Result of Linking to a Group of Statements

<table>
<thead>
<tr>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

LIST Statement

```plaintext
LIST <range> <VAR operand> <WHERE(expression)> ;
```

The LIST statement displays observations of a data set.

The arguments to the LIST statement are as follows:

- **range**: specifies a range of observations. You can specify a range of observations by using the ALL, CURRENT, NEXT, AFTER, and POINT keywords, as described in the section “Process a Range of Observations” on page 102.

- **operand**: specifies a set of variables. As described in the section “Select Variables with the VAR Clause” on page 103, you can specify variable names by using a matrix literal, a character matrix, an expression, or the _ALL_, _CHAR_, or _NUM_ keywords.

- **expression**: specifies observations to list. If you omit the WHERE clause, all observations are listed. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.
The LIST statement displays selected observations of a data set. If all data values for variables in the VAR clause fit on a single line, values are displayed in columns headed by the variable names. Each record occupies a separate line. If the data values do not fit on a single line, values from each record are grouped into paragraphs. Each element in the paragraph has the form `name=value`.

The following examples demonstrate the use of the LIST statement. The output is not shown.

```sas
use Sashelp.Class;
list all; /* lists whole data set */
list; /* lists current observation */
list var{name age}; /* lists NAME and AGE in current obs */
list all where(age<=13); /* lists all obs where condition holds */
list next; /* lists next observation */
list point 18; /* lists observation 18 */
list point (10:15); /* lists observations 10 through 15 */
close Sashelp.Class;
```

LISTADDITEM Call

CALL LISTADDITEM(list, v, <, flag>);

The ListAddItem subroutine adds a new item to end of a list. The length of the list increases by one. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

- **list** specifies an existing list.
- **v** specifies a SAS/IML variable or literal. It can be a matrix, table, list, or any other valid SAS/IML type, including an empty matrix. The value of `v` will become a new list element.
- **flag** controls what happens to `v`. Valid values are:
 - `'c'` requests that the data in `v` be copied into the list. The `v` symbol is unchanged by the call. This is the default behavior.
 - `'m'` requests that the data in `v` be moved into the list. The `v` symbol is freed after the call.

The following statements create an empty list and then add two items:

```sas
L = ListCreate(); /* create empty list */
v1 = 1:3;
call ListAddItem(L, v1); /* v1 is unchanged */
v2 = "A", "Z";
call ListAddItem(L, v2, 'm'); /* v2 is freed */
```

LISTCREATE Function

LISTCREATE();
LISTCREATE(n);
LISTCREATE($names$);

The ListCreate function returns a new list. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

n returns a list that contains n empty elements. You can then use the ListSetItem subroutine to set the value of each item.

$names$ returns a named list whose length is the number of elements in the $names$ parameter. You can then use the ListSetItem subroutine to set the value of each item.

If you do not supply an argument, the function returns an empty list.

The following statements demonstrate several ways to create and fill a list:

```plaintext
L1 = ListCreate(); /* L1 is an empty list */
call ListAddItem(L1, 1:3); /* L1 now has one element */
L2 = ListCreate(2); /* allocate two elements */
call ListSetItem(L2, 1, "A":"Z"); /* 1st element: character vector */
call ListSetItem(L2, 2, 5:1); /* 2nd element: numeric vector */
L3 = ListCreate({"HireDate", "Name", "Salary"}); /* named list */
call ListSetItem(L3, "HireDate", {"01JUL1996"d "15JUN1997"d});
call ListSetItem(L3, "Name",{"John" "Fred"});
call ListSetItem(L3, "Salary", {72000 60000});
```

LISTDELETEITEM Call

CALL LISTDELETEITEM($list$, $position$);

The ListDeleteItem subroutine deletes an item from a list. The length of the list is decreased by the number of elements that are deleted. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

$list$ specifies an existing list.

$position$ specifies a numeric matrix of indices or a character matrix of item names. Names are not case sensitive.

The following statements show two ways to delete an item:

```plaintext
L2 = ListCreate(2); /* allocate two elements */
call ListSetItem(L2, 1, "A":"Z"); /* 1st element: character vector */
call ListSetItem(L2, 2, 5:1); /* 2nd element: numeric vector */
call ListDeleteItem(L2, 1); /* delete 1st element */
```
L3 = ListCreate("
HireDate", "Name", "Salary"); /* named list */
call ListSetItem(L3, "HireDate", {"01JUL1996"d "15JUN1997"d});
call ListSetItem(L3, "Name", {"John" "Fred"});
call ListSetItem(L3, "Salary", {72000 60000});
call ListDeleteItem(L3, "NAME"); /* delete Name item */

LISTDELETENAME Call

CALL LISTDELETENAME(list, position);

The ListDeleteName subroutine removes the names of one or more items, but the items themselves are not removed. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

- **list** specifies an existing list.
- **position** specifies a numeric matrix of indices or a character matrix of item names. Names are not case sensitive.

The first five of the following statements create a list that has four items. The call to the ListDeleteName subroutine deletes the names for the first and third items. After the deletion, the ListGetName function returns a four-element vector that has one nonmissing name and three missing value (blank strings), as shown in Figure 26.193.

L = ListCreate("
HireDate", "Name", "Salary", "JobTitle");
call ListSetItem(L, "HireDate", {"01JUL1996"d "15JUN1997"d});
call ListSetItem(L, "Name", {"John" "Fred"});
call ListSetItem(L, "Salary", {72000 60000});
call ListSetItem(L, "JobTitle", {"Manager" "Programmer"});
call ListDeleteName(L, {1 3}); /* delete 1st and 3rd names */

names = ListGetName(L);

print names;

Figure 26.193 Names of Elements in a List

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>JobTitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>names</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LISTGETALLNAMES Function

LISTGETALLNAMES(list);

The ListGetAllNames function returns a row vector that contains the names of all named elements in a list. The number of columns in the row vector equals the number of named elements. If there are no named elements, the function returns an empty matrix. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The function takes one argument:
list specifies an existing list.

The first three of the following statements create a list that has two named elements. The ListAddItem and ListInsertItem subroutines then add two unnamed elements to the list. The ListGetAllNames function returns a row vector that has two elements. As shown in Figure 26.194, the vector contains the names of all named elements.

```matlab
L = ListCreate("HireDate", "Salary"); % named list
call ListSetItem(L, "HireDate", {"01JUL1996" d "15JUN1997" d});
call ListSetItem(L, "Salary", {72000 60000});
call ListAddItem(L, 1:5); % add unnamed item
call ListInsertItem(L, 2, {"John" "Fred"}); % insert unnamed item

allNames = ListGetAllNames(L);
print allNames;
```

Figure 26.194 Names of Elements in a List

<table>
<thead>
<tr>
<th>allNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>HireDate Salary</td>
</tr>
</tbody>
</table>

Notice that the ListGetAllNames function returns the names of all named items, in contrast to the ListGetName function which returns a blank string for unnamed elements. To see the difference between the functions, use the ListGetName function in the preceding program.

LISTGETITEM Function

LISTGETITEM(list, position < flag>);

The ListGetItem function returns the value of a list item. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The function takes the following arguments:

- `list` specifies an existing list.
- `position` specifies a numeric matrix of indices or a character matrix of item names. Names are not case sensitive.
- `flag` controls what happens to the list element after its value is copied. Valid values are:
 - ‘c’ requests that the list item be copied, but not changed. This is the default behavior.
 - ‘m’ requests that the list item be moved. The element specified by `position` becomes empty, but the length of the list does not change.
 - ‘d’ requests that the list item be deleted. The length of the list decreases by one, and the indices of subsequent items are adjusted. For example, if you delete the fourth item, the fifth item becomes the fourth item, the sixth item becomes the fifth item, and so on.

For example, the following statements create a list that contains four elements and assign a matrix to each element. The first item is a 1×1 matrix, the second item is a 2×2 matrix, the third item is a 2×2 matrix, and the fourth item is a 4×4 matrix.
LISTGETNAME Function

LISTGETNAME(list <, position>);

The ListGetName function returns the names of one or more items in a list. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The function takes the following arguments:

list specifies an existing list.

dposition specifies a numeric matrix of indices of elements in the list.

The function returns a k-element character row vector, where k is the number of elements in the position vector. The character row vector contains a blank string for any specified element that does not have a name.

When called without the position argument, the function returns a character vector that contains the names of all elements in the list, as shown in the following example:

L = ListCreate(4);
do n = 1 to 4;
 call ListSetItem(L, n, j(n,n,n)); /* n x n matrix */
end;
x1 = ListGetItem(L, 1); /* copy value */
x2 = ListGetItem(L, 2, 'd'); /* copy value; delete item */
x3 = ListGetItem(L, 3, 'm'); /* copy value; free item */

The first call to the ListGetItem function copies the first item from the list into the $x1$ matrix. The list is unchanged.

The second call to the ListGetItem function copies the second item from the list into the $x2$ matrix. The ‘d’ parameter requests that the second list item be deleted. The length of the list decreases by one. After the call returns, the second item is a 3×3 matrix and the third item is a 4×4 matrix.

The third call to the ListGetItem function copies the third item from the list into the $x3$ matrix. The ‘m’ parameter requests that the third list item become an empty matrix, but leaves the length of the list unchanged.

After the program runs, the list contains three items: a 1×1 matrix, a 3×3 matrix, and an empty matrix.

Figure 26.195 Names of Elements in a List

<table>
<thead>
<tr>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>HireDate Name Salary</td>
</tr>
</tbody>
</table>

The first call to the ListGetItem function copies the first item from the list into the $x1$ matrix. The list is unchanged.

The second call to the ListGetItem function copies the second item from the list into the $x2$ matrix. The ‘d’ parameter requests that the second list item be deleted. The length of the list decreases by one. After the call returns, the second item is a 3×3 matrix and the third item is a 4×4 matrix.

The third call to the ListGetItem function copies the third item from the list into the $x3$ matrix. The ‘m’ parameter requests that the third list item become an empty matrix, but leaves the length of the list unchanged.

After the program runs, the list contains three items: a 1×1 matrix, a 3×3 matrix, and an empty matrix.

Figure 26.195 Names of Elements in a List

<table>
<thead>
<tr>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>HireDate Name Salary</td>
</tr>
</tbody>
</table>

The first call to the ListGetItem function copies the first item from the list into the $x1$ matrix. The list is unchanged.

The second call to the ListGetItem function copies the second item from the list into the $x2$ matrix. The ‘d’ parameter requests that the second list item be deleted. The length of the list decreases by one. After the call returns, the second item is a 3×3 matrix and the third item is a 4×4 matrix.

The third call to the ListGetItem function copies the third item from the list into the $x3$ matrix. The ‘m’ parameter requests that the third list item become an empty matrix, but leaves the length of the list unchanged.

After the program runs, the list contains three items: a 1×1 matrix, a 3×3 matrix, and an empty matrix.

Figure 26.195 Names of Elements in a List

<table>
<thead>
<tr>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>HireDate Name Salary</td>
</tr>
</tbody>
</table>

The first call to the ListGetItem function copies the first item from the list into the $x1$ matrix. The list is unchanged.

The second call to the ListGetItem function copies the second item from the list into the $x2$ matrix. The ‘d’ parameter requests that the second list item be deleted. The length of the list decreases by one. After the call returns, the second item is a 3×3 matrix and the third item is a 4×4 matrix.

The third call to the ListGetItem function copies the third item from the list into the $x3$ matrix. The ‘m’ parameter requests that the third list item become an empty matrix, but leaves the length of the list unchanged.

After the program runs, the list contains three items: a 1×1 matrix, a 3×3 matrix, and an empty matrix.

Figure 26.195 Names of Elements in a List

<table>
<thead>
<tr>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>HireDate Name Salary</td>
</tr>
</tbody>
</table>
LISTGETSUBITEM Function

LISTGETSUBITEM(list, position < , flag >);

The ListGetSubItem function gets the value of an item in a nested sublist. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The function takes the following arguments:

- **list** specifies an existing list.
- **position** specifies a numeric matrix of indices or a character matrix of item names. Names are not case sensitive.
- **flag** controls what happens to the list element after its value is copied. Valid values are:
 - ‘c’ requests that the list item be copied but not changed. This is the default behavior.
 - ‘m’ requests that the list item be moved. The element specified by **position** becomes empty, but the length of the list does not change.
 - ‘d’ requests that the list item be deleted. The length of the list decreases by one, and the indices of subsequent items are adjusted. For example, if you delete the fourth item, the fifth item becomes the fourth item, the sixth item becomes the fifth item, and so on.

Use this call to get the value of a nested sublist of the input list. The values of the position matrix are applied successively in row-major order to drill down into sublists.

For example, the section “Create a List of Lists” on page 151 shows how to create a list of lists for hierarchical data. The outer list has an element named “12”. That element is a named list that has elements named “F” and “M”. The following statements retrieve the contents of the “M” sublist in that example:

```
Boys12 = ListGetSubItem(L, {"12" "M"});
print Boys12;
```

Figure 26.196 Item of a Sublist

<table>
<thead>
<tr>
<th>Boys12</th>
</tr>
</thead>
<tbody>
<tr>
<td>James</td>
</tr>
<tr>
<td>John</td>
</tr>
<tr>
<td>Robert</td>
</tr>
</tbody>
</table>

LISTINDEX Function

LISTINDEX(list, names);

The ListIndex function returns the positions of the list items that have the specified names. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The function takes the following arguments:
LISTINSERTITEM Call

CALL LISTINSERTITEM(list, position, v <, flag>);

The ListInsertItem subroutine adds a new item to a list. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The ListInsertItem subroutine inserts an item into a list. If the list has \(k \) elements, you can insert a new element in positions \(1, 2, \ldots, k + 1 \). If you insert an item at position \(i \) where \(i \leq k \), then the existing elements at positions \(i, i + 1, \ldots, k \) are shifted to the right to make room for the new item. In other words, the new item is inserted prior to the existing element in the specified position, and the length of the list increases by one.

The subroutine takes the following arguments:

- **list** specifies an existing list.
- **position** specifies the position where the item is to be inserted. Existing elements at or subsequent to that position are shifted to the right. For example, the position 1 indicates that the item is inserted at the beginning of the list.
- **v** specifies a SAS/IML variable or literal that will become a new list element. The value of \(v \) can be a matrix, table, list, or any other valid SAS/IML type, including an empty matrix.
- **flag** controls what happens to \(v \). Valid values are:
 - ‘c’ requests that the data in \(v \) be copied into the list. The \(v \) symbol is unchanged by the call. This is the default behavior.
 - ‘m’ requests that the data in \(v \) be moved into the list. The \(v \) symbol is freed after the call.


```plaintext
L = ListCreate();
call ListAddItem(L, 1:3);
call ListAddItem(L, {"Cat" "Dog"});
mat = {1 2, 3 4};
call ListInsertItem(L, 2, mat); /* insert 2x2 matrix in 2nd position */
```

LISTLEN Function

```plaintext
LISTLEN(list);
```

The ListLen function returns the number of items in a list. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following argument:

- **list**: specifies an existing list.

The elements in a list might be empty, as shown in the following example:

```plaintext
L = ListCreate(3); /* allocate array of 3 elements */
numElements = ListLen(L); /* numElements = 3 */
```

LISTSETITEM Call

```plaintext
CALL LISTSETITEM(list, position, v <, flag >);
```

The ListSetItem subroutine sets the value of one or more existing list items. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

- **list**: specifies an existing list.
- **position**: specifies a matrix of integer values or character values that specify the positions of the items to be set. Any existing items at the specified locations are overwritten.
- **v**: specifies a SAS/IML variable or literal that will become a new list element. The value of v can be a matrix, table, list, or any other valid SAS/IML type, including an empty matrix.
- **flag**: controls what happens to the v symbol. Valid values are:
 - ‘c’ requests that the data in v be copied into the list. The v symbol is unchanged by the call. This is the default behavior.
 - ‘m’ requests that the data in v be moved into the list. The v symbol is freed after the call.

The following statements use the ListCreate subroutine to allocate a list that has three elements. The ListLen function is used in the DO loop to iterate over every element in the list. The ListSetItem subroutine is used to set the n'th item to an n × n matrix.
/* create a list of matrices; use ListSetItem to fill */
L = ListCreate(3); /* allocate array of 3 elements */
do n = 1 to ListLen(L); /* for each element in array */
 A = j(n, n, n-1); /* define n x n matrix */
 call ListSetItem(L, n, A); /* assign n_th element of L */
end;

You can also specify a vector for the position argument, in which case the specified value is copied to multiple locations. For example, to set every item of a list to the value 0, use the following statement:

call ListSetItem(L, 1:ListLen(L), 0); /* assign all elements of L */

LISTSETNAME Call

CALL LISTSETNAME(list, position, name);

The ListSetName subroutine sets the name of an item. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

list specifies an existing list.

position specifies a matrix of integer values or character values that specify the items to be assigned names. If the position argument specifies an item that already has a name, the item is renamed.

name specifies a character matrix that has the same number of elements as position. The ith name is assigned to the item in the ith position.

The following example sets the names of three elements in a list:

L = ListCreate();
call ListAddItem(L, {"Red" "Green" "Blue"}); /* 1st item */
call ListAddItem(L, {"Bird" "Cat" "Dog"}); /* 2nd item */
call ListAddItem(L, {"Coffee" "Tea" "Milk"}); /* 3rd item */
call ListSetName(L, 1:3, {"Colors" "Pets" "Beverages"});

LISTSETSUBITEM Call

CALL LISTSETSUBITEM(list, position, v <, flag >);

The ListSetSubitem subroutine sets the value of an item in a nested sublist. The values of the position matrix are applied successively in row-major order to drill down into sublists. For examples and a general discussion of using lists, see Chapter 10, “Lists and Data Structures.”

The subroutine takes the following arguments:

list specifies an existing list.

position specifies a numeric matrix of indices or a character matrix of item names. Names are not case-sensitive.
Chapter 26: Language Reference

\(\nu \) specifies a SAS/IML variable or literal that will become a new list element. The value of \(\nu \) can be a matrix, table, list, or any other valid SAS/IML type, including an empty matrix.

\(\text{flag} \) controls what happens to the sublist element after its value is copied. Valid values are:

- ‘c’ requests that the \(\nu \) value be copied but not changed. This is the default behavior.
- ‘m’ requests that the \(\nu \) value be copied to the list item and the \(\nu \) symbol be freed.

Use this call to set the value of a nested sublist. For example, the section “Create a List of Lists” on page 151 shows how to create a list of lists for hierarchical data. The outer list has an element named “12”. That element is a named list that has elements named “F” and “M”. The following statements set the contents of the “M” sublist in that example:

```sas
call ListSetSubItem(L, {"12" "M"}, {"Joe", "Rick", "Simon"});
```

LMS Call

CALL LMS(\(\text{sc,coef,wgt, opt, y <, x > <, sorb} \));

The LMS subroutine performs least median of squares (LMS) robust regression (sometimes called resistant regression) by minimizing the \(h \)th-ordered squared residual. The subroutine is able to detect outliers and perform a least squares regression on the remaining observations.

The algorithm used in the LMS subroutine is based on the PROGRESS program of Rousseeuw and Hubert (1996), which is an updated version of Rousseeuw and Leroy (1987). In the special case of regression through the origin with a single regressor, Barreto and Maharry (2006) show that the PROGRESS algorithm does not, in general, find the slope that yields the least median of squares. Starting with SAS/IML 9.2, the LMS subroutine uses the algorithm of Barreto and Maharry (2006) to obtain the correct LMS slope in the case of regression through the origin with a single regressor. In this case, input arguments that are specific to the PROGRESS algorithm are ignored and output specific to the PROGRESS algorithm is suppressed.

The value of \(h \) can be specified, but in most applications the default value works well and the results seem to be quite stable toward different choices of \(h \).

In the following discussion, \(N \) is the number of observations and \(n \) is the number of regressors. The input arguments to the LMS subroutine are as follows:

\(\text{opt} \) specifies an options vector. The options vector can be a vector of missing values, which results in default values for all options. The components of \(\text{opt} \) are as follows:

- \(\text{opt}[1] \) specifies whether an intercept is used in the model (\(\text{opt}[1]=0 \)) or not (\(\text{opt}[1] \neq 0 \)). If \(\text{opt}[1]=0 \), then a column of ones is added as the last column to the input matrix \(X \); that is, you do not need to add this column of ones yourself. The default is \(\text{opt}[1]=0 \).

- \(\text{opt}[2] \) specifies the amount of printed output. Higher values request additional output and include the output of lower values.

0 prints no output except error messages.
1 prints all output except (1) arrays of \(O(N) \), such as weights, residuals, and diagnostics; (2) the history of the optimization process; and (3) subsets that result in singular linear systems.
2 additionally prints arrays of \(O(N) \), such as weights, residuals, and diagnostics; also prints the case numbers of the observations in the best subset and some basic history of the optimization process.

3 additionally prints subsets that result in singular linear systems.

The default is \(\text{opt}[2]=0 \).

\(\text{opt}[3] \) specifies whether only LMS is computed or whether, additionally, least squares (LS) and weighted least squares (WLS) regression are computed.

0 computes only LMS.

1 computes, in addition to LMS, weighted least squares regression on the observations with \textit{small} LMS residuals (where \textit{small} is defined by \(\text{opt}[8] \)).

2 computes, in addition to LMS, unweighted least squares regression.

3 adds both unweighted and weighted least squares regression to LMS regression.

The default is \(\text{opt}[3]=0 \).

\(\text{opt}[4] \) specifies the quantile \(h \) to be minimized. This is used in the objective function. The default is \(\text{opt}[4]=h = \left[\frac{N+n+1}{2} \right] \), which corresponds to the highest possible breakdown value. This is also the default of the PROGRESS program. The value of \(h \) should be in the range \(\frac{N}{2} + 1 \leq h \leq \frac{3N}{4} + \frac{n+1}{4} \).

\(\text{opt}[5] \) specifies the number \(N_{\text{Rep}} \) of generated subsets. Each subset consists of \(n \) observations \((k_1, \ldots, k_n)\), where \(1 \leq k_i \leq N \). The total number of subsets that contain \(n \) observations out of \(N \) observations is

\[
N_{\text{tot}} = \binom{N}{n} = \frac{\prod_{j=1}^{n} (N - j + 1)}{\prod_{j=1}^{n} j}
\]

where \(n \) is the number of parameters including the intercept.

Due to computer time restrictions, not all subset combinations of \(n \) observations out of \(N \) can be inspected for larger values of \(N \) and \(n \). Specifying a value of \(N_{\text{Rep}} < N_{\text{tot}} \) enables you to save computer time at the expense of computing a suboptimal solution.

If \(\text{opt}[5] \) is zero or missing, the default number of subsets is taken from the following table.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{lower}})</td>
<td>500</td>
<td>50</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(N_{\text{upper}})</td>
<td>10^6</td>
<td>1414</td>
<td>182</td>
<td>71</td>
<td>43</td>
<td>32</td>
<td>27</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>(N_{\text{Rep}})</td>
<td>500</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n)</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{lower}})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(N_{\text{upper}})</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>(N_{\text{Rep}})</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

If the number of cases (observations) \(N \) is smaller than \(N_{\text{lower}} \), then all possible subsets are used; otherwise, \(N_{\text{Rep}} \) subsets are chosen randomly. This means that an exhaustive search is performed for \(\text{opt}[5]=-1 \). If \(N \) is larger than \(N_{\text{upper}} \), a note is printed in the log file that indicates how many subsets exist.
opt[6] is not used.

opt[7] specifies whether the last argument sorb contains a given parameter vector b or a given subset for which the objective function should be evaluated.

0 sorb contains a given subset index.
1 sorb contains a given parameter vector b.

The default is opt[7]=0.

opt[8] is relevant only for LS and WLS regression (opt[3] > 0). It specifies whether the covariance matrix of parameter estimates and approximate standard errors (ASEs) are computed and printed.

0 does not compute covariance matrix and ASEs.
1 computes covariance matrix and ASEs but prints neither of them.
2 computes the covariance matrix and ASEs but prints only the ASEs.
3 computes and prints both the covariance matrix and the ASEs.

The default is opt[8]=0.

y refers to an N response vector.

x refers to an N x n matrix X of regressors. If opt[1] is zero or missing, an intercept x_{n+1} \equiv 1 is added by default as the last column of X. If the matrix X is not specified, y is analyzed as a univariate data set.

sorb refers to an n vector that contains either of the following:

- n observation numbers of a subset for which the objective function should be evaluated; this subset can be the start for a pairwise exchange algorithm if opt[7] is specified.
- n given parameters b = (b_1, \ldots, b_n) (including the intercept, if necessary) for which the objective function should be evaluated.

Missing values are not permitted in x or y. Missing values in opt cause the default value to be used.

The LMS subroutine returns the following values:

sc is a column vector that contains the following scalar information, where rows 1–9 correspond to LMS regression and rows 11–14 correspond to either LS or WLS:

sc[1] the quantile h used in the objective function
sc[2] number of subsets generated
sc[3] number of subsets with singular linear systems
sc[4] number of nonzero weights w_i
sc[5] lowest value of the objective function F_{LMS} attained
sc[6] preliminary LMS scale estimate S_P
sc[7] final LMS scale estimate S_F
sc[8] robust R square (coefficient of determination)
If \(opt[3] > 0 \), then the following are also set:

- \(sc[11] \) LS or WLS objective function (sum of squared residuals)
- \(sc[12] \) LS or WLS scale estimate
- \(sc[13] \) R square value for LS or WLS
- \(sc[14] \) \(F \) value for LS or WLS

For \(opt[3]=1 \) or \(opt[3]=3 \), these rows correspond to WLS estimates; for \(opt[3]=2 \), these rows correspond to LS estimates.

\(coef \) is a matrix with \(n \) columns that contains the following results in its rows:

- \(coef[1,] \) LMS parameter estimates
- \(coef[2,] \) indices of observations in the best subset

If \(opt[3] > 0 \), then the following are also set:

- \(coef[3,] \) LS or WLS parameter estimates
- \(coef[4,] \) approximate standard errors of LS or WLS estimates
- \(coef[5,] \) \(t \) values
- \(coef[6,] \) \(p \)-values
- \(coef[7,] \) lower boundary of Wald confidence intervals
- \(coef[8,] \) upper boundary of Wald confidence intervals

For \(opt[3]=1 \) or \(opt[3]=3 \), these rows correspond to WLS estimates; for \(opt[3]=2 \), these rows correspond to LS estimates.

\(wgt \) is a matrix with \(N \) columns that contains the following results in its rows:

- \(wgt[1,] \) weights (1 for small residuals; 0 for large residuals)
- \(wgt[2,] \) residuals \(r_i = y_i - x_i b \)
- \(wgt[3,] \) resistant diagnostic \(u_i \) (the resistant diagnostic cannot be computed for a perfect fit when the objective function is zero or nearly zero)

Example

Consider results for Brownlee (1965) stackloss data. The three explanatory variables correspond to measurements for a plant that oxidizes ammonia to nitric acid on 21 consecutive days.

- \(x_1 \) air flow to the plant
- \(x_2 \) cooling water inlet temperature
- \(x_3 \) acid concentration
The response variable \(y_i \) contains the permillage of ammonia lost (stackloss). The data are also given by Rousseeuw and Leroy (1987) and Osborne (1985). Rousseeuw and Leroy (1987) cite a large number of papers where this data set was analyzed and state that most researchers "concluded that observations 1, 3, 4, and 21 were outliers," and that some people also reported observation 2 as an outlier.

For \(N = 21 \) and \(n = 4 \) (three explanatory variables including intercept), you obtain a total of 5,985 different subsets of 4 observations out of 21. If you decide not to specify \(\text{opt[5]} \), the LMS subroutine chooses \(N_{\text{rep}} = 2,000 \) random sample subsets. Since there is a large number of subsets with singular linear systems, which you do not want to print, choose \(\text{opt[2]} = 2 \) for reduced printed output.

```plaintext
/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,
      1 80 27 88 37,
      1 75 25 90 37,
      1 62 24 87 28,
      1 62 22 87 18,
      1 62 23 87 18,
      1 62 24 93 19,
      1 62 24 93 20,
      1 58 23 87 15,
      1 58 18 80 14,
      1 58 18 89 14,
      1 58 17 88 13,
      1 58 18 82 11,
      1 58 19 93 12,
      1 50 18 89 8,
      1 50 18 86 7,
      1 50 19 72 8,
      1 50 19 79 8,
      1 50 20 80 9,
      1 56 20 82 15,
      1 70 20 91 15
};

a = aa[, 2:4]; b = aa[, 5];
opt = j(8, 1, .);
opt[2]= 2; /* ipri */
opt[3]= 3; /* ilsq */
opt[8]= 3; /* icov */
call lms(sc, coef, wgt, opt, b, a);
```

The first portion of the output displays descriptive statistics, as shown in Figure 26.198:

Figure 26.198 Descriptive Statistics

LMS: The 13th ordered squared residual will be minimized.

<table>
<thead>
<tr>
<th>Median and Mean</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>58</td>
<td>60.428571429</td>
</tr>
<tr>
<td>VAR2</td>
<td>20</td>
<td>21.095238095</td>
</tr>
<tr>
<td>VAR3</td>
<td>87</td>
<td>86.285714286</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Response</td>
<td>15</td>
<td>17.523809524</td>
</tr>
</tbody>
</table>
The next portion of the output shows the least squares estimates and the covariance of the estimates. Information about the residuals are also displayed, but are not shown in Figure 26.199.

Figure 26.198 continued

<table>
<thead>
<tr>
<th>Dispersion and Standard Deviation</th>
<th>Dispersion</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>5.930408874</td>
<td>9.1682682584</td>
</tr>
<tr>
<td>VAR2</td>
<td>2.965204437</td>
<td>3.160771455</td>
</tr>
<tr>
<td>VAR3</td>
<td>4.4478066555</td>
<td>5.3585712381</td>
</tr>
<tr>
<td>Intercep</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Response</td>
<td>5.930408874</td>
<td>10.171622524</td>
</tr>
</tbody>
</table>

The subroutine prints results for the 2,000 random subsets. Figure 26.200 shows the iteration history, the best subset of observations that are used to form estimates, and the estimated parameters. The subroutine also displays residual information (not shown).

Figure 26.199 Least Squares Estimates

Unweighted Least-Squares Estimation

<table>
<thead>
<tr>
<th>LS Parameter Estimates</th>
<th>Approx Estimate</th>
<th>Std Err</th>
<th>t Value</th>
<th>Pr ></th>
<th>Lower WCI</th>
<th>Upper WCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>0.7156402</td>
<td>0.13485819</td>
<td>5.31</td>
<td><0.001</td>
<td>0.45132301</td>
<td>0.97995739</td>
</tr>
<tr>
<td>VAR2</td>
<td>1.29528612</td>
<td>0.36802427</td>
<td>3.52</td>
<td>0.0026</td>
<td>0.57397182</td>
<td>2.01660043</td>
</tr>
<tr>
<td>VAR3</td>
<td>-0.1521225</td>
<td>0.15629404</td>
<td>-0.97</td>
<td>0.3440</td>
<td>-0.4584532</td>
<td>0.15420818</td>
</tr>
<tr>
<td>Intercep</td>
<td>-39.919674</td>
<td>11.8959969</td>
<td>-3.36</td>
<td>0.0038</td>
<td>-63.2354</td>
<td>-16.603949</td>
</tr>
</tbody>
</table>

Sum of Squares = 178.8299616

Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

<table>
<thead>
<tr>
<th>Cov Matrix of Parameter Estimates</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
<th>Intercep</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>0.0181867302</td>
<td>-0.036510675</td>
<td>-0.007143521</td>
<td>0.2875871057</td>
</tr>
<tr>
<td>VAR2</td>
<td>-0.036510675</td>
<td>0.1354418598</td>
<td>0.0000104768</td>
<td>-0.651794369</td>
</tr>
<tr>
<td>VAR3</td>
<td>-0.007143521</td>
<td>0.0000104768</td>
<td>0.024427828</td>
<td>-1.676320797</td>
</tr>
<tr>
<td>Intercep</td>
<td>0.2875871057</td>
<td>-0.651794369</td>
<td>-1.676320797</td>
<td>141.51474107</td>
</tr>
</tbody>
</table>

R-squared = 0.9135769045

F(3,17) Statistic = 59.9022259

Probability = 3.0163272E-9

The LMS subroutine prints results for the 2,000 random subsets. Figure 26.200 shows the iteration history, the best subset of observations that are used to form estimates, and the estimated parameters. The subroutine also displays residual information (not shown).
Chapter 26: Language Reference

Figure 26.200 Least Median Squares Estimates

There are 5985 subsets of 4 cases out of 21 cases.

The algorithm will draw 2000 random subsets of 4 cases.

Random Subsampling for LMS

<table>
<thead>
<tr>
<th>Subset</th>
<th>Singular</th>
<th>Best Criterion</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>23</td>
<td>0.163262</td>
<td>25</td>
</tr>
<tr>
<td>1000</td>
<td>55</td>
<td>0.140519</td>
<td>50</td>
</tr>
<tr>
<td>1500</td>
<td>79</td>
<td>0.140519</td>
<td>75</td>
</tr>
<tr>
<td>2000</td>
<td>103</td>
<td>0.126467</td>
<td>100</td>
</tr>
</tbody>
</table>

Minimum Criterion= 0.1264668282

Least Median of Squares (LMS) Method

Minimizing 13th Ordered Squared Residual.

Highest Possible Breakdown Value = 42.86 %

Random Selection of 2103 Subsets

Among 2103 subsets 103 is/are singular.

<table>
<thead>
<tr>
<th>Observations of Best Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 11 19 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 VAR2 VAR3 Intercep</td>
</tr>
<tr>
<td>0.75 0.5 0 -39.25</td>
</tr>
</tbody>
</table>

Observations 1, 3, 4, and 21 have scaled residuals larger than 2.0 (table not shown) and are considered outliers. The corresponding WLS estimates are shown in Figure 26.201:
Figure 26.201 Weighted Least Squares Estimates

LMS Objective Function = 0.75

Preliminary LMS Scale = 1.0478510755

Robust R Squared = 0.96484375

Final LMS Scale = 1.2076147288

<table>
<thead>
<tr>
<th>N</th>
<th>Observed</th>
<th>Estimated</th>
<th>Residual</th>
<th>Res / S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.000000</td>
<td>34.250000</td>
<td>7.750000</td>
<td>6.417610</td>
</tr>
<tr>
<td>2</td>
<td>37.000000</td>
<td>34.250000</td>
<td>2.750000</td>
<td>2.277216</td>
</tr>
<tr>
<td>3</td>
<td>37.000000</td>
<td>29.500000</td>
<td>7.500000</td>
<td>6.210590</td>
</tr>
<tr>
<td>4</td>
<td>28.000000</td>
<td>19.250000</td>
<td>8.750000</td>
<td>7.245688</td>
</tr>
<tr>
<td>5</td>
<td>18.000000</td>
<td>18.250000</td>
<td>-0.250000</td>
<td>-0.207020</td>
</tr>
<tr>
<td>6</td>
<td>18.000000</td>
<td>18.750000</td>
<td>-0.750000</td>
<td>-0.621059</td>
</tr>
<tr>
<td>7</td>
<td>19.000000</td>
<td>19.250000</td>
<td>-0.250000</td>
<td>-0.207020</td>
</tr>
<tr>
<td>8</td>
<td>20.000000</td>
<td>19.250000</td>
<td>0.750000</td>
<td>0.621059</td>
</tr>
<tr>
<td>9</td>
<td>15.000000</td>
<td>15.750000</td>
<td>-0.750000</td>
<td>-0.621059</td>
</tr>
<tr>
<td>10</td>
<td>14.000000</td>
<td>13.250000</td>
<td>0.750000</td>
<td>0.621059</td>
</tr>
<tr>
<td>11</td>
<td>14.000000</td>
<td>13.250000</td>
<td>0.750000</td>
<td>0.621059</td>
</tr>
<tr>
<td>12</td>
<td>13.000000</td>
<td>12.750000</td>
<td>0.250000</td>
<td>0.207020</td>
</tr>
<tr>
<td>13</td>
<td>11.000000</td>
<td>13.250000</td>
<td>-2.250000</td>
<td>-1.863177</td>
</tr>
<tr>
<td>14</td>
<td>12.000000</td>
<td>13.750000</td>
<td>-1.750000</td>
<td>-1.449138</td>
</tr>
<tr>
<td>15</td>
<td>8.000000</td>
<td>7.250000</td>
<td>0.750000</td>
<td>0.621059</td>
</tr>
<tr>
<td>16</td>
<td>7.000000</td>
<td>7.250000</td>
<td>-0.250000</td>
<td>-0.207020</td>
</tr>
<tr>
<td>17</td>
<td>8.000000</td>
<td>7.750000</td>
<td>0.250000</td>
<td>0.207020</td>
</tr>
<tr>
<td>18</td>
<td>8.000000</td>
<td>7.750000</td>
<td>0.250000</td>
<td>0.207020</td>
</tr>
<tr>
<td>19</td>
<td>9.000000</td>
<td>8.250000</td>
<td>0.750000</td>
<td>0.621059</td>
</tr>
<tr>
<td>20</td>
<td>15.000000</td>
<td>12.750000</td>
<td>2.250000</td>
<td>1.863177</td>
</tr>
<tr>
<td>21</td>
<td>15.000000</td>
<td>23.250000</td>
<td>-8.250000</td>
<td>-6.831649</td>
</tr>
</tbody>
</table>

Distribution of Residuals

<table>
<thead>
<tr>
<th>MinRes</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>MaxRes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.25</td>
<td>-0.5</td>
<td>0.25</td>
<td>0.9047619048</td>
<td>0.75</td>
<td>8.75</td>
</tr>
</tbody>
</table>
Figure 26.201 continued

<table>
<thead>
<tr>
<th>Resistant Diagnostic</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10.448052</td>
<td>2.278040</td>
</tr>
<tr>
<td>2</td>
<td>7.931751</td>
<td>1.729399</td>
</tr>
<tr>
<td>3</td>
<td>10.000000</td>
<td>2.180349</td>
</tr>
<tr>
<td>4</td>
<td>11.666667</td>
<td>2.543741</td>
</tr>
<tr>
<td>5</td>
<td>2.729730</td>
<td>0.595176</td>
</tr>
<tr>
<td>6</td>
<td>3.486486</td>
<td>0.760176</td>
</tr>
<tr>
<td>7</td>
<td>4.729730</td>
<td>1.031246</td>
</tr>
<tr>
<td>8</td>
<td>4.243243</td>
<td>0.925175</td>
</tr>
<tr>
<td>9</td>
<td>3.648649</td>
<td>0.795533</td>
</tr>
<tr>
<td>10</td>
<td>3.759835</td>
<td>0.819775</td>
</tr>
<tr>
<td>11</td>
<td>4.605767</td>
<td>1.004218</td>
</tr>
<tr>
<td>12</td>
<td>4.925169</td>
<td>1.073859</td>
</tr>
<tr>
<td>13</td>
<td>3.888889</td>
<td>0.847914</td>
</tr>
<tr>
<td>14</td>
<td>4.586421</td>
<td>1.000000</td>
</tr>
<tr>
<td>15</td>
<td>5.297030</td>
<td>1.154938</td>
</tr>
<tr>
<td>16</td>
<td>4.009901</td>
<td>0.874299</td>
</tr>
<tr>
<td>17</td>
<td>6.679576</td>
<td>1.456381</td>
</tr>
<tr>
<td>18</td>
<td>4.305340</td>
<td>0.938715</td>
</tr>
<tr>
<td>19</td>
<td>4.019976</td>
<td>0.876495</td>
</tr>
<tr>
<td>20</td>
<td>3.000000</td>
<td>0.654105</td>
</tr>
<tr>
<td>21</td>
<td>11.000000</td>
<td>2.398384</td>
</tr>
</tbody>
</table>

Median(U) = 4.5864208797

Weighted Least-Squares Estimation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Approx Std Err</th>
<th>t Value</th>
<th>Pr ></th>
<th>Lower WCI</th>
<th>Upper WCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>0.7976856</td>
<td>0.06743906</td>
<td>11.83</td>
<td><.0001</td>
<td>0.66550742</td>
<td>0.9298637</td>
</tr>
<tr>
<td>VAR2</td>
<td>0.57734046</td>
<td>0.16596894</td>
<td>3.48</td>
<td>0.0041</td>
<td>0.25204731</td>
<td>0.9026336</td>
</tr>
<tr>
<td>VAR3</td>
<td>-0.0670602</td>
<td>0.06160314</td>
<td>-1.09</td>
<td>0.2961</td>
<td>-0.1878001</td>
<td>0.05367975</td>
</tr>
<tr>
<td>Intercep</td>
<td>-37.652459</td>
<td>4.73205086</td>
<td>-7.96</td>
<td><.0001</td>
<td>-46.927108</td>
<td>-28.37781</td>
</tr>
</tbody>
</table>

Weighted Sum of Squares = 20.400800254

Degrees of Freedom = 13

RLS Scale Estimate = 1.2527139846

Cov Matrix of Parameter Estimates

<table>
<thead>
<tr>
<th></th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
<th>Intercep</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>0.0045480273</td>
<td>-0.007921409</td>
<td>-0.001198689</td>
<td>0.0015681747</td>
</tr>
<tr>
<td>VAR2</td>
<td>-0.007921409</td>
<td>0.0275456893</td>
<td>-0.00046339</td>
<td>-0.065017508</td>
</tr>
<tr>
<td>VAR3</td>
<td>-0.001198689</td>
<td>-0.00046339</td>
<td>0.0037949466</td>
<td>-0.246102248</td>
</tr>
<tr>
<td>Intercep</td>
<td>0.0015681747</td>
<td>-0.065017508</td>
<td>-0.246102248</td>
<td>22.392305355</td>
</tr>
</tbody>
</table>
LOAD Statement

LOAD < MODULE=(module-list) > < matrix-list > ;

The LOAD statement loads modules and matrix values from the current library storage into the current workspace.

The arguments to the LOAD statement are as follows:

module-list is a list of modules.
matrix-list is a list of matrices.

For example, to load three modules A, B, and C and one matrix X, use the following statement:

load module=(A B C) X;

The special operand _ALL_ can be used to load all matrices or all modules. For example, if you want to load all matrices, use the following statement:

load _all_;
If you want to load all modules, use the following statement:

load module=_all_;
To load all matrices and modules stored in the library storage, you can enter the LOAD command without any arguments, as follows:

load;

The storage library can be specified by using a RESET STORAGE command. The default library is Work.Imlstor. For more information, see Chapter 20 and the descriptions of the STORE, REMOVE, RESET, and SHOW statements.

LOC Function

LOC(matrix);

The LOC function finds nonzero elements of a matrix. It creates a 1 × n row vector, where n is the number of nonzero elements in the argument matrix. Missing values are treated as zeros. The values in the resulting row vector are the locations of the nonzero elements in the argument (in row-major order).
For example, consider the following statements:

```plaintext
a = [1 0 2 3 0];
b = loc(a);
print b;
```

Because the first, third, and fourth elements of `a` are nonzero, these statements result in the row vector shown in Figure 26.202:

![Figure 26.202 Location of Nonzero Elements](image)

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 4</td>
</tr>
</tbody>
</table>

If every element of the argument vector is 0, the result is empty; that is, `b` has zero rows and zero columns.

The LOC function is useful for subscripting parts of a matrix that satisfy some condition. For example, the following statements create a matrix `y` that contains the rows of `x` that have a positive element in the diagonal of `x`:

```plaintext
x = [1 1 0,
    0 -2 2,
    0 0 3];
y = x[loc(vecdiag(x)>0), ];
print y;
```

![Figure 26.203 Rows with Positive Diagonal Elements](image)

<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0</td>
</tr>
<tr>
<td>0 0 3</td>
</tr>
</tbody>
</table>

LOG Function

```
LOG(matrix);
```

The LOG function is the scalar function that takes the natural logarithm of each element of the argument matrix. An example of a valid statement follows:

```plaintext
c = [1 2 3];
b = log(c);
print b;
```

![Figure 26.204 Natural Logarithms](image)

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.6931472 1.0986123</td>
</tr>
</tbody>
</table>
LOGABSDET Function

LOGABSDET(matrix);

The LOGABSDET function computes the natural logarithm of the absolute value of the determinant of a matrix, along with the sign of the determinant. The logarithm value is returned as the first element of the returned matrix, and the sign of the determinant is returned as the second element. The value -1 signifies a negative determinant, $+1$ signifies a positive determinant, and 0 signifies a zero determinant. If the determinant is 0, a missing value is returned in the first element for the logarithm value. This function works even if the value of the determinant is greater than the maximum value possible on the computer.

The following example computes the value of the log of the absolute value of the determinant and then checks it against the determinant value from the DET function:

```r
z = {1 2 3,
     4 9 6,
     7 8 9};
det1 = det(z);
x = logabsdet(z);
print z;
print "Log of the absolute value of det(z) " (x[1]);
print "sign of det(z) " (x[2]);

/* use the choose() function to help convert x to det(z) */
det2 = choose(x[2], exp(x[1]) * x[2], 0);
print "det(z) = " det1 "determinant from LogAbsDet(z) = " det2;
```

Figure 26.205 Example LogAbsDet Function Call

<table>
<thead>
<tr>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
</tr>
<tr>
<td>4 9 6</td>
</tr>
<tr>
<td>7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Log of the absolute value of det(z)</th>
<th>3.871201</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign of det(z)</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>det1</th>
<th>det2</th>
</tr>
</thead>
<tbody>
<tr>
<td>det(z) = -48 determinant from LogAbsDet(z) = -48</td>
<td></td>
</tr>
</tbody>
</table>

LP Call

CALL LP(rc, x, dual, a, b <, cntl> <, u> <, l> <, basis>);

The LP subroutine is a legacy subroutine that solves a linear programming problem. Although the LP subroutine continues to be supported, the LPSOLVE subroutine, which was introduced in SAS/IML 13.1,
is more efficient and provides an input format that is easier to use. SAS/IML programmers should use the LPSOLVE subroutine.

You can find the documentation for the LP subroutine in earlier releases of the SAS/IML User’s Guide.

LPSOLVE Call

```sas
CALL LPSOLVE(rc, objvalue, x, dual, reducost, c, a, b <, cntl> <, rowsense> <, range> <, l> <, u> <, cntl> <, rowsense> <, range> <, l> <, u>);
```

The LPSOLVE subroutine solves a linear programming problem. It uses a different input format and solver options from the LP call and is the preferred method for solving linear programming problems.

The input arguments to the LPSOLVE subroutine are as follows:

- **c** is a vector of dimension n of objective function coefficients. A missing value is treated as 0.
- **a** is an $m \times n$ matrix of the technological coefficients. A missing value is treated as 0.
- **b** is a vector of dimension m of constraints’ right-hand sides (RHS). For a range constraint, b is its constraint upper bound. A missing value is treated as 0.
- **cntl** is an optional vector that contains one to eight elements that represent the LPSOLVE subroutine’s control options. The default value is used if an option is not specified or its value is a missing value. If `cntl=(objsense, printlevel, maxtime, maxiter, presolve, algorithm, scaling, tol)`, then
 - **objsense** specifies whether it is a minimization or a maximization problem, where 1 specifies minimization and -1 specifies maximization. The default value is 1.
 - **printlevel** specifies the type of messages printed to the log. A value of 0 prints warning and error messages only, whereas 1 prints solution information in addition to warning and error messages. The default value is 0.
 - **maxtime** specifies an upper bound of running time in seconds. The default value is effectively unbounded.
 - **maxiter** specifies the maximum number of iterations to be processed. The default value is effectively unbounded.
 - **presolve** specifies the presolve option, where 0 indicates no presolve and 1 indicates an automatic presolve option. The default value is 1.
 - **algorithm** specifies the type of solver, where 1 specifies primal simplex, 2 specifies dual simplex, and 3 specifies interior point algorithm. The default value is 2.
 - **scaling** specifies whether to scale the problem matrix, where 0 turns off scaling and 1 turns on scaling. The default value is 1.
 - **tol** specifies a feasibility and optimality tolerance. The default value is 10^{-6}.
- **rowsense** is an optional row vector of dimension m that specifies the sense of each constraint. The values can be E, L, G, or R for equal, less than or equal to, greater than or equal to, or range constraint. If this vector is missing, the solver treats the constraints as E type constraints.
range is an optional row vector of dimension \(m \) that specifies the range of the constraints. The row sense for a range constraint is R. For the non-range constraints, the corresponding values are ignored. For a range constraint, the range value is the difference between its constraint lower bound and its constraint upper bound \(b \), so it must be nonnegative.

\(l \) is an optional column vector of dimension \(n \) that specifies lower bounds on the decision variables. If you do not specify \(l \) or \(l[j] \) has a missing value, then the lower bound of variable \(j \) is assumed to be 0.

\(u \) is an optional column vector of dimension \(n \) that specifies upper bounds on the decision variables. If you do not specify \(u \) or \(u[j] \) has a missing value, the upper bound of variable \(j \) is assumed to be infinity.

The LPSOLVE subroutine returns the following values:

- \(rc \) returns one of the following scalar return codes:

<table>
<thead>
<tr>
<th>(rc)</th>
<th>Termination Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The solution is optimal.</td>
</tr>
<tr>
<td>1</td>
<td>The time limit was exceeded.</td>
</tr>
<tr>
<td>2</td>
<td>The maximum number of iterations was exceeded.</td>
</tr>
<tr>
<td>3</td>
<td>The solution is infeasible.</td>
</tr>
<tr>
<td>4</td>
<td>The solution is unbounded or infeasible.</td>
</tr>
<tr>
<td>5</td>
<td>The subroutine could not obtain enough memory.</td>
</tr>
<tr>
<td>6</td>
<td>The subroutine failed to solve the problem.</td>
</tr>
</tbody>
</table>

- \(objvalue \) returns the optimal or final objective value at termination.
- \(x \) returns the current primal solution in a column vector of length \(n \).
- \(dual \) returns the current dual solution in a row vector of length \(m \).
- \(reducost \) returns reduced cost in a column vector of length \(n \).

The LPSOLVE subroutine solves linear programs. A standard linear program has the following formulation:

\[
\begin{align*}
\min \mathbf{c}^T \mathbf{x} \\
\text{subject to } \mathbf{A} \mathbf{x} &\geq \mathbf{b} \\
\mathbf{l} &\leq \mathbf{x} \leq \mathbf{u}
\end{align*}
\]

If only \(c \), \(A \), and \(b \) are present, then LPSOLVE solves the following linear programming problem by default:

\[
\begin{align*}
\min \mathbf{c}^T \mathbf{x} \\
\text{subject to } \mathbf{A} \mathbf{x} &= \mathbf{b} \\
0 &\leq \mathbf{x}
\end{align*}
\]

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries to find a feasible solution. If it does not find a feasible solution the LP is infeasible; otherwise, the solver
enters phase II to solve the original LP. The interior point solver implements a primal-dual predictor-corrector interior point algorithm.

Consider the following example:

\[
\begin{align*}
\text{max} & \quad (X_1 + X_2) \\
\text{subject to} & \quad 2X_1 + 0.5X_2 - X_3 \leq 1 \\
& \quad 0.2X_1 + 5X_2 - X_4 \leq 1 \\
& \quad 0 \leq X_i \leq 9 \text{ for } i = 1, 2, 3, 4
\end{align*}
\]

The problem is solved by using the following statements:

\[
\begin{align*}
\text{object} &= \{ 1 \ 1 \ 0 \ 0 \} \\
\text{coef} &= \{ 2 \ 0.5 \ -1 \ 0, \\
& \quad \quad \quad 0.2 \ 5 \ 0 \ -1 \}; \\
\text{b} &= \{ 1, \ 1 \}; \\
\text{l} &= \{ 0 \ 0 \ 0 \ 0 \}; \\
\text{u} &= \{ 9 \ 9 \ 9 \ 9 \}; \\
\text{rowsense} &= \{ 'L' , 'L' \}; \\
\text{cntl} &= -1; \\
\text{call lpsolve (rc, objv, x, dual, rd, object, coef, b, cntl, rowsense, l, u);} \\
\text{print objv, x, dual, rd;}
\end{align*}
\]

Figure 26.206 Example LPSOLVE Call

<table>
<thead>
<tr>
<th>objv</th>
<th>6.3636364</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4.5454545</td>
<td>1.8181818</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dual</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4848485</td>
<td>0.1515152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rd</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.4848485</td>
<td>0.1515152</td>
</tr>
</tbody>
</table>

LTS Call

CALL LTS(\(sc, \text{coef}, \text{wgt}, \text{opt}, y <, x>, <, \text{sorb}>\));

The LTS subroutine performs least trimmed squares (LTS) robust regression by minimizing the sum of the \(h\) smallest squared residuals. The subroutine also detects outliers and perform a least squares regression on the
remaining observations. The LTS subroutine implements the FAST-LTS algorithm described by Rousseeuw and Van Driessen (1998).

The value of h can be specified, but for many applications the default value works well and the results seem to be quite stable toward different choices of h.

In the following discussion, N is the number of observations and n is the number of regressors. The input arguments to the LTS subroutine are as follows:

opt specifies an options vector. The options vector can be a vector of missing values, which results in default values for all options. The components of opt are as follows:

$opt[1]$ specifies whether an intercept is used in the model ($opt[1]=0$) or not ($opt[1]≠ 0$). If $opt[1]=0$, then a column of ones is added as the last column to the input matrix X; that is, you do not need to add this column of ones yourself. The default is $opt[1]=0$.

$opt[2]$ specifies the amount of printed output. Higher values request additional output and include the output of lower values.

- 0 prints no output except error messages.
- 1 prints all output except (1) arrays of $O(N)$, such as weights, residuals, and diagnostics; (2) the history of the optimization process; and (3) subsets that result in singular linear systems.
- 2 additionally prints arrays of $O(N)$, such as weights, residuals, and diagnostics; it also prints the case numbers of the observations in the best subset and some basic history of the optimization process.
- 3 additionally prints subsets that result in singular linear systems.

The default is $opt[2]=0$.

$opt[3]$ specifies whether only LTS is computed or whether, additionally, least squares (LS) and weighted least squares (WLS) regression are computed:

- 0 computes only LTS.
- 1 computes, in addition to LTS, weighted least squares regression on the observations with $small$ LTS residuals (where $small$ is defined by $opt[8]$).
- 2 computes, in addition to LTS, unweighted least squares regression.
- 3 adds both unweighted and weighted least squares regression to LTS regression.

The default is $opt[3]=0$.

$opt[4]$ specifies the quantile h to be minimized. This is used in the objective function. The default is $opt[4]= h = \left[\frac{N+n+1}{2} \right]$, which corresponds to the highest possible breakdown value. This is also the default of the PROGRESS program. The value of h should be in the range $\frac{N}{2} + 1 ≤ h ≤ \frac{3N}{4} + \frac{n+1}{4}$.

$opt[5]$ specifies the number N_{Rep} of generated subsets. Each subset consists of n observations (k_1, \ldots, k_n), where $1 ≤ k_i ≤ N$. The total number of subsets that contain n observations out of N observations is

$$N_{tot} = \binom{N}{n} = \frac{\prod_{j=1}^{n} (N - j + 1)}{\prod_{j=1}^{n} j}$$
where n is the number of parameters including the intercept.

Due to computer time restrictions, not all subset combinations of n observations out of N can be inspected for larger values of N and n. Specifying a value of $N_{\text{Rep}} < N_{\text{tot}}$ enables you to save computer time at the expense of computing a suboptimal solution.

When $\text{opt}[5]$ is zero or missing:

- If $N > 600$, the default FAST-LTS algorithm constructs up to five disjoint random subsets with sizes as equal as possible, but not to exceed 300. Inside each subset, the algorithm chooses $500/5 = 100$ subset combinations of n observations.

 The number of subsets is taken from the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{lower}</td>
<td>500</td>
<td>50</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{upper}</td>
<td>10^6</td>
<td>1414</td>
<td>182</td>
<td>71</td>
<td>43</td>
<td>32</td>
<td>27</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>N_{Rep}</td>
<td>500</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>N_{lower}</td>
<td>0</td>
</tr>
<tr>
<td>N_{upper}</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>N_{Rep}</td>
<td>3000</td>
</tr>
</tbody>
</table>

- If the number of cases (observations) N is smaller than N_{lower}, then all possible subsets are used; otherwise, fixed 500 subsets for FAST-LTS or N_{Rep} subsets for algorithm before SAS/IML 8.1 are chosen randomly. This means that an exhaustive search is performed for $\text{opt}[5]=-1$. If N is larger than N_{upper}, a note is printed in the log file that indicates how many subsets exist.

$\text{opt}[6]$ is not used.

$\text{opt}[7]$ specifies whether the last argument sortb contains a given parameter vector b or a given subset for which the objective function should be evaluated.

0 sortb contains a given subset index.

1 sortb contains a given parameter vector b.

The default is $\text{opt}[7]=0$.

$\text{opt}[8]$ is relevant only for LS and WLS regression ($\text{opt}[3] > 0$). It specifies whether the covariance matrix of parameter estimates and approximate standard errors (ASEs) are computed and printed.

0 does not compute covariance matrix and ASEs.

1 computes covariance matrix and ASEs but prints neither of them.

2 computes the covariance matrix and ASEs but prints only the ASEs.

3 computes and prints both the covariance matrix and the ASEs.

The default is $\text{opt}[8]=0$.

$\text{opt}[9]$ is relevant only for LTS. If $\text{opt}[9]=0$, the algorithm FAST-LTS of Rousseeuw and Van Driessen (1998) is used. If $\text{opt}[9]=1$, the algorithm of Rousseeuw and Leroy (1987) is used. The default is $\text{opt}[9]=0$.
y a response vector with N observations.

x an $N \times n$ matrix X of regressors. If opt[1] is zero or missing, an intercept $x_{n+1} \equiv 1$ is added by default as the last column of X. If the matrix X is not specified, y is analyzed as a univariate data set.

$sorb$ refers to an n vector that contains either of the following:

- n observation numbers of a subset for which the objective function should be evaluated; this subset can be the start for a pairwise exchange algorithm if opt[7] is specified.
- n given parameters $b = (b_1, \ldots, b_n)$ (including the intercept, if necessary) for which the objective function should be evaluated.

Missing values are not permitted in x or y. Missing values in opt cause the default value to be used.

The LTS subroutine returns the following values:

sc is a column vector that contains the following scalar information, where rows 1–9 correspond to LTS regression and rows 11–14 correspond to either LS or WLS:

- $sc[1]$ the quantile h used in the objective function
- $sc[2]$ number of subsets generated
- $sc[3]$ number of subsets with singular linear systems
- $sc[4]$ number of nonzero weights w_i
- $sc[5]$ lowest value of the objective function F_{LTS} attained
- $sc[6]$ preliminary LTS scale estimate S_P
- $sc[7]$ final LTS scale estimate S_F
- $sc[8]$ robust R square (coefficient of determination)
- $sc[9]$ asymptotic consistency factor

If opt[3] > 0, then the following are also set:

- $sc[11]$ LS or WLS objective function (sum of squared residuals)
- $sc[12]$ LS or WLS scale estimate
- $sc[13]$ R square value for LS or WLS
- $sc[14]$ F value for LS or WLS

For opt[3]=1 or opt[3]=3, these rows correspond to WLS estimates; for opt[3]=2, these rows correspond to LS estimates.

$coef$ is a matrix with n columns that contains the following results in its rows:

- $coef[1,]$ LTS parameter estimates
- $coef[2,]$ indices of observations in the best subset

If opt[3] > 0, then the following are also set:
Chapter 26: Language Reference

coef[3,] LS or WLS parameter estimates
coef[4,] approximate standard errors of LS or WLS estimates
coef[5,] t-values
coef[6,] p-values
coef[7,] lower boundary of Wald confidence intervals
coef[8,] upper boundary of Wald confidence intervals

For **opt**[3]=1 or **opt**[3]=3, these rows correspond to WLS estimates; for **opt**[3]=2, these rows correspond to LS estimates.

wgt is a matrix with N columns that contains the following results in its rows:

wgt[1,] weights (1 for small residuals; 0 for large residuals)
wgt[2,] residuals \(r_i = y_i - x_i b \)
wgt[3,] resistant diagnostic \(u_i \) (the resistant diagnostic cannot be computed for a perfect fit when the objective function is zero or nearly zero)

Example

Consider Brownlee (1965) stackloss data used in the example for the LMS subroutine.

For \(N = 21 \) and \(n = 4 \) (three explanatory variables including intercept), you obtain a total of 5,985 different subsets of 4 observations out of 21. If you decide not to specify **opt**[5], the FAST-LTS algorithm chooses 500 random sample subsets, as in the following statements:

```plaintext
/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,
      1 80 27 88 37,
      1 75 25 90 37,
      1 62 24 87 28,
      1 62 22 87 18,
      1 62 23 87 18,
      1 62 24 93 19,
      1 62 24 93 20,
      1 58 23 87 15,
      1 58 18 80 14,
      1 58 18 89 14,
      1 58 17 88 13,
      1 58 18 82 11,
      1 58 19 93 12,
      1 50 18 89 8,
      1 50 18 86 7,
      1 50 19 72 8,
      1 50 19 79 8,
      1 50 20 80 9,
      1 56 20 82 15,
      1 70 20 91 15 };  

a = aa[, 2:4]; b = aa[, 5];  
opt = j(8, 1, .);  
```
opt[2]= 1; /* ipri */
opt[3]= 3; /* ilsq */
opt[8]= 3; /* icov */
call lts(sc, coef, wgt, opt, b, a);

Figure 26.207 Least Trimmed Squares

LTS: The sum of the 13 smallest squared residuals will be minimized.

<table>
<thead>
<tr>
<th>Median and Mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>58</td>
<td>60.428571429</td>
</tr>
<tr>
<td>VAR2</td>
<td>20</td>
<td>21.095238095</td>
</tr>
<tr>
<td>VAR3</td>
<td>87</td>
<td>86.285714286</td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Response</td>
<td>15</td>
<td>17.523809524</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dispersion and Standard Deviation</th>
<th>Dispersion</th>
<th>StdDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>5.930408874</td>
<td>9.1682682584</td>
</tr>
<tr>
<td>VAR2</td>
<td>2.965204437</td>
<td>3.160771455</td>
</tr>
<tr>
<td>VAR3</td>
<td>4.4478066555</td>
<td>5.3585712381</td>
</tr>
<tr>
<td>Intercept</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Response</td>
<td>5.930408874</td>
<td>10.171622524</td>
</tr>
</tbody>
</table>

Unweighted Least-Squares Estimation

<table>
<thead>
<tr>
<th>LS Parameter Estimates</th>
<th>Variable</th>
<th>Estimate</th>
<th>Approx Std Err</th>
<th>t Value</th>
<th>Pr ></th>
<th>Lower WCI</th>
<th>Upper WCI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VAR1</td>
<td>0.7156402</td>
<td>0.13485819</td>
<td>5.31</td>
<td><.0001</td>
<td>0.45132301</td>
<td>0.97995739</td>
</tr>
<tr>
<td></td>
<td>VAR2</td>
<td>1.29526612</td>
<td>0.36802427</td>
<td>3.52</td>
<td>0.0026</td>
<td>0.57397182</td>
<td>2.01660043</td>
</tr>
<tr>
<td></td>
<td>VAR3</td>
<td>-0.1521225</td>
<td>0.15629404</td>
<td>-0.97</td>
<td>0.3440</td>
<td>-0.4584532</td>
<td>0.15420818</td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>-39.919674</td>
<td>11.89599969</td>
<td>-3.36</td>
<td>0.0038</td>
<td>-63.2354</td>
<td>-16.603949</td>
</tr>
</tbody>
</table>

Sum of Squares = 178.8299616

Degrees of Freedom = 17

LS Scale Estimate = 3.2433639182

<table>
<thead>
<tr>
<th>Cov Matrix of Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
<tr>
<td>VAR3</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
</tbody>
</table>
Figure 26.207 continued

R-squared = 0.9135769045

F(3,17) Statistic = 59.9022259

Probability = 3.0163272E-9

Least Trimmed Squares (LTS) Method

Minimizing Sum of 13 Smallest Squared Residuals.

Highest Possible Breakdown Value = 42.86 %

Random Selection of 517 Subsets

Among 517 subsets 17 is/are singular.

The best half of the entire data set obtained after full iteration consists of the cases:

<table>
<thead>
<tr>
<th>5 6 7 8 9 10 11 12 15 16 17 18 19</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Estimated Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>0.7409210642</td>
</tr>
</tbody>
</table>

LTS Objective Function = 0.474940583

Preliminary LTS Scale = 0.9888435617

Robust R Squared = 0.9745520119

Final LTS Scale = 1.0360272594

Weighted Least-Squares Estimation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Approx Std Err</th>
<th>t Value</th>
<th>Pr ></th>
<th>Lower WCI</th>
<th>Upper WCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
<td>0.75694055</td>
<td>0.07860766</td>
<td>9.63</td>
<td><.0001</td>
<td>0.60287236</td>
<td>0.91100874</td>
</tr>
<tr>
<td>VAR2</td>
<td>0.45353029</td>
<td>0.13605033</td>
<td>3.33</td>
<td>0.0067</td>
<td>0.18687654</td>
<td>0.72018405</td>
</tr>
<tr>
<td>VAR3</td>
<td>-0.05211</td>
<td>0.05463722</td>
<td>-0.95</td>
<td>0.3607</td>
<td>-0.159197</td>
<td>0.054977</td>
</tr>
<tr>
<td>Intercep</td>
<td>-34.05751</td>
<td>3.82881873</td>
<td>-8.90</td>
<td><.0001</td>
<td>-41.561857</td>
<td>-26.553163</td>
</tr>
</tbody>
</table>
Weighted Sum of Squares = 10.273044977
Degrees of Freedom = 11
RLS Scale Estimate = 0.9663918355

The preceding program produces the following output associated with the LTS analysis. In this analysis, observations, 1, 2, 3, 4, 13, and 21 have scaled residuals larger than 2.5 (table not shown) and are considered outliers.

See the documentation for the LMS subroutine for additional details.

The run has been executed successfully.

The LUPDT subroutine provides updating and downdating for rank deficient linear least squares solutions, complete orthogonal factorization, and Moore-Penrose inverses.

The LUPDT subroutine returns the following values:

- **lup** is an \(n \times n \) lower triangular matrix \(L \) that is updated or downdated by using the \(q \) rows in \(Z \).
- **bup** is an \(n \times p \) matrix \(B \) of right-hand sides that is updated or downdated by using the \(q \) rows in \(Y \). If \(b \) is not specified, \(bup \) is not accessible.
- **sup** is a \(p \) vector of square roots of residual sum of squares that is updated or downdated by using the \(q \) rows in \(Y \). If \(ssq \) is not specified, \(sup \) is not accessible.

The input arguments to the LUPDT subroutine are as follows:
L specifies an \(n \times n \) lower triangular matrix \(L \) to be updated or downdated by \(q \) row vectors \(z \) stored in the \(q \times n \) matrix \(Z \). Only the lower triangle of \(L \) is used; the upper triangle can contain any information.

\(z \) is a \(q \times n \) matrix \(Z \) used rowwise to update or downdate the matrix \(L \).

\(b \) specifies an optional \(n \times p \) matrix \(B \) of right-hand sides that have to be updated or downdated simultaneously with \(L \). If \(b \) is specified, the argument \(y \) must be specified.

\(y \) specifies an optional \(q \times p \) matrix \(Y \) used rowwise to update or downdate the right-hand-side matrix \(b \).

\(ssq \) specifies an optional \(p \times 1 \) vector that, if \(b \) is specified, specifies the square root of the error sum of squares that should be updated or downdated simultaneously with \(L \) and \(b \).

The relevant formula for the LUPDT call is \(\tilde{L}\tilde{L}' = LL' + ZZ' \). See the section “Complete QR Decomposition with LUPDT” on page 1015 in the documentation for the RZLIND call.

MAD Function

\[
\text{MAD}(x <, \text{method}>); \\
\]

The MAD function computes the univariate (scaled) median absolute deviation of each column of the input matrix.

The arguments to the MAD function are as follows:

\(x \) is an \(n \times p \) input data matrix.

\(\text{method} \) is an optional string argument with the following values:

- “MAD” for computing the median absolute deviation (MAD); this is the default.
- “NMAD” for computing the normalized version of MAD
- “SN” for computing \(S_n \)
- “QN” for computing \(Q_n \)

For simplicity, the following descriptions assume that the input argument \(x \) is a column vector. The notation \(x_i \) means the \(i \)th element of the column vector \(x \).

The MAD function can be used for computing one of the following three robust scale estimates:

- median absolute deviation (MAD) or normalized form of MAD,
 \[
 \text{MAD}_n = b \ast \text{med}_i^n |x_i - \text{med}_j^n x_j|
 \]
 where \(b = 1 \) is the unscaled default and \(b = 1.4826 \) is used for the scaled version (consistency with the Gaussian distribution).

- \(S_n \), which is a more efficient alternative to MAD,
 \[
 S_n = c_n \ast \text{med}_i \text{med}_j |x_i - x_j|
 \]
 where the outer median is a low median (order statistic of rank \(\left[\frac{n+1}{2} \right] \)) and the inner median is a high median (order statistic of rank \(\left[\frac{n}{2} + 1 \right] \)), and where \(c_n \) is a scalar that depends on sample size \(n \).
\(Q_n \) is another efficient alternative to MAD. It is based on the \(k \)-th order statistic of the \(\binom{n}{2} \) inter-point distances,

\[
Q_n = d_n \ast \{|x_i - x_j|; \; i < j\}_{(k)} \quad \text{with} \quad k \approx \binom{n}{2} / 4
\]

where \(d_n \) is a scalar similar to but different from \(c_n \). See Rousseeuw and Croux (1993) for more details.

The scalars \(c_n \) and \(d_n \) are defined as follows:

\[
c_n = 1.1926^* \begin{cases}
0.743 & \text{for } n=2 \\
1.851 & \text{for } n=3 \\
0.954 & \text{for } n=4 \\
1.351 & \text{for } n=5 \\
0.993 & \text{for } n=6 \\
1.198 & \text{for } n=7 \\
1.005 & \text{for } n=8 \\
1.131 & \text{for } n=9 \\
\frac{n}{(n-0.9)} & \text{for other odd } n \\
1.0 & \text{otherwise}
\end{cases} \quad \text{and} \quad d_n = 2.2219^* \begin{cases}
0.399 & \text{for } n=2 \\
0.994 & \text{for } n=3 \\
0.512 & \text{for } n=4 \\
0.844 & \text{for } n=5 \\
0.611 & \text{for } n=6 \\
0.857 & \text{for } n=7 \\
0.669 & \text{for } n=8 \\
0.872 & \text{for } n=9 \\
\frac{n}{(n+1.4)} & \text{for other odd } n \\
\frac{n}{(n+3.8)} & \text{otherwise}
\end{cases}
\]

Example

The following example uses the univariate data set of Barnett and Lewis (1978). The data set is used in Chapter 15 to illustrate the univariate LMS and LTS estimates.

\[
b = \{3, 4, 7, 8, 10, 949, 951\};
\]

\[
\text{rmad1} = \text{mad}(b); \quad \text{rmad2} = \text{mad}(b, "mad"); \quad \text{rmad3} = \text{mad}(b, "rmad"); \quad \text{rmad4} = \text{mad}(b, "sn"); \quad \text{rmad5} = \text{mad}(b, "qn");
\]

\[
\text{print "Default MAD=", rmad1, "Common MAD =", rmad2, "MAD*1.4826 =", rmad3, "Robust S_n =", rmad4, "Robust Q_n =", rmad5;}
\]

Figure 26.208 Median Absolute Deviations

<table>
<thead>
<tr>
<th>rmad1</th>
<th>Default MAD= 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmad2</td>
<td>Common MAD = 4</td>
</tr>
<tr>
<td>rmad3</td>
<td>MAD*1.4826 = 5.9304089</td>
</tr>
</tbody>
</table>
MAGIC Function

\[\text{MAGIC}(n); \]

The MAGIC function is part of the IMLMLIB library. The MAGIC function returns an \(n \times n \) magic square for \(n > 2 \). The matrix \(M \) is a magic square if it contains the integers \(1, 2, \ldots, n^2 \). If \(s \) is the trace of \(M \), then \(M \) satisfies the following conditions:

- The sum of every row is \(s \).
- The sum of every column is \(s \).
- The sum of the antidiagonal is \(s \).

There are many algorithms for creating magic squares. The algorithm implemented in the MAGIC function is based on Moler (2011).

The MAGIC function is mainly used to generate examples for documentation, discussion forums, books, and so forth. The following example displays two magic squares:

\[
\begin{align*}
\text{m3} & = \text{Magic}(3); \\
\text{m4} & = \text{Magic}(4); \\
\text{print} & \quad \text{m3, m4;}
\end{align*}
\]

Figure 26.208 Magic Squares of Size 3 and 4

| m3 \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| m4 \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
MAHALANOBIS Function

\[
\text{MAHALANOBIS}(\mathbf{x}, \mu, \Sigma); \\
\]

The MAHALANOBIS function is part of the IMLMLIB library. The MAHALANOBIS function returns the Mahalanobis distance between \(\mathbf{center} \) and the rows of \(\mathbf{x} \), measured according to the Mahalanobis metric. The arguments are as follows:

- \(\mathbf{x} \) specifies an \(n \times p \) numerical matrix that contains \(n \) points in \(p \)-dimensional space.
- \(\mathbf{center} \) is a \(1 \times p \) numerical vector that contains a point in \(p \)-dimensional space. The function returns the distances from the rows of \(\mathbf{x} \) to \(\mathbf{center} \). If \(\mathbf{center} \) is not specified, the sample mean, \(\bar{x} \), is used.
- \(\Sigma \) is an \(n \times n \) covariance matrix that specifies the metric that is used to compute distances. If \(\Sigma \) is the identity matrix, then the function returns the usual Euclidean distance. If \(\Sigma \) is not specified, the sample covariance matrix of \(\mathbf{x} \) is used. In this case, the number of rows of \(\mathbf{x} \) must be strictly greater than the number of columns, so that the covariance matrix is nonsingular.

If \(\mathbf{u} \) and \(\mathbf{c} \) are \(p \)-dimensional row vectors and \(\Sigma \) is a covariance matrix, then the Mahalanobis distance between \(\mathbf{u} \) and \(\mathbf{c} \) is

\[
d(\mathbf{u}, \mathbf{c}) = \left((\mathbf{u} - \mathbf{c}) \Sigma^{-1} (\mathbf{u} - \mathbf{c})^\top \right)^{1/2}
\]

The following statements compute the Mahalanobis distance between the rows of \(\mathbf{x} \) and the point \((1, 1)\):

\[
\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}; \\
\mathbf{center} = \{1 \ 1\}; \\
\Sigma = \begin{bmatrix} 4 & 1 \\ 1 & 9 \end{bmatrix}; \\
\text{maha} = \text{mahalanobis}(\mathbf{x}, \mathbf{center}, \Sigma); \\
\text{print maha;}
\]

\textbf{Figure 26.210} Mahalanobis Distance between Pairs of Points

<table>
<thead>
<tr>
<th>maha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3380617</td>
</tr>
<tr>
<td>0.5070926</td>
</tr>
<tr>
<td>1.0141851</td>
</tr>
<tr>
<td>0.7745967</td>
</tr>
</tbody>
</table>

When the \(\Sigma \) argument is an identity matrix, the Mahalanobis distance simplifies to the usual Euclidean distance. See the DISTANCE function for more information.
The MARG subroutine evaluates marginal totals in a multiway contingency table.

The input arguments to the MARG subroutine are as follows:

- `locmar` is a returned matrix that contains a vector of indices to each new set of marginal totals under the model specified by `config`. A marginal total is exhibited for each level of the specified marginal. These indices help locate particular totals.
- `marginal` is a return vector of marginal totals.
- `dim` is an input matrix. If the problem contains `v` variables, then `dim` is a `1 x v` row vector. The value `dim[i]` is the number of possible levels for variable `i` in a contingency table.
- `table` is an input matrix. The `table` argument specifies an array of the number of observations at each level of each variable. Variables are nested across columns and then across rows.
- `config` is an input matrix. The `config` argument specifies which marginal totals to evaluate. Each column of `config` specifies a distinct marginal in the model under consideration.

The matrix `table` must conform in size to the contingency table specified in `dim`. In particular, if `table` is `n x m`, the product of the entries in the `dim` vector must equal `nm`. In addition, there must be some integer `k` such that the product of the first `k` entries in `dim` equals `m`. See the description of the IPF function for more information about specifying `table`.

For example, consider the three-dimensional table discussed in the IPF call, based on data that appear in Christensen (1997). The table presents data on a person’s self-esteem for people classified according to their religion and their father’s educational level.

<table>
<thead>
<tr>
<th>Religion</th>
<th>Self-Esteem</th>
<th>Father’s Educational Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not HS Grad</td>
</tr>
<tr>
<td>Catholic</td>
<td>High</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>267</td>
</tr>
<tr>
<td>Jewish</td>
<td>High</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>48</td>
</tr>
<tr>
<td>Protestant</td>
<td>High</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>159</td>
</tr>
</tbody>
</table>

As explained in the IPF call documentation, the father’s education level is Variable 1, self-esteem is Variable 2, and religion is Variable 3.

The following program encodes this table, uses the MARG call to compute a two-way marginal table by summing over the third variable and a one-way marginal by summing over the first two variables.
dim={5 2 3};

table={
/* Father's Education:
NotHSGrad HSGrad Col ColGrad PostCol Self-
Relig Esteem */
/* Cath- Hi */ 575 388 100 77 51,
/* olic Lo */ 267 153 40 37 19,
/* Jew- Hi */ 117 102 67 87 62,
/* ish Lo */ 48 35 18 12 13,
/* Prot- Hi */ 359 233 109 197 90,
/* estant Lo */ 159 173 47 82 32
};

config = { 1 3,
2 0 };
call marg(locmar, marginal, dim, table, config);
print locmar, marginal;

Figure 26.211 Marginal Totals in a Three-Way Table

<table>
<thead>
<tr>
<th>locmar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1 1051 COL2 723 COL3 276 COL4 361 COL5 203 COL6 474 COL7 361 COL8 105 COL9 131 COL10 64 COL11 1707 COL12 561 COL13 1481</td>
</tr>
</tbody>
</table>

The first marginal total is contained in locations 1 through 10 of the marginal vector, which is shown in Figure 26.211. It represents the results of summing table over the religion variable. The first entry of marginal is the number of subjects with high self-esteem whose fathers did not graduate from high school (1051 = 575 + 117 + 359). The second entry is the number of subjects with high self-esteem whose fathers were high school graduates (723 = 388 + 102 + 233). The tenth entry is the number of subjects with low self-esteem whose fathers had some post-collegiate education (64 = 19 + 13 + 32).

The second marginal is contained in locations 11 through 13 of the marginal vector. It represents the results of summing table over the education and self-esteem variables. The eleventh entry of the marginal vector is the number of Catholics in the study. The thirteenth entry is the number of Protestants.

You can also extract the marginal totals into separate vectors, as shown in the following statements:

/* Examine marginals: The name indicates the variable(s) that are NOT summed over. The locmar variable tells where to index into the marginal variable. */
Var12_Marg = marginal[1:(locmar[2]-1)];
Var12_Marg = shape(Var12_Marg, dim[2], dim[1]);
Var3_Marg = marginal[locMar[2]:ncol(marginal)];
print Var12_Marg, Var3_Marg;
Figure 26.212 Marginal Totals

<table>
<thead>
<tr>
<th>Var1_2_Marg</th>
<th>1051 723 276 361 203</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>474 361 105 131 64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Var3_Marg</th>
<th>1707</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>1481</td>
</tr>
</tbody>
</table>

MATTRIB Statement

MATTRIB name < ROWNAME=row-name > < COLNAME=column-name > < LABEL=label > < FORMAT=format > ;

The MATTRIB subroutine associates printing attributes with matrices. The input arguments to the MATTRIB subroutine are as follows:

- **name** is a character matrix or quoted literal that contains the name of a matrix.
- **row-name** is a character matrix or quoted literal that specifies row names.
- **column-name** is a character matrix or quoted literal that specifies column names.
- **label** is a character matrix or quoted literal that associates a label with the matrix. The label argument has a maximum length of 256 characters.
- **format** is a valid SAS format.

The MATTRIB statement associates printing attributes with matrices. Each matrix can be associated with a ROWNAME= matrix and a COLNAME= matrix, which are used whenever the matrix is printed to label the rows and columns, respectively. The statement is written as the keyword MATTRIB followed by a list of one or more names and attribute associations. It is not necessary to specify all attributes. The attribute associations are applied to the previous name. Thus, the following statement associates a row name RA to a, and a column name CB to b:

```sas
a = {1 2 3, 4 5 6};
ra = {"Row 1", "Row 2"};
ca = 'C1':'C3';
b = 1:4;
cb = {"A" "B" "C" "D"};
mattrib a rowname=ra colname=ca b colname=cb;
print a, b;
```
MATTRIB Statement

You cannot group names. The following statement does not associate anything with \texttt{a}. In fact, it clears any attributes that were previously associated with \texttt{a}.

```plaintext
mattrib a b colname=cb;
print a, b;
```

The values of the associated matrices are not looked up until they are needed. Thus, they need not have values at the time the MATTRIB statement is specified; the values can be assigned at any time before the object matrix is printed. Because the associated matrices must available when a PRINT statement is executed, do not use temporary matrices to assign attributes.

The attributes continue to bind with the matrix until reassigned with another MATTRIB statement. To eliminate an attribute, specify \texttt{EMPTY} as the name (for example, \texttt{ROWNAME=EMPTY}). Use the \texttt{SHOW NAMES} statement to view current matrix attributes.

The following example demonstrates all options in the MATTRIB statement:

```plaintext
rows = "xr1":"xr3";
cols = "cl1":"cl4";
x = {1 1 1 1,
     2 2 2 2,
     3 3 3 3};
mattrib x rowname=rows
   colname=cols
   label="My Matrix, x"
   format=5.2;
print x;
```
MAX Function

MAX(matrix1 <, matrix2, . . . , matrix15>);

The MAX function returns the maximum value of a matrix or set of matrices. The matrices can be numeric or character.

For numeric arguments, the MAX function returns a single numeric value that is the largest element among all arguments. For character arguments, the MAX function returns the character string that is largest in the ASCII order. For character arguments, the size of the result is the maximum number of characters among the arguments.

There can be as many as 15 argument matrices. The function checks for missing numeric values and does not include them in the result. If all arguments are missing, then the machine’s most negative representable number is the result.

If you want to find the elementwise maximums of the corresponding elements of two matrices, use the maximum operator (<>).

An example that uses the MAX function follows:

```
c = {1 -123 13 56 128 -81 12};
b = max(c);
print b;
```

MAXQFORM Call

CALL MAXQFORM(rc, maxq, V <, best>);

The MAXQFORM subroutine computes the subsets of a matrix system that maximize the quadratic form.

If V and b are an $n \times n$ matrix and an $n \times 1$ vector, respectively, then the MAXQFORM function computes the subsets of components s such that $b'[s]V^{-1}[s,s]b[s]$ is maximized.

The MAXQFORM subroutine returns the following values:
rc is one of the following scalar return codes:

0 normal return
1 error: the number of elements of b is too large to process
2 error: V is not positive semidefinite

maxq is an $m \times (n + 2)$ matrix, where m is the total number of subsets computed and n is the number of elements of b. The value of m depends on the value of best and is equal to $2^n - 1$ if best is not specified. Each row of maxq contains information for a selected subset of V and b. The first element of the row is the number of components in the subset. The second element is the value of the quadratic form. The following elements of the row are either 0 or 1, to indicate whether the corresponding components of V and b are included in the subset.

The input arguments to the MAXQFORM subroutine are as follows:

V specifies an $n \times n$ positive semidefinite matrix. Often this is generated as a crossproduct matrix, $X'X$, where X is a $k \times n$ matrix.

b specifies an $n \times 1$ vector. Often this arises as $X'y$, where X is a $k \times n$ matrix, and y is a $k \times 1$ vector.

best specifies an optional scalar. If best is specified with the value p, then the p subsets with the largest value for the quadratic form are returned for each subset size.

The leaps and bounds algorithm by Furnival and Wilson (1974) computes the maximum value of quadratic forms for subsets of components. Many statistics computed as a quadratic form can then be used as the criterion for the method of subset selection. These include the regression sum of squares, Wald statistics, and score statistics.

Consider the following fitness data, which consists of observations with values for age measured in years, weight measured in kilograms, time to run 1.5 miles measured in minutes, heart rate while resting, heart rate while running, maximum heart rate recorded while running, and oxygen intake rate while running measured in milliliters per kilogram of body weight per minute.

```plaintext
fit = {
  44 89.47 11.37 62 178 182 44.609,
  40 75.07 10.07 62 185 185 45.313,
  44 85.84 8.65 45 156 168 54.297,
  42 68.15 8.17 40 166 172 59.571,
  38 89.02 9.22 55 178 180 49.874,
  47 77.45 11.63 58 176 176 44.811,
  40 75.98 11.95 70 176 180 45.681,
  43 81.19 10.85 64 162 170 49.091,
  44 81.42 13.08 63 174 176 39.442,
  38 81.87 8.63 48 170 186 60.055,
  44 73.03 10.13 45 168 168 50.541,
  45 87.66 14.03 56 186 192 37.388,
  45 66.45 11.12 51 176 176 44.754,
  47 79.15 10.60 47 162 164 47.273,
  54 83.12 10.33 50 166 170 51.855,
  49 81.42 8.95 44 180 185 49.156,
  51 69.63 10.95 57 168 172 40.836,
}```
51  77.91  10.00  48  162  168  46.672,  
48  91.63  10.25  48  162  164  46.774,  
49  73.37  10.08  67  168  168  50.388,  
57  73.37  12.63  58  174  176  39.407,  
54  79.38  11.17  62  156  165  46.080,  
52  76.32  9.63  48  164  166  45.441,  
50  70.87  8.92  48  146  155  54.625,  
51  67.25  11.08  48  172  172  45.118,  
49  91.63  12.88  44  168  172  39.203,  
51  73.71  10.47  59  186  188  45.790,  
57  59.08  9.93  49  148  155  50.545,  
49  76.32  9.40  56  186  188  48.673,  
48  61.24  11.50  52  170  176  47.920,  
52  82.78  10.50  53  170  172  47.467 };  

Use the following statement to center the data:

```plaintext
fitc = fit - fit[:, :,];
```

Now compute the crossproduct matrices, as follows:

```plaintext
x = fitc[, 1:6];
y = fitc[, 7];
xpx = x' * x;
xpy = x' * y;
```

The following statements compute the best three regression sums of squares for each size of regressor set:

```plaintext
call maxqform(rc, maxq, xpx, xpy, 3);
print maxq;
```

**Figure 26.217** Best Three Regression Sums of Squares

<table>
<thead>
<tr>
<th>maxq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 632.9001 0 0 1 0 0 0</td>
</tr>
<tr>
<td>1 135.78285 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 134.84474 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>2 650.66573 1 0 1 0 0 0</td>
</tr>
<tr>
<td>2 648.26218 0 0 1 0 1 0</td>
</tr>
<tr>
<td>2 634.46746 0 0 1 0 0 1</td>
</tr>
<tr>
<td>3 690.55064 1 0 1 0 1 0</td>
</tr>
<tr>
<td>3 689.60921 0 0 1 0 1 1</td>
</tr>
<tr>
<td>3 665.55064 1 0 1 0 0 1</td>
</tr>
<tr>
<td>4 712.45153 1 0 1 0 1 1</td>
</tr>
<tr>
<td>4 695.14669 1 1 1 0 1 0</td>
</tr>
<tr>
<td>4 694.59882 0 1 1 0 1 1</td>
</tr>
<tr>
<td>5 721.97309 1 1 1 0 1 1</td>
</tr>
<tr>
<td>5 712.63302 1 0 1 1 1 1</td>
</tr>
<tr>
<td>5 696.05218 1 1 1 1 1 0</td>
</tr>
<tr>
<td>6 722.54361 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>
MCD Call

CALL MCD(sc, coef, dist, opt, x);

The MCD subroutine computes the minimum covariance determinant estimator. The MCD call is the robust estimation of multivariate location and scatter, defined by minimizing the determinant of the covariance matrix computed from $h$ points. The algorithm for the MCD subroutine is based on the FAST-MCD algorithm given by Rousseeuw and Van Driessen (1999).

These robust locations and covariance matrices can be used to detect multivariate outliers and leverage points. For this purpose, the MCD subroutine provides a table of robust distances.

In the following discussion, $N$ is the number of observations and $n$ is the number of regressors. The input arguments to the MCD subroutine are as follows:

$opt$ refers to an options vector with the following components (missing values are treated as default values):

- $opt[1]$ specifies the amount of printed output. Higher option values request additional output and include the output of lower values.
  
  0 prints no output except error messages.
  1 prints most of the output.
  2 additionally prints case numbers of the observations in the best subset and some basic history of the optimization process.
  3 additionally prints how many subsets result in singular linear systems.

  The default is $opt[1]=0$.

- $opt[2]$ specifies whether the classical, initial, and final robust covariance matrices are printed. The default is $opt[2]=0$. The final robust covariance matrix is always returned in $coef$.

- $opt[3]$ specifies whether the classical, initial, and final robust correlation matrices are printed or returned. The default is $opt[3]=0$.
  
  0 does not return or print.
  1 prints the robust correlation matrix.
  2 returns the final robust correlation matrix in $coef$.
  3 prints and returns the final robust correlation matrix.

- $opt[4]$ specifies the quantile $h$ used in the objective function. The default is $opt[4]=h = \frac{N+n+1}{2}$. If the value of $h$ is specified outside the range $\frac{N}{2} + 1 \leq h \leq \frac{3N}{4} + \frac{n+1}{4}$, it is reset to the closest boundary of this region.

- $opt[5]$ specifies the number $N_{Rep}$ of subset generations. This option is the same as described for the LMS subroutine and the LTS subroutine. Due to computer time restrictions, not all subset combinations can be inspected for larger values of $N$ and $n$.

When $opt[5]$ is zero or missing:
• If \( N > 600 \), up to five disjoint random subsets are constructed with sizes as equal as possible, but not to exceed 300. Inside each subset, \( N_{\text{Rep}} = 500/5 = 100 \) subset combinations of \( n \) observations are chosen.

• If \( N \leq 600 \), the number of subsets is taken from the following table.

<table>
<thead>
<tr>
<th>( n )</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{\text{lower}} )</td>
<td>500</td>
<td>50</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

• If the number of observations \( N \) is smaller than \( N_{\text{lower}} \), as given in the table, then all possible subsets are used; otherwise, \( N_{\text{Rep}} = 500 \) subsets are chosen randomly. This means that an exhaustive search is performed for \( \text{opt}[5]=-1 \).

\( x \) refers to an \( N \times n \) matrix \( X \) of regressors.

Missing values are not permitted in \( x \). Missing values in \( \text{opt} \) cause default values to be used for each option.

The MCD subroutine returns the following values:

\( sc \) is a column vector that contains the following scalar information:

- \( sc[1] \) the quantile \( h \) used in the objective function
- \( sc[2] \) number of subsets generated
- \( sc[3] \) number of subsets with singular linear systems
- \( sc[4] \) number of nonzero weights \( w_i \)
- \( sc[5] \) lowest value of the objective function \( F_{\text{MCD}} \) attained (smallest determinant)
- \( sc[6] \) Mahalanobis-like distance used in the computation of the lowest value of the objective function \( F_{\text{MCD}} \)
- \( sc[7] \) the cutoff value used for the outlier decision

\( \text{coef} \) is a matrix with \( n \) columns that contains the following results in its rows:

- \( \text{coef}[1,] \) location of ellipsoid center
- \( \text{coef}[2,] \) eigenvalues of final robust scatter matrix
- \( \text{coef}[3:2+n,] \) the final robust scatter matrix for \( \text{opt}[2]=1 \) or \( \text{opt}[2]=3 \)
- \( \text{coef}[2+n+1:2+2n,] \) the final robust correlation matrix for \( \text{opt}[3]=1 \) or \( \text{opt}[3]=3 \)

\( \text{dist} \) is a matrix with \( N \) columns that contains the following results in its rows:

- \( \text{dist}[1,] \) Mahalanobis distances
- \( \text{dist}[2,] \) robust distances based on the final estimates
- \( \text{dist}[3,] \) weights (1 for small robust distances; 0 for large robust distances)
Example

Consider the Brownlee (1965) stackloss data used in the example for the MVE subroutine.

For $N = 21$ and $n = 4$ (three explanatory variables including intercept), you obtain a total of 5,985 different subsets of 4 observations out of 21. If you decide not to specify opt[5], the MCD algorithm chooses 500 random sample subsets, as in the following statements:

```c
/* Int X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,
 1 80 27 88 37,
 1 75 25 90 37,
 1 62 24 87 28,
 1 62 22 87 18,
 1 62 23 87 18,
 1 62 24 93 19,
 1 62 24 93 20,
 1 58 23 87 15,
 1 58 18 80 14,
 1 58 18 89 14,
 1 58 17 88 13,
 1 58 18 82 11,
 1 58 19 93 12,
 1 50 18 89 8,
 1 50 18 86 7,
 1 50 19 72 8,
 1 50 19 79 8,
 1 50 20 80 9,
 1 56 20 82 15,
 1 70 20 91 15 };

a = aa[,2:4]; /* X1-X3 */
opt = j(8, 1, .);
opt[1] = 2; /* ipri */
opt[2] = 1; /* pcov: print COV */
opt[3] = 1; /* pcor: print CORR */

call mcd(sc, xmcd, dist, opt, a);
```

A portion of the output is shown in the following figures. *Figure 26.218* shows a summary of the MCD algorithm and the final $h$ points selected.

*Figure 26.218* Summary of MCD

<table>
<thead>
<tr>
<th>Fast MCD by Roussseeuw and Van Driessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Variables</td>
</tr>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Default Value for $h$</td>
</tr>
<tr>
<td>Specified Value for $h$</td>
</tr>
<tr>
<td>Breakdown Value</td>
</tr>
</tbody>
</table>

- Highest Possible Breakdown Value -
Figure 26.219 shows the observations that were chosen that are used to form the robust estimates.

**Figure 26.219** Selected Observations

**MCD Estimates (Obtained by Subsampling and Iteration)**

The best half of the entire data set obtained after full iteration consists of the cases:

4 5 6 7 8 9 10 11 12 13 14 20

Figure 26.220 shows the MCD estimators of the location, scatter matrix, and correlation matrix. The MCD scatter matrix is multiplied by a factor to make it consistent with the data that come from a single Gaussian distribution.

**Figure 26.220** MCD Estimators

<table>
<thead>
<tr>
<th>MCD Location Estimate</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.5</td>
<td>20.833333333</td>
<td>87.333333333</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MCD Scatter Matrix Estimate</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 5.1818181818</td>
<td>4.8181818182</td>
<td>4.7272727273</td>
<td></td>
</tr>
<tr>
<td>VAR2 4.8181818182</td>
<td>7.6060606061</td>
<td>5.0606060606</td>
<td></td>
</tr>
<tr>
<td>VAR3 4.7272727273</td>
<td>5.0606060606</td>
<td>19.151515152</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consistent Scatter Matrix</th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1 8.6578437815</td>
<td>8.052757968</td>
<td>7.8983838007</td>
<td></td>
</tr>
<tr>
<td>VAR2 8.0502757968</td>
<td>12.708297013</td>
<td>8.4553211199</td>
<td></td>
</tr>
<tr>
<td>VAR3 7.8983838007</td>
<td>8.4553211199</td>
<td>31.998580526</td>
<td></td>
</tr>
</tbody>
</table>

Figure 26.221 shows the classical Mahalanobis distances, the robust distances, and the weights that identify the outlying observations (that is, leverage points when explaining $y$ with these three regressor variables).
The MEAN function computes a sample mean of data. The arguments are as follows:

```
MEAN(x <, method> <, param>);
```

Robust distances are based on reweighted estimates.

The cutoff value is the square root of the 0.975 quantile of the chi square distribution with 3 degrees of freedom.

Points whose robust distance exceeds 3.0575159206 have received a zero weight in the last column above.

There were 9 such points in the data.

These may include boundary cases.

Only points whose robust distance is substantially larger than the cutoff should be considered outliers.
The MEAN function computes means of the columns of this matrix.

**method** specifies the method used to compute the mean. This argument is optional. The following are valid values:

- "arithmetic" specifies that arithmetic means be computed. This is the default value.
- "trimmed" specifies that trimmed means be computed. The number of observations that are trimmed is determined by the **param** option.
- "winsorized" specifies that Winsorized means be computed. The number of observations that are Winsorized is determined by the **param** option.

**param** specifies the number of observations trimmed or Winsorized. (This argument is ignored when "arithmetic" is specified for the **method** argument.) The default value for **param** is 0.1, which corresponds to trimming or Winsorizing 10% of the observations with the lowest values and 10% of the observations with the largest values.

The **method** argument is not case-sensitive. The first four characters are used to determine the value. For example, "WINS", "Winsor", and "winsorized" specify the same option.

The MEAN function uses the same algorithms as the UNIVARIATE procedure for computing the means, trimmed means, and Winsorized means. For additional details and formulas, see the UNIVARIATE procedure documentation (especially the TRIMMED= and WINSORIZED= options) in the *Base SAS Procedures Guide: Statistical Procedures*.

The **param** argument determines how many observations are trimmed (or Winsorized). The value for this argument can be an integer or a proportion. If the value is an integer \(k\), then \(k\) observations are trimmed, provided that \(k\) is between 0 and half the number of nonmissing observations. If value is a proportion \(p\) in the interval \([0, 0.5]\), then the number of observations trimmed is equal to the smallest integer that is greater than or equal to \(np\), where \(n\) is the number of nonmissing observations.

The following example demonstrates basic usage:

```sas
x = {5, 6, 6, 7, 7, 8, 8, 15};
mean = mean(x);
trim = mean(x, "trimmed", 0.2); /* 20% of obs */
winsor = mean(x, "winsorized", 1); /* one obs */
print mean trim winsor;
```

**Figure 26.222** Arithmetic, Trimmed, and Winsorized Means

<table>
<thead>
<tr>
<th>mean</th>
<th>trim</th>
<th>winsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>6.8333333</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The MEAN function operates on columns of matrices. If \(x\) is an \(n \times p\) matrix, the function returns a \(1 \times p\) row vector. The value of the \(j\)th element is the mean for the \(j\)th column of the matrix, as the following example demonstrates:

```sas
x = {5 1 10,
 6 2 3,
 6 8 5,
 6 7 9,
 };
```
```sas
7 2 13);
mean = mean(x);
print mean;
```

**Figure 26.223** Arithmetic Mean of Columns

<table>
<thead>
<tr>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Missing values in a column are excluded from the computation. The default behavior of the MEAN function is identical to the subscript reduction operator that computes the mean. That is, \( \text{mean}(x) \) and \( x[:,] \) both compute the means of the columns of \( x \). See the section “Subscript Reduction Operators” on page 53 for more information about subscript reduction operators.

---

**MEDIAN Function**

```sas
MEDIAN(matrix);
```

The MEDIAN function is part of the IMLMLIB library. The MEDIAN function returns the median value for each column in the \( n \times m \) matrix argument. When the number of data points is odd, it returns the middle element from the sorted order. When the number of data points is even, it returns the mean of the middle two elements. Missing values are excluded from the computation. If all values in a column are missing, the return value for that column is missing. An example of the MEDIAN function follows:

```sas
x = {1 3,
 2 3,
 4 9,
 10 0};
med = median(x);
print med;
```

**Figure 26.224** Median of Columns

<table>
<thead>
<tr>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

---

**MILPSOLVE Call**

```sas
CALL MILPSOLVE(rc, objvalue, x, relgap, c, a, b <, cntl> <, coltype> <, rowsense> <, range> <, l> <, u>);
```

The MILPSOLVE subroutine solves a mixed integer linear programming problem. For complete functionality the SAS/OR product must also be installed, otherwise the maximum number of variables and maximum number of constraints is restricted to 500.

The input arguments to the MILPSOLVE subroutine are as follows:
\( c \) is a vector of dimension \( n \) of objective function coefficients. A missing value is treated as 0.

\( a \) is an \( m \times n \) matrix of the technological coefficients. A missing value is treated as 0.

\( b \) is a vector of dimension \( n \) of constraints' right-hand sides (RHS). For a range constraint, \( b \) is the constraint upper bound. A missing value is treated as 0.

\( \text{cntl} \) is an optional vector that contains the control parameters for the MILP\text{SOLVE} subroutine. The vector can contain from one to 14 options. These options are a subset of the options that are supported by the OPT\text{MILP} procedure in SAS/OR software. For a detailed description of the options, see SAS/OR User's Guide: Mathematical Programming. A default value is used when an option is not specified or its value is a missing value. If \( \text{cntl} = (\text{objsense, printlevel, maxtime, maxnodes, rebobjgap, presolver, cuts, heuristics, probe, node\text{sel}, varsel, conflictsearch, inttol, tol}) \), then

- \( \text{objsense} \) specifies whether the problem is a minimization or a maximization problem, where 1 specifies a minimization problem and \(-1\) specifies a maximization problem. The default value is 1.
- \( \text{printlevel} \) specifies the type of messages printed to the log. A value of 0 prints warning and error messages only, whereas 1 prints solution information in addition to warning and error messages. The default value is 0.
- \( \text{maxtime} \) specifies an upper bound of running time in seconds. The default value is effectively unbounded.
- \( \text{maxnodes} \) specifies the maximum number of branch-and-bound nodes to be processed. The default value is no limit.
- \( \text{rebobjgap} \) specifies a stopping criterion that is based on the best integer objective and the objective of the best remaining node. The stopping criterion is

\[
\frac{\text{BestInteger} - \text{BestBound}}{|\text{BestBound}|/(10^{-10} + |\text{BestBound}|)}
\]

The default value is \( 10^{-4} \).

- \( \text{presolver} \) specifies a presolve option, where 0 specifies that no presolve is performed, and 1 specifies that an automatic presolve is performed. The default value is 1.
- \( \text{cuts} \) specifies a cuts option, where 0 specifies that no cuts are made, and 1 specifies that automatic cuts are made. The default value is 0.
- \( \text{heuristics} \) specifies a heuristics option, where 0 specifies that no heuristics are used, and 1 specifies that heuristics are automatically used. The default value is 1.
- \( \text{probe} \) specifies a probe option, where 0 specifies that no probing is performed, and 1 specifies that probing is automatically performed. The default value is 1.
- \( \text{node\text{sel}} \) specifies the node selection strategy, where \(-1\) specifies automatic selection, 0 chooses the node that has the best relaxed objective, 1 chooses the node that has the best estimate of the integer objective value, and 2 chooses the most recently created node. The default value is \(-1\).
- \( \text{varsel} \) specifies the rule for selecting the branching variable, where \(-1\) uses automatic branching variable selection, 0 chooses the variable that has maximum infeasibility, 1 chooses the variable that has minimum infeasibility, 2 chooses a branching variable based on pseudocost, and 3 uses the strong branching variable selection strategy. The default value is \(-1\).
conflicsearch specifies a conflict search option, where 0 specifies no conflict search and 1 specifies automatic conflict search. The default value is 1.

inttol specifies the amount by which an integer variable value can differ from an integer and still be considered integer feasible. The value can be any number between 0.0 and 0.5. The default value is $10^{-5}$.

tol specifies a feasibility and optimality tolerance. The value can be any number between $10^{-9}$ and $10^{-4}$. The default value is $10^{-6}$.

coltype is an optional column vector of dimension $n$ that specifies the type of each variable. The values can be C, B, or I for continuous, binary, or integer variable. If this vector is missing or coltype[$j$] has a missing value, the solver treats variable $j$ as a binary variable if both $l$ and $u$ bounds are not specified or as a continuous variable otherwise.

rowsense is an optional row vector of dimension $m$ that specifies the sense of each constraint. The values can be E, L, G, or R for equal, less than or equal to, greater than or equal to, or range constraint. If this vector is missing, the solver treats the constraints as E type constraints.

range is an optional row vector of dimension $m$ that specifies the range of the constraints. The row sense of a range constraint is R. For the non-range constraints, the corresponding values are ignored. For a range constraint, the range value is the difference between its constraint lower bound and its constraint upper bound $b$, so it must be nonnegative.

$l$ is an optional column vector of dimension $n$ that specifies lower bounds on the decision variables. If you do not specify $l$ or $l[j]$ has a missing value, then the lower bound of variable $j$ is assumed to be 0.

$u$ is an optional column vector of dimension $n$ that specifies upper bounds on the decision variables. If you do not specify $u$ or $u[j]$ has a missing value, the upper bound of variable $j$ is assumed to be 1 for a binary or integer variable, or infinity for the continuous variable.

The MILPSOLVE subroutine returns the following values:

$rc$ returns one of the following scalar return codes:

<table>
<thead>
<tr>
<th>$rc$</th>
<th>Termination Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The solution is integer optimal.</td>
</tr>
<tr>
<td>1</td>
<td>The time limit was exceeded.</td>
</tr>
<tr>
<td>2</td>
<td>The number of node limit was exceeded.</td>
</tr>
<tr>
<td>3</td>
<td>The solution is infeasible.</td>
</tr>
<tr>
<td>4</td>
<td>The solution is unbounded or infeasible.</td>
</tr>
<tr>
<td>5</td>
<td>The subroutine could not obtain enough memory</td>
</tr>
<tr>
<td>6</td>
<td>The subroutine failed to solve the problem.</td>
</tr>
</tbody>
</table>

$objvalue$ returns the optimal or final objective value at termination.

$x$ returns the current primal solution in a column vector of length $n$.

$relgap$ returns the relative gap between the current best integer objective and the objective of the best remaining node.
The MILPSOLVE subroutine is a solver for general mixed integer linear programs (MILPs).

A standard mixed integer linear program has the formulation:

\[
\begin{align*}
\min & \quad c^T x \\
\text{subject to} & \quad Ax \{\geq, =, \leq\} b \\
& \quad l \leq x \leq u
\end{align*}
\]

where \( x_i \) is integer for some subset of indices

If only \( c, A, \) and \( b \) are present, then the MILPSOLVE subroutine solves the following integer programming problem by default:

\[
\begin{align*}
\min & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad \text{all } x_i \text{ are binary}
\end{align*}
\]

The MILPSOLVE subroutine implements a linear-programming-based branch-and-bound algorithm. This divide-and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a sequence of smaller subproblems. The MILPSOLVE subroutine also implements advanced techniques such as presolving, probing, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall algorithm. These techniques are explained in more detail in the chapter “The OPTMILP Procedure” in SAS/OR User’s Guide: Mathematical Programming.

Consider the following example:

\[
\begin{align*}
\min & \quad X_1 + X_2 \\
\text{subject to} & \quad 2X_1 + 0.5X_2 - X_3 \leq 1 \\
& \quad 0.2X_1 + 5X_2 - X_4 \leq 1 \\
& \quad X_i \text{ is binary for } i = 1, 2, 3, 4
\end{align*}
\]

The problem is solved by using the following statements:

```plaintext
object = { 1 1 0 0 };
coef = { 2 .5 -1 0 ,
 .2 5 0 -1};
b = { 1, 1 };
rowsense = (L,L);
cntl = -1;
call milpsolve(rc,objv,x,relgap,object,coef,b,cntl,,rowsense);
print objv, x, relgap;
```

**Figure 26.225** Example MILPSOLVE Call
MIN Function

\[ \text{MIN}(\text{matrix}_1 <, \text{matrix}_2, \ldots, \text{matrix}_{15}>); \]

The MIN function returns the minimum value of a matrix or set of matrices. The matrices can be numeric or character.

The MIN function produces a single numeric value (or a character string value) that is the smallest element (lowest character string value) in all arguments. There can be as many as 15 argument matrices. The function checks for missing numeric values and excludes them from the result. If all arguments are missing, then the machine’s largest representable number is the result.

If you want to find the elementwise minimums of the corresponding elements of two matrices, use the element minimum operator (><).

For character arguments, the size of the result is the size of the largest of all arguments.

The following statements use the MIN function to compute the minimum value of a vector:

```plaintext
c = \{1 -123 13 56 128 -81 12\};
b = \text{min}(c);
\text{print } b;
```

MOD Function

\[ \text{MOD}(\text{value}, \text{divisor}); \]

The MOD function returns the remainder of the division of elements of the first argument by elements of the second argument.

The arguments to the MOD function are as follows:
value is a numeric matrix or literal that contains the dividend.
divisor is a numeric matrix or literal that contains the divisor.

If either operand is a scalar, the MOD function performs the operation for each element of the matrix with the scalar value. If either operand is a row or column vector, then the operation is performed by using that vector on each of the rows or columns of the matrix.

Unlike the MOD function in Base SAS software, the MOD function in SAS/IML software does not perform any numerical “fuzzing” to return an exact zero when the result would otherwise be very small. Thus the results of the SAS/IML MOD function is more similar to the MODZ function in Base SAS software.

An example of a valid statement follows:

```sas
c = {-7 14 20 -81 23};
b = mod(c, 4);
print b;
```

![Figure 26.227](image)

**Figure 26.227**  Remainders after Division

<table>
<thead>
<tr>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 2 0 -1 3</td>
</tr>
</tbody>
</table>

---

**MODULEI Call**

```sas
CALL MODULEI(control, modname, < matrix1, . . . , matrix13>);
```

The MODULEI subroutine calls an external routine that does not return a value.

The input arguments to the MODULEI subroutine are as follows:

- **control** is a character matrix that contains a control string.
- **modname** is a character matrix that contains the name of the external routine to be called.
- **matrix** specifies matrix parameters to be passed to the external routine.

The CALL MODULEI routine executes a routine modname that resides in an external shared library with the specified arguments.

The MODULEI call routine is similar to the MODULE call routine that is available in the SAS DATA step. It is also closely related to the MODULEIN function, which returns a scalar numeric value, and the MODULEIC function, which returns a character value. CALL MODULEI builds a parameter list by using the information in the arguments and a routine description and argument attribute table that you define in a separate file. The attribute table is a sequential text file that contains descriptions of the routines that you can invoke with the CALL MODULEI routine and MODULEIN and MODULEIC functions. The purpose of the table is to define how CALL MODULEI should interpret its supplied arguments when it builds a parameter list to pass to the external routine. The attribute table should contain a description for each external routine that you intend to call, and descriptions of each argument associated with that routine. This enables you to call external routines that have been compiled in different programming languages that use different calling and matrix representation conventions.
Before you invoke CALL MODULEI, you must define the fileref of SASCBTBL to point to the external file that contains the attribute table. You can name the file whatever you want when you create it. You can then use matrices as arguments to CALL MODULEI and ensure that these arguments are properly converted before being passed to the external routine. The exact syntax for the attribute table is system-dependent, and can be found in the SAS Companion for your operating system. Attempting to use CALL MODULEI for a module without a correct attribute table entry can cause the SAS System to fail.

**MODULEIC Function**

```
MODULEIC(control, modname, <matrix1, . . . , matrix13>);
```

The MODULEIC subroutine calls an external routine that returns a character value.

The arguments to the MODULEIC function are as follows:

- `control` is a character matrix that contains a control string.
- `modname` is a character matrix that contains the name of the external routine to be called.
- `matrix` specifies matrix parameters to be passed to the external routine.

The MODULEIC routine executes a routine `modname` that resides in an external shared library with the specified arguments and that returns a character value.

The description of this function is identical to the description of the MODULEI call, except that the MODULEIC function returns a character value from the external routine. See the MODULEI call for a full description of the function and its arguments.

**MODULEIN Function**

```
MODULEIN(control, modname, <matrix1, . . . , matrix13>);
```

The MODULEIN subroutine calls an external routine that returns a numerical value.

The arguments to the MODULEIN function are as follows:

- `control` is a character matrix that contains a control string.
- `modname` is a character matrix that contains the name of the external routine to be called.
- `matrix` specifies matrix parameters to be passed to the external routine.

The MODULEIN routine executes a routine `modname` that resides in an external shared library with the specified arguments and that returns a numeric value.

The description of this function is identical to the description of the MODULEI call, except that the MODULEIN function returns a scalar numeric value from the external routine. See the MODULEI call for a full description of the function and its arguments.

This example invokes the CHANGI routine from the TRYMOD.DLL module on a Windows platform. Use the following attribute table.
routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following statements call the CHANGI function:

    proc iml;
    ones = J(4,5,1);
    i = do(10, 40, 10);
    j = 4:8;
    x1 = i` # ones + j;
    y1=x1;
    x2=x1;
    y2=y1;
    rc=modulein("*i","changi",6,x2);

---

**MVE Call**

**CALL MVE**(sc, coef, dist, opt, x <, s >);

The MVE subroutine computes the robust estimation of multivariate location and scatter, defined by minimizing the volume of an ellipsoid that contains \( h \) points.

The MVE subroutine computes the minimum volume ellipsoid estimator. These robust locations and covariance matrices can be used to detect multivariate outliers and leverage points. For this purpose, the MVE subroutine provides a table of robust distances.

In the following discussion, \( N \) is the number of observations and \( n \) is the number of regressors. The input arguments to the MVE subroutine are as follows:

- \( opt \) refers to an options vector with the following components (missing values are treated as default values):
  - \( opt[1] \) specifies the amount of printed output. Higher option values request additional output and include the output of lower values.
    - 0 prints no output except error messages.
    - 1 prints most of the output.
    - 2 additionally prints case numbers of the observations in the best subset and some basic history of the optimization process.
    - 3 additionally prints how many subsets result in singular linear systems.
  - The default is \( opt[1]=0 \).

- \( opt[2] \) specifies whether the classical, initial, and final robust covariance matrices are printed. The default is \( opt[2]=0 \). The final robust covariance matrix is always returned in \( coef \).

- \( opt[3] \) specifies whether the classical, initial, and final robust correlation matrices are printed or returned. The default is \( opt[3]=0 \).
MVE Call

0 does not return or print.
1 prints the robust correlation matrix.
2 returns the final robust correlation matrix in coef.
3 prints and returns the final robust correlation matrix.

`opt[4]` specifies the quantile $h$ used in the objective function. The default is $opt[5]= h = \left\lceil \frac{N + n + 1}{2} \right\rceil$. If the value of $h$ is specified outside the range $\frac{N}{2} + 1 \leq h \leq \frac{3N}{4} + \frac{n+1}{4}$, it is reset to the closest boundary of this region.

`opt[5]` specifies the number $N_{\text{Rep}}$ of subset generations. This option is the same as described previously for the LMS and LTS subroutines. Due to computer time restrictions, not all subset combinations can be inspected for larger values of $N$ and $n$. If $opt[5]$ is zero or missing, the default number of subsets is taken from the following table.

<table>
<thead>
<tr>
<th>$n$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{lower}}$</td>
<td>500</td>
<td>50</td>
<td>22</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$N_{\text{upper}}$</td>
<td>$10^6$</td>
<td>1414</td>
<td>182</td>
<td>71</td>
<td>43</td>
<td>32</td>
<td>27</td>
<td>24</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>$N_{\text{Rep}}$</td>
<td>500</td>
<td>1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$n$</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\text{lower}}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$N_{\text{upper}}$</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>$N_{\text{Rep}}$</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

If the number of cases (observations) $N$ is smaller than $N_{\text{lower}}$, as given in the table, then all possible subsets are used; otherwise, $N_{\text{Rep}}$ subsets are chosen randomly. This means that an exhaustive search is performed for $opt[5]=-1$. If $N$ is larger than $N_{\text{upper}}$, a note is printed in the log file that indicates how many subsets exist.

$x$ refers to an $N \times n$ matrix $X$ of regressors. Missing values are not permitted in $x$.

$s$ refers to an $n + 1$ vector that contains $n + 1$ observation numbers of a subset for which the objective function should be evaluated, where $n$ is the number of parameters. In other words, the MVE algorithm computes the minimum volume of the ellipsoid that contains the observation numbers contained in $s$.

The MVE subroutine returns the following values:

`sc` is a column vector that contains the following scalar information:

- $sc[1]$ the quantile $h$ used in the objective function
- $sc[2]$ number of subsets generated
- $sc[3]$ number of subsets with singular linear systems
- $sc[4]$ number of nonzero weights $w_i$
- $sc[5]$ lowest value of the objective function $F_{\text{MVE}}$ attained (volume of smallest ellipsoid found)
- $sc[6]$ Mahalanobis-like distance used in the computation of the lowest value of the objective function $F_{\text{MVE}}$
sc[7] the cutoff value used for the outlier decision

coe[7] is a matrix with $n$ columns that contains the following results in its rows:

$\text{coef}[1,]$ location of ellipsoid center

$\text{coef}[2,]$ eigenvalues of final robust scatter matrix

$\text{coef}[3:2+n,]$ the final robust scatter matrix for $\text{opt}[2]=1$ or $\text{opt}[2]=3$

$\text{coef}[2+n+1:2+2n,]$ the final robust correlation matrix for $\text{opt}[3]=1$ or $\text{opt}[3]=3$

$\text{dist}$ is a matrix with $N$ columns that contains the following results in its rows:

$\text{dist}[1,]$ Mahalanobis distances

$\text{dist}[2,]$ robust distances based on the final estimates

$\text{dist}[3,]$ weights (1 for small robust distances; 0 for large robust distances)

Example

Consider results for Brownlee (1965) stackloss data. The three explanatory variables correspond to measurements for a plant that oxidizes ammonia to nitric acid on 21 consecutive days:

- $x_1$ air flow to the plant
- $x_2$ cooling water inlet temperature
- $x_3$ acid concentration

The response variable $y_i$ contains the permillage of ammonia lost (stackloss). These data are also given by Rousseeuw and Leroy (1987).

```c
/* X1 X2 X3 Y Stackloss data */
aa = { 1 80 27 89 42,
 1 80 27 88 37,
 1 75 25 90 37,
 1 62 24 87 28,
 1 62 22 87 18,
 1 62 23 87 18,
 1 62 24 93 19,
 1 62 24 93 20,
 1 58 23 87 15,
 1 58 18 80 14,
 1 58 18 89 14,
 1 58 17 88 13,
 1 58 18 82 11,
 1 58 19 93 12,
 1 50 18 89 8,
 1 50 18 86 7,
 1 50 19 72 8,
 1 50 19 79 8,
 1 50 20 80 9,
 1 56 20 82 15,
 1 70 20 91 15 };```
Rousseeuw and Leroy (1987) cite a large number of papers where this data set was analyzed and state that most researchers “concluded that observations 1, 3, 4, and 21 were outliers”; some people also reported observation 2 as an outlier.

By default, subroutine MVE chooses only 2,000 randomly selected subsets in its search. There are in total 5,985 subsets of 4 cases out of 21 cases, as shown in Figure 26.228, which is produced by the following statements:

```plaintext
a = aa[, 2:4];
opt = j(8, 1, .);
opt[1] = 2; /* ipri */
opt[2] = 1; /* pcov: print COV */
opt[3] = 1; /* pcor: print CORR */
opt[5] = -1; /* nrep: use all subsets */
call mve(sc, xmve, dist, opt, a);
```

The first part of the output (Figure 26.228) shows the classical scatter and correlation matrix, along with the means of each variable.

Figure 26.228 Classical Estimates of Scatter and Location

<table>
<thead>
<tr>
<th>Classical Covariance Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
<tr>
<td>VAR3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classical Correlation Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
<tr>
<td>VAR3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classical Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR1</td>
</tr>
<tr>
<td>VAR2</td>
</tr>
<tr>
<td>VAR3</td>
</tr>
</tbody>
</table>

The second part of the output (Figure 26.229) shows the results of the optimization (complete subset sampling):

Figure 26.229 Subset Sampling and Optimal Subset

<table>
<thead>
<tr>
<th>Subset</th>
<th>Singular Criterion</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1497</td>
<td>22</td>
<td>253.312431</td>
</tr>
<tr>
<td>2993</td>
<td>46</td>
<td>224.084073</td>
</tr>
<tr>
<td>4489</td>
<td>77</td>
<td>165.830053</td>
</tr>
<tr>
<td>5985</td>
<td>156</td>
<td>165.634363</td>
</tr>
</tbody>
</table>
The third part of the output (Figure 26.230) shows the optimization results after local improvement:

Figure 26.230 Robust Estimates of Scatter and Location

<table>
<thead>
<tr>
<th></th>
<th>VAR1</th>
<th>VAR2</th>
<th>VAR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust MVE</td>
<td>Location Estimates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR1</td>
<td>56.705882353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR2</td>
<td>20.235294118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR3</td>
<td>85.529411765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust MVE</td>
<td>Scatter Matrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR1</td>
<td>23.470588235</td>
<td>7.5735294118</td>
<td>16.102941176</td>
</tr>
<tr>
<td>VAR2</td>
<td>7.5735294118</td>
<td>6.3161764706</td>
<td>5.3676470588</td>
</tr>
<tr>
<td>VAR3</td>
<td>16.102941176</td>
<td>5.3676470588</td>
<td>32.389705882</td>
</tr>
<tr>
<td>Eigenvalues of</td>
<td>Robust Scatter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td></td>
<td>VAR1</td>
<td>VAR2</td>
</tr>
<tr>
<td>VAR1</td>
<td>46.597431018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR2</td>
<td>12.155938483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR3</td>
<td>3.423101087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust Correlation Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR1</td>
<td>1</td>
<td>0.6220269501</td>
<td>0.5840361335</td>
</tr>
<tr>
<td>VAR2</td>
<td>0.6220269501</td>
<td>1</td>
<td>0.375278187</td>
</tr>
<tr>
<td>VAR3</td>
<td>0.5840361335</td>
<td>0.375278187</td>
<td>1</td>
</tr>
</tbody>
</table>

The final output (Figure 26.231) presents a table that contains the classical Mahalanobis distances, the robust distances, and the weights that identify the outlying observations (that is leverage points when explaining y with these three regressor variables):
NAME Function

NAME(arguments);

The NAME function returns the names of the arguments in a column vector. The arguments parameter specifies the names of existing matrices.

In the following example, N is a 2×1 character matrix that contains the character values ‘Seq’ and ‘Const’:

```plaintext
Seq = 1:3;
Const = -1;
N = name(Seq, Const);
do i = 1 to nrow(N);
   msg = "Values of Matrix " + N[i];
   x = value(N[i]);
   print x[label=msg];
end;
```
A primary use of the NAME function is in writing macros in which you want to use an argument for both its name and its value.

NCOL Function

NCOL(matrix);

The NCOL function returns the number of columns in its matrix argument. If the matrix has not been given a value, the NCOL function returns a value of 0.

For example, following statements display the number of columns of the matrix \(m \):

```plaintext
m = {1 2 3, 4 5 6, 3 2 1, 4 3 2, 5 4 3};
p = ncol(m);
print p;
```

NDX2SUB Function

NDX2SUB(dim, indices);

The NDX2SUB function is part of the **IMLMLIB library**. The NDX2SUB function converts indices of a matrix into subscripts for the matrix. The arguments are as follows:

- **dim** specifies the dimensions of the matrix. For example, the value of this argument might be the \(1 \times 2 \) vector that is returned from the **DIMENSION function**.
- **indices** specifies the elements of a matrix, enumerated in row-major order.

The indices of an \(n \times p \) matrix are the elements 1, 2, \ldots, \(np \). The indices enumerate the elements in row-major order: the first \(p \) indices enumerate the first row, the next \(p \) indices enumerate the second row, and so forth. The NDX2SUB function converts indices to subscripts, which are pairs \((i, j)\) such that \(1 \leq i \leq n \) and \(1 \leq j \leq p \).
You can use the module to display the rows and columns of elements that satisfy a certain condition. For example, the following statements locate all the even numbers in a matrix and then call the NDX2SUB function to find the subscripts of the even elements:

```plaintext
x = {1 2 3,
     4 5 6,
     7 8 9,
     10 11 12};
idx = loc( mod(x, 2)=0 );
dim = nrow(x) || ncol(x);
s = ndx2sub(dim, idx);
print s;
```

You can also use the NDX2SUB function to keep track of indices and subscripts of multidimensional arrays. Although the SAS/IML language does not support multidimensional arrays, a common technique is to store the elements of a $d_1 \times d_2 \times \ldots \times d_k$ array in a two-dimensional matrix with $d_1 \times d_2 \times \ldots \times d_{k-1}$ rows and d_k columns. For example, you can store the contents of four 3×3 arrays in a single 12×3 matrix, as shown in the following program:

```plaintext
/* Store four 3x3 matrices in a 12x3 matrix
    (each group of three rows is a matrix) */
dim = {4 3 3};
m = j(12, 3);
p = 9; /* = prod(dim[2:ncol(dim)]) */
do i = 1 to 4;
    startNdx = 1 + (i-1)*p;
    endNdx = i*p;
    ndx = startNdx:endNdx; /* get indices for i_th matrix */
    m[ndx] = i; /* assign or extract matrix */
    subscripts = ndx2sub(dim, ndx); /* or get subscripts */
end;
print m;
```
NLENG Function

NLENG(matrix);

The NLENG function returns a single numeric value that is the size in bytes of each element in `matrix`. All matrix elements have the same size. For English text, this size is also the number of characters that can be stored in a matrix element.

If the matrix does not have a value, then the NLENG function returns a value of 0. This function is different from the LENGTH function, which returns the size of each element of a character matrix, omitting the trailing blanks.

The following statements demonstrate the NLENG function:

```plaintext
m = {"ab " "ijklm ",
    "x"   " "  };
len = nleng(m);
print len;
```

Figure 26.236 Number of Bytes in Each Matrix Element

<table>
<thead>
<tr>
<th>len</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Nonlinear Optimization and Related Subroutines

The following list shows the syntax for nonlinear optimization subroutines. Subsequent sections describe each subroutine in detail.

- conjugate gradient optimization method:
CALL NLPNG(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" >);

- double-dogleg optimization method:

CALL NLPDD(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" >);

- Nelder-Mead simplex optimization method:

CALL NLPSM(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "nlc" >);

- Newton-Raphson optimization method:

CALL NLPSR(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" > < "es" >);

- Newton-Raphson ridge optimization method:

CALL NLPSRR(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" > < "hes" >);

- (dual) quasi-Newton optimization method:

CALL NLPSQN(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" > < "nlc" > < "jacnlc" >);

- quadratic optimization method:

CALL NLPSUQ(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "lin" >);

- trust-region optimization method:

CALL NLPSRT(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "grd" > < "hes" >);

The following list shows the syntax for optimization subroutines that use least squares methods. Subsequent sections describe each subroutine in detail.

- hybrid quasi-Newton least squares methods:

CALL NLPSQH(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "jac" >);

- Levenberg-Marquardt least squares method:

CALL NLPSLM(rc, xr, "fun", x0 < opt > < blc > < tc > < par > < "ptit" > < "jac" >);

The following list shows the syntax for supplementary subroutines that are often used in conjunction with optimization subroutines. Subsequent sections describe each subroutine in detail.
- approximate derivatives by finite differences:

```fortran
CALL NLPFDD(t, g, h, "fun", x0 <, par > <, "grd" > );
```

- feasible point subject to constraints:

```fortran
CALL NLPFEA(xr, x0, blc <, par > );
```

NOTE: The names of the optional arguments can be used as keywords. For example, the following statements are equivalent:

```fortran
call nlpnrr(rc,xr,"fun",x0,,ter,,"grad");
call nlpnrr(rc,xr,"fun",x0) tc=ter grd="grad";
```

All the optimization subroutines require at least two input arguments:

- The **NLPQUA subroutine** requires the *quad* matrix argument, which specifies the symmetric matrix G of the quadratic problem. The input can be dense or sparse.

- Other optimization subroutines require the *"fun"* argument, which specifies a module that defines the objective function or functions. For least squares subroutines, the FUN module must return a column vector of length m that corresponds to the values of the m functions $f_1(x), \ldots, f_m(x)$, each evaluated at the point $x = (x_1, \ldots, x_n)$. For other subroutines, the FUN module must return the value of the objective function $f = f(x)$ evaluated at the point x.

- The argument *x0* specifies a row vector that defines the number of parameters n. If *x0* is a feasible point, it represents a starting point for the iterative optimization process. Otherwise, a linear programming algorithm is called at the start of each optimization subroutine to replace the input *x0* by a feasible starting point.

The other arguments that can be used as input are described in the following list. As indicated in the previous lists, not all input arguments apply to each subroutine.

Note that you can specify optional arguments with the *keyword=argument* syntax.

The following list describes each argument:

- **opt** indicates an options vector that specifies details of the optimization process, such as particular updating techniques and whether the objective function is to be maximized instead of minimized. See the section “Options Vector” on page 381 for details.

- **blc** specifies a constraint matrix that defines lower and upper bounds for the n parameters in addition to general linear equality and inequality constraints. For details, see the section “Parameter Constraints” on page 379.

- **tc** specifies a vector of thresholds that correspond to the termination criteria tested in each iteration. See the section “Termination Criteria” on page 385 for details.

- **par** specifies a vector of control parameters that can be used to modify the algorithms if the default settings do not complete the optimization process successfully. For details, see the section “Control Parameters Vector” on page 392.
“ptit” specifies a module that replaces the subroutine used to print the iteration history and test the termination criteria. If the “ptit” module is specified, the matrix specified by the tc argument has no effect. See the section “Termination Criteria” on page 385 for details.

“grd” specifies a module that computes the gradient vector, \(g = \nabla f \), at a given input point \(x \). See the section “Objective Function and Derivatives” on page 372 for details.

“hes” specifies a module that computes the \(n \times n \) Hessian matrix, \(G = \nabla^2 f \), at a given input point \(x \). See the section “Objective Function and Derivatives” on page 372 for details.

“jac” specifies a module that computes the \(m \times n \) Jacobian matrix, \(J = (\nabla f_i) \), of the \(m \) least squares functions at a given input point \(x \). See the section “Objective Function and Derivatives” on page 372 for details.

“nlc” specifies a module that computes general equality and inequality constraints. This is the method by which nonlinear constraints must be specified. For details, see the section “Parameter Constraints” on page 379.

“jacnlc” specifies a module that computes the Jacobian matrix of first-order derivatives of the equality and inequality constraints specified by the NLC module. For details, see the section “Parameter Constraints” on page 379.

“lin” specifies the linear part of the quadratic optimization problem. See the section “NLPQUA Call” on page 898 for details.

The modules that can be used as input arguments for the subroutines (“fun,” “grd,” “hes,” “jac,” “ptit,” “nlc,” and “jacnlc”) accept only a single input parameter \(x = (x_1, \ldots, x_n) \). You can provide more input parameters for these modules by using the GLOBAL clause. See the section “Using the GLOBAL Clause” on page 69 for an example.

All the optimization subroutines return the following results:

- The scalar return code \(rc \) indicates the reason for the termination of the optimization process. A return code \(rc > 0 \) indicates a successful termination that corresponds to one of the specified termination criteria. A return code \(rc < 0 \) indicates unsuccessful termination—that is, that the result \(x_r \) is unreliable. See the section “Definition of Return Codes” on page 372 for more details.

- The row vector \(x_r \), which has length \(n \), contains the optimal point when \(rc > 0 \).

The NLPCG subroutine uses the conjugate gradient method to solve a nonlinear optimization problem. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPCG subroutine requires function and gradient calls; it does not need second-order derivatives. The gradient vector contains the first derivatives of the objective function \(f \) with respect to the parameters \(x_1, \ldots, x_n \), as follows:

\[
g(x) = \nabla f(x) = \left(\frac{\partial f}{\partial x_j} \right)
\]
If you do not specify a module with the "grd" argument, the first-order derivatives are approximated by finite difference formulas by using only function calls. The NLPCG algorithm can require many function and gradient calls, but it requires less memory than other subroutines for unconstrained optimization. In general, many iterations are needed to obtain a precise solution, but each iteration is computationally inexpensive. You can specify one of four update formulas for generating the conjugate directions with the fourth element of the opt input argument.

<table>
<thead>
<tr>
<th>Value of opt[4]</th>
<th>Update Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automatic restart method of Powell (1977) and Beale (1972). This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Fletcher-Reeves update (Fletcher 1987)</td>
</tr>
<tr>
<td>3</td>
<td>Polak-Ribiere update (Fletcher 1987)</td>
</tr>
<tr>
<td>4</td>
<td>Conjugate-descent update of Fletcher (1987)</td>
</tr>
</tbody>
</table>

The NLPCG subroutine is useful for optimization problems with large \(n \). For the unconstrained or boundary-constrained case, the NLPCG method requires less memory than other optimization methods. (The NLPCG method allocates memory proportional to \(n \), whereas other methods allocate memory proportional to \(n^2 \).) During \(n \) successive iterations, uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of \(n \) conjugate search directions. In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size \(\alpha \) that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. You can specify other line-search algorithms with the fifth element of the opt argument.

For an example of the NLPCG subroutine, see the section "Constrained Betts Function" on page 365.

NLPDD Call

CALL NLPDD(rc, xr, "fun", x0 <, opt> <, blc> <, tc> <, par> <, "ptit"> <, "grd"});

The NLPDD subroutine uses the double-dogleg method to solve a nonlinear optimization problem. See the section "Nonlinear Optimization and Related Subroutines" on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The double-dogleg optimization method combines the ideas of the quasi-Newton and trust-region methods. In each iteration, the algorithm computes the step, \(s^{(k)} \), as a linear combination of the steepest descent or ascent direction, \(s_1^{(k)} \), and a quasi-Newton search direction, \(s_2^{(k)} \), as follows:

\[
s^{(k)} = \alpha_1 s_1^{(k)} + \alpha_2 s_2^{(k)}
\]

The step \(s^{(k)} \) must remain within a specified trust-region radius (Fletcher 1987). Hence, the NLPDD subroutine uses the dual quasi-Newton update but does not perform a line search. You can specify one of two update formulas with the fourth element of the opt input argument.

<table>
<thead>
<tr>
<th>Value of opt[4]</th>
<th>Update Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Dual DFP update of the Cholesky factor of the Hessian matrix.</td>
</tr>
</tbody>
</table>

The double-dogleg optimization technique works well for medium to moderately large optimization problems, in which the objective function and the gradient are much faster to compute than the Hessian. The
implementation is based on Dennis and Mei (1979) and Gay (1983), but it is extended for boundary and linear constraints. The NLPDD subroutine generally needs more iterations than the techniques that require second-order derivatives (NLPTR, NLPNRA, and NLPNRR), but each of the NLPDD iterations is computationally inexpensive. Furthermore, the NLPDD subroutine needs only gradient calls to update the Cholesky factor of an approximate Hessian.

In addition to the standard iteration history, the NLPDD routine prints the following information:

- The heading *lambda* refers to the parameter λ of the double-dogleg step. A value of 0 corresponds to the full (quasi-) Newton step.
- The heading *slope* refers to $g^T s$, the slope of the search direction at the current parameter iterate $x^{(k)}$. For minimization, this value should be significantly smaller than zero.

The following statements invoke the NLPDD subroutine to solve the constrained Betts optimization problem (see the section “Constrained Betts Function” on page 365):

```plaintext
start F_BETTS(x);
    return(f);
finish F_BETTS;

con = { 2 -50 . .,
        50 50 . .,
        10 -1 1 10};

x = {-1 -1};
opt = {0 1};
call nlpdd(rc, xres, "F_BETTS", x, opt, con);
```

Figure 26.237 shows the iteration history. The optimization converged after six iterations.

Figure 26.237 Constrained Optimization

Note: Initial point was changed to be feasible for boundary and linear constraints.

Double Dogleg Optimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Without Parameter Scaling

Gradient Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>

Optimization Start

<table>
<thead>
<tr>
<th>Active Constraints</th>
<th>0</th>
<th>Objective Function</th>
<th>-98.5376</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Abs Gradient Element</td>
<td>2</td>
<td>Radius</td>
<td>1</td>
</tr>
</tbody>
</table>
The optimal value for the function is returned in the \(x_{res} \) vector, which is displayed in Figure 26.238.

Figure 26.238 The Optimal Value

\[
\begin{array}{l}
\text{xres} \\
2 \ -9.612E-8
\end{array}
\]

NLPFDD Call

\[
\text{CALL NLPFDD}(f, g, h, "fun", x0, <, par > <, "grd">);
\]

The NLPFDD subroutine uses the finite-differences method to approximate derivatives.

See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPFDD subroutine can be used for the following tasks:

- If the module “fun” returns a scalar, the NLPFDD subroutine computes the function value \(f \), the gradient vector \(g \), and the Hessian matrix \(h \), all evaluated at the point \(x0 \).

- If the module “fun” returns a column vector of \(m \) function values, the subroutine assumes that a least squares function is specified, and it computes the function vector \(f \), the Jacobian matrix \(J \), and the crossproduct of the Jacobian matrix \(J'J \) at the point \(x0 \). In this case, you must set the first element of the \(par \) argument to \(m \).

If any of the results cannot be computed, the subroutine returns a missing value for that result.

You can specify the following input arguments with the NLPFDD subroutine:
• The “fun” argument refers to a module that returns either a scalar value or a column vector of length m. This module returns the value of the objective function or, for least squares problems, the values of the m functions that the objective function comprises.

• The $x0$ argument is a vector of length n that defines the point at which the functions and derivatives should be computed.

• The par argument is a vector that defines options and control parameters. The par argument in the NLPFDD call is different from the one used in the optimization subroutines.

• The “grd” argument is optional and refers to a module that returns a vector that defines the gradient of the function at $x0$. If the “fun” argument returns a vector of values instead of a scalar, the “grd” argument is ignored.

If the “fun” module returns a scalar, the subroutine returns the following values:

• f is the value of the function at the point $x0$.

• g is a vector that contains the value of the gradient at the point $x0$. If you specify the “grd” argument, the gradient is computed from that module. Otherwise, the approximate gradient is computed by a finite difference approximation by using calls of the function module in a neighborhood of $x0$.

• h is a matrix that contains a finite difference approximation of the value of the Hessian at the point $x0$. If you specify the “grd” argument, the Hessian is computed by calls of that module in a neighborhood of $x0$. Otherwise, it is computed by calls of the function module in a neighborhood of $x0$.

If the “fun” module returns a vector, the subroutine returns the following values:

• f is a vector that contains the values of the m functions that comprise objective function at the point $x0$.

• g is the $m \times n$ Jacobian matrix J, which contains the first-order derivatives of the functions with respect to the parameters, evaluated at $x0$. It is computed by finite difference approximations in a neighborhood of $x0$.

• h is the $n \times n$ crossproduct of the Jacobian matrix, J^TJ. It is computed by finite difference approximations in a neighborhood of $x0$.

The par argument is a vector of length 3.

• $par[1]$ corresponds to the $opt[1]$ argument in the optimization subroutines. This argument is relevant only to least squares optimization methods, in which case it specifies the number of functions returned by the module “fun”. If $par[1]$ is missing or is smaller than 1, it is set to 1.

• $par[2]$ corresponds to the $opt[8]$ argument in the optimization subroutines. It determines what type of approximation is to be used and how the finite difference interval, h, is to be computed. See the section “Finite-Difference Approximations of Derivatives” on page 377 for details.

• $par[3]$ corresponds to the $par[8]$ argument in the optimization subroutines. It specifies the number of accurate digits in evaluating the objective function. The default is $-\log_{10}(\epsilon)$, where ϵ is the machine precision.
If you specify a missing value in the \(\text{par} \) argument, the default value is used.

The NLPFDD subroutine is particularly useful for checking your analytical derivative specifications of the "grd", "hes", and "jac" modules. You can compare the results of the modules with the finite difference approximations of the derivatives of \(f \) at the point \(x_0 \) to verify your specifications.

In the unconstrained Rosenbrock problem (see the section “Unconstrained Rosenbrock Function” on page 361), the objective function is

\[
f(x) = 50(x_2 - x_1^2)^2 + \frac{1}{2}(1 - x_1)^2
\]

The gradient and the Hessian are

\[
g'(x, y) = \begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2}
\end{bmatrix} = \begin{bmatrix}
200x_1^3 - 200x_1x_2 + x_1 - 1 \\
-100x_1^2 + 100x_2
\end{bmatrix}
\]

\[
H(x, y) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2}
\end{bmatrix} = \begin{bmatrix}
600x_1^2 - 200x_2 + 1 & -200x_1 \\
-200x_1 & 100
\end{bmatrix}
\]

At the point \(x = (2, 7) \), these matrices evaluate to

\[
g'(2, 7) = \begin{bmatrix}
-1199 \\
300
\end{bmatrix}
\]

\[
H(2, 7) = \begin{bmatrix}
1001 & -400 \\
-400 & 100
\end{bmatrix}
\]

The following statements define the Rosenbrock function and use the NLPFDD call to compute the gradient and the Hessian:

```plaintext
start F_ROSEN(x);
y1 = 10 * (x[2] - x[1] * x[1]);
y2 = 1 - x[1];
f = 0.5 * (y1 * y1 + y2 * y2);
return(f);
finish F_ROSEN;
x = {2 7};
call nlpfdd(crit, grad, hess, "F_ROSEN", x);
print grad;
print hess;
```

Figure 26.239 Gradient and Hessian at a Point

<table>
<thead>
<tr>
<th>grad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-1199</td>
<td>300.000001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>hess</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000.9998</td>
<td>-400.0018</td>
</tr>
<tr>
<td>-400.0018</td>
<td>99.999993</td>
</tr>
</tbody>
</table>
If the Rosenbrock problem is considered from a least squares perspective, the two functions are

\[f_1(x) = 10(x_2 - x_1^2) \]
\[f_2(x) = 1 - x_1 \]

The Jacobian and the crossproduct of the Jacobian are

\[
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2}
\end{bmatrix} = \begin{bmatrix}
-20x_1 & 10 \\
-1 & 0
\end{bmatrix}
\]

\[
J^T J = \begin{bmatrix}
400x_1^2 + 1 & -200x_1 \\
-200x_1 & 100
\end{bmatrix}
\]

At the point \(x = (2, 7) \), these matrices evaluate to

\[
J(2, 7) = \begin{bmatrix}
-40 & 10 \\
-1 & 0
\end{bmatrix}
\]

\[
J^T J_{(2,7)} = \begin{bmatrix}
1601 & -400 \\
-400 & 100
\end{bmatrix}
\]

The following statements define the Rosenbrock problem in a least squares framework and use the NLPFDD call to compute the Jacobian and the crossproduct matrix. Since the value of the PARMS variable, which is used for the \textit{par} argument, is 2, the NLPFDD subroutine allocates memory for a least squares problem with two functions, \(f_1(x) \) and \(f_2(x) \).

```plaintext
start F_ROSEN(x);
  y = j(2, 1, 0);
  y[2] = 1 - x[1];
  return(y);
finish F_ROSEN;

x = {2 7};
parms = 2;
call nlpfdd(fun, jac, crpj, "F_ROSEN", x, parms);
print jac;
print crpj;
```

Figure 26.240 Jacobian and Crossproduct Matrix at a Point

<table>
<thead>
<tr>
<th>jac</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>crpj</th>
</tr>
</thead>
<tbody>
<tr>
<td>1601</td>
</tr>
<tr>
<td>-400</td>
</tr>
<tr>
<td>-400</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>
The NLPFEA subroutine computes feasible points subject to constraints. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPFEA subroutine tries to compute a point that is feasible subject to a set of boundary and linear constraints. You can specify boundary and linear constraints that define an empty feasible region, in which case the subroutine returns missing values.

You can specify the following input arguments with the NLPFEA subroutine:

- $x0$ is a row vector that defines the coordinates of a point that is not necessarily feasible for a set of linear and boundary constraints.
- blc is an $m \times n$ matrix that defines a set of m boundary and linear constraints. See the section “Parameter Constraints” on page 379 for details.
- par is a vector of length two. The argument is different from the one used in the optimization subroutines. The first element sets the LCEPS parameter, which controls how precisely the returned point must satisfy the constraints. The second element sets the LCSING parameter, which specifies the criterion for deciding when constraints are considered linearly dependent. For details, see the section “Control Parameters Vector” on page 392.

The NLPFEA subroutine returns the xr argument. The result is a vector that contains either the n coordinates of a feasible point, which indicates that the subroutine was successful, or missing values, which indicates that the subroutine could not find a feasible point.

The following statements call the NLPFEA subroutine with the constraints from the Betts problem (see the section “Constrained Betts Function” on page 365) and an initial infeasible point $x_0 = (-17, -61)$. The subroutine returns the feasible point $(2, -50)$ as the vector XFEAS.

```
call nlpfea(xfeas, x, con);
print xfeas;
```

Figure 26.241 Feasible Point

<table>
<thead>
<tr>
<th>xfeas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
</tr>
<tr>
<td>-40</td>
</tr>
</tbody>
</table>
The NLPHQN subroutine uses a hybrid quasi-Newton least squares method to compute an optimum value of a function.

See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPHQN subroutine uses one of the Fletcher and Xu (1987) hybrid quasi-Newton methods. Refer also to Al-Baali and Fletcher (1985) and Al-Baali and Fletcher (1986). In each iteration, the subroutine uses a criterion to decide whether a Gauss-Newton or a dual quasi-Newton search direction is appropriate. You can choose one of three criteria (HY1, HY2, or HY3) proposed by Fletcher and Xu (1987) with the sixth element of the \(\text{opt} \) vector. The default is HY2. The subroutine computes the crossproduct Jacobian (for the Gauss-Newton step), updates the Cholesky factor of an approximate Hessian (for the quasi-Newton step), and performs a line search to compute an approximate minimum along the search direction. The default line-search technique used by the NLPHQN method is designed for least squares problems (Lindström and Wedin 1984) and (Al-Baali and Fletcher 1986), but you can specify a different line-search algorithm with the fifth element of the \(\text{opt} \) argument. See the section “Options Vector” on page 381 for details.

You can specify two update formulas with the fourth element of the \(\text{opt} \) argument as indicated in the following table.

<table>
<thead>
<tr>
<th>Value of (\text{opt}[4])</th>
<th>Update Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update of the Cholesky factor of the Hessian matrix. This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Dual Davidon, Fletcher, and Powell (DDFP) update of the Cholesky factor of the Hessian matrix.</td>
</tr>
</tbody>
</table>

The NLPHQN subroutine needs approximately the same amount of working memory as the NLPLM subroutine, and in most applications, the latter seems to be superior. Hence, the NLPHQN method is recommended only when the NLPLM method encounters problems.

NOTE: In least squares subroutines, you must set the first element of the \(\text{opt} \) vector to \(m \), the number of functions.

In addition to the standard iteration history, the NLPHQN subroutine prints the following information:

- Under the heading \(\text{iter} \), an asterisk (*) printed after the iteration number indicates that, on the basis of the Fletcher and Xu (1987) criterion, the subroutine used a Gauss-Newton search direction instead of a quasi-Newton search direction.

- The heading \(\text{alpha} \) is the step size, \(\alpha \), computed with the line-search algorithm.

- The heading \(\text{slope} \) refers to \(g^T s \), the slope of the search direction at the current parameter iterate \(x^{(k)} \). For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The following statements use the NLPHQN call to solve the unconstrained Rosenbrock problem (see the section “Unconstrained Rosenbrock Function” on page 361).
title "Test of NLPHQN subroutine: No Derivatives";
start F_ROSEN(x);
 y = j(1, 2, 0);
 y[2] = 1 - x[1];
 return(y);
finish F_ROSEN;

x = {-1.2 1};
opt = {2 2};
call nlphqn(rc, xr, "F_ROSEN", x, opt);

Figure 26.242 Optimization Results

Test of NLPHQN subroutine: No Derivatives

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Parameter</td>
<td>Estimate</td>
</tr>
<tr>
<td>1 X1</td>
<td>-1.200000</td>
</tr>
<tr>
<td>2 X2</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Value of Objective Function = 12.1

Test of NLPHQN subroutine: No Derivatives

Hybrid Quasi-Newton LS Minimization

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)

Version HY2 of Fletcher & Xu (1987)

Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions (Observations)</td>
<td>2</td>
</tr>
</tbody>
</table>

Optimization Start

<table>
<thead>
<tr>
<th>Active Constraints</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Function</td>
<td>12.1</td>
</tr>
<tr>
<td>Max Abs Gradient Element</td>
<td>107.7999987</td>
</tr>
</tbody>
</table>
The NLPLM subroutine uses the Levenberg-Marquardt least squares method to compute an optimum value of a function. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPLM subroutine uses the Levenberg-Marquardt method, which is an efficient modification of the trust-region method for nonlinear least squares problems and is implemented as in Moré (1978). This is the recommended algorithm for small to medium least squares problems. Large least squares problems
can often be processed more efficiently with other subroutines, such as the NLPCG subroutine and the NLPQN subroutine. In each iteration, the NLPLM subroutine solves a quadratically constrained quadratic minimization problem that restricts the step to the boundary or interior of an \(n \)-dimensional elliptical trust region.

The \(m \) functions \(f_1(x), \ldots, f_m(x) \) are computed by the module specified with the “fun” module argument. The \(m \times n \) Jacobian matrix, \(J \), contains the first-order derivatives of the \(m \) functions with respect to the \(n \) parameters, as follows:

\[
J(x) = (\nabla f_1, \ldots, \nabla f_m) = \left(\frac{\partial f_i}{\partial x_j} \right)
\]

You can specify \(J \) with the "jac" module argument; otherwise, the subroutine computes it with finite difference approximations. In each iteration, the subroutine computes the crossproduct of the Jacobian matrix, \(J^T J \), to be used as an approximate Hessian.

NOTE: In least squares subroutines, you must set the first element of the \(\text{opt} \) vector to \(m \), the number of functions.

In addition to the standard iteration history, the NLPLM subroutine also prints the following information:

- Under the heading \(\text{iter} \), an asterisk (*) printed after the iteration number indicates that the computed Hessian approximation was singular and had to be ridged with a positive value.

- The heading \(\lambda \) represents the Lagrange multiplier, \(\lambda \). This has a value of zero when the optimum of the quadratic function approximation is inside the trust region, in which case a trust-region-scaled Newton step is performed. It is greater than zero when the optimum is at the boundary of the trust region, in which case the scaled Newton step is too long to fit in the trust region and a quadratically constrained optimization is done. Large values indicate optimization difficulties, and as in Gay (1983), a negative value indicates the special case of an indefinite Hessian matrix.

- The heading \(\rho \) refers to \(\rho \), the ratio between the achieved and predicted difference in function values. Values that are much smaller than 1 indicate optimization difficulties. Values close to or larger than 1 indicate that the trust region radius can be increased.

See the section “Unconstrained Rosenbrock Function” on page 361 for an example that uses the NLPLM subroutine to solve the unconstrained Rosenbrock problem.

NLPNMS Call

```fortran
CALL NLPNMS(rc, xr, "fun", x0 <, opt> <, blc< , tc< , par< , "ptit"> <, "nlc"> );
```

The NLPNMS subroutine use the Nelder-Mead simplex method to compute an optimum value of a function. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The Nelder-Mead simplex method is one of the subroutines that can solve optimization problems with nonlinear constraints. It does not use any derivatives, and it does not assume that the objective function has continuous derivatives. However, the objective function must be continuous. The NLPNMS technique uses a large number of function calls, and it can be unable to generate precise results when \(n > 40 \).

The NLPNMS subroutine uses the following simplex algorithms:
For unconstrained or only boundary-constrained problems, the original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This algorithm does not compute the objective for infeasible points, and it is invoked if the "nle" module argument is not specified and the blc argument contains at most two rows (corresponding to lower and upper bounds).

For linearly or nonlinearly constrained problems, a slightly modified version of Powell’s (1992) constrained optimization by linear approximations (COBYLA) implementation is used. This algorithm is invoked if the "nle" module argument is specified or if at least one linear constraint is specified with the blc argument.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear constraints, but in the unconstrained or boundary-constrained cases, it can be faster. It changes the shape of the simplex by adapting the nonlinearities of the objective function; this contributes to an increased speed of convergence.

Powell’s COBYLA Algorithm

Powell’s COBYLA algorithm is a sequential trust-region algorithm that tries to maintain a regularly shaped simplex throughout the iterations. The algorithm uses a monotone-decreasing radius, \(\rho \), of a spheric trust region. The modification implemented in the NLPNMS call permits an increase of the trust-region radius \(\rho \) in special situations. A sequence of iterations is performed with a constant trust-region radius \(\rho \) until the computed function reduction is much less than the predicted reduction. Then, the trust-region radius \(\rho \) is reduced. The trust-region radius is increased only if the computed function reduction is relatively close to the predicted reduction and if the simplex is well-shaped. The start radius, \(\rho_{beg} \), can be specified with the second element of the par argument, and the final radius, \(\rho_{end} \), can be specified with the ninth element of the tc argument. Convergence to small values of \(\rho_{end} \), or high-precision convergence, can require many calls of the function and constraint modules and can result in numerical problems. The main reasons for the slow convergence of the COBYLA algorithm are as follows:

- Linear approximations of the objective and constraint functions are used locally.
- Maintaining the regularly shaped simplex and not adapting its shape to nonlinearities yields very small simplexes for highly nonlinear functions, such as fourth-order polynomials.

To allocate memory for the vector returned by the "nle" module argument, you must specify the total number of nonlinear constraints with the tenth element of the opt argument. If any of the constraints are equality constraints, the number of equality constraints must be specified by the eleventh element of the opt argument. See the section “Parameter Constraints” on page 379 for details.

For more information about the special sets of termination criteria used by the NLPNMS algorithms, see the section “Termination Criteria” on page 385.

In addition to the standard iteration history, the NLPNMS subroutine prints the following information. For unconstrained or boundary-constrained problems, the subroutine also prints the following:

- \(\text{difcrit} \), which, in this subroutine, refers to the difference between the largest and smallest function values of the \(n + 1 \) simplex vertices
- \(\text{std} \), which is the standard deviation of the function values of the simplex vertices
• *deltax*, which is the vertex length of a restarted simplex. If there are convergence problems, the algorithm restarts the iteration process with a simplex of smaller vertex length.

• *size*, which is the average L_1 distance of the simplex vertex with the smallest function value to the other simplex vertices

For linearly and nonlinearly constrained problems, the subroutine prints the following:

• *conmax* is the maximum constraint violation.

• *merit* is the value of the merit function, Φ.

• *difmerit* is the difference between adjacent values of the merit function.

• ρ is the trust-region radius.

The following statements uses the NLPNMS call to solve the Rosen-Suzuki problem (see the section “Rosen-Suzuki Problem” on page 367), which has three nonlinear constraints. Figure 26.243 is a partial listing of the output:

```plaintext
start F_HS43(x);
    f = x*x' + x[3]*x[3] - 5*(x[1] + x[2]) - 21*x[3] + 7*x[4];
    return(f);
finish F_HS43;
start C_HS43(x);
    c = j(3,1,0.);
    return(c);
finish C_HS43;

x = j(1, 4, 1);
opt = j(1, 11, .);
call nlpnms(rc, xres, "F_HS43", x, opt, , , , "C_HS43");
```

Figure 26.243 Nelder-Mead Simplex Optimization

<table>
<thead>
<tr>
<th>Optimization Start Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Figure 26.243 continued

Value of Objective Function = -19

<table>
<thead>
<tr>
<th>Values of Nonlinear Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
</tr>
<tr>
<td>[1]</td>
</tr>
<tr>
<td>[2]</td>
</tr>
<tr>
<td>[3]</td>
</tr>
</tbody>
</table>

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Minimum Iterations 0
Maximum Iterations 1000
Maximum Function Calls 3000
Iterations Reducing Constraint Violation 0
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0.0001
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion -1.34078E154
Initial Simplex Size (INSTEP) 0.5
Singularity Tolerance (SINGULAR) 1E-8

Nelder-Mead Simplex Optimization

COBYLA Algorithm by M.J.D. Powell (1992)

Parameter Estimates 4
Nonlinear Constraints 3

Optimization Start

Objective Function -29.5 Maximum Constraint Violation 4.5

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Objective Function</th>
<th>Maximum Constraint Violation</th>
<th>Merit Function</th>
<th>Merit Function Change</th>
<th>Ratio Between Actual and Predicted Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>12 -52.80342</td>
<td>4.3411</td>
<td>-42.3031</td>
<td>12.803</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>17 -39.51475</td>
<td>0.0227</td>
<td>-39.3797</td>
<td>-2.923</td>
<td>0.250</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>53 -44.02098</td>
<td>0.00949</td>
<td>-43.9727</td>
<td>4.593</td>
<td>0.0625</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>62 -44.00214</td>
<td>0.00083</td>
<td>-43.9977</td>
<td>0.0249</td>
<td>0.0156</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>72 -44.00009</td>
<td>0.000033</td>
<td>-43.9999</td>
<td>0.00226</td>
<td>0.0039</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>79 -44.00000</td>
<td>1.783E-6</td>
<td>-44.0000</td>
<td>0.00007</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>90 -44.00000</td>
<td>1.363E-7</td>
<td>-44.0000</td>
<td>1.74E-6</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>94 -44.00000</td>
<td>1.543E-8</td>
<td>-44.0000</td>
<td>5.33E-7</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>
The NLPNRA subroutine uses the Newton-Raphson method to compute an optimum value of a function. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPNRA subroutine uses the Newton-Raphson method to compute an optimum value of a function.

The NLPNRA algorithm uses a pure Newton step at each iteration when both the Hessian is positive definite and the Newton step successfully reduces the value of the objective function. Otherwise, it performs a combination of ridging and line-search to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

The subroutine uses the gradient $g^{(k)} = \nabla f(x^{(k)})$ and the Hessian matrix $G^{(k)} = \nabla^2 f(x^{(k)})$. It requires continuous first- and second-order derivatives of the objective function inside the feasible region. If second-order derivatives are computed efficiently and precisely, the NLPNRA method does not need many function, gradient, and Hessian calls, and it can perform well for medium to large problems.

Optimization Results

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Value of Objective Function = -44.00000003

<table>
<thead>
<tr>
<th>Values of Nonlinear Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraint</td>
</tr>
<tr>
<td>[1]</td>
</tr>
<tr>
<td>[2]</td>
</tr>
<tr>
<td>[3]</td>
</tr>
</tbody>
</table>

The 2 nonlinear constraints which are marked with *?* are not satisfied at the accuracy specified by the LCEPSILON= option. However, the default value of this option seems to be too strong to be applied to nonlinear constraints.

NLPNRA Call

```fortran
CALL NLPNRA(rc, xr, "fun", x0 < , opt > < , blc > < , tc > < , par > < , "ptit" > < , "grd" > < , "hes" > );
```

The NLPNRA subroutine uses the Newton-Raphson method to compute an optimum value of a function.
Using only function calls to compute finite difference approximations for second-order derivatives can be computationally very expensive and can contain significant rounding errors. If you use the "grd" input argument to specify a module that computes first-order derivatives analytically, you can reduce drastically the computation time for numerical second-order derivatives. The computation of the finite difference approximation for the Hessian matrix generally uses only \(n\) calls of the module that specifies the gradient.

In each iteration, a line search is done along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation. You can specify other line-search algorithms with the fifth element of the \(opt\) argument. See the section “Options Vector” on page 381 for details.

In unconstrained and boundary constrained cases, the NLPNRA algorithm can take advantage of diagonal or sparse Hessian matrices that are specified by the input argument "hes". To use sparse Hessian storage, the value of the ninth element of the \(opt\) argument must specify the number of nonzero Hessian elements returned by the Hessian module. See the section “Objective Function and Derivatives” on page 372 for more details.

In addition to the standard iteration history, the NLPNRA subroutine prints the following information:

- The heading \(alpha\) is the step size, \(\alpha\), computed with the line-search algorithm.
- The heading \(slope\) refers to \(g^Ts\), the slope of the search direction at the current parameter iterate \(x^{(k)}\). For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The following statements invoke the NLPNRA subroutine to solve the constrained Betts optimization problem (see the section “Constrained Betts Function” on page 365). The iteration history follows.

```plaintext
start F_BETTS(x);  
return(f);  
finish F_BETTS;

con = { 2 -50 . ., 
      50 50 . ., 
      10 -1 1 10};  
x = {-1 -1};  
opt = (0 2);  
call nlpnra(rc, xres, "F_BETTS", x, opt, con);
```

Figure 26.244 Newton-Raphson Optimization

Note: Initial point was changed to be feasible for boundary and linear constraints.
Figure 26.244 continued

Value of Objective Function = -98.5376

Linear Constraints
1 59.0000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Optimization with Line Search

Without Parameter Scaling

Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>1</td>
</tr>
</tbody>
</table>

Optimization Start

<table>
<thead>
<tr>
<th>Active Constraints</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Abs Gradient Element</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>-98.81551</td>
<td>0.2779</td>
<td>1.8000</td>
<td>0.100</td>
<td>-2.925</td>
</tr>
<tr>
<td>2 *</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-99.40840</td>
<td>0.5929</td>
<td>1.2713</td>
<td>0.294</td>
<td>-2.365</td>
</tr>
<tr>
<td>3 *</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>-99.87460</td>
<td>0.4662</td>
<td>0.5845</td>
<td>0.540</td>
<td>-1.182</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>-99.96000</td>
<td>0.0854</td>
<td>0.000025</td>
<td>1.000</td>
<td>-0.171</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>-99.96000</td>
<td>1.54E-10</td>
<td>0.0000</td>
<td>1.000</td>
<td>-31E-11</td>
</tr>
</tbody>
</table>

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function Calls</td>
<td>7</td>
</tr>
<tr>
<td>Hessians Calls</td>
<td>6</td>
</tr>
<tr>
<td>Active Constraints</td>
<td>1</td>
</tr>
<tr>
<td>Objective Function</td>
<td>-99.96</td>
</tr>
<tr>
<td>Max Abs Gradient Element</td>
<td>0</td>
</tr>
<tr>
<td>Slope of Search Direction</td>
<td>-3.07388E-10</td>
</tr>
<tr>
<td>Ridge</td>
<td>0</td>
</tr>
</tbody>
</table>

GCONV convergence criterion satisfied.

Optimization Results

Parameter Estimates

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Gradient Objective Function</th>
<th>Active Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>2.000000</td>
<td>0.040000 Lower BC</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-4.860653E-9</td>
<td>0</td>
</tr>
</tbody>
</table>

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution
1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2
The NLPNRR subroutine uses a Newton-Raphson ridge method to compute an optimum value of a function. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPNRR algorithm uses a pure Newton step when both the Hessian is positive definite and the Newton step successfully reduces the value of the objective function. Otherwise, a multiple of the identity matrix is added to the Hessian matrix.

The subroutine uses the gradient $g^{(k)} = \nabla f(x^{(k)})$ and the Hessian matrix $G^{(k)} = \nabla^2 f(x^{(k)})$. It requires continuous first- and second-order derivatives of the objective function inside the feasible region.

Note that using only function calls to compute finite difference approximations for second-order derivatives can be computationally very expensive and can contain significant rounding errors. If you use the “grd” input argument to specify a module that computes first-order derivatives analytically, you can reduce drastically the computation time for numerical second-order derivatives. The computation of the finite difference approximation for the Hessian matrix generally uses only n calls of the module that specifies the gradient.

The NLPNRR method performs well for small- to medium-sized problems, and it does not need many function, gradient, and Hessian calls. However, if the gradient is not specified analytically by using the “grd” module argument, or if the computation of the Hessian module specified with the “hes” argument is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

In addition to the standard iteration history, the NLPNRR subroutine prints the following information:

- The heading ridge refers to the value of the nonnegative ridge parameter. A value of zero indicates that a Newton step is performed. A value greater than zero indicates either that the Hessian approximation is zero or that the Newton step fails to reduce the optimization criterion. A large value can indicate optimization difficulties.

- The heading rho refers to ρ, the ratio of the achieved difference in function values and the predicted difference, based on the quadratic function approximation. A value that is much smaller than 1 indicates possible optimization difficulties.

The following statements invoke the NLPNRR subroutine to solve the constrained Betts optimization problem (see the section “Constrained Betts Function” on page 365). The iteration history follows.

```plaintext
start F_BETTS(x);
    return(f);
finish F_BETTS;

con = { 2 -50 . .,
        50 50 . .,
        10 -1 1 10};
x = {-1 -1};
opt = {0 2};
call nlpnrr(rc, xres, "F_BETTS", x, opt, con);
```
Figure 26.245 Newton-Raphson Optimization

Note: Initial point was changed to be feasible for boundary and linear constraints.

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
<th>Lower Bound Constraint</th>
<th>Upper Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>6.800000</td>
<td>0.136000</td>
<td>2.000000</td>
<td>50.000000</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-1.000000</td>
<td>-2.000000</td>
<td>-50.000000</td>
<td>50.000000</td>
</tr>
</tbody>
</table>

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 : 10.0000 <= + 10.0000 * X1 - 1.0000 * X2

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Gradient Computed by Finite Differences

CRP Jacobian Computed by Finite Differences

| Parameter Estimates | 2 | Lower Bounds | 2 | Upper Bounds | 2 | Linear Constraints | 1 |

Optimization Start

| Active Constraints | 0 | Objective Function | -98.5376 |
| Max Abs Gradient Element | 2 | | |

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Ratio Between Actual and Predicted Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-99.87337</td>
<td>1.3358</td>
<td>0.5887</td>
<td>0.706</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-99.96000</td>
<td>0.0866</td>
<td>0.000040</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>-99.96000</td>
<td>4.07E-10</td>
<td>0</td>
<td>1.014</td>
</tr>
</tbody>
</table>

Optimization Results

Iterations	3	Function Calls	5
Hessian Calls	4	Active Constraints	1
Objective Function	-99.96	Max Abs Gradient Element	0
Ridge	0	Actual Over Pred Change	1.0135158294

GCONV convergence criterion satisfied.
The NLPQN subroutine uses a quasi-Newton method to compute an optimum value of a function. See the section "Nonlinear Optimization and Related Subroutines" on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPQN subroutine uses (dual) quasi-Newton optimization techniques, and it is one of the two available subroutines that can solve problems with nonlinear constraints. These techniques work well for medium to moderately large optimization problems where the objective function and the gradient are much faster to compute than the Hessian matrix. The NLPQN subroutine does not need to compute second-order derivatives, but it generally requires more iterations than the techniques that compute second-order derivatives.

The two categories of problems solved by the NLPQN subroutine are unconstrained or linearly constrained problems and nonlinearly constrained problems. Unconstrained or linearly constrained problems do not use the "nlc" or "jacnlc" module arguments, whereas nonlinearly constrained problems use the arguments to specify the nonlinear constraints and the Jacobian matrix of their first-order derivatives, respectively.

The type of optimization problem specified determines the algorithm that the subroutine invokes. The algorithms are very different, and they use different sets of termination criteria. For more details, see the section "Termination Criteria" on page 385.

Unconstrained or Linearly Constrained Quasi-Newton Optimization

The NLPQN subroutine invokes this algorithm if you do not specify the "nlc" argument. Using the fourth element of the opt argument, you can specify two update formulas for either the original quasi-Newton algorithm or the dual quasi-Newton algorithm, as indicated in the following table:

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Objective Function</th>
<th>Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>2.000000</td>
<td>0.040000</td>
<td>Lower BC</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>0.000000134</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Value of Objective Function = -99.96

Linear Constraints Evaluated at Solution

1 10.00000 = -10.0000 + 10.0000 * X1 - 1.0000 * X2
Value of \(\text{opt}[4]\) and Update Method

<table>
<thead>
<tr>
<th>Value of (\text{opt}[4])</th>
<th>Update Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update of the Cholesky factor of the Hessian matrix. This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Dual Davidon, Fletcher, and Powell (DDFP) update of the Cholesky factor of the Hessian matrix.</td>
</tr>
<tr>
<td>3</td>
<td>Original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse Hessian matrix.</td>
</tr>
<tr>
<td>4</td>
<td>Original Davidon, Fletcher, and Powell (DFP) update of the inverse Hessian matrix.</td>
</tr>
</tbody>
</table>

In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive definiteness of the quasi-Newton update. In these cases, either the update is skipped or the iterations are restarted with an identity matrix that results in the steepest descent or ascent search direction. You can specify line-search algorithms different from the default method with the fifth element of the \(\text{opt}\) argument.

The following statements invoke the NLPQN subroutine to solve the Rosenbrock problem (see the section “Unconstrained Rosenbrock Function” on page 361):

```bash
start F_ROSEN(x);
   y1 = 10 * (x[2] - x[1] * x[1]);
   y2 = 1 - x[1];
   f = 0.5 * (y1 * y1 + y2 * y2);
return(f);
finish F_ROSEN;

x = {-1.2 1};
opt = {0 2 . 2};
call nlpqn(rc, xr, "F_ROSEN", x, opt);
```

Since \(\text{opt}[4]=2\), the DDFP update is performed. The gradient is approximated by finite differences since no module is specified that computes the first-order derivatives. Part of the iteration history follows. In addition to the standard iteration history, the NLPQN subroutine prints the following information for unconstrained or linearly constrained problems:

- The heading \(\alpha\) is the step size, \(\alpha\), computed with the line-search algorithm.
- The heading \(\text{slope}\) refers to \(g^T s\), the slope of the search direction at the current parameter iterate \(x^{(k)}\). For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.
Figure 26.246 Quasi-Newton Optimization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>-1.200000</td>
<td>-107.799999</td>
</tr>
<tr>
<td>X2</td>
<td>1.000000</td>
<td>-43.999999</td>
</tr>
</tbody>
</table>

Value of Objective Function = 12.1

Dual Quasi-Newton Optimization

Dual Davidon - Fletcher - Powell Update (DDFP)

Gradient Computed by Finite Differences

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
</table>

Optimization Start

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Restarts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2.06405</td>
<td>10.0359</td>
<td>0.7917</td>
<td>0.0340</td>
<td>-628.8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>1.92035</td>
<td>0.1437</td>
<td>8.6301</td>
<td>6.557</td>
<td>-0.0363</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>1.78089</td>
<td>0.1395</td>
<td>11.0943</td>
<td>8.193</td>
<td>-0.0288</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>1.33331</td>
<td>0.4476</td>
<td>7.6069</td>
<td>33.376</td>
<td>-0.0269</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>1.13400</td>
<td>0.1993</td>
<td>0.9386</td>
<td>15.438</td>
<td>-0.0260</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0.93915</td>
<td>0.1948</td>
<td>3.5290</td>
<td>11.537</td>
<td>-0.0233</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0.84821</td>
<td>0.0909</td>
<td>4.8308</td>
<td>8.124</td>
<td>-0.0193</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0.54334</td>
<td>0.3049</td>
<td>4.1770</td>
<td>35.143</td>
<td>-0.0186</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>0.46593</td>
<td>0.0774</td>
<td>0.9479</td>
<td>8.708</td>
<td>-0.0178</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>0.35322</td>
<td>0.1127</td>
<td>2.5981</td>
<td>10.964</td>
<td>-0.0147</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>0.26381</td>
<td>0.0894</td>
<td>3.3028</td>
<td>13.590</td>
<td>-0.0121</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0.20282</td>
<td>0.0610</td>
<td>0.6451</td>
<td>10.000</td>
<td>-0.0116</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>46</td>
<td>0</td>
<td>0.11714</td>
<td>0.0857</td>
<td>1.6603</td>
<td>11.395</td>
<td>-0.0102</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>51</td>
<td>0</td>
<td>0.07149</td>
<td>0.0456</td>
<td>2.4050</td>
<td>11.559</td>
<td>-0.0074</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>0.04746</td>
<td>0.0240</td>
<td>0.5628</td>
<td>6.868</td>
<td>-0.0071</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>0.02759</td>
<td>0.0199</td>
<td>1.3282</td>
<td>5.365</td>
<td>-0.0055</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0.01625</td>
<td>0.0113</td>
<td>1.9246</td>
<td>5.882</td>
<td>-0.0035</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>62</td>
<td>0</td>
<td>0.00475</td>
<td>0.0115</td>
<td>0.6357</td>
<td>8.068</td>
<td>-0.0032</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0.00167</td>
<td>0.00307</td>
<td>0.4810</td>
<td>2.336</td>
<td>-0.0022</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0.0005952</td>
<td>0.00108</td>
<td>0.6043</td>
<td>3.287</td>
<td>-0.0006</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>0.0000771</td>
<td>0.000518</td>
<td>0.0289</td>
<td>2.329</td>
<td>-0.0004</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>1.92121E-6</td>
<td>0.000075</td>
<td>0.0365</td>
<td>1.772</td>
<td>-0.0001</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>78</td>
<td>0</td>
<td>2.39914E-8</td>
<td>1.897E-6</td>
<td>0.00158</td>
<td>1.159</td>
<td>-331E-8</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>5.0936E-11</td>
<td>2.394E-8</td>
<td>0.000016</td>
<td>0.967</td>
<td>-466E-9</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>119</td>
<td>0</td>
<td>3.9538E-11</td>
<td>1.14E-11</td>
<td>7.962E-7</td>
<td>1.061</td>
<td>-19E-13</td>
</tr>
</tbody>
</table>
Nonlinearly Constrained Quasi-Newton Optimization

The algorithm used for nonlinearly constrained quasi-Newton optimization is an efficient modification of Powell’s (1978a, 1982b) variable metric constrained watchdog (VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Harwell library. Both the VMCWD and VF02AD algorithms use Fletcher’s VE02AD algorithm, which is also part of the Harwell library, for positive definite quadratic programming. This NLPQN implementation uses a quadratic programming subroutine that updates and downdates the Cholesky factor when the active set changes (Gill et al. 1984). The nonlinear NLPQN algorithm is not a feasible point algorithm, and the value of the objective function is not required to decrease monotonically. Instead, the algorithm tries to reduce a linear combination of objective function and constraint violations.

The following are similarities and differences between this algorithm and Powell’s VMCWD algorithm:

- You can use the sixth element of the opt argument to modify the algorithm used by the NLPQN subroutine. If you specify opt[6]=2, which is the default, the evaluation of the Lagrange vector μ is performed the same way as described in Powell (1982). However, the VMCWD program seems to have a bug in the implementation of formula (4.4) in Powell (1982). If you specify opt[6]=1, the original update of μ used in the VF02AD algorithm in Powell (1978) is performed.

- Instead of updating an approximate Hessian matrix, this algorithm uses the dual BFGS or dual DFP update that updates the Cholesky factor of an approximate Hessian. If the condition of the updated matrix gets too bad, the algorithm restarts with a positive diagonal matrix. At the end of the first iteration after each restart, the Cholesky factor is scaled.

- The Cholesky factor is loaded into the quadratic programming subroutine, which ensures positive definiteness of the problem. During the quadratic programming step, the Cholesky factor of the projected Hessian matrix $Z_k^T G Z_k$ is updated simultaneously with Q^T decomposition when the active set changes. See Gill et al. (1984) for more information.

- The line-search strategy is very similar to that of Powell’s algorithm, but this algorithm does not call for derivatives during the line search. Therefore, this algorithm generally needs fewer derivative calls

Optimization Results

<table>
<thead>
<tr>
<th>Iterations</th>
<th>25</th>
<th>Function Calls</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient Calls</td>
<td>107</td>
<td>Active Constraints</td>
<td>0</td>
</tr>
<tr>
<td>Objective Function</td>
<td>3.953804E-11</td>
<td>Max Abs Gradient Element</td>
<td>7.9622469E-7</td>
</tr>
<tr>
<td>Slope of Search Direction</td>
<td>-1.88032E-12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABSGCONV convergence criterion satisfied.

Optimization Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N X1</td>
<td>0.999991</td>
<td>-0.0000003796</td>
</tr>
<tr>
<td>2 X2</td>
<td>0.998962</td>
<td>0.0000000430</td>
</tr>
</tbody>
</table>

Value of Objective Function = 3.953804E-11
than function calls, whereas the VMCWD algorithm always requires the same number of derivative calls as function calls. Also, Powell’s line-search method sometimes uses steps that are too long during the early iterations. In those cases, you can use the second element of the par argument to restrict the step length \(\alpha \) in the first five iterations. See the section “Control Parameters Vector” on page 392 for more details.

- The watchdog strategy is also similar to that of Powell’s algorithm. However, this algorithm does not return automatically after a fixed number of iterations to a previous, more optimal point. A return to such a point is further delayed if the observed function reduction is close to the expected function reduction of the quadratic model.

- Although Powell’s termination criterion, the FTOL2 criterion, can still be used, the NLPQN implementation uses, by default, two other termination criteria (GTOL and ABSGTOL).

This algorithm is automatically invoked if the “nlc” argument is specified. The module specified with the “nlc” argument must return a vector of length \(n_c \), where \(n_c \) is the total number of constraints. Letting \(n_e \) be the number of equality constraints, the constraints must be of the following form:

\[
\begin{align*}
c_i(x) &= 0, & i &= 1, \ldots, n_c \\
c_i(x) &\geq 0, & i &= n_e + 1, \ldots, n_c
\end{align*}
\]

The first \(n_e \) elements of the returned vector contain the \(c_i \) for the equality constraints, and the remaining elements contain the \(c_i \) for the inequality constraints.

NOTE: You must specify the total number of constraints with the tenth element of the opt argument, and if there are any equality constraints, you must specify their number, \(n_e \), with the eleventh element of the opt argument.

The nonlinear NLPQN algorithm requires the Jacobian matrix of the first-order derivatives of the \(n_c \) constraints returned by the module specified by the “nlc” argument. You can provide these derivatives by specifying a module with the “jacnlc” argument. This module must return the Jacobian matrix \(J \) of first-order partial derivatives. That is, \(J \) is an \(n_c \times n \) matrix such that the entry in the \(i \)th row and \(j \)th column is given by

\[
J(i, j) = \frac{\partial c_i}{\partial x_j}
\]

If you specify an “nlc” module without specifying a “jacnlc” argument, finite difference approximations of the first-order derivatives of the constraints are used. You can use the ninth element of the par argument to specify the number of accurate digits used in evaluating the constraints.

You can specify two update formulas with the fourth element of the opt argument as indicated in the following table:

<table>
<thead>
<tr>
<th>Value of (\text{opt}[4])</th>
<th>Update Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual Broyden, Fletcher, Goldfarb, and Shanno (DBFGS) update of the Cholesky factor of the Hessian matrix. This is the default.</td>
</tr>
<tr>
<td>2</td>
<td>Dual Davidon, Fletcher, and Powell (DDFP) update of the Cholesky factor of the Hessian matrix.</td>
</tr>
</tbody>
</table>

This algorithm uses its own line-search technique. None of the options and parameters that control the line search in the other algorithms apply in the nonlinear NLPQN algorithm, with the exception of the second element of the par vector, which can be used to restrict the length of the step size in the first five iterations.
See Example 17.8 for an example where you need to specify a value for the second element of the `par` argument. The values of the fourth, fifth, and sixth elements of the `par` vector, which control the processing of linear and boundary constraints, are valid only for the quadratic programming subroutine used in each iteration of the `NLPQN` call. For a simple example of the `NLPQN` subroutine, see the section “Rosen-Suzuki Problem” on page 367.

NLPQUA Call

```fortran
CALL NLPQUA(rc, xr, quad, x0 <, opt> <, blc> <, tc> <, par> <, "ptit" > <, lin> );
```

The NLPQUA subroutine computes an optimum value of a quadratic objective function.

See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPQUA subroutine uses a fast algorithm for maximizing or minimizing the quadratic objective function

\[
\frac{1}{2} x^T G x + g^T x + \text{con}
\]

subject to boundary constraints and general linear equality and inequality constraints. The algorithm is memory-consuming for problems with general linear constraints.

The matrix \(G \) must be symmetric but not necessarily positive definite (or negative definite for maximization problems). The constant term \(\text{con} \) affects only the value of the objective function, not its derivatives or the optimal point \(x^* \).

The algorithm is an active-set method in which the update of active boundary and linear constraints is done separately. The \(QT \) decomposition of the matrix \(A_k \) of active linear constraints is updated iteratively (Gill et al. 1984). If \(n_f \) is the number of free parameters (that is, \(n \) minus the number of active boundary constraints) and \(n_a \) is the number of active linear constraints, then \(Q \) is an \(n_f \times n_f \) orthogonal matrix that contains null space \(Z \) in its first \(n_f - n_a \) columns and range space \(Y \) in its last \(n_a \) columns. The matrix \(T \) is an \(n_a \times n_a \) triangular matrix of the form \(t_{ij} = 0 \) for \(i < n - j \). The Cholesky factor of the projected Hessian matrix \(Z_k^T G Z_k \) is updated simultaneously with the \(QT \) decomposition when the active set changes.

The objective function is specified by the input arguments `quad` and `lin`, as follows:

- The `quad` argument specifies the symmetric \(n \times n \) Hessian matrix, \(G \), of the quadratic term. The input can be in dense or sparse form. In dense form, all \(n^2 \) entries of the `quad` matrix must be specified. If \(n \leq 3 \), the dense specification must be used. The sparse specification can be useful when \(G \) has many zero elements. You can specify an \(nn \times 3 \) matrix in which each row represents one of the \(nn \) nonzero elements of \(G \). The first column specifies the row location in \(G \), the second column specifies the column location, and the third column specifies the value of the nonzero element.

- The `lin` argument specifies the linear part of the quadratic optimization problem. It must be a vector of length \(n \) or \(n + 1 \). If `lin` is a vector of length \(n \), it specifies the vector \(g \) of the linear term, and the constant term `con` is considered zero. If `lin` is a vector of length \(n + 1 \), then the first \(n \) elements of the argument specify the vector \(g \) and the last element specifies the constant term `con` of the objective function.
As in the other optimization subroutines, you can use the \(blc \) argument to specify boundary and general linear constraints, and you must provide a starting point \(x0 \) to determine the number of parameters. If \(x0 \) is not feasible, a feasible initial point is computed by linear programming, and the elements of \(x0 \) can be missing values.

Assuming nonnegativity constraints \(x \geq 0 \), the quadratic optimization problem is solved with the LCP call, which solves the linear complementarity problem.

Choosing a sparse (or dense) input form of the \(quad \) argument does not mean that the algorithm used in the NLPQUA subroutine is necessarily sparse (or dense). If the following conditions are satisfied, the NLPQUA algorithm stores and processes the matrix \(G \) as sparse:

- No general linear constraints are specified.
- The memory needed for the sparse storage of \(G \) is less than 80% of the memory needed for dense storage.
- \(G \) is not a diagonal matrix. If \(G \) is diagonal, it is stored and processed as a diagonal matrix.

The sparse NLPQUA algorithm uses a modified form of minimum degree Cholesky factorization (George and Liu 1981).

In addition to the standard iteration history, the NLPNRA subroutine prints the following information:

- The heading \(\alpha \) is the step size, \(\alpha \), computed with the line-search algorithm.
- The heading \(slope \) refers to \(g^T s \), the slope of the search direction at the current parameter iterate \(x^{(k)} \). For minimization, this value should be significantly smaller than zero. Otherwise, the line-search algorithm has difficulty reducing the function value sufficiently.

The Betts problem (see the section “Constrained Betts Function” on page 365) can be expressed as a quadratic problem in the following way:

\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad G = \begin{bmatrix} 0.02 & 0 \\ 0 & 2 \end{bmatrix}, \quad g = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad con = -100
\]

Then

\[
\frac{1}{2} x^T G x - g^T x + con = 0.5[0.02x_1^2 + 2x_2^2] - 100 = 0.01x_1^2 + x_2^2 - 100
\]

The following statements use the NLPQUA subroutine to solve the Betts problem:

```plaintext
lin = { 0. 0. -100};
quad = { 0.02 0.0 ,
        0.0 2.0 };
c = { 2. -50. . . ,
      50. 50. . . ,
      10. -1. 1. 10. };
x = { -1. -1.};
opt = {0 2};
call nlpqua(rc, xres, quad, x, opt, c, , , , lin);
```
The **quad** argument specifies the G matrix, and the **lin** argument specifies the g vector with the value of con appended as the last element. The matrix c specifies the boundary constraints and the general linear constraint.

The iteration history follows.

Figure 26.247 Quadratic Optimization

Note: Initial point was changed to be feasible for boundary and linear constraints.

<table>
<thead>
<tr>
<th>N</th>
<th>Parameter</th>
<th>Estimate</th>
<th>Gradient Objective Function</th>
<th>Lower Bound Constraint</th>
<th>Upper Bound Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>6.800000</td>
<td>0.136000</td>
<td>2.000000</td>
<td>50.000000</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-1.000000</td>
<td>-2.000000</td>
<td>-50.000000</td>
<td>50.000000</td>
</tr>
</tbody>
</table>

Value of Objective Function = -98.5376

Linear Constraints

1 59.00000 <= 10.00000 * X1 - 1.00000 * X2

Null Space Method of Quadratic Problem

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Upper Bounds</td>
<td>2</td>
</tr>
<tr>
<td>Linear Constraints</td>
<td>1</td>
</tr>
<tr>
<td>Using Sparse Hessian</td>
<td>_</td>
</tr>
</tbody>
</table>

Optimization Start

| Active Constraints | 0 |
| Max Abs Gradient Element | 2 |

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Rearts</th>
<th>Function Calls</th>
<th>Active Constraints</th>
<th>Objective Function</th>
<th>Objective Function Change</th>
<th>Max Abs Gradient Element</th>
<th>Step Size</th>
<th>Slope of Search Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>-99.87349</td>
<td>1.3359</td>
<td>0.5882</td>
<td>0.706</td>
<td>-2.925</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>-99.96000</td>
<td>0.0865</td>
<td>0</td>
<td>1.000</td>
<td>-0.173</td>
</tr>
</tbody>
</table>

Optimization Results

Iterations	2	Function Calls	4
Gradient Calls	3	Active Constraints	1
Objective Function	-99.96	Max Abs Gradient Element	0
Slope of Search Direction	-0.173010381		

ABSGCONV convergence criterion satisfied.
The NLPTR subroutine uses a trust-region method to compute an optimum value of a function. See the section “Nonlinear Optimization and Related Subroutines” on page 870 for a listing of all NLP subroutines. See Chapter 17 for a description of the arguments of NLP subroutines.

The NLPTR subroutine is a trust-region method. The algorithm uses the gradient \(g^{(k)} \) and Hessian matrix \(G^{(k)} \) and requires that the objective function \(f(x) \) has continuous first- and second-order derivatives inside the feasible region.

The \(n \times n \) Hessian matrix \(G \) contains the second derivatives of the objective function \(f \) with respect to the parameters \(x_1, \ldots, x_n \), as follows:

\[
G(x) = \nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_j \partial x_k} \right)
\]

The trust-region method works by optimizing a quadratic approximation to the nonlinear objective function within a hyperelliptic trust region. This trust region has a radius, \(\Delta \), that constrains the step size that corresponds to the quality of the quadratic approximation. The method is implemented by using Dennis, Gay, and Welsch (1981), Gay (1983), and Moré and Sorensen (1983).

Finite difference approximations for second-order derivatives that use only function calls are computationally very expensive. If you specify first-order derivatives analytically with the “grd” module argument, you can drastically reduce the computation time for numerical second-order derivatives. Computing the finite difference approximation for the Hessian matrix \(G \) generally uses only \(n \) calls of the module that computes the gradient analytically.

The NLPTR method performs well for small- to medium-sized problems and does not need many function, gradient, and Hessian calls. However, if the gradient is not specified by using the “grd” argument or if the computation of the Hessian module, as specified by the “hes” module argument, is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.
In addition to the standard iteration history, the NLPTR subroutine prints the following information:

- Under the heading *Iter*, an asterisk (*) printed after the iteration number indicates that the computed Hessian approximation was singular and had to be ridged with a positive value.

- The heading *lambda* represents the Lagrange multiplier, \(\lambda \). This has a value of zero when the optimum of the quadratic function approximation is inside the trust region, in which case a trust-region-scaled Newton step is performed. It is greater than zero when the optimum is at the boundary of the trust region, in which case the scaled Newton step is too long to fit in the trust region and a quadratically constrained optimization is done. Large values indicate optimization difficulties, and as in Gay (1983), a negative value indicates the special case of an indefinite Hessian matrix.

- The heading *radius* refers to \(\Delta \), the radius of the trust region. Small values of the radius combined with large values of \(\lambda \) in subsequent iterations indicate optimization problems.

For an example of the use of the NLPTR subroutine, see the section “Unconstrained Rosenbrock Function” on page 361.

NORM Function

\[
\text{NORM}(x, <, method>);
\]

The NORM function computes the vector or matrix norm of \(x \). The norm depends on the metric specified by the *method* argument. The arguments are as follows:

- \(x \) specifies a numeric vector with \(n \) elements or an \(n \times p \) numeric matrix.
- *method* is an optional argument that specifies the method used to specify the norm. The *method* argument is either a numeric value, *method* \(\geq 1 \), or a case-insensitive character value. The valid options are given in the following sections.

Methods for Vector Norms

If \(x \) is a vector, then a vector norm is computed. The following are valid values of the *method* argument:

- **“L1”** specifies that the function compute the 1-norm: \(\|x\|_1 = \sum_k |x_k| \). An equivalent alias is “CityBlock” or “Manhattan”.
- **“L2”** specifies that the function compute the Euclidean 2-norm: \(\|x\|_2 = \sqrt{(x'x)} = (\sum_k |x_k|^2)^{1/2} \). This is the default value. An equivalent alias is “Euclidean” or “Frobenius”.
- **“LInf”** specifies that the function compute the \(\infty \)-norm: \(\|x\|_\infty = \max_k |x_k| \). An equivalent alias is “Chebyshev”.

- \(p \) is a numeric value, \(p \geq 1 \), that specifies the \(p \)-norm: \(\|x\|_p = (\sum_k |x_k|^p)^{1/p}, p \geq 1 \).
Methods for Matrix Norms

For an $n \times p$ matrix A such that $n > 1$ and $p > 1$, the method argument has the following valid values:

- “Frobenius” specifies the Frobenius norm: $\| A \|_F = \left(\sum_{i=1}^{n} \sum_{j=1}^{p} |a_{ij}|^2 \right)^{1/2}$. This is the default value.
- “L1” specifies the matrix 1-norm: $\| A \|_1 = \max_{1 \leq j \leq p} \sum_{i=1}^{n} |a_{ij}|$. This norm computes the maximum of the absolute column sums.
- “L2” specifies the matrix 2-norm, which is equivalent to the square root of the largest eigenvalue of the $A' A$ matrix. This quantity can be expensive to compute because the function internally computes eigenvalues.
- “LInf” specifies the ∞-norm: $\| A \|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{p} |a_{ij}|$. This norm computes the maximum of the absolute row sums.

The matrix p-norm is not available unless $p \in \{1, 2, \infty\}$.

The following statements compute vector norms:

```plaintext
/* compute vector norms */
v = 1:5;
v1 = norm(v, "L1");
v2 = norm(v, "L2");
vInf = norm(v, "LInf");
print v1 v2 vInf;
```

Figure 26.248 Vector Norms

<table>
<thead>
<tr>
<th>vn1</th>
<th>vn2</th>
<th>vnInf</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>7.4161985</td>
<td>5</td>
</tr>
</tbody>
</table>

You can also compute matrix norms, as follows:

```plaintext
x = {1 2, 3 4};
mn1 = norm(x, "L1");
mnF = norm(x, "Frobenius");
mnInf = norm(x, "LInf");
print mn1 mnF mnInf;
```

Figure 26.249 Matrix Norms

<table>
<thead>
<tr>
<th>mn1</th>
<th>mnF</th>
<th>mnInf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5.4772256</td>
<td>7</td>
</tr>
</tbody>
</table>

The NORM function returns a missing value if any element of the argument contains a missing value.

NORMAL Function

NORMAL(seed);

This function is deprecated. Instead, use the RANDGEN subroutine to generate random values.
NROW Function

\[\text{NROW}(\text{matrix}); \]

The NROW function returns the number of rows in its matrix argument. If the matrix has not been given a value, the NROW function returns a value of 0.

For example, following statements display the number of rows of the matrix \(m \):

\[
\begin{align*}
m &= \{1 \ 2 \ 3, \ 4 \ 5 \ 6, \ 3 \ 2 \ 1, \ 4 \ 3 \ 2, \ 5 \ 4 \ 3\}; \\
n &= \text{nrow}(m); \\
\text{print} \ n;
\end{align*}
\]

Figure 26.250 Number of Rows in a Matrix

\[
\begin{array}{c}
n \\
5
\end{array}
\]

NUM Function

\[\text{NUM}(\text{matrix}); \]

The NUM function produces a numeric representation of elements in a character matrix. If you have a character matrix for which each element is a string representation of a number, the NUM function produces a numeric matrix with dimensions that are the same as the dimensions of the argument and with elements that are the numeric representations (double-precision floating-point) of the corresponding elements of the argument.

For example, following statements display the result of converting a character matrix to a numeric matrix:

\[
\begin{align*}
c &= \{"1" \ "2" \ "3"\}; \\
\text{reset print;} &\quad /* \text{display values and type of matrices */} \\
m &= \text{num}(c);
\end{align*}
\]

Figure 26.251 Numeric Matrix

<table>
<thead>
<tr>
<th>m</th>
<th>1 row</th>
<th>3 cols (numeric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can also use the PUTN function in Base SAS software to apply a SAS format to each element of a numeric matrix. The resulting matrix is character-valued.

See also the description of the CHAR function, which converts numeric matrices into character matrices.

ODE Call

\[\text{CALL ODE}(r, "\text{dername}", c, t, h <, J="\text{jacobian}"><, \ EPS=eps><, "\text{SAS-data-set}"><); \]
The ODE subroutine performs numerical integration of first-order vector differential equations of the form

\[\frac{dy}{dt} = f(t, y(t)) \quad \text{with} \quad y(0) = c \]

The ODE subroutine returns the following values:

- The input arguments to the ODE subroutine are as follows:
 - “dername” specifies the name of a module used to evaluate the integrand.
 - c specifies an initial value vector for the variable y.
 - t specifies a sorted vector that describes the limits of integration over connected subintervals. The simplest form of the vector t contains only the limits of the integration on one interval. The first component of t should contain the initial value, and the second component should be the final value of the independent variable. For more advanced usage of the ODE subroutine, the vector t can contain more than two components. The components of the vector must be sorted in ascending order. Two consecutive components of the vector t are interpreted as a subinterval. The ODE subroutine reports the final result of integration at the right endpoint of each subinterval. This information is vital if \(f(\cdot) \) has internal points of discontinuity. To produce accurate solutions, it is essential that you provide the location of these points in the variable t. The continuity of the forcing function is vital to the internal control of error.
 - h specifies a numeric vector that contains three components: the minimum allowable step size, \(h_{\text{min}} \); the maximum allowable step size, \(h_{\text{max}} \); and the initial step size to start the integration process, \(h_{\text{init}} \).
 - “jacobian” optionally specifies the name of a module that is used to evaluate the Jacobian analytically. The Jacobian is the matrix \(J \), with
 \[J_{ij} = \frac{\partial f_i}{\partial y_j} \]
 If the “jacobian” module is not specified, the ODE subroutine uses a finite-difference method to approximate the Jacobian. The keyword for this option is J.
 - eps specifies a scalar that indicates the required accuracy. It has a default value of 1E–4. The keyword for this option is EPS.
 - SAS-data-set is an optional argument that specifies the name of a valid predefined SAS data set name. The data set is used to save the successful independent and dependent variables of the integration at each step. The keyword for this option is DATA.

The ODE subroutine is an adaptive, variable-order, variable-step-size, stiff integrator based on implicit backward-difference methods. See Aiken (1985), Bickart and Picel (1973), Donelson and Hansen (1971),
Gaffney (1984), and Shampine (1978). The integrator is an implicit predictor-corrector method that locally attempts to maintain the prescribed precision \(\epsilon_{\text{ps}} \) relative to

\[
d = \max_{0 \leq t \leq T} (\| y(t) \|_\infty, 1)
\]

As you can see from the expression, this quantity is dynamically updated during the integration process and can help you to understand the validity of the results reported by the subroutine.

A Linear Differential Equation

Consider the differential equation

\[
\frac{dy}{dt} = -ty \quad \text{with} \quad y(0) = 0.5 \quad \text{at} \quad t = 0
\]

The following statements attempt to find the solution at \(t = 1 \):

```plaintext
/* Define the integrand */
start fun(t,y);
  v = -t*y;
  return(v);
finish;

/* Call ODE */
c = 0.5;
t = {0 1};
h = {1E-12 1 1E-5};
call ode(r1, "FUN", c, t, h);
print r1[format=E21.14];
```

Figure 26.252 Solution to a Differential Equation at \(t = 1 \)

<table>
<thead>
<tr>
<th>r1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0343229013560E-01</td>
</tr>
</tbody>
</table>

In this case, the integration is carried out over \((0, 1)\) to give the value of \(y \) at \(t = 1 \). The optional parameter \(\epsilon_{\text{ps}} \) has not been specified, so it is internally set to \(1E^{-4} \). Also, the optional parameter "\text{jacobian}" has not been specified, so finite-difference methods are used to estimate the Jacobian. The accuracy of the answer can be increased by specifying \(\epsilon_{\text{ps}} \). For example, set \(\text{EPS}=1E^{-7} \), as follows:

```plaintext
call ode(r2, "FUN", c, t, h) eps=1E-7;
print r2[format=E21.14];
```

Figure 26.253 A Solution with Increased Accuracy

<table>
<thead>
<tr>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.03265329856310E-01</td>
</tr>
</tbody>
</table>

Compare this value to \(0.5e^{-0.5} = 3.03265329856310E-01 \) and observe that the result is correct through the sixth decimal digit and has an error relative to 1 that is \(O(1E-7) \).

If the solution was desired at 1 and 2 with an accuracy of \(1E-7 \), you would use the following statements:
t = {0 1 2};
h = {1E-12 1 1E-5};
call ode(r3, "FUN", c, t, h) eps=1E-7;
print r3[format=E21.14];

\[\begin{array}{r}
3.03265687354960E-01 & 6.76677185425360E-02 \\
\end{array} \]

Figure 26.254 A Solution at Two Times

Note that r3 contains the solution at \(t = 1 \) in the first column and at \(t = 2 \) in the second column.

A Discontinuous Forcing Function

Now consider the smoothness of the forcing function \(f(t) \). For the purpose of estimating errors, adaptive methods require some degree of smoothness in the function \(f(t) \). If this smoothness is not present in \(f(t) \) over the interior and including the left endpoint of the subinterval, the reported result does not have the desired accuracy. The function \(f(t) \) must be at least continuous. If the function does not meet this requirement, you should specify the discontinuity as an intermediate point. For example, consider the differential equation

\[
\frac{dy}{dt} = \begin{cases}
t & \text{if } t < 1 \\
0.5t^2 & \text{if } t \geq 1
\end{cases}
\]

To find the solution at \(t = 2 \), use the following statements:

```plaintext
/* Define the integrand */
start fun(t,y);
   if t < 1 then v = t;
   else v = .5*t*t;
   return(v);
finish;

c  = 0;
t  = {0 2};
h  = {1E-12 1 1E-5};
call ode(r1, "FUN", c, t, h) eps=1E-12;
print r1[format=E21.14];

Figure 26.255  Numerical Solution Across a Discontinuity

\[ \begin{array}{r}
1.66666626639430E+00 \\
\end{array} \]

In the preceding case, the integration is carried out over a single interval, \((0, 2)\). The optional parameter \( eps \) is specified to be 1E−12. The optional parameter "jacobian" is not specified, so finite-difference methods are used to estimate the Jacobian.

Note that the value of r1 does not have the required accuracy (it should contain a 12 decimal-place representation of 5/3), although no error message is produced. The reason is that the function is not continuous at the point \( t = 1 \). Even the lowest-order method cannot produce a local reliable error estimate near the point of
discontinuity. To avoid this problem, you can create subintervals so that the integration is carried out first over (0, 1) and then over (1, 2). The following statements implement this method:

```plaintext
c = 0;
t = {0 1 2};
h = {1E-12 1 1E-5};
call ode(r2, "FUN", c, t, h) eps=1E-12;
print r2[format=E21.14];
```

**Figure 26.256** Numerical Solution on Subintervals

<table>
<thead>
<tr>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>5.00000000003280E-01 1.66666666667280E+00</td>
</tr>
</tbody>
</table>

The variable r2 contains the solutions at both t = 1 and t = 2, and the errors are of the specified order. Although there is no interest in the solution at the point t = 1, the advantage of specifying subintervals with no discontinuities is that the function f(·) is infinitely differentiable in each subinterval.

**A Piecewise Continuous Forcing Function**

When f(·) is continuous, the ODE subroutine can compute the integration to the specified precision, even if the function is defined piecewise. Consider the differential equation

\[
\frac{dy}{dt} = \begin{cases} 
  t & \text{if } t < 1 \\
  t^2 & \text{if } t \geq 1 
\end{cases}
\]

The following statements finds the solution at t = 2. Since the function f(·) is continuous, the requirements for error control are satisfied.

```plaintext
/* Define the integrand */
start fun(t,y);
 if t < 1 then v = t;
 else v = t*t;
 return(v);
finish;

c = 0.5;
t = {0 2};
h = {1E-12 1 1E-5};
call ode(r, "FUN", c, t, h) eps=1E-12;
print r[format=E21.14];
```

**Figure 26.257** Numerical Solution Across a Discontinuity

<table>
<thead>
<tr>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3.33333333334290E+00</td>
</tr>
</tbody>
</table>
Comparing Numerical Integration with an Eigenvalue Decomposition

This example compares the ODE subroutine to an eigenvalue decomposition for stiff-linear systems. In the problem

\[ \frac{dy}{dt} = Ay \quad \text{with} \quad y(0) = c \]

where \( A \) is a symmetric constant matrix, the solution can be written in terms of the eigenvalue decomposition as

\[ y(t) = Ue^{Dt}U'c \]

where \( U \) is the matrix of eigenvectors and \( D \) is a diagonal matrix with the eigenvalues on its diagonal.

The following statements produce two solutions, one by using the ODE subroutine and the other by using the eigenvalue decomposition:

```/* Define the integrand */
start fun(t,x) global(a,count);
 count = count+1;
 v = a*x;
 return(v);
finish;

/* Define the Jacobian */
start jac(t,x) global(a);
 return(a);
finish;

da = {-1000 -1 -2 -3,
 -1 -2 3 -1,
 -2 3 -4 -3,
 -3 -1 -3 -5};

count = 0;
t = {0 1 2};
h = {1E-12 1 1E-5};
eps = 1E-9;
c = {1, 0, 0, 0};
call ode(z, "FUN", c, t, h) eps=eps j="JAC";
print z[format=E21.14];
print count;
```

Figure 26.258 Numerical Integration of a Linear System

<table>
<thead>
<tr>
<th></th>
<th>6.58581431443360E-06</th>
<th>3.73655984699120E-03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.85787365492010E-06</td>
<td>1.01207978491490E-03</td>
</tr>
<tr>
<td></td>
<td>-1.76251618648210E-03</td>
<td>-5.72429355490000E-03</td>
</tr>
<tr>
<td></td>
<td>-1.56685608329260E-03</td>
<td>-6.35540480231360E-03</td>
</tr>
<tr>
<td></td>
<td>1.85787365492010E-06</td>
<td>3.73655984699120E-03</td>
</tr>
</tbody>
</table>

| count | 437 |
/* Do the eigenvalue decomposition */
start eval(t) global(d,u,c);
   v = u*diag(exp(d*t))*u`*c;
   return(v);
finish;

call eigen(d,u,a);
free z1;
do i = 1 to nrow(t)*ncol(t)-1;
z1 = z1 || (eval(t[i+1]));
end;
print z1[format=E21.14];

Figure 26.259  Analytic Solution of a Linear System

<table>
<thead>
<tr>
<th>z</th>
<th>1.85787365492010E-06</th>
<th>6.58581431443360E-06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.76251618648210E-03</td>
<td>-6.35540480231360E-03</td>
</tr>
<tr>
<td></td>
<td>-1.56685608329260E-03</td>
<td>-5.72429355490000E-03</td>
</tr>
<tr>
<td></td>
<td>1.01207978491490E-03</td>
<td>3.73655984699120E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>count</th>
<th>437</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>z1</th>
<th>1.85787369378720E-06</th>
<th>6.58580950202810E-06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.76251639451200E-03</td>
<td>-6.35540294085790E-03</td>
</tr>
<tr>
<td></td>
<td>-1.56685625917120E-03</td>
<td>-5.72429205508220E-03</td>
</tr>
<tr>
<td></td>
<td>1.01207878768800E-03</td>
<td>3.73655890904620E-03</td>
</tr>
</tbody>
</table>

Is this an $O(1E - 9)$ result? Note that for the problem

$$d = \max_{0 \leq t \leq T} (\|y(t)\|_{\infty} \cdot 1) = 1$$

with the $1E-6$ result, the ODE subroutine should attempt to maintain an accuracy of $1E-9$ relative to 1. Therefore, the $1E-6$ result should have almost three correct decimal places. At $t = 2$, the first component of $z$ is $6.58597048842310E-06$, while its more accurate value is $6.58580950203220E-06$, showing an $O(1E - 10)$ error.

Troubleshooting

The ODE subroutine can fail for problems with unusual qualitative properties, such as finite escape time in the interval of integration (that is, the solution goes towards infinity at some finite time). In such cases, try testing with different subintervals and different levels of accuracy to gain some qualitative information about the behavior of the solution of the differential equation.
ODSGRAPH Call

**CALL ODSGRAPH**(name, template, matrix1 <, matrix2, ..., matrix13>);

The ODSGRAPH subroutine renders an ODS statistical graph that is defined by a template.

The input arguments to the ODSGRAPH subroutine are as follows:

- **name** is a character matrix or quoted literal that assigns a name to the graph. The name is used to identify the output graph in the SAS Results window.
- **template** is a character matrix or quoted literal that names the template used to render the graph.
- **matrix** is a matrix whose columns are supplied to the template. You can specify up to 13 arguments. The name of each column must be specified by using the **MATTRIB** statement or the **COLNAME=** option in a **READ** statement.

The ODSGRAPH subroutine (which requires a SAS/GRAPH license) renders a graph defined by the input template. Data for the graph are in the columns of the matrix arguments. Column names are assigned to the matrices by using the **MATTRIB** statement or by using the **COLNAME=** option in a **READ** statement. This is illustrated in the following example, which produces a three-dimensional surface plot:

```sas
proc template;
 define statgraph SurfacePlot;
 BeginGraph;
 layout overlay3d;
 surfaceplotparm x=x y=y z=z / surfacetype=fill;
 endlayout;
 EndGraph;
 end;
run;

ods graphics on;
title "Surface Plot";
proc iml;
XDiv = do(-5, 5, 0.25);
YDiv = do(-5, 5, 0.25);
nX = ncol(XDiv);
nY = ncol(YDiv);
x = shape(repeat(XDiv, nY, 1), 0, 1);
y = shape(repeat(YDiv`, 1, nX), 0, 1);
z = sin(sqrt(x##2 + y##2));
matrix = x || y || z;
mattrib matrix colname={"x" "y" "z"};
call odsgraph("surface", "SurfacePlot", matrix);
quit;

ods graphics off;
```
In the example, the TEMPLATE procedure defines a template for a surface plot. The ODSGRAPH subroutine calls ODS to render the graph by using the layout in the template. (You can render the graph in any ODS destination.) The data for the graph are contained in a matrix. The MATTRIB statement associates the columns of the matrix with the variable names required by the template.

You can also create graphs from data that are read from a data set. If x, y, and z are variables in a data set, then the following statements plot these variables:

```plaintext
use myData;
read all into matrix[colname = c];
call odsgraph("surface", "SurfacePlot", matrix);
```

Since column names created via a READ statement are permanently associated with the INTO matrix, you do not need to use a MATTRIB statement for this example.

The sample programs distributed with SAS/IML software include other examples of plots that are available by using ODS Statistical Graphics.
OPSCAL Function

\[ \text{OPSCAL}(m\text{level}, \text{quanti}, \text{qualit}); \]

The OPSCAL function rescales qualitative data to be a least squares fit to quantitative data.

The arguments to the OPSCAL function are as follows:

- \( m\text{level} \) specifies a scalar that has one of two values. When \( m\text{level} \) is 1, the \( \text{qualit} \) matrix is at the nominal measurement level; when \( m\text{level} \) is 2, it is at the ordinal measurement level.

- \( \text{quanti} \) specifies an \( m \times n \) matrix of quantitative information assumed to be at the interval level of measurement.

- \( \text{qualit} \) specifies an \( m \times n \) matrix of qualitative information whose level of measurement is specified by \( m\text{level} \). When \( \text{qualit} \) is omitted, \( m\text{level} \) must be 2 and a temporary \( \text{qualit} \) is constructed that contains the integers from 1 to \( n \) in the first row, from \( n + 1 \) to \( 2n \) in the second row, from \( 2n + 1 \) to \( 3n \) in the third row, and so forth, up to the integers \( (m - 1)n \) to \( mn \) in the last(\( m \)th) row. You cannot specify \( \text{qualit} \) as a character matrix.

The result of the OPSCAL function is the optimal scaling transformation of the qualitative (nominal or ordinal) data in \( \text{qualit} \). The optimal scaling transformation that results has the following properties:

- It is a least squares fit to the quantitative data in \( \text{quanti} \).
- It preserves the qualitative measurement level of \( \text{qualit} \).

When \( \text{qualit} \) is at the nominal level of measurement, the optimal scaling transformation result is a least squares fit to \( \text{quanti} \), given the restriction that the category structure of \( \text{qualit} \) must be preserved. If element \( i \) of \( \text{qualit} \) is in category \( c \), then element \( i \) of the optimum scaling transformation result is the mean of all those elements of \( \text{quanti} \) that correspond to elements of \( \text{qualit} \) that are in category \( c \).

For example, the following statements create the vector shown in Figure 26.261:

\[
\begin{align*}
\text{quanti} & = \{5 \ 4 \ 6 \ 7 \ 4 \ 6 \ 2 \ 4 \ 8 \ 6\}; \\
\text{qualit} & = \{6 \ 6 \ 2 \ 12 \ 4 \ 10 \ 4 \ 10 \ 8 \ 6\}; \\
\text{os} & = \text{opscal}(1, \text{quanti}, \text{qualit}); \\
\text{print os;}
\end{align*}
\]

**Figure 26.261** Optimal Scaling Transformation of Nominal Data

\[
\begin{array}{cccccccc}
5 & 5 & 6 & 7 & 3 & 5 & 3 & 5 \\
8 & 5 & & & & & & \\
\end{array}
\]

The optimal scaling transformation result is said to preserve the nominal measurement level of \( \text{qualit} \) because wherever there was a \( \text{qualit} \) category \( c \), there is now a result category label \( v \). The transformation is least squares because the result element \( v \) is the mean of appropriate elements of \( \text{quanti} \). This is Young’s (1981) discrete-nominal transformation.

When \( \text{qualit} \) is at the ordinal level of measurement, the optimal scaling transformation result is a least squares fit to \( \text{quanti} \), given the restriction that the ordinal structure of \( \text{qualit} \) must be preserved. This is done by determining blocks of elements of \( \text{qualit} \) so that if element \( i \) of \( \text{qualit} \) is in block \( b \), then element \( i \) of the result
is the mean of all those \textit{quanti} elements that correspond to block \textit{b} elements of \textit{qualit} so that the means are (weakly) in the same order as the elements of \textit{qualit}.

For example, consider these statements, which produce the transformation shown in Figure 26.262:

\begin{verbatim}
    os2 = opscal(2, quanti, qualit);
    print os2;
\end{verbatim}

\textbf{Figure 26.262} Optimal Scaling Transformation of Ordinal Data

\begin{verbatim}
    os2
    5 5 4 7 4 6 6 6 5
\end{verbatim}

This transformation preserves the ordinal measurement level of \textit{qualit} because the elements of \textit{qualit} and the result are (weakly) in the same order. It is least squares because the result elements are the means of appropriate elements of \textit{quanti}. By comparing this result to the nominal one, you see that categories whose means are incorrectly ordered have been merged together to form correctly ordered blocks. This is known as Kruskal’s (1964) least squares monotonic transformation.

You can omit the \textit{qualit} argument, as shown in the following statements:

\begin{verbatim}
    quanti = {5 3 6 7 5 7 8 6 7 8};
    os3 = opscal(2, quanti);
    print os3;
\end{verbatim}

These statements are equivalent to specifying

\begin{verbatim}
    qualit = 1:10;
\end{verbatim}

The result is shown in Figure 26.263.

\textbf{Figure 26.263} Optimal Scaling Transformation

\begin{verbatim}
    os3
    4 4 6 6 7 7 7 8
\end{verbatim}

\section*{ORPOL Function}

\texttt{ORPOL}(\textit{x}, \textit{maxdegree}, \textit{weights});

The ORPOL function generates orthogonal polynomials on a discrete set of points.

The arguments to the ORPOL function are as follows:

- \textit{x} is an \(n \times 1\) vector of values on which the polynomials are to be defined.
- \textit{maxdegree} specifies the maximum degree polynomial to be computed. If \textit{maxdegree} is omitted, the default value is \(\min(n, 19)\). If \textit{weights} is specified, you must also specify \textit{maxdegree}.
- \textit{weights} specifies an \(n \times 1\) vector of nonnegative weights associated with the points in \textit{x}. If you specify \textit{weights}, you \textbf{must} also specify \textit{maxdegree}. If \textit{maxdegree} is not specified or is specified incorrectly, the default weights (all weights are 1) are used.
The ORPOL matrix function generates orthogonal polynomials evaluated at the \( n \) points contained in \( x \) by using the algorithm of Emerson (1968). The result is a column-orthonormal matrix \( P \) with \( n \) rows and \( \text{maxdegree} + 1 \) columns such that \( P' \text{diag(weights)} P = I \). The result of evaluating the polynomial of degree \( j - 1 \) at the \( i \)th element of \( x \) is stored in \( P(i, j) \).

The maximum number of nonzero orthogonal polynomials (\( r \)) that can be computed from the vector and the weights is the number of distinct values in the vector, ignoring any value associated with a zero weight.

The polynomial of maximum degree has degree of \( r - 1 \). If the value of \( \text{maxdegree} \) exceeds \( r - 1 \), then columns \( r + 1, r + 2, \ldots, \text{maxdegree} + 1 \) of the result are set to 0. In this case,

\[
P' \text{diag(weights)} P = \begin{bmatrix} f(r) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

The following statements create a matrix with three orthogonal columns, as shown in Figure 26.264:

```matlab
x = T(1:5);
P = orpol(x, 2);
print P;
```

![Figure 26.264](Image)

Orthogonal Polynomials

<table>
<thead>
<tr>
<th>( P )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4472136 -0.632456 0.5345225</td>
</tr>
<tr>
<td>0.4472136 -0.316228 -0.267261</td>
</tr>
<tr>
<td>0.4472136 1.755E-17 -0.534522</td>
</tr>
<tr>
<td>0.4472136 0.3162278 -0.267261</td>
</tr>
<tr>
<td>0.4472136 0.6324555 0.5345225</td>
</tr>
</tbody>
</table>

The first column is a polynomial of degree 0 (a constant polynomial) evaluated at each point of \( x \). The second column is a polynomial of degree 1 evaluated at each point of \( x \). The third column is a polynomial of degree 2 evaluated at each point of \( x \).

**Normalization of the Polynomials**

The columns of \( P \) are orthonormal with respect to the inner product

\[
(f, g) = \sum_{i=1}^{n} f(x_i)g(x_i)w_i
\]

as shown by the following statements:

```matlab
reset fuzz; /* print tiny numbers as zero */
w = j(ncol(x), 1, 1); /* default weight is all ones */
/* Verify orthonormal */
L = P' * diag(w) * P;
print L;
```

Some reference books on orthogonal polynomials do not normalize the columns of the matrix that represents the orthogonal polynomials. For example, a textbook might give the following as a fourth-degree polynomial evaluated on evenly spaced data:
textbookPoly = { 1 -2 2 -1 1,  
1 -1 -1 2 -4,  
1 0 -2 0 6,  
1 1 -1 -2 -4,  
1 2 2 1 1 };  

To compare this representation to the normalized representation that the ORPOL function produces, use the following program:

```plaintext
/* Normalize the columns of textbook representation */
normalPoly = textbookPoly;
do i = 1 to ncol(normalPoly);
v = normalPoly[,i];
norm = sqrt(v[##]);
normalPoly[,i] = v / norm;
end;

/* Compare the normalized matrix with ORPOL */
x = T(1:5); /* Any evenly spaced data gives the same answer */
imlPoly = orpol(x, 4);
diff = imlPoly - normalPoly;
maxDiff = abs(diff)[<>];
reset fuzz; /* print tiny numbers as zero */
print maxDiff;
```

Figure 26.265 Normalizing a Matrix

<table>
<thead>
<tr>
<th>maxDiff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

**Polynomial Regression**

A typical use for orthogonal polynomials is to fit a polynomial to a set of data. Given a set of points \((x_i, y_i)\), \(i = 1, \ldots, m\), the classical theory of orthogonal polynomials says that the best approximating polynomial of degree \(d\) is given by

\[
fd = \sum_{i=1}^{d+1} c_i P_i
\]

where \(c_i = \langle y, P_i \rangle / \langle P_i, P_i \rangle\) and where \(P_i\) is the \(i\)th column of the matrix \(P\) returned by ORPOL. But the matrix is orthonormal with respect to the inner product, so \(\langle P_i, P_i \rangle = 1\) for all \(i\). Thus you can easily compute a regression onto the span of polynomials.

In the following program, the weight vector is used to overweight or underweight particular data points. The researcher has reasons to doubt the accuracy of the first measurement. The last data point is also underweighted because it is a leverage point and is believed to be an outlier. The second data point was measured twice and is overweighted. (Rerunning the program with a weight vector of all ones and examining the new values of the fit variable is a good way to understand the effect of the weight vector.)
\[ x = \{0.1, 2, 3, 5, 8, 10, 20\}; \]
\[ y = \{0.5, 1, 0.1, -1, -0.5, -0.8, 0.1\}; \]

/* The second measurement was taken twice. The first and last data points are underweighted because of uncertainty in the measurements. */
\[ w = \{0.5, 2, 1, 1, 1, 1, 0.2\}; \]
\[ \text{maxDegree} = 4; \]
\[ P = \text{orpol}(x, \text{maxDegree}, w); \]

/* The best fit by a polynomial of degree \( k \) is \( \sum c_i P_i \) where \( c_i = \langle f, P_i \rangle \). */
\[ \text{start InnerProduct}(f, g, w); \]
\[ h = f\#g\#w; \]
\[ \text{return} (h[+]); \]
\[ \text{finish}; \]
\[ c = j(1, \text{maxDegree}+1); \]
\[ \text{do} \ i = 1 \text{ to maxDegree+1}; \]
\[ c[i] = \text{InnerProduct}(y, P[,i], w); \]
\[ \text{end}; \]

\[ \text{FitResults} = j(\text{maxDegree}+1, 2); \]
\[ \text{do} \ k = 1 \text{ to maxDegree+1}; \]
\[ \text{fit} = P[,1:k] \ast c[1:k]; \]
\[ \text{resid} = y - \text{fit}; \]
\[ \text{FitResults}[k,1] = k-1; \quad \text{/* degree of polynomial */} \]
\[ \text{FitResults}[k,2] = \text{resid}[^2]; \quad \text{/* sum of square errors */} \]
\[ \text{end}; \]
\[ \text{print} \text{FitResults}[\text{colname=}(\text{"Degree"}, \text{"SSE"})]; \]

**Figure 26.266**  Statistics for an Orthogonal Polynomial Regression

<table>
<thead>
<tr>
<th>Degree</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.1733014</td>
</tr>
<tr>
<td>1</td>
<td>4.6716722</td>
</tr>
<tr>
<td>2</td>
<td>1.3345326</td>
</tr>
<tr>
<td>3</td>
<td>1.3758639</td>
</tr>
<tr>
<td>4</td>
<td>0.8644558</td>
</tr>
</tbody>
</table>

**Testing Linear Hypotheses**

The ORPOL function can also be used to test linear hypotheses. Suppose you have an experimental design with \( k \) factor levels. (The factor levels can be equally or unequally spaced.) At the \( i \)th level, you record \( n_k \) observations, \( i = 1 \ldots k \). If \( n_1 = n_2 = \ldots = n_k \), then the design is said to be *balanced*; otherwise it is *unbalanced*. You want to fit a polynomial model to the data and then ask how much variation in the data is explained by the linear component, how much variation is explained by the quadratic component after the linear component is taken into account, and so on for the cubic, quartic, and higher-level components.

To be completely concrete, suppose you have four factor levels (1, 4, 6, and 10) and that you record seven measurements at first level, two measurements at the second level, three measurements at the third level, and
four measurements at the fourth level. This is an example of an unbalanced and unequally spaced factor-level
design. The following program uses orthogonal polynomials to compute the Type I sum of squares for the
linear hypothesis. (The program works equally well for balanced designs and for equally spaced factor
levels.)

The following program calls the ORPOL function to generate the orthogonal polynomial matrix \( P \), and uses
it to form the Type I hypothesis matrix \( L \). The program then uses the DESIGN function to generate \( X \), the
design matrix associated with the experiment. The program then computes \( b \), the estimated parameters of
the linear model. Since \( L \) was expressed in terms of the orthogonal polynomial matrix \( P \), the computations
involved in forming the Type I sum of squares are considerably simplified.

```c
/* unequally spaced and unbalanced factor levels */
levels = { 1,1,1,1,1,1,1,
 4,4,
 6,6,6,
 10,10,10,10};

/* data for y. Make sure the data are sorted
according to the factor levels */
y = {2.804823, 0.920085, 1.396577, -0.083318,
 3.238294, 0.375768, 1.513658, /* level 1 */
 3.913391, 5.262201, 5.749861, /* level 4 */
 6.031891, 9.195842, 9.255719, 9.204497 /* level 10 */
};

a = {1,4,6,10}; /* spacing */
trials = {7,2,3,4}; /* sample sizes */
maxDegree = 3; /* model with Intercept,a,a##2,a##3 */

P = orpol(a,maxDegree,trials);

/* Test linear hypotheses:
 How much variation is explained by the
 i_th polynomial component after components
 0..(i-1) have been taken into account? */
/* the columns of L are the coefficients of the
 orthogonal polynomial contrasts */
L = diag(trials)*P;

/* form design matrix */
x = design(levels);

/* compute b, the estimated parameters of the
 linear model. b is the mean of the y values
 at each level.
 b = ginv(x'*x) * x' * y
 but since x is the output from DESIGN, then
 x'*x = diag(trials) and so
 ginv(x'*x) = diag(1/trials) */
b = diag(1/trials)*x'*y;
```
/* (L`*b)[i] is the best linear unbiased estimated (BLUE) of the corresponding orthogonal polynomial contrast */
blue = L`*b;

/* The variance of (L`*b) is 
var(L`*b) = L`*ginv(x`*x)*L
 = [P*diag(trials)]*diag(1/trials)*[diag(trials)*P]
 = P`*diag(trials)*P
 = Identity (by definition of P) 

Therefore the standardized square of 
(L`*b) is computed as 
SS1[i] = (blue[i]*blue[i])/var(L`*b)[i,i])
 = (blue[i])##2 */
SS1 = blue # blue;
rowNames = {"Intercept" "Linear" "Quadratic" "Cubic");
print SS1[rowname=rowNames format=11.7 label="Type I SS"]; Figure 26.267 indicates that most of the variation in the data can be explained by a first-degree polynomial.

**Figure 26.267** Statistics for an Orthogonal Polynomial Regression

<table>
<thead>
<tr>
<th>Type I SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Linear</td>
</tr>
<tr>
<td>Quadratic</td>
</tr>
<tr>
<td>Cubic</td>
</tr>
</tbody>
</table>

**Generating Families of Orthogonal Polynomials**

There are classical families of orthogonal polynomials (for example, Legendre, Laguerre, Hermite, and Chebyshev) that arise in the study of differential equations and mathematical physics. These “named” families are orthogonal on particular intervals \((a, b)\) with respect to the inner product \(\int_a^b f(x)g(x)w(x) \, dx\). The functions returned by the ORPOL function are different from these named families because the ORPOL function uses a different inner product. There are no built-in functions that can automatically generate these families; however, you can write a program to generate them.

Each named polynomial family \(\{p_j\}, \; j \geq 0\) satisfies a three-term recurrence relation of the form

\[
p_j = (A_j + xB_j)p_{j-1} - C_j p_{j-2}
\]

where the constants \(A_j\), \(B_j\), and \(C_j\) are relatively simple functions of \(j\). To generate these “named” families, use the three-term recurrence relation for the family. The recurrence relations are found in references such as Abramowitz and Stegun (1972) or Thisted (1988).

For example, the so-called Legendre polynomials (represented \(P_j\) for the polynomial of degree \(j\)) are defined on \((-1, 1)\) with the weight function \(w(x) = 1\). They are standardized by requiring that \(P_j(1) = 1\) for all \(j \geq 0\). Thus \(P_0(x) = 1\). The linear polynomial \(P_1(x) = a + bx\) is orthogonal to \(P_0\) so that

\[
\int_{-1}^{1} P_1(x)P_0(x) \, dx = \int_{-1}^{1} a + bx \, dx = 0
\]
which implies \( a = 0 \). The standardization \( P_1(1) = 1 \) implies that \( P_1(x) = x \). The remaining Legendre polynomials can be computed by looking up the three-term recurrence relation: \( A_j = 0, B_j = (2j - 1)/j, \) and \( C_j = (j - 1)/j \). The following program computes Legendre polynomials evaluated at a set of points:

```cpp
maxDegree = 6;
/* evaluate polynomials at these points */
x = T(do(-1,1,0.05));

/* define the standard Legendre Polynomials
Using the 3-term recurrence with
A[j]=0, B[j]=(2j-1)/j, and C[j]=(j-1)/j
and the standardization P_0(1)=1
which implies P_0(x)=1, P_1(x)=x. */
legendre = j(nrow(x), maxDegree+1);
legendre[,1] = 1; /* P_0 */
legendre[,2] = x; /* P_1 */
do j = 2 to maxDegree;
 legendre[,j+1] = (2*j-1)/j # x # legendre[,j] -
 (j-1)/j # legendre[,j-1];
end;
```

**ORTVEC Call**

```
CALL ORTVEC(w, r, lindep, v < , q >);
```

The ORVEC subroutine provides columnwise orthogonalization and stepwise QR decomposition by using the Gram-Schmidt process.

The ORTVEC subroutine returns the following values:

- **\( w \):** is an \( m \times 1 \) vector. If the Gram-Schmidt process converges (\( \text{lindep}=0 \)), \( w \) is orthonormal to the columns of \( Q \), which is assumed to have \( n \leq m \) (nearly) orthonormal columns. If the Gram-Schmidt process does not converge (\( \text{lindep}=1 \)), \( w \) is a vector of missing values. For stepwise QR decomposition, \( w \) is the \( (n+1) \)th orthogonal column of the matrix \( Q \). If the \( q \) argument is not specified, \( w \) is the normalized value of the vector \( v \),

\[
    w = \frac{v}{\sqrt{v^Tv}}
\]

- **\( r \):** is a \( n \times 1 \) vector. If the Gram-Schmidt process converges (\( \text{lindep}=0 \)), \( r \) contains Fourier coefficients. If the Gram-Schmidt process does not converge (\( \text{lindep}=1 \)), \( r \) is a vector of missing values. If the \( q \) argument is not specified, \( r \) is a vector with zero dimension. For stepwise QR decomposition, \( r \) contains the \( n \) upper triangular elements of the \( (n+1) \)th column of \( R \).

- **\( \rho \):** is a scalar value. If the Gram-Schmidt process converges (\( \text{lindep}=0 \)), \( \rho \) specifies the distance from \( w \) to the range of \( Q \). Even if the Gram-Schmidt process converges, if \( \rho \) is sufficiently small, the vector \( v \) can be linearly dependent on the columns of \( Q \). If the Gram-Schmidt process does not converge (\( \text{lindep}=1 \)), \( \rho \) is set to 0. For stepwise QR decomposition, \( \rho \) contains the diagonal element of the \( (n+1) \)th column of \( R \). In formulas, the value \( \rho \) is denoted by \( \rho \).
ORTVEC returns a value of 1 if the Gram-Schmidt process does not converge in 10 iterations. A value of 1 often indicates that the input vector $v$ is linearly dependent on the $n$ columns of the input matrix $Q$. In that case, $\rho$ is set to 0, and the results $w$ and $r$ contain missing values. If $\text{lindep}=0$, the Gram-Schmidt process did converge, and the results $w$, $r$, and $\rho$ are computed.

The input arguments to the ORTVEC subroutine are as follows:

$v$ specifies an $m \times 1$ vector $v$ that is to be orthogonalized to the $n$ columns of $Q$. For stepwise QR decomposition of a matrix, $v$ is the $(n+1)$th matrix column before its orthogonalization.

$q$ specifies an optional $m \times n$ matrix $Q$ that is assumed to have $n \leq m$ (nearly) orthonormal columns. Thus, the $n \times n$ matrix $Q'Q$ should approximate the identity matrix. The column orthonormality assumption is not tested in the ORTVEC call. If it is violated, the results are not predictable. The argument $q$ can be omitted or can have zero rows and columns. For stepwise QR decomposition of a matrix, $q$ contains the first $n$ matrix columns that are already orthogonal.

The relevant formula for the ORTVEC subroutine is

$$v = Qr + \rho w$$

In the formula, if the $m \times n$ matrix $Q$ has $n$ (nearly) orthonormal columns, the vector $v$ is orthogonal to the columns of $Q$ and $\rho$ is the distance from $w$ to the range of $Q$.

There are two special cases:

- If $m > n$, ORTVEC normalizes the result $w$, so that $w'w = 1$.
- If $m = n$, the output vector $w$ is the null vector.

The case $m < n$ is not possible since $Q$ is assumed to have $n$ (nearly) orthonormal columns.

To initialize a stepwise QR decomposition, the ORTVEC subroutine can be called to normalize $v$ only (that is, to compute $w = v/\sqrt{v'v}$ and $\rho = \sqrt{v'v}$). There are two ways to accomplish this:

- Omit the last argument $q$, as in call ortvec($w, r, \rho, \text{lindep}, v$);
- Provide a matrix $q$ with zero rows and columns (for example, by using $q = \{\}$).

In both cases, $r$ is a column vector with zero rows.

The ORTVEC subroutine is useful for the following applications:

- performing stepwise QR decomposition. Compute $Q$ and $R$, so that $A = QR$, where $Q$ is column orthonormal, $Q'Q = I$, and $R$ is upper triangular. The $j$th step is applied to the $j$th column, $v$, of $A$, and it computes the $j$th column $w$ of $Q$ and the $j$th column, $(r \rho 0)'$, of $R$.
- computing the $m \times (m-n)$ null space matrix, $Q_2$, that corresponds to an $m \times n$ range space matrix, $Q_1$ ($m > n$), by the following stepwise process:
  1. Set $v = e_i$ (where $e_i$ is the $i$th unit vector) and try to make it orthogonal to all column vectors of $Q_1$ and the already generated $Q_2$. 

null space matrix, $Q_2$, that corresponds to an $m \times n$ range space matrix, $Q_1$ ($m > n$), by the following stepwise process:
2. If the subroutine is successful, append $w$ to $Q_2$; otherwise, try $v = e_{i+1}$.

The $4 \times 3$ matrix $Q$ contains the unit vectors $e_1, e_3,$ and $e_4$. The column vector $v$ is pairwise linearly independent with the three columns of $Q$. As expected, the ORTVEC subroutine computes the vector $w$ as the unit vector $e_2$ with $u = (1, 1, 1)$ and $\rho = 1$.

$$q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$v = \{ 1, 1, 1, 1 \};$$

```plaintext
q = { 1 0 0,
 0 0 0,
 0 1 0,
 0 0 1 };;

v = { 1, 1, 1, 1 };;
call ortvec(w,u,rho,lindep,v,q);
print rho u w;
```

---

**Figure 26.268** Matrix Orthogonalization

<table>
<thead>
<tr>
<th></th>
<th>rho</th>
<th>u</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Stepwise QR Decomposition Example**

You can perform the QR decomposition of the linearly independent columns of an $m \times n$ matrix $A$ with the following statements:

```plaintext
a = {1 2 1,
 2 4 2,
 1 4 -1,
 1 0 3}; /* use any matrix A */
nind = 0; ndep = 0; dmax = 0.;
n = ncol(a); m = nrow(a); ind = j(1,n,0);
free q;
do j = 1 to n;
 v = a[,j];
 call ortvec(w,u,rho,lindep,v,q);
 aro = abs(rho);
 if aro > dmax then dmax = aro;
 if aro <= 1.e-10 * dmax then lindep = 1;
 if lindep = 0 then do;
 nind = nind + 1;
 q = q || w;
 if nind = n then r = r || (u // rho);
 else r = r || (u // rho // j(n-nind,1,0.));
 end;
 else do;
 print "Column " j " is linearly dependent.";
 ndep = ndep + 1; ind[ndep] = j;
 end;
end;
print q r;
```
Figure 26.269  QR Decomposition of Independent Columns

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3779645</td>
<td>0.26457513</td>
</tr>
<tr>
<td>0.7559289</td>
<td>0.26457513</td>
</tr>
<tr>
<td>0.7559289</td>
<td>0.7071068</td>
</tr>
<tr>
<td>0.3779645</td>
<td>-0.707107</td>
</tr>
</tbody>
</table>

Next, process the remaining (dependent) columns of $A$:

```fortran
 do j = 1 to ndep;
 k = ind[ndep-j+1];
 v = a[,k];
 call ortvec(w,u,rho,lindep,v,q);
 if lindep = 0 then do;
 nind = nind + 1;
 q = q || w;
 if nind = n then r = r || (u // rho);
 else r = r || (u // rho // j(n-nind,1,0.));
 end;
 end;
print q r;
```

Figure 26.270  QR Decomposition of Dependent Columns

<table>
<thead>
<tr>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3779645</td>
<td>0.239046</td>
</tr>
<tr>
<td>0.7559289</td>
<td>0.478091</td>
</tr>
<tr>
<td>0.7559289</td>
<td>0.7071068</td>
</tr>
<tr>
<td>0.3779645</td>
<td>-0.707107</td>
</tr>
</tbody>
</table>

You can also use the ORTVEC subroutine to compute the null space in the last columns of $Q$:

```fortran
 do i = 1 to m;
 if nind < m then do;
 v = j(m,1,0.); v[i] = 1.;
 call ortvec(w,u,rho,lindep,v,q);
 aro = abs(rho);
 if aro > dmax then dmax = aro;
 if aro <= 1.e-10 * dmax then lindep = 1;
 if lindep = 0 then do;
 nind = nind + 1;
 q = q || w;
 end;
 else print "Unit vector" i "linearly dependent.";
 end;
 if nind < m then do;
 print "This is theoretically not possible."
 end;
 end;
print q;
```
In the example, if you define $Q_2$ to be the last two columns of $Q$, then $Q_2^TA = 0$.

---

**PACKAGE Statement**

```sas
PACKAGE keyword < options > ;
```

The PACKAGE statement supports installing, uninstalling, and using packages. A package consists of SAS/IML source code, documentation, data sets, and sample programs. Packages are a convenient way for programmers to download and install functions that extend the functionality of SAS/IML software. For information about how to use packages, see Chapter 11, “Packages.”

Packages are supported only on Linux and Windows operating systems.

The following statements are documented separately:

- PACKAGE HELP statement
- PACKAGE INFO statement
- PACKAGE INSTALL statement
- PACKAGE LIBNAME statement
- PACKAGE LIST statement
- PACKAGE LOAD statement
- PACKAGE UNINSTALL statement

As described in the section “Collections of Packages” on page 166, packages are stored in one of three collections:

- The PRIVATE collection contains packages that were installed by a user for personal use.
- The PUBLIC collection contains packages that were installed by a system administrator in a public location and are intended to be used by multiple users at a site.
- The SYSTEM collection is installed as part of SAS/IML software and is available to any user. These packages were written by SAS/IML developers and are supported by SAS Technical Support. The SYSTEM collection is similar to the IMLMLIB library of modules, except that a package in the SYSTEM collection must be loaded before the functions are available for use.
When any PACKAGE statement encounters the name of a package, it searches for the package first in the PRIVATE collection, then in the PUBLIC collection, and finally in the SYSTEM collection. When it finds a package with the specified name, it stops searching. If a version of a package exists in the PUBLIC collection, you can install a newer version of the same package in the PRIVATE collection. By default, the PACKAGE statement will find the newer version. You can explicitly specify the PUBLIC collection if you want to use the older version.

---

**PACKAGE HELP Statement**

```
PACKAGE HELP packagename<(collection)>;
```

If an installed package provides documentation, the PACKAGE HELP statement displays the documentation. The documentation often includes the syntax and purpose of the SAS/IML modules that the package defines. For more information about packages, see Chapter 11, "Packages."

You must specify the following argument:

`packagename`

specifies the name of the package.

You can also specify the following option in parentheses:

`collection`

requests that only the specified collection be searched. Valid values for `collection` are PRIVATE, PUBLIC, and SYSTEM. For more information about collections, see the PACKAGE statement.

The following statement displays the help file for the AboveBelow package, which is installed in the SYSTEM collection:

```
package help AboveBelow;
```

The following statement searches only the SYSTEM collection:

```
package help AboveBelow(system);
```

If a package is named Pkg1, then valid names for the help files are `Pkg1.pdf`, `Pkg1.txt`, `index.htm`, and `index.html`. The help files are stored in the `help` subdirectory for the package. The file that is displayed depends on the files that exist and the interface that you use to run SAS/IML software as follows:

- The IML procedure echoes the file `Pkg1.txt` to the SAS Log window.
- The SAS/IML Studio application displays the first of the following files that it finds:
  1. `Pkg1.pdf`
  2. `index.htm` or `index.html`
  3. `Pkg1.txt` (opened in Notepad)
PACKAGE INFO Statement

PACKAGE INFO packagename<collection> . . . ;

The PACKAGE INFO statement displays information about one or more installed packages. You must specify the following argument:

packagename

specifies the name of the package. You can specify multiple names in a single statement.

You can also specify the following option in parentheses:

collection

requests that only the specified collection be searched. Valid values for collection are PRIVATE, PUBLIC, and SYSTEM. For more information about collections, see the PACKAGE statement.

The displayed information comes from the info.txt file for the package. For example, the following statement displays information about the AboveBelow package, which is installed in the SYSTEM collection. The output is shown in Figure 26.272.

package info AboveBelow;

Figure 26.272 Information about an Installed Package

<table>
<thead>
<tr>
<th>Package Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>Collection</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Requires IML</td>
</tr>
<tr>
<td>Directory</td>
</tr>
</tbody>
</table>

PACKAGE INSTALL Statement

PACKAGE INSTALL "fullname"<collection<PARSETIME>> . . . ;

PACKAGE INSTALL fileref<collection<PARSETIME>> . . . ;

Packages are distributed as ZIP files. The PACKAGE INSTALL statement unzips the ZIP file and installs the package in a predetermined location.

You can specify the package to be installed in two ways:

"fullname"

specifies the ZIP file’s fully qualified name (which includes both the path and the filename) in quotation marks. You can specify multiple names in a single statement.
fileref

specifies a file reference that was previously created by the FILENAME statement.

You can also specify the following options in parentheses:

collection

specifies the collection into which the package is to be installed. You can specify PUBLIC or PRIVATE; you cannot install a package in the SYSTEM collection. By default, the package is installed in the PRIVATE collection. At some sites, you might need administrative privileges in order to install a package in the PUBLIC collection.

PARSETIME

requests that the package be installed at parse time, rather than at run time. This option applies only to IMLPLUS programs in the SAS/IML Studio environment.

For example, the following statement installs the Pkg1 package from the ZIP file named C:\Packages\Pkg1.zip:

```sas
package install "C:\Packages\Pkg1.zip";
```

The following statements are an equivalent way to install the Pkg1 package:

```sas
filename ThePkg "C:\Packages\Pkg1.zip";
package install ThePkg;
```

The PACKAGE INSTALL statement creates a directory named Pkg1 in a directory whose location is system-dependent and then unzips the contents of the ZIP file into that directory. The previous examples do not specify a collection, so the package is installed in the PRIVATE collection.

You should install a package only once. SAS/IML software does not allow you overwrite a package that is already installed. To install a newer version of a package in the same collection, you must uninstall the older version and then install the newer version.

Some operating systems (notably Linux) are case-sensitive. When you specify a ZIP file on a case-sensitive operating system, be sure to match the case of the filename in the operating system.

---

**PACKAGE LIBNAME Statement**

```sas
PACKAGE LIBNAME libref packagename ;
```

The PACKAGE LIBNAME statement creates a SAS libref that points to the data directory for a package. You must load a package before you can use the PACKAGE LIBNAME statement.

You must specify the following arguments:

`libref`

specifies the name of a SAS libref to be created.

`packagename`

specifies the name of the package.

The PACKAGE LIBNAME statement is used to access data in a package. For examples, the following statements read data from the AboveBelow package, which is installed in the SYSTEM collection:
package load AboveBelow;
package libname ABdata AboveBelow;
/* use the libref to read data that the package provides */
use ABdata.example;
    read all var _NUM_ into X[colname=varNames];
close ABdata.example;
print varNames;

Figure 26.273  Reading Data from a Package

<table>
<thead>
<tr>
<th>varNames</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
</tr>
<tr>
<td>x2</td>
</tr>
<tr>
<td>x3</td>
</tr>
</tbody>
</table>

The READ statement reads the numerical variables into the matrix X. Figure 26.273 shows that the example data set contains numerical variables named x1, x2, and x3.

You must specify exactly one package in the PACKAGE LIBNAME statement.

---

**PACKAGE LIST Statement**

```iml
PACKAGE LIST <collection> ;
```

The PACKAGE LIST statement lists the packages that are installed in the specified collection (or in all collections if a collection is not specified). For more information about collections, see the PACKAGE statement.

You can specify the following option:

- **collection**
  - requests that only packages in the specified collection be listed. Valid values for `collection` are PRIVATE, PUBLIC, and SYSTEM. By default, the PACKAGE LIST statement lists packages in all collections.

For example, the following statement displays packages that are installed in the SYSTEM collection:

```iml
proc iml;
package list system;
```

Figure 26.274  System Packages

<table>
<thead>
<tr>
<th>System Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>AboveBelow</td>
</tr>
</tbody>
</table>

Notice that the PACKAGE LIST statement acts on **collections** of packages, whereas the other PACKAGE statements apply to individual packages. The `collection` argument is not specified inside parentheses.
PACKAGE LOAD Statement

```sas
PACKAGE LOAD packagename<(collection < VERSION=version >)> . . . ;
```

The PACKAGE LOAD statement executes the package source files. Usually the source files define SAS/IML modules. However, a package might also define SAS/IML matrices, create data sets, define macro variables, or carry out a computation.

You must specify the following argument:

`packagename`

specifies the name of the package. You can specify multiple names in a single statement.

You can also specify the following options in parentheses:

`collection`

requests that only the specified collection be searched for the file to be executed. Valid values for `collection` are PRIVATE, PUBLIC, and SYSTEM. For more information about collections, see the PACKAGE statement.

`VERSION=version`

specifies the minimum required version number for loading a package. A version number is a text string that contains up to four numbers that are separated by decimal points. For example, valid values are “1.0”, “2.7.1”, and “3.1.4.1”. When the PACKAGE LOAD statement finds a specified package, it checks the package version. If the package version is greater than or equal to `version`, the package is loaded. Otherwise, the statement displays an error message.

The following statement loads the AboveBelow package, which is installed in the SYSTEM collection:

```sas
package load AboveBelow;
```

The PACKAGE LOAD statement reads the `info.txt` file and uses the SourceFiles keyword to determine which files contain the source code for the package. (For more information about the `info.txt` file, see the section “Step 2: Create the Package Information File” on page 168.) The statement executes the specified files, which are located in the `source` directory of the package’s root directory. For the AboveBelow package, the PACKAGE LOAD statement defines several SAS/IML modules. The SAS Log window indicates that new modules were defined.

As a second example, the following PACKAGE LOAD statement loads a package called `Pkg1` from the PUBLIC collection. The load succeeds if the installed version of the package is greater than or equal to version 1.2, but it fails if the installed version of the package is less than 1.2. For example, the load succeeds if the installed version is 1.2, 1.3, or 2.1. The load fails if the installed version is 1.1.

```sas
package load Pkg1(public version="1.2");
```

The PACKAGE LOAD statement is similar to the EXECUTEFILE subroutine but differs in the following ways:

- The PACKAGE LOAD statement can execute multiple files. The EXECUTEFILE subroutine executes a single file.
The PACKAGE LOAD statement keeps track of which packages have been loaded. A subsequent PACKAGE LOAD statement does not reread and rerun the package source files. In contrast, the EXECUTEFILE subroutine rereads and reruns the file every time it is called.

The IMLPlus language in the SAS/IML Studio application executes the PACKAGE LOAD statement at parse time. That is, SAS/IML Studio reads the source files and defines the modules before it executes any statements.

### PACKAGE UNINSTALL Statement

```
PACKAGE UNINSTALL packagename< (collection <NOWARN> <PARSETIME>) > . . . ;
```

The PACKAGE UNINSTALL statement uninstalls a package that is installed in the specified collection.

You must specify the following argument:

- **packagename**
  - specifies the name of the package. You can specify multiple names in a single statement.

You can also specify the following options in parentheses:

- **collection**
  - requests that only the specified collection be searched for the package to uninstall. Valid values for `collection` are PRIVATE and PUBLIC. By default, the PACKAGE UNINSTALL statement looks for the package in the PRIVATE collection. If you have administrative privileges to uninstall a package in the PUBLIC collection, you can specify the PUBLIC collection in parentheses after the package name. You cannot uninstall a package in the SYSTEM collection.

- **NOWARN**
  - requests that no warning message be reported if the specified package is not installed.

- **PARSETIME**
  - requests that the package be installed at parse time, rather than at run time. This option applies only to IMLPLUS programs in the SAS/IML Studio environment.

For example, if the Pkg1 package is installed in the PRIVATE collection, the following statement uninstalls the package from that collection:

```
package uninstall Pkg1;
```

### PARENTNAME Function

```
PARENTNAME("argument");
```

The PARENTNAME function enables you to determine the name of a matrix that is passed into a SAS/IML module. If an argument is skipped or the argument is called with an expression, the PARENTNAME function returns a blank character.
PALETTE Function

PALETTE(name, numColors);

The PALETTE function is part of the IMLMLIB library. The PALETTE function returns a palette of colors that are suitable for using in a discrete heat map or a choropleth map. The colors are appropriate to use for the COLORRAMP= option of the HEATMAPDISC subroutine.

The following example gets several color palettes:

BuGn4 = Palette("BuGn", 4);
BrBG5 = Palette("BrBG", 5);
Past6 = Palette("Pastel1", 6);
print BuGn4, BrBG5, Past6;

The color specification and palette names were designed by Cynthia Brewer (Brewer 2013) and are described at http://ColorBrewer.org. The color schemes are copyright 2002 by Cynthia Brewer, Mark Harrower, and The Pennsylvania State University. The ColorBrewer color schemes are made available under the Apache License, Version 2.0.

The sequential schemes support between three and nine colors. The diverging schemes support between three and 11 colors. The qualitative schemes support between three and eight colors, with some palettes supporting as many as 12 colors. Table 26.2–Table 26.4 show the names of the color palettes and the number of colors that each supports.
Table 26.2  Sequential Color Schemes

<table>
<thead>
<tr>
<th>Name</th>
<th>Max Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUES</td>
<td>9</td>
</tr>
<tr>
<td>GREENS</td>
<td>9</td>
</tr>
<tr>
<td>GREYS</td>
<td>9</td>
</tr>
<tr>
<td>ORANGES</td>
<td>9</td>
</tr>
<tr>
<td>PURPLES</td>
<td>9</td>
</tr>
<tr>
<td>REDS</td>
<td>9</td>
</tr>
<tr>
<td>BUGN</td>
<td>9</td>
</tr>
<tr>
<td>BUPU</td>
<td>9</td>
</tr>
<tr>
<td>GNBU</td>
<td>9</td>
</tr>
<tr>
<td>ORRD</td>
<td>9</td>
</tr>
<tr>
<td>PUBU</td>
<td>9</td>
</tr>
<tr>
<td>PUBUGN</td>
<td>9</td>
</tr>
<tr>
<td>PURD</td>
<td>9</td>
</tr>
<tr>
<td>RDPU</td>
<td>9</td>
</tr>
<tr>
<td>YLGN</td>
<td>9</td>
</tr>
<tr>
<td>YLGNBU</td>
<td>9</td>
</tr>
<tr>
<td>YLORBR</td>
<td>9</td>
</tr>
<tr>
<td>YLORRD</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 26.3  Diverging Color Schemes

<table>
<thead>
<tr>
<th>Name</th>
<th>Max Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRBG</td>
<td>11</td>
</tr>
<tr>
<td>PIYG</td>
<td>11</td>
</tr>
<tr>
<td>PRGN</td>
<td>11</td>
</tr>
<tr>
<td>PUOR</td>
<td>11</td>
</tr>
<tr>
<td>RDBU</td>
<td>11</td>
</tr>
<tr>
<td>RDGY</td>
<td>11</td>
</tr>
<tr>
<td>RDYLBU</td>
<td>11</td>
</tr>
<tr>
<td>RDYLGN</td>
<td>11</td>
</tr>
<tr>
<td>SPECTRAL</td>
<td>11</td>
</tr>
</tbody>
</table>
Table 26.4  Qualitative Color Schemes

<table>
<thead>
<tr>
<th>Name</th>
<th>Max Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCENT</td>
<td>8</td>
</tr>
<tr>
<td>DARK2</td>
<td>8</td>
</tr>
<tr>
<td>PAIRED</td>
<td>12</td>
</tr>
<tr>
<td>PASTEL1</td>
<td>9</td>
</tr>
<tr>
<td>PASTEL2</td>
<td>8</td>
</tr>
<tr>
<td>SET1</td>
<td>9</td>
</tr>
<tr>
<td>SET2</td>
<td>8</td>
</tr>
<tr>
<td>SET3</td>
<td>12</td>
</tr>
</tbody>
</table>

The following SAS/IML statements create heat maps that demonstrate the color palettes. Palettes with seven colors are shown in Figure 26.277–Figure 26.279.

```sas
/* show N-color heat map for specified palette names */
start ShowSchemes(Names, N, _title);
 Name = colvec(Names);
 NumPalettes = nrow(Name);
 R = j(NumPalettes, N, " "); /* R = ramp */
 do i = 1 to NumPalettes;
 R[i,] = Palette(Name[i], N);
 end;
 xnames = "c1":("c"+strip(char(N)));
 x = j(nrow(R), ncol(R), .);
 idx = loc(R=" ");
 x[idx] = 1:ncol(idx);
 colors = R[idx];
 run HeatmapDisc(x, colors) xvalues=xnames yvalues=Name
 title=_title ShowLegend=0;
finish;

/* sequential palettes: Use for ordered value */
seq = {BLUES GREENS GREYS ORANGES PURPLES REDS /* monochrome */
 BUGN BUPU GNBU ORRD PUBU PUBGN PURD YLGN YLGNBU YLORBR YLORRD};
ods graphics / width = 600 height=1000;
run ShowSchemes(seq, 7, "Sequential Palettes");
```
Figure 26.277 Sequential Palettes

/* diverging palettes: Use to show high/low relative to a central value */
div = {BRBG PIYG PRGN PUOR RDBU RDGY RDYLBU RDYLGN SPECTRAL};
ods graphics / width = 700 height=550;
run ShowSchemes(div, 7, "Diverging Palettes");
/* qualitative palettes: Use to show nominal value (for example, race) */
qual = {ACCENT DARK2 PAIRED PASTEL1 PASTEL2 SET1 SET2 SET3};
ods graphics / width = 600 height=480;
run ShowSchemes(qual, 7, "Qualitative Palettes");
PAUSE Statement

PAUSE < expression | * > ;

The PAUSE statement interrupts the execution of a module.

The arguments to the PAUSE statement are as follows:

expression is a character matrix or quoted literal that contains a message to print.

* suppresses any messages.

The PAUSE statement stops execution of a module, saves the calling chain so that execution can resume later (by a RESUME statement), prints a pause message that you can specify, and puts you in immediate mode so you can enter more statements.

You can specify an operand in the PAUSE statement to supply a message to be printed for the pause prompt. If no operand is specified, the following default message is printed:

Paused in module MyModule.

In this case, MyModule is the name of the module that contains the pause. If you want to suppress all messages in a PAUSE statement, use an asterisk as the operand, as follows:

pause *;

The PAUSE statement should be specified only in modules. It generates a warning if executed in immediate mode.

When an error occurs while executing inside a module, PROC IML automatically behaves as though a PAUSE statement was issued. PROC IML also enters “immediate mode” within the module environment. You can correct the error and then resume execution by submitting a RESUME statement.

PROC IML supports pause processing of both subroutine and function modules. See also the description of the SHOW statement which uses the PAUSE option.

POLYROOT Function

POLYROOT(vector);

The POLYROOT function computes the zeros of a real polynomial. The vector argument is an n × 1 (or 1 × n) vector that contains the coefficients of an (n − 1) degree polynomial with the coefficients arranged in order of decreasing powers.

The POLYROOT function returns the array r, which is an (n − 1) × 2 matrix that contains the roots of the polynomial. The first column of r contains the real part of the complex roots, and the second column contains the imaginary part. If a root is real, the imaginary part is 0.

The POLYROOT function finds the real and complex roots of a polynomial with real coefficients.
The POLYROOT function uses an algorithm proposed by Jenkins and Traub (1970) to find the roots of the polynomial. The algorithm is not guaranteed to find all roots of the polynomial. An appropriate warning message is issued when one or more roots cannot be found. If \( r \) is given as a root of the polynomial \( P(x) \), then \( 1 + P(r) = 1 \), based on the rounding error of the computer that is employed.

For example, you can use the following statements to find the roots of the polynomial

\[
P(x) = 0.2567x^4 + 0.1570x^3 + 0.0821x^2 - 0.3357x + 1
\]

\[
p = \{0.2567 \ 0.1570 \ 0.0821 \ -0.3357 \ 1\};
\]
\[
r = \text{polyroot}(p);
\]
\[
\text{print}\ r;
\]

Figure 26.280 Roots of a Quartic Polynomial

<table>
<thead>
<tr>
<th></th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8383029</td>
<td>0.8514519</td>
</tr>
<tr>
<td>0.8383029</td>
<td>-0.851452</td>
</tr>
<tr>
<td>-1.144107</td>
<td>1.1914525</td>
</tr>
<tr>
<td>-1.144107</td>
<td>-1.191452</td>
</tr>
</tbody>
</table>

The polynomial has two conjugate pairs of roots that, within machine precision, are given by \( r = 0.8383029 \pm 0.8514519i \) and \( r = -1.144107 \pm 1.1914525i \).

**PRINT Statement**

```
PRINT <matrices> <(expression)> <"message"> <pointer-controls> <[options]> ;
```

The PRINT statement displays the values of matrices or literals.

The arguments to the PRINT statement are as follows:

- **matrices** are the names of matrices.
- **(expression)** is an expression in parentheses that is evaluated. The result of the evaluation is printed. The evaluation of a subscripted matrix used as an expression results in printing the submatrix.
- **"message"** is a message in quotes.
- **pointer-controls** control the pointer for printing. For example, a comma (,) skips a single line and a slash (/) skips to a new page.
- **options** are described in the following list.

The following **options** can appear in the PRINT statement. They are specified in brackets after the matrix name to which they apply.

**COLNAME=matrix**

specifies the name of a character matrix whose first \( ncol \) elements are to be used for the column labels of the matrix to be printed, where \( ncol \) is the number of columns in the matrix. You can also use the **RESET AUTONAME** statement to automatically label columns as COL1, COL2, and so on.
**FORMAT=** *format*

specifies a valid SAS or user-defined format to use in printing the values of the matrix. For example:

```
print x[format=5.3];
```

**LABEL=** *label*

specifies the name of a scalar character matrix or literal to use as a label when printing the matrix. For example:

```
print x[label="Net Pay"];
```

**ROWNAME=** *matrix*

specifies the name of a character matrix whose first *nrow* elements are to be used for the row labels of the matrix to be printed, where *nrow* is the number of rows in the matrix and where the scan to find the first *nrow* elements goes across row 1, then across row 2, and so forth through row *n*. You can also use the following **RESET AUTONAME** statement to automatically label rows as ROW1, ROW2, and so on:

```reset autoname;```

For example, the following statements print a matrix in the 12.2 format with column and row labels:

```
x = {45.125 50.500,
    75.375 90.825};
r = {"Div A" "Div B"};
c = {"Amount" "Net Pay"};
print x[rowname=r colname=c format=12.2];
```

![Figure 26.281 Matrix with Row and Column Labels](image)

To permanently associate the preceding options with a matrix name, see the description of the **MATTRIB** statement.

If there is not enough room to print all the matrices across the page, then one or more matrices are printed out in the next group. If there is not enough room to print all the columns of a matrix across the page, then the columns are continued on a subsequent line.

The spacing between adjacent matrices can be controlled by the **SPACES=** option of the **RESET** statement. The **FW=** option of the **RESET** statement can be used to control the number of print positions used to print each numeric element. For more print-related options, including the **PRINTADV** option, see the description of the **RESET** statement.

To print part of a matrix or a temporary expression, enclose the expression in parentheses:
y = 1:10;
print(y[1:3]) [format=5.1]; /* prints first few elements */
print(sum(y)) [label="sum"];

Figure 26.282 Printing Temporary Matrices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

PROD Function

\[
\text{PROD}(\text{matrix1}, \text{matrix2}, \ldots, \text{matrix15});
\]

The PROD function returns as a single numeric value the product of all nonmissing elements in all arguments. You can pass in as many as 15 numeric matrices as arguments. The PROD function checks for missing values and does not include them in the product. It returns missing if all values are missing.

For example, consider the following statements:

\[
a = \{2 1, . 3\};
b = \text{prod}(a);
\]

\[
\text{print}\ b;
\]

Figure 26.283 Output from the PROD Function

\[
\begin{array}{c}
\text{b} \\
6
\end{array}
\]

For a single argument with at least one nonmissing value, the PROD function is identical to the subscript reduction operator that computes the product. That is, \(\text{prod}(x)\) and \(x[\#]\) both compute the product of the elements of \(x\). See the section “Subscript Reduction Operators” on page 53 for more information about subscript reduction operators.

PRODUCT Function

\[
\text{PRODUCT}(a, b, \ldots, \text{dim});
\]

The PRODUCT function multiplies matrices of polynomials.

The arguments to the PRODUCT function are as follows:

\(a\) is an \(m \times (ns)\) numeric matrix. The first \(m \times n\) submatrix contains the constant terms of the polynomials, the second \(m \times n\) submatrix contains the first-order terms, and so on.
is an \(n \times (pt) \) matrix. The first \(n \times p \) submatrix contains the constant terms of the polynomials, the second \(n \times p \) submatrix contains the first-order terms, and so on.

\(\text{dim} \) is a \(1 \times 1 \) matrix, with value \(p > 0 \). The value of this matrix is used to set the dimension \(p \) of the matrix \(b \). If omitted, the value of \(p \) is set to 1.

The PRODUCT function multiplies matrices of polynomials. The value returned is the \(m \times (p(s + t - 1)) \) matrix of the polynomial products. The first \(m \times p \) submatrix contains the constant terms, the second \(m \times p \) submatrix contains the first-order terms, and so on.

The PRODUCT function can be used to multiply the matrix operators employed in a multivariate time series model of the form

\[
\Phi_1(B) \Phi_2(B) Y_t = \Theta_1(B) \Theta_2(B) \epsilon_t
\]

where \(\Phi_1(B) \), \(\Phi_2(B) \), \(\Theta_1(B) \), and \(\Theta_2(B) \) are matrix polynomial operators whose first matrix coefficients are identity matrices. Often \(\Phi_2(B) \) and \(\Theta_2(B) \) represent seasonal components that are isolated in the modeling process but multiplied with the other operators when forming predictors or estimating parameters. The RATIO function is often employed in a time series context as well.

For example, the following statements demonstrate the PRODUCT function:

\[
\begin{align*}
m1 &= \{1 \ 2 \ 3 \ 4, \\
& \quad 5 \ 6 \ 7 \ 8\}; \\
m2 &= \{1 \ 2 \ 3, \\
& \quad 4 \ 5 \ 6\}; \\
r &= \text{product}(m1, m2, 1);
\end{align*}
\]

\[
\begin{array}{cccc}
\hline
\text{r} & 9 & 31 & 41 & 33 \\
& 29 & 79 & 105 & 69 \\
\hline
\end{array}
\]

Figure 26.284 A Product of Matrices of Polynomials

PURGE Statement

\[\text{PURGE ;} \]

The PURGE data processing statement is used to remove observations marked for deletion and to renumber the remaining observations. This closes the gaps created by deleted records. Execution of this statement can be time-consuming because it involves rewriting the entire data set.

CAUTION: Any indexes associated with the data set are lost after a purge.

When you quit PROC IML, observations marked for deletion are **not** automatically purged.

The following example creates a data set named A. The EDIT statement opens the data set for editing. The DELETE statement marks several observations for deletion. As shown in **Figure 26.285**, the observations are not removed and renumbered until the PURGE statement executes.
data a;
 do i=1 to 10;
 output;
 end;
run;

call push;
 pts = 3:8;
 delete point pts;
 list all;

purge;
list all;

Figure 26.285 Deleting and Purging Observations

<table>
<thead>
<tr>
<th>OBS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
</tr>
<tr>
<td>9</td>
<td>9.0000</td>
</tr>
<tr>
<td>10</td>
<td>10.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
</tr>
<tr>
<td>3</td>
<td>9.0000</td>
</tr>
<tr>
<td>4</td>
<td>10.0000</td>
</tr>
</tbody>
</table>

PUSH Call

CALL PUSH(argument1 <, argument2, . . . , argument15>);

The PUSH subroutine pushes character arguments that contain valid SAS statements (usually SAS/IML
statements or global statements) to the input command stream. You can specify up to 15 arguments. Any statements in the input command queue are executed when the module is paused (see the PAUSE statement), which happens when one of the following occurs:

- An execution error occurs within a module.
- An interrupt is issued.
- A PAUSE statement executes.

The pushed string is read before any other lines of input. If you call the PUSH subroutine several times, the strings pushed each time are ahead of the less recently pushed strings. If you would rather place the lines after others in the input stream, use the QUEUE call.

The strings you push do not appear on the log.

CAUTION: Do not push too many statements at one time. Pushing too many statements causes problems that can result in exiting the SAS System.

For more information about the input command stream, see Chapter 21.

An example that uses the PUSH subroutine follows:

```sas
start;
   code='reset pagesize=25;';
   call push(code,'resume;');
   pause;
   /* show that pagesize was set to 25 during */
   /* a PAUSE state of a module */
   show options;
finish;
run main;
```

Figure 26.286 Result of a PUSH Statement

Options: noautoname center noclipping

```sas
    deflib=WORK (system-specific-pathname)
    nodetails nolink nolink fuzz fw=9
    imlmlib=SASHELP.IMLMLIB linesize=98 nolog
    name pagesize=25 noprnt noprntall spaces=1
    userlib=WORK.IMLSTOR(not open)
```
PUT Statement

PUT < operand > < record-directives > < positionals > < format > ;

The PUT statement writes data to an external file. The arguments to the PUT statement are as follows:

** operand ** specifies the value you want to output to the current position in the record. The operand can be either a variable name, a literal value, or an expression in parentheses. The operand can be followed immediately by an output format specification.

** record-directives ** start new records. There are three types:

- ** holding @ ** is used at the end of a PUT statement to hold the current record so that you can continue to write more data to the record with later PUT statements. Otherwise, the next record is used for the next PUT statement.
- ** / ** writes out the current record and begins forming a new record.
- ** > operand ** specifies that the next record written start at the indicated byte position in the file (for RECFM=N files only). The operand is a literal number, a variable name, or an expression in parentheses. For example:

 put >3 x 3.2;

** positionals ** specify the column on the record to which the PUT statement should go. There are two types of positionals:

- ** @ operand ** specifies to go to the indicated column, where operand is a literal number, a variable name, or an expression in parentheses. For example, @30 means to go to column 30.
- ** + operand ** specifies that the indicated number of columns are to be skipped, where operand is a literal number, a variable name, or an expression in parentheses.

** format ** specifies a valid SAS or user-defined output format. These are of the form \textit{w.d} or \textit{$w.} for standard numeric and character formats, respectively, where \textit{w} is the width of the field and \textit{d} is the decimal parameter, if any. They can also be a named format of the form \textit{NAMEw.d}, where \textit{NAME} is the name of the format. If the width is unspecified, then a default width is used; this is 9 for numeric variables.

The PUT statement writes to the file specified in the previously executed FILE statement, putting the values from matrices. The statement is described in detail in Chapter 8.

The PUT statement is a sequence of positionals and record directives, variables, and formats. An example that uses the PUT statement follows:
/* output variable A in column 1 using a 6.4 format */
/* Skip 3 columns and output X using an 8.4 format */
put @1 a 6.4 +3 * x 8.4;

PV Function

\[
\text{PV}(\text{times, flows, freq, rates});
\]

The PV function returns a scalar that contains the present value of the cash flows based on the specified frequency and rates.

The arguments to the function are as follows:

- **times** is an \(n \times 1 \) column vector of times. Elements should be nonnegative.
- **flows** is an \(n \times 1 \) column vector of cash flows.
- **freq** is a scalar that represents the base of the rates to be used for discounting the cash flows. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If \(-1\), the rates represent per-period discount factors. No other negative values are accepted.
- **rates** is an \(n \times 1 \) column vector of rates to be used for discounting the cash flows. Elements should be positive.

A general present value relationship can be written as

\[
P = \sum_{k=1}^{K} c(k) D(t_k)
\]

where \(P \) is the present value of the asset, \(\{c(k)\}, k = 1, \ldots, K \), is the sequence of cash flows from the asset, \(t_k \) is the time to the \(k \)th cash flow in periods from the present, and \(D(t) \) is the discount function for time \(t \).

The discount factors are as follows:

- with per-unit-time-period discount factors \(d_t \):
 \[
 D(t) = d_t^f
 \]
- with continuous compounding:
 \[
 D(t) = e^{-r_t t}
 \]
- with discrete compounding:
 \[
 D(t) = (1 + fr)^{-t/f}
 \]

 where \(f > 0 \) is the frequency, the reciprocal of the number of compoundings per unit time period.

The following statements present an example of using the PV function in the DATA step:
data a;
 pv = mort(., 438.79, 0.10/12, 30*12);
run;
proc print data=a; run;

Figure 26.287 Present Value Computation (DATA Step)

<table>
<thead>
<tr>
<th>OBS</th>
<th>pv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50000.48</td>
</tr>
</tbody>
</table>

You can do the same computation by using the PV function in SAS/IML software. The first example uses a monthly rate; the second example uses an annual rate.

proc iml;
 /* If rate is specified as annual rate divided by 12 and FREQ=1, */
 /* then results are equal to those computed by the MORT function. */
 timesn = t(1:360);
 flows = repeat(438.79, 360);
 rate = repeat(0.10/12, 360);
 freq = 1;
 pv = pv(timesn, flows, freq, rate);
 print pv;

 /* If rate is specified as annual rate, then the cash flow TIMES */
 /* need to be specified in 1/12 increments and the FREQ=1/12. */
 /* This produces the same result as the previous PV call. */
 timesn = t(do(1/12, 30, 1/12));
 flows = repeat(438.79, 360);
 rate = repeat(0.10, 360); /* specify annual rate */
 freq = 1/12; /* 12 compoundings annually */
 pv = pv(timesn, flows, freq, rate);
 print pv;

Figure 26.288 Present Value Computation (PROC IML)

<table>
<thead>
<tr>
<th>pv</th>
</tr>
</thead>
<tbody>
<tr>
<td>50000.48</td>
</tr>
<tr>
<td>pv</td>
</tr>
<tr>
<td>50000.48</td>
</tr>
</tbody>
</table>

QNTL Call

CALL QNTL(q, x, <, probs> <, method>);

The QNTL subroutine computes sample quantiles for data. The arguments are as follows:

q specifies a matrix to contain the quantiles of the **x** matrix.

x specifies an \(n \times p \) numerical matrix of data. The QNTL subroutine computes quantiles for each column of the matrix.
probs specifies a numeric vector of probabilities used to compute the quantiles. If this option is not specified, the vector \{0.25, 0.5, 0.75\} is used, resulting in the quartiles of the data. For convenience, a probability of 0 returns the minimum value of \(x\), and a probability of 1 returns the maximum value.

method specifies the method used to compute the quantiles. These methods correspond to those defined by using the PCTLDEF= option in the UNIVARIATE procedure. For details, see the section “Calculating Percentiles” of the documentation for the CORR procedure in the Base SAS Procedures Guide: Statistical Procedures. The following values are valid:

1 specifies that quantiles are computed according to a weighted average.
2 specifies that quantiles are computed by choosing an observation closest to some quantity.
3 specifies that quantiles are computed by using the empirical distribution function.
4 specifies that quantiles are computed according to a different weighted average.
5 specifies that quantiles are computed by using average values of the empirical distribution function. This is the default value.

If \(x\) is an \(n \times p\) matrix, the QNTL subroutine computes a \(k \times p\) matrix where \(k\) is the dimension of the probs matrix. The quantiles are returned in the \(q\) matrix, as shown in the following example:

\[
x = \begin{bmatrix}
5 & 1 & 10 \\
6 & 2 & 3 \\
6 & 8 & 5 \\
6 & 7 & 9 \\
7 & 2 & 13
\end{bmatrix};
\]

```sas
call qntl(q, x);
print q[rowname={"P25", "P50", "P75"}];
```

Figure 26.289 Quantiles

<table>
<thead>
<tr>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25 6 2 5</td>
</tr>
<tr>
<td>P50 6 2 9</td>
</tr>
<tr>
<td>P75 6 7 10</td>
</tr>
</tbody>
</table>

You can use the MATTRIB statement to permanently assign row names to the matrix that contains the quantiles, as shown in the following statements:

\[
p = \{0.25 0.50 0.75\};
\]

```sas
labels = "P" + strip(putn(100*p, "best5."));
mattrib q rowname=labels;
print q;
```
Figure 26.290 Rownames for Quantiles

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| P25 | 6 | 2 | 5
| P50 | 6 | 2 | 9
| P75 | 6 | 7 | 10 |

You can specify the optional arguments in either of two ways: by specifying an argument positionally or by specifying a keyword/value pair, as shown in the following statements.

```plaintext
x = T(1:100);
p = do(0.1, 0.9, 0.1);
call qntl(q1, x, p);
call qntl(q2, x) probs=p; /* equivalent */
```

QR Call

```plaintext
CALL QR(q, r, piv, lindep, a <, ord> <, b> );
```

The QR subroutine produces the QR decomposition of a matrix by using Householder transformations.

The QR subroutine returns the following values:

- **q** specifies an orthogonal matrix Q that is the product of the Householder transformations applied to the \(m \times n \) matrix A, if the b argument is not specified. In this case, the \(\min(m, n) \) Householder transformations are applied, and q is an \(m \times m \) matrix. If the b argument is specified, q is the \(m \times p \) matrix \(Q'B \) that has the transposed Householder transformations \(Q' \) applied on the \(p \) columns of the argument matrix B.

- **r** specifies a \(\min(m, n) \times n \) upper triangular matrix R that is the upper part of the \(m \times n \) upper triangular matrix \(\tilde{R} \) of the QR decomposition of the matrix A. The matrix \(\tilde{R} \) of the QR decomposition can be obtained by vertical concatenation (by using the operator //) of the \((m - \min(m, n)) \times n \) zero matrix to the result matrix R.

- **piv** specifies an \(n \times 1 \) vector of permutations of the columns of A; that is, on return, the QR decomposition is computed, not of A, but of the permuted matrix whose columns are \([A_{piv[1]} \ldots A_{piv[n]}] \). The vector piv corresponds to an \(n \times n \) permutation matrix \(\Pi \).

- **lindep** is the number of linearly dependent columns in matrix A detected by applying the \(\min(m, n) \) Householder transformations in the order specified by the argument vector piv.

The input arguments to the QR subroutine are as follows:

- **a** specifies an \(m \times n \) matrix A that is to be decomposed into the product of the orthogonal matrix Q and the upper triangular matrix \(\tilde{R} \).

- **ord** specifies an optional \(n \times 1 \) vector that specifies the order of Householder transformations applied to matrix A. When you specify the ord argument, the columns of A can be divided into the following groups:
ord[j]>0 Column \(j \) of \(A \) is an initial column, meaning it has to be processed at the start in increasing order of \(\text{ord}[j] \). This specification defines the first \(n_l \) columns of \(A \) that are to be processed.

ord[j]=0 Column \(j \) of \(A \) is a pivot column, meaning it is to be processed in order of decreasing residual Euclidean norms. The pivot columns of \(A \) are processed after the \(n_l \) initial columns and before the \(n_u \) final columns.

ord[j]<0 Column \(j \) of \(A \) is a final column, meaning it has to be processed at the end in decreasing order of \(\text{ord}[j] \). This specification defines the last \(n_u \) columns of \(A \) that are to be processed. If \(n > m \), some of these columns are not processed.

The default is \(\text{ord}[j]=j \), in which case the Householder transformations are processed in the same order in which the columns are stored in matrix \(A \) (without pivoting).

\(b \) specifies an optional \(m \times p \) matrix \(B \) that is to be multiplied by the transposed \(m \times m \) matrix \(Q' \). If \(b \) is specified, the result \(q \) contains the \(m \times p \) matrix \(Q'B \). If \(b \) is not specified, the result \(q \) contains the \(m \times m \) matrix \(Q \).

The QR subroutine decomposes an \(m \times n \) matrix \(A \) into the product of an \(m \times m \) orthogonal matrix \(Q \) and an \(m \times n \) upper triangular matrix \(R \), so that

\[
A = Q \tilde{R}, Q'Q = QQ' = I_m
\]

by means of \(\min(m,n) \) Householder transformations.

The \(m \times m \) orthogonal matrix \(Q \) is computed only if the last argument \(b \) is not specified, as in the following example:

\[
\text{call qr}(q, r, \text{piv}, \text{lindep}, a, \text{ord});
\]

In many applications, the number of rows, \(m \), is very large. In these cases, the explicit computation of the \(m \times m \) matrix \(Q \) might require too much memory or time.

In the usual case where \(m > n \),

\[
A = \begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}, \quad Q = \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\]

\[
\tilde{R} = \begin{bmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & * \\
0 & 0 & 0
\end{bmatrix}, \quad R = \begin{bmatrix}
* & * & * \\
0 & 0 & *
\end{bmatrix}
\]

\[
Q = [Q_1 \ Q_2], \quad \tilde{R} = \begin{bmatrix}
R \\
0
\end{bmatrix}
\]

where \(R \) is the result returned by the QR subroutine.
The n columns of matrix Q_1 provide an orthonormal basis for the n columns of A and are called the *range space* of A. Since the $m - n$ columns of Q_2 are orthogonal to the n columns of A, $Q_2A = 0$, they provide an orthonormal basis for the orthogonal complement of the columns of A and are called the *null space* of A.

In the case where $m < n$,

$$
A = \begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix} \quad Q = \begin{bmatrix}
* & * & * \\
* & * & *
\end{bmatrix}
$$

$$
\tilde{R} = R = \begin{bmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{bmatrix}
$$

Specifying the argument *ord* as an n vector lets you specify a special order of the columns in matrix A on which the Householder transformations are applied. There are two special cases:

- If you do not specify the *ord* argument, the default values $ord[j] = j$ are used. In this case, Householder transformations are done in the same order in which the columns are stored in A (without pivoting).

- If you set all components of *ord* to zero, the Householder transformations are done in order of decreasing Euclidean norms of the columns of A.

To check the QR decomposition, use the following statements to compute the three residual sum of squares (represented by the variables SS0, SS1, and SS2), which should be close to zero:

```matlab
a = shape(1:20, 5);
m = nrow(a); n = ncol(a);
ord = j(1, n, 0);
call qr(q, r, piv, lindep, a);
ss0 = ssq(a[,piv] - q[,1:n] * r);
ss1 = ssq(q * q' - i(m));
ss2 = ssq(q' * q - i(m));
print ss0 ss1 ss2;
```

![Figure 26.291 Result of a QR Decomposition](image)

If the QR subroutine detects linearly dependent columns while processing matrix A, the column order given in the result vector *piv* can differ from an explicitly specified order in the argument vector *ord*. If a column of A is found to be linearly dependent on columns already processed, this column is swapped to the end of matrix A. The order of columns in the result matrix R corresponds to the order of columns processed in A. The swapping of a linearly dependent column of A to the end of the matrix corresponds to the swapping of the same column in R and leads to a zero row at the end of the upper triangular matrix R.

The scalar result *lindep* counts the number of linearly dependent columns that are detected in constructing the first $\min(m, n)$ Householder transformations in the order specified by the argument vector *ord*. The test
of linear dependence depends on the singularity criterion, which is 1E−8 by default.

Solving the linear system $Rx = Q'b$ with an upper triangular matrix R whose columns are permuted corresponding to the result vector piv leads to a solution x with permuted components. You can reorder the components of x by using the index vector piv at the left-hand side of an expression, as follows:

```plaintext
a = {3 0 0 -1, 0 1 2 0, 4 -4 -1 1, -1 2 3 4};
b = {-1, 8, -3, 28};

n = ncol(a); p = ncol(b);
ord = j(1, n, 0);
call qr(qtb, r, piv, lindep, a, ord, b);
print piv;

x = j(n,1);
x[piv] = inv(r) * qtb[1:n, 1:p];
print x;
```

Figure 26.292 Solution to a Linear System

<table>
<thead>
<tr>
<th>piv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

The Full-Rank Linear Least Squares Problem

This example solves the full-rank linear least squares problem. Specify the argument b as an $m \times p$ matrix B, as follows:

```plaintext
call qr(q, r, piv, lindep, a, ord, b);
```

When you specify the b argument, the QR subroutine computes the matrix $Q'B$ (instead of Q) as the result q. Now you can compute the p least squares solutions x_k of an overdetermined linear system with an $m \times n, m > n$ coefficient matrix A, rank(A) = n, and p right-hand sides b_k stored as the columns of the $m \times p$ matrix B:

$$\min_{x_k} \|Ax_k - b_k\|^2, k = 1, \ldots, p$$

where $\| \cdot \|$ is the Euclidean vector norm. This is accomplished by solving the p upper triangular systems with back substitution:

$$x_k = P_i' R^{-1} Q'_i b_k, k = 1, \ldots, p$$
For most applications, the number of rows of A, m, is much larger than n, the number of columns of A, or p, the number of right-hand sides. In these cases, you are advised not to compute the large $m \times m$ matrix Q (which can consume too much memory and time) if you can solve your problem by computing only the smaller $m \times p$ matrix $Q'B$ implicitly.

For example, use the first five columns of the 6×6 Hilbert matrix A, as follows:

```plaintext
a = { 36  -630  3360 -7560  7560 -2772,
     -630 14700 -88200 211680 -220500  83160,
     3360 -88200 564480 -1411200 1512000 -582120,
     -7560 211680 -1411200 3628800 -3969000 1552320,
     7560 -220500 1512000 -3969000 4410000 -1746360,
     -2772  83160 -582120 1552320 -1746360  698544 };

aa = a[, 1:5];
b = { 463, -13860, 97020, -258720, 291060, -116424 };

m = nrow(aa); n = ncol(aa); p = ncol(b);
call qr(qtb, r, piv, lindep, aa, , b);
if lindep=0 then do;
   x = inv(r) * qtb[1:n];
   print x; /* x solves aa*x=b */
end;
else /* handle linear dependence */;
```

Note that you are using only the first n rows, $Q'B$, of the qtb matrix. The IF-THEN statement of the preceding example can be replaced by the more efficient TRISOLV function:

```plaintext
if lindep=0 then
   x = trisolv(1, r, qtb[1:n], piv);
```

For information about solving rank-deficient linear least squares problems, see the RZLIND call.

QUAD Call

```plaintext
CALL QUAD(r, "fun", points <, eps <, peak <, scale <, msg <, cycles >);
```

The QUAD subroutine performs numerical integration of scalar functions in one dimension over infinite, connected semi-infinite, and connected finite intervals.

The QUAD subroutine returns the following value:
The QUAD subroutine is a numerical integrator based on adaptive Romberg-type integration techniques. See Rice (1973), Sikorsky (1982), Sikorsky and Stenger (1984), Stenger (1973a), Stenger (1973b), and Stenger (1978). Many adaptive numerical integration methods (Ralston and Rabinowitz 1978) start at one end of the interval and proceed towards the other end, working on subintervals while locally maintaining a certain prescribed precision. This is not the case with the QUAD call. The QUAD subroutine is an adaptive global-type integrator that produces a quick, rough estimate of the integration result and then refines the estimate until it achieves the prescribed accuracy. This gives the subroutine an advantage over Gauss-Hermite and Gauss-Laguerre quadratures (Ralston and Rabinowitz 1978; Squire 1987), particularly for infinite and semi-infinite intervals, because those methods perform only a single evaluation.
A Simple Example

Consider the integral
\[\int_{0}^{\infty} e^{-t} \, dt \]

The following statements evaluate this integral:

```plaintext
/* Define the integrand */
start fun(t);
    v = exp(-t);
    return(v);
finish;

a = {0 .P};
call quad(z, "fun", a);
print z[format=E21.14];
```

Figure 26.294 Result of Numerical Integration on a Semi-Infinite Domain

\[
\begin{array}{c}
z \\
9.9999999595190E-01
\end{array}
\]

The integration is carried out over the interval \((0, \infty)\), as specified by the \(a\) variable. The missing value in the second element of \(a\) is interpreted as \(\infty\). The values of EPS=1E-7, PEAK=1, SCALE=1, and CYCLES=8 are used by default.

The following statements integrate the same exponential function over two subintervals:

```plaintext
a = {0 3 .P};
call quad(z2, "fun", a);
print z2[format=E21.14];
```

Figure 26.295 Result of Numerical Integration on Two Intervals

\[
\begin{array}{c}
z2 \\
9.50212930994570E-01 \\
4.97870683477090E-02
\end{array}
\]

Notice that the elements of \(a\) are in ascending order. The integration is carried out over \((0, 3)\) and \((3, \infty)\), and the corresponding results are shown in the output. The values of EPS=1E-7, PEAK=1, SCALE=1, and CYCLES=8 are used by default. To obtain the results of integration over \((0, \infty)\), use the \texttt{SUM} function on the elements of the \(z2\) vector, as follows:

```plaintext
b = sum(z2);
print b[format=E21.14];
```

Figure 26.296 Result of Numerical Integration on Two Intervals

\[
\begin{array}{c}
b \\
9.9999999342280E-01
\end{array}
\]
Using the PEAK= Option

The *peak* and *scale* options enable you to avoid analytically changing the variable of the integration in order to produce a well-conditioned integrand that permits the numerical evaluation of the integration.

Consider the integration

\[\int_0^\infty e^{-10000t} \, dt \]

The following statements evaluate this integral:

```
start fun2(t);
  v = exp(-10000*t);
  return(v);
finish;

a = {0 .P};
/* Either syntax can be used */
/* call quad(z, "fun2", a, 1E-10, 0.0001); or */
call quad(z3, "fun2", a) eps=1E-10 peak=0.0001;
print z3[format=E21.14];
```

Figure 26.297 Result of Specifying PEAK= Option

<table>
<thead>
<tr>
<th>z3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9999999999999E-05</td>
</tr>
</tbody>
</table>

The integration is performed over the semi-infinite interval \((0, \infty)\). The default values of SCALE=1 and CYCLES=8 are used. However, the default value of *peak* is 1 for this semi-infinite interval, which is not a good estimate of the location of the function’s maximum. If you do not specify a *peak* value, the integration cannot be evaluated to the desired accuracy, a message is printed to the SAS log, and a missing value is returned. Note that *peak* can still be set to 1E-7 and the integration will be successful.

The evaluation of the integrand at *peak* must be nonzero for the computation to continue. You should adjust the value of *peak* to get a nonzero evaluation at *peak* before trying to adjust *scale*. Reducing *scale* decreases the initial step size and can lead to an increase in the number of function evaluations per step at a linear rate.

Using the SCALE= Option

Consider the integration

\[\int_{-\infty}^\infty e^{-100000(t-3)^2} \, dt \]

The integrand is essentially zero except on a small interval close to \(t = 3\). The following statements evaluate this integral:

```
/* Define the integrand */
start fun3(t);
  v = exp(-100000*(t-3)*(t-3));
  return(v);
finish;
```
\[a = \{ .M \ P \}; \]
\[\text{call quad(z4, "fun3", a) eps=1E-10 \ peak=3 \ scale=0.001;} \]
\[\text{print z4[format=E21.14];} \]

\textbf{Figure 26.298 Result of Specifying the SCALE= Option}

\[
\begin{array}{c}
\text{z4} \\
5.60499121639830E-03
\end{array}
\]

The integration is carried out over the infinite interval \((-\infty, \infty)\). The default value of CYCLES=8 has been used. The integrand has its maximum value at \(t = 3\), so the PEAK=3 option is specified.

If you use the default value of \(\text{scale}\), the integral cannot be evaluated to the desired accuracy, and a missing value is returned. The variables \(\text{scale}\) and \(\text{cycles}\) can be used to increase the number of possible function evaluations; the number of possible function evaluations increases linearly with the reciprocal of \(\text{scale}\), but it potentially increases in an exponential manner when \(\text{cycles}\) is increased. Increasing the number of function evaluations increases execution time.

\textbf{Two-Dimensional Integration}

When you perform double integration, you must separate the variables between the iterated integrals. There should be a clear distinction between the variable of the one-dimensional integration and the parameters that are passed to the integrand. Another important consideration is specifying the correct limits of integration.

For example, suppose you want to compute probabilities for the standard bivariate normal distribution with correlation \(\rho\). In particular, if an observation \((x, y)\) is drawn from the distribution, what is probability that \(x \leq a\) and \(y \leq b\) for given values of \(a\) and \(b\)?

The bivariate normal probability is given by the following double integral:

\[
\text{probbnrm}(a, b, \rho) = \frac{1}{2\pi \sqrt{1-\rho^2}} \int_{-\infty}^{a} \int_{-\infty}^{b} \exp \left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)} \right) \, dy \, dx
\]

The inner integral is

\[
g(x, b, \rho) = \frac{1}{2\pi \sqrt{1-\rho^2}} \int_{-\infty}^{b} \exp \left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)} \right) \, dy
\]

with parameters \(x\) and \(\rho\), and the limits of integration are from \(-\infty\) to \(b\). The outer integral is then

\[
\text{probbnrm}(a, b, \rho) = \int_{-\infty}^{a} g(x, b, \rho) \, dx
\]

with the limits from \(-\infty\) to \(a\).

You can write a function module with parameters \(a, b, \rho\) that computes the bivariate normal probability. In the following statements, the function module is called NORCDF2 because it compute the CDF of the bivariate normal distribution. The NORCDF2 module calls the QUAD subroutine on the MARGINAL module, which computes the outer integral. The MARGINAL module, in turn, uses the QUAD function to evaluate inner integral. The integrand of the inner integral is defined in the NORPDF2 module.
start norpdf2(t) global(yv,rho,count);
 count = count+1;
 q=(t#t-2#rho#t#yv+yv#yv)/(1-rho#rho);
 p=exp(-q/2);
 return(p);
finish;

start marginal(v) global(yy,yv,eps);
 interval = .M || yy;
 if (v < -12) then return(0);
 yv = v;
 call quad(pm, "NORPDF2", interval) eps=eps;
 return(pm);
finish;

start norcdf2(a, b, rrho) global(yy,rho,eps);
 rho = rrho; /* copy arguments (local variables) to global list */
 yy = b;
 interval= .M || a; /* upper/lower limits for outer integral */
 call quad(p,"MARGINAL",interval) eps=eps;
 pi = constant("Pi");
 per = p /(2*pi#sqrt(1-rho#rho)); /* scale the value from QUAD */
 return(per);
finish;

count = 0;
eps = 1E-11;
p = norcdf2(2, 1, 0.1);
print p[format=E21.14], count;
The variable COUNT contains the number of times the NORPDF2 module is called. Note that the value computed by the NORCDF2 module is very close to that returned by the PROBBNRM function, which computes probabilities for the bivariate normal model, as shown by the following statements:

```c
/* Compute the value with the PROBBNRM function */
pp = probbnrm(2,1,0.1);
print pp[format=E21.14];
```

Note the following:

- The iterated inner integral cannot have a left endpoint of $-\infty$. For large values of v, the inner integral does not contribute to the answer but still needs to be computed to the required relative accuracy. Therefore, either cut off the function (when $v \leq -12$), as in the MARGINAL module in the preceding example, or have the intervals start from a reasonable cutoff value. In addition, the QUAD subroutine stops if the integrands appear to be identically 0 (probably caused by underflow) over the interval of integration.

- This method of integration (iterated, one-dimensional integrals) is extremely conservative and requires unnecessary function evaluations. In this example, the QUAD subroutine for the inner integration lacks information about the final value that the QUAD subroutine for the outer integration is trying to refine. The lack of communication between the two QUAD routines can cause useless computations to be performed in the inner integration.

To illustrate this idea, let the relative error be $1E-11$ and let the answer delivered by the outer integral be close to 0.8, as in this example. Any computation of the inner execution of the QUAD call that yields $0.8E-11$ or less does not contribute to the final answer of the QUAD subroutine for the outer integral. However, the inner integral lacks this information, and for a given value of the parameter yv, it attempts to compute an answer with much more precision than is necessary. The lack of communication between the two QUAD subroutines prevents the introduction of better cutoffs. Although this method can be inefficient, the final calculations are accurate.

QUARTILE Function

```c
QUARTILE(matrix);
```
The QUARTILE function is part of the IMLMLIB library. Given an \(n \times m \) data matrix, the QUARTILE function returns a \(5 \times m \) matrix. The rows of the return matrix contain the minimum, lower quartile, median, upper quartile, and maximum values (respectively) for the data in matrix. Missing values are excluded from the computation. If all values in a column are missing, the return values for that column are missing.

```sas
use Sashelp.Class;
read all var _NUM_ into X[colname=varNames];
close Sashelp.Class;
q = quartile(X);
n = {"Minimum" "Q1" "Median" "Q2" "Maximum"};
print q[rowname=rn colname=varNames];
```

![Figure 26.301 Quartiles](image)

<table>
<thead>
<tr>
<th>q</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>11</td>
<td>51.3</td>
<td>50.5</td>
</tr>
<tr>
<td>Q1</td>
<td>12</td>
<td>57.5</td>
<td>84</td>
</tr>
<tr>
<td>Median</td>
<td>13</td>
<td>62.8</td>
<td>99.5</td>
</tr>
<tr>
<td>Q2</td>
<td>15</td>
<td>66.5</td>
<td>112.5</td>
</tr>
<tr>
<td>Maximum</td>
<td>16</td>
<td>72</td>
<td>150</td>
</tr>
</tbody>
</table>

For the computation of arbitrary quantiles, see the documentation for the QNTL call.

QUEUE Call

```sas
CALL QUEUE(argument1 <, argument2, . . . , argument15> );
```

The QUEUE subroutine places character arguments that contain valid SAS statements (usually SAS/IML statements or global statements) at the end of the input command stream. You can specify up to 15 arguments. Each argument to the QUEUE subroutine is a character matrix or quoted literal that contains valid SAS statements.

The queued string is read after other lines of input already in the queue. If you want to push the lines in front of other lines already in the queue, use the PUSH subroutine instead. Any statements queued to the input command queue get executed when the module is paused (see the PAUSE statement), which happens when one of the following occurs:

- An execution error occurs within a module.
- An interrupt is issued.
- A PAUSE statement executes.

The strings you queue do not appear on the log.

CAUTION: Do not queue too many statements at one time. Queuing too many statements can cause problems that can result in exiting the SAS System.

For more examples, see Chapter 21.

An example that uses the QUEUE subroutine follows:
start mod(x);
 code="x=0;";
 call queue (code,"resume;");
 pause;
finish;

x=1;
run mod(x);
print x;

Figure 26.302 Result of Evaluating Queued Statements

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

QUIT Statement

QUIT ;

Use the QUIT statement to exit PROC IML. If a DATA or PROC statement is encountered, QUIT is implied. The QUIT statement is executed immediately; therefore, you cannot use QUIT as an executable statement (that is, as part of a module or conditional clause). However, you can use the ABORT statement as an executable statement.

PROC IML closes all open data sets and files when a QUIT statement is encountered. Workspace and symbol spaces are freed up. If you need to use any matrix values or any module definitions in a later session, you must store them in a storage library before you quit.

RANCOMB Function

RANCOMB(n, k <, numcomb>);
RANCOMB(set, k <, numcomb>);

The RANCOMB function generates random combinations of k elements taken from a set of n elements. The random number seed is set by the RANDSEED subroutine.

The first argument, set, can be a scalar or a vector. If set is a scalar, the function returns indices in the range $1–n$. If set is a vector, the number of elements of the vector determines n and the RANCOMB function returns elements of set.

By default, the RANCOMB function returns a single random combination with one row and k columns. If the numcomb argument is specified, the function returns a matrix with numcomb rows and k columns. Each row of the returned matrix represents a single combination.

The following statements generate five random combinations of two elements from the set {1, 2, 3, 4}:
The function can return combinations for arbitrary numerical or character matrices. For example, the following statements generate five random pairwise combinations of four elements:

```plaintext
d = rancomb({A B C D}, 2, 5);
print d;
```

Figure 26.304 Random Pairwise Combinations of Four Characters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

RANDDIRICHLET Function

RANDDIRICHLET(N, Shape);

The RANDDIRICHLET function is part of the IMLMLIB library. The RANDDIRICHLET function generates a random sample from a Dirichlet distribution, which is a multivariate generalization of the beta distribution.

The input parameters are as follows:

- **N** is the number of observations to sample.
- **Shape** is a 1 x (p + 1) vector of shape parameters for the distribution, Shape[i] > 0.

The RANDDIRICHLET function returns an N x p matrix that contains N random draws from the Dirichlet distribution.

If X = {X_1 X_2 ... X_p} with \(\sum_{i=1}^{p} X_i < 1 \) and \(X_i > 0 \) follows a Dirichlet distribution with shape parameter \(\alpha = \{ \alpha_1 \alpha_2 \ldots \alpha_{p+1} \} \), then
• the probability density function for x is

$$f(x; \alpha) = \frac{\Gamma(\sum_{i=1}^{p+1} \alpha_i)}{\prod_{i=1}^{p+1} \Gamma(\alpha_i)} \prod_{i=1}^{p} x_i^{\alpha_i-1}(1-x_1-x_2-\ldots-x_p)^{\alpha_{p+1}-1}$$

• if $p = 1$, the probability distribution is a beta distribution.

• if $\alpha_0 = \sum_{i=1}^{p+1} \alpha_i$, then
 - the expected value of X_i is α_i/α_0.
 - the variance of X_i is $\alpha_i(\alpha_0 - \alpha_i)/(\alpha_0^2(\alpha_0 + 1))$.
 - the covariance of X_i and X_j is $-\alpha_i\alpha_j/(\alpha_0^2(\alpha_0 + 1))$.

The following example generates 1,000 samples from a two-dimensional Dirichlet distribution. Each row of the returned matrix x is a row vector sampled from the Dirichlet distribution. The following example computes the sample mean and covariance and compares them with the expected values:

```plaintext
call randseed(1);
n = 1000;
Shape = {2, 1, 1};
x = RandDirichlet(n,Shape);
d = nrow(Shape)-1;
s = Shape[1:d];
Shape0 = sum(Shape);
Mean = s`/Shape0;
Cov = -s*s` / (Shape0##2*(Shape0+1)); /* replace diagonal elements with variance */
Variance = s#(Shape0-s) / (Shape0##2*(Shape0+1));
do i = 1 to d;
    Cov[i,i] = Variance[i];
end;
SampleMean = mean(x);
SampleCov = cov(x);
print SampleMean Mean, SampleCov Cov;
```

Figure 26.305 Estimated Mean and Covariance Matrix

<table>
<thead>
<tr>
<th>SampleMean</th>
<th>Mean</th>
<th>Cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4992449</td>
<td>0.2485677</td>
<td>0.5</td>
</tr>
<tr>
<td>0.0502652</td>
<td>-0.026085</td>
<td>0.05</td>
</tr>
<tr>
<td>-0.026085</td>
<td>0.0393922</td>
<td>-0.025</td>
</tr>
</tbody>
</table>

For further details about sampling from the Dirichlet distribution, see Kotz, Balakrishnan, and Johnson (2000); Gentle (2003); or Devroye (1986).
The RANDFUN function is part of the IMLMLIB library. The RANDFUN function is a convenient interface to the RANDGEN subroutine. If \(N \) is a positive integer, the function returns an \(N \times 1 \) column vector of random numbers that are drawn from the \(Distribution \) family with the specified parameters. If \(N \) is a vector that contains a pair of integers, the function returns an \(N[1] \times N[2] \) matrix of random numbers.

For simulation studies that generate matrices of random numbers within a DO loop, it is more efficient to use the RANDGEN subroutine.

The following example simulates data from three distributions:

- the Bernoulli distribution with probability \(p = 1/2 \)
- the uniform distribution on the interval \((0, 1)\)
- the normal distribution with mean 5 and standard deviation 2

```plaintext
call randseed(123);
b = randfun({4 2}, "Bernoulli", 0.5); /* 4 rows, 2 cols */
u = randfun(4, "Uniform");
x = randfun(4, "Normal", 5, 2);
print b u x;
```

![Figure 26.306 Random Samples from Three Distributions](image)

RANDGEN Call

CALL RANDGEN(result, distname <, parm1 > <, parm2 > <, parm3 >);

The RANDGEN subroutine generates random numbers from a specified distribution.

The subroutine takes the following input arguments:

- **result** specifies a matrix that is to be filled with random samples from the specified distribution.
- **distname** specifies the name of a probability distribution.
- **parm1** specifies a distribution parameter.
- **parm2** specifies a distribution parameter.
- **parm3** specifies a distribution parameter.
For most distributions, the RANDGEN subroutine generates random numbers by using the same numerical method as the RAND function in Base SAS software, with the efficiency optimized for matrices. You can initialize the random number stream that is used by RANDGEN by calling the RANDSEED subroutine. The result parameter should be preallocated to a size equal to the number of values that you want to generate. If result is not initialized, then it receives a single random value.

The following statements fill a vector with 1,000 random values from a standard normal distribution:

```sas
call randseed(12345);
x = j(1000,1); /* allocate (1000 x 1) vector */
call randgen(x, "Normal"); /* fill it */
```

Vectors of Parameters

Except for the “Table” and “NormalMix” distributions, the distribution parameters are usually scalar values. However, the RANDGEN subroutine also accepts vectors of parameters. If result is an $n \times m$ matrix, then parm1, parm2, and parm3 can contain 1, n, m, or nm elements. The different sizes are interpreted as follows:

- If the parameters are scalar quantities, each element of result is a sample value from the same distribution.
- Otherwise, if the parameters contain m elements, the jth column of the result matrix consists of random values drawn from the distribution with parameters param1[j], param2[j], and param3[j].
- Otherwise, if the parameters contain n elements, the ith row of the result matrix consists of random values drawn from the distribution with parameters param1[i], param2[i], and param3[i].
- Otherwise, if the parameters contain nm elements, the (i, j) element of the result matrix contains a random value drawn from the distribution with parameters param1[s], param2[s], and param3[s], where $s = m(i - 1) + j$.

All parameters must be the same length. You cannot specify a scalar for one parameter and a vector for another. If you pass in parameter vectors that do not satisfy one of the preceding conditions, then the first element of each parameter is used.

For example, the jth column of the following matrix is a sample drawn from a normal population with mean j and standard deviation $j/4$:

```sas
n = 5; m = 4;
x = j(n, m);
Mu = 1:m;
Sigma = (1:m) / m;
call randgen(x, "Normal", Mu, Sigma);
print x;
```
Figure 26.307 Columns Drawn from Different Distributions

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7953097</td>
</tr>
<tr>
<td>1.1153841</td>
</tr>
<tr>
<td>1.1036757</td>
</tr>
<tr>
<td>1.1543757</td>
</tr>
<tr>
<td>0.8030879</td>
</tr>
</tbody>
</table>

The following sections describe the distributions that are supported.

Bernoulli Distribution

To generate random variates from the Bernoulli distribution, specify 'Bernoulli' for the `distname` argument. The subroutine generates random values of \(x \) in the discrete set \{0, 1\}. The values are drawn from the probability mass function:

\[
 f(x) = \begin{cases}
 1 & \text{for } p = 0, x = 0 \\
 p^x (1 - p)^{1-x} & \text{for } 0 < p < 1, x = 0, 1 \\
 1 & \text{for } p = 1, x = 1
\end{cases}
\]

The parameter \(p, 0 \leq p \leq 1 \), is the probability of a “success.” A success means that \(x \) has the value 1.

Beta Distribution

To generate random variates from the beta distribution, specify 'Beta' for the `distname` argument. The subroutine generates random values of \(x \) in the bounded interval \((0, 1)\). The values of \(x \) are drawn from the probability density function:

\[
 f(x) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} x^{a-1}(1 - x)^{b-1}
\]

The shape parameters \(a > 0 \) and \(b > 0 \) are required. Be aware that small values of the parameters \((a, b < 1)\) correspond to a U-shaped density that has singularities. Very small parameter values \((a, b \ll 1)\) can lead to loss of precision because of numerical underflow.

Binomial Distribution

To generate random variates from the binomial distribution, specify 'Binomial' for the `distname` argument. The subroutine generates values of \(x \) in the discrete set \{0, 1, \ldots, n\}. The values of \(x \) are drawn from the probability mass function:

\[
 f(x) = \binom{n}{x} p^x (1 - p)^{n-x} \\
 1 \quad \text{for } p = 0, x = 0 \\
 0 \quad \text{for } 0 < p < 1, x = 0, \ldots, n \\
 1 \quad \text{for } p = 1, x = 1
\]

The parameter \(p \) is the success probability, with range \(0 \leq p \leq 1 \). The parameter \(n \) specifies an integer number of independent trials, \(n \geq 0 \).

Intuitively, \(x \) is the number of successes in \(n \) independent Bernoulli trials with probability \(p \) of success.
Cauchy Distribution

To generate random variates from the Cauchy distribution, specify 'Cauchy' for the distname argument. The subroutine generates random values of x in the interval \((-\infty, \infty)\). The values of x are drawn from the probability density function:

\[
f(x) = \frac{1}{\pi(1 + x^2)}
\]

Chi-Square Distribution

To generate random variates from the chi-square distribution, specify 'ChiSquare' for the distname argument. The subroutine generates random values of x in the interval \((0, \infty)\). The values of x are drawn from the probability density function:

\[
f(x) = \frac{2^{-d/2} x^{d/2-1} e^{-x/2}}{\Gamma\left(\frac{d}{2}\right)}
\]

The parameter d represents degrees of freedom, with d > 0. Often d is an integer, but it does not have to be. Very small parameter values (d \ll 1) can lead to loss of precision because of numerical underflow.

Conway-Maxwell-Poisson Distribution

The Conway-Maxwell-Poisson distribution (also called the COM-Poisson distribution) is a generalization of the Poisson distribution that enables you to model underdispersed and overdispersed data. To generate random variates from the Conway-Maxwell-Poisson distribution, specify 'ConMaxPoi' for the distname argument. The subroutine generates random values of x in the discrete set \(\{0, 1, 2, \ldots\}\). The probability mass function for the COM-Poisson distribution is defined by

\[
f(x) = \frac{1}{Z(\lambda, \nu)} \frac{\lambda^x}{(x!)^\nu}
\]

where the normalization factor is \(Z(\lambda, \nu) = \sum_{n=0}^{\infty} \lambda^n / (n!)^\nu\).

The parameters are a location parameter \(\lambda > 0\) and a dispersion parameter \(\nu \geq 0\). When \(\nu = 1\), the distribution is Poisson with rate parameter \(\lambda\). When \(\nu = 0\) and \(\lambda < 1\), the distribution is geometric with probability of success \(1 - \lambda\).

The Conway-Maxwell-Poisson distribution is explained further in the documentation for the PDF function in the SAS Language Reference: Dictionary.

Erlang Distribution

To generate random variates from the Erlang distribution, specify 'Erlang' for the distname argument. The subroutine generates random values of x in the interval \((0, \infty)\). The values of x are drawn from the probability density function:

\[
f(x) = \frac{1}{\lambda^a \Gamma(a)} x^{a-1} e^{-x/\lambda}
\]

The Erlang distribution is a gamma distribution with an integer value for the shape parameter \(a = 1, 2, \ldots\). The optional scale parameter \(\lambda > 0\) has the default value \(\lambda = 1\).
Exponential Distribution

To generate random variates from the exponential distribution, specify 'Exponential' for the `distname` argument. The subroutine generates random values of \(x \) in the interval \((0, \infty)\). The values of \(x \) are drawn from the probability density function:

\[
f(x) = \frac{e^{-x/\sigma}}{\sigma}
\]

The optional scale parameter \(\sigma > 0 \) has the default value \(\sigma = 1 \).

Extreme Value Distribution

The generalized extreme value distribution (for a maximum) contains three parameters: a location parameter \(\mu \), a scale parameter \(\sigma \), and a shape parameter \(\xi \). The default values are \(\mu = 0 \), \(\sigma = 1 \), and \(\xi = 0 \). To generate random variates from the extreme-value distribution, specify 'ExtremeValue' for the `distname` argument. The values of \(x \) are drawn from the cumulative distribution function,

\[
F(x) = e^{-t(x)}
\]

where \(t(x) = (1 + \xi(x - \mu)/\sigma)^{-1/\xi} \) for \(\xi \neq 0 \) and where \(t(x) = \exp(-(x - \mu)/\sigma) \) for \(\xi = 0 \).

When \(\xi = 0 \), the distribution is a Type 1 distribution, sometimes called a Gumbel-type distribution. The random values of \(x \) are in the interval \((-\infty, \infty)\). For \(\xi = 0 \), it is more efficient to use the Gumbel distribution, which is supported by the RANDGEN subroutine.

When \(\xi > 0 \), the distribution is a Type 2 distribution, sometimes called a Fréchet-type distribution. The random values of \(x \) are in the interval \((\mu - \sigma/\xi, \infty)\).

When \(\xi < 0 \), the distribution is a Type 3 distribution, sometimes called a Weibull-type distribution. The random values of \(x \) are in the interval \((\infty, \mu - \sigma/\xi)\).

\(F \) Distribution \((F_{n,d})\)

To generate random variates from the \(F \) distribution, specify 'F' for the `distname` argument. The subroutine generates random values of \(x \) in the interval \((0, \infty)\). The values of \(x \) are drawn from the probability density function:

\[
f(x) = \frac{\Gamma\left(\frac{n+d}{2}\right)n^{\frac{n}{2}}d^{\frac{d}{2}}x^{\frac{n-1}{2}}}{\Gamma\left(\frac{d}{2}\right)\Gamma\left(\frac{n}{2}\right)(d + nx)^{\frac{n+d}{2}}}
\]

The two parameters \(n \) and \(d \) are degrees of freedom, with values \(n > 0 \) and \(d > 0 \).

Gamma Distribution

To generate random variates from the gamma distribution, specify 'Gamma' for the `distname` argument. The subroutine generates random values of \(x \) in the interval \((0, \infty)\). The values of \(x \) are drawn from the probability density function:

\[
f(x) = \frac{x^{a-1}}{\lambda^a \Gamma(a)} e^{-x/\lambda}
\]

The parameter \(a \) is a shape parameter, \(a > 0 \). The optional scale parameter \(\lambda > 0 \) has the default value \(\lambda = 1 \).
Generalized Poisson Distribution

To generate random variates from the generalized Poisson distribution, specify 'GenPoisson' for the *distname* argument. The subroutine generates random values of *x* in the discrete set \{0, 1, 2, ...\}.

The generalized Poisson distribution has two shape parameters: \(\theta > 0 \) and \(0 \leq \eta < 1 \). When \(\eta = 0 \), the distribution is the Poisson distribution with mean and variance of \(\theta \). When \(\eta > 0 \), the mean is \(\theta/(1 - \eta) \) and the variance is \(\theta/(1 - \eta)^3 \). Very large values of \(\theta \) can result in loss of precision. Similarly, numerical difficulties can occur when \(\eta \) is close to 1; \(\eta \leq 0.95 \) is recommended.

The values of *x* are drawn from the following probability mass function:

\[
f(x) = \frac{\theta}{x!}(\theta + \eta x)^{x-1} \exp(-\theta - \eta x)
\]

Geometric Distribution

The geometric distribution is the distribution of a random variable that represents the number of Bernoulli trials (with probability *p*) until the first success occurs. To generate random variates from the geometric distribution, specify 'Geometric' for the *distname* argument. The subroutine generates random values of *x* in the discrete set \{1, 2, ...\}. The values of *x* are drawn from the probability mass function:

\[
f(x) = \begin{cases}
(1 - p)^{x-1} p & \text{for } 0 < p < 1, x = 1, 2, \ldots \\
1 & \text{for } p = 1, x = 1
\end{cases}
\]

The parameter *p* is the success probability, where \(0 < p \leq 1 \).

Gompertz Distribution

To generate random variates from the geometric distribution, specify 'Gompertz' for the *distname* argument. The subroutine generates random values of *x* in the interval \((0, \infty) \). The values of *x* are drawn from the following cumulative probability distribution:

\[
F(x) = 1 - \exp(-\lambda \exp(x/\sigma) - 1)
\]

The shape parameter \(\lambda \) has the default value \(\lambda = 1 \). The scale parameter \(\theta > 0 \) has the default value \(\theta = 1 \).

Gumbel Distribution

To generate random variates from the Gumbel distribution, specify 'Gumbel' for the *distname* argument. The subroutine generates random values of *x* in the interval \((-\infty, \infty) \). The values of *x* are drawn from the following cumulative probability distribution:

\[
F(x) = \exp(-\exp(-(x - \mu)/\sigma))
\]

The location parameter \(\mu \) has the default value \(\mu = 0 \). The scale parameter \(\sigma > 0 \) has the default value \(\sigma = 1 \). The Gumbel distribution is an extreme value distribution for the maximum. The distribution is skewed to the right.
Hypergeometric Distribution

To generate random variates from the hypergeometric distribution, specify 'Hypergeometric' for the *distname* argument. The values of x are drawn from the probability mass function:

$$f(x) = \frac{\binom{R}{x} \binom{N-R}{k-x}}{\binom{N}{k}}$$

The parameter N is the population size, with range $N = 1, 2, \ldots$. The parameter R is the size of the category of interest, with range $R = 0, 1, \ldots, N$. The parameter k is the sample size, with range $k = 0, 1, \ldots, N$. The subroutine generates random integer values in the discrete set \(\{a, a + 1, \ldots, b-1, b\} \), where \(a = \max(0, k - (N - R)) \) and \(b = \min(k, R) \).

Intuitively, x is obtained by the following experiment. Put R red balls and $N - R$ black balls into an urn. The value x is the number of red balls in a sample of size k that is drawn from the urn without replacement.

Integer Distribution

The integer distribution is also called the discrete uniform distribution. To generate random variates from the integer distribution, specify 'Integer' for the *distname* argument.

The subroutine generates random integer values in a finite set. If you specify one integer parameter, c, then x is drawn uniformly from the set \(\{1, 2, \ldots, c - 1, c\} \). If you specify two integer parameters, a and b with $a \leq b$, then x is drawn uniformly from the set \(\{a, a + 1, \ldots, b-1, b\} \).

Laplace Distribution

To generate random variates from the Laplace distribution, specify 'Laplace' for the *distname* argument. The subroutine generates random values of x in the interval $(-\infty, \infty)$.

The values of x are drawn from the probability density function:

$$f(x) = \frac{1}{2\lambda} \exp\left(-\frac{|x-\theta|}{\lambda}\right)$$

The optional location parameter θ has the default value $\theta = 0$. The optional scale parameter $\lambda > 0$ has the default value $\lambda = 1$.

Logistic Distribution

To generate random variates from the logistic distribution, specify 'Logistic' for the *distname* argument. The subroutine generates random values of x in the interval $(-\infty, \infty)$. The values of x are drawn from the probability density function:

$$f(x) = \frac{\exp\left(-\frac{(x-\theta)}{\lambda}\right)}{\lambda (1 + \exp\left(-\frac{(x-\theta)}{\lambda}\right))^2}$$

The optional location parameter θ has the default value $\theta = 0$. The optional scale parameter $\lambda > 0$ has the default value $\lambda = 1$.
Lognormal Distribution

If a random variable X is lognormally distributed, then $\log(X)$ is normally distributed. To generate random variates from the lognormal distribution, specify 'Lognormal' for the distname argument. The subroutine generates random values of x in the interval $(0, \infty)$. The values of x are drawn from the probability density function:

$$f(x) = \frac{1}{x\lambda \sqrt{2\pi}} \exp\left(-\frac{(\ln(x) - \theta)^2}{2\lambda^2}\right)$$

The optional log-scale parameter θ has the default value $\theta = 0$. The optional shape parameter $\lambda > 0$ has the default value $\lambda = 1$.

Negative Binomial Distribution

To generate random variates from the negative binomial distribution, specify 'NegBinomial' for the distname argument. The subroutine generates values of x in the discrete set $\{0, 1, \ldots, n\}$. The values of x are drawn from the probability mass function:

$$f(x) = \begin{cases} \binom{x+k-1}{k-1}(1-p)^x p^k & \text{for } 0 < p < 1, x = 0, 1, \ldots \\ 1 & \text{for } p = 1, x = 0 \end{cases}$$

The parameter p is the success probability with range $0 < p \leq 1$. The parameter k is an integer that counts the number of successes, with range $k = 1, 2, \ldots$.

Intuitively, x is the number of failures before the kth success during a series of Bernoulli trials with probability of success p.

Normal Distribution

To generate random variates from the normal distribution, specify 'Normal' for the distname argument. The subroutine generates random values of x in the interval $(-\infty, \infty)$. The values of x are drawn from the probability density function:

$$f(x) = \frac{1}{\lambda \sqrt{2\pi}} \exp\left(-\frac{(x - \theta)^2}{2\lambda^2}\right)$$

The optional parameter $\theta (-\infty < \theta < \infty)$ is the mean (location) parameter, which has the default value $\theta = 0$. The optional parameter $\lambda > 0$ is the standard deviation, which has the default value $\lambda = 1$.

Normal Mixture Distribution

To generate random variates from a finite mixture of normal distributions, specify 'NormalMix' for the distname argument. The subroutine generates random values of x in the interval $(-\infty, \infty)$. The values of x are drawn from the probability density function:

$$f(x) = \sum_{i=1}^{n} p_i \phi(x; \mu_i, \sigma_i)$$
where \(\phi(x; \mu_i, \sigma_i) \) is the normal PDF with mean \(\mu_i \) and standard deviation \(\sigma_i \), and where \(p \) is a vector of probabilities such that
\[
\sum_{i=1}^{n} p_i = 1
\]
The parameters \(p, \mu, \) and \(\sigma \) are vectors with \(n \) elements.

Pareto Distribution

To generate random variates from the Pareto distribution, specify 'Pareto' for the `distname` argument. The subroutine generates values of \(x \) in the interval \((k, \infty)\). The values of \(x \) are drawn from the probability density function:
\[
f(x) = \frac{a}{k} \left(\frac{k}{x} \right)^{a+1}
\]
The shape parameter \(a \) is valid for \(a > 0 \). The optional scale parameter \(k > 0 \) has the default value \(k = 1 \).

Poisson Distribution

To generate random variates from the Poisson distribution, specify 'Poisson' for the `distname` argument. The subroutine generates values of \(x \) in the discrete set \(\{0, 1, 2, \ldots\} \). The values of \(x \) are drawn from the probability density function:
\[
f(x) = \frac{m^x e^{-m}}{x!}
\]
The parameter \(m \) is a rate parameter with range \(m > 0 \).

Shifted Gompertz

To generate random variates from the shifted Gompertz distribution, specify 'ShGompertz' for the `distname` argument. The subroutine generates values of \(x \) in the interval \((0, \infty)\). The values of \(x \) are drawn from the following cumulative probability distribution:
\[
F(x) = (1 - \exp(-\tau x)) \exp(-\eta \exp(-\tau x))
\]
The shape parameter \(\eta > 0 \) has the default value \(\eta = 1 \). The inverse scale parameter \(\tau > 0 \) has the default value \(\tau = 1 \). As \(\eta \to 0 \), the shifted Gompertz distribution approaches the exponential distribution with shape parameter \(1/\tau \).

t Distribution

To generate random variates from the \(t \) distribution, specify 'T' for the `distname` argument. The subroutine generates values of \(x \) in the interval \((-\infty, \infty)\). The values of \(x \) are drawn from the probability density function:
\[
f(x) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\sqrt{d\pi} \Gamma\left(\frac{d}{2}\right)} \left(1 + \frac{x^2}{d}\right)^{-\frac{d+1}{2}}
\]
The parameter \(d \) is the degrees of freedom, with the range \(d > 0 \).
Table Distribution

A table distribution (also called a tabled distribution) is a discrete distribution in which you specify the probability that a random variable takes on each of \(n \) values. To generate random variates from a table distribution, specify 'Table' for the `distname` argument. The values of \(x \) are drawn from the probability density function:

\[
 f(i) = \begin{cases}
 p_i & \text{for } i = 1, 2, \ldots, n \\
 1 - \sum_{j=1}^{n} p_j & \text{for } i = n + 1
 \end{cases}
\]

where \(p \) is a vector of probabilities, such that \(0 \leq p \leq 1 \), and \(n \) is the largest integer such that \(n \leq \text{size of } p \) and

\[
 \sum_{j=1}^{n} p_j \leq 1
\]

If \(\sum p_j = 1 \), the subroutine generates values of \(x \) in the discrete set \(\{0, 1, \ldots, n\} \).

Triangle Distribution

To generate random variates from the triangle distribution, specify 'Triangle' for the `distname` argument. The subroutine generates values of \(x \) in the bounded interval \((0, 1)\). The values of \(x \) are drawn from the piecewise linear probability density function:

\[
 f(x) = \begin{cases}
 \frac{2x}{h} & \text{for } 0 \leq x \leq h \\
 \frac{2(1-x)}{1-h} & \text{for } h < x \leq 1
 \end{cases}
\]

The parameter \(h \) is the horizontal location of the peak of the triangle, with range \(0 \leq h \leq 1 \).

Tweedie Distribution

To generate random variates from the Tweedie distribution, specify 'Tweedie' for the `distname` argument. The subroutine generates values of \(x \) in the interval \((0, 1)\). The Tweedie distribution has three parameters: \(p \geq 1 \) is the power parameter, \(\mu > 0 \) is the mean of the distribution, and \(\phi > 0 \) is a scale parameter. The default values for the optional parameters are \(\mu = 1 \) and \(\phi = 1 \). The Tweedie distribution has the property that the variance of the distribution is equal to \(\phi \mu^p \).

The density function is given by

\[
 f(x) = a(x, \phi) \exp \left[\frac{1}{\phi} \left(\frac{x \mu^{1-p}}{1-p} - \kappa(\mu, p) \right) \right]
\]

where \(\kappa(\mu, p) = \mu^{2-p}/(2-p) \) for \(p \neq 2 \) and \(\kappa(\mu, p) = \log(\mu) \) for \(p = 2 \). The function \(a(x, \phi) \) does not have an analytical expression, but is typically represented by an infinite series.

For most modeling tasks, \(1 < p < 2 \). For \(p \) in this range, the Tweedie distribution is a sum of \(N \) gamma random variables, where \(N \) is Poisson distributed. For more information, see the documentation for the SEVERITY procedure in the SAS/ETS User’s Guide. The documentation for the PDF function in SAS Language Reference: Dictionary is also relevant.
Uniform Distribution

To generate random variates from the uniform distribution, specify 'Uniform' for the distname argument. The subroutine generates values of x in the bounded interval (a, b). The values of x are drawn from the constant probability density function:

\[f(x) = \begin{cases}
\frac{1}{b-a} & \text{if } a = b \\
\frac{1}{|b-a|} & \text{if } a \neq b
\end{cases} \]

If you do not specify any parameters, the range of x is (0, 1). If you specify one parameter, c, then the range is (0, c). If you specify two parameters, a and b, then a < x < b.

Wald (Inverse Gaussian) Distribution

To generate random variates from the Wald (inverse Gaussian) distribution, specify 'Wald' or 'IGauss' for the distname argument. The subroutine generates values of x in the interval (0, \infty). The values of x are drawn from the probability density function:

\[f(x) = \left(\frac{\lambda}{2\pi x^3} \right)^{\frac{1}{2}} \exp \left(-\frac{\lambda(x - \theta)^2}{2\theta^2 x} \right) \]

The parameter \(\lambda > 0 \) is a shape parameter. The optional parameter \(\theta \) has the default value \(\theta = 1 \).

Notice that many references, including the MCMC procedure in SAS/STAT software, list \(\theta \) as the first parameter for the inverse Gaussian distribution. However, the \(\theta \) parameter is listed last for the RAND, PDF, CDF, and QUANTILE functions because it an optional parameter.

The RAND function uses a slightly different algorithm for generating the Wald variates. You can specify the 'Wald2' distribution to obtain the same variates that are generated by the RAND function.

Weibull Distribution

To generate random variates from the Weibull distribution, specify 'Weibull' for the distname argument. The subroutine generates values of x in the interval (0, \infty). The values of x are drawn from the probability density function:

\[f(x) = \frac{a}{b} \left(\frac{x}{b} \right)^{a-1} \exp \left(-\left(\frac{x}{b} \right)^a \right) \]

The shape parameters \(a \) and \(b \) have values \(a > 0 \) and \(b > 0 \). The default value of \(b \) is 1.
Summary of Distributions

Table 26.5 describes how parameters of the RANDGEN call correspond to the distribution parameters. Optional arguments are enclosed in angle brackets, along with the default value when the argument is not specified. For example, if you do not supply values for the parameters of the normal distribution, the default values of $\theta = 0$ and $\lambda = 1$ are used.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>distname</th>
<th>parm1</th>
<th>parm2</th>
<th>parm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>'Bernoulli'</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>'Beta'</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Binomial</td>
<td>'Binomial'</td>
<td>p</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>'Cauchy'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square</td>
<td>'ChiSquare'</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM-Poisson</td>
<td>'ConMaxPoi'</td>
<td>λ</td>
<td>ν</td>
<td></td>
</tr>
<tr>
<td>Erlang</td>
<td>'Erlang'</td>
<td>a</td>
<td></td>
<td>$<\lambda = 1>$</td>
</tr>
<tr>
<td>Exponential</td>
<td>'Exponential'</td>
<td>$<\sigma = 1>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme value</td>
<td>'ExtremeValue'</td>
<td>$<\mu = 0>$</td>
<td>$<\sigma = 1>$</td>
<td>$<\xi = 0>$</td>
</tr>
<tr>
<td>$F_{n,d}$</td>
<td>'F'</td>
<td>n</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>'Gamma'</td>
<td>a</td>
<td>$<\lambda = 1>$</td>
<td></td>
</tr>
<tr>
<td>Generalized Poisson</td>
<td>'GenPoisson'</td>
<td>θ</td>
<td>η</td>
<td></td>
</tr>
<tr>
<td>Geometric</td>
<td>'Geometric'</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gompertz</td>
<td>'Gompertz'</td>
<td>$<\lambda = 1>$</td>
<td>$<\theta = 1>$</td>
<td></td>
</tr>
<tr>
<td>Gumbel</td>
<td>'Gumbel'</td>
<td>$<\mu = 0>$</td>
<td>$<\sigma = 1>$</td>
<td></td>
</tr>
<tr>
<td>Hypergeometric</td>
<td>'Hypergeometric'</td>
<td>N</td>
<td>R</td>
<td>n</td>
</tr>
<tr>
<td>Integer</td>
<td>'Integer'</td>
<td>a</td>
<td></td>
<td>$$</td>
</tr>
<tr>
<td>Laplace</td>
<td>'Laplace'</td>
<td>$<\theta = 0>$</td>
<td>$<\lambda = 1>$</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>'Logistic'</td>
<td>$<\theta = 0>$</td>
<td>$<\lambda = 1>$</td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>'Lognormal'</td>
<td>$<\theta = 0>$</td>
<td>$<\lambda = 1>$</td>
<td></td>
</tr>
<tr>
<td>Negative binomial</td>
<td>'NegBinomial'</td>
<td>p</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>'Normal'</td>
<td>$<\theta = 0>$</td>
<td>$<\lambda = 1>$</td>
<td></td>
</tr>
<tr>
<td>Normal mixture</td>
<td>'NormalMix'</td>
<td>p</td>
<td>μ</td>
<td>σ</td>
</tr>
<tr>
<td>Pareto</td>
<td>'Pareto'</td>
<td>a</td>
<td></td>
<td>$<k = 1>$</td>
</tr>
<tr>
<td>Poisson</td>
<td>'Poisson'</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>'T'</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifted Gompertz</td>
<td>'ShGompertz'</td>
<td>$\eta = 1$</td>
<td>$\tau = 1$</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>'Table'</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td>'Triangle'</td>
<td>h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tweedie</td>
<td>'Tweedie'</td>
<td>p</td>
<td>$<\mu = 1>$</td>
<td>$<\phi = 1>$</td>
</tr>
<tr>
<td>Uniform</td>
<td>'Uniform'</td>
<td>$<a = 0>$</td>
<td>$<b = 1>$</td>
<td></td>
</tr>
<tr>
<td>Wald</td>
<td>'Wald' or 'IGauss'</td>
<td>$<\lambda = 1>$</td>
<td>$<\theta = 1>$</td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td>'Weibull'</td>
<td>a</td>
<td>$<b = 1>$</td>
<td></td>
</tr>
</tbody>
</table>

The distname argument can be in lowercase or uppercase, and you need to specify only enough letters to distinguish one distribution from the others, as shown by the following statements:
/* generate 10 samples from a Bernoulli distribution */
r = j(10, 1, .); / * allocate room for samples */
call randgen(r, "Ber", 0.5);

The following example illustrates the RANDGEN call for various distributions:

call randseed(12345);
/ * get four random observations from each distribution */
x = j(1, 4, .);
/ * each row comes from a different distribution */
DiscreteDist = {'Bern','Binom','ConMaxPoi','GenPoi','Geom',
 'Hyper','Integer','NegB','Poisson','Table'};
D = j(nrow(DiscreteDist), 4, .);
i = 1;
call randgen(x, 'Bern', 0.75); D[i,] = x; i = i + 1;
call randgen(x, 'Binom', 0.75, 10); D[i,] = x; i = i + 1;
call randgen(x, 'ConMax', 2.3, 0.4); D[i,] = x; i = i + 1;
call randgen(x, 'GenPoi', 1, 0.7); D[i,] = x; i = i + 1;
call randgen(x, 'Geom', 0.1); D[i,] = x; i = i + 1;
call randgen(x, 'Hyper', 10, 3, 5); D[i,] = x; i = i + 1;
call randgen(x, 'Integer', 1, 10); D[i,] = x; i = i + 1;
call randgen(x, 'NegB', 0.8, 5); D[i,] = x; i = i + 1;
call randgen(x, 'Poisson', 6.1); D[i,] = x; i = i + 1;

p = {0.2 0.5 0.3};
call randgen(x, 'Table', p); D[i,] = x; i = i + 1;
print D[rownname=DiscreteDist label="Discrete"];

ContinDist = {'Beta','Cauchy','ChiSq','Erlang','Expo',
 'ExtremeVal','F','Gamma','Gompertz','Gumbel',
 'Laplace','Logistic','LogN','Normal',
 'NormalMix','Pareto','ShGompertz','T',
 'Triangle','Tweedie','Uniform','Wald','Weib'};
C = j(nrow(ContinDist), 4, .);
i = 1;
call randgen(x, 'Beta', 0.5, 0.4); C[i,] = x; i = i + 1;
call randgen(x, 'Cauchy'); C[i,] = x; i = i + 1;
call randgen(x, 'ChiSq', 22); C[i,] = x; i = i + 1;
call randgen(x, 'Erlang', 7); C[i,] = x; i = i + 1;
call randgen(x, 'Expo'); C[i,] = x; i = i + 1;
call randgen(x, 'Extreme', 0.1, 0.5); C[i,] = x; i = i + 1;
call randgen(x, 'F', 12, 322); C[i,] = x; i = i + 1;
call randgen(x, 'Gamma', 7.25); C[i,] = x; i = i + 1;
call randgen(x, 'Gompertz', 1, 0.5); C[i,] = x; i = i + 1;
call randgen(x, 'Gumbel', 0, 2); C[i,] = x; i = i + 1;
call randgen(x, 'Laplace'); C[i,] = x; i = i + 1;
call randgen(x, 'Logistic'); C[i,] = x; i = i + 1;
call randgen(x, 'LogN'); C[i,] = x; i = i + 1;
call randgen(x, 'Normal'); C[i,] = x; i = i + 1;
p = {0.2 0.5 0.3};
mu = {0 5 10};
sig = {1 1 2};
call randgen(x, 'NormalMix',p,mu,sig); C[i,] = x; i = i + 1;
call randgen(x, 'Pareto', 3, 1); C[i,] = x; i = i + 1;
call randgen(x, 'ShGomp', 0.5, 1.2); C[i,] = x; i = i + 1;
call randgen(x, 'T', 4); C[i,] = x; i = i + 1;
call randgen(x, 'Triangle', 0.7); C[i,] = x; i = i+1;
call randgen(x, 'Tweedie', 1.7); C[i,] = x; i = i+1;
call randgen(x, 'Uniform'); C[i,] = x; i = i+1;
call randgen(x, 'Wald', 1, 2); C[i,] = x; i = i+1;
call randgen(x, 'Weib', 0.25, 2.1); C[i,] = x; i = i+1;
print C[rownname=ContinDist label="Continuous"];

Figure 26.308 Random Numbers from Various Distributions

<table>
<thead>
<tr>
<th>Discrete</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Binom</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ConMaxPoi</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>GenPoi</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Geom</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hyper</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Integer</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NegB</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Poisson</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Continuous</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>0.9468434</td>
<td>0.4544648</td>
<td>0.6459307</td>
<td>0.011023</td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>-0.825261</td>
<td>1.5411411</td>
<td>-4.139702</td>
<td>-0.619614</td>
<td></td>
</tr>
<tr>
<td>ChiSq</td>
<td>17.361673</td>
<td>26.761346</td>
<td>23.274385</td>
<td>10.866499</td>
<td></td>
</tr>
<tr>
<td>Erlang</td>
<td>6.6854394</td>
<td>2.4368303</td>
<td>7.8471153</td>
<td>8.4478236</td>
<td></td>
</tr>
<tr>
<td>Expo</td>
<td>3.49168</td>
<td>1.852013</td>
<td>0.6628163</td>
<td>0.9330359</td>
<td></td>
</tr>
<tr>
<td>ExtremeVal</td>
<td>-0.205707</td>
<td>-0.380827</td>
<td>5.0987735</td>
<td>2.2144298</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.3919449</td>
<td>0.562435</td>
<td>1.4313833</td>
<td>0.8932595</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>9.0062446</td>
<td>9.9090029</td>
<td>11.629442</td>
<td>5.6664198</td>
<td></td>
</tr>
<tr>
<td>Gompertz</td>
<td>0.4878535</td>
<td>0.4083678</td>
<td>0.2269387</td>
<td>0.0566942</td>
<td></td>
</tr>
<tr>
<td>Gumbel</td>
<td>2.8602282</td>
<td>3.5817945</td>
<td>-0.046359</td>
<td>1.2502257</td>
<td></td>
</tr>
<tr>
<td>Laplace</td>
<td>-0.642796</td>
<td>-0.405355</td>
<td>0.0387922</td>
<td>-1.110559</td>
<td></td>
</tr>
<tr>
<td>Logistic</td>
<td>-0.330181</td>
<td>0.6248592</td>
<td>3.0345357</td>
<td>-0.822849</td>
<td></td>
</tr>
<tr>
<td>LogN</td>
<td>0.3848309</td>
<td>0.3067906</td>
<td>2.2291277</td>
<td>1.5444741</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>-0.596858</td>
<td>-0.123449</td>
<td>-0.319319</td>
<td>0.1869868</td>
<td></td>
</tr>
<tr>
<td>NormalMix</td>
<td>11.843406</td>
<td>-1.656049</td>
<td>12.668203</td>
<td>10.082624</td>
<td></td>
</tr>
<tr>
<td>Pareto</td>
<td>1.522683</td>
<td>1.103138</td>
<td>1.0237359</td>
<td>1.10953</td>
<td></td>
</tr>
<tr>
<td>ShGompertz</td>
<td>0.6579323</td>
<td>4.2929889</td>
<td>0.0768349</td>
<td>0.0196648</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-1.186566</td>
<td>-2.7108</td>
<td>-4.127142</td>
<td>0.334233</td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td>0.8571725</td>
<td>0.7602454</td>
<td>0.5846363</td>
<td>0.6371195</td>
<td></td>
</tr>
<tr>
<td>Tweedie</td>
<td>0.0164902</td>
<td>2.8447271</td>
<td>0.3945128</td>
<td>0.48139</td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>0.9185988</td>
<td>0.7517717</td>
<td>0.0511648</td>
<td>0.5227403</td>
<td></td>
</tr>
<tr>
<td>Wald</td>
<td>1.570377</td>
<td>3.3594217</td>
<td>0.274323</td>
<td>1.3845168</td>
<td></td>
</tr>
<tr>
<td>Weib</td>
<td>16.812803</td>
<td>0.0001131</td>
<td>0.536375</td>
<td>0.5118368</td>
<td></td>
</tr>
</tbody>
</table>
RANDMULTINOMIAL Function

RANDMULTINOMIAL(N, NumTrials, Prob);

The RANDMULTINOMIAL function is part of the IMLMLIB library. The RANDMULTINOMIAL function generates a random sample from a multinomial distribution, which is a multivariate generalization of the binomial distribution.

The input parameters are as follows:

- **N** is the number of observations to sample.
- **NumTrials** is the number of trials. \(\text{NumTrials}[j] \geq 0 \), for \(j = 1 \ldots p \).
- **Prob** is a \(1 \times p \) vector of probabilities with \(0 < \text{Prob}[j] \leq 1 \) and \(\sum_{j=1}^{p} \text{Prob}[j] = 1 \).

For each trial, \(\text{Prob}[j] \) is the probability of event \(E_j \), where the \(E_j \) are mutually exclusive and \(\sum_{j=1}^{p} \text{Prob}[j] = 1 \).

The RANDMULTINOMIAL function returns an \(N \times p \) matrix that contains \(N \) observations of NumTrials random draws from the multinomial distribution. Each row of the resulting matrix is an integer vector \(\{X_1, X_2 \ldots X_p\} \) with \(\sum X_j = \text{NumTrials} \). That is, for each row, \(X_j \) indicates how many times event \(E_j \) occurred in NumTrials trials.

If \(X = \{X_1, X_2 \ldots X_p\} \) follows a multinomial distribution with \(n \) trials and probabilities \(\rho = \{\rho_1 \rho_2 \ldots \rho_p\} \), then

- the probability density function for \(x \) is

 \[
 f(x; n, \rho) = \frac{n!}{\prod_{i=1}^{p} x_i!} \prod_{i=1}^{p} \rho_i^{x_i}
 \]

- the expected value of \(X_i \) is \(n \rho_i \).
- the variance of \(X_i \) is \(n \rho_i (1 - \rho_i) \).
- the covariance of \(X_i \) with \(X_j \) is \(-n \rho_i \rho_j \).
- if \(p = 1 \) then \(X \) is constant.
- if \(p = 2 \) then \(X_1 \) is Binomial\((n, \rho_1) \) and \(X_2 \) is Binomial\((n, \rho_2) \).

The following example generates 1,000 samples from a multinomial distribution with three mutually exclusive events. For each sample, 10 events are generated. Each row of the returned matrix \(x \) represents the number of times each event is observed. The example also computes the sample mean and covariance and compares them with the expected values.

```plaintext
call randseed(1);
prob = {0.3, 0.6, 0.1};
NumTrials = 10;
N = 1000;
x = RandMultinomial(N, NumTrials, prob);
```
/* population mean and covariance */
Mean = NumTrials * prob';
Cov = -NumTrials*prob*prob';
/* replace diagonal elements of Cov with Variance */
Variance = NumTrials*prob*(1-prob);
do i = 1 to nrow(prob);
 Cov[i,i] = Variance[i];
end;
SampleMean = mean(x);
SampleCov = cov(x);
print SampleMean Mean, SampleCov Cov;

Figure 26.309 Estimated Mean and Covariance Matrix

<table>
<thead>
<tr>
<th>SampleMean</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.891</td>
<td>6.059</td>
</tr>
<tr>
<td>1.05</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SampleCov</th>
<th>Cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.005124</td>
<td>-1.69126</td>
</tr>
<tr>
<td>-0.313864</td>
<td>2.1</td>
</tr>
<tr>
<td>-1.69126</td>
<td>-0.313864</td>
</tr>
<tr>
<td>2.3198388</td>
<td>2.1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>-0.628579</td>
<td>2.4</td>
</tr>
<tr>
<td>-0.3</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.9424424</td>
<td>-0.3</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

For further details about sampling from the multinomial distribution, see Gentle (2003), or Fishman (1996).

RANDMVT Function

RANDMVT(N, DF, Mean, Cov);

The RANDMVT function is part of the IMLMLIB library. The RANDMVT function returns an \(N \times p \) matrix that contains \(N \) random draws from the Student’s \(t \) distribution with \(DF \) degrees of freedom, mean vector \(Mean \), and covariance matrix \(Cov \).

The inputs are as follows:

- \(N \) is the number of desired observations sampled from the multivariate Student’s \(t \) distribution.
- \(DF \) is a scalar value that represents the degrees of freedom for the \(t \) distribution.
- \(Mean \) is a \(1 \times p \) vector of means.
- \(Cov \) is a \(p \times p \) symmetric positive definite variance-covariance matrix.

If \(X \) follows a multivariate \(t \) distribution with \(v \) degrees of freedom, mean vector \(\mu \), and variance-covariance matrix \(\Sigma \), then

- the probability density function for \(x \) is

\[
 f(x; v, \mu, \Sigma) = \frac{\Gamma((v + p)/2)}{|\Sigma|^{1/2} \left(\pi v \right)^{p/2} \Gamma(v/2)} \left(1 + \frac{\left(x - \mu \right)^T \Sigma^{-1} (x - \mu)}{v} \right)^{-(v+p)/2}
\]
• if \(p = 1 \), the probability density function reduces to a univariate Student’s \(t \) distribution.

• the expected value of \(X_i \) is \(\mu_i \).

• the covariance of \(X_i \) and \(X_j \) is \(\frac{\nu}{\nu - 2} \Sigma_{ij} \) when \(\nu > 2 \).

The following example generates 1,000 samples from a two-dimensional \(t \) distribution with 7 degrees of freedom, mean vector \((1, 2)\), and covariance matrix \(\Sigma \). Each row of the returned matrix \(x \) is a row vector sampled from the \(t \) distribution. The example computes the sample mean and covariance and compares them with the expected values.

call randseed(1);
N = 1000;
DF = 4;
Mean = {1 2};
S = {1 1, 1 5};
Cov = DF/(DF-2) * S; /* population covariance */
x = RandMVT(N, DF, Mean, S);
SampleMean = mean(x);
SampleCov = cov(x);
print SampleMean Mean, SampleCov Cov;

![Image](Figure 26.310)

Figure 26.310 Estimated Mean and Covariance Matrix

<table>
<thead>
<tr>
<th>SampleMean</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0109905</td>
<td>1.9372765</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SampleCov</th>
<th>Cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.955672</td>
<td>2.2581732</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.2581732</td>
<td>10.437216</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

In the preceding example, the columns (marginals) of \(x \) do not follow univariate \(t \) distributions. If you want a sample whose marginals are univariate \(t \), then you need to scale each column of the output matrix:

\[
x = \text{RandMVT}(N, DF, Mean, S);
\]

\[
\text{StdX} = x / \text{sqrt}(T(\text{vecdiag}(S))); /* StdX columns are univariate t */
\]

Equivalently, you can generate samples whose marginals are univariate \(t \) by passing in a correlation matrix instead of a general covariance matrix.

For further details about sampling from the multivariate \(t \) distribution, see Kotz and Nadarajah (2004).

RANDNORMAL Function

\[
\text{RANDNORMAL}(N, Mean, Cov);
\]

The RANDNORMAL function is part of the IMLMLIB library. The RANDNORMAL function returns an \(N \times p \) matrix that contains \(N \) random draws from the multivariate normal distribution with mean vector \(Mean \) and covariance matrix \(Cov \).

The inputs are as follows:
\(N \) is the number of desired observations sampled from the multivariate normal distribution.

\(\text{Mean} \) is a \(1 \times p \) vector of means.

\(\text{Cov} \) is a \(p \times p \) symmetric positive definite variance-covariance matrix.

If \(X \) follows a multivariate normal distribution with mean vector \(\mu \) and variance-covariance matrix \(\Sigma \), then

- the probability density function for \(x \) is
 \[
 f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left(-\frac{(x - \mu)\Sigma^{-1}(x - \mu)^T}{2}\right)
 \]
- if \(p = 1 \), the probability density function reduces to a univariate normal distribution.
- the expected value of \(X_i \) is \(\mu_i \).
- the covariance of \(X_i \) and \(X_j \) is \(\Sigma_{ij} \).

The following example generates 1,000 samples from a two-dimensional multivariate normal distribution with mean vector \((1 2)\) and a given covariance matrix. Each row of the returned matrix \(x \) is a row vector sampled from the multivariate normal distribution. The example computes the sample mean and covariance and compares them with the expected values.

```plaintext
call randseed(1);
N = 1000;
Mean = {1 2};
Cov = {2.4 3, 3 8.1};
x = RandNormal(N, Mean, Cov);
SampleMean = mean(x);
SampleCov = cov(x);
print SampleMean Mean, SampleCov Cov;
```

![Figure 26.311 Estimated Mean and Covariance Matrix](image)

For further details about sampling from the multivariate normal distribution, see Gentle (2003).

RANDWISHART Function

RANDWISHART(\(N, DF, Sigma \));

The RANDWISHART function is part of the IMLMLIB library. The RANDWISHART function returns an
$N \times (p \times p)$ matrix that contains N random draws from the Wishart distribution with DF degrees of freedom. Each row of the returned matrix represents a $p \times p$ matrix.

The inputs are as follows:

- N is the number of desired observations sampled from the distribution.
- DF is a scalar value that represents the degrees of freedom, $DF \geq p$.
- Σ is a $p \times p$ symmetric positive definite matrix.

The Wishart distribution is a multivariate generalization of the gamma distribution. (Note, however, that Kotz, Balakrishnan, and Johnson (2000) suggest that the term “multivariate gamma distribution” should be restricted to those distributions for which the marginal distributions are univariate gamma. This is not the case with the Wishart distribution.) A Wishart distribution is a probability distribution for nonnegative definite matrix-valued random variables. These distributions are often used to estimate covariance matrices.

If a $p \times p$ nonnegative definite matrix X follows a Wishart distribution with parameters v degrees of freedom and a $p \times p$ symmetric positive definite matrix Σ, then

- the probability density function for x is

$$f(x; v, \Sigma) = \frac{|x|^{(v-p-1)/2} \exp\left(-\frac{1}{2} \text{trace}(x \Sigma^{-1})\right)}{2^{pv/2} |\Sigma|^{v/2} \pi^{p(p-1)/4} \prod_{i=1}^{p} \Gamma\left(v^{-1}+1\right)}$$

- if $p = 1$ and $\Sigma = 1$, then the Wishart distribution reduces to a chi-square distribution with v degrees of freedom.
- the expected value of X is $v \Sigma$.

The following example generates 1,000 samples from a Wishart distribution with 7 degrees of freedom and 2×2 matrix parameter S. Each row of the returned matrix x represents a 2×2 nonnegative definite matrix. (You can reshape the ith row of x with the SHAPE function.) The example computes the sample mean and compares it with the expected value.

```plaintext
call randseed(1);
N = 1000;
DF = 7;
S = {1 1, 1 5};
x = RandWishart( N, DF, S );
Mean = DF * S;
SampleMean = shape( mean(x), 2, 2);
print SampleMean Mean;
```

<table>
<thead>
<tr>
<th>SampleMean</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0518633</td>
<td>7</td>
</tr>
<tr>
<td>7.2402925</td>
<td>7</td>
</tr>
<tr>
<td>7.2402925</td>
<td>36.56848</td>
</tr>
</tbody>
</table>

For further details about sampling from the Wishart distribution, see Johnson (1987).
RANPERK Function

\[
\text{RANPERK}(n, k <, \text{numperm}>); \\
\text{RANPERK}(\text{set}, k <, \text{numperm}>);
\]

The RANPERK function generates a random permutation of \(k \) elements from a set of \(n \) elements. The random number seed is set by the RANDSEED subroutine. The RANPERK function is similar to the RANCOMB function. A combination is a sorted permutation of the \(k \) elements.

The first argument, \(\text{set} \), can be a scalar or a vector. If \(\text{set} \) is a scalar, the function returns \(k \) indices in the range 1–\(n \). If \(\text{set} \) is a vector, the number of elements of the vector determines \(n \), and the RANPERK function returns \(k \) elements of \(\text{set} \), which can be numeric or character.

By default, the RANPERK function returns a single random permutation with one row and \(k \) columns. If the \(\text{numperm} \) argument is specified, the function returns a matrix with \(\text{numperm} \) rows and \(k \) columns. Each row of the returned matrix represents a single random draw.

The following statements generate four random permutations that consist of two elements from the set 1, 2, 3:

```plaintext
call randseed(1234);
n = 3;
p = ranperk(n, 2, 4);
print p;
```

Figure 26.313 Two Elements of a Random Permutation

<table>
<thead>
<tr>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1</td>
</tr>
<tr>
<td>1 2</td>
</tr>
<tr>
<td>3 2</td>
</tr>
<tr>
<td>1 3</td>
</tr>
</tbody>
</table>

Alternatively, the following statements compute random permutations that consist of two elements from an unsorted character vector:

```plaintext
q = ranperk({C B A}, 2, 4);
print q;
```

Figure 26.314 Random Permutation of a Character Vector

<table>
<thead>
<tr>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>C A</td>
</tr>
<tr>
<td>C A</td>
</tr>
<tr>
<td>B C</td>
</tr>
<tr>
<td>A C</td>
</tr>
</tbody>
</table>
RANPERM Function

\[
\text{RANPERM}(n); \\
\text{RANPERM}(\text{set, } <, \text{ numperm} >); \\
\]

The RANPERM function generates random permutations of a set with \(n \) elements. The random number seed is set by the RANDSEED subroutine.

The first argument, \(\text{set} \), can be a scalar or a vector. If \(\text{set} \) is a scalar, the function returns indices in the range 1–\(n \). If \(\text{set} \) is a vector, the number of elements of the vector determines \(n \) and the RANPERM function returns elements of \(\text{set} \), which can be numeric or character.

By default, the RANPERM function returns a single random combination with one row and \(n \) columns. If the \(\text{numperm} \) argument is specified, the function returns a matrix with \(\text{numperm} \) rows and \(n \) columns. Each row of the returned matrix represents a single permutation.

The following statements generate five random permutations of the set \{1, 2, 3\}:

\[
\text{call randseed(1234);} \\
n = 3; \\
p = \text{ranperm}(n, 5); \\
\text{print p;} \\
\]

Figure 26.315 Random Permutations of Three Items

| p \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Alternatively, the following statements compute five random permutations of an unsorted character vector:

\[
a = \text{ranperm}([\text{C B A}], 5); \\
\text{print a;} \\
\]

Figure 26.316 Random Permutations of a Character Vector

| a \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>
RANDSEED Call

CALL RANDSEED(seed <, reinit >);

The RANDSEED subroutine sets the initial state for the RANDGEN subroutine and routines that generate random combinations (RANCOMB), permutations (RANPERK and RANPERM), and samples (SAMPLE).

The input arguments to the RANDSEED call are as follows:

seed is a number to be used to initialize the RANDGEN random number generator.
reinit specifies whether the random number stream should be reinitialized after the first initialization, within the same PROC IML session.

The RANDSEED subroutine enables you to specify an initial seed for subsequent RANDGEN calls. If the RANDSEED subroutine is not called, or if you specify 0 as a seed, a seed is generated internally. The initial seed is obtained from the Intel RdRand instruction on CPUs that support that instruction, or from the current datetime value otherwise. For more information, see the documentation for the STREAMINIT call in Base SAS.

The RANDSEED routine is used to generate a reproducible stream of pseudorandom numbers. The optional reinit parameter controls whether the random number stream is reinitialized after it has begun generating random numbers. If the second argument is 1, the stream is reinitialized; otherwise subsequent calls to the RANDSEED subroutine are ignored. To ensure that you are working with an independent random number stream within your PROC IML session, set reinit to 0 or do not specify that argument.

In SAS/IML 14.1, a change was made to the initialization of the Mersenne twister (MT) pseudorandom number generator, which is used by the RANDGEN subroutine and by other functions in SAS/IML software. When the seed is exactly divisible by 8192, the MT algorithm uses the 2002 initialization algorithm (Matsumoto and Nishimura 2002). Otherwise, the MT algorithm is initialized by using the 1998 initialization algorithm (Matsumoto and Nishimura 1998). A SAS NOTE appears when the 2002 initialization is used.

RANGE Function

RANGE(matrix1 <, matrix2, ..., matrix15>);

The RANGE function returns the range of values of a numerical matrix or set of matrices.

Missing values are excluded in the computation. When the arguments contain at least one nonmissing value, the range is defined as the maximum value minus the minimum value. If all arguments are missing, the RANGE function returns a missing value.

The following example uses the RANGE function:

c = {1 -123 13 56 128 -81 12};
r = range(c);
print r;
The RANK function creates a new matrix that contains elements that are the ranks of the corresponding elements of the numerical argument, matrix. The rank of a missing value is a missing value. The ranks of tied values are assigned arbitrarily. (See the description of the RANKTIE function for alternate approaches.)

For example, the following statements produce the ranks of a vector:

```plaintext
x = {2 2 1 0 5};
r = rank(x);
print r;
```

Provided that a vector, x, does not contain missing values, the RANK function can be used to sort the vector, as shown in the following statements:

```plaintext
b = x;
x[,rank(x)] = b;
print x;
```

You can also sort a matrix by using the SORT subroutine. The SORT subroutine handles missing values in the data.

The RANK function can also be used to find anti-ranks of x, as follows:

```plaintext
x = {2 2 1 0 5};
r = rank(x);
a = r;
a[,r] = 1:ncol(x);
print a;
```
Although the RANK function ranks only the elements of numerical matrices, you can rank the elements of a character matrix by using the UNIQUE function, as demonstrated by the following statements:

/* Create RANK-like functionality for character matrices */
start rankc(x);
 s = unique(x); /* the unique function returns a sorted list */
 idx = j(nrow(x), ncol(x));
 ctr = 1; /* there can be duplicate values in x */
 do i = 1 to ncol(s); /* for each unique value */
 t = loc(x = s[i]);
 nDups = ncol(t);
 idx[t] = ctr : ctr+nDups-1;
 ctr = ctr + nDups;
 end;
 return (idx);
finish;

/* call the RANKC module */
x = {every good boy does fine and good and well every day};
rc = rankc(x);
print rc[colnam=x];

/* Notice that ranking is in ASCII order, in which capital letters precede lower case letters. To get case-insensitive behavior, transform the matrix before comparison */
x = {"a" "b" "X" "Y"};
asciiOrder = rankc(x);
alphaOrder = rankc(upcase(x));
print x, asciiOrder, alphaOrder;

<table>
<thead>
<tr>
<th>Row</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a</td>
<td>b</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asciiOrder</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alphaOrder</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 26.321 Ranks of Character Matrices

There is no SAS/IML function that directly computes the linear algebraic rank of a matrix. In linear algebra, the rank of a matrix is the maximal number of linearly independent columns (or rows). You can use the following technique to compute the numerical rank of matrix A:

/* Only four linearly independent columns */
A = {1 0 1 0 0,
 1 0 0 1 0,
 1 0 0 0 1,
 1 0 0 0 0,
 1 0 0 0 0};
0 1 1 0 0,
0 1 0 1 0,
0 1 0 0 1);
rank = round(trace(ginv(a)*a));
print rank;

Figure 26.322 Numerical Rank of a Matrix

<table>
<thead>
<tr>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Another common technique used to examine the rank of a matrix is to look at the number of nonzero singular values in the singular value decomposition of a matrix (see the SVD call). However, keep in mind that numerical computations might result in singular values for a rank-deficient matrix that are small but nonzero.

RANKTIE Function

\[
\text{RANKTIE}(\text{matrix}<, \text{method}>);
\]

The RANKTIE function creates a new matrix that contains elements that are the ranks of the corresponding elements of \(\text{matrix} \). The rank of a missing value is a missing value. The ranks of tied values are computed by using one of several methods.

The arguments to the function are as follows:

- **matrix** specifies the data.
- **method** specifies the method used to compute the ranking of tied values. These methods correspond to those defined by using the TIES= option in the RANK procedure. For details, see the “Concepts” section of the documentation for the RANK procedure in the Base SAS Procedures Guide.

The following values are valid:

- **“Mean”** specifies that tied elements are assigned rankings equal to the mean of the tied elements. This is the default method. This method is known as a fractional competition ranking.

- **“Low”** specifies that tied elements are assigned rankings equal to the minimum order rank of the tied elements. This method is known as a standard competition ranking.

- **“High”** specifies that tied elements are assigned rankings equal to the maximum rank of the tied elements. This method is known as a modified competition ranking.

- **“Dense”** specifies that ranks are consecutive integers that begin with 1 and end with the number of unique, nonmissing values. Tied values are assigned the same rank. This method is known as a dense ranking.

The RANKTIE function differs from the RANK function in that the RANK function breaks ties arbitrarily.

For example, the following statements produce ranks of a vector by using several different methods of breaking ties:
```plaintext
x = {4 4 0 6};
rMean = ranktie(x); /* default is "Mean" */
rLow = ranktie(x, "Low");
rHigh = ranktie(x, "High");
rDense = ranktie(x, "Dense");
print rMean, rLow, rHigh, rDense;

Figure 26.323 Numerical Ranks of a Vector

<table>
<thead>
<tr>
<th></th>
<th>2.5</th>
<th>2.5</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rMean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rLow</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>3</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rHigh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>rDense</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Although the RANKTIE function ranks only the elements of numerical matrices, you can rank the elements of a character matrix by using the UNIQUE function, as demonstrated by the following statements:

```plaintext
/* Create RANKTIE-like functionality for character matrices */
start ranktiec(x);
  s = unique(x);
  idx = j(nrow(x), ncol(x));
  ctr = 1; /* there can be duplicate values in x */
  do i = 1 to ncol(s); /* for each unique value */
    t = loc(x = s[i]);
    nDups = ncol(t);
    idx[t] = ctr+(nDups-1)/2; /* =(ctr:ctr+nDups-1)[:] */
    ctr = ctr + nDups;
  end;
  return (idx);
finish;

/* call the RANKTIEC module */
x = {every good boy does fine and good and well every day};
rtc = ranktiec(x);
print rtc[colname=x];
```

Figure 26.324 Numerical Ranks of a Character Vector

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rtc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVERY GOOD BOY DOES FINE AND GOOD AND WELL EVERY DAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW1</td>
<td>6.5</td>
<td>9.5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>9.5</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RATES Function

\[\text{RATES}(\text{rates, oldfreq, newfreq}); \]

The RATES function computes a column vector of (per-period, such as per-year) interest rates converted from one base to another. The arguments to the RATES function are as follows:

- **rates** is an \(n \times 1 \) column vector of rates that correspond to the old base. Elements should be positive.
- **oldfreq** is a scalar that represents the old base. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If \(-1\), the rates represent discount factors. No other negative values are accepted.
- **newfreq** is a scalar that represents the new base. If positive, it represents discrete compounding as the reciprocal of the number of compoundings per period. If zero, it represents continuous compounding. If \(-1\), the rates represent discount factors. No other negative values are accepted.

Let \(D(t) \) be the discount function, which is the present value of a unit amount to be received \(t \) periods from now. The discount function can be expressed in the following ways:

- with per-unit-time-period discount factors \(d_t \):
 \[D(t) = d_t^t \]
- with continuous compounding:
 \[D(t) = e^{-\rho t} \]
- with discrete compounding:
 \[D(t) = (1 + \rho)^{-t/f} \]
 where \(0 < f < 1 \) is the frequency, the reciprocal of the number of compoundings per unit time period.

The RATES function converts between these three representations.

For example, the following example produces the output shown in Figure 26.325:

\[
\begin{align*}
\text{rates} &= T(\text{do}(0.1, 0.3, 0.1)) ; \\
\text{oldfreq} &= 0 ; \\
\text{newfreq} &= 0 ; \\
\text{rates} &= \text{rates}(\text{rates, oldfreq, newfreq}) ; \\
\text{print rates} ;
\end{align*}
\]

Figure 26.325 Interest Rates

<table>
<thead>
<tr>
<th>rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
</tr>
</tbody>
</table>
RATIO Function

\[\text{RATIO}(ar, ma, \text{terms } <, \text{dim }>) ; \]

The RATIO function divides matrix polynomials.

The arguments to the RATIO function are as follows:

- \(ar \) is an \(n \times (ns) \) matrix that represents a matrix polynomial generating function, \(\Phi(B) \), in the variable \(B \). The first \(n \times n \) submatrix represents the constant term and must be nonsingular, the second \(n \times n \) submatrix represents the first-order coefficients, and so on.

- \(ma \) is an \(n \times (mt) \) matrix that represents a matrix polynomial generating function, \(\Theta(B) \), in the variable \(B \). The first \(n \times m \) submatrix represents the constant term, the second \(n \times m \) submatrix represents the first-order term, and so on.

- \(\text{terms} \) is a scalar that contains the number of terms to be computed, denoted by \(r \) in the following discussion. This value must be positive.

- \(\text{dim} \) is a scalar that contains the value of \(m \), a dimension of the matrix \(ma \). The default value is 1.

The RATIO function multiplies a matrix of polynomials by the inverse of another matrix of polynomials. It is useful for expressing univariate and multivariate ARMA models in pure moving average or pure autoregressive forms.

The value returned is an \(n \times (mr) \) matrix that contains the terms of \(\Phi(B)^{-1}\Theta(B) \) considered as a matrix of rational functions in \(B \) that have been expanded as power series.

The RATIO function can be used to consolidate the matrix operators that are used in a multivariate time series model of the form

\[\Phi(B)Y_t = \Theta(B)\epsilon_t \]

where \(\Phi(B) \) and \(\Theta(B) \) are matrix polynomial operators whose first matrix coefficients are identity matrices.

The RATIO function can be used to compute a truncated form of \(\Psi(B) = \Phi(B)^{-1}\Theta(B) \) for the equivalent infinite-order model

\[Y_t = \Psi(B)\epsilon_t \]

The RATIO function can also be used for simple scalar polynomial division, giving a truncated form of \(\theta(x)/\phi(x) \) for two scalar polynomials \(\theta(x) \) and \(\phi(x) \).

The cumulative sum of the elements of a column vector \(x \) can be obtained by using the following statement:

\[\text{ratio}(\{ 1 -1 \}, x, \text{ncol}(x)); \]

The following example defines polynomial coefficients that are used in a multivariate ARMA(1,1) model and computes the ratio of the polynomials:

\[
\text{ar} = \{1 \ 0 \ -0.5 \ \ 2, \\
0 \ 1 \ 3 \ -0.8\};
\]

\[
\text{ma} = \{1 \ 0 \ 0.9 \ 0.7, \\
0 \ 1 \ 2 \ -0.4\};
\]

\[
\text{psi} = \text{ratio}(\text{ar}, \text{ma}, 4, 2);
\]

\[
\text{print} \ \text{psi};
\]
Figure 26.326 The Ratio of Polynomials

<table>
<thead>
<tr>
<th>psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1.4 -1.3 2.7 -1.45 11.35 -9.165</td>
</tr>
<tr>
<td>0 1 -1 0.4 -5 4.22 -12.1 7.726</td>
</tr>
</tbody>
</table>

RDODT and RUPDT Calls

```fortran
CALL RDODT(def, rup, bup, sup, r, z < , b> < , y> < , ssq> );
CALL RUPDT(rup, bup, sup, r, z < , b> < , y> < , ssq> );
```

If $A = QR$ is the QR decomposition of the matrix A, the RUPDT subroutine enables you to efficiently recompute the R matrix when a new row is added to A. This is called an update. Similarly, the RDODT subroutine enables you to efficiently recompute the R matrix when an existing row is deleted from A. This is called a downdate. You can also use the RDODT and RUPDT subroutines to downdate and update Cholesky decompositions.

The RDODT and RUPDT subroutines return the values:

- def is only used for downdating, and it specifies whether the downdating of matrix R by using the q rows in argument z has been successful. The result $def=2$ means that the downdating of R by at least one row of Z leads to a singular matrix and cannot be completed successfully (since the result of downdating is not unique). In that case, the results rup, bup, and sup contain missing values only. The result $def=1$ means that the residual sum of squares, ssq, could not be downdated successfully and the result sup contains missing values only. The result $def=0$ means that the downdating of R by Z was completed successfully.

- rup is the $n \times n$ upper triangular matrix R that has been updated or downdated by using the q rows in Z.

- bup is the $n \times p$ matrix B of right-hand sides that has been updated or downdated by using the q rows in argument y. If the argument b is not specified, bup is not computed.

- sup is a p vector of square roots of residual sum of squares that is updated or downdated by using the q rows of argument y. If ssq is not specified, sup is not computed.

The input arguments to the RDODT and RUPDT subroutines are as follows:

- r specifies an $n \times n$ upper triangular matrix R to be updated or downdated by the q rows in Z. Only the upper triangle of R is used; the lower triangle can contain any information.

- z specifies a $q \times n$ matrix Z used rowwise to update or downdate the matrix R.

- b specifies an optional $n \times p$ matrix B of right-hand sides that have to be updated or downdated simultaneously with R. If b is specified, the argument y must also be specified.

- y specifies an optional $q \times p$ matrix Y used rowwise to update or downdate the right-hand side matrix B. If b is specified, the argument y must also be specified.

- ssq is an optional p vector that, if b is specified, specifies the square root of the error sum of squares that should be updated or downdated simultaneously with R and B.
The upper triangular matrix R of the QR decomposition of an $m \times n$ matrix A,

$$A = QR,$$

where $Q'Q = QQ' = I_m$

is recomputed efficiently in two cases:

- **update**: An n vector z is added to matrix A.
- **downdate**: An n vector z is deleted from matrix A.

Computing the whole QR decomposition of matrix A by Householder transformations requires $4mn^2 - 4n^3 / 3$ floating-point operations, whereas updating or downdating the QR decomposition (by Givens rotations) of one row vector z requires only $2n^2$ floating-point operations.

If the QR decomposition is used to solve the full-rank linear least squares problem

$$\min_x \|Ax - b\|^2 = \text{ssq}$$

by solving the nonsingular upper triangular system

$$x = R^{-1}Q'b$$

then the RUPDT and RDODT subroutines can be used to update or downdate the p-transformed right-hand sides $Q'B$ and the residual sum-of-squares p vector ssq provided that for each n vector z added to or deleted from A there is also a p vector y added to or deleted from the $m \times p$ right-hand-side matrix B.

If the arguments z and y of the subroutines RUPDT and RDODT contain $q > 1$ row vectors for which R (and $Q'B$, and eventually ssq) is to be updated or downdated, the process is performed stepwise by processing the rows z_k (and y_k), $k = 1, \ldots, q$, in the order in which they are stored.

The QR decomposition of an $m \times n$ matrix A, $m \geq n$, rank(A) = n,

$$A = QR,$$

where $Q'Q = QQ' = I_m$

corresponds to the Cholesky factorization

$$C = R'R,$$

where $C = A'A$

of the positive definite $n \times n$ crossproduct matrix $C = A'A$. In the case where $m \geq n$ and rank(A) = n, the upper triangular matrix R computed by the QR decomposition (with positive diagonal elements) is the same as the one computed by Cholesky factorization except for numerical error,

$$A'A = (QR)'(QR) = R'R$$

Adding a row vector z to matrix A corresponds to the rank-1 modification of the crossproduct matrix C

$$\widetilde{C} = C + z'z, \text{ where } \widetilde{C} = \widetilde{A}'\widetilde{A}$$

and the $(m + 1) \times n$ matrix \widetilde{A} contains all rows of A with the row z added.

Deleting a row vector z from matrix A corresponds to the rank-1 modification

$$C^* = C - z'z, \text{ where } C^* = A^*A^*$$
and the \((m - 1) \times n\) matrix \(A^*\) contains all rows of \(A\) with the row \(z\) deleted. Thus, you can also use the subroutines RUPDT and RDODT to update or downdate the Cholesky factor \(R\) of a positive definite crossproduct matrix \(C\) of \(A\).

The process of downdating an upper triangular matrix \(R\) (and eventually a residual sum-of-squares vector \(ssq\)) is not always successful. First of all, the downdated matrix \(R\) could be rank-deficient. Even if the downdated matrix \(R\) is of full rank, the process of downdating can be ill-conditioned and does not work well if the downdated matrix is close (by rounding errors) to a rank-deficient one. In these cases, the downdated matrix \(R\) is not unique and cannot be computed by subroutine RDODT. If \(R\) cannot be computed, \(def\) returns 2, and the results \(rup\), \(bup\), and \(sup\) return missing values.

The downdating of the residual sum-of-squares vector \(ssq\) can be a problem, too. In practice, the downdate formula

\[
ssq_{\text{new}} = \sqrt{ssq_{\text{old}} - ssq_{\text{dod}}}
\]

cannot always be computed because, due to rounding errors, the radicand can be negative. In this case, the result vector \(sup\) returns missing values, and \(def\) returns 1.

You can use various methods to compute the \(p\) columns \(x_k\) of the \(n \times p\) matrix \(X\) that minimize the \(p\) linear least squares problems with an \(m \times n\) coefficient matrix \(A\), \(m \geq n\), rank\((A) = n\), and \(p\) right-hand-side vectors \(b_k\) (stored columnwise in the \(m \times p\) matrix \(B\)).

The methods in this section use the following simple example:

```c
a = [ 1 3 ,
     2 2 ,
     3 1 ];
b = [ 1, 1, 1];
m = nrow(a);
n = ncol(a);
p = ncol(b);

* Cholesky decomposition of crossproduct matrix:

    /* form and solve the normal equations */
    aa = a` * a; ab = a` * b;
    r = root(aa);
    x = trisolv(2, r, ab);
    x = trisolv(1, r, x);
    print x;

* QR decomposition by Householder transformations:

    call qr(qtb, r, piv, lindep, a, , b);
    x = trisolv(1, r[, piv], qtb[1:n,]);

* Stepwise update by Givens rotations:
```
\[r = j(n, n, 0); \quad \text{qtb} = j(n, p, 0); \quad \text{ssq} = j(1, p, 0); \]

\[
\text{do i = 1 to m;}
\]
\[
\quad z = a[i,];
\]
\[
\quad y = b[i,];
\]
\[
\quad \text{call rupdt(rup, bup, sup, r, z, qtb, y, ssq);}
\]
\[
\quad r = rup;
\]
\[
\quad \text{qtb} = bup;
\]
\[
\quad \text{ssq} = sup;
\]
\[
\text{end;}
\]
\[
\quad x = \text{trisolv}(1, r, \text{qtb});
\]

Or, equivalently:

\[
\]\\[r = j(n, n, 0); \quad \text{qtb} = j(n, p, 0); \quad \text{ssq} = j(1, p, 0); \]
\[
\text{call rupdt(rup, bup, sup, r, a, qtb, b, ssq);} \]
\[
\quad x = \text{trisolv}(1, rup, bup);\]

- Singular value decomposition:

\[
\text{call svd(u, d, v, a);} \]
\[
\quad d = \text{diag}(1 / d); \]
\[
\quad x = v \ast d \ast u^\prime \ast b; \]

For the preceding \(3 \times 2\) example matrix \(a\), each method obtains the unique LS estimator:

\[
\text{ss} = \text{ssq(a \ast x - b);} \]
\[
\text{print ss x;} \]

Figure 26.327 Least Squares Solution and Sum of Squared Residuals

<table>
<thead>
<tr>
<th>(ss)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.465E-31</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
</tr>
</tbody>
</table>

To compute the (transposed) matrix \(Q\), you can use the following technique:

\[
\text{r} = \text{repeat}(0, n, n); \]
\[
\text{y} = i(m);\]
\[
\text{qt} = \text{repeat}(0, n, m); \]
\[
\text{call rupdt(rup, qtup, sup, r, a, qt, y);} \]
\[
\text{print qtup;} \]

Figure 26.328 Transposed Matrix

<table>
<thead>
<tr>
<th>(qtup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2672612 0.5345225 0.8017837</td>
</tr>
<tr>
<td>-0.872872 -0.218218 0.4364358</td>
</tr>
</tbody>
</table>
READ Statement

```
READ <range> <VAR operand> <WHERE(expression)> <INTO name <[ROWNAME=row-name COLNAME=column-name]> > ;
```

The READ statement reads observations from the current SAS data set. For example, the following statements read data from the Sashelp.Class data set:

```
use Sashelp.Class;
read all var {Sex Height}; /* creates vectors Sex and Height */
read all var _NUM_ into X[colname=varNames]; /* numerical data */
read all var {Weight} where(Sex='M'); /* vector of male weights */
read point 10 var {Name}; /* 10th name in data set */
close Sashelp.Class;
```

See Chapter 7 for further examples.

The arguments to the READ statement are as follows:

- **range** specifies a range of observations. If **range** is not specified, the current observation is read. You can specify a range of observations by using the ALL, CURRENT, NEXT, AFTER, and POINT keywords, as described in the section “Process a Range of Observations” on page 102.

- **operand** selects a set of variables. If the **VAR** clause is omitted, all variables are read into vectors whose names are identical to the names of the variables in the data set. As described in the section “Select Variables with the **VAR** Clause” on page 103, you can specify variable names by using a matrix literal, a character matrix, an expression, or the _ALL_, _CHAR_, or _NUM_ keywords.

- **expression** specifies a criterion by which certain observations are selected. If the **WHERE** clause is omitted, no subsetting occurs. The optional **WHERE** clause conditionally selects observations that are contained within the **range** specification. For details about the **WHERE** clause, see the section “Process Data by Using the **WHERE** Clause” on page 104.

- **name** is the name of the target matrix.

- **row-name** is a character matrix or quoted literal that contains descriptive row labels.

- **column-name** is a character matrix or quoted literal that contains descriptive column labels.

The **range**, **VAR**, **WHERE**, and **INTO** clauses are all optional and can be specified in any order.

Use the READ statement to read variables or records from the current SAS data set into column matrices of the **VAR** clause or into the single matrix of the **INTO** clause. When the **INTO** clause is used, each variable in the **VAR** clause becomes a column of the target matrix, and all variables in the **VAR** clause must be of the same type. If you specify no **VAR** clause, the default variables for the **INTO** clause are all numeric variables. Read all character variables into a target matrix by using **VAR _CHAR_**.

Reading Variables into Columns of a Matrix

When you use the **INTO** clause, the specified variables are read into the columns of a matrix.

You can specify **ROWNAME=** and **COLNAME=** matrices as part of the **INTO** clause. The **COLNAME=** matrix specifies the name of a new character matrix to be created. This **COLNAME=** matrix is created...
in addition to the target matrix of the INTO clause and contains variable names from the input data set corresponding to columns of the target matrix. The COLNAME= matrix has dimension 1×nvar, where nvar is the number of variables contributing to the target matrix.

The ROWNAME= option specifies the name of a single character variable in the input data set. The values of this variable are put in a character matrix with the same name as the variable. This matrix has the dimension nobsx1, where nobsx is the number of observations in the range of the READ statement.

Row and column names created via a READ statement are permanently associated with the INTO matrix. You do not need to use a MATTRIB statement to get this association.

REMOVE Function

```latex
\text{REMOVE}(\text{matrix}, \text{indices});
```

The REMOVE function discards elements from a matrix. The arguments to the REMOVE function are as follows:

- `matrix` is a numeric or character matrix or literal.
- `indices` specifies the indices of elements of `matrix` to remove.

The REMOVE function returns (as a row vector) a subset of the elements of the first argument. Elements that correspond to indices in the second argument are removed. The elements of the first argument are enumerated in row-major order, and the indices must be in the range 1 to np, where matrix is an n×p matrix. Nonintegral indices are truncated to their integer part. You can repeat the indices and give them in any order. If all elements are removed, the result is an empty matrix with zero rows and zero columns.

The following statements remove the third element, creating a row vector with three elements:

```latex
x = \{5 \ 6, 7 \ 8\};
a = \text{remove}(x, 3); / * remove element 3 */
\text{print } a;
```

Figure 26.329 Result of Removing an Element

```
a
\hline
5 & 6 & 8
\hline
```

The following statements remove all but the fourth element:

```latex
r = \{3 \ 2 \ 3 \ 1\};
b = \text{remove}(x, r); / * equivalent to removing elements 1:3 */
\text{print } b;
```

Figure 26.330 Result of Removing Several Elements

```
b
\hline
8
\hline
```

The output shown in **Figure 26.330** shows that repeated indices are ignored.
REMOVE Statement

```
REMOVE < MODULE=(module-list) > < matrix-list > ;
```

The REMOVE statement removes modules and matrices from storage.

The arguments to the REMOVE statement are as follows:

- `module-list` specifies a module or modules to remove from storage.
- `matrix-list` specifies a matrix or matrices to remove from storage.

The REMOVE statement removes matrices and modules from the current library storage. For example, the following statement removes the three modules A, B, and C and the matrix X:

```
remove module=(A B C) X;
```

The special operand `ALL` can be used to remove all matrices or all modules or both. For example, the following statement removes all stored items:

```
remove _all_ module=_all_;
```

For additional and related information, see Chapter 20, “Storage Features,” and the descriptions of the LOAD, STORE, RESET, and SHOW statements.

RENAME Call

```
CALL RENAME(< libref, > member-name, new-name);
```

The RENAME subroutine renames a SAS data set.

The arguments to the RENAME subroutine are as follows:

- `libref` is a character matrix or quoted literal that contains the name of the SAS data library.
- `member-name` is a character matrix or quoted literal that contains the current name of the data set.
- `new-name` is a character matrix or quoted literal that contains the new data set name.

The RENAME subroutine renames a SAS data set in the specified library. All of the arguments can directly be specified in quotes, although quotes are not required. If a one-level data set name is specified, the libref specified by the RESET DEFLIB statement is used. Examples of valid statements follow:

```
call rename("a", "b");
call rename(a,b);
call rename(work,a,b);
```

REPEAT Function

```
REPEAT(x, nrow, ncol);
REPEAT(x, freq);
```
The REPEAT function creates a matrix of repeated values. There are two ways to specify the syntax. The first syntax repeats the entire matrix \(nrow \times ncol\) times. The arguments for this syntax are as follows:

\[
\begin{align*}
 x & \quad \text{is a numeric matrix or literal.} \\
 nrow & \quad \text{specifies the number of times matrix is repeated down rows.} \\
 ncol & \quad \text{specifies the number of times matrix is repeated across columns.}
\end{align*}
\]

The REPEAT function creates a new matrix by repeating the values of the argument matrix \(nrow \times ncol\) times: \(ncol\) times across the rows, and \(nrow\) times down the columns. The matrix argument can be numeric or character. For example, the following statements form a new matrix that consists of two vertical and three horizontal copies of \(x\):

\[
\begin{align*}
 x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; \\
 y = \text{repeat}(x, 2, 3); \\
 \text{print } y;
\end{align*}
\]

![Figure 26.331 Repeated Values](image)

\[
\begin{array}{cccc}
 y & \\
 1 & 2 & 1 & 2 \\
 3 & 4 & 3 & 4 \\
 1 & 2 & 1 & 2 \\
 3 & 4 & 3 & 4
\end{array}
\]

A second way to call the REPEAT function is to provide an argument, \(freq\) that has the same number of elements as \(x\). The return value is a row vector in which \(x[1]\) is repeated \(freq[1]\) times, \(x[2]\) is repeated \(freq[2]\) times, and so forth, where the elements of \(x\) are enumerated in row-major order. Each element of \(freq\) should be a nonnegative integer. The return value will have \(\sum(freq)\) elements. This is shown in the following example:

\[
\begin{align*}
 z = \text{repeat}(x, \{2 3 0 1\}); \\
 \text{print } z;
\end{align*}
\]

![Figure 26.332 Repeated Values from a Frequency Vector](image)

\[
\begin{array}{cccc}
 z & \\
 1 & 1 & 2 & 2 & 2 & 4
\end{array}
\]

REPLACE Statement

```
REPLACE <range> <VAR operand> <WHERE(expression)> ;
```

The REPLACE statement replaces values of observations in a SAS data set.

The arguments to the REPLACE statement are as follows:
range specifies a range of observations. You can specify a range of observations by using the ALL, CURRENT, NEXT, AFTER, and POINT keywords, as described in the section “Process a Range of Observations” on page 102.

operand specifies a set of variables. As described in the section “Select Variables with the VAR Clause” on page 103, you can specify variable names by using a matrix literal, a character matrix, an expression, or the _ALL_, _CHAR_, or _NUM_ keywords.

expression specifies a criterion by which certain observations are selected. If the WHERE clause is omitted, no subsetting occurs. The optional WHERE clause conditionally selects observations that are contained within the range specification. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

The REPLACE statement replaces the values of observations in a SAS data set with current values of matrices with the same name. Use the range, VAR, and WHERE arguments to limit replacement to specific variables and observations. Replacement matrices should be the same type as the data set variables. The REPLACE statement uses matrix elements in row order, replacing the value in the ith observation with the ith matrix element. If there are more observations in range than matrix elements, the REPLACE statement continues to use the last matrix element.

For example, the following statements increment the weights of all males in a data set:

```sas
data class;
  set Sashelp.Class;
run;

proc iml;
  edit class; /* open data set for edit */
  read all var {weight} where(sex="M");
  weight = weight + 5; /* add 5 to male weights */
  replace all var {weight} where(sex="M");
  close class;
```

RESET Statement

```sas
RESET <options> ;
```

The RESET statement sets processing options. The options are described in the following list. Note that the prefix NO turns off the feature where indicated. For options that take operands, the operand should be a literal, a name of a matrix that contains the value, or an expression in parentheses. The SHOW OPTIONS statement displays the current settings of options.

AUTONAME | NOAUTONAME

specifies whether rows are automatically labeled ROW1, ROW2, and so on, and columns are labeled COL1, COL2, and so on, when a matrix is printed. Row-name and column-name attributes specified in the PRINT statement or associated via the MATTRIB statement override the default labels. The AUTONAME option causes the SPACES option to be reset to 4. The default is NOAUTONAME.
CENTER | NOCENTER
specifies whether output from the PRINT statement is centered on the page. The default is CENTER. This resets the global CENTER/NOCENTER option for the SAS session.

CLIP | NOCLIP
specifies whether SAS/IML graphs are automatically clipped outside the viewport; that is, any data falling outside the current viewport are not displayed. NOCLIP is the default.

DEFLIB=operand
specifies the default libref for SAS data sets when no other libref is given. This defaults to USER if a USER libref is set up, or WORK if not. The libref operand can be specified with or without quotes.

DETAILS | NODETAILS
specifies whether additional information is printed from a variety of operations, such as when files are opened and closed. The default is NODETAILS.

EIGEN93 | NOEIGEN93
specifies the method used to compute eigenvalues and eigenvectors. On Linux and 64-bit Windows computers that contain vendor-supplied linear algebra subroutines (such as the Intel® Math Kernel Library), SAS/IML can call the vendor-supplied subroutines for eigenvalue computations. The vendor-supplied routines are called if the NOEIGEN93 option is set. If the EIGEN93 option is set, or if a vendor-supplied subroutine is not available, then SAS/IML will use the eigenvalue routines from SAS 9.3. The default value is NOEIGEN93.

FLOW | NOFLOW
specifies whether operations are shown as executed. It is used for debugging only. The default is NOFLOW.

FUZZ <=number> | NOFUZZ
specifies whether very small numbers are printed as zero rather than in scientific notation. If the absolute value of the number is less than the value specified in number, it is printed as 0. The number argument is optional, and the default value varies across hosts but is typically around 1E−12. The default is NOFUZZ.

FW=number
sets the field width for printing numeric values. The default field width is 9.

LINESIZE=n
specifies the linesize for printing. The default value is usually 78. This resets the global LINESIZE option for the SAS session.

LOG | NOLOG
specifies whether output is routed to the SAS Log rather than to the LISTING destination. In the log, the results are interleaved with the statements and messages. The RESET LOG has no effect if the ODS LISTING destination is not active. The default value is NOLOG, which means that output is sent to the open ODS destinations, but not to the SAS Log.

NAME | NONAME
specifies whether the matrix name or label is printed with the value for the PRINT statement. The default is NAME.
PAGESIZE=n
specifies the pagesize for printing. The default value is inherited from the SAS environment. Changing the

PAGESIZE=
option also changes the global PAGESIZE option.

PRINT | NOPRINT
specifies whether the final results from assignment statements are printed automatically. NOPRINT is the default.

PRINTADV=n
inserts blank lines into the log before printing out the value of a matrix. The default, PRINTADV=2, causes two blank lines to be inserted.

PRINTALL | NOPRINTALL
specifies whether the intermediate and final results are printed automatically. The default is NOPRINT-ALL.

SPACES=n
specifies the number of spaces between adjacent matrices printed across the page. The default value is 1, except when AUTONAME is on. Then, the default value is 4.

STORAGE=<libref.>memname;
specifies the file to be the current library storage for STORE and LOAD statements. The default library storage is WORK.IMLSTOR. The libref argument is optional and defaults to Sasuser. It can be specified with or without quotes.

RESUME Statement
RESUME ;
The RESUME statement enables you to continue execution from the line in a module where the most recent PAUSE statement was executed. PROC IML issues an automatic pause when an error occurs inside a module. If a module was paused because of an error, the RESUME statement resumes execution immediately after the statement that caused the error. The SHOW PAUSE statement displays the current state of all paused modules.

RETURN Statement
RETURN < (operand) > ;
The RETURN statement causes a program to return to a previous calling point.

The RETURN statement with an operand is used in function modules that return a value. The operand can be a variable name or an expression. It is evaluated and the value is returned. Parentheses are optional. The RETURN statement without an argument is used to return from a user-defined subroutine.
You can also use the RETURN statement in conjunction with a LINK statement. If a LINK statement has been issued, the RETURN statement returns control to the statement that follows the LINK statement. See the description of the LINK statement. Also, see Chapter 6 for details.

If a RETURN statement is encountered outside a module, execution is stopped as with a STOP statement.

The following examples use the RETURN statement to exit from modules:

```
start sum1(a, b);
    sum = a+b;
    return(sum);
finish;

start sum2(s, a, b);
    s = a+b;
    return;
finish;

x = sum1(2, 3);
run sum2(y, 4, 5);
print x y;
```

Figure 26.333 Return from Module Calls

```
  x  y
5  9
```

ROOT Function

```
ROOT(matrix <, OnError>);
```

The ROOT function performs the Cholesky decomposition of a symmetric and positive definite matrix. The arguments are as follows:

- **matrix** specifies a symmetric and positive definite matrix.
- **OnError** is an optional string that controls the behavior of the function when matrix is not positive definite. The default behavior is to stop with an error if matrix is not positive definite. If the string has the value “NoError”, the function returns a matrix of missing values but does not stop with an error.

The Cholesky decomposition factors the symmetric, positive definite matrix, A, into the product

```
A = U'U
```

where U is upper triangular.

For example, the following statements compute the upper-triangular matrix, U, in the Cholesky decomposition of a matrix:
A = \{25, 0, 5,
 0, 4, 6,
 5, 6, 59\};
U = \text{root}(A);
print U;

Figure 26.334 Cholesky Decomposition

\[
U = \begin{pmatrix}
 5 & 0 & 1 \\
 0 & 2 & 3 \\
 0 & 0 & 7 \\
\end{pmatrix}
\]

If you need to solve a linear system and you already have a Cholesky decomposition of your matrix, then use the `TRISOLV` function as illustrated by the following statements:

\[
b = \{5, 2, 53\};
/* Want to solve A * v = b.
 First solve \(U^\top z = b \),
 then solve \(U v = z \ */
 z = \text{trisolv}(2, U, b);
 v = \text{trisolv}(1, U, z);
print v;
\]

Figure 26.335 Solution to a Linear System

\[
\begin{pmatrix}
 0 \\
 -1 \\
 1 \\
\end{pmatrix}
\]

The \text{ROOT} function performs most of its computations in the memory allocated for returning the Cholesky decomposition.

You can use the optional argument to test whether a matrix is positive definite, as shown in the following statements:

```plaintext
call randseed(12345);
count = 0;
x = j(3,3);
do i = 1 to 10;
   call randgen(x,"Normal");
   m = x` + x + 2*I(3); /* symmetric, but might not be pos. def. */
   g = \text{root}(m, "NoError");
   if all(g=. then count = count + 1;
end;
msg = char(count) + " out of 10 matrices were not positive definite";
print msg;
```
ROW Function

\[\text{ROW}(x); \]

The ROW function is part of the IMLMLIB library. The ROW function returns a matrix that has the same dimensions as the \(x \) matrix and whose \(i \)th row has the value \(i \). You can use the ROW and COL function to extract elements of a matrix. See the COL function for an example.

You can also use the ROW function to generate an ID variable when you convert data from a wide format to a long format. For example, the following statements show how to generate a column vector that has values \(\{1, 1, 1, 2, 2, 2, \ldots, 5, 5, 5\} \):

```plaintext
NumSubjects = 5;  /* number of subjects */
NumRepeated = 3;  /* number of repeated obs per subject */
Z = row(j(NumSubjects, NumRepeated));
Subj = shape(Z, 0, 1);  /* \{1, 1, 1, 2, 2, 2, \ldots, 5, 5, 5\} */
```

ROWCAT Function

\[\text{ROWCAT}(\text{matrix} <, \text{rows} <, \text{columns} >); \]

The ROWCAT function concatenates rows of a character matrix without using blank compression. In particular, the function takes a character matrix or submatrix as its argument and creates a new matrix with one column whose elements are the concatenation of all row elements into a single string.

The arguments to the ROWCAT function are as follows:

- **matrix** is a character matrix or quoted literal.
- **rows** select the rows of \(\text{matrix} \).
- **columns** select the columns of \(\text{matrix} \).

If the input matrix has \(n \) rows and \(m \) columns, the result will have \(n \) rows and 1 column. The element length of the result is \(m \) times the element length of the argument. The optional rows and columns arguments can be used to select which rows and columns are concatenated.

For example, the following statements produce the \(2 \times 1 \) matrix shown:

```plaintext
b = {"ABC" "D" "EF ",
    " GH" " I" " JK"};
a = rowcat(b);
print a;
```
You can put quotes (" ") around elements of a character matrix in order to embed blanks or special characters, and to specify values that are lowercase or mixed case.

The syntax

\[
\text{ROWCAT} (\text{matrix}, \text{rows}, \text{columns});
\]

returns the same result as

\[
\text{ROWCAT} (\text{matrix}[\text{rows}, \text{columns}]);
\]

The syntax

\[
\text{ROWCAT} (\text{matrix}, \text{rows});
\]

returns the same result as

\[
\text{ROWCAT} (\text{matrix}[\text{rows}]);
\]

ROWCATC Function

\[
\text{ROWCATC} (\text{matrix} <, \text{rows} > <, \text{columns} >);
\]

The ROWCATC function concatenates rows of a character matrix by using blank compression.

The arguments the ROWCATC function are as follows:

- **matrix** is a character matrix or quoted literal.
- **rows** select the rows of *matrix*.
- **columns** select the columns of *matrix*.

The ROWCATC function works the same way as the ROWCAT function except that blanks in element strings are moved to the end of the concatenation, as shown in the following example:

```plaintext
b = {"ABC" "D" "EF ",
    " GH" " I" " JK");
a = rowcatc(b);
print a (nlen(a))[label="NumChars"];```

**Figure 26.338** Concatenation of Rows

<table>
<thead>
<tr>
<th>a</th>
<th>NumChars</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCDEF</td>
<td>9</td>
</tr>
<tr>
<td>GHIJK</td>
<td></td>
</tr>
</tbody>
</table>
**ROWVEC Function**

```plaintext
ROWVEC(matrix);
```

The ROWVEC function is part of the IMLMLIB library. The ROWVEC function returns a $1 \times nm$ vector. The specified `matrix` is converted into a row vector in row-major order. The returned vector has 1 row and $nm$ columns. The first $m$ elements in the vector correspond to the first row of the input matrix, the next $m$ elements correspond to the second row, and so on, as shown in the following example.

```plaintext
x = {1 2 3,
 4 5 6};
y = rowvec(x);
print y;
```

![A Row Vector](image)

See the **COLVEC function** for converting a matrix into a column vector.

**RSUBSTR Function**

```plaintext
RSUBSTR(x, p, l, r);
```

The RSUBSTR function is part of the IMLMLIB library. The RSUBSTR function returns an $m \times n$ matrix with substrings of the input matrix with new strings.

The inputs to the RSUBSTR subroutine are as follows:

- `x` is any $m \times n$ character matrix.
- `p` is an $m \times n$ matrix or a scalar that determines the starting positions for substrings to be replaced.
- `l` is an $m \times n$ matrix or a scalar that determines the lengths of substrings to be replaced.
- `r` is an $m \times n$ matrix or a scalar that specifies the replacement strings.

If `l` is zero, the replacement string in `r` is simply inserted into the input matrix `x` at the position indicated by `p`.

For example, the following statements replace the first two characters of each entry in the matrix `X` with the corresponding entry in the matrix `R`:

```plaintext
x = {abc def ghi, jkl mno pqr};
r = {z y x, w v u};
p = 1;
l = 2;
c=rsubstr(x,p,l,r);
print x, c;
```
**RUN Statement**

```
RUN <name> <(arguments)> ;
```

The RUN statement executes a user-defined module or invokes PROC IML’s built-in subroutines.

The arguments to the RUN statement are as follows:

- `name` is the name of a user-defined module or a built-in subroutine.
- `arguments` are arguments to the subroutine.

If you define a module that has the same name as a built-in subroutine, the RUN statement can be used to call the user-defined subroutine.

If a RUN statement cannot be resolved at resolution time, a warning appears. If the RUN statement is still unresolved when executed and a storage library is open at the time, an attempt is made to load a module from that storage. If no module is found, an error message is generated.

If you do not supply a module name, the RUN statement tries to run the module named MAIN.

The following example defines and runs a module:

```plaintext
start MySum(y, x);
 y = sum(x);
finish;
run MySum(y, 1:5);
print y;
```

**Figure 26.341** Run a User-Defined Module

```
y
15
```

See Chapter 6 and the CALL statement for further details.

---

**RUPDT Call**

```
CALL RUPDT(rup, bup, sup, r, z <, b> <, y> <, ssq>);
```

See the entry for the RDODT subroutine for details.
The RZLIND subroutine computes rank-deficient linear least squares solutions, complete orthogonal factorizations, and Moore-Penrose inverses.

The RZLIND subroutine returns the following values:

- **lindep**: Is a scalar that contains the number of linear dependencies that are recognized in \( R \) (number of zeroed rows in \( \text{rup} \{n, n\} \)).
- **rup**: Is the updated \( n \times n \) upper triangular matrix \( R \) that contains zero rows corresponding to zero recognized diagonal elements in the original \( R \).
- **bup**: Is the \( n \times p \) matrix \( B \) of right-hand sides that is updated simultaneously with \( R \). If \( b \) is not specified, \( bup \) is not accessible.

The input arguments to the RZLIND subroutine are as follows:

- **r**: Specifies the \( n \times n \) upper triangular matrix \( R \). Only the upper triangle of \( r \) is used; the lower triangle can contain any information.
- **sing**: Is an optional scalar that specifies a relative singularity criterion for the diagonal elements of \( R \). The diagonal element \( r_{ii} \) is considered zero if \( r_{ii} \leq \text{sing} \| r_i \| \), where \( \| r_i \| \) is the Euclidean norm of column \( r_i \) of \( R \). If the value provided for \( \text{sing} \) is not positive, the default value \( \text{sing} = 1000\epsilon \) is used, where \( \epsilon \) is the relative machine precision.
- **b**: Specifies the optional \( n \times p \) matrix \( B \) of right-hand sides that have to be updated or downdated simultaneously with \( R \).

The singularity test used in the RZLIND subroutine is a relative test that uses the Euclidean norms of the columns \( r_i \) of \( R \). The diagonal element \( r_{ii} \) is considered as nearly zero (and the \( i \)th row is zeroed out) if the following test is true:

\[
r_{ii} \leq \text{sing} \| r_i \|,
\]

where \( \| r_i \| = \sqrt{r_i^t r_i} \)

Providing an argument \( \text{sing} \leq 0 \) is the same as omitting the argument \( \text{sing} \) in the RZLIND call. In this case, the default is \( \text{sing} = 1000\epsilon \), where \( \epsilon \) is the relative machine precision. If \( R \) is computed by the QR decomposition \( A = QR \), then the Euclidean norm of column \( i \) of \( R \) is the same (except for rounding errors) as the Euclidean norm of column \( i \) of \( A \).

### A Cholesky Root

Consider the following application of the RZLIND subroutine. Assume that you want to compute the upper triangular Cholesky factor \( R \) of the \( n \times n \) positive semidefinite matrix \( A' A \).

\[
A' A = R' R \text{ where } A \in \mathbb{R}^{m \times n}, \text{ rank}(A) = r, \ r \leq n \leq m
\]

The Cholesky factor \( R \) of a positive definite matrix \( A' A \) is unique (with the exception of the sign of its rows). However, the Cholesky factor of a positive semidefinite (singular) matrix \( A' A \) can have many different forms.

In the following example, \( A \) is a \( 12 \times 8 \) matrix with linearly dependent columns \( a_1 = a_2 + a_3 + a_4 \) and \( a_1 = a_5 + a_6 + a_7 \) with \( r = 6, n = 8, \) and \( m = 12 \).
proc iml;
a = {1 1 0 0 1 0 0,
   1 1 0 0 1 0 0,
   1 1 0 0 0 1 0,
   1 1 0 0 0 0 1,
   1 0 1 0 1 0 0,
   1 0 1 0 0 1 0,
   1 0 1 0 0 0 1,
   1 0 0 1 1 0 0,
   1 0 0 1 0 1 0,
   1 0 0 1 0 0 1,
   1 0 0 1 0 0 1};
a = a || uniform(j(nrow(a),1,1));
aa = a` * a;
m = nrow(a); n = ncol(a);

Applying the ROOT function to the coefficient matrix $A'A$ of the normal equations generates an upper triangular matrix $R_1$ in which linearly dependent rows are zeroed out. The following statements verify that $A'A = R_1^t R_1$:

```plaintext
r1 = root(aa);
ss1 = ssq(aa - r1` * r1);
print ss1 r1[format=best6.];
```

Figure 26.342 A Cholesky Root

<table>
<thead>
<tr>
<th>ss1</th>
<th>r1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.98E-29</td>
<td>3.4641</td>
</tr>
<tr>
<td>1.1547</td>
<td>1.1547</td>
</tr>
<tr>
<td>1.1547</td>
<td>1.1547</td>
</tr>
<tr>
<td>1.1547</td>
<td>1.1547</td>
</tr>
<tr>
<td>1.1547</td>
<td>1.8012</td>
</tr>
<tr>
<td>0</td>
<td>1.633</td>
</tr>
<tr>
<td>-0.816</td>
<td>-0.816</td>
</tr>
<tr>
<td>0.4082</td>
<td>-0.204</td>
</tr>
<tr>
<td>-0.204</td>
<td>-0.163</td>
</tr>
<tr>
<td>0</td>
<td>0.1414</td>
</tr>
<tr>
<td>-1.414</td>
<td>39E-18</td>
</tr>
<tr>
<td>0.5356</td>
<td>-0.354</td>
</tr>
<tr>
<td>0.5325</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13E-16</td>
<td>11E-17</td>
</tr>
<tr>
<td>56E-18</td>
<td>39E-17</td>
</tr>
<tr>
<td>67E-17</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5811</td>
<td>-0.791</td>
</tr>
<tr>
<td>-0.791</td>
<td>0.0715</td>
</tr>
<tr>
<td>0.9625</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.89E-17</td>
</tr>
<tr>
<td>83E-17</td>
<td></td>
</tr>
<tr>
<td>0.9615</td>
<td></td>
</tr>
</tbody>
</table>

Applying the QR subroutine with column pivoting on the original matrix $A$ yields a different result, but you can also verify $A'A = R_2^t R_2$ after pivoting the rows and columns of $A'A$:

```plaintext
ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
ss2 = ssq(aa[pivqr,pivqr] - r2` * r2);
print ss2 r2[format=best6.];
```
Using the RUPDT subroutine for stepwise updating of $R$ by the $m$ rows of $A$ results in an upper triangular matrix $R_3$ with $n - r$ nearly zero diagonal elements. However, other elements in rows with nearly zero diagonal elements can have significant values. The following statements verify that $A'A = R_3'^3R_3$:

```fortran
r3 = shape(0,n,n);
call rupdt(rup,bup,sup,r3,a);
r3 = rup;
ss3 = ssq(aa - r3' * r3);
p=rint ss3 r3[format=best6.];
```

The result $R_3$ of the RUPDT subroutine can be transformed into the result $R_1$ of the ROOT function by left applications of Givens rotations to zero out the remaining significant elements of rows with small diagonal elements. Applying the RZLIND subroutine to the upper triangular result $R_3$ of the RUPDT subroutine generates a Cholesky factor $R_4$ with rows of zeros that correspond to diagonal elements that are small. This gives the same result as the ROOT function (except for the sign of rows) if its singularity criterion recognizes the same linear dependencies.

```fortran
call rzlind(lind,r4,bup,r3);
ss4 = ssq(aa - r4' * r4);
p=rint ss4 r4[format=best6.];
```
Consider the rank-deficient linear least squares problem:

$$\min_x \|Ax - b\|^2 \text{ where } A \in \mathbb{R}^{m \times n}, \text{ rank}(A) = r, \ r \leq n \leq m.$$ 

For $r = n$, the optimal solution, $\hat{x}$, is unique; however, for $r < n$, the rank-deficient linear least squares problem has many optimal solutions, each of which has the same least squares residual sum of squares:

$$ss = (A\hat{x} - b)'(A\hat{x} - b)$$

The solution of the full-rank problem, $r = n$, is illustrated in the section “The Full-Rank Linear Least Squares Problem” on page 950. The following example demonstrates how to compute several solutions to the singular problem. The example uses the $12 \times 8$ matrix from the preceding section and generates a new column vector $b$. The vector $b$ and the matrix $A$ are shown in the output.

```matlab
b = uniform(j(12,1,1));
ab = a' * b;
print b a[format=best6.];
```

The rank-deficient linear least squares problem can be solved in the following ways. Although each method minimizes the residual sum of squares, not all of the given solutions are of minimum Euclidean length.
An SVD Solution
You can solve the rank-deficient least squares problem by using the singular value decomposition of $A$, given by $A = UDV'$. Take the reciprocals of significant singular values and set the small values of $D$ to zero.

```plaintext
call svd(u,d,v,a);
t = 1e-12 * d[1];
do i=1 to n;
 if d[i] < t then d[i] = 0.;
 else d[i] = 1. / d[i];
end;
x1 = v * diag(d) * u' * b;
len1 = x1' * x1;
ss1 = ssq(a * x1 - b);
x1 = x1';
print ss1 len1, x1[format=best6.];
```

Figure 26.347  SVD Solution

<table>
<thead>
<tr>
<th>ss1</th>
<th>len1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5902613</td>
<td>0.4253851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4001</td>
</tr>
<tr>
<td>0.1484</td>
</tr>
<tr>
<td>0.1561</td>
</tr>
<tr>
<td>0.0956</td>
</tr>
<tr>
<td>0.0792</td>
</tr>
<tr>
<td>0.3559</td>
</tr>
<tr>
<td>-0.035</td>
</tr>
<tr>
<td>-0.275</td>
</tr>
</tbody>
</table>

The solution $\hat{x}_1$ obtained by singular value decomposition, $\hat{x}_1 = VD^{-1}U'b/4$, is of minimum Euclidean length.

QR with Column Pivoting
You can solve the rank-deficient least squares problem by using the QR decomposition with column pivoting:

$$A\Pi = QR = \left[ \begin{array}{cc} Y & Z \end{array} \right] \left[ \begin{array}{cc} R_1 & R_2 \\ 0 & 0 \end{array} \right] = Y \left[ \begin{array}{cc} R_1 & R_2 \end{array} \right]$$

Set the right part $R_2$ to zero and invert the upper triangular matrix $R_1$ to obtain a generalized inverse $R^{-}$ and an optimal solution $\hat{x}_2$:

$$R^{-} = \left[ \begin{array}{cc} R_1^{-1} & 0 \\ 0 & 0 \end{array} \right] \hat{x}_2 = \Pi R^{-}Y'b$$

```plaintext
ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,1:nr];
x2 = shape(0,n,1);
x2[pivqr] = trisolv(1,r,qtb[1:nr]) // j(lindqr,1,0.);
len2 = x2' * x2;
ss2 = ssq(a * x2 - b);
x2 = x2';
print ss2 len2, x2 [format=best6.];
```
Notice that the residual sum of squares is minimal, but the solution $\hat{x}_2$ is not of minimum Euclidean length.

**Cholesky Root**

You can solve the rank-deficient least squares problem by using the result $R_1$ of the `ROOT` function to obtain the vector `piv` which indicates the zero rows in the upper triangular matrix $R_1$. The following statements define a function that returns an index vector:

```plaintext
start PivotR(R);
 n = ncol(R);
 piv = j(n,1,.);
 z = j(n,1,.); /* temp storage for index of zero diagonals */
 j1 = 0; j2 = 0;
 /* detect diagonal elements that are numerically zero */
 do i = 1 to n;
 small = 1000*constant("maceps")*norm(R[,i]);
 if R[i,i] > small then do;
 j1 = j1 + 1; piv[j1] = i;
 end;
 else do;
 j2 = j2 + 1; z[j2] = i;
 end;
 end;
 if j2>0 then piv[(n-j2+1):n] = z[1:j2];
 return(piv);
finish;

r1 = root(aa);
nr = n - lind;
piv = PivotR(r1);
```

Now compute $\hat{x}_3$ by solving the equation $\hat{x}_3 = R^{-1}R^-'A'b$.

```plaintext
r = r1[piv[1:nr],piv[1:nr]];
x = trisolv(2,r,ab[piv[1:nr]]);
x3 = trisolv(1,r,x);
x3[piv] = x // j(lind,1,0.);
len3 = x3' * x3;
ss3 = ssq(a * x3 - b);
x3 = x3';
print ss3 len3, x3[format=best6.];
```
Figure 26.349  Cholesky Root Solution

<table>
<thead>
<tr>
<th>ss3</th>
<th>len3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5902613</td>
<td>0.4601472</td>
</tr>
</tbody>
</table>

x3

| 0.4607 | 0.0528 | 0.0605 | 0 | 0.1142 | 0.3909 | 0 | -0.275 |

Note that the residual sum of squares is minimal, but the solution $\hat{x}_3$ is not of minimum Euclidean length.

**Update of Cholesky Root**

You can solve the rank-deficient least squares problem by using the result $R_3$ of the RUPDT call on page 1006 and the vector $piv$ (obtained in the previous solution), which indicates the zero rows of upper triangular matrices $R_1$ and $R_3$. After zeroing out the rows of $R_3$ belonging to small diagonal pivots, solve the system $\hat{x}_4 = R^{-1}Y'b$.

```
r3 = shape(0, n, n);
qtb = shape(0, n, 1);
call rupdt(rup, bup, sup, r3, a, qtb, b);
r3 = rup; qtb = bup;
call rzlind(lind, r4, bup, r3, qtb);
qtb = bup[piv[1:nr]];
x = trisolv(1, r4[piv[1:nr], piv[1:nr]], qtb);
x4 = shape(0, n, 1);
x4[piv] = x // j(lind, 1, 0.);
len4 = x4' * x4;
ss4 = ssq(a * x4 - b);
x4 = x4';
print ss4 len4, x4[format=best6.];
```

Figure 26.350  Cholesky Update Solution

<table>
<thead>
<tr>
<th>ss4</th>
<th>len4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5902613</td>
<td>0.4601472</td>
</tr>
</tbody>
</table>

x4

| 0.4607 | 0.0528 | 0.0605 | 0 | 0.1142 | 0.3909 | 0 | -0.275 |

Because the matrices $R_4$ and $R_1$ are the same (except for the signs of rows), the solution $\hat{x}_4$ is the same as $\hat{x}_3$.

**RZLIND Method**

You can solve the rank-deficient least squares problem by using the result $R_4$ of the RZLIND subroutine in the previous solution, which is the result of the first step of complete QR decomposition, and perform the second step of complete QR decomposition. The rows of matrix $R_4$ can be permuted to the upper trapezoidal form

$$
\begin{bmatrix}
\hat{R} & T \\
0 & 0
\end{bmatrix}
$$
where $\hat{R}$ is nonsingular and upper triangular and $T$ is rectangular. Next, perform the second step of complete QR decomposition with the lower triangular matrix

$$
\begin{bmatrix}
\hat{R}' \\
T'
\end{bmatrix} = \tilde{Y}
\begin{bmatrix}
\hat{R} \\
0
\end{bmatrix}
$$

which leads to the upper triangular matrix $\hat{R}$.

```plaintext
r = r4[piv[1:nr],]\';
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb);
x5 = q * (y // j(lind,1,0.));
len5 = x5' * x5;
ss5 = ssq(a * x5 - b);
x5 = x5';
print ss5 len5, x5[format=best6.];
```

Figure 26.351 RZLIND Solution

<table>
<thead>
<tr>
<th>ss5</th>
<th>len5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5902613</td>
<td>0.4253851</td>
</tr>
</tbody>
</table>

The solution $\hat{x}_5$ obtained by complete QR decomposition has minimum Euclidean length.

**Complete QR Decomposition**

You can solve the rank-deficient least squares problem by performing both steps of complete QR decomposition. The first step performs the pivoted QR decomposition of $A$,

$$
A\Pi = QR = Y \begin{bmatrix}
R \\
0
\end{bmatrix} = Y \begin{bmatrix}
\hat{R}' \\
0
\end{bmatrix} T'
$$

where $\hat{R}$ is nonsingular and upper triangular and $T$ is rectangular. The second step performs a QR decomposition as described in the previous method. This results in

$$
A\Pi = Y \begin{bmatrix}
\hat{R}' \\
0
\end{bmatrix} \tilde{Y}'
$$

where $\tilde{R}'$ is lower triangular.

```plaintext
ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);
nr = n - lindqr;
r = r2[1:nr,]';
call qr(q,r5,piv2,lin2,r);
y = trisolv(2,r5,qtb[1:nr]);
x6 = shape(0,n,1);
x6[pivqr] = q * (y // j(lindqr,1,0.));
len6 = x6' * x6;
```
ss6 = ssq(a * x6 - b);

x6 = x6``;

print ss6 len6, x6[format=best6.];

The solution \( \hat{x}_6 \) obtained by complete QR decomposition has minimum Euclidean length.

**Complete QR Decomposition with LUPDT**

You can solve the rank-deficient least squares problem by performing a complete QR decomposition with the QR and LUPDT calls:

ord = j(n,1,0);
call qr(qtb,r2,pivqr,lindqr,a,ord,b);

nr = n - lindqr;
r = r2[1:nr,1:nr]``; z = r2[1:nr,nr+1:n]``;
call lupdt(lup,bup,sup,r,z);

rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);

x7 = shape(0,n,1);
x7[pivqr] = rd` * qtb[1:nr,];
len7 = x7` * x7;

ss7 = ssq(a * x7 - b);

x7 = x7``;

print ss7 len7, x7[format=best6.];

The solution \( \hat{x}_7 \) obtained by complete QR decomposition has minimum Euclidean length.

**Complete QR Decomposition with RUPDT**

You can solve the rank-deficient least squares problem by performing a complete QR decomposition with the RUPDT, RZLIND, and LUPDT calls:

r3 = shape(0,n,n);

qtb = shape(0,n,1);
call rupd(rup,bup,sup,r3,a,qtb,b);
r3 = rup; qtb = bup;
call rzlind(lind,r4,bup,r3,,qtb);

nr = n - lind; qtb = bup;
$r = r4[piv[1:nr], piv[1:nr]]$;
$z = r4[piv[1:nr], piv[nr+1:n]]$;
call lupdt(lup, bup, sup, r, z);
rd = trisolv(3, lup, r4[piv[1:nr],]);
rd = trisolv(4, lup, rd);
x8 = shape(0, n, 1);
x8 = rd * qtb[piv[1:nr],];
len8 = x8 * x8;
ss8 = ssq(a * x8 - b);
x8 = x8;
print ss8 len8, x8[format=best6.];

**Figure 26.354** Complete QR Solution with Updates

<table>
<thead>
<tr>
<th></th>
<th>ss8</th>
<th>len8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5902613</td>
<td>0.4253851</td>
</tr>
</tbody>
</table>

x8

|   | 0.4001 | 0.1484 | 0.1561 | 0.0956 | 0.0792 | 0.3559 | -0.035 | -0.275 |

The solution $\hat{x}_8$ obtained by complete QR decomposition has minimum Euclidean length. The same result can be obtained with the APPCORT call or the COMPORT call.

**Moore-Penrose Inverse**

You can use various orthogonal methods to compute the Moore-Penrose inverse $A^\dagger$ of a rectangular matrix $A$. The following examples find the Moore-Penrose inverse of the matrix $A$ shown in section “A Cholesky Root” on page 1007.

**Generalized Inverse**

You can find the Moore-Penrose inverse by using the `ginv` function. The `ginv` function uses the singular decomposition $A = UDV^T$. The result $A^\dagger = VD^{-1}U^T$ should be identical to the result given by the next solution.

```
 ga = ginv(a);
t1 = a * ga; t2 = t1;
t3 = ga * a; t4 = t3;
ssl = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ssl, ga[format=best6.];
```

**Figure 26.355** Moore-Penrose Inverse

<table>
<thead>
<tr>
<th>ssl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.097E-29</td>
</tr>
</tbody>
</table>
An SVD Solution

You can find the Moore-Penrose inverse by using the singular value decomposition. The singular decomposition \( A = UDV' \) with \( U'U = I_m \), \( D = \text{diag}(d_i) \), and \( V'V = VV' = I_n \), can be used to compute \( A^+ = VD^+U' \), with \( D^+ = \text{diag}(d_i^+) \) and

\[
d_i^+ = \begin{cases} 
0 & \text{where } d_i \leq \epsilon \\
1/d_i & \text{otherwise}
\end{cases}
\]

The result \( A^+ \) should be the same as that given by the GINV function if the singularity criterion \( \epsilon \) is selected correspondingly. Since you cannot specify the criterion \( \epsilon \) for the GINV function, the singular value decomposition approach can be important for applications where the GINV function uses an unsuitable \( \epsilon \) criterion. The slight discrepancy between the values of SS1 and SS2 is because of rounding that occurs in the statement that computes the matrix GA.

```plaintext
call svd(u,d,v,a);
do i=1 to n;
 if d[i] <= 1e-10 * d[1] then d[i] = 0.;
 else d[i] = 1. / d[i];
end;
ga = v * diag(d) * u';
t1 = a * ga; t2 = t1';
t3 = ga * a; t4 = t3';
ss2 = ssq(t1 - t2) + ssq(t3 - t4) +
 ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss2;
```

Complete QR Decomposition

You can find the Moore-Penrose inverse by using the complete QR decomposition. The complete QR decomposition

\[
A = Y \begin{bmatrix} \tilde{R}' & 0 \\ 0 & 0 \end{bmatrix} \tilde{V}' \Pi'
\]
where $\tilde{R}'$ is lower triangular, yields the Moore-Penrose inverse

$$\Lambda^* = \bar{\Pi} \bar{Y} \begin{bmatrix} \tilde{R}' & 0 \\ 0 & 0 \end{bmatrix} Y'$$

```plaintext
ord = j(n,1,0);
call qr(q1,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
q1 = q1[1:nr]; r = r2[1:nr,]';
call qr(q2,r5,piv2,lin2,r);
tt = trisolv(4,r5',q1');
ga = shape(0,n,m);
ga[pivqr,] = q2 * (tt \ shape(0,n-nr,m));
t1 = a * ga; t2 = t1';
t3 = ga * a; t4 = t3';
ss3 = ssq(t1 - t2) + ssq(t3 - t4) + ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss3;
```

**Figure 26.357** Complete QR Solution

<table>
<thead>
<tr>
<th>ss3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.78E-30</td>
</tr>
</tbody>
</table>

**Complete QR Decomposition with LUPDT**

You can find the Moore-Penrose inverse by using the complete QR decomposition with QR and LUPDT:

```plaintext
ord = j(n,1,0);
call qr(q,r2,pivqr,lindqr,a,ord);
nr = n - lindqr;
r = r2[1:nr,1:nr]'; z = r2[1:nr,nr+1:n]';
call lupdt(lup,bup,sup,r,z);
rd = trisolv(3,lup,r2[1:nr,]);
rd = trisolv(4,lup,rd);
ga = shape(0,n,m);
ga[pivqr,] = rd' * q[1:nr]';
t1 = a * ga; t2 = t1';
t3 = ga * a; t4 = t3';
ss4 = ssq(t1 - t2) + ssq(t3 - t4) + ssq(t1 * a - a) + ssq(t3 * ga - ga);
print ss4;
```

**Figure 26.358** Complete QR Solution with Update

<table>
<thead>
<tr>
<th>ss4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.899E-30</td>
</tr>
</tbody>
</table>

**Complete QR Decomposition with RUPDT**

You can find the Moore-Penrose inverse by using the complete QR decomposition with the RUPDT call and the LUPDT call:
SAMPLE Function

SAMPLE(x <, n > <, method > <, prob > );

The SAMPLE function generates a random sample of the elements of x. The function can sample from x with replacement or without replacement. The function can sample from x with equal probability or with unequal probability.

The arguments are as follows:

x is a matrix that specifies the sample space. That is, the sample is drawn from the elements of x.

n specifies the number of times to sample. The argument can be a scalar or a two-element vector.

- If this argument is omitted, then the number of elements of x is used.
- If n is a scalar, then it represents the sample size, which is the number of independent draws from the population. This value determines the number of columns in the output matrix.
- If n is a two-element vector, the first element represents the sample size. The second element specifies the number of samples, which is the number of rows in the output matrix. If the sampling is without replacement, then n[1] must be less than or equal to the number of elements in x.

method is an optional argument that specifies how sampling is performed. The following are valid options:
“Replace” specifies simple random sampling with replacement. This is the default value.

“NoReplace” specifies simple random sampling without replacement. The elements in the samples might appear in the same order as in \( x \).

“WOR” specifies simple random sampling without replacement. After elements are randomly selected, their order is randomly permuted.

\( \text{prob} \) is a vector with the same number of elements as \( x \). The vector specifies the sampling probability for the elements of \( x \). The SAMPLE function internally scales the elements of \( \text{prob} \) so that they sum to unity.

The SAMPLE function uses the random seed that is set by the RANDSEED function.

The \( \text{prob} \) argument specifies the probabilities that are used when sampling from \( x \). When \( \text{method} \) is “Replace,” the probabilities do not change during the sampling. However, when \( \text{method} \) is “NoReplace,” the probabilities are renormalized after each selection.

For example, suppose that the element \( x_i, i = 1 \ldots n \) has probability \( p_i \) of being sampled, where \( \sum_{i=1}^{n} p_i = 1 \). If the element \( x_1 \) is selected in the first round of sampling, the remaining elements have the new probability \( q_i \) of being sampled during the second round, where \( q_i = p_i / (\sum_{j=2}^{n} p_j) \) and \( i = 2 \ldots n \).

The following statements use three different methods to choose a sample from the integers 1–5:

```plaintext
x = 1:5;
call randseed(12345);
s1 = sample(x);
s2 = sample(x, 5, "Replace", {0.6 0.1 0.0 0.1 0.2});
s3 = sample(x, 3, "NoReplace");
print s1, s2, s3;
```

#### Figure 26.360 Random Samples

<table>
<thead>
<tr>
<th>s1</th>
<th>s2</th>
<th>s3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 3 5 5</td>
<td>1 5 1 1 2</td>
<td>1 2 5</td>
</tr>
</tbody>
</table>

**SAVE Statement**

```plaintext
SAVE ;
```

The SAVE statement saves data to a SAS data set.

The SAVE statement flushes any data residing in output buffers for all active output data sets and files to ensure that the data are written to disk. This is equivalent to closing and then reopening the files.
The SCATTER subroutine displays a SCATTER plot by calling the SGPLOT procedure. The arguments $x$ and $y$ are vectors that contain the data to plot. The SCATTER subroutine is not a comprehensive interface to the SGPLOT procedure. It is intended for creating simple scatter plots for exploratory data analysis. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

A simple example follows:

```plaintext
use Sashelp.Cars;
read all var {MPG_City MPG_Highway};
close Sashelp.Cars;

title "Scatter Plot with Default Properties";
run Scatter(MPG_City, MPG_Highway) label={"MPG_City" "MPG_Highway"};
```

**Figure 26.361** A Scatter Plot

Specify the $x$ vector inside parentheses and specify all options outside the parentheses. Use the global TITLE and FOOTNOTE statements to specify titles and footnotes. Each option corresponds to a statement or option in the SGPLOT procedure.
The following options correspond to options in the SCATTER statement in the SGPLOT procedure:

**GROUP=** specifies a vector of values that determine groups in the plot. You can use a numeric or character vector. This option corresponds to the GROUP= option in the SCATTER statement.

**DATALABEL=** specifies a vector of values that label each marker in the plot. You can use a numeric or character vector.

**OPTION=** specifies a character matrix or string literal. The value is used verbatim to specify options in the SCATTER statement.

The SCATTER subroutine also supports the following options. The BAR subroutine documents these options and gives an example of their usage.

**GRID=** specifies whether to display grid lines for the X or Y axis.

**LABEL=** specifies axis labels for the X or Y axis.

**XVALUES=** specifies a vector of values for ticks for the X axis.

**YVALUES=** specifies a vector of values for ticks for the Y axis.

**PROCOPT=** specifies options in the PROC SGPLOT statement.

**OTHER=** specifies statements in the SGPLOT procedure.

In addition, the LINEPARM option specifies a three-element vector whose elements specify the X=, Y= and SLOPE= options, respectively, on the LINEPARM statement.

The following example creates several scatter plots with various options. Each scatter plot is documented in the program comments.

```sas
/* define data */
call randseed(1);
x = do(-5, 5, 0.25);
y = x/5 + sin(x) + RandFun(1|ncol(x), "Normal");

title "Scatter Plot with Groups and Reference Lines";
/* 1. Use the GROUP= option to assign a group to each observation
 * 2. Use the OTHER= option to add reference lines to the Y axis
 * 3. Use the PROCOPT= option to suppress the legend */
g = j(ncol(x), 1, 1);
g[loc(y>=1)] = 2;
g[loc(y< -1)] = 3;
run Scatter(x, y) group=g /* assign color/marker shape */
other="refline -1 1 / axis=y" /* add reference line */
procopt="noautolegend"; /* PROC option */
```

**Figure 26.362** Group Attributes and Reference Lines

```plaintext
title "Scatter Plot with Data Labels and a Diagonal Line";
/* 1. Use the DATALABEL= option to label each marker
 * 2. Use the LINEPARM= option to add line passing through
 * (0,0) with slope=0.2
 */
dlabels = putn(y, "4.1");
run Scatter(x, y) datalabel=dlabels /* label each marker */
 lineparm=(0 0 0.2); /* line through (0,0) with slope 0.2 */
```

**Figure 26.363** Data Labels and Diagonal Line
title "Scatter Plot with Axis Options";
/* 1. Use the OPTION= option to specify marker attributes
   * 2. Use the GRID= option to add a reference grid
   * 3. Use the LABEL= option to specify axis labels
   * 4. Use the XVALUES= and YVALUES= options to specify tick positions
   */
call Scatter(x,y) option="markerattrs=(symbol=DiamondFilled)"
   grid= {X Y}
   label={"My X Value" "My Y Value"}
   xvalues = -4:4
   yvalues = do(-2,2,0.5);

Figure 26.364 Marker and Axis Attributes

SEQ, SEQSSCALE, and SEQSHIFT Calls

CALL SEQ(prob, domain <, TSCALE=tscale> <, EPS=eps> <, DEN=den>);

CALL SEQSSCALE(prob, gscale, domain, level <, IGUESS=iguess> <, TSCALE=tscale> <,
   EPS=eps> <, DEN=den>);

CALL SEQSHIFT(prob, shift, domain, plevel <, IGUESS=iguess> <, TSCALE=tscale> <,
   EPS=eps> <, DEN=den>);

The SEQ, SEQSSCALE, and SEQSHIFT subroutines perform discrete sequential tests.

The SEQSHIFT subroutine returns the following values:

prob is an $(m + 1) \times n$ matrix. The $[i, j]$ entry in the array contains the probability at the $[i, j]$ entry of the argument domain. Also, the probability at infinity at every level $j$ is returned in the last entry $(m + 1, j)$ of column $j$. Upon a successful completion of any routine, this variable is always returned.
**SEQ, SEQSCALE, and SEQSHIFT Calls**

**gscale** is a numeric variable that returns from the routine SEQSCALE and contains the scaling of the current geometry defined by `domain` that would yield a given significance level `level`.

**shift** is a numeric variable that returns from the routine SEQSHIFT and contains the shift of current geometry defined by `domain` that would yield a given power level `plevel`.

The input arguments to the SEQSHIFT subroutine are as follows:

**domain** specifies an $m \times n$ matrix that contains the boundary points separating the intervals of continuation/stopping of the sequential test. Each column $k$ contains the boundary points at level $k$ sorted in an ascending order. The values `.M` and `.P` represent $-\infty$ and $+\infty$, respectively. They must start on the first row, and any remaining entries must be filled with a missing value. Elements that follow the missing value in any column are ignored. The number of columns $n$ is equal to the number of stages present in the sequential test. The row dimension $m$ must be even, and it is equal to the maximum number of boundary points in a level. In fact, `domain` is the tabular form of the finite boundary points. Entries in `domain` with absolute values that exceed a standardized value of 8 at any level are internally reset to a standardized value of 8 or $-8$, depending on the sign of the entry. This is reflected in the results returned for the probabilities and the densities.

**tscale** specifies an optional $n - 1$ vector that describes the time intervals between two consecutive stages. In the absence of `tscale`, these time intervals are internally set to 1. The keyword for `tscale` is TSCALE.

**eps** specifies an optional numeric parameter for controlling the absolute precision of the computation. In the absence of `eps`, the precision is internally set to 1E$^{-7}$. The keyword for `eps` is EPS.

**den** specifies an optional character string to describe the name of an $m \times n$ matrix. The $[i, j]$ entry in the matrix returns the density of the distribution at the $[i, j]$ entry of the matrix specified by the `domain` argument. The keyword for `den` is DEN.

**iguess** specifies an optional numeric parameter that contains an initial guess for the variable `gscale` in the SEQSCALE subroutine or for the variable `mean` in the SEQSHIFT subroutine. In general, very good estimates for these initial guesses can be provided by an iterative process, and these estimates become extremely valuable near convergence. The keyword for `iguess` is IGUESS.

**level** specifies a numeric parameter in the SEQSCALE subroutine that contains the required significance level to be achieved through scaling the `domain` (see the description of SEQSCALE).

**plevel** specifies a numeric parameter in the SEQSHIFT subroutine that provides the required power level to be achieved through shifting the `domain` (see the description of SEQSHIFT).

**SEQ Call**

To compute the probability from a sequential test, you must specify a matrix that contains the boundaries. With the optional additional information concerning the time intervals and the target accuracy, or their default values, the SEQ subroutine returns the matrix that contains the probability and optionally returns the density from a sequential test evaluated at each given point of the boundary. Let $C_j$ denote the continuation set at each level $j$. $C_j$ is defined to be the union at the $j$th level of all the intervals bounded from below by the points with even indices 0, 2, 4, ... and from above by the points with odd indices 1, 3, ....
The SEQ subroutine computes, with \( \mu = 0 \), the densities

\[
f_j(s, \mu) = \int_{C_{j-1}} \phi(s - y, \mu, t_{j-1}) f_{j-1}(y, \mu) \, dy, \text{ for } j = 2, 3, \ldots
\]

with

\[
f_1(s, \mu) = \frac{1}{\sqrt{2\pi}} \exp \left[ -\frac{(s - \mu)^2}{2} \right]
\]

and

\[
\phi(s, \mu, t) = \frac{1}{\sqrt{2\pi t}} \exp \left[ -\frac{(s - \mu)^2}{2t} \right]
\]

with the associated probability at any point \( a \) at level \( j \) to be

\[
P_j(a, \mu) = \int_{C_{j-1}} \Phi(a - y, \mu, t_j) f_{j-1}(y, \mu) \, dy, \text{ for } j = 2, 3, \ldots
\]

with

\[
\Phi(b, \mu, t) = \int_{-\infty}^{b} \phi(s, \mu, t) \, ds
\]

The notation \( \tau \) denotes the vector of time intervals \( t_1, \ldots, t_{n-1} \), and \( P_j(g, \mu, \tau) \) denotes the probability of continuation at the \( j \)th level for a given domain \( g \), a given mean \( \mu \), and a given time vector \( \tau \). The variance at the \( j \)th level can be computed from \( \tau \).

\[
\sigma_1^2 = 1 \\
\sigma_{j+1}^2 = \sigma_j^2 + \tau_j, \text{ for } j = 1, 2, \ldots
\]

It is important to understand the limitations that are imposed internally on the domain by the numerical method. Any element \( g_{ij} \) will always be limited within a symmetric interval with standardized values not to exceed 8. That is,

\[
g_{ij} = \max[\min(g_{ij}, 8\sigma_j), -8\sigma_j]
\]

**SEQSCALE Call**

Given a domain \( g \), an optional time vector \( \tau \), and a probability level \( p_s \), the SEQSCALE subroutine finds the amount of scaling \( s \) that would solve the problem

\[
P_n(gs, 0) = p_s
\]

The result for the amount of scaling \( s \) is returned as the second argument of the SEQSCALE subroutine, \textit{scale}. Note that because of the complexity of the problem, the SEQSCALE subroutine will not attempt to scale a domain with multiple intervals of continuation.

For a significance level of \( \alpha \), set \( p_s = 1 - \alpha \).
SEQSHIFT Call
Given a geometry \( g \), an optional time vector \( \tau \), and a power level \( 1 - \beta \), the SEQSHIFT subroutine finds the mean \( \mu \) that solves \( \mu \geq 0 \) such that \( P_n(g, \mu) = \beta \).

Actually, a simple transformation of the variables in the sequential problem yields the following result:

\[
P_j(g^\mu, 0) = P_j(g, \mu), \text{ for } j = 1, 2, \ldots, n
\]

where \( g^\mu \) is given by \( g^\mu_{ij} = g_{ij} - \mu j \).

Many options are available with the NLP family of optimization routines, which are described in Chapter 4, “Nonlinear Optimization Subroutines.”

Example 1
Consider the following continuation intervals:

\[
\begin{align*}
C_1 &= \{-6, 2\} \\
C_2 &= \{-6, 3\} \\
C_3 &= \{-6, 4, 5, 6\} \\
C_4 &= \{-6, 4\}
\end{align*}
\]

The following statements computes the probability from the sequential test at each boundary point specified in the geometry.

```plaintext
/* function to insert a into the kth column of m */
start table(m,a,k);
 if ncol(m) = 0 then m = j(nrow(a),k,.)
 if nrow(m) < nrow(a) then m = m// j(nrow(a)-nrow(m),ncol(m),.)
 if ncol(m) < k then m = m || j(nrow(m),k-ncol(m),.)
 m[1:nrow(a),k] = a;
finish;

call table(m, {-6,2}, 1);
call table(m, {-6,3}, 2);
call table(m, {-6,4,5,6}, 3);
call table(m, {-6,4}, 4);
call seq(prob,m) eps = 1.e-8 den="density";
print m, prob, density;
```

**Figure 26.365** Sequential Test Probabilities and Densities

<table>
<thead>
<tr>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6 -6 -6 -6</td>
</tr>
<tr>
<td>2 3 4 4</td>
</tr>
<tr>
<td>. . 5 .</td>
</tr>
<tr>
<td>. . 6 .</td>
</tr>
</tbody>
</table>
Figure 26.365 displays the values returned for $m$, $prob$ and $den$, respectively.

The probability at the level $k = 3$ at the point $x = 6$ is $prob[4, 3] = 0.96651$, while the density at the same point is $density[4, 3] = 0.0000524$.

Example 2
Consider the continuation intervals

$$C_1 = \{-20, 2\}$$
$$C_2 = \{-20, 20\}$$
$$C_3 = \{-3, 3\}$$

Note that the continuation at level 2 can be effectively considered infinite, and it does not numerically affect the results of the computation at level 3. The following statements verify this by using the $tscale$ parameter to compute this problem.

<table>
<thead>
<tr>
<th>prob</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.866E-10</td>
<td>0.000011</td>
</tr>
<tr>
<td>0.9772499</td>
<td>0.9665354</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9772499</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9772499</td>
</tr>
<tr>
<td>1.0</td>
<td>0.9772499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENSITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0759E-9</td>
<td>0.0000348</td>
</tr>
<tr>
<td>0.053991</td>
<td>0.0226042</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

```plaintext
free m;
call table(m, {-20,2}, 1);
call table(m, {-20,20}, 2);
call table(m, {-3, 3}, 3);

/*****************************/
// TSCALE has the default value of 1 */
/*****************************/
call seq(prob1,m) eps = 1.e-8 den="density";
print m[format=f5.] prob1[format=e12.5];

call table(mm,{-20,2},1);
call table(mm,{-3,3},2);
/* You can use a 2-step separation between the levels */
/* while dropping the intermediate level at 2 */
tscale = { 2 };
call seq(prob2,mm) eps = 1.e-8 den="density" TSCALE=tscale;
print mm[format=f5.] prob2[format=e12.5];
```
Figure 26.366 shows the values returned for the variables $m$, $\text{prob1}$, $\text{mm}$ and $\text{prob2}$.

Some internal limitations are imposed on the geometry. Consider the three-level case with geometry $m$ in the preceding statements. Since the $\text{tscale}$ variable is not specified, it is set to its default value, $(1, 1)$. The variance at the $j$th level is $\sigma_j^2 = j$ for $j = 1, 2, 3$. The first level has a lower boundary point of $-20$, as represented by the value of $m[1, 1]$. Since the absolute standardized value is larger than 8, this point is replaced internally by the value $-8$. Hence, the densities and the probabilities reported for the first level at this point are not for the given value $-20$; instead, they are for the internal value of $-8$. For practical purposes, this limitation is not severe since the absolute error introduced is of the order of $10^{-16}$.

The computations performed by the first call of the SEQ subroutine can be simplified since the second level is large enough to be considered infinite. The matrix MM contains the first and third columns of the matrix M. However, in order to specify the two-step separation between the levels, you must specify $\text{tscale}=2$.

**Example 3**

This example verifies some of the results published in Table 3 of Pocock (1982). That is, the following statements verify for the given domain that the significance level is 0.05 and that the power is $1 - \beta$ under the alternative hypothesis:

```plaintext
proc iml;
 /* check whether the numbers yield 0.95 for the alpha level */
 bm = {-3.663 -2.884 -2.573 -2.375 -2.037,
 -2.988 -2.537 -2.407 -2.346 -2.156,
 -2.598 -2.390 -2.390 -2.390 -2.390,
 -2.446 -2.404 -2.404 -2.404 -2.396};

 bplevel = { 0.5 0.25 0.1 0.05};
 level = 0.95; /* this the required alpha value */
 sigma = diag(sqrt(1:5)); /* global sigma matrix */
```

---

**Table 26.366 Sequential Test Probabilities**

<table>
<thead>
<tr>
<th>$m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6 -6 -6 -6</td>
</tr>
<tr>
<td>2 3 4 4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.866E-10 0.000011 0.0002592 0.0011748</td>
</tr>
<tr>
<td>0.9772499 0.9665354 0.9621691 0.9497676</td>
</tr>
<tr>
<td>1 0.9772499 0.9661587 0.9622611</td>
</tr>
<tr>
<td>1 0.9772499 0.96651 0.9622611</td>
</tr>
<tr>
<td>1 0.9772499 0.9665244 0.9622611</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0759E-9 0.0000348 0.0005668 0.0021223</td>
</tr>
<tr>
<td>0.053991 0.0226042 0.0092853 0.0194903</td>
</tr>
<tr>
<td>0 0 0.0010391 0</td>
</tr>
<tr>
<td>0 0 0.0000524 0</td>
</tr>
</tbody>
</table>
do i = 1 to 4;
  m = bm[i,];
  plevel = bplevel[i];
  geom = (m//(-m))*sigma;

  /* Try the null hypothesis */
  call seq(prob,geom) eps = 1.e-10;
  palpha = (prob[2,:]-prob[1,:])[5];

  /* Try the alternative hypothesis */
  call seqshift(prob,mean,geom,plevel);
  beta = (prob[2,:]-prob[1,:])[5];
  p = prob[3,:]-prob[2,:]+prob[1,:];

  /* Number of patients per group */
  tn = 4*mean##2;
  maxn = 5*tn;

  /* Compute the average sample number */
  asn = tn *( 5 - (4:0) * p');
  summary = summary // ( palpha || level || beta ||
                     plevel || tn || maxn ||asn);
end;
print summary[format=10.5];

Figure 26.367 A Group Sequential Analysis

<table>
<thead>
<tr>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.94997 0.95000 0.50000 0.50000 3.18225 15.91123 14.27319</td>
</tr>
<tr>
<td>0.95002 0.95000 0.25000 0.25000 6.05489 30.27447 22.64256</td>
</tr>
<tr>
<td>0.94998 0.95000 0.10000 0.10000 9.70370 48.51850 28.63182</td>
</tr>
<tr>
<td>0.94996 0.95000 0.05000 0.05000 12.29344 61.46720 31.29225</td>
</tr>
</tbody>
</table>

Notice that the variables eps and tscale have been internally set to their default values. Figure 26.367 shows the computed values, which compare well with the values shown in Table 3 of Pocock (1982). Differences are of the order of $10^{-5}$.

**Example 4**

This example shows how to verify the results in Table 1 of Wang and Tsiatis (1987). For a given $\delta$, the following program finds $\Gamma^j$ that yields a symmetric continuation interval given by

$$-\Gamma^j \leq C_j \leq \Gamma^j$$

with a given significance level of $\alpha$:

```
proc iml;
start func(delta,k) global(level);
 m = ((1:k))##delta;
 mm = (-m//m);
 /* Meet the significance level by scaling */
 call seqscale(prob, scale, mm, level);
 return(scale);
finish;
```
/* alpha levels of 0.05 and 0.01 */
blevel = {0.95 0.99};
do i = 1 to 2;
   level = blevel[i];
   free summary;
   do delta = 0 to .7 by .1;
      free row;
      do k=2 to 5;
         x = func(delta,k);
         row = row || x;
      end;
      summary = summary //row;
   end;
   print summary[format=10.5];
end;

Figure 26.368  Sequential Analysis

<table>
<thead>
<tr>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.79651 3.47109 4.04857 4.56177</td>
</tr>
<tr>
<td>2.63138 3.14419 3.56921 3.93711</td>
</tr>
<tr>
<td>2.48773 2.86390 3.16426 3.41735</td>
</tr>
<tr>
<td>2.36514 2.62969 2.83067 2.99432</td>
</tr>
<tr>
<td>2.26248 2.43945 2.56507 2.66243</td>
</tr>
<tr>
<td>2.17827 2.28942 2.36129 2.41318</td>
</tr>
<tr>
<td>2.11096 2.17504 2.21128 2.23475</td>
</tr>
<tr>
<td>2.05897 2.09172 2.10680 2.11495</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.64806 4.49446 5.21782 5.86135</td>
</tr>
<tr>
<td>3.41360 4.04953 4.57518 5.03019</td>
</tr>
<tr>
<td>3.20589 3.66178 4.02728 4.33492</td>
</tr>
<tr>
<td>3.02838 3.33454 3.57007 3.76293</td>
</tr>
<tr>
<td>2.88369 3.07085 3.20639 3.31248</td>
</tr>
<tr>
<td>2.77170 2.87291 2.93864 2.98659</td>
</tr>
<tr>
<td>2.69054 2.73668 2.76152 2.77721</td>
</tr>
<tr>
<td>2.63633 2.65284 2.65923 2.66222</td>
</tr>
</tbody>
</table>

Figure 26.368 shows the value of SUMMARY for the 0.95 and 0.99 levels. Notice that since $\alpha$ and $t_{\text{scale}}$ are not specified, they are internally set to their default values.

Example 5
This example verifies the results in Table 2 of Pocock (1977). The following program finds $\Gamma$ that yields a symmetric continuation interval given by

$$-\Gamma \sqrt{J} \leq C_j \leq \Gamma \sqrt{J}$$

for five groups. The overall significance level is $\alpha$ (the probability $p_{\alpha} = 1 - \alpha$), and the power is $1 - \beta$. 
Chapter 26: Language Reference

%let nl = 5;
proc iml;
start func(plevel) global(level, scale, mean, palpha, beta, tn, asn);
   m = sqrt(1: &nl);
   mm = -m // m;
   /* meet the significance level by scaling */
   call seqscale(prob, scale, mm, level);
   palpha = (prob[2,] - prob[1,])[&nl];
   mm = mm * scale;
   /* meet the power condition */
   call seqshift(prob, mean, mm, plevel);
   return(mean);
finish;

/* alpha = 0.95 */
level = 0.95;
bplevel = { 0.5 .25 .1 0.05 0.01};
free summary;
do i = 1 to 5;
   summary = summary || func(bplevel[i]);
end;
print summary[format=10.5];

Figure 26.369 Sequential Analysis

<table>
<thead>
<tr>
<th>summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99359</td>
</tr>
<tr>
<td>1.31083</td>
</tr>
<tr>
<td>1.59229</td>
</tr>
<tr>
<td>1.75953</td>
</tr>
<tr>
<td>2.07153</td>
</tr>
</tbody>
</table>

Figure 26.369 shows the results, which agree with Table 2 of Pocock (1977).

Example 6
This example illustrates how to find the optimal boundary of the $\delta$-class of Wang and Tsiatis (1987). The $\delta$-class boundary has the form

$$-\Gamma^\delta_j \leq C_j \leq \Gamma^\delta_j$$

The $\delta$-class boundary is optimal if it minimizes the average sample number while satisfying the required significance level $\alpha$ and the required power $1 - \beta$. You can use the following program to verify some of the results published in Table 2 and Table 3 of Wang and Tsiatis (1987):

%let nl = 5;
proc iml;
start func(delta) global(level, plevel, mean, scale, alpha, beta, tn, asn);
   m = ((1: &nl))##delta;
   mm = (-m // m);
   /* meet the significance level */
   call seqscale(prob, scale, mm, level);
   alpha = (prob[2,] - prob[1,])[&nl];
   mm = mm * scale;
   /* meet the power condition */
   call seqshift(prob, mean, mm, plevel);
SEQ, SEQSacle, and SEQSHIFT Calls

```cpp
beta = (prob[2,] - prob[1,])[\&nl];
/* compute the average sample number */
p = prob[3,] - prob[2,] + prob[1,];
tn = 4 * mean##2; /* number per group */
asn = tn * (\&nl - p * ((\&nl - 1) : 0));
return(asn);
finish;

/* set up the global variables needed by func */
level = 0.95;
plevel = 0.01;

/* set up options used to control the optimization routine */
opt = {0 1 0 1 6};
tc = repeat(., 1, 12);
tc[1] = 100;
tc[7] = 1.e-4;
par = {1.e-13 . 1.e-10 . . . || . || epsd};

/* provide the initial guess and call nlpdd */
delta = 0.5;
ods select IterStop ConvergenceStatus;
call nlpdd(rc, rx, "func", delta) opt=opt tc=tc par=par;
```

**Figure 26.370** optimal Boundary

<table>
<thead>
<tr>
<th>Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
</tr>
<tr>
<td>Gradient Calls</td>
</tr>
<tr>
<td>Objective Function</td>
</tr>
<tr>
<td>Slope of Search Direction</td>
</tr>
</tbody>
</table>

FCONV convergence criterion satisfied.

Figure 26.370 displays the results. The optimal function value of 34.88 agrees with the entry in Table 2 of Wang and Tsiatis (1987) for five groups, $\alpha = 0.05$, and $1 - \beta = 0.99$. Notice that the variables `eps` and `tscale` are internally set to their default values. For more information about the NLPDD subroutine, see the section “NLPDD Call” on page 874. For details about the `opt`, `tc`, and `par` arguments in the NLPDD call, see the section “Options Vector” on page 381, the section “Termination Criteria” on page 385, and the section “Control Parameters Vector” on page 392, respectively.

You can replicate other values in Table 2 of Wang and Tsiatis (1987) by changing the values of the variables `NL` and `PLEVEL`. You can obtain values from Table 3 by changing the value of the variable `LEVEL` to 0.99 and specifying `NL` and `PLEVEL` accordingly.

**Example 7**

This example illustrates how to find the boundaries that minimize ASN given the required significance level and the required power. It replicates some of the results published in Table 3 of Pocock (1982). The program computes the domain that

- minimizes the ASN
• yields a given significance level of 0.05
• yields a given power \(1 - \beta\) under the alternative hypothesis

The last two nonlinear conditions on the optimization process can be incorporated as a penalty applied on the error in these nonlinear conditions. The following program does the computations for a power of 0.9.

```plaintext
%let nl=5;
proc iml;
start func(m) global(level,plevel,sigma,epss,
 geometry,stgeom,gscale,mean,alpha,beta,tn,asn);
 m = abs(m);
 mm = (-m // m)*sigma;
 /* meet the significance level */
 call seqscale(prob,gscale,mm,level) iguess=gscale eps=epss;
 stgeom = gscale*m;
 geometry = mm*gscale;
 alpha = (prob[2,]-prob[1,])[&nl];
 /* meet the power condition */
 call seqshift(prob,mean,geometry,plevel) iguess=mean eps=epss;
 beta = (prob[2,]-prob[1,])[&nl];
 p = prob[3,] - prob[2,]+prob[1,];
 /* compute the average sample number */
 tn = 4*mean##2; /* number per group */
 as n = tn *(&nl - p *((&nl-1):0)');
 return(as n);
finish;
/* set up the global variables needed by func */
epss = 1.e-8;
epso = 1.e-5;
level = 9.50000E-01;
plevel = 0.05;
sigma = diag(sqrt(1:5));
/* set up options used to control the optimization routine */
opt = {0 2 0 1 6};
tc = repeat(.,1,12);
tc[1] = 100;
tc[7] = 1.e-4;
par = { 1.e-13 . 1.e-10 . . .} || . || epso;
/* provide the constraint matrix to ensure monotonically increasing significance levels */
con = { ,
 ,
 1 -1 . . 1 0 ,
 . 1 -1 . . 1 0 ,
 . . 1 -1 . 1 0 ,
 . . . 1 -1 1 0 ,};
/* provide the initial guess and call nlpdd */
m = { 1 1 1 1 1 };
call nlpdd(rc,rx,"func",m) opt=opt blc = con tc=tc par=par;
print stgeom;
```
Although $\epsilon_p$ has been set to $\epsilon_p=10^{-8}$, $tscale$ has been internally set to its default value. You can choose to run the program with and without the specification of the keyword IGUESS to see the effect on the execution time.

Notice the following about the optimization process:

- Different levels of precision are imposed on different modules. In this example, $\epsilon_p$, which is used as the precision for the sequential tests, is $10^{-8}$. The absolute and relative function criteria for the objective function are set to $par[7]=10^{-5}$ and $te[7]=10^{-4}$, respectively. Since finite differences are used to compute the first and second derivatives, the sequential test should be more precise than the optimization routine. Otherwise, the finite difference estimation is worthless. Optimally, if the precision of the function evaluation is $O(\epsilon^2)$, the first- and second-order derivatives should be estimated with perturbations $O(\epsilon^{1/2})$ and $O(\epsilon^{1/3})$, respectively. For example, if all three precision levels are set to $10^{-5}$, the optimization process does not work properly.

- Line search techniques that do not depend on the computation of the derivative are preferable.

- The amount of printed information from the optimization routines is controlled by $opt[2]$ and can be set to any value between 0 and 3. Larger numbers produce more output.

### SEQSCALE Call

```
CALL SEQSCALE(prob, gscale, domain, level <, IGUESS=iguess > <, TSSCALE=tscale > <,
 EPS=eps > <, DEN=den >);
```

The SEQSCALE subroutine computes estimates of scales associated with discrete sequential tests. See the entry for the SEQ subroutine for details.

### SEQSHIFT Call

```
CALL SEQSHIFT(prob, shift, domain, plevel <, IGUESS=iguess > <, TSSCALE=tscale > <,
 EPS=eps > <, DEN=den >);
```

The SEQSHIFT subroutine computes estimates of means associated with discrete sequential tests. See the entry for the SEQ subroutine for details.
SERIES Call

**CALL SERIES**(*x,y*) < **GROUP**=GroupVector >
   < **OPTION**=SeriesOption >
   < **GRID**=\{"X" ,"Y" \} >
   < **LABEL**\{XLabel ,YLabel\} >
   < **XVALUES**=xValues >
   < **YVALUES**=yValues >
   < **PROCOPT**=ProcOption >
   < **OTHER**=Stmts > ;

The SERIES subroutine displays a SERIES plot by calling the SGPLOT procedure. The arguments *x* and *y* are vectors that contain the data to plot. The SERIES subroutine is not a comprehensive interface to the SGPLOT procedure. It is intended for creating simple line plots for exploratory data analysis. The ODS statistical graphics subroutines are described in Chapter 18, “Statistical Graphics.”

A simple example follows:

```plaintext
x = do(-5, 5, 0.25);
y = x/5 + sin(x);

title "Series Plot with Default Properties";
run Series(x, y);
```

![Figure 26.372 A Series Plot](image)

Specify the *x* vector inside parentheses and specify all options outside the parentheses. Use the global TITLE and FOOTNOTE statements to specify titles and footnotes. Each option corresponds to a statement or option in the SGPLOT procedure.

The SERIES subroutine also supports the following options. The BAR subroutine documents these options and gives an example of their usage.
GRID= specifies whether to display grid lines for the X or Y axis.
LABEL= specifies axis labels for the X or Y axis.
XVALUES= specifies a vector of values for ticks for the X axis.
YVALUES= specifies a vector of values for ticks for the Y axis.
PROCOPT= specifies options in the PROC SGPLOT statement.
OTHER= specifies statements in the SGPLOT procedure.

In addition, you can use the OPTION= option to specify a character matrix or string literal. The value is used verbatim to specify options in the SERIES statement.

The following example creates several series plots with various options. Each series plot is documented in the program comments.

/* assign a group to each observation */
x = do(-5, 5, 0.1);
y1 = pdf("Normal", x, 0, 1);
y2 = pdf("Normal", x, 0, 1.5);
g = repeat({1,2}, 1, ncol(x));
x = x || x ;
y = y1 || y2;

title "Series Plot with Groups and Reference Lines";
/* 1. Use the GROUP= option to assign a group to each observation */
/* 2. Use the OTHER= option to add reference lines to the X axis */
call Series(x, y) group=g /* assign color/marker shape */
    other="refline -2 2 / axis=x"; /* add reference line */

**Figure 26.373** Group Attributes and Reference Lines
**SETDIF Function**

**SETDIF**(A, B);

The SETDIF function returns as a row vector the sorted set (without duplicates) of all element values present in A but not in B. If the resulting set is empty, the SETDIF function returns an empty matrix with zero rows and zero columns.

The arguments to the SETDIF function are as follows:

- **A** is a reference matrix. It can be either numeric or character.
- **B** is the comparison matrix. It must be the same type (numeric or character) as A.

For character matrices, the element length of the result is the same as the element length of the A. Shorter elements in the second argument are padded on the right with blanks for comparison purposes.

The following statements produce the matrix C, which contains the elements of A that are not contained in B:

title "Series Plot with Axis Options";
/* 1. Use the OPTION= option to display markers
   * 2. Use the GRID= option to add a reference grid
   * 3. Use the LABEL= option to specify axis labels
   * 4. Use the XVALUES= and YVALUES= options to specify tick positions
   */
x = do(-5, 5, 0.25);
y = x/5 + 2*sin(x);
call Series(x,y) option="markers"
    grid= {X Y}
    label= {"My X Value" "My Y Value"}
xvalues = -4:4
yvalues = do(-2,2,0.5);

**Figure 26.374** Marker and Axis Attributes

![Series Plot with Axis Options](image_url)
A = {1 2 4 5};
B = {3 4};
C = setdif(A, B);
print C;

Figure 26.375 Difference of Sets

<table>
<thead>
<tr>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 5</td>
</tr>
</tbody>
</table>

**SETIN Statement**

```
SETIN SAS-data-set < NOBS name > < POINT value > ;
```

The SETIN data set makes a data set the current input data set.

The arguments to the SETIN statement are as follows:

- **SAS-data-set** can be specified with a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set. See the example for the CLOSE statement.

- **name** is the name of a variable to contain the number of observations in the data set. The NOBS option is optional.

- **value** specifies the current observation. If the POINT option is not specified, the current observation does not change.

The SETIN statement chooses the specified data set from among the data sets that are open for input by the EDIT or USE statement. (The SHOW DATASETS command lists these data sets.) This data set becomes the current input data set for subsequent data management statements.

If specified, the NOBS option returns the number of observations in the data set in the scalar variable **name**. The POINT option points the data set to a particular observation and makes it the current observation.

In the following example, the data set WORK.A has 20 observations. The SETIN statement sets the variable SIZE to 20 and sets the current observation to 10.

```
proc iml;
x = T(1:20);
create A var {x}; append; close A;

use A;
setin A nobs size point 10;
list; /* lists observation 10 */
```
**SETOUT Statement**

```
SETOUT SAS-data-set < NOBS name > < POINT value > ;
```

The SETOUT data set makes a data set the current output data set.

The arguments to the SETOUT statement are as follows:

- **SAS-data-set** can be specified with a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set. See the example for the CLOSE statement.

- **name** specifies the name of a variable to contain the number of observations in the data set. The NOBS option is optional.

- **value** specifies the observation to be made the current observation. If the POINT option is not specified, the current observation does not change.

The SETOUT statement chooses the specified data set from among those data sets that are already opened for output by the EDIT or CREATE statement. (The SHOW DATASETS command lists these data sets.) This data set becomes the current output data set for subsequent data management statements.

If specified, the NOBS option returns the number of observations currently in the data set in the scalar variable **name**. The POINT option makes the specified observation the current one.

In the following example, the data set WORK.A has 20 observations. The SETOUT statement sets the variable SIZE to 20 and sets the current observation to 5.

```
proc iml;
 x = T(1:20);
 create A var {x}; append;
 setout A nobs size point 5;
 list; /* lists observation 10 */
```
SHAPE Function

SHAPE(matrix, nrow < , ncol > < , pad-value > );

The SHAPE function reshapes and repeats values in a matrix.

The arguments to the SHAPE function are as follows:

matrix is a numeric or character matrix or literal.
nrow specifies the number of rows for the new matrix.
ncol specifies the number of columns for the new matrix.
pad-value specifies a value to use for elements of the new matrix if the quantity nrow \times ncol is greater than the number of elements in matrix.

The SHAPE function creates a new matrix from data in matrix. The values nrow and ncol specify the number of rows and columns, respectively, in the new matrix. The function can reshape both numeric and character matrices.

There are three ways of using the function:

- If only nrow is specified, the number of columns is determined as the number of elements in the object matrix divided by nrow. The number of elements must be exactly divisible; otherwise, a conformability error occurs.

- If both nrow and ncol are specified, but not pad-value, the result is achieved by moving along the rows until the desired number of elements is obtained. The operation cycles back to the beginning of the object matrix to get more elements, if needed.

- If pad-value is specified, the operation first copies the elements of matrix into the result. If the number of elements in the result matrix is larger than the number of elements in matrix, the pad-value value is used for the remaining elements.

If nrow or ncol is specified as 0, then the number of rows or columns, respectively, becomes the number of values divided by ncol or nrow.

For example, the following statements create constant matrices of a given size:
\r\nChapter 26: Language Reference

\n\begin{verbatim}
r = shape(12, 3, 4);    // 3 x 4 matrix with constant value 12 */
s = shape({99 31}, 3, 3);    // 3 x 3 matrix with alternating values */
print r, s;
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{constant_repeated_matrices.png}
\caption{Constant and Repeated Matrices}
\end{figure}

The SHAPE function produces the result matrix by traversing the argument matrix in row-major order until the specified number of elements is reached. If necessary, the SHAPE function reuses elements.

You can also use the SHAPE function to reshape an existing matrix, as shown in the following statements:

\begin{verbatim}
t = shape(1:6, 2);
print t;
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{reshaped_matrix.png}
\caption{Reshaped Matrix}
\end{figure}

**SHAPECOL Function**

\begin{verbatim}
SHAPECOL(matrix, nrow <, ncol > <, pad-value >);
\end{verbatim}

The SHAPECOL function reshapes and repeats values in a matrix. It is similar to the SHAPE function except that the SHAPECOL function produces the result matrix by traversing the argument matrix in column-major order.

The following statements demonstrate the SHAPECOL function:

\begin{verbatim}
A = {1 2 3, 4 5 6};
c = shapecol(A, 3);
v = shapecol(A, 0, 1);
print c v;
\end{verbatim}
The vector \( \mathbf{v} \) in the example is called the “vec of \( \mathbf{A} \)” and is written \( \text{vec}(\mathbf{A}) \). Uses of the vec operator in matrix algebra are described in Harville (1997). One important property is the relationship between the vec operator and the direct product operator (Kronecker product operator). If \( \mathbf{A}, \mathbf{B}, \) and \( \mathbf{X} \) have the appropriate dimensions, then

\[
\text{vec}(\mathbf{AXB}) = (\mathbf{B}' \otimes \mathbf{A})\text{vec}(\mathbf{X})
\]

There is also a relationship between the SHAPECOL function and the SHAPE function. If \( \mathbf{A} \) is a matrix, then the following two computations are equivalent:

\[
\begin{align*}
\mathbf{b} &= \text{shapecol}(\mathbf{A}, m, n, \text{padVal}); \\
\mathbf{c} &= \text{T}(\text{shape}(\mathbf{A}', n, m, \text{padVal}));
\end{align*}
\]

See the VECH function for a similar function that is useful for computing with symmetric matrices.

---

**SHOW Statement**

**SHOW operands ;**

The SHOW statement displays system information. The following operands are available:

**ALL** displays all the information included by the OPTIONS, SPACE, DATASETS, FILES, and MODULES options.

**ALLNAMES** behaves like NAMES, but also displays names without values.

**CONTENTS** displays the names and attributes of the variables in the current SAS data set.

**DATASETS** displays all open SAS data sets.

**FILES** displays all open files.

**MEMORY** returns the size of the largest chunk of main memory available.

**MODULES** displays all modules that exist in the current PROC IML environment. A module already referenced but not yet defined is listed as undefined.

**name** displays attributes of the specified matrix. If the name of a matrix is one of the SHOW keywords, then both the information for the keyword and the attributes of the matrix are shown.

**NAMES** displays attributes of all matrices having values. Attributes include number of rows, number of columns, data type, and size.
Chapter 26: Language Reference

OPTIONS displays current settings of all PROC IML options (see the RESET statement).

PAUSE displays the status of all paused modules that are waiting to resume.

SPACE displays the workspace and symbolspace size and their current usage.

STORAGE displays the modules and matrices in the current PROC IML library storage.

An example of a valid SHOW statement follows:

```plaintext
a = {1 2, 3 4};
b = 1:5;
free c;
start MyMod(x);
 return(2*x);
finish;
create Temp;

show modules allnames datasets memory;
```

**Figure 26.381** System Information

Modules:

```
MYMOD
```

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ROWS</th>
<th>COLS</th>
<th>TYPE</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>5</td>
<td>num</td>
<td>8</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>0</td>
</tr>
</tbody>
</table>

Number of symbols = 3 (includes those without values)

<table>
<thead>
<tr>
<th>LIBNAME</th>
<th>MEMNAME</th>
<th>OPEN MODE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK</td>
<td>TEMP</td>
<td>Update</td>
<td>Current Input/Output</td>
</tr>
</tbody>
</table>

Memory Usage (in bytes):
**SKEWNESS Function**

\[
\text{SKEWNESS}(x);
\]

The SKEWNESS function is part of the IMLMLIB library. The SKEWNESS function returns the sample skewness for each column of a matrix. The sample skewness measures the asymmetry of a data distribution. Observations that are symmetrically distributed should have a skewness near 0.

The SKEWNESS function returns the same sample skewness as the UNIVARIATE procedure. For a formula, see the section “Descriptive Statistics” in the chapter “The UNIVARIATE Procedure” in *Base SAS Procedures Guide: Statistical Procedures*.

The following example computes the skewness for each column of a matrix:

\[
x = \begin{bmatrix}
1 & 0 \\
2 & 1 \\
4 & 2 \\
8 & 3 \\
16 & . 
\end{bmatrix};
\]

\[
\text{skew} = \text{skewnness}(x);
\]

\[
\text{print skew;}
\]

![Figure 26.382 Sample Skewness of Two Columns](image)

<table>
<thead>
<tr>
<th>skew</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3253147</td>
</tr>
</tbody>
</table>

**SOLVE Function**

\[
\text{SOLVE}(A, B);
\]

The SOLVE function solves a system of linear equations.

The arguments to the SOLVE function are as follows:

- \(A\) is an \(n \times n\) nonsingular matrix.
- \(B\) is an \(n \times p\) matrix.

The SOLVE function solves the set of linear equations \(AX = B\) for \(X\). The matrix \(A\) must be square and nonsingular.

The expression \(X = \text{SOLVE}(A, B)\) is mathematically equivalent to using the INV function in the expression \(X = \text{INV}(A) \times B\). However, the SOLVE function is recommended over the INV function because it is more efficient and more accurate.

The following example uses the SOLVE function:

\[
A = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 
\end{bmatrix},
\]
The solution method that is used is discussed in Forsythe, Malcom, and Moler (1967). The SOLVE function uses a criterion to determine whether the input matrix is singular. See the INV function for details.

If $A$ is an $n \times n$ matrix, the SOLVE function temporarily allocates an $n^2$ array in addition to the memory allocated for the return matrix.

**SOLVELIN Call**

```
CALL SOLVELIN(x, status, A, b, method);
```

The SOLVELIN subroutine uses direct decomposition to solve sparse symmetric linear systems.

The SOLVELIN subroutine returns the following values:

- $x$ is the solution to $Ax = b$.
- $status$ is the final status of the solution.

The input arguments to the SOLVELIN subroutine are as follows:

- $A$ is the sparse coefficient matrix in the equation $Ax = b$. You can use SPARSE function to convert a matrix from dense to sparse storage.
- $b$ is the right side of the equation $Ax = b$.
- $method$ is the name of the decomposition to be used.

The input matrix $A$ represents the coefficient matrix in sparse format; it is an $n \times 3$ matrix, where $n$ is the number of nonzero elements. The first column contains the nonzero values, while the second and third columns contain the row and column locations for the nonzero elements, respectively. Since $A$ is assumed to be symmetric, only the elements on and below the diagonal should be specified, and it is an error to specify elements above the diagonal.

The solution to the system is returned in $x$. Your program should also check the returned $status$ to make sure that a solution was found.
**status** = 0 indicates success.

**status** = 1 indicates the matrix A is not positive-definite.

**status** = 2 indicates the system ran out of memory.

If the SOLVELIN subroutine is unable to solve your system, you can try the iterative method **ITSOLVER subroutine**.

Two different factorization methods are available from the call, Cholesky and Symbolic LDL, specified as 'CHOL' or 'LDL' with the **method** parameter. Both these factorizations are applicable only to positive-definite symmetric systems; if your system is not positive-definite or not symmetric, you can use an **ITSOLVER call**.

The following example uses SOLVELIN to solve the system:

\[
\begin{bmatrix}
3 & 1.1 & 0 & 0 \\
1.1 & 4 & 1 & 3.2 \\
0 & 1 & 10 & 0 \\
0 & 3.2 & 0 & 3 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix}
= 
\begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]

/* value row column */
A = [3, 1, 1, 1,
     1.1, 2, 1,
     4, 2, 2,
     1, 3, 2,
     3.2, 4, 2,
     10, 3, 3,
     3, 4, 4];

/* right hand side */
b = [1, 1, 1, 1];

call solvelin(x, status, A, b, 'LDL');
print status x;

**Figure 26.384** Solving a Sparse Linear System

<table>
<thead>
<tr>
<th>status</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td>-6.4</td>
</tr>
<tr>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>7.16</td>
</tr>
</tbody>
</table>

**SORT Call**

**CALL SORT**(matrix <, by> <, descend>);

The **SORT subroutine** sorts a matrix by the values of one or more columns.

The arguments to the **SORT subroutine** are as follows:
matrix is the input matrix. It is sorted in place by the call. If you want to preserve the original order of the data, make a copy of matrix.

by specifies the columns used to sort the matrix. The argument by is either a numeric matrix that contains column numbers, or a character matrix that contains the names of columns assigned to matrix by a MATTRIB statement or READ statement. If by is not specified, then the first column is used.

descend specifies which columns, if any, should be sorted in descending order. Any by columns not specified as descending will be ascending. If descend = by, then all by columns will be descending; if descend is skipped or is a null matrix, then all by columns will be ascending.

The SORT subroutine is used to sort a matrix according to the values in the columns specified by the by and descend arguments. Because the sort is done in place, very little additional memory space is required. The SORT subroutine is not as fast as the SORTNDX call for matrices with a large number of rows. After a matrix has been sorted, the unique combinations of values in the by columns can be obtained from the UNIQUEBY function.

For example, the following statements sort a matrix:

```sas
m = { 1 1 0,
 2 2 0,
 1 1 1,
 2 2 2};
call sort(m, {1 3}, 3); /* ascending by col 1; descending by col 3 */
print m;
```

![Sorted Matrix](image)

**SORT Statement**

SASSORT < DATA=SAS-data-set > < OUT=SAS-data-set > BY < DESCENDING variables > ;

The SORT statement sorts a SAS data set. You can use the following clauses with the SORT statement:

- **DATA=SAS-data-set** names the SAS data set to be sorted. It can be specified with a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set. (See the example for the CLOSE statement.) Note that the DATA= portion of the specification is optional.

- **OUT=SAS-data-set** specifies a name for the output data set. If this clause is omitted, the DATA= data set is replaced by the sorted version.

- **BY variables** specifies the variables to be sorted. A BY clause must be used with the SORT statement.
DESCENDING specifies the variables are to be sorted in descending order.

The SORT statement sorts the observations in a SAS data set by one or more variables, stores the resulting sorted observations in a new SAS data set, or replaces the original.

In contrast with other data processing statements, it is mandatory that the data set to be sorted be closed prior to the execution of the SORT statement. The SORT statement gives an error if you try to sort a data set that is open.

The SORT statement first arranges the observations in the order of the first variable in the BY clause; then it sorts the observations with a given value of the first variable by the second variable, and so forth. Every variable in the BY clause can be preceded by the keyword DESCENDING to denote that the variable that follows is to be sorted in descending order. Note that the SORT statement retains the same relative positions of the observations with identical BY variable values.

For example, the following statement sorts data from the Sashelp.Class data set by the variables Age and Height, where Age is sorted in descending order, and all observations with the same Age value are sorted by Height in ascending order:

```
sort Sashelp.Class out=sortClass by descending age height;
```

The output data set sortClass contains the sorted observations. When a data set is sorted in place (without the OUT= clause) any indexes associated with the data set become invalid and are automatically deleted.

Notice that all the clauses of the SORT statement must be specified in the order given in the syntax.

---

**SORTNDX Call**

```
CALL SORTNDX(index, matrix <, by> <, descend>);
```

The SORTNDX subroutine creates an index to reorder a matrix by specified columns.

The arguments to the SORTNDX subroutine are as follows:

- **matrix** is the input matrix, which is not modified by the call.
- **by** specifies the columns used to sort the matrix. The argument **by** is either a numeric matrix that contains column numbers, or a character matrix that contains the names of columns assigned to matrix by a MATTRIB statement or READ statement. If **by** is not specified, then the first column is used.
- **descend** specifies which columns, if any, should be sorted in descending order. Any **by** columns not specified as descending will be ascending. If **descend** = **by**, then all **by** columns will be descending; if **descend** is skipped or is a null matrix, then all **by** columns will be ascending.

The SORTNDX subroutine can be used to process the rows of a matrix in a sorted order, without having to actually modify the matrix.
For example, the following statements return a vector that specifies the order of the rows in a matrix:

```plaintext
m = { 1 1 0,
 2 0 0,
 1 3 1,
 2 2 2 };
call sortndx(ndx, m, {1 3}, 3);
print ndx;
```

![Figure 26.386 Sort Index](image)

The output is shown in Figure 26.386. The SORTNDX subroutine returns the vector `ndx` that indicates how rows of `m` will appear if you sort `m` in ascending order by column 1 and in descending order by column 3. The values of the vector `ndx` indicate that row 3 of `m` will be the first row in the sorted matrix. Row 1 of `m` will become the second row. Row 4 will become the third row, and row 2 will become the last row. The matrix can be physically sorted as follows:

```plaintext
sorted = m[ndx,];
```

The SORTNDX subroutine can be used with the UNIQUEBY function to extract the unique combinations of values in the `by` columns. If you want to replace a matrix with a sorted copy of itself, use the SORT call.

---

**SOUND Call**

```plaintext
CALL SOUND(freq <, dur>);
```

The SOUND subroutine generates a tone with a frequency (in hertz) given by the `freq` parameter and a duration (in seconds) given by the `dur` parameter.

The arguments to the SOUND subroutine are as follows:

- `freq` is a numeric matrix or literal that contains the frequency in hertz.
- `dur` is a numeric matrix or literal that contains the duration in seconds. Note that the `dur` argument differs from that in the DATA step.

Matrices can be specified for frequency and duration to produce multiple tones, but if both arguments are nonscalar, then the number of elements must match. The duration argument is optional and defaults to 0.25 (one quarter second).
For example, the following statements produce tones from an ascending musical scale, all with a duration of 0.2 seconds:

```plaintext
notes = 400#(2##do(0, 1, 1/12));
call sound(notes, 0.2);
```

---

**SPARSE Function**

```plaintext
SPARSE(x <, type>);
```

The SPARSE function converts an $n \times p$ matrix that contains many zeros into a matrix stored in a sparse format which suitable for use with the **ITSOLVER** call or the **SOLVE** call.

The arguments to the SPARSE function are as follows:

- **x** specifies an $n \times p$ numerical matrix. Typically, $x$ contains many zeros and only $k$ nonzeros, where $k$ is much smaller than $np$.
- **type** specifies whether the $x$ matrix is symmetric. The following values are valid:
  - "symmetric" specifies that only the lower triangular nonzero values of the $x$ matrix are used.
  - "unsymmetric" specifies that all nonzero values of the $x$ matrix are used. This is the default value.

The `type` argument is not case-sensitive. The first three characters are used to determine the value. For example, "SYM" and "symmetric" specify the same option.

The matrix returned by the SPARSE function is a $k \times 3$ matrix that contains the following values:

- The first column contains the nonzero values of the $x$ matrix.
- The second column contains the row numbers for each value.
- The third column contains the column numbers for each value.

For example, the following statements compute a sparse representation of a dense matrix with many zeros:

```plaintext
x = {3 1.1 0 0 ,
 1.1 4 0 3.2,
 0 1 10 0 ,
 0 3.2 0 3 };
a = sparse(x, "sym");
print a[colname=\{"Value" "Row" "Col"\}];
```
The SPLINE and SPLINEC subroutines fit cubic splines to data. The SPLINE subroutine is the same as SPLINEC but does not return the matrix of spline coefficients needed to call SPLINEV, nor does it return the slopes at the endpoints of the curve.

The SPLINEC subroutine returns the following values:

- **fitted**: is an \( n \times 2 \) matrix of fitted values.
- **coeff**: is an \( n \times 5 \) (or \( n \times 9 \)) matrix of spline coefficients. The matrix contains the cubic polynomial coefficients for the spline for each interval. Column 1 is the left endpoint of the \( x \)-interval for the regular (nonparametric) spline or the left endpoint of the parameter for the parametric spline. Columns 2 – 5 are the constant, linear, quadratic, and cubic coefficients, respectively, for the \( x \)-component. If a parametric spline is used, then columns 6 – 9 are the constant, linear, quadratic, and cubic coefficients, respectively, for the \( y \)-component. The coefficients for each interval are with respect to the variable \( x - x_i \) where \( x_i \) is the left endpoint of the interval and \( x \) is the point of interest. The matrix `coeff` can be processed to yield the integral or the derivative of the spline. This, in turn, can be used with the SPLINEV function to evaluate the resulting curves. The SPLINEC subroutine returns `coeff`.
- **endSlopes**: is a \( 1 \times 2 \) matrix that contains the slopes of the two ends of the curve expressed as angles in degrees. The SPLINEC subroutine returns the `endSlopes` argument.

The input arguments to the SPLINEC subroutine are as follows:

- **data**: specifies a \( n \times 2 \) (or \( n \times 3 \)) matrix of \((x, y)\) points on which the spline is to be fit. The optional third column is used to specify a weight for each data point. If `smooth > 0`, the weight column is used in calculations. A weight \( \leq 0 \) causes the data point to be ignored in calculations.
- **smooth**: is an optional scalar that specifies the degree of smoothing to be used. If `smooth` is omitted or set equal to 0, then a cubic interpolating spline is fit to the data. If `smooth > 0`, then a cubic spline is used. Larger values of `smooth` generate more smoothing.
**delta**
is an optional scalar that specifies the resolution constant. If **delta** is specified, the fitted points are spaced by the amount **delta** on the scale of the first column of **data** if a regular spline is used or on the scale of the curve length if a parametric spline is used. If both **nout** and **delta** are specified, **nout** is used and **delta** is ignored.

**nout**
is an optional scalar that specifies the number of fitted points to be computed. The default is **nout**=200. If **nout** is specified, then **nout** equally spaced points are returned. The **nout** argument overrides the **delta** argument.

**type**
is an optional 1 × 1 (or 1 × 2) character matrix or quoted literal that contains the type of spline to be used. The first element of **type** should be one of the following:

- “periodic”, which requests periodic endpoints
- “zero”, which sets second derivatives at endpoints to 0

The **type** argument controls the endpoint constraints unless the **slope** argument is specified. If “periodic” is specified, the response values at the beginning and end of column 2 of **data** must be the same unless the smoothing spline is being used. If the values are not the same, an error message is printed and no spline is fit. The default value is “zero”. The second element of **type** should be one of the following:

- “nonparametric”, which requests a nonparametric spline
- “parametric”, which requests a parametric spline

If “parametric” is specified, a parameter sequence \{t_i\} is formed as follows: \( t_1 = 0 \) and

\[
    t_i = t_{i-1} + \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}
\]

Splines are then fit to both the first and second columns of **data**. The resulting splined values are paired to form the output. Changing the relative scaling of the first two columns of **data** changes the output because the sequence \{t_i\} assumes Euclidean distance.

Note that if the points are not arranged in strictly ascending order by the first columns of **data**, then a parametric method must be used. An error message results if the nonparametric spline is requested.

**slope**
is an optional 1 × 2 matrix of endpoint slopes given as angles in degrees. If a parametric spline is used, the angle values are used modulo 360. If a nonparametric spline is used, the tangent of the angles is used to set the slopes (that is, the effective angles range from −90 to 90 degrees).

See Stoer and Bulirsch (1980), Reinsch (1967), and Pizer (1975) for descriptions of the methods used to fit the spline. For simplicity, the following explanation assumes that the **data** matrix does not contain a weighting column.

Nonparametric splines can be used to fit data for which you believe there is a functional relationship between the X and Y variables. The unique values of X (stored in the first column of **data**) form a partition \( \{a = x_1 < x_2 < \ldots < x_n = b\} \) of the interval \([a, b]\). You can use a spline to interpolate the data (produce a curve that passes through each data point) provided that there is a single Y value for each X value. The spline is created by constructing cubic polynomials on each subinterval \([x_i, x_{i+1}]\) so that the value of the cubic polynomials and their first two derivatives coincide at each \(x_i\).
1054 F Chapter 26: Language Reference

Interpolating Splines
An interpolating spline is not uniquely determined by the set of Y values. To achieve a unique interpolant,
S, you must specify two constraints on the endpoints of the interval Œa; b. You can achieve uniqueness by
specifying one of the following conditions:
 S 00 .a/ D 0; S 00 .b/ D 0: The second derivative at both endpoints is zero. This is the default condition,
but can be explicitly set by using type=’zero’.
 Periodic conditions. If your data are periodic so that x1 can be identified with xn , and if y1 D yn , then
the interpolating spline already satisfies S.a/ D S.b/. Setting type=’periodic’ further requires
that S 0 .a/ D S 0 .b/ and S 00 .a/ D S 00 .b/.
 Fixed slopes at endpoints. Setting slope=fy10 ; yn0 g requires that S 0 .a/ D y10 and S 0 .b/ D yn0 .
The following statements give three examples of computing an interpolating spline for data. Note that the
first and last Y values are the same, so you can ask for a periodic spline.
proc iml;
data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
/* Compute three spline interpolants of the data */
/* (1) a cubic spline with type=zero (the default) */
call spline(fitted,data);
/* (2) A periodic spline */
call spline(periodicFitted,data) type='periodic';
/* (3) A spline with specific slopes at endpoints */
call spline(slopeFitted,data) slope={45 30};
/* write data */
create SplineData from data[colname={"x" "y"}];
append from data;
close SplineData;
/* write fitted interpolants */
fit = fitted || periodicFitted[,2] || slopeFitted[,2];
varNames = {"t" "Interpolant" "Periodic" "EndSlopes"};
create SplineFit from fit[colname=varNames];
append from fit;
close SplineFit;
quit;
/* merge data and plot */
data Spline;
merge SplineData SplineFit;
run;
title "Spline Interpolation";
proc sgplot data=Spline;
scatter x=x y=y;
series x=t y=Interpolant;


As shown in Figure 26.388, the interpolants pass through each point of the data. They differ from each other by the derivatives at the boundary points, \( x = 0 \) and \( x = 7 \). The generic interpolant has second derivatives that vanish at the boundary points. The periodic curve has a derivative at \( x = 0 \) that matches the derivative at \( x = 7 \). The third curve has derivatives that match the given slopes at the boundary points.

**Figure 26.388** Three Spline Interpolants with Different Boundary Conditions

### Smoothing Splines

You can also use a spline to smooth data. In general, a smoothing spline does not pass through any data pair exactly. A very small value of the smooth smoothing parameter approximates an interpolating polynomial for data in which each unique X value is assigned the mean of the Y values that correspond to that X value. As the smooth parameter gets very large, the spline approximates a linear regression.

The following statements compute two smoothing splines for the same data as in the previous example. The spline coefficients are passed to the SPLINEV function, which evaluates the smoothing spline at the original X values. The smoothing spline does not pass through the original Y values. Also, the smoothing parameter for the periodic spline is smaller, so the periodic spline has more “wiggles” than the corresponding spline with the larger smoothing parameter.

```plaintext
proc iml;

data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };

/* Compute spline smoothers of the data. */
call splinec(fitted,coeff,endSlopes,data) smooth=1;

/* Evaluate the smoother at the original X positions */
smoothFit = splinev(coeff, data[,1]);
```
/* Compute periodic spline smoother of the data. */
call splinec(periodicFitted, coeff, endSlopesP, data)
   smooth=0.1 type="periodic";

/* Evaluate the smoother at the original X positions */
smoothPeriodicFit = splinev(coeff, data[,1]);

/* Compare the two fits */
print smoothFit smoothPeriodicFit;

**Figure 26.389** Two Spline Smoothers

<table>
<thead>
<tr>
<th>smoothFit</th>
<th>smoothPeriodicFit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4.4761214</td>
<td>0 4.7536432</td>
</tr>
<tr>
<td>1 4.002489</td>
<td>1 3.5603915</td>
</tr>
<tr>
<td>2 4.2424509</td>
<td>2 4.3820561</td>
</tr>
<tr>
<td>3 4.8254655</td>
<td>3 4.47148</td>
</tr>
<tr>
<td>4 5.7817386</td>
<td>4 5.8811872</td>
</tr>
<tr>
<td>5 6.3661254</td>
<td>5 6.8331581</td>
</tr>
<tr>
<td>6 6.0606327</td>
<td>6 6.1180839</td>
</tr>
<tr>
<td>7 5.2449764</td>
<td>7 4.7536432</td>
</tr>
</tbody>
</table>

You can write the smoothers to a SAS data set and merge them with the data, as shown in the previous example. **Figure 26.390** shows the resulting graph.

**Figure 26.390** Graph of Two Spline Smoothers

---

**Parametric Splines**

A parametric spline can be used to interpolate or smooth data for which there does not seem to be a functional relationship between the X and Y variables. A partition \( \{t_i\} \) is formed as explained in the documentation for the *type* parameter. Splines are then used to fit the X and Y values independently.
The following program fits a parametric curve to data that are shaped like an “S.” The variable fitted is returned as a numParam ×2 matrix that contains the ordered pairs that correspond to the parametric spline. These ordered pairs correspond to numParam evenly spaced points in the domain of the parameter \( t \).

The purpose of the SPLINEV function is to evaluate (score) an interpolating or smoothing spline at an arbitrary set of points. The following program shows how to construct the parameters that correspond to the original data by using the formula specified in the documentation for the type argument. These parameters are used to construct the evenly spaced parameters that correspond to the data in the fitted matrix.

```plaintext
proc iml;
data = {3 7, 2 7, 1 6, 1 5, 2 4, 3 3, 3 2, 2 1, 1 1}; /* Compute parametric spline interpolant */
numParam = 40;
call splinec(fitted,coeff,endSlopes,data)
 nout=numParam type={"zero" "parametric"};

/* write data */
create SplineData from data[colname={"x" "y"}];
append from data;
close SplineData;

/* write parametric spline values */
create SplineFit from fitted[colname={"xt" "yt"}];
append from fitted;
close SplineFit;

/* Manually reproduce/verify the "fitted" values */
/* (1) Form the parameters mapped onto the data */
t = j(nrow(data),1,0); /* first parameter is zero */
do i = 2 to nrow(t);
 t[i] = t[i-1] + sqrt((data[i,1]-data[i-1,1])##2 + (data[i,2]-data[i-1,2])##2);
end;

/* (2) Construct numParam evenly spaced parameters */
params = do(0, t[nrow(t)], t[nrow(t)]/(numParam-1));

/* (3) Evaluate the parametric spline at these points */
fit = splinev(coeff, params);
maxDiff = max(abs(fitted-fit));
print maxDiff; /* should be very small or zero */
quit;

/* merge data and plot */
data Spline;
merge SplineData SplineFit;
run;

title "Parametric Spline Smoother";
proc sgplot data=Spline;
 scatter x=x y=y;
 series x=xt y=yt / legendlabel="Parametric Spline";
run;
```
The Domain of the Spline Functions

Attempting to evaluate a spline outside its domain of definition results in a missing value. For example, the following statements define a spline on the interval \( [0, 7] \). Attempting to evaluate the spline at points outside this interval \((-1, 20)\) results in missing values.

```plaintext
proc iml;
 data = { 0 5, 1 3, 2 5, 3 4, 4 6, 5 7, 6 6, 7 5 };
call splineC(fitted,coeff,endSlopes,data) slope={45 45};
v = splineV(coeff,{-1 1 2 3 3.5 4 20});
print v;
```

```
 v
-1 .
 1 3
 2 5
 3 4
3.5 4.7073171
 4 6
20 .
```
Integration of Spline Functions

One use of splines is to estimate the integral of a function that is known only by its value at a discrete set of points. Many people are familiar with elementary methods of numerical integration such as the left-hand rule, the trapezoid rule, and Simpson’s rule. In the left-hand rule, the integral of discrete data is estimated by the exact integral of a piecewise constant function between the data points. In the trapezoid rule, the integral is estimated by the exact integral of a piecewise linear function that connects the data points. In Simpson’s rule, the integral is estimated as the exact integral of a piecewise quadratic function between the data points.

Because a cubic spline is a sequence of cubic polynomials, it is possible to compute the exact integral of the cubic spline and use this as an estimate for the integral of the discrete data. The next example takes a function defined by discrete data and finds the integral and the first moment of the function.

The implementation of the integrand function (**SpleinEval**) uses a helpful trick to evaluate a spline at a single point. If you pass in a scalar argument to the SPLINEV function, you get back a vector that represents the evaluation of the spline along evenly spaced points, rather than the spline evaluated at the argument. To avoid this, the following statements evaluate the spline at the vector \( x \) and then extract the entry in the first row, second column. This number is the value of the spline evaluated at \( x \).

```sas
proc iml;
 x = { 0, 2, 5, 7, 8, 10 };
 y = x + 0.1*sin(x);
 a = x || y;
 call splinec(fit,coeff,endSlopes,a);

 start SplineEval(x) global(coeff,power);
 /* The first column of v contains the points of evaluation;
 the second column contains the evaluation. */
 v = x##power # splinev(coeff, x//x);
 return(v[1,2]); /* return spline(x) */
 finish;

 /* Evaluate the "moment" of a function.
 moment(0) = integral of f(x) dx
 moment(1) = integral of x*f(x) dx
 moment(2) = integral of x##2 *f(x) dx, etc
 Use QUAD to integrate */
 start moment(pow) global(coeff,power);
 power = pow;
 intervals = coeff[,1]; /* left endpts of x intervals */
 call quad(z,"SplineEval", intervals) eps = 1.e-10;
 return(sum(z));
 finish;

 mass = moment(0); /* to compute the mass */
 m = mass //
 (moment(1)/mass) // /* to compute the mean */
 (moment(2)/mass); /* to compute the meansquare */
 print m;

 /* Check the previous computation by using Gauss-Legendre
 integration, which is valid for moments up to maxng. */
```
gauss = {
    -9.3246951420315205e-01 -6.6120938646626448e-01
    -2.3861918608319743e-01 2.3861918608319713e-01
    6.6120938646626459e-01 9.3246951420315183e-01
    1.713244923791701e-01 3.607615730481388e-01
    4.679139345726905e-01 4.679139345726904e-01
    3.607615730481389e-01 1.713244923791707e-01
};
ngauss = ncol(gauss); /* = 6 */
maxng = 2*ngauss-4;

start momentGL(pow) global(coeff,gauss,ngauss,maxng);
   if pow >= maxng then return(.);
   nrow = nrow(coeff);
   left = coeff[1:nrow-1,1]; /* left endpt of interval */
   right = coeff[2:nrow,1]; /* right endpt */
   mid = 0.5*(left+right);
   interv = 0.5*(right - left);
   /* scale the weights on each interval */
   wgts = rowvec( interv*gauss[2,] );
   /* scale the points on each interval */
   pts = rowvec( interv*gauss[1,] + mid );
   /* evaluate the function */
   eval = splinev(coeff,pts)[,2];
   return( sum( wgts#pts##pow # eval) );
finish;

mass = momentGL(0); /* to compute the mass */
m2 = mass // (momentGL(1)/mass) // (momentGL(2)/mass) ;
print m2; /* should agree with earlier result */

Figure 26.394  Integral and Other Moments of the Spline Function

<table>
<thead>
<tr>
<th>m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50.204224</td>
<td></td>
</tr>
<tr>
<td>6.658133</td>
<td></td>
</tr>
<tr>
<td>49.953307</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50.204224</td>
<td></td>
</tr>
<tr>
<td>6.658133</td>
<td></td>
</tr>
<tr>
<td>49.953307</td>
<td></td>
</tr>
</tbody>
</table>

**SPLINEV Function**

SPLINEV(coeff <, delta <, nout >);

The SPLINEV function evaluates a cubic spline at a set of points. The function returns a two-column matrix that contains the points of evaluation in the first column and the corresponding fitted values of the spline in the second column.

The arguments to the SPLINEV function are as follows:
**SPOT Function**

**SPOT**\( (\text{times}, \text{forward\_rates}) \);

The SPOT function returns an \( n \times 1 \) vector of (per-period) spot rates, given vectors of forward rates and times.

The arguments to the SPOT function are as follows:

- **times** is an \( n \times 1 \) column vector of times in consistent units. Elements should be nonnegative.
- **forward\_rates** is an \( n \times 1 \) column vector of corresponding (per-period) forward rates. Elements should be positive.

The SPOT function transforms the given spot rates as

\[
s_1 = f_1
\]

\[
s_i = \left( \prod_{j=1}^{i-1} (1 + f_j)^{t_j - t_{j-1}} \right)^{1/t_i} - 1; \quad i = 2, \ldots, n
\]

where, by convention, \( t_0 = 0 \).

For example, the following statements produce the output shown in Figure 26.395:

```plaintext
 time = T(do(1, 5, 1));
 forward = T(do(0.05, 0.09, 0.01));
 spot = spot(time, forward);
 print spot;
```
Figure 26.395  Spot Rates

<table>
<thead>
<tr>
<th>spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.054982</td>
</tr>
<tr>
<td>0.0599686</td>
</tr>
<tr>
<td>0.0649413</td>
</tr>
<tr>
<td>0.0699065</td>
</tr>
</tbody>
</table>

**SQRSYM Function**

**SQRSYM**(matrix);

The SQRSYM function takes a packed-symmetric matrix (such as generated by the SYMSQR function) and transforms it back into a dense square matrix.

The argument to the SQRSYM function is a symmetric matrix. The elements of the argument are unpacked (in row-major order) into the lower triangle of the result and reflected across the diagonal into the upper triangle. If you want the lower-triangular elements to be stacked in column-major order, use the VECH function.

For example, the following statements return a symmetric matrix:

```
v = T(1:6);
sqr = sqrsym(v);
print sqr;
```

Figure 26.396  Symmetric Matrix

<table>
<thead>
<tr>
<th>sqr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 4</td>
</tr>
<tr>
<td>2 3 5</td>
</tr>
<tr>
<td>4 5 6</td>
</tr>
</tbody>
</table>

The SQRSYM function and the SYMSQR function are inverse operations on the set of symmetric matrices. See also the SQRVECH function, which unpacks elements in column-major order.

**SQRT Function**

**SQRT**(matrix);

The SQRT function returns the positive square roots of each element of the argument matrix.

An example of a valid statement follows:

```
a = {1 2 3 4};
c = sqrt(a);
print c;
```
**SQRVECH Function**

\[
\text{SQRVECH}(\text{matrix});
\]

The SQRVECH function transforms a packed-symmetric matrix into a dense square matrix.

The elements of the argument are unpacked (columnwise) into the lower triangle of the result and reflected across the diagonal into the upper triangle. The argument \textit{matrix} should be a column-stacked, packed-symmetric matrix, such as generated by the \texttt{VECH} function.

For example, the following statements return a symmetric matrix:

```plaintext
v = T(1:6);
sqr = sqrvech(v);
print sqr;
```

**Figure 26.398** Symmetric Matrix

\[
\begin{array}{lrr}
sqr \\
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}
\]

The SQRVECH function and the \texttt{VECH} function are inverse operations on the set of symmetric matrices. See also the \texttt{SQRSYM} function, which unpacks elements in row-major order.

**SSQ Function**

\[
\text{SSQ}(\text{matrix1} <, \text{matrix2}, \ldots, \text{matrix15}>);\]

The SSQ function returns as a single numeric value the (uncorrected) sum of squares for all the elements of all arguments. You can specify as many as 15 numeric argument matrices.

The SSQ function checks for missing arguments and does not include them in the accumulation. If all arguments are missing, the result is 0.

An example of a valid statement follows:

```plaintext
a = {1 2 3, 4 5 6};
x = ssq(a);
print x;
```

**Figure 26.399** Sums of Squares

\[
\begin{array}{l}
x \\
91
\end{array}
\]
STANDARD Function

STANDARD(matrix);

The STANDARD function is part of the IMLMLIB library. The STANDARD function standardizes each column of an $n \times m$ matrix. Each column of the input matrix is standardized to have a mean of zero and unit standard deviation, as shown in the following example:

```plaintext
use Sashelp.Class;
read all var _NUM_ into X[colname=varNames];
close Sashelp.Class;
stdx = standard(x);
print "Standardized Data", stdx[colname=varnames];
```

**Figure 26.400** Standardized Data

<table>
<thead>
<tr>
<th>stdx</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4583796</td>
<td>1.2996021</td>
<td>0.5477176</td>
<td></td>
</tr>
<tr>
<td>-0.21156</td>
<td>-1.138435</td>
<td>-0.703713</td>
<td></td>
</tr>
<tr>
<td>-0.21156</td>
<td>0.5779431</td>
<td>-0.088975</td>
<td></td>
</tr>
<tr>
<td>0.4583796</td>
<td>0.0903357</td>
<td>0.1086191</td>
<td></td>
</tr>
<tr>
<td>0.4583796</td>
<td>0.2268658</td>
<td>0.1086191</td>
<td></td>
</tr>
<tr>
<td>-0.881499</td>
<td>-0.982401</td>
<td>-0.747623</td>
<td></td>
</tr>
<tr>
<td>-0.881499</td>
<td>-0.494793</td>
<td>-0.681758</td>
<td></td>
</tr>
<tr>
<td>1.1283191</td>
<td>0.0318228</td>
<td>0.5477176</td>
<td></td>
</tr>
<tr>
<td>-0.21156</td>
<td>0.0318228</td>
<td>-0.703713</td>
<td></td>
</tr>
<tr>
<td>-0.881499</td>
<td>-0.650828</td>
<td>-0.02311</td>
<td></td>
</tr>
<tr>
<td>-1.551439</td>
<td>-2.152658</td>
<td>-2.174693</td>
<td></td>
</tr>
<tr>
<td>0.4583796</td>
<td>0.3829002</td>
<td>-0.440254</td>
<td></td>
</tr>
<tr>
<td>-0.881499</td>
<td>-1.177444</td>
<td>-1.011082</td>
<td></td>
</tr>
<tr>
<td>1.1283191</td>
<td>0.8119947</td>
<td>0.5257627</td>
<td></td>
</tr>
<tr>
<td>1.7982586</td>
<td>1.884731</td>
<td>2.194337</td>
<td></td>
</tr>
<tr>
<td>-0.881499</td>
<td>0.4804216</td>
<td>1.2283203</td>
<td></td>
</tr>
<tr>
<td>1.1283191</td>
<td>0.9095162</td>
<td>1.4478695</td>
<td></td>
</tr>
<tr>
<td>-1.551439</td>
<td>-0.943392</td>
<td>-0.659803</td>
<td></td>
</tr>
<tr>
<td>1.1283191</td>
<td>0.8119947</td>
<td>0.5257627</td>
<td></td>
</tr>
</tbody>
</table>

START Statement

START < name > < (arguments) > < GLOBAL (arguments) > ;

language statements

FINISH < name > ;
The START statement defines the beginning of a module definition. Subsequent statements are not executed immediately, but are instead parsed for later execution. The FINISH statement signals the end of a module definition.

The arguments to the START statement are as follows:

- **name** is the name of a user-defined module.
- **arguments** are names of variable arguments to the module. Arguments can be either input variables or output (returned) variables. Arguments listed in the GLOBAL clause are treated as global variables. Otherwise, the arguments are local.
- **language statements** are statements making up the body of the module.

If a parsing error occurs during module compilation, the module is not defined. See Chapter 6 for details.

The following example defines a function module that has one argument. It returns a matrix that is the same dimensions as the input argument. Each element of the output matrix is twice as large as the corresponding element of the input matrix:

```plaintext
start MyFunc(x);
 return(2*x);
finish;
```

c = {1 2, 3 4};
d = MyFunc(c);
print d;

**Figure 26.401** A Function Module

<table>
<thead>
<tr>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4</td>
</tr>
<tr>
<td>6 8</td>
</tr>
</tbody>
</table>

The next example defines a module subroutine that has two input arguments (A and B) and two output arguments (X and Y). Notice that the arguments sent into the module are changed by the module:

```plaintext
start MyMod(x, y, a, b);
 x = a + b;
 y = a - b;
finish;

a = 1:3;
b = {1 0 -3};
run MyMod(p, q, a, b);
print p, q;
```

**Figure 26.402** A Module Subroutine

<table>
<thead>
<tr>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 2 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 6</td>
</tr>
</tbody>
</table>
The last example defines a module that has a GLOBAL clause. The global variables Z and W can be read and modified by the module:

```plaintext
start MyGlobal(a,b) global(z,w);
 z = a*w + b;
finish;

w = 1:4;
call MyGlobal(2, 1);
print z;
```

**Figure 26.403** Results of Calling a Module with a GLOBAL Statement

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

**STD Function**

```
STD(x);
```

The STD function computes a sample standard deviation of data. The sample standard deviation of a column vector is computed as the square root of the sample variance. See the **VAR function** for details.

When `x` is a matrix, the sample variance is computed for each column, as the following example shows:

```plaintext
x = {5 1 10,
 6 2 3,
 6 8 .,
 6 7 9,
 7 2 13};

std = std(x);
p = std;
```

**Figure 26.404** Standard Deviation of Columns

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>std</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7071068</td>
<td>3.2403703</td>
<td>4.1932485</td>
</tr>
</tbody>
</table>

The STD function returns a missing value for columns with fewer than two nonmissing observations.

**STOP Statement**

```
STOP <error-message> ;
```

The STOP statement stops the program, and no further matrix statements are executed. However, PROC IML does not exit, and continues to execute if more statements are submitted. See also the descriptions of the **RETURN statement** and the **ABORT statement**.
If execution was interrupted by a **PAUSE statement** or by a break, the **STOP statement** clears all the paused states and returns to immediate mode. For more information, see the section “**Termination Statements**” on page 77.

If you specify the optional **error-message**, the message is written to the SAS Log.

---

**STORAGE Function**

\[
\text{STORAGE();}
\]

The **STORAGE function** returns a matrix of the names of all the matrices and modules in the current storage library. The result is a character vector in which each matrix or module name occupies a row. Matrices are listed before modules. The **SHOW STORAGE** command separately lists all the modules and matrices in storage.

For example, the following statements print a list of the matrices and modules in the current storage library. Use the **RESET STORAGE** statement to change the current storage directory.

\[
\begin{align*}
x &= 1:5; \\
y &= \{A \ B \ C\}; \\
\text{start MyMod}(x); \\
&\quad \text{return}(2*x); \\
\text{finish;}
\end{align*}
\]

\[
\begin{align*}
\text{store } x \ y \ \text{module=}\text{MyMod};
\end{align*}
\]

\[
\begin{align*}
a &= \text{storage}(); \\
\text{print } a;
\end{align*}
\]

**Figure 26.405** Contents of Storage Library

\[
\begin{array}{l}
a \\
X \\
Y \\
MYMOD
\end{array}
\]

---

**STORE Statement**

\[
\text{STORE <module-list>=} (\text{module-list}) > <\text{matrix-list}> ;
\]

The **STORE statement** stores matrices and modules in a storage library.

The arguments to the **STORE statement** are as follows:

- **module-list** is a list of module names. You can use the _ALL_ keyword to store all modules.
- **matrix-list** is a list of matrix names. You can use the _ALL_ keyword to store all matrices.

See the **STORAGE function** for an example of the **STORE statement**.

The following statement stores the modules A, B, and C and the matrix X:
store module=(A B C) X;

To store all matrices or all modules, use the _ALL_ keyword, as follows:

store _all_ module=_all_;

Similarly, the following statement stores all matrices:

store;

The storage library can be specified by using the RESET STORAGE statement and defaults to WORK.IMLSTOR. The SHOW STORAGE statement lists the current contents of the storage library, and the STORAGE function returns the names of all stored items.

See Chapter 20, “Storage Features,” and the descriptions of the LOAD, REMOVE, RESET, and SHOW statements for related information.

---

**SUB2NDX Function**

SUB2NDX(dim, subscripts);

The SUB2NDX function is part of the IMLMLIB library. The SUB2NDX function module converts subscripts of a matrix into indices for the matrix. The arguments are as follows:

- **dim** specifies the dimensions of the matrix. For example, the value of this argument might be the $1 \times 2$ vector that is returned from the DIMENSION function.
- **subscripts** is a matrix with $k$ columns that specifies the elements of a matrix. The first column of subscripts specifies the first subscript dimension, the second column specifies the second subscript dimension, and so forth. When $k = 2$, the first column of subscripts specifies the row subscripts and the second column specifies the column subscripts.

The SUB2NDX function converts subscripts to indices. For a two-dimensional matrix, subscripts are pairs $(i, j)$ such that $1 \leq i \leq n$ and $1 \leq j \leq p$. The indices of an $n \times p$ matrix are the elements $1, 2, \ldots, np$. The indices enumerate the elements in row-major order: the first $p$ indices enumerate the first row, the next $p$ indices enumerate the second row, and so forth.

The following statements construct a tridiagonal matrix that contains 2s on the diagonal and 1s on the sub- and superdiagonals. The DIAG function is used to construct a diagonal matrix. The subscripts of the superdiagonal (which, for this example, are $(1,2), (2,3),$ and $(3,4)$) and the subdiagonal (which are $(2,1), (3,2),$ and $(4,3)$) are then enumerated. The SUB2IND module converts these subscripts to indices, and the value 1 is assigned to all off-diagonal elements of the matrix.

```plaintext
/* construct a tridiagonal matrix */
y = diag({2,2,2,2}); /* assign diagonal */
p = ncol(y);
supDiag = T(1:p-1) || T(2:p); /* subscripts for superdiagonal */
subDiag = T(2:p) || T(1:p-1); /* subscripts for subdiagonal */
/* find index of all super- and subdiagonal elements */
dim = dimension(y);
idx = sub2ndx(dim, supDiag//subDiag);
```
\[ y[\text{id}x] = 1; /* assign sub- and superdiagonal to 1 */ \]
print y;

**Figure 26.406** Subscripts That Correspond to Indices

<table>
<thead>
<tr>
<th>( y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0 0</td>
</tr>
<tr>
<td>1 2 1 0</td>
</tr>
<tr>
<td>0 1 2 1</td>
</tr>
<tr>
<td>0 0 1 2</td>
</tr>
</tbody>
</table>

You can also use the SUB2NDX function to store the results of a multidimensional array in a matrix. For an array with \( d \) dimensions, a subscript is a \( d \)-dimensional vector \((i_1, i_2, \ldots, i_k)\), where \( 1 \leq i_j \leq d_j \) for \( j = 1 \ldots k \). For example, suppose you store the values of a \( 4 \times 3 \times 3 \) array in a \( 12 \times 3 \) matrix. The following program computes the indices that correspond to the first, middle, and last elements in the matrix:

\[
\text{dim} = \{4, 3, 3\}; /* a 12x3 matrix can store values from 4x3x3 array */ \\
s = \{1 1 1, \\
       2 3 3, \\
       4 3 3\}; \\
\text{ndx} = \text{sub2ndx}(\text{dim}, s); \\
\text{print ndx;} \\
\]

To convert from indices to subscripts, see the NDX2SUB function.

---

**SUBMIT Statement**

```
\text{SUBMIT} \ <\text{parameters}> \ <\text{/options}> \ ; \\
\text{language statements} \\
\text{ENDSUBMIT} \ ;
```

The SUBMIT statement enables you to submit SAS statements for processing from within a SAS/IML program. You can use the SUBMIT statement to call SAS procedures, DATA steps, and macros. All text between the SUBMIT statement and the ENDSUBMIT statement are referred to as a **SUBMIT block**. The SUBMIT block is processed by the SAS language processor.

If you use the R option, the SUBMIT statement enables you to submit statements to the R language for processing.

The SUBMIT statement must appear on a line by itself. All SAS/IML matrices that are defined prior to the SUBMIT statement remain defined after the ENDSUBMIT statement.

**parameters** specifies one or more optional SAS/IML matrices whose values are substituted into the language statements in the SUBMIT block. To reference a parameter in the SUBMIT block, prefix the name of the parameter with an ampersand (&). If you do not specify the **parameters** argument, the SUBMIT block is sent without modification to the SAS (or R) language processor.

The following options are available in the SUBMIT statement after a slash (/).
OK=ok-matrix specifies the name of a matrix. The matrix is set to 1 if the SUBMIT block executes without error, and to 0 otherwise.

R specifies that statements in the SUBMIT block are processed by the R statistical software. You can use the R option to call functions in the R language, provided that the following statements are true:

1. the R statistical software is installed on the SAS workspace server.
2. The SAS system administrator at your site has enabled the RLANG SAS system option. (See the section “The RLANG System Option” on page 234.)

The following example calls a SAS procedure from a PROC IML program. The example passes in a parameter which is used by the FREQ procedure:

```
proc iml;
VarName = "Sex";
submit VarName;
proc freq data=Sashelp.Class;
 table &VarName / out=OutFreq;
run;
endsubmit;
```

Prior to the SUBMIT statement, the program defines the VarName matrix. The matrix contains the name of a variable in the Sashelp.Class data set. The VarName matrix is listed in the SUBMIT statement, which means that the contents of the matrix is available for substitution into the SUBMIT block. The SUBMIT block references the contents of the matrix by preceding the matrix name by an ampersand (&). Consequently, the FREQ procedure carries out a one-way frequency analysis for the Sex variable. The output from PROC FREQ is shown in Figure 26.407.

**Figure 26.407 Result of Calling a SAS Procedure**

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>9</td>
<td>47.37%</td>
<td>9</td>
<td>47.37</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
<td>52.63%</td>
<td>19</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The preceding statements also create output data set, OutFreq. The following statements read the data into SAS/IML matrices:

```
use OutFreq;
read all var VarName into Levels;
read all var {Count};
close OutFreq;

print Count[rowname=Levels];
```

Notice that the VarName matrix is still defined, even after the FREQ procedure has finished execution. The statements read portions of the PROC FREQ output data set into two SAS/IML vectors. The output from the program is shown in Figure 26.408.
Chapter 13, “Submitting SAS Statements,” provides details and further examples of submitting SAS statements. Chapter 14, “Calling Functions in the R Language,” describes how to submit R statements and provides examples.

You cannot use the SUBMIT statement in code that is pushed to the input command queue with the EXECUTE, PUSH, or QUEUE subroutines. A SUBMIT block cannot be executed from a SAS macro.

---

**SUBSTR Function**

**SUBSTR(matrix, position < , length > );**

The SUBSTR function takes a character matrix as an argument (along with starting positions and lengths) and produces a character matrix with the same dimensions as the argument. Elements of the result matrix are substrings of the corresponding argument elements.

The arguments to the SUBSTR function are as follows:

- **matrix**
  - is a character matrix or quoted literal.
- **position**
  - is a numeric matrix or scalar that contains the starting position.
- **length**
  - is a numeric matrix or scalar that contains the length of the substring.

Each substring is constructed by using the starting position supplied. If a length is supplied, this length is the length of the substring. If no length is supplied, the remainder of the argument string is the substring.

The arguments can be scalars or numeric matrices. If more than one argument is a matrix, all matrix arguments must have the same dimensions. If matrix is a matrix, its dimensions determine the dimensions of the output of the function. If matrix is a scalar, the dimensions of the position or length determine the dimensions of the output of the function.

If length is supplied, the element length of the result is MAX(length); otherwise, the element length of the result is

\[ NLENG(matrix) - \text{MIN}(position) + 1 \]

The following statements return the output shown:

```sas
m = {abc def ghi, jkl mno pqr};
a = substr(m, 3, 2);
print a;

s = "ABCDE";
b = substr(s, 1:4, 5:2);
print b;
```
SUM Function

\[
\text{SUM}(\text{matrix1} <, \text{matrix2}, \ldots, \text{matrix15}>);
\]

The SUM function returns as a single numeric value the sum of all the elements in all arguments. There can be as many as 15 argument matrices. The SUM function checks for missing values and does not include them in the summation. It returns 0 if all values are missing.

For example, following statements compute the sum of all elements in the matrix A:

```plaintext
a = {2 1., 0 -1 0};
b = sum(a);
print b;
```

If you want to compute the sum for each row or for each column of a matrix, you can use the subscript reduction operator, as follows:

- \(a[+, \]\) computes a \(1 \times 3\) row vector that contains the sum of each column.
- \(a[\,-,+]\) computes a \(2 \times 1\) column vector that contains the sum of each row.
- \(a[+]\) computes a scalar value that is equivalent to \(\text{sum}(a)\).

See the section “Subscript Reduction Operators” on page 53 for more information about subscript reduction operators.
The SUMMARY statement computes statistics for numeric variables for an entire data set or a subset of observations in the data set. The statistics can be stratified by the use of CLASS variables. The computed statistics are displayed in tabular form and optionally can be saved in matrices. Like most other data processing statements, the SUMMARY statement works on the current data set.

You can specify the following options:

**CLASS operand**
specifies the variables in the current input SAS data set to be used to group the summaries. The *operand* is a character matrix that contains the names of the variables. For example:

```
summary class {age sex} ;
```

Both numeric and character variables can be used as CLASS variables.

**VAR operand**
computes statistics for a set of numeric variables from the current input data set. The *operand* is a character matrix that contains the names of the variables. Also, the special keyword _NUM_ can be used as a VAR operand to specify all numeric variables. If the VAR clause is missing, the SUMMARY statement produces only the number of observations in each classification group.

**WEIGHT operand**
specifies a character value that contains the name of a numeric variable in the current data set whose values are to be used to weight each observation. Only one variable can be specified.

**STAT operand**
computes the specified statistics. The *operand* is a character matrix that contains the names of statistics. For example, to get the mean and standard deviation, specify the following:

```
summary stat{mean std};
```

You can specify the following keywords as the STAT operand:

- **CSS** computes the corrected sum of squares.
- **MAX** computes the maximum value.
- **MEAN** computes the mean.
- **MIN** computes the minimum value.
- **N** computes the number of observations in the subgroup that are used in the computation of the various statistics for the corresponding analysis variable.
- **NMISS** computes the number of observations in the subgroup that have missing values for the analysis variable.
- **STD** computes the standard deviation.
- **SUM** computes the sum.
- **SUMWGT** computes the sum of the WEIGHT variable values if WEIGHT is specified; otherwise, computes the number of observations used in the computation of statistics.
- **USS** computes the uncorrected sum of squares.
VAR computes the variance.

When the STAT clause is omitted, the SUMMARY statement computes the MIN, MEAN, MAX, and STD statistics for each variable in the VAR clause.

NOBS, the number of observations in each CLASS group, is always displayed.

**OPT operand**
sets the PRINT or NOPRINT and SAVE or NOSAVE options. The NOPRINT option suppresses the printing of the results from the SUMMARY statement. The SAVE option requests that the SUMMARY statement save the resultant statistics in matrices. The operand is a character matrix that contains one or more of the options.

When the SAVE option is set, the SUMMARY statement creates a CLASS vector for each CLASS variable, a statistic matrix for each analysis variable, and a column vector named _NOBS_. The CLASS vectors are named by the corresponding CLASS variable and have an equal number of rows. There are as many rows as there are subgroups defined by the interaction of all CLASS variables. The statistic matrices are named by the corresponding analysis variable. Each column of the statistic matrix corresponds to a requested statistic, and each row corresponds to the statistics of the subgroup that is defined by the CLASS variables. If no CLASS variable is specified, each matrix has one row that contains the statistics. The _NOBS_ vector contains the number of observations for each subgroup.

The default is PRINT NOSAVE.

**WHERE expression**
conditionally selects observations according to conditions given in expression. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

The following example demonstrates the use of the SUMMARY statement:

```iml
proc iml;
use Sashelp.Class;
summary class {sex}
 var {height weight}
 opt {noprint save};
/* print vectors that contain the stats */
print sex _NOBS_;
print height[r=sex c={Min Max Mean Std}],
 weight[r=sex c={Min Max Mean Std}];
```

**Figure 26.411** Summary Statistics

<table>
<thead>
<tr>
<th>Sex</th>
<th><em>NOBS</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>9</td>
</tr>
<tr>
<td>M</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height</th>
<th>MIN</th>
<th>MAX</th>
<th>MEAN</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>51.3</td>
<td>66.5</td>
<td>60.588889</td>
<td>5.0183275</td>
</tr>
<tr>
<td>M</td>
<td>57.3</td>
<td>72</td>
<td>63.91</td>
<td>4.937937</td>
</tr>
</tbody>
</table>
The SVD subroutine computes the singular value decomposition for a numerical matrix.

The input to the SVD subroutine is as follows:

- $a$ is the $m \times n$ input matrix that is factored as described in the following discussion.
- The SVD subroutine returns the following output arguments:
  - $u$ is an $m \times n$ orthonormal matrix
  - $q$ is an $n \times 1$ vector that contains the singular values
  - $v$ is an $n \times n$ orthonormal matrix

If $m \geq n$, the SVD subroutine factors a real $m \times n$ matrix $A$ into the form

$$ A = Ud \text{diag}(Q)V' $$

where

$$ U'U = V'V = VV' = I_n $$

and $Q$ contains the singular values of $A$. The columns of $U$ contains the orthonormal eigenvectors of $AA'$, and $V$ contains the orthonormal eigenvectors of $A'A$. $Q$ contains the square roots of the eigenvalues of $A'A$ and $AA'$, except for some zeros.

If $m < n$, a corresponding decomposition is done where $U$ and $V$ switch roles:

$$ A = Ud \text{diag}(Q)V' $$

where

$$ U'U = UU' = V'V = I_w $$

The singular values are sorted in descending order.

For information about the method used in the SVD subroutine, see Wilkinson and Reinsch (1971).

The following example is taken from Wilkinson and Reinsch (1971):
a = [22 10 2 3 7,
14 7 10 0 8,
-1 13 -1 -11 3,
-3 -2 13 -2 4,
9 8 1 -2 4,
9 1 -7 5 -1,
2 -6 6 5 1,
4 5 0 -2 2];
call svd(u, q, v, a);
print u, q, v;

/* check correctness of factors */
zero = ssq(a - u*diag(q)*v');
reset fuzz; /* print small numbers as zero */
print zero;

The matrix is rank-3 with exact singular values $\sqrt{1248}$, 20, $\sqrt{384}$, 0, and 0. Because of the repeated singular values, the last two columns of the $U$ matrix are not uniquely determined. A valid result is shown in Figure 26.412:

Figure 26.412  Singular Value Decomposition

<table>
<thead>
<tr>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7071068 0.1581139 -0.176777 -0.328209 -0.328056</td>
</tr>
<tr>
<td>0.5303301 0.1581139 0.3535534 0.5309976 0.0489362</td>
</tr>
<tr>
<td>0.1767767 -0.790569 0.1767767 -0.413567 0.1307398</td>
</tr>
<tr>
<td>0 0.1581139 0.7071068 -0.266418 0.0321656</td>
</tr>
<tr>
<td>0.3535534 -0.158114 0 0.0253566 -0.041441</td>
</tr>
<tr>
<td>0.1767767 0.1581139 -0.53033 -0.19666 0.3666144</td>
</tr>
<tr>
<td>0 0.4743416 0.1767767 -0.500944 0.4145131</td>
</tr>
<tr>
<td>0.1767767 -0.158114 0 0.2793571 0.7509412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.327043</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>19.595918</td>
</tr>
<tr>
<td>1.1E-15</td>
</tr>
<tr>
<td>5.501E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8006408 0.3162278 -0.288675 -0.419095 0</td>
</tr>
<tr>
<td>0.4803845 -0.632456 0 0.4405991 0.4185481</td>
</tr>
<tr>
<td>0.1601282 0.3162278 0.8660254 -0.052005 0.3487901</td>
</tr>
<tr>
<td>0 0.6324555 -0.288675 0.6760591 0.244153</td>
</tr>
<tr>
<td>0.3202563 0 0.2886751 0.4129773 -0.802217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

The SVD routine performs most of its computations in the memory allocated for returning the singular value decomposition.
The SWEEP function sweeps matrix on the pivots indicated in index-vector to produce a new matrix.

The arguments the SWEEP function are as follows:

- **matrix** is a numeric matrix or literal.
- **index-vector** is a numeric vector that indicates the pivots.

The values of the index vector must be less than or equal to the number of rows or the number of columns in matrix, whichever is smaller.

For example, suppose that \( A \) is partitioned into

\[
\begin{bmatrix}
R & S \\
T & U
\end{bmatrix}
\]

such that \( R \) is \( q \times q \) and \( U \) is \( (m-q) \times (n-q) \). Let \( I = \{123 \ldots q\} \). Then, the statement \( B = \text{sweep}(A, I) \) becomes

\[
\begin{bmatrix}
R^{-1} & R^{-1}S \\
-TR^{-1} & U - TR^{-1}S
\end{bmatrix}
\]

The index vector can be omitted. In this case, the function sweeps the matrix on all pivots on the main diagonal \( 1: \text{MIN}(\text{nrow}, \text{ncol}) \).

The SWEEP function has sequential and reversibility properties when the submatrix swept is positive definite:

- \( \text{SWEEP} (\text{SWEEP}(A, 1), 2) = \text{SWEEP}(A, \{1 2\}) \)
- \( \text{SWEEP} (\text{SWEEP}(A, I), I) = A \)

See Beaton (1964) for more information about these properties.

To use the SWEEP function for regression, suppose the matrix \( A \) contains

\[
\begin{bmatrix}
X'X & X'Y \\
Y'X & Y'Y
\end{bmatrix}
\]

where \( X'X \) is \( k \times k \).

Then \( B = \text{SWEEP}(A, 1 \ldots k) \) contains

\[
\begin{bmatrix}
(X'X)^{-1} & (X'X)^{-1}X'Y \\
-Y'(X'X)^{-1} & Y'(I - X(X'X)^{-1}X')Y
\end{bmatrix}
\]

The partitions of \( B \) form the beta values, SSE, and a matrix proportional to the covariance of the beta values for the least squares estimates of \( B \) in the linear model

\[ Y = XB + \epsilon \]

If any pivot becomes very close to zero (less than or equal to \( 1E-12 \)), the row and column for that pivot are zeroed. See Goodnight (1979) for more information.

The following example uses the SWEEP function for regression:
Chapter 26: Language Reference

\[ x = \begin{bmatrix} 1 & 1 & 1, \\
1 & 2 & 4, \\
1 & 3 & 9, \\
1 & 4 & 16, \\
1 & 5 & 25, \\
1 & 6 & 36, \\
1 & 7 & 49, \\
1 & 8 & 64 \end{bmatrix}; \]

\[ y = \begin{bmatrix} 3.929, \\
5.308, \\
7.239, \\
9.638, \\
12.866, \\
17.069, \\
23.191, \\
31.443 \end{bmatrix}; \]

\[ n = \text{nrow}(x); \quad /* \text{number of observations} */ \]
\[ k = \text{ncol}(x); \quad /* \text{number of variables} */ \]
\[ \text{xy} = x \parallel y; \quad /* \text{augment design matrix} */ \]
\[ A = \text{xy}' \ast \text{xy}; \quad /* \text{form cross products} */ \]
\[ S = \text{sweep}(A, 1:k); \]

\[ \text{beta} = S[1:k,4]; \quad /* \text{parameter estimates} */ \]
\[ \text{sse} = S[4,4]; \quad /* \text{sum of squared errors} */ \]
\[ \text{mse} = \text{sse} / (n-k); \quad /* \text{mean squared error} */ \]
\[ \text{cov} = S[1:k, 1:k] \# \text{mse}; \quad /* \text{covariance of estimates} */ \]
\[ \text{print cov, beta, sse}; \]

**Figure 26.413** Results of a Linear Regression

<table>
<thead>
<tr>
<th>cov</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9323716</td>
<td>-0.436247</td>
<td>0.0427693</td>
</tr>
<tr>
<td>-0.436247</td>
<td>0.2423596</td>
<td>-0.025662</td>
</tr>
<tr>
<td>0.0427693</td>
<td>-0.025662</td>
<td>0.0028513</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>beta</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0693393</td>
<td></td>
</tr>
<tr>
<td>-1.109935</td>
<td></td>
</tr>
<tr>
<td>0.5396369</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.395083</td>
<td></td>
</tr>
</tbody>
</table>

The SWEEP function performs most of its computations in the memory allocated for the result matrix.

**SYMSQR Function**

`SYMSQR(matrix);`
The SYMSQR function takes an $n \times n$ matrix and packs the elements from the lower triangular portion into a column vector that contains $n(n + 1)/2$ rows. The matrix is not checked for symmetry, but usually matrix is a symmetric numeric matrix. Character matrices are also supported.

The following statement produces the output shown in Figure 26.414:

```octave
sym = symsqr({1 2, 3 4});
print sym;
```

![Figure 26.414 Elements of Lower Triangular Matrix](image)

```
sym
 1
 3
 4
```

Notice that the (1, 2) element is lost since it is only present in the upper triangular portion of the input matrix.

The SYMSQR function and the SQRSYM function are inverse operations on the set of symmetric matrices. See also the VECH function, which unpacks elements in column-major order.

---

**T Function**

```octave
T(matrix);
```

The T (transpose) function returns the transpose of its argument. You can also use the transpose operator (') to transpose a matrix.

For example, the following statements transpose a matrix:

```octave
x = {1 2, 3 4, 5 6};
y = t(x);
print y;
```

![Figure 26.415 Matrix Transpose](image)

```
y
 1 3 5
2 4 6
```

---

**TABLEADDVAR Call**

```octave
CALL TABLEADDVAR(table, colnames, matrix);
CALL TABLEADDVAR(table1, table2);
```

The TableAddVar subroutine adds new columns to an existing table. The source of the columns can be a numeric or character matrix. The new columns are appended after the existing columns.

You can use the TableAddVar subroutine to horizontally concatenate two tables. The columns of the second table are appended to the first table. The second table is unchanged.
The subroutine takes the following input arguments:

- **table**: specifies an existing table.
- **colnames**: specifies a character vector that contains \( p \) strings. The strings specify the names for the new columns in the table. It is an error to specify a column name that already exists in the table.
- **matrix**: specifies a numeric or character matrix that has \( p \) columns.

The following example calls the TableCreate function to create an empty table and then calls the TableAddVar subroutine twice: first to add character columns, and then to add numeric columns. Each row in the table contains data about historic hurricanes that struck the United States. Figure 26.416 shows the names and types of the columns of the table.

```plaintext
tbl = TableCreate(); /* create empty table */
Hurr = {"Katrina", "Ike", "Andrew", "Wilma"};
Month = {"August", "September", "August", "October");
call TableAddVar(tbl, {"Name" "Month"}, Hurr||Month); /* add char cols */
Wind = {175, 145, 175, 185}; /* mph */
call TableAddVar(tbl, {"Year" "MaxWind"}, Yr||Wind); /* add numeric cols */

colNames = TableGetVarName(tbl);
colTypes = TableGetVarType(tbl);
print colTypes[c=colNames L="Table Names and Types"];
```

**Figure 26.416** Names and Types of Table Columns

<table>
<thead>
<tr>
<th>Table Names and Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

You can use the TableAddVar subroutine to horizontally concatenate two tables. You can also use the horizontal concatenation operator (||) to horizontally concatenate two or more tables. The following statements show two ways to concatenate tables. The number of rows in the tables do not have to be equal, although usually they will be.

```plaintext
/* Method 1: Concatenation operator */
tbl1 = TableCreate("Letters", {"A", "B", "C"}); /* create a character table */
tbl2 = TableCreate("x1":"x2", {1 2, 3 4, 5 6}); /* create a numeric table */
concatTbl = tbl1 || tbl2;

/* Method 2: Copy the first table; append columns of the second table */
concatTbl = tbl1;
call TableAddVar(concatTbl, tbl2);
```
TABLECREATE Function

TABLECREATE();
TABLECREATE(matrix);
TABLECREATE(colnames, matrix);

The TableCreate function creates a table from a matrix. Each column of the matrix becomes a new column in the table.

The function takes the following input arguments:

- **colnames** specifies a character vector that contains \(p\) strings. The strings specify the names for the columns in the table. If this argument is omitted, the names Col1 through Col\(p\) are used.
- **matrix** specifies a numeric or character matrix that has \(p\) columns.

If no arguments are supplied, an empty table is created. An empty table has no variables and no observations.

The following example creates three tables. The first is an empty table. The next table has one column that contains character data. The third table contains three numeric columns named Col1, Col2, and Col3. Figure 26.416 shows the dimensions of each table.

```javascript
tbl0 = TableCreate(); /* create an empty table */
tbl1 = TableCreate("Letters", T("A":"Z")); /* create a character table */
tbl2 = TableCreate({1 2 3, 4 5 6}); /* create a numeric table */
```

```javascript
dim = dimension(tbl0) //
 dimension(tbl1) //
 dimension(tbl2);
print dim[c="nrow" "ncol"] r="tbl0" "tbl1" "tbl2");
```

**Figure 26.417** Dimensions of Three Tables

<table>
<thead>
<tr>
<th>dim</th>
<th>nrow</th>
<th>ncol</th>
</tr>
</thead>
<tbody>
<tr>
<td>tbl0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tbl1</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>tbl2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLECREATEFROMDATASET Function

TABLECREATEFROMDATASET(member);
TABLECREATEFROMDATASET(libref, member);
TABLECREATEFROMDATASET(libref, member, dsOptions);

The TableCreateFromDataSet function creates a table from a SAS data set. Each variable in the data set becomes a new column in the table.

The function takes the following input arguments, which are all character strings:
libref specifies the name of a SAS libref. If this argument is omitted, the default libref is used. You can use the DEFLIB= option in the RESET statement to specify the default libref.

member specifies the name of a SAS data set.

dsOptions specifies data set options, such as DROP=, KEEP=, and WHERE= options.

The function returns a table. If you omit the dsOptions argument, the table contains all the variables and all the observations in the member data set.

The following program creates a table from the Sashelp.Class data set. It also creates a table from a data set (Cars) in the Work library.

```plaintext
data work.cars;
 set Sashelp.Cars;
run;

proc iml;
tbl1 = TableCreateFromDataSet("Sashelp", "Class");
reset deflib=work;
tbl2 = TableCreateFromDataSet("Cars"); /* read from WORK */
dsOpt = "drop=Invoice rename=(Wheelbase=Width) " +
 "obs=100 where=(Origin='Asia')";
tbl3 = TableCreateFromDataSet("work", "Cars", dsOpt);
```

---

**TABLEGETVARDATA Function**

**TABLEGETVARDATA**<table, cols>;

The TableGetVarData function creates a matrix from the columns of a table. The specified columns must be the same type: either all numeric or all character.

The function takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The cols argument can be a numeric vector of column numbers (such as {2 4 7}) or a character vector of names (such as {“X” “Y”}).

The following statements create a table. The Name and Sex variables are extracted to a character matrix, and the third and fifth variables are extracted to a numeric matrix.

```plaintext
tbl = TableCreateFromDataSet("Sashelp", "Class");
c = TableGetVarData(tbl, {"Name" "Sex"});
m = TableGetVarData(tbl, {3 5}); /* 3rd and 5th col are numeric */
```

---

**TABLEGETVARFORMAT Function**

**TABLEGETVARFORMAT**<table <, cols>>;

The TableGetVarFormat function returns a row vector that contains the formats of the specified columns. Blank strings are returned for columns that do not have formats.
The function takes the following input arguments:

- **table**: specifies an existing table.
- **cols**: specifies the columns of the table. The **cols** argument can be a numeric vector of column numbers (such as \{2 4 7\}) or a character vector of names (such as \{"X" "Y"\}). If this argument is omitted, the formats for all columns are returned.

The following statements create a table from the Sashelp.Cars data. The TableGetVarFormat function retrieves the formats for four columns, and the names are shown in Figure 26.418. A blank space is displayed for each variable that does not have a format.

```r
tbl = TableCreateFromDataSet("Sashelp", "Cars");
colNames = {"MSRP" "Invoice" "EngineSize" "Weight"};
formats = TableGetVarFormat(tbl, colNames);
print formats[colname=colNames];
```

![Figure 26.418 Column Formats](image)

<table>
<thead>
<tr>
<th>formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRP Invoice EngineSize Weight</td>
</tr>
<tr>
<td>DOLLAR. DOLLAR.</td>
</tr>
</tbody>
</table>

**TABLEGETVARINDEX Function**

**TABLEGETVARINDEX**(table, colnames);

The TableGetVarIndex function returns a row vector that contains the column numbers (indices) for the specified column names.

The function takes the following input arguments:

- **table**: specifies an existing table.
- **colnames**: specifies a character vector of names (such as \{"X" "Y"\}).

The following statements obtain the column numbers of the Sex and Height variables. Figure 26.419 shows that Sex is the second variable and Height is the fourth variable.

```r
tbl = TableCreateFromDataSet("Sashelp", "Class");
colNames = {"Sex" "Height"};
idx = TableGetVarIndex(tbl, colNames);
print idx[colname=colNames];
```

![Figure 26.419 Indices of Column Names](image)

<table>
<thead>
<tr>
<th>idx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex Height</td>
</tr>
<tr>
<td>2 4</td>
</tr>
</tbody>
</table>
**TABLEGETVARINFORMAT Function**

`TABLEGETVARINFORMAT(table <, cols>);`

The TableGetVarInformat function returns a row vector that contains the informats of the specified columns. Blank strings are returned for columns that do not have informats.

The function takes the following input arguments:

- `table` specifies an existing table.
- `cols` specifies the columns of the table. The `cols` argument can be a numeric vector of column numbers (such as `{2 4 7}`) or a character vector of names (such as `{"X" "Y"}`). If this argument is omitted, the informats for all columns are returned.

The following statements create a SAS data set whose variables contain informats. The subsequent PROC IML statements create a table from the data set. The TableGetVarInformat retrieves the informats, which are displayed in Figure 26.420.

```sas
data Statisticians;
informat First $8. Last $CHAR10. BirthDate YYMMD8.;
format BirthDate DATE10.;
input First $ Last $ BirthDate;
datalines;
Karl Pearson 18570327
William Gossett 18760613
Ronald Fisher 18900217;
```

```sas
proc iml;
tbl = TableCreateFromDataSet("Statisticians");
Name = TableGetVarName(tbl);
informats = TableGetVarInformat(tbl);
All = Name` || informats`;
cnames = {"VarName" "Informats" "Length(informat)"};
print All[L="All Informats" c=cnames];
```

**Figure 26.420** Column Informats

<table>
<thead>
<tr>
<th>VarName</th>
<th>Informats</th>
<th>Length(informat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>$8.</td>
<td></td>
</tr>
<tr>
<td>Last</td>
<td>$CHAR10.</td>
<td></td>
</tr>
<tr>
<td>BirthDate</td>
<td>YYMMD8.</td>
<td></td>
</tr>
</tbody>
</table>

**TABLEGETVARLABEL Function**

`TABLEGETVARLABEL(table <, cols>);`

The TableGetVarLabel function returns a row vector that contains the labels of the specified columns.
The function takes the following input arguments:

- **table**: specifies an existing table.
- **cols**: specifies the columns of the table. The *cols* argument can be a numeric vector of column numbers (such as \{2 4 7\}) or a character vector of names (such as \{"X" "Y"\}). If this argument is omitted, the labels for all columns are returned.

The following statements create a table from the Sashelp.Cars data. Figure 26.421 shows the labels for the specified columns.

```ruby
tbl = TableCreateFromDataSet("Sashelp", "Cars");
colNames = \{"Length" "MPG_City" "MPG_Highway"\};
labels = TableGetVarLabel(tbl, colNames);
print labels[colname=colNames];
```

![Figure 26.421 Column Labels](image)

<table>
<thead>
<tr>
<th>labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
</tr>
<tr>
<td>MPG_City</td>
</tr>
<tr>
<td>MPG_Highway</td>
</tr>
<tr>
<td>Length (IN)</td>
</tr>
<tr>
<td>MPG (City)</td>
</tr>
<tr>
<td>MPG (Highway)</td>
</tr>
</tbody>
</table>

**TABLEGETVARNAME Function**

**TABLEGETVARNAME**(*table < , cols*>);

The TableGetVarName function returns a row vector that contains the names of the specified columns.

The function takes the following input arguments:

- **table**: specifies an existing table.
- **cols**: specifies the columns of the table. The *cols* argument is a numeric vector of column numbers such as \{2 4 7\}. If this value argument is not specified, all column names are returned.

The following statements create a table from the Sashelp.Class data set. Figure 26.422 shows the names of the first and fifth columns.

```ruby
tbl = TableCreateFromDataSet("Sashelp", "Class");
names = TableGetVarName(tbl, \{1 5\});
print names;
```

![Figure 26.422 Column Names for Indices](image)

<table>
<thead>
<tr>
<th>names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>
TABLEGETVARTYPE Function

TABLEGETVARTYPE(table <, cols>);  
The TableGetVarType function returns a row vector that contains the types (numeric or character) of the specified columns.

The function takes the following input arguments:

- `table` specifies an existing table.
- `cols` specifies the columns of the table. The `cols` argument can be a numeric vector of column numbers (such as {2 4 7}) or a character vector of names (such as {"X" "Y"}). If this argument is omitted, the types for all columns are returned.

The following statements obtain the types of the Sex and Height variables. Figure 26.423 shows that the Sex variable is character and the Height variable is numeric.

```plaintext
tbl = TableCreateFromDataSet("Sashelp", "Class");
colNames = {"Sex" "Height"};
types = TableGetVarType(tbl, colNames);
print types[c=colNames];
```

Figure 26.423 Types of Columns

<table>
<thead>
<tr>
<th>types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex  Height</td>
</tr>
<tr>
<td>C      N</td>
</tr>
</tbody>
</table>

TABLEISEXISTINGVAR Function

TABLEISEXISTINGVAR(table, colnames);

The TableIsExistingVar function returns a binary row vector that indicates whether the specified column names exist in a table. The return value is 1 for each variable that exists and 0 for each variable that does not exist.

The function takes the following input arguments:

- `table` specifies an existing table.
- `colnames` specifies a character vector of names (such as {“X” “Y”}).

The following statements indicate whether the specified column names are in the table. Figure 26.424 shows that the table contains columns that are named Sex and Height. Figure 26.424 displays a 1 for the Sex and Height variables and 0 for the variables that do not exist.

```plaintext
tbl = TableCreateFromDataSet("Sashelp", "Class");
colNames = {"Sex" "ABC" "Height" "X"};
isVar = TableIsExistingVar(tbl, colNames);
print isVar[filename=colNames];
```
TABLEISVARNUMERIC Function

**TABLEISVARNUMERIC**\((table \ <, \ cols>)\);

The TableIsVarNumeric function returns a binary row vector that indicates whether the specified columns are numeric. The value 1 indicates a numeric variable; the value 0 indicates that a variable is not numeric.

The function takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The *cols* argument can be a numeric vector of column numbers (such as \(\{2 \ 4 \ 7\}\)) or a character vector of names (such as \("\text{"X"} \ "\text{"Y"}\)\). If this argument is omitted, a binary vector is returned that indicates whether each variable is numeric.

The following statements indicate whether the *Sex* and *Height* variables are numeric. Figure 26.425 shows that the *Sex* variable is not numeric and the *Height* variable is numeric.

```plaintext
tbl = TableCreateFromDataSet("Sashelp", "Class");
colNames = \{"Sex" \ "Height"\};
isNumeric = TableIsVarNumeric(tbl, colNames);
print isNumeric[c=colNames];
```

**Figure 26.425** Numeric and Character Columns

<table>
<thead>
<tr>
<th>isNumeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

TABLEPRINT Call

**CALL TABLEPRINT**\((table) < VAR=cols > < ID=IDName > < LABEL=label > < FIRSTOBS=firstObs > < NUMOBS=numObs > < COLHEADER="Names" | "Labels" | "None" > < JUSTIFY=just > < TEMPLATE=template > < COLTEMPLATE=colTemplates > < DYNAMIC=dynValues >
The TablePrint subroutine displays a table in the open ODS destinations. The subroutine takes the following required input argument:

`table` specifies an existing table.

You can also specify the following optional arguments as keyword-value pairs. Specify these options outside the parentheses, as shown in the example in this section.

- **VAR=** `cols` specifies the columns of the table, where `cols` can be a numeric vector of column numbers (such as `{2 4 7}`) or a character vector of names (such as `{"X" "Y"}`). If you omit this option, all variables appear in the table.

- **ID=** `IDName` specifies the name of a column. The column (sometimes called a row header) appears on the left side of the table. You can specify a blank string to suppress the row headers. If you omit this argument or specify the special string “#”, then row numbers are used for the row headers.

- **LABEL=** `label` specifies a string for the name of the table. If you omit this option, the symbol name is used as the label. You can specify a blank string to suppress the label.

- **FIRSTOBS=** `firstObs` specifies the first row of the table to display. If you omit this option, the table is displayed beginning with the first row.

- **NUMOBS=** `numObs` specifies the total number of rows to display. If you omit this option, all rows of the table are displayed.

- **COLHEADER=** "Names" | "Labels" | "None" specifies the form of the column headers that appear above columns. If you omit this option or specify the string “Names”, then the column names are displayed. The string “Labels” displays column labels, if they exist. Column headers are not displayed if you specify the string “None” or a blank string.

- **JUSTIFY=** `just` specifies the horizontal alignment for each column in a table, where `just` is a character vector with `p` elements that specifies the alignment for the first `p` columns. Each element of `just` is one of the following:
  - To center a column, use “C” or “Center”.
  - To left-align a column, use “L” or “Left”.
  - To right-align a column, use “R” or “Right”.
  - To use the default alignment, use a space character (“ “), “D”, or “Default”. By default, character columns are left-aligned and numeric columns are right-aligned.

If you specify a vector that has fewer elements than the number of columns, default values are used for the unspecified columns.
**TEMPLATE**=template
specifies the name of an ODS table template to be used to display the SAS/IML table. For example, TEMPLATE=MyTemplate causes ODS to search for a template named MyTemplate and use that template to display the table.

**COLTEMPLATE**=colTemplates
specifies the name of column templates that are used to display columns in the SAS/IML table. The colTemplates argument is a character vector with p elements that specifies template names for the first p columns. You can use the same template for multiple columns provided that the template has the GENERIC attribute. If you specify a vector that has fewer elements than the number of columns, default attributes are used to display the remaining columns. For example, the syntax COLTEMPLATE={CT1 CT2} looks for column templates named CT1 and CT2. It uses the CT1 definition to format the first column in the table and uses the CT2 definition to format the second column.

**DYNAMIC**=dynValues
specifies values for dynamic variables in a template, where dynValues is a character matrix with k elements that specifies the values of k dynamic variables. Each element has the form “*DynVar*=IMLSym”, where *DynVar* is the name of a dynamic variable in the template and IMLSym is the name of a SAS/IML scalar matrix that contains the value to use for the dynamic variable. The IMLSym symbol can be a character matrix or a numeric matrix. If the SAS/IML symbol has the same name as the dynamic variable, then you can use an alternate syntax in which an element has the form “*DynVar*”. For examples, see Chapter 9, “Mixed-Type Tables.”

**COLDYNAMIC**=colDynValues
specifies values for dynamic variables in a column template, where dynValues is a character matrix with k elements that specifies the values for k columns. One template can have multiple dynamic variables, so each element has the form “*DynVar1*=IMLSym1 *DynVarD2*=IMLSym ...”. For more information, see the DYNAMIC= option. For examples, see Chapter 9, “Mixed-Type Tables.”

The following statements show how to print a table. The first call displays the table by using default options. The result is shown in Figure 26.426. The second call specifies several options. The result is shown in Figure 26.427.

```sas
proc iml;
tbl = TableCreateFromDataSet("Sashelp", "Class", "WHERE=(sex='M')");call TablePrint(tbl);
call TablePrint(tbl) VAR="Height" "Age"
 ID="Name"
 LABEL="Heights and Ages for Five Boys"
 FIRSTOBS=3
 NUMOBS=5
 JUSTIFY={C L};
```
The section “Advanced Printing of Tables” on page 134 contains advanced examples of using the TABLEPRINT subroutine. Examples include the following:

- Using a custom template to display a table
- Headers that span multiple columns
- Cells that are colored according to data values (traffic lighting)
- Dynamic variables in templates whose values are specified at run time.

**TABLERENAMENVAR Call**

\[
\text{CALL TABLERENAMEVAR}(\text{table}, \text{cols}, \text{newNames});
\]

The TableRenameVar subroutine changes the names of specified columns. The subroutine takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The **cols** argument can be a numeric vector of column numbers (such as \{2 4 7\}) or a character vector of names (such as \{“X” “Y”\}).
newNames specifies a character vector of valid SAS variable names, which will become the new names for the specified columns.

The following statements rename the Sex and Height variables of the Sashelp.Class data. Figure 26.428 shows the original and the new names for the columns.

```sas
tbl = TableCreateFromDataSet("Sashelp", "Class");
oldNames = TableGetVarName(tbl);
call TableRenameVar(tbl, {"Sex" "Height"}, /* old names */
 {"Gender" "Hgt"}); /* new names */
newNames = TableGetVarName(tbl);
print (oldNames // newNames)[rowname={"Old" "New"}];
```

Figure 26.428 Old and New Column Names

<table>
<thead>
<tr>
<th>Old</th>
<th>Name</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Name</td>
<td>Gender</td>
<td>Age</td>
<td>Hgt</td>
<td>Weight</td>
</tr>
</tbody>
</table>

---

**TABLESETVARFORMAT Call**

```sas
CALL TABLESETVARFORMAT(table, cols, formats);
```

The TableSetVarFormat subroutine sets the formats of the specified columns. You can use a blank string to remove a format.

The subroutine takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The cols argument can be a numeric vector of column numbers (such as `{2 4 7}`) or a character vector of names (such as `{"X" "Y"}`).
- **formats** specifies a character vector that contains formats for the specified columns.

The following statements set formats for three columns of a table. The blank cells in Figure 26.429 show that the columns did not originally have formats.

```sas
tbl = TableCreateFromDataSet("Sashelp", "Cars");
varNames = {"Model" "EngineSize" "Weight"};
OldFormats = TableGetVarFormat(tbl, varNames);
formats = {"$25." "4.1" "COMMA9.2"};
call TableSetVarFormat(tbl, varNames, formats);
NewFormats = TableGetVarFormat(tbl, varNames);
cnames = {"VarName" "OrigFormats" "NewFormats"};
All = varNames` || OldFormats` || NewFormats`;
print All[L="New Formats" c=cnames];
```
TABLESETVARINFORMAT Call

CALL TABLESETVARINFORMAT(table, cols, informats);

The TableSetVarInformat subroutine sets the informats of the specified columns. You can use a blank string to remove an informat.

The subroutine takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The **cols** argument can be a numeric vector of column numbers (such as \{2 4 7\}) or a character vector of names (such as \{"X" "Y"\}).
- **informats** specifies a character vector that contains informats for the specified columns.

The following statements set informats for two columns of a table:

```
tbl = TableCreateFromDataSet("Sashelp", "Class");
varNames = {"Height" "Weight"};
informs = {"4.1" "5.1"};
call TableSetVarInformat(tbl, varNames, informats);
```

TABLESETVARLABEL Call

CALL TABLESETVARLABEL(table, cols, labels);

The TableSetVarLabel subroutine sets the labels of the specified columns.

The subroutine takes the following input arguments:

- **table** specifies an existing table.
- **cols** specifies the columns of the table. The **cols** argument can be a numeric vector of column numbers (such as \{2 4 7\}) or a character vector of names (such as \{"X" "Y"\}).
- **labels** specifies a character vector that contains labels for the specified columns.

The following statements set the labels for two columns of a table. The new labels are shown in Figure 26.430.

```
```
/* the Sashelp.Class data set does not contain labels */
tbl = TableCreateFromDataSet("Sashelp", "Class");
colNames = {"Height" "Weight"};
call TableSetVarLabel(tbl, colNames,
{"Height (in)" "Weight (lbs)"});
newLabels = TableGetVarLabel(tbl, colNames);
print newLabels[colname=colNames];

Figure 26.430  Column Labels

+-----------------+-----------------+
|     newLabels    |                 |
|-----------------+-----------------|
| Height     | Weight |
| Height (in) | Weight (lbs) |
+-----------------+-----------------+

**TABLEWRITETODATASET Call**

**CALL TABLEWRITETODATASET**(table, member);

**CALL TABLEWRITETODATASET**(table, libref, member);

**CALL TABLEWRITETODATASET**(table, libref, member, dsOptions);

The TableWriteToDataSet subroutine creates a SAS data set from a table. Each column in the table becomes a new variable in the data set.

The subroutine takes the following input arguments, which are all character strings:

- **table**: specifies an existing table.
- **libref**: specifies the name of a SAS libref. If this argument is omitted, the default libref is used. You can use the DEFLIB= option in the **RESET** statement to specify the default libref.
- **member**: specifies the name of a SAS data set.
- **dsOptions**: specifies data set options, such as DROP=, KEEP=, and WHERE= options.

The subroutine creates a data set. The location of the data set is determined by the value of the **libref** argument; the name of the data set is determined by the value of the **member** argument. If you do not specify the **dsOptions** argument, the data set contains all the variables and all the observations in the **member** data set.

The following program creates a table from the Sashelp.Class data set. The table is written to the default libref, which is usually Work. A second call to the TableWriteToDataSet subroutine writes a subset of the data to Work.Boys.

tbl = TableCreateFromDataSet("Sashelp", "Class");

call TableWriteToDataSet(tbl, "Class");  /* write to default libref */
dsOpt = "drop=Weight where=(Sex='M')";
call TableWriteToDataSet(tbl, "work", "Boys", dsOpt);  /* work.Boys */
TABULATE Call

CALL TABULATE(levels, freq, x <, method> );

The TABULATE subroutine counts the number of elements in each of the unique categories of the x argument.

The output arguments are as follows:

- **levels** contains the unique sorted elements of the x argument. See also the UNIQUE function.
- **freq** contains the number of elements of x that match each element of levels.

The input arguments are as follows:

- **x** specifies a vector of values.
- **method** specifies whether missing values are included in the analysis. The following values are valid:
  - “nomissing” specifies that missing values are excluded from the analysis. This is the default value for the option.
  - “missing” specifies that missing values are counted as a valid separate level.

The method argument is not case-sensitive. The first two characters are used to determine the value. For example, “MISS” and “missing” specify the same option.

The following statements demonstrate the TABULATE subroutine:

```plaintext
x = {C, A, B, A, C, A};
call tabulate(labels, freq, x);
print freq[colname=labels];

x = {C, A, B, " ", A, C, A, " "};
call tabulate(labels, freq, x, "Missing");
labels = "Missing" || remove(labels, 1);
print freq[colname=labels];
```

**Figure 26.431 Frequencies of Levels**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing A  B  C</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

TOEPLITZ Function

TOEPLITZ(a);
The TOEPLITZ function generates a Toeplitz matrix from a vector, or a block Toeplitz matrix from a matrix. A block Toeplitz matrix has the property that all matrices on the diagonals are the same. The argument \( a \) is an \((np) \times p\) or \(p \times (np)\) matrix; the value returned is the \((np) \times (np)\) result.

The TOEPLITZ function uses the first \( p \times p \) submatrix, \( A_1 \), of the argument matrix as the blocks of the main diagonal. The second \( p \times p \) submatrix, \( A_2 \), of the argument matrix forms one secondary diagonal, with the transpose \( A_2' \) forming the other. The remaining diagonals are formed accordingly. If the first \( p \times p \) submatrix of the argument matrix is symmetric, the result is also symmetric. If \( A \) is \((np) \times p\), the first \( p \) columns of the returned matrix, \( R \), are the same as \( A \). If \( A \) is \( p \times (np)\), the first \( p \) rows of \( R \) are the same as \( A \).

The TOEPLITZ function is especially useful in time series applications, where the covariance matrix of a set of variables with its lagged set of variables is often assumed to be a block Toeplitz matrix.

If

\[
A = [A_1 | A_2 | A_3 | \cdots | A_n]
\]

and if \( R \) is the matrix formed by the TOEPLITZ function, then

\[
R = \begin{bmatrix}
A_1 & A_2 & A_3 & \cdots & A_n \\
A_2' & A_1 & A_2 & \cdots & A_{n-1} \\
A_3' & A_2' & A_1 & \cdots & A_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_n' & A_{n-1}' & A_{n-2}' & \cdots & A_1
\end{bmatrix}
\]

If

\[
A = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_n
\end{bmatrix}
\]

and if \( R \) is the matrix formed by the TOEPLITZ function, then

\[
R = \begin{bmatrix}
A_1 & A_2' & A_3' & \cdots & A_n' \\
A_2 & A_1 & A_2' & \cdots & A_{n-1}' \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_n & A_{n-1} & A_{n-2} & \cdots & A_1
\end{bmatrix}
\]

Three examples follow:

\[
r1 = toeplitz(1:5);
r2 = toeplitz([1 2 , 3 4 , 5 6 , 7 8]);
r3 = toeplitz([1' 2 3 4 , 5 6 7 8]);
\]

\[
\text{print } r1, r2, r3;
\]
Figure 26.432  Toeplitz Matrices

<table>
<thead>
<tr>
<th>r1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

TPSPLINE Call

CALL TPSPLINE(fitted, coeff, adiag, gcv, x, y <, lambda > );

The TSPLINE subroutine fits a thin-plate smoothing spline (TPSS) to data. The generalized cross validation (GCV) function is used to select the smoothing parameter.

The TPSPLINE subroutine returns the following values:

- **fitted** is an \( n \times 1 \) vector of fitted values of the TPSS fit evaluated at the design points \( x \). The \( n \) is the number of observations. The final TPSS fit depends on the optional \( \lambda \).

- **coeff** is a vector of spline coefficients. The vector contains the coefficients for basis functions in the null space and the representer of evaluation functions at unique design points. (see Wahba (1990) for more detail on reproducing kernel Hilbert space and representer of evaluation functions.) The length of \( \text{coeff} \) vector depends on the number of unique design points and the number of variables in the spline model. In general, let \( nuobs \) and \( k \) be the number of unique rows and the number of columns of \( x \) respectively. The length of \( \text{coeff} \) equals to \( k + nuobs + 1 \). The \( \text{coeff} \) vector can be used as an input to the TPSPLNEV subroutine to evaluate the resulting TPSS fit at new data points.

- **adiag** is an \( n \times 1 \) vector of diagonal elements of the “hat” matrix. See the “Details” section.

- **gcv** If \( \lambda \) is not specified, then \( \text{gcv} \) is the minimum value of the GCV function. If \( \lambda \) is specified, then \( \text{gcv} \) is a vector (or scalar if \( \lambda \) is a scalar) of GCV values evaluated at the \( \lambda \) points. It provides you with both the ability to study the GCV curves by plotting \( \text{gcv} \) against \( \lambda \) and the chance to identify a possible local minimum.

The input arguments to the TPSPLINE subroutine are as follows:
$x$ is an $n \times k$ matrix of design points on which the TPSS is to be fit. The $k$ is the number of variables in the spline model. The columns of $x$ need to be linearly independent and contain no constant column.

$y$ is the $n \times 1$ vector of observations.

$\text{lambda}$ is a optional $q \times 1$ vector that contains $\lambda$ values in $\log_{10}(n\lambda)$ scale. If $\text{lambda}$ is not specified (or $\text{lambda}$ is specified and $q > 1$) the GCV function is used to choose the “best” $\lambda$ and the returning fitted values are based on the $\lambda$ that minimizes the GCV function. If $\text{lambda}$ is specified and $q = 1$, no minimization of the GCV function is involved and the fitted, coeff and adiag values are all based on the TPSS fit that uses this particular $\text{lambda}$.

Aside from the values returned, the TPSPLINE subroutine also prints other useful information such as the number of unique observations, the dimensions of the null space, the number of parameters in the model, a GCV estimate of $\sigma^2$, the smoothing penalty, the residual sum of square, the trace of $(I - A(\lambda))$, an estimate of $\sigma^2$, and the sum of squares for replication.

No missing values are accepted within the input arguments. Also, you should use caution if you want to specify small $\text{lambda}$ values. Since the true $\lambda = (10^{\log_{10} \text{lambda}})/n$, a very small value for $\text{lambda}$ can cause $\lambda$ to be smaller than the magnitude of machine error and usually the returned gcv values from such a $\lambda$ cannot be trusted. Finally, when using TPSPLINE be aware that TPSS is a computationally intensive method. Therefore a large data set (that is, a large number of unique design points) will take a lot of computer memory and time.

For convenience, the TPSS method is illustrated with a two-dimensional independent variable $X = (x^1, x^2)$. More details can be found in Wahba (1990), or in Bates et al. (1987).

Assume that the data are from the model

$$y_i = f(x_i) + \epsilon_i,$$

where $(x_i, y_i), i = 1, \ldots, n$ are the observations. The function $f$ is unknown and you assume that it is reasonably smooth. The error terms $\epsilon_i, i = 1, \ldots, n$ are independent zero-mean random variables.

You measure the smoothness of $f$ by the integral over the entire plane of the square of the partial derivatives of $f$ of total order 2, that is

$$J_2(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[ \frac{\partial^2 f}{\partial x_1^2} \right]^2 + 2 \left[ \frac{\partial^2 f}{\partial x_1 \partial x_2} \right]^2 + \left[ \frac{\partial^2 f}{\partial x_2^2} \right]^2 \, dx_1 dx_2$$

Using this as a smoothness penalty, the thin-plate smoothing spline estimate $f_\lambda$ of $f$ is the minimizer of

$$S_\lambda(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda J_2(f).$$

Duchon (1976) derived that the minimizer $f_\lambda$ can be represented as

$$f_\lambda(x) = \sum_{i=1}^{3} \beta_i \phi_i(x) + \sum_{i=1}^{n} \delta_i E_2(x - x_i),$$

where $(\phi_1(x), \phi_2(x), \phi_3(x)) = (1, x^1, x^2)$ and $E_2(s) = \frac{1}{2\pi} ||s||^2 \ln(||s||)$.
Let matrix $K$ have entries $(K)_{ij} = E_2(x_i - x_j)$ and matrix $T$ have entries $(T)_{ij} = \phi_j(x_i)$. Then the minimization problem can be rewritten as finding coefficients $\beta$ and $\delta$ to minimize

$$S_2(\beta, \delta) = \frac{1}{n} \| y - T\beta - K\delta \|_2^2 + \lambda \delta^T K\delta$$

The final TPSS fits can be viewed as a type of generalized ridge regression estimator. The $\lambda$ is called the smoothing parameter, which controls the balance between the goodness of fit and the smoothness of the final estimate. The smoothing parameter can be chosen by minimizing the generalized cross validation function (GCV). If you write

$$\hat{y} = A(\lambda)y$$

and call the $A(\lambda)$ as the “hat” matrix, the GCV function $V(\lambda)$ is defined as

$$V(\lambda) = \frac{(1/n)\| (I - A(\lambda)y) \|^2}{[(1/n)\text{tr}(I - A(\lambda))]^2}$$

The returned values from this function call provide the $\hat{y}$ as fitted, the $(\beta, \delta)$ as coeff, and $\text{diag}(A(\lambda))$ as adiag.

To evaluate the TPSS fit $f_\lambda(x)$ at new data points, you can use the TPSPLNEV call.

Suppose $X^{\text{new}}$, a $m \times k$ matrix, contains the $m$ new data points at which you want to evaluate $f_\lambda$. Let $(T^{\text{new}})_{ij} = \phi_j(x_i^{\text{new}})$ and $(K^{\text{new}})_{ij} = E_2(x_i^{\text{new}} - x_j)$ be the $(i, j)$ elements of $T^{\text{new}}$ and $K^{\text{new}}$ respectively. The prediction at new data points $X^{\text{new}}$ is

$$y^{\text{pred}} = T^{\text{new}}\beta + K^{\text{new}}\delta$$

Therefore, the $y^{\text{pred}}$ can be easily evaluated by using the coefficient $(\beta, \delta)$ obtained from the TPSPLINE call.

An example is given in the documentation for the TPSPLNEV call.

---

**TPSPLNEV Call**

```fortran
CALL TPSPLNEV(pred, xpred, x, coeff);
```

The TPSPLNEV subroutine evaluates the thin-plate smoothing spline (TPSS) at new data points. It is used after the TPSPLINE subroutine fits a thin-plate spline model to data.

The TPSPLNEV subroutine returns the following value:

- **pred** is an $m \times 1$ vector of the predicted values of the TPSS fit evaluated at $m$ new data points.

The input arguments to the TPSPLNEV subroutine are as follows:

- **xpred** is an $m \times k$ matrix of data points at which the $f_\lambda$ is evaluated, where $m$ is the number of new data points and $k$ is the number of variables in the spline model.

- **x** is an $n \times k$ matrix of design points that is used as an input of TPSPLINE call.

- **coeff** is the coefficient vector returned from the TPSPLINE call.
See the previous section on the TPSPLINE call for details about the TSPLNEV subroutine.

The following example contains two independent variables and one response variable. The first panel of Figure 26.434 shows a plot of the data. The following statements define the data and a sequence of \( \lambda \) values within the interval \((-3.8, -3.3)\). The TPSPLINE call fits the thin-plate smoothing spline on those design points and computes the GCV function for each value of \( \lambda \) within the interval.

\[
\begin{align*}
x &= \{-1.0 & -1.0, & -1.0 & -1.0, & -0.5 & -1.0, & -0.5 & -1.0, \\
& 0.0 & -1.0, & 0.0 & -1.0, & 0.5 & -1.0, & 0.5 & -1.0, \\
& 1.0 & -1.0, & 1.0 & -1.0, & -1.0 & -0.5, & -1.0 & -0.5, \\
& -0.5 & -0.5, & -0.5 & -0.5, & 0.0 & -0.5, & 0.0 & -0.5, \\
& 0.5 & -0.5, & 0.5 & -0.5, & 1.0 & -0.5, & 1.0 & -0.5, \\
& -1.0 & 0.0, & -1.0 & 0.0, & -0.5 & 0.0, & -0.5 & 0.0, \\
& 0.0 & 0.0, & 0.0 & 0.0, & 0.5 & 0.0, & 0.5 & 0.0, \\
& 1.0 & 0.0, & 1.0 & 0.0, & -1.0 & 0.5, & -1.0 & 0.5, \\
& -0.5 & 0.5, & -0.5 & 0.5, & 0.0 & 0.5, & 0.0 & 0.5, \\
& 0.5 & 0.5, & 0.5 & 0.5, & 1.0 & 0.5, & 1.0 & 0.5, \\
& -1.0 & 1.0, & -1.0 & 1.0, & -0.5 & 1.0, & -0.5 & 1.0, \\
& 0.0 & 1.0, & 0.0 & 1.0, & 0.5 & 1.0, & 0.5 & 1.0, \\
& 1.0 & 1.0, & 1.0 & 1.0 \};
\end{align*}
\]

\[
y = \{15.54, 15.76, 18.67, 18.50, 19.66, 19.80, 18.60, 18.52, \\
15.87, 16.04, 10.92, 11.14, 14.81, 14.83, 16.56, 16.44, \\
14.91, 15.06, 10.92, 10.94, 9.61, 9.65, 14.03, 14.03, \\
15.77, 16.00, 14.00, 14.03, 9.56, 9.58, 11.21, 11.09, \\
14.84, 14.99, 16.55, 16.51, 14.98, 14.72, 11.15, 11.17, \\
15.83, 15.96, 18.64, 18.56, 19.54, 19.81, 18.57, 18.61, \\
15.87, 15.90 \};
\]

\[
\text{lambda} = T( \text{do}(-3.8, -3.3, 0.1) );
\]

\[
\text{call tpspline(} \text{fit, coef, adiag, gcv, x, y, lambda);}
\]

**Figure 26.433** Output from the TPSPLINE Subroutine

**SUMMARY OF TPSPLINE CALL**

<table>
<thead>
<tr>
<th>Summary of Tpspline Call</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>50</td>
</tr>
<tr>
<td>Number of Unique Design Points</td>
<td>25</td>
</tr>
<tr>
<td>Dimension of Polynomial Space</td>
<td>3</td>
</tr>
<tr>
<td>Number of Parameters</td>
<td>28</td>
</tr>
<tr>
<td>GCV Estimate of Lambda</td>
<td>6.6006258E-6</td>
</tr>
<tr>
<td>Smoothing Penalty</td>
<td>2558.7692018</td>
</tr>
<tr>
<td>Residual Sum of Squares</td>
<td>0.243454154</td>
</tr>
<tr>
<td>Trace of (I-A)</td>
<td>25.402044412</td>
</tr>
<tr>
<td>Sigma^2 Estimate</td>
<td>0.0095836938</td>
</tr>
<tr>
<td>Sum of Squares for Replication</td>
<td>0.23965</td>
</tr>
</tbody>
</table>

The TPSPLINE call returns the fitted values at each design point. The fitted surface is plotted in the second panel of Figure 26.434. The fourth panel shows a plot of the GCV function values against \( \lambda \).

You can use the TPSPLNEV call to score the thin-plate spline at a new set of points. The following statements generate a dense grid on \([-1, 1] \times [-1, 1]\). The \( x \) and \( \text{coef} \) matrices are used to evaluate the thin-plate spline on the new grid of points:
xGrid = T( do(-1, 1, 0.1) );
yGrid = T( do(-1, 1, 0.1) );
do i = 1 to nrow(xGrid);
   x1 = x1 // repeat(xGrid[i], nrow(yGrid));
   x2 = x2 // yGrid;
end;
xpred = x1 || x2;

call tpsplnev(pred, xpred, x, coef);

The third panel of Figure 26.434 shows the thin-plat spline evaluated on the grid of points.

Figure 26.434 Plots of Fitted Surface
TRACE Function

TRACE(matrix);

The TRACE function returns the sum of the diagonal elements of matrix, as shown in the following example:

```plaintext
a = trace([5 2,
 1 3]);
print a;
```

Figure 26.435 Trace of a Matrix

```
8
```

TRISOLV Function

TRISOLV(form, R, b <, piv>);

The TRISOLV function efficiently solves linear systems that involve a triangular matrix.

The TRISOLV function returns the $n \times p$ matrix $X$ that contains $p$ solutions of the $p$ linear systems specified by form, $R$, and $b$.

The arguments to the TRISOLV function are as follows:

- **form** specifies which of the following form of a triangular linear system is to be solved:
  - form=1 solve $Rx = b$, $R$ upper triangular
  - form=2 solve $R'x = b$, $R$ upper triangular
  - form=3 solve $R'x = b$, $R$ lower triangular
  - form=4 solve $Rx = b$, $R$ lower triangular

- **R** specifies the $n \times n$ nonsingular upper (form=1,2) or lower (form=3,4) triangular coefficient matrix $R$. Only the upper or lower triangle of argument matrix $R$ is used; the other triangle can contain any information.

- **b** specifies the $n \times p$ matrix, $B$, of $p$ right-hand sides $b_k, k = 1 \ldots p$.

- **piv** specifies an optional $n$ vector that relates the order of the columns of matrix $R$ to the order of the columns of an original coefficient matrix $A$ for which matrix $R$ has been computed as a factor. For example, the vector $piv$ can be the result of the QR decomposition of a matrix $A$ whose columns were permuted in the order $A_{piv[1]} \ldots A_{piv[n]}$.

For form=1 and form=3, the solution is obtained by backward elimination. For form=2 and form=4, the solution is obtained by forward substitution.

If TRISOLV recognizes the upper or lower triangular matrix $R$ as a singular matrix (that is, one that contains at least one zero diagonal element), it exits with an error message.

Consider the following example:
\[
R = \begin{pmatrix}
1 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 \\
1 & -3 & 5 & 0 \\
2 & 7 & 9 & -1
\end{pmatrix};
\]
\[
b = \{1, 1, 4, -6\};
x = \text{trisolv}(4, R, b);
\]
\[
\text{print } x;
\]

Figure 26.436 Solution of a Triangular System

\[
\begin{array}{c}
x \\
1 \\
-1 \\
0 \\
1
\end{array}
\]

Also see the example in section “The Full-Rank Linear Least Squares Problem” on page 950.

---

**TSBAYSEA Call**

\[
\text{CALL TSBAYSEA}(\text{trend, season, series, adjust, abic, data }<, \text{order }<, \text{sorder }<, \text{ rigid }<, \text{npred }<, \text{ opt }<, \text{ cntl }<, \text{ print }>) ;
\]

The TSBAYSEA subroutine performs Bayesian seasonal adjustment modeling.

The input arguments to the TSBAYSEA subroutine are as follows:

- **data** specifies a \( T \times 1 \) (or \( 1 \times T \)) data vector.
- **order** specifies the order of trend differencing. The default is \( \text{order}=2 \).
- **sorder** specifies the order of seasonal differencing. The default is \( \text{sorder}=1 \).
- **rigid** specifies the rigidity of the seasonal pattern. The default is \( \text{rigid}=1 \).
- **npred** specifies the length of the forecast beyond the available observations. The default is \( \text{npred}=0 \).
- **opt** specifies the options vector.
  - **opt[1]** specifies the number of seasonal periods (\( \text{speriod} \)). By default, \( \text{opt}[1]=12 \).
  - **opt[2]** specifies the year when the series starts (\( \text{year} \)). If \( \text{opt}[2]=0 \), there will be no trading day adjustment. By default, \( \text{opt}[2]=0 \).
  - **opt[3]** specifies the month when the series starts (\( \text{month} \)). If \( \text{opt}[2]=0 \), this option is ignored. By default, \( \text{opt}[3]=1 \).
  - **opt[4]** specifies the upper limit value for outlier determination (\( \text{rlim} \)). Outliers are considered as missing values. If this value is less than or equal to 0, TSBAYSEA assumes that the input data does not contain outliers. The default is \( \text{rlim}=0 \). See the section “Missing Values” on page 347.
  - **opt[5]** refers to the number of time periods processed at one time (\( \text{span} \)). The default is \( \text{opt}[5]=4 \).
specifies the number of time periods to be shifted (shift). By default, opt[6]=1.


cntl specifies control values for the TSBAYSEA subroutine. These values are automatically set. Be careful if you change these values.

cntl[1] controls the adaptivity of the trading day adjustment component (wtrd). The default is cntl[1]=1.0.

cntl[2] controls the sum of seasonal components within a period (zersum). The larger the value of cntl[2], the closer to zero this sum is. By default, cntl[2]=1.0.


cntl[4] specifies the prior variance of the initial trend (alpha). The default is cntl[4]=0.01.

cntl[5] specifies the prior variance of the initial seasonal component (beta). The default is cntl[5]=0.01.

cntl[6] specifies the prior variance of the initial sum of seasonal components (gamma). The default is cntl[6]=0.01.

print requests the power spectrum and the estimated and forecast values of time series components. If print=2, the spectra of irregular, differenced trend and seasonal series are printed, together with estimates and forecast values. If print=1, only the estimates and forecast values of time series components are printed.

If print=0, printed output is suppressed. The default is print=0.

The TSBAYSEA subroutine returns the following values:

trend refers to the estimate and forecast of the trend component.

season refers to the estimate and forecast of the seasonal component.

series refers to the smoothed and forecast values of the time series.

adjust refers to the seasonally adjusted series.

abic refers to the value of ABIC from the final estimates.

The TSBAYSEA subroutine decomposes the series $y_t$ into the following form:

$$y_t = T_t + S_t + \epsilon_t$$

where $T_t$ is a trend component, $S_t$ denotes a seasonal component, and $\epsilon_t$ is an irregular component. To estimate the seasonal and trend components, some constraints are imposed such that the sum of squares of
\[ \nabla^k T_t, \nabla_L^l S_t, \text{ and } \sum_{i=0}^{L-1} S_{t-i} \] is small, where \( \nabla \) and \( \nabla_L \) are difference operators. Then the solution can be obtained by minimizing

\[
N \sum_{t=1}^{N} \left( (y_t - T_t - S_t)^2 + d^2 \left[ s^2 (\nabla^k T_t)^2 + (\nabla_L^l S_t)^2 + z^2 (S_t + \ldots + S_{t-L+1})^2 \right] \right)
\]

where \( d \) measures the smoothness of the trend and seasonality, \( s \) measures the smoothness of the trend, and \( z \) is a smoothness constant for the sum of the seasonal variability. The value of \( d \) is estimated while the constants, \( s \) and \( z \), are chosen \textit{a priori}. The value of \( s \) is equal to \( \frac{1}{\text{RIGID}} \), and the constant \( z \) is determined as \( \text{ZERSUM}^\text{RIGID}/\text{SPERIOD}^{1/2} \). The larger the constant RIGID, the more rigid the seasonal pattern is. See the section “Bayesian Constrained Least Squares” on page 343 for more information.

To analyze the monthly data with rigidity 0.5, you can specify either of the following two equivalent statements:

```r
call tsbaysea(trend,season,series,adj,abic) data=z order=2
 sorder=1 rigid=0.5 npred=10 print=2;

call tsbaysea(trend,season,series,adj,abic,z,2,1,0.5,10,,,2);
```

The TREND, SEASON, and SERIES components contain 10-period-ahead forecast values in addition to the smoothed estimates. The detailed result is also printed since the PRINT=2 option is specified.

---

**TSDECOMP Call**

```r
CALL TSDECOMP(comp, est, aic, data, <, xdata > <, order > <, sorder > <, nar > <, npred > <, init > <, opt > <, icmp > <, print >);
```

The TSDECOMP subroutine analyzes nonstationary time series by using smoothness priors modeling.

The input arguments to the TSDECOMP subroutine are as follows:

- **data** specifies a \( T \times 1 \) (or \( 1 \times T \)) data vector.
- **xdata** specifies a \( T \times K \) explanatory data matrix.
- **order** specifies the order of trend differencing (0, 1, 2, or 3). The default is 2.
- **sorder** specifies the order of seasonal differencing (0, 1, or 2). The default is 1.
- **nar** specifies the order of the AR process. The default is 0.
- **npred** specifies the length of the forecast beyond the available observations. The default is 0.
- **init** specifies the initial values of parameters. The initial values are specified as variances for trend difference equation, AR process, seasonal difference equation, regression equation, and partial AR coefficients. The corresponding default variance values are 0.005, 0.8, 1E-5, and 1E-5. The default partial AR coefficient values are determined as
  
  \[ \psi_i = 0.88 \times (-0.6)^{i-1} i = 1, 2, \ldots, \text{nar} \]

- **opt** specifies the options vector.
opt[1] specifies the mean deletion option. The mean of the original series is subtracted from the series if opt[1]=-1. By default, the original series is processed (opt[1]=0). When regressors are specified, only the opt[1]=0 option is accepted.

opt[2] specifies the trading day adjustment. The default is opt[2]=0.

opt[3] specifies the year (≥ 1900) when the series starts. If opt[3]=0, there is no trading day adjustment. By default, opt[3]=0.


opt[7] specifies the update technique for the quasi-Newton optimization technique. If opt[7]=1 is specified, the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update method is used. If opt[7]=2 is specified, the dual Davidon, Fletcher, and Powell (DFP) update method is used. The default is opt[7]=1.


1 specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and extrapolation.

2 specifies a line search method that requires more objective function calls than gradient calls for cubic interpolation and extrapolation.

3 specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and extrapolation.

4 specifies a line search method that requires the same number of objective function and gradient calls for cubic interpolation and stepwise extrapolation.

5 specifies a line search method that is a modified version of opt[8]=4.

6 specifies the golden section line search method that uses only function values for linear approximation.

7 specifies the bisection line search method that uses only function values for linear approximation.

8 specifies the Armijo line search method that uses only function values for linear approximation.

opt[9] specifies the upper bound of the variance estimates. If you specify opt[9]=value, the variances are estimated with the constraint that $\sigma \leq value$. When you specify the opt[9]=0 option, the upper bound is not imposed. The default is opt[9]=0.

opt[10] specifies the length of data used in backward filtering for the Kalman filter initialization. The default value of opt[10] is 100 if the number of observations is greater than 100; otherwise, the default value is the number of observations.

icmp specifies which component is computed.
requests the estimate and forecast of trend component.
requests the estimate and forecast of seasonal component.
requests the estimate and forecast of AR component.
requests the trading day adjustment component.
requests the regression component.
requests the time-varying regression coefficients.

You can compute multiple components by specifying a vector. For example, you can specify \( icmp = \{1, 2, 3, 5\} \).

\( print \) specifies the print option. By default, printed output is suppressed (\( print = 0 \)). If you specify \( print = 1 \), the subroutine prints the final estimates. The iteration history is printed if you specify \( print = 2 \).

The TSDECOMP subroutine returns the following values:

\( comp \) refers to the estimate and forecast of the trend component.
\( est \) refers to the parameter estimates including coefficients of the AR process.
\( aic \) refers to the AIC statistic obtained from the final estimates.

The TSDECOMP subroutine analyzes nonstationary time series by using smoothness priors modeling (see the section “Smoothness Priors Modeling” on page 332 for more details). The likelihood function is maximized with respect to hyperparameters. The Kalman filter algorithm is used for filtering, smoothing, and forecasting. The TSDECOMP subroutine decomposes the time series \( y_t \) as follows:

\[
y_t = T_t + S_t + TD_t + u_t + R_t + \epsilon_t
\]

where \( T_t \) represents the trend component, \( S_t \) denotes the seasonal component, \( TD_t \) represents the trading day adjustment component, \( u_t \) denotes the autoregressive process component, \( R_t \) denotes regression effect components, and \( \epsilon_t \) represents the irregular term with zero mean and constant variance.

The trend components are constrained as follows:

\[
\nabla^k T_t = w_{1t}, \quad w_{1t} \sim N(0, \tau_1^2)
\]

When you specify the ORDER=0 option, the trend component is not estimated. The maximum order of differencing is 3 \((k = 0, \ldots, 3)\).

The seasonal components are denoted as a stochastically perturbed equation:

\[
\left(1 + \sum_{i=1}^{L-1} B^i\right)^l S_t = w_{2t}, \quad w_{2t} \sim N(0, \tau_2^2)
\]

When you specify SORDER=0, the seasonal component is not estimated. The maximum value of \( l \) is 2 \((l = 0, 1, \text{ or } 2)\).

The stationary autoregressive (AR) process is denoted as a stochastically perturbed equation:

\[
u_t = \sum_{i=1}^{p} \alpha_i u_{t-i} + w_{3t}, \quad w_{3t} \sim N(0, \tau_3^2)\]
where \( p \) is the order of AR process. When NAR=0 is specified, the AR process component is not estimated.

The time-varying regression coefficients are estimated if you include exogenous variables:

\[
R_t = X_t \beta_t
\]

where \( X_t \) contains \( m \) regressors except the constant term and \( \beta'_t = (\beta_{1t}, \ldots, \beta_{mt}) \). The time-varying coefficients \( \beta_t \) follow the random walk process:

\[
\beta_{jt} = \beta_{jt-1} + v_{jt}, v_{jt} \sim N(0, \sigma^2)
\]

where \( \beta_{jt} \) is an element of the coefficient vector \( \beta_t \).

The trading day adjustment component \( TD_t \) is deterministically restricted. See the section “State Space and Kalman Filter Method” on page 345, for more information.

You can estimate the time-varying coefficient model as follows:

```r
 CALL TSMLOCAR(arcoef, ev, nar, aic, start, finish, data <, maxlag > <, opt > <, missing > <, print >);
```

The TSMLOCAR subroutine analyzes nonstationary or locally stationary time series by using the minimum AIC procedure.

The input arguments to the TSMLOCAR subroutine are as follows:

- **data** specifies a \( T \times 1 \) (or \( 1 \times T \)) data vector.
- **maxlag** specifies the maximum lag of the AR process. This value should be less than half the length of locally stationary spans. The default is \( \text{maxlag}=10 \).
- **opt** specifies an options vector.
  - **opt[1]** specifies the mean deletion option. The mean of the original data is deleted if \( \text{opt}[1]=1 \). An intercept coefficient is estimated if \( \text{opt}[1]=0 \). If \( \text{opt}[1]=0 \), the original input data are processed assuming that the mean value of the input series is 0. The default is \( \text{opt}[1]=0 \).
  - **opt[2]** specifies the span length to be used when breaking up the time series into separate blocks. By default, \( \text{opt}[2] = 0 \), which forces all of the time series values into a single span.
  - **opt[3]** specifies the minimum AIC option. If \( \text{opt}[3]=0 \), the maximum lag AR process is estimated. If \( \text{opt}[3]=1 \), the minimum AIC procedure is performed. The default is \( \text{opt}[3]=1 \).
- **missing** specifies the missing value option. By default, only the first contiguous observations with no missing values are used (\( \text{missing}=0 \)). The \( \text{missing}=1 \) option ignores observations with missing values. If you specify the \( \text{missing}=2 \) option, the missing values are replaced with the sample mean.
print] specifies the print option. By default, printed output is suppressed (print=0). The print=1
option prints the AR estimation result, while the print=2 option plots the power spectral density in
addition to the AR estimates.

The TSMLOCAR subroutine returns the following values:

arcoef refers to an nar x 1 AR coefficient vector of the final model if the intercept estimate is not included.
If opt[1]=1, the first element of the arcoef vector is an intercept estimate.
ev refers to the error variance.
nar is the selected AR order of the final model. If opt[3]=0, nar=maxlag.
aic refers to the minimum AIC value of the final model.
start refers to the starting position of the input series, which corresponds to the first observation of the
final model.
finish refers to the ending position of the input series, which corresponds to the last observation of the
final model.

The TSMLOCAR subroutine analyzes nonstationary (or locally stationary) time series by using the minimum
AIC procedure. The data of length T is divided into J locally stationary subseries, which consist of \( \frac{T}{J} \)
observations. See the section “Nonstationary Time Series” on page 334 for details.

**TSMLOMAR Call**

```call tsmlomar(arcoef, ev, nar, aic, start, finish, data <, maxlag > <, opt > <, missing > <, print >);
```

The TSMLOMAR subroutine analyzes nonstationary or locally stationary multivariate time series by using
the minimum AIC procedure.

The input arguments to the TSMLOMAR subroutine are as follows:

data specifies a \( T \times M \) data matrix, where \( T \) is the number of observations and \( M \) is the number of
variables to be analyzed.
maxlag specifies the maximum lag of the vector AR (VAR) process. This value should be less than \( \frac{1}{2M} \) of
the length of locally stationary spans. The default is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data is deleted if opt[1]=−1. An intercept coefficient is estimated if opt[1]=1. If opt[1]=0, the original input data are processed assuming that the mean values of input series are zeros. The default is opt[1]=0.

opt[2] specifies the span length to be used when breaking up the time series into separate blocks. By default, opt[2] = 0, which forces all of the time series values into a single span.

missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed (print=0). The print=1 option prints the AR estimates, minimum AIC, minimum AIC order, and innovation variance matrix.

The TSMLOMAR subroutine returns the following values.

arcoef refers to an $M \times (M \times M)$ VAR coefficient vector of the final model if the intercept vector is not included. If opt[1]=1, the first column of the arcoef matrix is an intercept estimate vector.

ev refers to the error variance matrix.
nar is the selected VAR order of the final model. If opt[3]=0, nar=maxlag.

aic refers to the minimum AIC value of the final model.

start refers to the starting position of the input series data, which corresponds to the first observation of the final model.

finish refers to the ending position of the input series data, which corresponds to the last observation of the final model.

The TSMLOMAR subroutine analyzes nonstationary (or locally stationary) multivariate time series by using the minimum AIC procedure. The data of length $T$ is divided into $J$ locally stationary subseries. See “Nonstationary Time Series” in the section “Nonstationary Time Series” on page 334 for details.

**TSMULMAR Call**

```plaintext
CALL TSMULMAR(arcoef, ev, nar, aic, data <, maxlag> <, opt > <, missing > <, print>);
```

The TSMULMAR subroutine estimates VAR processes by using the minimum AIC procedure.

The input arguments to the TSMULMAR subroutine are as follows:

data specifies a $T \times M$ data matrix, where $T$ is the number of observations and $M$ is the number of variables to be analyzed.

maxlag specifies the maximum lag of the VAR process. This value should be less than $\frac{1}{2M}$ of the length of input data. The default is maxlag=10.

opt specifies an options vector.

- opt[1] specifies the mean deletion option. The mean of the original data is deleted if opt[1]=−1. An $M \times 1$ intercept vector is estimated if opt[1]=1. If opt[1]=0, the original input data are processed assuming that the mean value of the input data is 0. The default is opt[1]=0.


missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed (print=0). The print=1 option prints the final estimation result, while the print=2 option prints intermediate and final results.

The TSMULMAR subroutine returns the following values:

arcoef refers to an $M \times (M * nar)$ AR coefficient matrix if the intercept is not included. If opt[1]=1, the first column of the arcoef matrix is an intercept vector estimate.

ev refers to the error variance matrix.
nar is the selected VAR order of the minimum AIC procedure. If opt[2]=0, nar=maxlag.
aic refers to the minimum AIC value.

The TSMULMAR subroutine estimates the VAR process by using the minimum AIC method. The widely used VAR order selection method is added to the original TIMSAC program, which considers only the possibilities of zero coefficients at the beginning and end of the model. The TSMULMAR subroutine can also estimate the instantaneous response model. See the section “Multivariate Time Series Analysis” on page 338 for details.

**TSPEARS Call**

```call tspears(arcoef, ev, nar, aic, data < , maxlag > < , opt > < , missing > < , print > );```

The TSPEARS subroutine analyzes periodic AR models with the minimum AIC procedure.

The input arguments to the TSPEARS subroutine are as follows:

data specifies a $T \times 1$ (or $1 \times T$) data matrix.

maxlag specifies the maximum lag of the periodic AR process. This value should be less than $\frac{1}{2J}$ of the input series. The default is maxlag=10.

opt specifies an options vector.

opt[1] specifies the mean deletion option. The mean of the original data is deleted if opt[1]=−1. An intercept coefficient is estimated if opt[1]=1. If opt[1]=0, the original input data are processed assuming that the mean values of input series are zeros. The default is opt[1]=0.

missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed (print=0). The print=1 option prints the periodic AR estimates and intermediate process.
The TSPEARS subroutine returns the following values:

- **arcoef**: refers to a periodic AR coefficient matrix of the periodic AR model. If $opt[1]=1$, the first column of the arcoef matrix is an intercept estimate vector.
- **ev**: refers to the error variance.
- **nar**: refers to the selected AR order vector of the periodic AR model.
- **aic**: refers to the minimum AIC values of the periodic AR model.

The TSPEARS subroutine analyzes the periodic AR model by using the minimum AIC procedure. The data of length T are divided into d periods. There are J instants in one period. See the section “Multivariate Time Series Analysis” on page 338 for details.

TSPRED Call

```call tspred(forecast, impulse, mse, data, coef, nar, nma <, ev > <, npred > <, start > <, constant >)
```

The TSPRED subroutine provides predicted values of univariate and multivariate ARMA processes when the ARMA coefficients are input.

The input arguments to the TSPRED subroutine are as follows:

- **data**: specifies a $T \times M$ data matrix if the intercept is not included, where T denotes the length of the time series and M is the number of variables to be analyzed. If the univariate time series is analyzed, the input data should be a column vector.
- **coef**: refers to the $M(P + Q) \times M$ ARMA coefficient matrix, where P is an AR order and Q is an MA order. If the intercept term is included ($constant=1$), the first row of the coefficient matrix is considered as the intercept term and the coefficient matrix is an $M(P + Q + 1) \times M$ matrix. If there are missing values in the coef matrix, these are converted to zero.
- **nar**: specifies the order of the AR process. If the subset AR process is requested, nar should be a row or column vector. The default is $nar=0$.
- **nma**: specifies the order of the MA process. If the subset MA process is requested, nma should be a vector. The default is $nma=0$.
- **ev**: specifies the error variance matrix. If the ev matrix is not provided, the prediction error covariance will not be computed.
- **npred**: specifies the maximum length of multistep forecasting. The default is $npred=0$.
- **start**: specifies the position where the multistep forecast starts. The default is $start=T$.
- **constant**: specifies the intercept option. No intercept estimate is included if $constant=0$; otherwise, the intercept estimate is included in the first row of the coefficient matrix. If $constant=-1$, the coefficient matrix is estimated by using mean deleted series. By default, $constant=0$.

The TSPRED subroutine returns the following values:
TSROOT Call

```call
call tsroot(matout, matin, nar, nma, <, qcoef> <, print> );
```

The `TSROOT` subroutine computes AR and MA coefficients from the characteristic roots of the model or computes the characteristic roots of the model from the AR and MA coefficients.

The input arguments to the `TSROOT` subroutine are as follows:

- **matin** refers to the \((\text{nar} + \text{nma}) \times 2\) characteristic root matrix if the polynomial (ARMA) coefficients are requested \((qcoef=1)\), where the first column of the `matin` matrix contains the real part of the root and the second column of the `matin` matrix contains the imaginary part of the root. When the characteristic roots are requested \((qcoef=0)\), the first `nar` rows are complex AR coefficients and the last `nma` rows are complex MA coefficients. The default is `qcoef=0`.
- **nar** specifies the order of the AR process. If you specify the subset AR model, the input `nar` should be a row or column vector.
- **nma** specifies the order of the MA process. If you specify the subset MA model, the input `nma` should be a row or column vector.
- **qcoef** requests the ARMA coefficients when the characteristic roots are provided \((qcoef=1)\). By default, the characteristic roots of the polynomial are computed \((qcoef=0)\).
- **print** specifies the print option if `print=1`. By default, printed output is suppressed \((print=0)\).

The `TSROOT` subroutine returns the following values:

- **matout** refers to the characteristic root matrix if `qcoef=0`; otherwise, the `matout` matrix contains the AR and MA coefficients.

TSTVCAR Call

```call
call tstvcar(arcoef, variance, est, aic, data <, nar> <, init> <, opt> <, outlier> <, print> );
```

The `TSTVCAR` subroutine analyzes time series that are nonstationary in the covariance function.

The input arguments to the `TSTVCAR` subroutine are as follows:

- **data** specifies a \(T \times 1\) (or \(1 \times T\)) data vector.
- **nar** specifies the order of the AR process. The default is `nar=8`.
- **init** specifies the initial values of the parameter estimates. The default is \(1E-4, 0.3, 1E-5, 0\).
- **opt** specifies an options vector.
opt[1] specifies the mean deletion option. The mean of the original series is subtracted from the series if **opt[1]** = -1. By default, the original series is processed (**opt[1]** = 0).

opt[2] specifies the filtering period (**nfilter**). The number of state vectors is determined by $T / nfilter$. The default is **opt[2]** = 10.

opt[3] specifies the numerical differentiation method. If **opt[3]** = 1, the one-sided (forward) differencing method is used. The two-sided (or central) differencing method is used if **opt[3]** = 2. The default is **opt[3]** = 1.

outlier specifies the vector of outlier observations. The value should be less than or equal to the maximum number of observations. The default is **outlier** = 0.

print specifies the print option. By default, printed output is suppressed (**print** = 0). The **print** = 1 option prints the final estimates. The iteration history is printed if **print** = 2.

The TSTVCAR subroutine returns the following values:

- **arcoef** refers to the time-varying AR coefficients.
- **variance** refers to the time-varying error variances. See the section “Smoothness Priors Modeling” on page 332 for details.
- **est** refers to the parameter estimates.
- **aic** refers to the value of AIC from the final estimates.

Nonstationary time series modeling usually deals with nonstationarity in the mean. The TSTVCAR subroutine analyzes the model that is nonstationary in the covariance. Smoothness priors are imposed on each time-varying AR coefficient and frequency response function. See the section “Nonstationary Time Series” on page 334 for details.

TSUNIMAR Call

```plaintext
CALL TSUNIMAR(arcoef, ev, nar, aic, data <, maxlag > <, opt > <, missing > <, print >);
```

The TSUNIMAR subroutine determines the order of an AR process with the minimum AIC procedure and estimates the AR coefficients.

The input arguments to the TSUNIMAR subroutine are as follows:

- **data** specifies a $T \times 1$ (or $1 \times T$) data vector, where T is the number of observations.

- **maxlag** specifies the maximum lag of the AR process. This value should be less than half the number of observations. The default is **maxlag** = 10.

- **opt** specifies an options vector.

 - **opt[1]** specifies the mean deletion option. The mean of the original data is deleted if **opt[1]** = -1. An intercept term is estimated if **opt[1]** = 1. If **opt[1]** = 0, the original input data are processed assuming that the mean value of the input data is 0. The default is **opt[1]** = 0.

 - **opt[2]** specifies the minimum AIC option. If **opt[2]** = 0, the maximum lag AR process is estimated. The minimum AIC option, **opt[2]** = 1, is the default.
missing specifies the missing value option. By default, only the first contiguous observations with no missing values are used (missing=0). The missing=1 option ignores observations with missing values. If you specify the missing=2 option, the missing values are replaced with the sample mean.

print specifies the print option. By default, printed output is suppressed (print=0). The print=1 option prints the final estimation result, while the print=2 option prints intermediate and final results.

The TSUNIMAR subroutine returns the following values.

arcoef refers to an nar x 1 AR coefficient vector if the intercept is not included. If opt[1]=1, the first element of the arcoef vector is an intercept estimate.

ev refers to the error variance.

nar refers to the selected AR order by minimum AIC procedure. If opt[2]=0, then nar = maximum lag.

aic refers to the minimum AIC value.

The TSUNIMAR subroutine determines the order of the AR process by using the minimum AIC procedure and estimates the AR coefficients. All AR coefficient estimates up to maximum lag are printed if you specify the print option. See the section “Least Squares and Householder Transformation” on page 342 for more information.

TYPE Function

```plaintext
TYPE(matrix);
```

The TYPE function returns a single character value that represents the type of a matrix. The value is ‘N’ if the type of the matrix is numeric; it is ‘C’ if the type of the matrix is character; it is ‘U’ if the matrix does not have a value.

The following statements determine the type for three different matrices:

```plaintext
cMat = {"Rick" "Nancy"};
t1 = type(cMat);
nMat = {3.14159 2.71828};
t2 = type(nMat);
free uMat;
free uMat;
t3 = type(uMat);
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>t2</td>
<td>t3</td>
</tr>
<tr>
<td>C</td>
<td>N</td>
<td>U</td>
</tr>
</tbody>
</table>

Figure 26.437 The Types of Matrices
UNIFORM Function

\[
\text{UNIFORM}(\text{seed});
\]

This function is deprecated. Instead, you should use the RANDGEN subroutine to generate random values.

UNION Function

\[
\text{UNION}(\text{matrix1}, \text{matrix2}, \ldots, \text{matrix15});
\]

The UNION function returns a row vector that contains the sorted set of unique values of the arguments. If the matrices are thought of as sets, the return value is the union of the sets. If you call the UNION function with a single argument, the function returns the sorted elements with no duplicates.

There can be up to 15 arguments, which can be either all character or all numeric. For character arguments, the element length of the result is the longest element length of the arguments. Shorter character elements are padded on the right with blanks.

This function is identical to the UNIQUE function.

The following statements compute the union of the elements in two matrices:

```plaintext
a = {1 2 4 5};
b = {3 4};
c = union(a, b);
print c;
```

![Figure 26.438 Union of Elements](image)

UNIQUE Function

\[
\text{UNIQUE}(\text{matrix1}, \text{matrix2}, \ldots, \text{matrix15});
\]

The UNIQUE function returns a row vector that contains the sorted set of unique values of the arguments. If you call the UNIQUE function with a single argument, the function returns the sorted elements with no duplicates.

This function is identical to the UNION function, the description of which includes an example.

UNIQUEBY Function

\[
\text{UNIQUEBY}(\text{matrix}, \text{by}, \text{index});
\]

The UNIQUEBY function returns the locations of the unique BY-group combinations for a sorted or indexed matrix. The arguments to the UNIQUEBY function are as follows:
matrix is the input matrix, which must be sorted or indexed according to the by columns.

by is either a numeric matrix of column numbers, or a character matrix that contains the names of columns that correspond to column labels assigned to matrix by a MATTRIB statement or READ statement. If by is not specified, then the first column is used.

index is a vector such that index[i] is the row index of the ith element of matrix when sorted according to by. Consequently, matrix[index,] is the sorted matrix. index can be computed for a matrix and a given set of by columns with the SORTNDX call. If the matrix is known to be sorted according to the by columns already, then index should be 1:nrow(matrix). In this case, you can also omit the index argument.

The UNIQUEBY function returns a column vector whose ith row is the row in index whose value is the row in matrix of the ith unique combination of values in the by columns.

For example, the following statements use the SORTNDX subroutine to create a sort index for a matrix. The UNIQUEBY function is then used to determine the unique combinations of the columns of the matrix:

\[
\begin{align*}
m &= \begin{pmatrix} 1 & 0, \\
2 & 0, \\
2 & 2, \\
2 & 0, \\
1 & 0, \\
2 & 0, \\
1 & 1 \end{pmatrix}; \\
cols &= 1:2; \\
call sortndx(ndx, m, cols); \\
sorted &= m[ndx,]; \\
unique_rows &= uniqueby(m, cols, ndx); \\
unique_vals &= m[ndx[unique_rows], cols]; \\
print sorted, unique_rows unique_vals;
\end{align*}
\]

Figure 26.439 Unique Values of the Sort Variables

<table>
<thead>
<tr>
<th>sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0</td>
</tr>
<tr>
<td>1 0</td>
</tr>
<tr>
<td>1 1</td>
</tr>
<tr>
<td>2 0</td>
</tr>
<tr>
<td>2 0</td>
</tr>
<tr>
<td>2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>unique_rows</th>
<th>unique_vals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0</td>
</tr>
<tr>
<td>3</td>
<td>1 1</td>
</tr>
<tr>
<td>4</td>
<td>2 0</td>
</tr>
<tr>
<td>7</td>
<td>2 2</td>
</tr>
</tbody>
</table>

In addition, the following statements compute the number of unique values and the number of elements in each BY-group:

```
n = nrow(unique_rows);
size = j(n,1);
do i = 1 to n-1;
   size[i] = unique_rows[i+1] - unique_rows[i];
end;
size[n] = nrow(m) - unique_rows[n] + 1;
print n, size;

Figure 26.440 Number of BY Groups and Number of Elements in Each Group

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>size</td>
<td>2 1 3 1</td>
</tr>
</tbody>
</table>

If matrix is already sorted according to the by columns (see the SORT call), then UNIQUEBY can be called with 1:nrow(matrix) for the index argument, or the last argument can be omitted as shown in the following statement:

unique_loc = uniqueby(sorted, cols);
print unique_loc;

Figure 26.441 Position of Unique Rows for a Sorted Matrix

<table>
<thead>
<tr>
<th>unique_loc</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

USE Statement

USE SAS-data-set < VAR operand > < WHERE(expression) > < NOBS name > ;

The USE statement opens a SAS data set for reading.

The arguments to the USE statement are as follows:

SAS-data-set can be specified with a one-level name (for example, A) or a two-level name (for example, Sasuser.A). You can also specify an expression (enclosed in parentheses) that resolves to the name of a SAS data set.

operand specifies a set of variables. As described in the section “Select Variables with the VAR Clause” on page 103, you can specify variable names by using a matrix literal, a character matrix, an expression, or the _ALL_, _CHAR_, or _NUM_ keywords.
**expression** specifies a criterion by which certain observations are selected. If the WHERE clause is omitted, no subsetting occurs. The optional WHERE clause conditionally selects observations that are contained within the range specification. For details about the WHERE clause, see the section “Process Data by Using the WHERE Clause” on page 104.

**name** specifies a variable to contain the number of observations. The NOBS clause returns the total number of observations in the data set in the variable name.

If the data set has not already been opened, the USE statement opens the data set for read access. The USE statement also makes the data set the current input data set so that subsequent statements act on it. The USE statement optionally can define selection criteria that are used to control access.

The VAR and WHERE clauses are optional, and you can specify them in any order. If a data set was previously open, all the data set options are still in effect. To override any old options, the new USE statement must explicitly specify new options.

The following examples demonstrate various options of the USE statement:

```sas
use Sashelp.Class;
use Sashelp.Class var{name sex age};
use Sashelp.Class var{name sex age} where(age>10);
```

The data sets can be specified with a literal value as in the previous example, or with an expression (enclosed in parentheses) that resolves to the name of a SAS data set, as shown in the following statements:

```sas
f = "Sashelp.Class";
use (f); /* expression */
read all var _NUM_ into X;
close (f);
```

---

**VALSET Call**

```sas
CALL VALSET(name, value);
```

The VALSET subroutine performs indirect assignment. The subroutine takes the name of a matrix and assigns a value to that matrix. Calling the VALSET subroutine is useful for assigning values to a matrix whose name is not known until run time.

The C programming language has the concept of a “pointer,” which enables you to assign values to preallocated memory. The VALSET subroutine is similar. The *matrix* argument contains the name of the matrix to which the *value* is to be assigned.

The arguments to the VALSET subroutine are as follows:

- **matrix** is a character matrix or literal that specifies the name of a matrix.
- **value** is a value to which the matrix is set.

For example, the following statements assign the string “A” to the value of the matrix b. The VALSET subroutine assigns a vector to the matrix a.
The following statement redefines the contents of B; it does not change the value of A.

```
b = 99;
```

See also the **VALUE function**, which retrieves the value that is contained in a matrix.

---

### VALUE Function

**VALUE**(name);

The VALUE function assigns values by indirect reference. The function takes the name of a matrix and returns the value of that matrix. The VALUE function is useful for retrieving values from a matrix whose name is not known until run time.

The C programming language has the concept of a “pointer,” which enables you to assign values to preallocated memory. The VALUE function is similar. The name argument contains the name of the matrix from which the value is to be retrieved.

For example, the following statements return the values that are contained in the variable A:

```
a = {1 2 3};
b = "A"; /* points to A */
c = value(b); /* returns the value of A */
print c;
```

---

### Figure 26.443 Value of an Indirect Reference

<table>
<thead>
<tr>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3</td>
</tr>
</tbody>
</table>

You can use the VALUE function in a loop to extract the values of several matrices that have different sizes and shapes, as shown in the following example:

```
x = {1 2 3};
y = {9 6 10 5};
z = {5 5, 10 0};
name = {"x" "y" "z"};
sums = j(1, ncol(name)); /* allocate space for result */
do i = 1 to ncol(name);
 sums[i] = sum(value(name[i])); /* sum(x), sum(y), and sum(z) */
end;
print sums;
```
See also the `VALSET` subroutine, which performs indirect assignment of matrices.

### VAR Function

`VAR(x);`

The VAR function computes a sample variance of data.

The arguments to the VAR function are as follows:

- `x` specifies an $n \times p$ numerical matrix. The VAR function computes the variance of the $p$ columns of this matrix.

The VAR function computes the sample variance of a column vector $x$ as 
\[
\frac{\sum_{i=1}^{n} (x_i \bar{x})}{(n - 1)}
\]
where $n$ is the number of nonmissing values of $x$ and any missing values have been excluded. When $x$ is a matrix, the sample variance is computed for each column, as the following example shows:

```plaintext
x = {5 1 10,
 6 2 3,
 6 8 5,
 6 7 9,
 7 2 13};
var = var(x);
print var;
```

The following statement computes the standard deviation of each column:

```plaintext
sd = sqrt(var(x));
```

The VAR function returns a missing value for columns with fewer than two nonmissing observations.

### VARMACOV Call

`CALL VARMACOV(cov, phi, theta, sigma <, p>, <, q>, <, lag> );`

The VARMACOV subroutine computes the theoretical cross-covariance matrices for a stationary \text{VARMA}(p, q) model.

The input arguments to the VARMACOV subroutine are as follows:
specifies a \( km_p \times k \) matrix, \( \Phi \), that contains the autoregressive coefficient matrices, where \( m_p \) is the number of elements in the subset of the AR order and \( k \geq 2 \) is the number of variables. All the roots of \( |\Phi(B)| = 0 \) should be greater than one in absolute value, where \( \Phi(B) \) is the finite order matrix polynomial in the backshift operator \( B \), such that \( B^j y_t = y_{t-j} \). You must specify either \( \phi \) or \( \theta \).

\( \theta \) specifies a \( km_q \times k \) matrix that contains the moving average coefficient matrices, where \( m_q \) is the number of elements in the subset of the MA order. You must specify either \( \phi \) or \( \theta \).

\( \sigma \) specifies a \( k \times k \) symmetric positive-definite covariance matrix of the innovation series. If \( \sigma \) is not specified, then an identity matrix is used.

\( p \) specifies the subset of the AR order. The quantity \( m_p \) is defined as

\[
m_p = \frac{nrow(\phi)}{ncol(\phi)}
\]

where \( nrow(\phi) \) is the number of rows of the matrix \( \phi \) and \( ncol(\phi) \) is the number of columns of the matrix \( \phi \).

If you do not specify \( p \), the default subset is \( p = \{1, \ldots, m_p\} \).

For example, consider a 4-dimensional vector time series, and \( \phi \) is a \( 4 \times 4 \) matrix. If you specify \( p=1 \) (the default, since \( m_p = 4/4 = 1 \)), the VARMACOV subroutine computes the theoretical cross-covariance matrices of VAR(1) as \( y_t = \Phi y_{t-1} + \epsilon_t \).

If you specify \( p=2 \), the VARMACOV subroutine computes the cross-covariance matrices of VAR(2) as \( y_t = \Phi y_{t-2} + \epsilon_t \).

Let \( \phi = [\Phi_1', \Phi_2']' \) be an \( 8 \times 4 \) matrix. If you specify \( p=1 \) (the default, since \( m_p = 4/4 = 1 \)), the VARMACOV subroutine computes the cross-covariance matrices of VAR(1) as \( y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-3} + \epsilon_t \). If you do not specify \( p \), the VARMACOV subroutine computes the cross-covariance matrices of VAR(2) as \( y_t = \Phi_1 y_{t-1} + \Phi_2 y_{t-2} + \epsilon_t \).

\( q \) specifies the subset of the MA order. The quantity \( m_q \) is defined as

\[
m_q = \frac{nrow(\theta)}{ncol(\theta)}
\]

where \( nrow(\theta) \) is the number of rows of matrix \( \theta \) and \( ncol(\theta) \) is the number of columns of matrix \( \theta \).

If you do not specify \( q \), the default subset is \( q = \{1, \ldots, m_q\} \).

The usage of \( q \) is the same as that of \( p \).

\( \text{lag} \) specifies the length of lags, which must be a positive number. If \( \text{lag} = h \), the VARMACOV computes the cross-covariance matrices from lag zero to lag \( h \). By default, \( \text{lag} = 12 \).

The VARMACOV subroutine returns the following value:

\( \text{cov} \) is a \( k(\text{lag} + 1) \times k \) matrix that contains the theoretical cross-covariance matrices of the VARMA(\( p, q \)) model.

Consider the following bivariate \((k = 2)\) VARMA(1,1) model:

\[
y_t = \Phi y_{t-1} + \epsilon_t - \Theta \epsilon_{t-1}
\]

\[
\Phi = \begin{bmatrix} 1.2 & -0.5 \\ 0.6 & 0.3 \end{bmatrix} \quad \Theta = \begin{bmatrix} -0.6 & 0.3 \\ 0.3 & 0.6 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.25 \end{bmatrix}
\]

To compute the cross-covariance matrices of this model, you can use the following statements:
phi = {1.2 -0.5, 0.6 0.3};
theta= {−0.6 0.3, 0.3 0.6};
sigma= {1.0 0.5, 0.5 1.25};
call varmacov(cov, phi, theta, sigma) lag=3;
Lag = {"0", "", "1", "", "2", "", "3", ""};
print Lag cov;

### Figure 26.446 Cross-Covariance Matrix

<table>
<thead>
<tr>
<th>Lag</th>
<th>cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.403036 8.4702334</td>
</tr>
<tr>
<td></td>
<td>8.4702334 9.0377769</td>
</tr>
<tr>
<td>1</td>
<td>11.098527 9.3828916</td>
</tr>
<tr>
<td></td>
<td>5.5703916 6.8934731</td>
</tr>
<tr>
<td>2</td>
<td>8.626786 9.4739834</td>
</tr>
<tr>
<td></td>
<td>3.2377334 5.4102769</td>
</tr>
<tr>
<td>3</td>
<td>5.6151515 8.0182666</td>
</tr>
<tr>
<td></td>
<td>1.1801416 3.5657231</td>
</tr>
</tbody>
</table>

### VARMALIK Call

**CALL VARMALIK**(lnl, series, phi, theta, sigma <, p> <, q> <, opt>);

The VARMALIK subroutine computes the log-likelihood function for a VARMA\((p, q)\) model.

The input arguments to the VARMALIK subroutine are as follows:

- **series** specifies an \(n \times k\) matrix that contains the vector time series (assuming mean zero), where \(n\) is the number of observations and \(k \geq 2\) is the number of variables.
- **phi** specifies a \(km_p \times k\) matrix that contains the autoregressive coefficient matrices, where \(m_p\) is the number of the elements in the subset of the AR order. You must specify either \(phi\) or \(theta\).
- **theta** specifies a \(km_q \times k\) matrix that contains the moving average coefficient matrices, where \(m_q\) is the number of the elements in the subset of the MA order. You must specify either \(phi\) or \(theta\).
- **sigma** specifies a \(k \times k\) covariance matrix of the innovation series. If you do not specify **sigma**, an identity matrix is used.
- **p** specifies the subset of the AR order. See the VARMACOV subroutine.
- **q** specifies the subset of the MA order. See the VARMACOV subroutine.
- **opt** specifies the method of computing the log-likelihood function:
  - \(opt=0\) requests the multivariate innovations algorithm. This algorithm requires that the time series is stationary and does not contain missing observations.
  - \(opt=1\) requests the conditional log-likelihood function. This algorithm requires that the number of the observations in the time series must be greater than \(p+q\) and that the series does not contain missing observations.
  - \(opt=2\) requests the Kalman filtering algorithm. This is the default and is used if the required conditions in \(opt=0\) and \(opt=1\) are not satisfied.
The **VARMALIK** subroutine returns the following value:

\[ \text{lnl} \]

is a \( 3 \times 1 \) matrix that contains the log-likelihood function, the sum of log determinant of the innovation variance, and the weighted sum of squares of residuals. The log-likelihood function is computed as \(-0.5 \times (\text{the sum of last two terms})\).

The options \( \text{opt}=0 \) and \( \text{opt}=2 \) are equivalent for stationary time series without missing values. Setting \( \text{opt}=0 \) is useful for a small number of the observations and a high order of \( p \) and \( q \); \( \text{opt}=1 \) is useful for a high order of \( P \) and \( q \); \( \text{opt}=2 \) is useful for a low order of \( p \) and \( q \), or for missing values in the observations.

Consider the following bivariate \((k = 2)\) **VARMA(1,1)** model:

\[
\begin{align*}
y_t &= \Phi y_{t-1} + \epsilon_t - \Theta \epsilon_{t-1} \\
\Phi &= \begin{bmatrix} 1.2 & -0.5 \\ 0.6 & 0.3 \end{bmatrix} \quad \Theta = \begin{bmatrix} -0.6 & 0.3 \\ 0.3 & 0.6 \end{bmatrix} \\
\Sigma &= \begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.25 \end{bmatrix}
\end{align*}
\]

To compute the log-likelihood function of this model, you can use the following statements:

```plaintext
phi = { 1.2 -0.5, 0.6 0.3 }; theta= {-0.6 0.3, 0.3 0.6 }; sigma= { 1.0 0.5, 0.5 1.25}; call varmasim(yt, phi, theta) sigma=sigma seed=123; call varmalik(lnl, yt, phi, theta, sigma); labl = {"LogLik", "SumLogDet", "SSE"}; print lnl[rowname=labl];
```

**Figure 26.447** Log-Likelihood Components

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln1</td>
<td>-85.50804</td>
</tr>
<tr>
<td>SumLogDet</td>
<td>4.8529601</td>
</tr>
<tr>
<td>SSE</td>
<td>166.16313</td>
</tr>
</tbody>
</table>

**VARMASIM** subroutine generates a **VARMA** \((p,q)\) time series.

The input arguments to the **VARMASIM** subroutine are as follows:

- **phi** specifies a \( km_p \times k \) matrix that contains the autoregressive coefficient matrices, where \( m_p \) is the number of the elements in the subset of the AR order and \( k \geq 2 \) is the number of variables. You must specify either **phi** or **theta**.

- **theta** specifies a \( km_q \times k \) matrix that contains the moving average coefficient matrices, where \( m_q \) is the number of the elements in the subset of the MA order. You must specify either **phi** or **theta**.

- **mu** specifies a \( k \times 1 \) (or \( 1 \times k \)) mean vector of the series. If **mu** is not specified, a zero vector is used.
sigma specifies a $k \times k$ covariance matrix of the innovation series. If sigma is not specified, an identity matrix is used.

$n$ specifies the length of the series. If $n$ is not specified, $n = 100$ is used.

$p$ specifies the subset of the AR order. See the VARMACOV subroutine.

$q$ specifies the subset of the MA order. See the VARMACOV subroutine.

$initial$ specifies the initial values of random variables. If $initial = a_0$, then $y_{-p+1}, \ldots, y_0$ and $\epsilon_{-q+1}, \ldots, \epsilon_0$ all take the same value $a_0$. If the $initial$ option is not specified, the initial values are estimated for the stationary vector time series; the initial values are assumed as zero for the nonstationary vector time series.

$seed$ is a scalar that contains the random number seed. At the first execution of the subroutine, the seed variable is used as follows:

If $seed > 0$, the input seed is used for generating the series.

If $seed = 0$, the system clock is used to generate the seed.

If $seed < 0$, the value $(-1) \times (seed)$ is used for generating the series.

If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO loop like environment the seed variable is used as follows: If seed > 0, the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.

The VARMASIM subroutine returns the following value:

$series$ is an $n \times k$ matrix that contains the generated VARMA($p, q$) time series. When either the $initial$ option is specified or zero initial values are used, these initial values are not included in $series$.

Consider the following bivariate ($k = 2$) stationary VARMA(1,1) time series:

$$y_t - \mu = \Phi(y_{t-1} - \mu) + \epsilon_t - \Theta \epsilon_{t-1}$$

$$\Phi = \begin{bmatrix} 1.2 & -0.5 \\ 0.6 & 0.3 \end{bmatrix} \Theta = \begin{bmatrix} -0.6 & 0.3 \\ 0.3 & 0.6 \end{bmatrix} \mu = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \Sigma = \begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.25 \end{bmatrix}$$

To generate this series, you can use the following statements:

```plaintext
phi = { 1.2, -0.5, 0.6, 0.3 };
theta= { -0.6, 0.3, 0.3, 0.6 };
mu = { 10, 20 };
sigma= { 1.0, 0.5, 0.5, 1.25 };
call varmasim(yt, phi, theta, mu, sigma, 100) seed=123;
```

Each column of the matrix $y_t$ is plotted in Figure 26.448. The first series oscillates about a mean value of 10; the second series oscillates about a mean value of 20.
You can also simulate a nonstationary VARMA(1,1) time series with the same $\mu$, $\Sigma$, and $\Theta$ as in the previous example and with the following AR coefficient:

$$
\Phi = \begin{bmatrix} 1.0 & 0 \\ 0 & 0.3 \end{bmatrix}
$$

To generate this series, you can use the following statements:

```plaintext
phi = { 1.0 0.0, 0.0 0.3 }; call varmasim(yt, phi, theta, mu, sigma, 100) initial=3 seed=123;
```

---

### VECDIAG Function

**VECDIAG(matrix);**

The VECDIAG function creates a column vector whose elements are the elements on the main diagonal of `matrix`. For example, the following statements produce the column vector shown in Figure 26.449:

```plaintext
a = {2 1, 0 -1};
d = vecdiag(a);
print d;
```

---

**Figure 26.449** Diagonal of a Matrix

\[
\begin{align*}
d & \begin{bmatrix} 2 \\ -1 \end{bmatrix} \\
\end{align*}
\]
**VECH Function**

\[
\text{VECH}(\text{matrix});
\]

The VECH function creates a column vector whose elements are the stacked columns of the lower triangular elements of \text{matrix}. Often, the argument is a symmetric matrix, in which case the VECH function has the effect of discarding the “duplicate” elements that are above the matrix diagonal. Notice that the lower triangular elements are returned in column-major order; use the \text{SYMSQR} function if you want the elements in row-major order.

Uses of the VECH function in matrix algebra are described in Harville (1997). “Vech” is an abbreviation for “vector-half.”

The following statements produce the column vector shown in Figure 26.450:

```plaintext
a = {1 2 3, 4 5 6, 7 8 9};
v = vech(a);
print v;
```

**Figure 26.450**  Stacked Columns of Lower Triangular Matrix

\[
\begin{array}{c}
v \\
1 \\
4 \\
7 \\
5 \\
8 \\
9 \\
\end{array}
\]

The \text{SQRVECH} function and the VECH function are inverse operations on the set of symmetric matrices.

**VNORMAL Call**

\[
\text{CALL VNORMAL(series, mu, sigma, } n <, \text{ seed}>;)
\]

The VNORMAL subroutine generates a multivariate normal random series.

This function is deprecated. Instead, you should use the \text{RANDNORMAL} function to generate random values. The RANDNORMAL function calls the RANDGEN subroutine, which has excellent statistical properties. Consequently, the RANDNORMAL function is preferred when you need to generate millions of random numbers.

The input arguments to the VNORMAL subroutine are as follows:

- \text{mu} specifies a \( k \times 1 \) (or \( 1 \times k \)) mean vector, where \( k \geq 2 \) is the number of variables. You must specify either \text{mu} or \text{sigma}. If \text{mu} is not specified, a zero vector is used.

- \text{sigma} specifies a \( k \times k \) symmetric positive-definite covariance matrix. By default, \text{sigma} is an identity matrix with dimension \( k \). You must specify either \text{mu} or \text{sigma}. If \text{sigma} is not specified, an identity matrix is used.
\( n \) specifies the length of the series. If \( n \) is not specified, \( n = 100 \) is used.

\( seed \) is a scalar that contains the random number seed. At the first execution of the subroutine, the seed variable is used as follows:

If \( seed > 0 \), the input seed is used for generating the series.
If \( seed = 0 \), the system clock is used to generate the seed.
If \( seed < 0 \), the value \((-1) \times (seed)\) is used for generating the series.
If the seed is not supplied, the system clock is used to generate the seed.

On subsequent calls of the subroutine in the DO loop like environment the seed variable is used as follows: If \( seed > 0 \), the seed remains unchanged. In other cases, after each execution of the subroutine, the current seed is updated internally.

The VNORMAL subroutine returns the following value:

\( series \) is an \( n \times k \) matrix that contains the generated normal random series.

Consider a bivariate \((k = 2)\) normal random series with mean \( \mu \) and covariance matrix \( \Sigma \), where

\[
\mu = \begin{bmatrix} 10 \\ 20 \end{bmatrix} \quad \text{and} \quad \Sigma = \begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.25 \end{bmatrix}
\]

To generate this series, you can use the following statements:

\[
\begin{align*}
\text{mu} &= \{10, 20\}; \\
\text{sigma} &= \{1.0, 0.5, 0.5, 1.25\}; \\
&\text{call vnormal(et, mu, sigma, 100) seed=123;}
\end{align*}
\]

Each column of the matrix \( et \) is plotted in Figure 26.451. The first series oscillates about a mean value of 10; the second series oscillates about a mean value of 20.

**Figure 26.451** Bivariate Normal Series
VTSROOT Call

\[
\text{CALL VTSROOT}(\text{root, phi, theta} <, p> <, q>);\]

The VTSROOT subroutine computes the characteristic roots of the model from AR and MA characteristic functions.

The input arguments to the VTSROOT subroutine are as follows:

\(\text{phi}\) specifies a \(km_p \times k\) matrix that contains the autoregressive coefficient matrices, where \(m_p\) is the number of the elements in the subset of the AR order and \(k \geq 2\) is the number of variables. You must specify either \(\text{phi}\) or \(\text{theta}\).

\(\text{theta}\) specifies a \(km_q \times k\) matrix that contains the moving average coefficient matrices, where \(m_q\) is the number of the elements in the subset of the MA order. You must specify either \(\text{phi}\) or \(\text{theta}\).

\(p\) specifies the subset of the AR order. See the VARMACOV subroutine.

\(q\) specifies the subset of the MA order. See the VARMACOV subroutine.

The VTSROOT subroutine returns the following value:

\(\text{root}\) is a \(k(p_{max} + q_{max}) \times 5\) matrix, where \(p_{max}\) is the maximum order of the AR characteristic function and \(q_{max}\) is the maximum order of the MA characteristic function. The first \(kp_{max}\) rows refer to the results of the AR characteristic function; the last \(kq_{max}\) rows refer to the results of the MA characteristic function.

The first column contains the real parts, \(x\), of eigenvalues of companion matrix associated with the AR\((p_{max})\) or MA\((q_{max})\) characteristic function; the second column contains the imaginary parts, \(y\), of the eigenvalues; the third column contains the moduli of the eigenvalues, \(\sqrt{x^2 + y^2}\); the fourth column contains the arguments \((\arctan(y/x))\) of the eigenvalues, measured in radians from the positive real axis. The fifth column contains the arguments expressed in degrees rather than radians.

Consider the roots of the characteristic functions, \(\phi(B) = I - \Phi B\) and \(\theta(B) = I - \Theta B\), where \(I\) is an identity matrix with dimension 2 and

\[
\Phi = \begin{bmatrix} 1.2 & -0.5 \\ 0.6 & 0.3 \end{bmatrix} \quad \Theta = \begin{bmatrix} -0.6 & 0.3 \\ 0.3 & 0.6 \end{bmatrix}
\]

To compute these roots, you can use the following statements:

```plaintext
phi = { 1.2 -0.5, 0.6 0.3 };
theta= {-0.6 0.3, 0.3 0.6 };
call vtsroot(root, phi, theta);
cols = {"Real" "Imag" "Modulus" "Radians" "Degrees"};
print root[colname=cols];
```
Figure 26.452  Characteristic Roots

<table>
<thead>
<tr>
<th>root</th>
<th>Real</th>
<th>Imag</th>
<th>Modulus</th>
<th>Radians</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.75</td>
<td>0.3122499</td>
<td>0.8124038</td>
<td>0.3945069</td>
<td>22.603583</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>-0.31225</td>
<td>0.8124038</td>
<td>-0.394507</td>
<td>-22.60358</td>
</tr>
<tr>
<td></td>
<td>0.6708204</td>
<td>0</td>
<td>0.6708204</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-0.67082</td>
<td>0</td>
<td>0.6708204</td>
<td>3.1415927</td>
<td>180</td>
</tr>
</tbody>
</table>

WAVFT Call

CALL WAVFT(decomp, data, opt <, levels>);

The fast wavelet transform (WAVFT) subroutine computes a specified discrete wavelet transform of the input data by using the algorithm of Mallat (1989). This transform decomposes the input data into sets of detail and scaling coefficients defined at a number of scales or “levels.”

The input data are used as scaling coefficients at the top level in the decomposition. The fast wavelet transform then recursively computes a set of detail and a set of scaling coefficients at the next lower level by respectively applying “low pass” and “high pass” conjugate mirror filters to the scaling coefficients at the current level. The number of coefficients in each of these new sets is approximately half the number of scaling coefficients at the level above them. Depending on the filters being used, a number of additional scaling coefficients, known as boundary coefficients, can be involved. These boundary coefficients are obtained by using a specified method to extend the sequence of interior scaling coefficients.

Details of the discrete wavelet transform and the fast wavelet transformation algorithm are available in many references, including Mallat (1989), Daubechies (1992), and Ogden (1997).

The input arguments to the WAVFT subroutine are as follows:

data specifies the data to transform. These data must be in either a row or column vector.

opt refers to an options vector with the following components:

opt[1] specifies the boundary handling used in computing the wavelet transform. At each level of the wavelet decomposition, necessary boundary scaling coefficients are obtained by extending the interior scaling coefficients at that level as follows:

0 specifies extension by zero.
1 specifies periodic extension.
2 specifies polynomial extension.
3 specifies extension by reflection.
4 specifies extension by anti-symmetric reflection.

opt[2] specifies the polynomial degree that is used for polynomial extension. (The value of opt[2] is ignored if opt[1] ≠ 2.)
Chapter 26: Language Reference

0 specifies constant extension.
1 specifies linear extension.
2 specifies quadratic extension.

1 specifies the Daubechies Extremal phase family (Daubechies 1992).
2 specifies the Daubechies Least Asymmetric family (also known as the Symmlet family) (Daubechies 1992).

opt[4] specifies the wavelet family member. Valid values are
1 through 10, if opt[3]=1
4 through 10, if opt[3]=2

Some examples of wavelet specifications are

opt={1 . 1 1}; specifies the first member (more commonly known as the Haar system) of the Daubechies extremal phase family with periodic boundary handling.

opt={2 1 2 5}; specifies the fifth member of the Symmlet family with linear extension boundary handling.

levels is an optional scalar argument that specifies the number of levels from the top level to be computed in the decomposition. If you do not specify this argument, then the decomposition terminates at level 0. Usually, you do not need to specify this optional argument. You use this option to avoid unneeded computations in situations where you are interested in only the higher level detail and scaling coefficients.

The WAVFT subroutine returns
decomp a row vector that encapsulates the specified wavelet transform. The information that is encoded in this vector includes:

- the options specified for computing the transform
- the number of detail coefficients at each level of the decomposition
- all detail coefficients
- the scaling coefficients at the bottom level of the decomposition
- boundary scaling coefficients at all levels of the decomposition

**NOTE:** decomp is a private representation of the specified wavelet transform and is not intended to be interpreted in its raw form. Rather, you should use this vector as an input argument to the WAVIFT, WAVPRINT, WAVGET, and WAVTHRSH subroutines.

The following program shows an example that uses wavelet calls to estimate and reconstruct a piecewise constant function:
/* define a piecewise constant step function */
start blocky(t);
/* positions (p) and magnitudes (h) of jumps */
p = {0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81};
h = {4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1 -4.2};
y = j(1, ncol(t), 0);
do i=1 to ncol(p);
   diff = ( (t-p[i])>=0 );
   y = y + h[i]*diff;
end;
return (y);
finish blocky;

n = 2##8;
x = 1:n;
x = (x-1)/n;
y = blocky(x);

opt = { 2, /* polynomial extension at boundary */
   1, /* using linear polynomial */
   1, /* Daubechies Extremal phase */
   3 /* family member 3 */
};
call wavft(decomp, y, opt);
call wavprint(decomp,1); /* print summary information */

/* perform permanent thresholding */
threshOpt = { 2, /* soft thresholding */
   2, /* global threshold */
   ., /* ignored */
   -1 /* apply to all levels */
};
call wavthrsh(decomp, threshOpt);

/* request detail coefficients at level 4 */
call wavget(detail4,decomp,2,4);

/* reconstruct function by using wavelets */
call wavift(estimate,decomp);
errorSS=ssq(y-estimate);
print errorSS;
**Figur** Figure 26.453 Summary of Wavelet Analysis

<table>
<thead>
<tr>
<th>Decomposition Name</th>
<th>decomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelet Family</td>
<td>Daubechies Extremal Phase</td>
</tr>
<tr>
<td>Family Member</td>
<td>3</td>
</tr>
<tr>
<td>Boundary Treatment</td>
<td>Recursive Linear Extension</td>
</tr>
<tr>
<td>Number of Data Points</td>
<td>256</td>
</tr>
<tr>
<td>Start Level</td>
<td>0</td>
</tr>
</tbody>
</table>

The **WAVGET** subroutine is used to return information that is encoded in a wavelet decomposition.

The required input arguments are as follows:

- **decomp** specifies a wavelet decomposition that has been computed by using a call to the **WAVFT** subroutine.
- **request** specifies a scalar that indicates what information is to be returned.
  
  You can specify different optional arguments depending on the value of **request**:
  
  - **request=1** requests the number of points in the input data vector.
    - **result** returns as a scalar that contains this number.
  
  - **request=2** requests the detail coefficients at a specified level. Valid syntax is
    
    \[
    \text{CALL WAVGET} (\text{result, decomp, 2, level < , opt > });
    \]
    
    The arguments are as follows:
    
    - **level** is the level at which the detail coefficients are requested.
    - **opt** is an optional vector which specifies the thresholding to be applied to the returned detail coefficients. See the **WAVIFT** subroutine for details. If you omit this argument, no thresholding is applied.
    
    - **result** returns as a column vector that contains the specified detail coefficients.
  
  - **request=3** requests the scaling coefficients at a specified level. Valid syntax is
    
    \[
    \text{CALL WAVGET} (\text{result, decomp, 3, level < , opt > });
    \]
    
    The arguments are as follows:
    
    - **level** is the level at which the scaling coefficients are requested.
is an optional vector that specifies the thresholding to be applied. See the WAVIFT subroutine for a description of this vector. The scaling coefficients at the requested level are obtained by using the inverse wavelet transform, after applying the specified thresholding. If you omit this argument, no thresholding is applied.

result returns as a column vector that contains the specified scaling coefficients.

request=4 requests the thresholding status of the detail coefficients in decomp.
result returns as a scalar whose value is
0, if the detail coefficients have not been thresholded
1, otherwise

request=5 requests the wavelet options vector that you specified in the WAVFT subroutine to compute decomp.
result returns as a column vector with 4 elements that contains the specified options vector. See the WAVFT subroutine for the interpretation of the vector entries.

request=6 requests the index of the top level in decomp.
result returns as a scalar that contains this number.

request=7 requests the index of the lowest level in decomp.
result returns as a scalar that contains this number.

request=8 requests a vector evaluating the father wavelet used in decomp, at an equally spaced grid spanning the support of the father wavelet. The number of points in the grid is specified as a power of 2 times the support width of the father wavelet. For wavelets in the Daubechies extremal phase and least asymmetric families, the support width of the father wavelet is $2^m - 1$, where $m$ is the family member. Valid syntax is

CALL WAVGET(result, decomp, 8<, power>);

The optional argument has the following meaning:

power is the exponent of 2 that determines the number of grid points used. power defaults to 8 if you do not specify this argument.

result returns as a column vector that contains the specified evaluation of the father wavelet.

An example is available in the documentation for the WAVFT subroutine.
The Inverse Fast Wavelet Transform (WAVIFT) subroutine computes the inverse wavelet transform of a wavelet decomposition computed by using the WAVFT subroutine. Details of this algorithm are available in many references, including Mallat (1989), Daubechies (1992), and Ogden (1997).

The inverse transform yields an exact reconstruction of the original input data, provided that no smoothing is specified. Alternatively, a smooth reconstruction of the input data can be obtained by thresholding the detail coefficients in the decomposition prior to applying the inverse transformation. Thresholding, also known as shrinkage, replaces the detail coefficient $d_j^{(i)}$ at level $i$ by $\delta_{T_i}(d_j^{(i)})$, where the $\delta_T(x)$ is a shrinkage function and $T_i$ is the threshold value used at level $i$. The wavelet subroutines support hard and soft shrinkage functions (Donoho and Johnstone 1994) and the nonnegative garrote shrinkage function (Breiman 1995). These functions are defined as follows:

$$\delta_T^{\text{hard}}(x) = \begin{cases} 0 & |x| \leq T \\ x & |x| > T \end{cases}$$

$$\delta_T^{\text{soft}}(x) = \begin{cases} 0 & |x| \leq T \\ x - T & x > T \\ x + T & x < -T \end{cases}$$

$$\delta_T^{\text{garrote}}(x) = \begin{cases} 0 & |x| \leq T \\ x - T^2/x & |x| > T \end{cases}$$

You can specify several methods for choosing the threshold values. Methods in which the threshold $T_i$ varies with the level $i$ are called adaptive. Methods where the same threshold is used at all levels are called global.

The input arguments to the WAVIFT subroutine are as follows:

- **decomp** specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
- **opt** refers to an options vector that specifies the thresholding algorithm. If this optional argument is not specified, then no thresholding is applied.

The options vector has the following components:

- **opt[1]** specifies the thresholding policy.
  - 0 specifies that no thresholding be done. If opt[1]=0 then all other entries in the options vector are ignored.
  - 1 specifies hard thresholding.
  - 2 specifies soft thresholding.
  - 3 specifies garrote thresholding.

- **opt[2]** specifies the method for selecting the threshold.
0 specifies a global user-supplied threshold.
1 specifies a global threshold chosen by using the minimax criterion of Donoho and Johnstone (1994).
2 specifies a global threshold defined by using the universal criterion of Donoho and Johnstone (1994).
3 specifies an adaptive method where the thresholds at each level \( i \) are chosen to minimize an approximation of the \( L^2 \) risk in estimating the true data values by using the reconstruction with thresholded coefficients (Donoho and Johnstone 1995).
4 specifies a hybrid method of Donoho and Johnstone (1995). The universal threshold as specified by \( \text{opt}[2]=2 \) is used at levels where most of the detail coefficients are essentially zero. The risk minimization method as specified by \( \text{opt}[2]=4 \) is used at all other levels.

\( \text{opt}[3] \) specifies the value of the global user-supplied threshold if \( \text{opt}[2]=1 \). It is ignored if \( \text{opt}[2] \neq 1 \).

\( \text{opt}[4] \) specifies the number of levels starting at the highest detail coefficient level at which thresholding is to be applied. If this value is negative or missing, thresholding is applied at all levels in \( \text{decomp} \).

Some common examples of threshold options specifications are:

\( \text{opt}=[1 \ 3 \ . \ -1] \); specifies hard thresholding with a minimax threshold applied at all levels in the decomposition. This threshold is named “\( \text{RiskShrink} \)” in Donoho and Johnstone (1994).

\( \text{opt}=[2 \ 2 \ . \ -1] \); specifies soft thresholding with a universal threshold applied at all levels in the decomposition. This threshold is named “\( \text{VisuShrink} \)” in Donoho and Johnstone (1994).

\( \text{opt}=[2 \ 4 \ . \ -1] \); specifies soft thresholding with level dependent thresholds which minimize the Stein Unbiased Estimate of Risk (SURE). This threshold is named “\( \text{SureShrink} \)” in Donoho and Johnstone (1995).

\( \text{level} \) is an optional scalar argument that specifies the level at which the reconstructed data are to be returned. If this argument is not specified then the reconstructed data are returned at the top level defined in \( \text{decomp} \).

The WAVIFT subroutine returns \( \text{result} \) a vector obtained by inverting, after thresholding the detail coefficients, the discrete wavelet transform encoded in \( \text{decomp} \). The row or column orientation of \( \text{result} \) is the same as that of the input data specified in the corresponding WAVFT subroutine. If you specify the optional \( \text{level} \) argument, \( \text{result} \) contains the reconstruction at the specified level, otherwise the reconstruction corresponds to the top level in the decomposition.

An example is available in the documentation for the WAVFT subroutine.
WAVPRINT Call

CALL WAVPRINT\((decomp, \text{request} <, \text{options}>);\)

The WAVPRINT subroutine is used to display the information that is encoded in a wavelet decomposition. The required input arguments are as follows:

- \(decomp\) specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
- \(request\) specifies a scalar that indicates what information is to be displayed.

You can specify different optional arguments depending on the value of \(request\):

- \(request=1\) displays information about the wavelet family used to perform the wavelet transform. No additional arguments need to be specified.
- \(request=2\) displays the detail coefficients by level. Valid syntax is
  \[
  \text{CALL WAVPRINT}\((decomp, 2 <, lower> <, upper>);\)
  \]
  The optional arguments are as follows:
  - \(lower\) specifies the lowest level to be displayed. The default value of \(lower\) is the lowest level in \(decomp\).
  - \(upper\) specifies the upper level to be displayed. The default value of \(upper\) is the highest detail level in \(decomp\).
- \(request=3\) displays the scaling coefficients by level. Valid syntax is
  \[
  \text{CALL WAVPRINT}\((decomp, 3 <, lower> <, upper>);\)
  \]
  The optional arguments are as follows:
  - \(lower\) specifies the lowest level to be displayed. The default value of \(lower\) is the lowest level in \(decomp\).
  - \(upper\) specifies the upper level to be displayed. The default value of \(upper\) is the top level in \(decomp\).
- \(request=4\) displays thresholded detail coefficients by level. Valid syntax is
  \[
  \text{CALL WAVPRINT}\((decomp, 4 <, opt> <, lower> <, upper>);\)
  \]
  The optional arguments are as follows:
  - \(opt\) specifies the thresholding to be applied to the displayed detail coefficients. See the WAVIFT subroutine for details. If you omit this argument, no thresholding is applied.
  - \(lower\) specifies the lowest level to be displayed. The default value of \(lower\) is the lowest level in \(decomp\).
  - \(upper\) specifies the upper level to be displayed. The default value of \(upper\) is the highest detail level in \(decomp\).

An example is available in the documentation for the WAVFT subroutine.
**WAVTHRSH Call**

```fortran
CALL WAVTHRSH(decomp, opt);
```

The wavelet threshold (WAVTHRSH) subroutine thresholds the detail coefficients in a wavelet decomposition.

The required input arguments are as follows:

- `decomp` specifies a wavelet decomposition that has been computed by using a call to the WAVFT subroutine.
- `opt` refers to an options vector that specifies the thresholding algorithm used. See the WAVIFT subroutine for a description of this options vector.

On return, the detail coefficients encoded in `decomp` are replaced by their thresholded values. Note that this action is not reversible. If you want to retain the original detail coefficients, you should not use the WAVTHRSH subroutine to do thresholding. Rather, you should supply the thresholding argument where appropriate in the WAVIFT, WAVGET, and WAVPRINT subroutines.

An example is available in the documentation for the WAVFT subroutine.

---

**XMULT Function**

```fortran
XMULT(matrix1, matrix2);
```

The XMULT function computes a matrix product by using extended-precision calculations. For most matrices, the XMULT function is numerically equivalent to the matrix multiplication operator (*). You should use the XMULT function on pathological examples for which extended-precision calculations are required to obtain an accurate product.

The following program demonstrates the use of the XMULT function:

```fortran
a = 1e13;
b = 1e13;
c = 100*a;
a = a+1;
x = c || a || b || c;
y = c || a || (-b) || (-c);
z = xmult(x,y`); /* correct answer */
print z [format=16.0];

wrong = x * y`; /* loss of precision */
print wrong [format=16.0];
```

---

**Figure 26.454** Extended-Precision Multiplication

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>200000000000001</td>
</tr>
<tr>
<td>wrong</td>
<td>0</td>
</tr>
</tbody>
</table>
XSECT Function

\[
\text{XSECT}(\text{matrix1} <, \text{matrix2}, \ldots, \text{matrix15}>);
\]

The XSECT function returns as a row vector the sorted set (without duplicates) of the element values that are present in all of its arguments. This set is the intersection of the sets of values in its argument matrices. When the intersection is empty, the XSECT function returns an empty matrix with zero rows and zero columns. There can be up to 15 arguments, which must all be either character or numeric.

For characters, the element length of the result is the same as the shortest of the element lengths of the arguments. For comparison purposes, shorter elements are padded on the right with blanks.

For example, the following statements computes the intersection of two sets:

\[
\begin{align*}
a &= \{1, 2, 4, 5\}; \\
b &= \{3, 4\}; \\
c &= \text{xsect}(a, b);
\end{align*}
\]

\[
\text{print} \ c;
\]

![Figure 26.455 Set Intersection](image)

YIELD Function

\[
\text{YIELD}(\text{times}, \text{flows}, \text{freq}, \text{value});
\]

The YIELD function returns a scalar that contains yield-to-maturity of a cash-flow stream based on frequency and value specified.

The arguments to the YIELD function are as follows:

- times is an \( n \)-dimensional column vector of times. Elements should be nonnegative.
- flows is an \( n \)-dimensional column vector of cash flows.
- freq is a scalar that represents the base of the rates to be used for discounting the cash flows. If positive, it represents discrete compounding as the reciprocal of the number of compoundings. If zero, it represents continuous compounding. No negative values are accepted.
- value is a scalar that is the discounted present value of the cash flows.

The present value relationship can be written as

\[
P = \sum_{k=1}^{K} c(k) D(t_k)
\]

where \( P \) is the present value of the asset, \( \{c(k)\} \) \( k = 1, \ldots, K \) is the sequence of cash flows from the asset, \( t_k \) is the time to the \( k \)th cash flow in periods from the present, and \( D(t) \) is the discount function for time \( t \).
With continuous compounding:

\[ D(t) = e^{-yt} \]

With discrete compounding:

\[ D(t) = (1 + fy)^{-t/f} \]

where \( f > 0 \) is the frequency, the reciprocal of the number of compoundings per unit time period, and \( y \) is the yield-to-maturity. The YIELD function solves for \( y \).

For example, the following statements produce the output shown in Figure 26.456:

```sas
timesn = T(do(1, 100, 1));
flows = repeat(10, 100);
freq = 50;
value = 682.31027;
yield = yield(timesn, flows, freq, value);
print yield;
```

**Figure 26.456** Yield to Maturity

<table>
<thead>
<tr>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

---

**Base SAS Functions Accessible from SAS/IML Software**

You can call most functions available in Base SAS software from SAS/IML programs. If you call a Base SAS function with a matrix argument, the function will usually act elementwise on each element of the matrix.

Some DATA step functions are not applicable or not useful in the SAS/IML environment. For example, Base SAS functions that take a list of scalar arguments are often not very useful to the SAS/IML programmer. (The SAS/IML language does not support the OF keyword.) However, it is usually possible to use SAS/IML built-in functions to obtain the same results. For example, the SUMABS, EUCLID, and LPNORM functions in Base SAS are used to compute the vector norm of a list of arguments. Instead of using those functions, you should use the SAS/IML NORM function.

The following Base SAS functions are either not available from SAS/IML software, or behave differently from the Base SAS function of the same name.

<table>
<thead>
<tr>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAR</td>
<td>conflicts with the SAS/IML CHAR function</td>
</tr>
<tr>
<td>CALL CATS</td>
<td>return variable must be preinitialized</td>
</tr>
<tr>
<td>DIFn</td>
<td>not supported; use the SAS/IML DIF function instead.</td>
</tr>
<tr>
<td>DIM</td>
<td>not supported, but see the DIMENSION function for similar functionality.</td>
</tr>
<tr>
<td>HBOUND</td>
<td>not supported</td>
</tr>
<tr>
<td>LAGn</td>
<td>not supported; use the SAS/IML LAG function instead.</td>
</tr>
</tbody>
</table>
There are also some Base SAS features that are not supported by the SAS/IML language. For example, the DATA step permits N-literals (strings that end with ‘N’) to be interpreted as the name of a variable, but the SAS/IML language does not.

The following Base SAS functions can be called from SAS/IML. The functions are documented in the SAS Language Reference: Dictionary. In some cases, SAS/IML does not accept all variations in the syntax. For example, SAS/IML does not accept the OF keyword as a way to generate an argument list in a function.

The functions displayed in italics are documented elsewhere in this user’s guide. These functions operate on matrices in addition to scalar values, as do many of the mathematical and statistical functions.

**Bitwise Logical Operation Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAND</td>
<td>returns the bitwise logical AND of two arguments</td>
</tr>
<tr>
<td>BLSHIFT</td>
<td>performs a bitwise logical left shift of an argument by a specified amount</td>
</tr>
<tr>
<td>BNOT</td>
<td>returns the bitwise logical NOT of an argument</td>
</tr>
<tr>
<td>BOR</td>
<td>returns the bitwise logical OR of two arguments</td>
</tr>
<tr>
<td>BRSHIFT</td>
<td>performs a bitwise logical right shift of an argument by a specified amount</td>
</tr>
<tr>
<td>BXOR</td>
<td>returns the bitwise logical EXCLUSIVE OR of two arguments</td>
</tr>
</tbody>
</table>

**Character and Formatting Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANYALNUM</td>
<td>searches a character string for an alphanumeric character and returns the first position at which it is found</td>
</tr>
<tr>
<td>ANYALPHA</td>
<td>searches a character string for an alphabetic character and returns the first position at which it is found</td>
</tr>
<tr>
<td>ANYCNTRL</td>
<td>searches a character string for a control character and returns the first position at which it is found</td>
</tr>
</tbody>
</table>
ANYDIGIT searches a character string for a digit and returns the first position at which it is found

ANYFIRST searches a character string for a character that is valid as the first character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found

ANYGRAPH searches a character string for a graphical character and returns the first position at which it is found

ANYLOWER searches a character string for a lowercase letter and returns the first position at which it is found

ANYNAME searches a character string for a character that is valid in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found

ANYPRINT searches a character string for a printable character and returns the first position at which it is found

ANYPUNCT searches a character string for a punctuation character and returns the first position at which it is found

ANYSPACE searches a character string for a white-space character (blank, horizontal and vertical tab, carriage return, line feed, form feed) and returns the first position at which it is found

ANYUPPER searches a character string for an uppercase letter and returns the first position at which it is found

ANYXDIGIT searches a character string for a hexadecimal character that represents a digit and returns the first position at which that character is found

BYTE returns one character in the ASCII or EBCDIC collating sequence

CAT concatenates character strings without removing leading or trailing blanks

CATQ concatenates character or numeric values by using a delimiter to separate items and by adding quotation marks to strings that contain the delimiter

CATS concatenates character strings and removes leading and trailing blanks

CALL CATS concatenates character strings and removes leading and trailing blanks

CATT concatenates character strings and removes trailing blanks

CALL CATT concatenates character strings and removes trailing blanks

CATX concatenates character strings, removes leading and trailing blanks, and inserts separators

CALL CATX concatenates character strings, removes leading and trailing blanks, and inserts separators

CHOOSEC returns a character value that represents the results of choosing from a list of arguments

CHOOSESEN returns a numeric value that represents the results of choosing from a list of arguments

COLLATE returns an ASCII or EBCDIC collating sequence character string

COMPARE returns the position of the left-most character by which two strings differ, or returns 0 if there is no difference

COMPBL removes multiple blanks from a character string
CALL COMPCOST sets the costs of operations for later use by the COMPGED function
COMPGED compares two strings by computing the generalized edit distance
COMPLEV compares two strings by computing the Levenshtein edit distance
COMPRESS removes specific characters from a character string
COUNT counts the number of times that a specific substring of characters appears within a character string that you specify
COUNTC counts the number of specific characters that either appear or do not appear within a character string that you specify
COUNTW counts the number of words in a character expression
FIND searches for a specific substring of characters within a character string that you specify
FINDC searches for specific characters that either appear or do not appear within a character string that you specify
FINDW returns the character position of a word in a string, or returns the number of the word in a string
FIRST returns the first character in a character string
IFC returns a character value that matches an expression
IFN returns a numeric value that matches an expression
INDEX searches a character expression for a string of characters
INDEXC searches a character expression for specific characters
INDEXW searches a character expression for a specified string as a word
INPUTC applies a character informat at run time
INPUTN applies a numeric informat at run time
LEFT left aligns a character expression
LENGTH returns the length of a character string
LENGTHC returns the length of a character string, including trailing blanks
LENGTHM returns the amount of memory (in bytes) that is allocated for a character string
LENGTHN returns the length of a nonblank character string, excluding trailing blanks, and returns 0 for a blank character string
LOWCASE converts all letters in an argument to lowercase
CALL MISSING assigns a missing value to the specified character or numeric variable
NING LITERAL converts a character string that you specify to a SAS name literal (N-literal)
NOTALNUM searches a character string for a nonalphanumeric character and returns the first position at which it is found
NOTALPHA searches a character string for a nonalphabetic character and returns the first position at which it is found
NOTCNTRL searches a character string for a character that is not a control character and returns the first position at which it is found
NOTDIGIT searches a character string for any character that is not a digit and returns the first position at which that character is found
NOTFIRST searches a character string for an invalid first character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found
NOTGRAPH searches a character string for a nongraphical character and returns the first position at which it is found
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTLOWER</td>
<td>searches a character string for a character that is not a lowercase letter and returns the first position at which that character is found</td>
</tr>
<tr>
<td>NOTNAME</td>
<td>searches a character string for an invalid character in a SAS variable name under VALIDVARNAME=V7, and returns the first position at which that character is found</td>
</tr>
<tr>
<td>NOTPRINT</td>
<td>searches a character string for a nonprintable character and returns the first position at which it is found</td>
</tr>
<tr>
<td>NOTPUNCT</td>
<td>searches a character string for a character that is not a punctuation character and returns the first position at which it is found</td>
</tr>
<tr>
<td>NOTSPACE</td>
<td>searches a character string for a character that is not a white-space character (blank, horizontal and vertical tab, carriage return, line feed, form feed) and returns the first position at which it is found</td>
</tr>
<tr>
<td>NOTUPPER</td>
<td>searches a character string for a character that is not an uppercase letter and returns the first position at which that character is found</td>
</tr>
<tr>
<td>NOTXDIGIT</td>
<td>searches a character string for a character that is not a hexadecimal digit and returns the first position at which that character is found</td>
</tr>
<tr>
<td>NVALID</td>
<td>checks a character string for validity for use as a SAS variable name in a SAS statement</td>
</tr>
<tr>
<td>PROPCASE</td>
<td>converts all words in an argument to proper case</td>
</tr>
<tr>
<td>PUTC</td>
<td>applies a character format at run time</td>
</tr>
<tr>
<td>PUTN</td>
<td>applies a numeric format at run time</td>
</tr>
<tr>
<td>REPEAT</td>
<td>repeats a character expression</td>
</tr>
<tr>
<td>REVERSE</td>
<td>reverses a character expression</td>
</tr>
<tr>
<td>RIGHT</td>
<td>right aligns a character expression</td>
</tr>
<tr>
<td>SCAN</td>
<td>selects a given word from a character expression</td>
</tr>
<tr>
<td>CALL SCAN</td>
<td>returns the position and length of a given word from a character expression</td>
</tr>
<tr>
<td>ROUNDEX</td>
<td>encodes a string to facilitate searching</td>
</tr>
<tr>
<td>SPEDIS</td>
<td>determines the likelihood of two words matching, expressed as the asymmetric spelling distance between the two words</td>
</tr>
<tr>
<td>STRIP</td>
<td>returns a character string with all leading and trailing blanks removed</td>
</tr>
<tr>
<td>SUBPAD</td>
<td>returns a substring that has specified length and is padded with blanks, if necessary</td>
</tr>
<tr>
<td>SUBSTRN</td>
<td>returns a substring, allowing a result with a length of zero</td>
</tr>
<tr>
<td>SUBSTR</td>
<td>extracts substrings of character expressions</td>
</tr>
<tr>
<td>TRANSLATE</td>
<td>replaces specific characters in a character expression</td>
</tr>
<tr>
<td>TRANSTRN</td>
<td>replaces or removes all occurrences of a substring in a character string</td>
</tr>
<tr>
<td>TRANWRD</td>
<td>replaces or removes all occurrences of a word in a character string</td>
</tr>
<tr>
<td>TRIM</td>
<td>removes trailing blanks from character expressions and returns one blank if the expression is missing</td>
</tr>
<tr>
<td>TRIMN</td>
<td>removes trailing blanks from character expressions and returns a null string (zero blanks) if the expression is missing</td>
</tr>
<tr>
<td>UPCASE</td>
<td>converts all letters in an argument to uppercase</td>
</tr>
<tr>
<td>UUIDGEN</td>
<td>returns the short or binary form of a Universal Unique Identifier (UUID)</td>
</tr>
</tbody>
</table>
VERIFY returns the position of the first character that is unique to an expression
WHICHC searches for a character value that is equal to the first argument, and returns the index of the first matching value
WHICHN searches for a numeric value that is equal to the first argument, and returns the index of the first matching value

**Character String Matching Functions and Subroutines**

- **CALL PRXCHANGE**: performs a pattern matching substitution
- **CALL PRXDEBUG**: enables Perl regular expressions in a DATA step to send debug output to the SAS log
- **CALL PRXFREE**: frees unneeded memory that was allocated for a Perl regular expression
- **PRXMATCH**: searches for a pattern match and returns the position at which the pattern is found
- **CALL PRXNEXT**: returns the position and length of a substring that matches a pattern and iterates over multiple matches within one string
- **PRXPAREN**: returns the last bracket match for which there is a match in a pattern
- **PRXPARSE**: compiles a Perl regular expression that can be used for pattern matching of a character value
- **CALL PRXPOSN**: returns the start position and length for a capture buffer
- **CALL PRXSUBSTR**: returns the position and length of a substring that matches a pattern

**Combinatorial Functions**

- **ALLCOMB**: generates all combinations of $n$ elements taken $k$ at a time
- **ALLCOMBI**: see the ALLCOMB function
- **ALLPERM**: generates all permutations of $n$ elements
- **COMB**: returns the number of combinations of $n$ items taken $r$ at a time
- **FACT**: returns the factorial of an integer
- **GRAYCODE**: returns all subsets in a minimal change order
- **LCOMB**: returns the logarithm of the COMB function
- **LEXCOMB**: returns distinct combinations of $n$ variables taken $k$ at a time in lexicographic order
- **LEXCOMBI**: returns combinations of the indices of $n$ objects taken $k$ at a time in lexicographic order
- **LEXPERK**: returns distinct permutations $n$ variables taken $k$ at a time in lexicographic order
- **LEXPERM**: returns distinct permutations of several variables in lexicographic order
- **LFACT**: returns the logarithm of the FACT (factorial) function
- **LPERM**: returns the logarithm of the PERM function
- **PERM**: returns the number of permutations of $n$ items taken $r$ at a time
Date and Time Functions

**RANCOMB** returns random combinations of \( n \) elements taken \( k \) at a time

**RANPERK** randomly permutes the values of the arguments, and returns a permutation of \( k \) out of \( n \) values

**RANPERM** returns random permutations of \( n \) elements

---

**Date and Time Functions**

- **DATDIF** returns the number of days between two dates
- **DATE** returns the current date as a SAS date value
- **DATEJUL** converts a Julian date to a SAS date value
- **DATEPART** extracts the date from a SAS datetime value
- **DATETIME** returns the current date and time of day as a SAS datetime value
- **DAY** returns the day of the month from a SAS date value
- **DHMS** returns a SAS datetime value from date, hour, minute, and seconds
- **HMS** returns a SAS time value from hour, minute, and seconds
- **HOLIDAY** returns the date of the specified holiday for the specified year. Other functions that begin with the HOLIDAY prefix are also supported.
- **HOUR** returns the hour from a SAS time or datetime value
- **INTCINDEX** returns the cycle index when a date, time, or datetime interval and value are specified
- **INTCK** returns the integer number of time intervals in a given time span
- **INTCYCLE** returns the date, time, or datetime interval at the next higher seasonal cycle
- **INTFIT** returns a time interval that is aligned between two dates
- **INTFMT** returns a recommended SAS format when a date, time, or datetime interval is specified
- **INTGET** returns a time interval based on three date or datetime values
- **INTINDEX** returns the seasonal index when a date, time, or datetime interval and value are specified
- **INTNX** advances a date, time, or datetime value by a given interval, and returns a date, time, or datetime value
- **INTSEAS** returns the length of the seasonal cycle when a date, time, or datetime interval is specified
- **INTSHIFT** returns the shift interval that corresponds to the base interval
- **INTTEST** returns 1 if a time interval is valid, and returns 0 if a time interval is invalid
- **JULDATE** returns the Julian date from a SAS date value
- **JULDATE7** returns a seven-digit Julian date from a SAS date value
- **MDY** returns a SAS date value from month, day, and year values
- **MINUTE** returns the minute from a SAS time or datetime value
- **MONTH** returns the month from a SAS date value
- **NWKDOM** returns the date for the nth occurrence of a weekday for the specified month and year
- **QTR** returns the quarter of the year from a SAS date value
- **SECOND** returns the second from a SAS time or datetime value
- **TIME** returns the current time of day
TIMEPART extracts a time value from a SAS datetime value
TODAY returns the current date as a SAS date value
WEEKDAY returns the day of the week from a SAS date value
YEAR returns the year from a SAS date value
YRDIF returns the difference in years between two dates
YYQ returns a SAS date value from the year and quarter

---

Descriptive Statistics Functions and Subroutines

CMISS returns the number of nonmissing values
CSS returns the corrected sum of squares
CV returns the coefficient of variation
DIVIDE returns the result of a division that handles special missing values for ODS output
GEOMEAN returns the geometric mean
GEOMEANZ returns the geometric mean without fuzzing the values of the arguments that are approximately 0
HARMEAN returns the harmonic mean
HARMEANZ returns the harmonic mean without fuzzing the values of the arguments that are approximately 0
IQR returns the interquartile range
KURTOSIS returns the kurtosis
LARGEST returns the $k$th largest nonmissing value
MAX returns the largest value
MAD returns the median absolute deviation from the median
MEDIAN computes median values
MEAN returns the arithmetic mean (average)
MIN returns the smallest value
N returns the number of nonmissing values
ORDINAL returns any specified order statistic
PCTL computes percentiles
RANGE returns the range of values
RMS returns the root mean square
SKEWNESS returns the skewness
SMALLEST returns the $k$th smallest nonmissing value
SUM returns the sum of the nonmissing arguments
STD returns the standard deviation
CALL STDIZE standardizes the values of one or more variables
STDERR returns the standard error of the mean
USS returns the uncorrected sum of squares
VAR returns the variance
Double-Byte Character String Functions

Many of the Base SAS character functions have analogous companion functions that take double-byte character strings (DBCS) as arguments. These functions (for example, KCOMPARE, KCVT, KINDEX, and KSUBSTR) are accessible from SAS/IML. See the SAS Language Reference: Dictionary for a complete list of DBCS functions.

External Files Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROPNOTE</td>
<td>deletes a note marker from a SAS data set or an external file and returns a value</td>
</tr>
<tr>
<td>ENVLEN</td>
<td>returns the length of an environment variable</td>
</tr>
<tr>
<td>EXIST</td>
<td>verifies the existence of a SAS data library member</td>
</tr>
<tr>
<td>FAPPEND</td>
<td>appends the current record to the end of an external file and returns a value</td>
</tr>
<tr>
<td>FCLOSE</td>
<td>closes an external file, directory, or directory member, and returns a value</td>
</tr>
<tr>
<td>FCOL</td>
<td>returns the current column position in the File Data Buffer (FDB)</td>
</tr>
<tr>
<td>FDELETE</td>
<td>deletes an external file or an empty directory</td>
</tr>
<tr>
<td>FEXIST</td>
<td>verifies the existence of an external file associated with a fileref and returns a value</td>
</tr>
<tr>
<td>FGET</td>
<td>copies data from the File Data Buffer (FDB) into a variable and returns a value</td>
</tr>
<tr>
<td>FILEEXIST</td>
<td>verifies the existence of an external file by its physical name and returns a value</td>
</tr>
<tr>
<td>FILENAME</td>
<td>assigns or deassigns a fileref for an external file, directory, or output device and returns a value</td>
</tr>
<tr>
<td>FILEREF</td>
<td>verifies that a fileref has been assigned for the current SAS session and returns a value</td>
</tr>
<tr>
<td>FINFO</td>
<td>returns the value of a file information item</td>
</tr>
<tr>
<td>FNOTE</td>
<td>identifies the last record that was read and returns a value that FPOINT can use</td>
</tr>
<tr>
<td>FOPEN</td>
<td>opens an external file and returns a file identifier value</td>
</tr>
<tr>
<td>FOPTNAME</td>
<td>returns the name of an item of information about a file</td>
</tr>
<tr>
<td>FOPTNUM</td>
<td>returns the number of information items that are available for an external file</td>
</tr>
<tr>
<td>FPOINT</td>
<td>positions the read pointer on the next record to be read and returns a value</td>
</tr>
<tr>
<td>FPOS</td>
<td>sets the position of the column pointer in the File Data Buffer (FDB) and returns a value</td>
</tr>
<tr>
<td>FPUT</td>
<td>moves data to the File Data Buffer (FDB) of an external file, starting at the FDB’s current column position, and returns a value</td>
</tr>
<tr>
<td>FREAD</td>
<td>reads a record from an external file into the File Data Buffer (FDB) and returns a value</td>
</tr>
<tr>
<td>FREWIND</td>
<td>positions the file pointer to the start of the file and returns a value</td>
</tr>
</tbody>
</table>
Chapter 26: Language Reference

FRLEN returns the size of the last record read, or, if the file is opened for output, returns the current record size.
FSEP sets the token delimiters for the FGET function and returns a value.
FWRITE writes a record to an external file and returns a value.
MODEXIST returns whether a software image exists in the version of SAS that you have installed.
MOPEN opens a file by directory identifier and member name, and returns the file identifier or a 0.
MVALID returns whether a character string is valid for use as a SAS member name.
PATHNAME returns the physical name of a SAS data library or of an external file, or returns a blank.
SYSMSG returns the text of error messages or warning messages from the last data set or external file function execution.
SYSPROD returns whether a product is licensed.
SYSRC returns a system error number.

File I/O Functions

ATTRC returns the value of a character attribute for a SAS data set.
ATTRN returns the value of a numeric attribute for the specified SAS data set.
CEXIST verifies the existence of a SAS catalog or SAS catalog entry and returns a value.
CLOSE closes a SAS data set and returns a value.
CUROBS returns the observation number of the current observation.
DROPNOTE deletes a note marker from a SAS data set or an external file and returns a value.
DSNAME returns the SAS data set name that is associated with a data set identifier.
EXIST verifies the existence of a SAS data library member.
FETCH reads the next nondeleted observation from a SAS data set into the Data Set Data Vector (DDV) and returns a value.
FETCHOBS reads a specified observation from a SAS data set into the Data Set Data Vector (DDV) and returns a value.
GETVARC returns the value of a SAS data set character variable.
GETVARN returns the value of a SAS data set numeric variable.
LIBNAME assigns or deassigns a libref for a SAS data library and returns a value.
LIBREF verifies that a libref has been assigned and returns a value.
NOTE returns an observation ID for the current observation of a SAS data set.
OPEN opens a SAS data set and returns a value.
PATHNAME returns the physical name of a SAS data library or of an external file, or returns a blank.
POINT locates an observation identified by the NOTE function and returns a value.
REWIND positions the data set pointer at the beginning of a SAS data set and returns a value.
SYSMSG returns the text of error messages or warning messages from the last data set or external file function execution.
SYSRC returns a system error number.
VARFMT returns the format assigned to a SAS data set variable.
VARINFMT returns the informat assigned to a SAS data set variable.
VARLABEL returns the label assigned to a SAS data set variable.
VARLEN returns the length of a SAS data set variable.
VARNAME returns the name of a SAS data set variable.
VARNUM returns the number of a variable’s position in a SAS data set.
VARTYPE returns the data type of a SAS data set variable.

Financial Functions

The SAS/IML language supports more than 50 functions in Base SAS that are applicable to finance, including the following:

- BLACKCLPRC calculates the call price for European options on futures, based on the Black model.
- BLACKPTPRC calculates the put price for European options on futures, based on the Black model.
- BLKSHCLPRT calculates the call price for European options, based on the Black-Scholes model.
- BLKSHPTPRT calculates the put price for European options, based on the Black-Scholes model.
- COMPOUND returns compound interest parameters.
- CONVX returns the convexity for an enumerated cash flow.
- CONVXP returns the convexity for a periodic cash flow stream.
- DACCDB returns the accumulated declining balance depreciation.
- DACCDBSL returns the accumulated declining balance with conversion to a straight-line depreciation.
- DACCSD returns the accumulated straight-line depreciation.
- DACCSYD returns the accumulated sum-of-years-digits depreciation.
- DACCTAB returns the accumulated depreciation from specified tables.
- DEPDB returns the declining balance depreciation.
- DEPDBSL returns the declining balance with conversion to a straight-line depreciation.
- DEPSL returns the straight-line depreciation.
- DEPSYD returns the sum-of-years-digits depreciation.
- DEPTAB returns the depreciation from specified tables.
- DUR returns the modified duration for an enumerated cash flow.
- FINANCE computes financial calculations such as depreciation, maturation, accrued interest, net present value, periodic savings, and internal rates of return.
GARKHCLPRC calculates the call price for European options on stocks, based on the Garman-Kohlhagen model
GARKHPTPRC calculates the put price for European options on stocks, based on the Garman-Kohlhagen model
INTRR returns the internal rate of return as a decimal
IRR returns the internal rate of return as a percentage
MARGRCLPRC calculates the call price for European options on stocks, based on the Margrabe model
MARGRPTPRC calculates the put price for European options on stocks, based on the Margrabe model
MORT returns amortization parameters
NETPV returns the net present value as a decimal
NPV returns the net present value as a percentage
PVP returns the present value for a periodic cash flow stream
SAVING returns the future value of a periodic saving
YIELDP returns the yield-to-maturity for a periodic cash flow stream

Macro Functions and Subroutines

DOSUBL Executes SAS code and exports macro variables
CALL RESOLVE resolves the value of a text expression at execution time
SYMGET returns the character value of a macro variable
SYMGETN returns the numeric value of a macro variable
SYMEXIST indicates the existence of a macro variable
CALL SYMPUT sets the character value of a macro variable
CALL SYMPUTX assigns a value to a macro variable and removes both leading and trailing blanks

Mathematical Functions and Subroutines

ABS returns the absolute value
AIRY returns the Airy function
BETA returns the value of the beta function
COALESCE returns the first non-missing value from a list of numeric arguments
COALESCEC returns the first non-missing value from a list of character arguments
COMPFUZZ returns the result of a fuzzy comparison of numeric values
CONSTANT returns some machine and mathematical constants
CNONCT returns the noncentrality parameter from a chi-squared distribution
DAIRY returns the derivative of the Airy function
DEVIANCE returns the deviance from a specified distribution
DIGAMMA returns the DIGAMMA function
ERF returns the normal error function
ERFC returns the complementary normal error function
EXP returns the exponential function
You can call the following Base SAS functions for computing probabilities that are associated with statistical distributions. The functions that are indicated with an asterisk (*) are deprecated. You should use the CDF function instead.

- **CDF**: computes cumulative distribution functions
- **LOGCDF**: returns the logarithm of a left cumulative distribution function
- **LOGPDF**: computes the logarithm of a probability function
- **LOGSDF**: computes the logarithm of a survival function
- **PDF**: computes probability density functions
- **POISSON**: returns the probability from a Poisson distribution
- **PROBBETA**: returns the probability from a beta distribution
- **PROBBNML**: returns the probability from a binomial distribution
- **PROBBNRM**: returns the probability from the bivariate normal distribution
- **PROBCHI**: returns the probability from a chi-squared distribution
- **PROBF**: returns the probability from an F distribution
- **PROBGM**: returns the probability from a gamma distribution
- **PROBHYP**: returns the probability from a hypergeometric distribution
- **PROBMC**: returns a probability or a quantile from various distributions for multiple comparisons of means
- **PROBNEGB**: returns the probability from a negative binomial distribution
- **PROBNORM**: returns the probability from the standard normal distribution
- **PROBT**: returns the probability from a t distribution
- **SDF**: computes a survival function
Quantile Functions

You can call the following Base SAS functions for computing quantiles of statistical distributions. The functions that are indicated with an asterisk (*) are deprecated. You should use the QUANTILE function instead.

- BETAINV* returns a quantile from the beta distribution
- CINV* returns a quantile from the chi-squared distribution
- FINV* returns a quantile from the F distribution
- GAMINV* returns a quantile from the gamma distribution
- PROBIT* returns a quantile from the standard normal distribution
- QUANTILE returns the quantile from the specified distribution
- SQUANTILE returns the quantile when you specify the right probability (SDF)
- TINV* returns a quantile from the t distribution

Random Number Functions and Subroutines

You can call the following Base SAS functions to simulate random values from statistical distributions. However, the SAS/IML language supports the RANDGEN subroutine, which is a more efficient way to generate random values.

The functions that are indicated with an asterisk (*) are deprecated. You should use the RAND function instead.

- NORMAL* returns a random variate from a normal distribution
- RANBIN* returns a random variate from a binomial distribution
- RANCAU* returns a random variate from a Cauchy distribution
- RAND returns a random variate from a specified distribution. (See the RANDGEN subroutine.)
- RANEXP* returns a random variate from an exponential distribution
- RANGAM* returns a random variate from a gamma distribution
- RANNOR* returns a random variate from a normal distribution
- RANPOI* returns a random variate from a Poisson distribution
- RANBL* returns a random variate from a tabled probability
- RANTRI* returns a random variate from a triangular distribution
- RANUNI* returns a random variate from a uniform distribution
- CALL STREAMINIT specifies a seed value to use for subsequent random number generation by the RAND function. (See the RANDSEED subroutine.)
- UNIFORM* returns a random variate from a uniform distribution

State and Zip Code Functions

- FIPNAME converts FIPS codes to uppercase state names
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPNAMEL</td>
<td>converts FIPS codes to mixed-case state names</td>
</tr>
<tr>
<td>FIPSTATE</td>
<td>converts FIPS codes to two-character postal codes</td>
</tr>
<tr>
<td>GEODISTANCE</td>
<td>returns the geodetic distance between two latitude and longitude coordinates</td>
</tr>
<tr>
<td>STFIPS</td>
<td>converts state postal codes to FIPS state codes</td>
</tr>
<tr>
<td>STNAME</td>
<td>converts state postal codes to uppercase state names</td>
</tr>
<tr>
<td>STNAMET</td>
<td>converts state postal codes to mixed-case state names</td>
</tr>
<tr>
<td>ZIPCITY</td>
<td>returns a city name and the two-character postal code that corresponds to a zip code</td>
</tr>
<tr>
<td>ZIPCITYDISTANCE</td>
<td>returns the geodetic distance between two zip code locations</td>
</tr>
<tr>
<td>ZIPFIPS</td>
<td>converts zip codes to FIPS state codes</td>
</tr>
<tr>
<td>ZIPNAME</td>
<td>converts zip codes to uppercase state names</td>
</tr>
<tr>
<td>ZIPNAMET</td>
<td>converts zip codes to mixed-case state names</td>
</tr>
<tr>
<td>ZIPSTATE</td>
<td>converts zip codes to state postal codes</td>
</tr>
</tbody>
</table>

**Time Zone Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TZONEID</td>
<td>returns the current time zone ID</td>
</tr>
<tr>
<td>TZONENAME</td>
<td>returns the current standard or daylight savings time and the time zone name</td>
</tr>
<tr>
<td>TZONEOFF</td>
<td>returns the user time zone offset</td>
</tr>
<tr>
<td>TZONES2U</td>
<td>converts a SAS datetime value to a UTC datetime value</td>
</tr>
<tr>
<td>TZONEU2S</td>
<td>converts a UTC datetime value to a SAS datetime value</td>
</tr>
</tbody>
</table>

**Trigonometric and Hyperbolic Functions**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCOS</td>
<td>returns the arccosine</td>
</tr>
<tr>
<td>ARCOSEH</td>
<td>returns the inverse hyperbolic cosine</td>
</tr>
<tr>
<td>ARSIN</td>
<td>returns the arcsine</td>
</tr>
<tr>
<td>ARSINH</td>
<td>returns the inverse hyperbolic cosine</td>
</tr>
<tr>
<td>ATAN</td>
<td>returns the arctangent</td>
</tr>
<tr>
<td>ATANH</td>
<td>returns the inverse hyperbolic cosine</td>
</tr>
<tr>
<td>ATAN2</td>
<td>returns the arc tangent of two numeric variables</td>
</tr>
<tr>
<td>COS</td>
<td>returns the cosine</td>
</tr>
<tr>
<td>COSH</td>
<td>returns the hyperbolic cosine</td>
</tr>
<tr>
<td>COT</td>
<td>returns the cotangent</td>
</tr>
<tr>
<td>CSC</td>
<td>returns the cosecant</td>
</tr>
<tr>
<td>SIN</td>
<td>returns the sine</td>
</tr>
<tr>
<td>SINH</td>
<td>returns the hyperbolic sine</td>
</tr>
<tr>
<td>SEC</td>
<td>returns the secant</td>
</tr>
<tr>
<td>TAN</td>
<td>returns the tangent</td>
</tr>
<tr>
<td>CALL TANH</td>
<td>returns the hyperbolic tangent of each argument</td>
</tr>
<tr>
<td>TANH</td>
<td>returns the hyperbolic tangent</td>
</tr>
</tbody>
</table>
Truncation Functions

- **CEIL** returns the smallest integer $\geq$ the argument
- **CEILZ** returns the smallest integer that is greater than or equal to the argument, using zero fuzzing
- **FLOOR** returns the largest integer $\leq$ the argument
- **FLOORZ** returns the largest integer that is less than or equal to the argument, using zero fuzzing
- **FUZZ** returns the nearest integer if the argument is within 1E-12
- **INT** returns the integer portion of a value
- **INTZ** returns the integer portion of the argument, using zero fuzzing
- **MODZ** returns the remainder from the division of the first argument by the second argument, using zero fuzzing
- **ROUND** rounds a value to the nearest round-off unit
- **ROUNDE** rounds the first argument to the nearest multiple of the second argument, and returns an even multiple when the first argument is halfway between the two nearest multiples
- **ROUNDZ** rounds the first argument to the nearest multiple of the second argument, with zero fuzzing
- **TRUNC** returns a truncated numeric value of a specified length

Web Tools

- **HTMLDECODE** decodes a string that contains HTML numeric character references or HTML character entity references and returns the decoded string
- **HTMLENCODE** encodes characters by using HTML character entity references and returns the encoded string
- **URLDECODE** returns a string that was decoded by using the URL escape syntax
- **URLENCODE** returns a string that was encoded by using the URL escape syntax

References


Overview

The IMLMLIB library contains modules written in the SAS/IML language. The library contains both functions and subroutines. You do not have to explicitly load these modules: they are automatically loaded at run time when they are called by a SAS/IML program.

Contents of the IMLMLIB Library

The IMLMLIB library contains the following computational modules:

- **CORR2COV function**: scales a correlation matrix into a covariance matrix
- **COV2CORR function**: scales a covariance matrix into a correlation matrix
- **EXPMATRIX function**: computes the exponential of a matrix
- **ISEMPTY function**: returns 1 if the argument is an empty matrix (zero rows and columns) and 0 otherwise
- **MAGIC function**: returns a magic square of a given size
MAHALANOBIS function computes Mahalanobis distance
MEDIAN function returns the median of numeric data
QUADREG call performs quadratic regression
QUARTILE function computes quartiles
REGRESS call performs regression analysis
STANDARD function standardizes numeric data

The IMLMLIB library contains the following utility modules:

BLANKSTR function returns a blank string of a specified length.
COL function returns a matrix, \( M \), that is the same size as the input matrix and such that \( M[i,j] = i \).
COLVEC function converts a matrix into a column vector
EXPANDGRID function returns a matrix that contains all combinations of elements from specified vectors
NDX2SUB function converts matrix indices to subscripts
PALETTE function returns a discrete color palette that is suitable for visualizing categorical data
ROW function returns a matrix, \( M \), that is the same size as the input matrix and such that \( M[i,j] = j \).
ROWVEC function converts a matrix into a row vector
RSUBSTR function replaces substrings
SUB2NDX function converts matrix subscripts to indices
TABPRT call prints matrices in tabular format

The library contains the following functions for generating random samples from statistical distributions:

RANDDIRICHLET function generates a random sample from a Dirichlet distribution
RANDFUN function returns a matrix of random numbers from a specified distribution
RANDMULTINOMIAL function generates a random sample from a multinomial distribution
RANDMVT function generates a random sample from a multivariate Student’s \( t \) distribution
RANDNORMAL function generates a random sample from a multivariate normal distribution
RANDWISHART function generates a random sample from a Wishart distribution

The library contains the following graphical subroutines that produce ODS graphics:

BAR call creates a bar chart
BOX call creates a box plot
HEATMAPCONT call creates a heat map with a continuous color ramp
HEATMAPPEDISC call creates a heat map with a discrete color ramp
HISTOGRAM call creates a histogram
SCATTER call creates a scatter plot
SERIES call creates a series plot

For compatibility with previous releases, the IMLMLIB library contains the following graphical subroutines that produce legacy graphics:
GBXWHSKR call draws a box-and-whiskers plot
GPROBCNT call draws a scatter plot with bivariate normal probability contours
GXYPLOT call draws scatter plots of x-y data

IMLMLIB and the STORAGE library

As described in Chapter 20, SAS/IML enables you to store and load matrices and modules in your own STORAGE library. The STORE, LOAD, REMOVE, and RESET STORAGE commands apply to the STORAGE library and enable you to store and load user-defined matrices and modules.

In contrast, the IMLMLIB library contains predefined read-only modules. You cannot store additional modules in IMLMLIB.

You can use the SHOW command to obtain information about both the IMLMLIB and the STORAGE libraries, as described in the following list:

- SHOW OPTIONS displays the settings of the STORAGE and IMLMLIB libraries and shows whether the libraries are open.
- SHOW STORAGE displays the contents of the STORAGE library.
- SHOW IMLMLIB displays the contents of the IMLMLIB library.
- SHOW MODULES displays the names of the modules that are loaded in the current environment. These include modules loaded from either library and modules defined in the current session.

Accessing the IMLMLIB Source Code

The IMLMLIB library is a catalog in the SASHELP directory. The catalog contains an entry of type IMOD for each module. Each entry is a module stored in its compiled form.

The SAS/IML source code that defines a modules is available in the catalog SASHELP.IML. There is an entry of type SOURCE for each module. You can view the source code in the program editor window under the SAS windowing environment by using the COPY command and specifying the four-level name SASHELP:IML.modulename.SOURCE

The source code can be edited for customization or enhancements, and can be included in other SAS/IML applications. The modules also illustrate a variety of language features that can be used to solve statistical problems.
Order of Resolution for Functions and Subroutines

The SAS/IML language resolves functions in the following order:

1. User-defined SAS/IML modules that exist in the current environment
2. Function in the STORAGE library, if it is open
3. Functions in the IMLMLIB library
4. Functions built into SAS/IML software
5. SAS DATA step functions

Prior to SAS/IML 13.1, the order of resolution was different. The order was changed in order to make it easier for programmers to call user-defined functions.

When you call a module by using the CALL statement, the SAS/IML language resolves subroutines in the following order:

1. Subroutines built into SAS/IML software
2. User-defined SAS/IML modules that exist in the current environment
3. Subroutines in the STORAGE library, if it is open
4. Subroutines in the IMLMLIB library
5. SAS DATA step subroutines

If you want to be sure that user-defined subroutines take precedence over built-in subroutines, use the RUN statement. When you call a module by using the RUN statement, the SAS/IML language resolves subroutines in the following order:

1. User-defined SAS/IML modules that exist in the current environment
2. Subroutines in the STORAGE library, if it is open
3. Subroutines in the IMLMLIB library
4. Subroutines that are built into SAS/IML software
5. SAS DATA step subroutines
Error Diagnostics

When a run-time error occurs in a SAS/IML module, the program execution pauses inside the module environment. The SAS Log contains error diagnostics with a full traceback that can help to locate the problem. In the case of a loaded module, the traceback includes line offsets instead of the absolute SAS Log line numbers. The offsets can be used to track the problem into the source code that defined the module. The START statement at the beginning of the module definition always has an offset value of 1.

Offsets apply only to loaded modules. For modules that are explicitly defined in any given session, absolute line numbers are used in the traceback.

Modules for Multivariate Random Sampling

SAS/IML software includes pre-defined modules that generate random samples from common multivariate distributions. For univariate distributions, you can generate random samples from many distributions by using the RANDGEN subroutine.

- `RANDDIRICHLET` generates a random sample from a Dirichlet distribution, which is a multivariate generalization of the beta distribution.
- `RANDFUN` function returns a matrix of random numbers from a specified distribution.
- `RANDMULTINOMIAL` generates a random sample from a multinomial distribution, which is a multivariate generalization of the binomial distribution.
- `RANDMVT` generates a random sample from a multivariate Student’s $t$ distribution.
- `RANDNORMAL` generates a random sample from a multivariate normal distribution.
- `RANDWISHART` generates a random sample from a Wishart distribution, which is a multivariate generalization of the gamma distribution.

All of the modules compute their results by using transformations of univariate random samples generated by the RANDGEN subroutine. Thus you can use the RANDSEED subroutine to set the seed for the modules.

Although you can sample from a multivariate normal distribution by using the built-in VNORMAL subroutine, the VNORMAL subroutine implements does not use the random number seed set in RANDSEED. To ensure independence and reproducibility of random number streams, the RANDNORMAL function is recommended.

For an overview of multivariate sampling, see Gentle (2003).

Syntax for Demonstration Modules

A few modules in the IMLMLIB are intended for demonstration purposes, rather than for serious analysis. Those modules, along with modules that produce legacy graphics, are documented in this section. The remaining modules in the IMLMLIB are described in the “Statements, Functions, and Subroutines” on page 602.
**GBXWHSKR Call**

```plaintext
RUN GBXWHSKR(matrix);
```

This subroutine is deprecated.

The GBXWHSKR module draws a box-and-whiskers plot for univariate numeric data contained in the specified $n \times m$ matrix. The box outlines the quartile range, and the minimum, median, and maximum points are labeled on the plot. You cannot produce graphics until you invoke the CALL GSTART statement. The plot created by the GBXWHSKR module remains open for further additions until you specify the CALL GCLOSE statement, which terminates the current graphics segment. You can edit the module source code in order to add viewports, text, or colors.

**GPROBCNT Call**

```plaintext
RUN GPROBCNT(x, y<,p>);
```

This subroutine is deprecated.

The GPROBCNT module draws probability contours for the bivariate normal distribution. One contour is drawn for each value in the matrix $p$, which must contain entries between zero and one.

The inputs to the GPROBCNT subroutine are as follows:

- $x$ is any $n \times m$ matrix of $x$ values.
- $y$ is a corresponding $n \times m$ matrix of $y$ values.
- $p$ is an optional probability value matrix.

If you do not specify the matrix $p$, contours for the probability values of 0.5, 0.8, and 0.9 are drawn. You cannot produce graphics until you specify the CALL GSTART statement. The contour plot remains open for further additions until you specify the CALL GCLOSE statement, which terminates the current graphics segment.

**GXYPLOT Call**

```plaintext
RUN GXYPLOT(x, y);
```

This subroutine is deprecated.

The GXYPLOT draws a scatter plot of the data in the $x$ and $y$ arguments. The inputs to the GXYPLOT subroutine are as follows:

- $x$ is any $n \times m$ matrix of $x$ values.
- $y$ is a corresponding $n \times m$ matrix of $y$ values.

The GXYPLOT module draws a simple scatter plot of bivariate data, including axes with labeled tickmarks. You cannot produce graphics until you specify the CALL GSTART statement. The plot remains open for
Further additions (such as a title and axis labels) until you specify the CALL GCLOSE statement, which terminates the current graphics segment. The module uses the GPOINT, GXAXIS, and GYAXIS calls to plot the points. The module source code can be edited to specify many of the options available for these calls.

**QUADREG Call**

```plaintext
RUN QUADREG(xopt, yopt, type, parms, x, y);
```

The QUADREG module fits a quadratic response surface to data. It is primarily used for demonstration purposes. The inputs to the QUADREG subroutine are as follows:

- **xopt** is a returned value that contains \( m \times 1 \) critical factor values.
- **yopt** is a returned value that contains the critical response value.
- **type** is a returned character string that contains the solution type (maximum or minimum).
- **parms** is a returned value that contains the parameter estimates for the quadratic model.
- **x** is an \( n \times m \) data matrix, where \( m \) is the number of factor variables and \( n \) is the number of data points.
- **y** is an \( n \times 1 \) response vector.

The QUADREG module fits a regression model with a complete quadratic set of regressions across several factors. The estimated model parameters are divided into a vector of linear coefficients and a matrix of quadratic coefficients to obtain critical factor values that optimize the response. It further determines the type of the optima (maximum, minimum, or saddle point) by computing the eigenvalues of the estimated parameters.

```
x = { -1 -1, -1 0, -1 1, 0 -1, 0 0, 0 1, 1 -1, 1 0, 1 1 };
y = { 71.7, 75.2, 76.3, 79.2, 81.5, 80.2, 80.1, 79.1, 75.8 };
run quadreg(xopt, yopt, nature, parms, x, y);
print parms[rowname={c b1 b2 a11 a12 a22} label="Parameter Estimates"],
 xopt[rowname={x1 x2} label="Critical Factor Values"],
nature[label=""] "Response" yopt [label=""];
```

**Figure 27.1** Parameter Estimates and Optima

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>A11</td>
</tr>
<tr>
<td>A12</td>
</tr>
<tr>
<td>A22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Critical Factor Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
</tr>
<tr>
<td>X2</td>
</tr>
</tbody>
</table>
The REGRESS module performs ordinary least squares regression. It is primarily used for demonstration purposes.

The inputs to the REGRESS subroutine are as follows:

- **x**: is an \( n \times m \) numeric matrix, where \( m \) is the number of variables and \( n \) is the number of data points.
- **y**: is an \( n \times 1 \) response vector.
- **name**: is an \( m \times 1 \) matrix of variable names.
- **tval**: is an optional \( t \)-value.
- **l1, l2, l3**: are optional \( 1 \times m \) vectors that specify linear combinations of coefficients for hypothesis testing.

The design matrix is given by \( x \), and \( y \) is the response vector. The **name** vector identifies each of the variables. If you specify a \( t \)-value, the module prints a table of observed and predicted values, residuals, hat diagonal, and confidence limits for the mean and predicted values. If you also specify linear combinations with \( l1 \), \( l2 \), and \( l3 \), the module performs the hypothesis test \( H : l'b = 0 \), where \( b \) is the vector of parameter estimates.

An example follows:

```plaintext
/* U.S. Population for decades beginning 1790, in millions */
name = { "Intercept", "Decade", "Decade**2" };
x = { 1 1 1, 1 2 4, 1 3 9, 1 4 16,
 1 5 25, 1 6 36, 1 7 49, 1 8 64 };
y = { 3.929, 5.308, 7.239, 9.638,
 12.866, 17.069, 23.191, 31.443 };
/* 5 dof at 0.025 level to get 95% confidence interval */
tval = quantile("T", 1-0.025, 5);
l1 = { 0 1 0 }; /* test hypothesis lb=0 for linear coef */
l2 = { 0 1 0, 0 0 1 }; /* test hypothesis lb=0 for linear,quad */
l3 = { 0 1 1 }; /* test hypothesis lb=0 for linear+quad */
run regress(x, y, name, tval, l1, l2, l3);
```

**Figure 27.2** Regression Analysis

<table>
<thead>
<tr>
<th>name</th>
<th>b</th>
<th>stdb</th>
<th>t</th>
<th>probt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.0693393</td>
<td>0.9655939</td>
<td>5.2499702</td>
<td>0.0033263</td>
</tr>
<tr>
<td>Decade</td>
<td>-1.109935</td>
<td>0.4923003</td>
<td>-2.254588</td>
<td>0.0738509</td>
</tr>
<tr>
<td>Decade**2</td>
<td>0.5396369</td>
<td>0.0533975</td>
<td>10.10604</td>
<td>0.0001625</td>
</tr>
</tbody>
</table>
Figure 27.2  continued

<table>
<thead>
<tr>
<th>Covariance of Estimates</th>
<th>Intercept</th>
<th>Decade</th>
<th>Decade**2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.9324</td>
<td>-0.436</td>
<td>0.0428</td>
</tr>
<tr>
<td>Decade</td>
<td>-0.436</td>
<td>0.2424</td>
<td>-0.026</td>
</tr>
<tr>
<td>Decade**2</td>
<td>0.0428</td>
<td>-0.026</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation of Estimates</th>
<th>Intercept</th>
<th>Decade</th>
<th>Decade**2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-0.918</td>
<td>0.8295</td>
</tr>
<tr>
<td>Decade</td>
<td>-0.918</td>
<td>1</td>
<td>-0.976</td>
</tr>
<tr>
<td>Decade**2</td>
<td>0.8295</td>
<td>-0.976</td>
<td>1</td>
</tr>
</tbody>
</table>

Predicted values, Residuals, and Limits

<table>
<thead>
<tr>
<th>y</th>
<th>yhat</th>
<th>resid</th>
<th>h</th>
<th>lowerm</th>
<th>upperm</th>
<th>lower</th>
<th>upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.929</td>
<td>4.499</td>
<td>-0.57</td>
<td>0.7083</td>
<td>3.0017</td>
<td>5.9964</td>
<td>2.1737</td>
<td>6.8244</td>
</tr>
<tr>
<td>5.308</td>
<td>5.008</td>
<td>0.3</td>
<td>0.2798</td>
<td>4.067</td>
<td>5.949</td>
<td>2.9954</td>
<td>7.0207</td>
</tr>
<tr>
<td>7.239</td>
<td>6.5963</td>
<td>0.6427</td>
<td>0.2321</td>
<td>5.7391</td>
<td>7.4535</td>
<td>4.6214</td>
<td>8.5711</td>
</tr>
<tr>
<td>9.638</td>
<td>9.2638</td>
<td>0.3742</td>
<td>0.2798</td>
<td>8.3228</td>
<td>10.205</td>
<td>7.2511</td>
<td>11.276</td>
</tr>
<tr>
<td>12.866</td>
<td>13.011</td>
<td>-0.145</td>
<td>0.2798</td>
<td>12.07</td>
<td>13.952</td>
<td>10.998</td>
<td>15.023</td>
</tr>
<tr>
<td>17.069</td>
<td>17.837</td>
<td>-0.768</td>
<td>0.2321</td>
<td>16.979</td>
<td>18.694</td>
<td>15.862</td>
<td>19.812</td>
</tr>
<tr>
<td>23.191</td>
<td>23.742</td>
<td>-0.551</td>
<td>0.2798</td>
<td>22.801</td>
<td>24.683</td>
<td>21.729</td>
<td>25.755</td>
</tr>
<tr>
<td>31.443</td>
<td>30.727</td>
<td>0.7164</td>
<td>0.7083</td>
<td>29.229</td>
<td>32.224</td>
<td>28.401</td>
<td>33.052</td>
</tr>
</tbody>
</table>

Test Hypothesis that \( b = 0 \)

<table>
<thead>
<tr>
<th>f</th>
<th>dfn</th>
<th>dfe</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>for Linear Coef</td>
<td>5.0831686</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>dfn</th>
<th>dfe</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>for Linear,Quad Coef</td>
<td>666.51095</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>dfn</th>
<th>dfe</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>for Linear+Quad Coef</td>
<td>1.6774629</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

**TABPRT Call**

`RUN TABPRT(matrix);`

The TABPRT module is part of the IMLMLIB library. It is included for demonstration purposes. The TABPRT module prints a matrix in a tabular format. The module can be useful for printing large matrices. The module source code can be edited for further cosmetic changes, such as alternative format or field width, or for assigning specific row and column labels.

```plaintext
r = uniform(j(5,10)); /* a 5 x 10 numeric matrix */ run tabprt(r);
```
Chapter 27: Module Library

Figure 27.3  Tabular Display

<table>
<thead>
<tr>
<th></th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
<th>COL5</th>
<th>COL6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>0.185</td>
<td>0.970</td>
<td>0.400</td>
<td>0.259</td>
<td>0.922</td>
<td>0.969</td>
</tr>
<tr>
<td>ROW2</td>
<td>0.819</td>
<td>0.524</td>
<td>0.853</td>
<td>0.067</td>
<td>0.957</td>
<td>0.297</td>
</tr>
<tr>
<td>ROW3</td>
<td>0.688</td>
<td>0.413</td>
<td>0.559</td>
<td>0.287</td>
<td>0.476</td>
<td>0.845</td>
</tr>
<tr>
<td>ROW4</td>
<td>0.728</td>
<td>0.507</td>
<td>0.931</td>
<td>0.929</td>
<td>0.590</td>
<td>0.297</td>
</tr>
<tr>
<td>ROW5</td>
<td>0.167</td>
<td>0.871</td>
<td>0.299</td>
<td>0.935</td>
<td>0.900</td>
<td>0.569</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>COL7</th>
<th>COL8</th>
<th>COL9</th>
<th>COL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>0.543</td>
<td>0.532</td>
<td>0.050</td>
<td>0.067</td>
</tr>
<tr>
<td>ROW2</td>
<td>0.273</td>
<td>0.690</td>
<td>0.977</td>
<td>0.227</td>
</tr>
<tr>
<td>ROW3</td>
<td>0.635</td>
<td>0.590</td>
<td>0.583</td>
<td>0.377</td>
</tr>
<tr>
<td>ROW4</td>
<td>0.391</td>
<td>0.472</td>
<td>0.680</td>
<td>0.168</td>
</tr>
<tr>
<td>ROW5</td>
<td>0.050</td>
<td>0.136</td>
<td>0.511</td>
<td>0.433</td>
</tr>
</tbody>
</table>

References

### Subject Index

<table>
<thead>
<tr>
<th>Function/Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT statement</td>
<td>exiting PROC IML, 602</td>
</tr>
<tr>
<td>ABS function</td>
<td>absolute value, 603</td>
</tr>
<tr>
<td>ADDITION operator</td>
<td>adds corresponding matrix elements, 584</td>
</tr>
<tr>
<td>ALL function</td>
<td>checking for nonzero elements, 603</td>
</tr>
<tr>
<td>ALLCOMB function</td>
<td>generate combinations, 604</td>
</tr>
<tr>
<td>ALLPERM function</td>
<td>generate permutations, 605</td>
</tr>
<tr>
<td>ANY function</td>
<td>checking for nonzero elements, 606</td>
</tr>
<tr>
<td>APPEND statement</td>
<td>SAS data sets, 608</td>
</tr>
<tr>
<td>APPLY function, 611</td>
<td></td>
</tr>
<tr>
<td>ARMACOV call</td>
<td>autocovariance sequence, 612</td>
</tr>
<tr>
<td>ARMALIK call</td>
<td>log likelihood and residuals, 614</td>
</tr>
<tr>
<td>ARMASIM function</td>
<td>simulating univariate ARMA series, 615</td>
</tr>
<tr>
<td>BAR call</td>
<td>create a bar chart, 617</td>
</tr>
<tr>
<td>Basic time series analysis</td>
<td></td>
</tr>
<tr>
<td>CALL statement</td>
<td>calling a subroutine or function, 632</td>
</tr>
<tr>
<td>CALLING External Modules, 583</td>
<td></td>
</tr>
<tr>
<td>Calling R, 583</td>
<td></td>
</tr>
<tr>
<td>Calling SAS, 583</td>
<td></td>
</tr>
<tr>
<td>CHANGE call</td>
<td>replacing text in an array, 632</td>
</tr>
<tr>
<td>CHAR function</td>
<td>character representation of a numeric matrix, 633</td>
</tr>
<tr>
<td>Comparing Functions, 571</td>
<td></td>
</tr>
<tr>
<td>CHOOSE function</td>
<td>choosing and changing elements, 634</td>
</tr>
<tr>
<td>CONTENTS function</td>
<td>obtaining the variables in SAS data sets, 642</td>
</tr>
<tr>
<td>Control Statements, 578</td>
<td></td>
</tr>
<tr>
<td>CORR function</td>
<td>computing sample correlations, 643</td>
</tr>
<tr>
<td>CONTENTS function</td>
<td></td>
</tr>
<tr>
<td>CORR2COV function</td>
<td>convert correlation matrix, 645</td>
</tr>
<tr>
<td>COUNTMISS function</td>
<td></td>
</tr>
<tr>
<td>COUNTMISS function</td>
<td></td>
</tr>
<tr>
<td>BTRAN function</td>
<td>computing the block transpose, 630</td>
</tr>
<tr>
<td>BYTE function</td>
<td>returning values in a computer’s character set, 631</td>
</tr>
<tr>
<td>CALL statement</td>
<td></td>
</tr>
<tr>
<td>CLOSEFILE statement</td>
<td>closing a file, 635</td>
</tr>
<tr>
<td>CLOSE statement</td>
<td></td>
</tr>
<tr>
<td>CONCAT function</td>
<td>performing elementwise string concatenation, 641</td>
</tr>
<tr>
<td>CONCATENATION operator, horizontal</td>
<td></td>
</tr>
<tr>
<td>CONCATENATION operator, vertical</td>
<td></td>
</tr>
<tr>
<td>COL function, 636</td>
<td></td>
</tr>
<tr>
<td>COLVEC function</td>
<td>reshaping matrices, 637</td>
</tr>
<tr>
<td>COLUMN vector, 637</td>
<td></td>
</tr>
<tr>
<td>Convert indices to subscripts, 868</td>
<td></td>
</tr>
<tr>
<td>Convert subscripts to indices, 1068</td>
<td></td>
</tr>
<tr>
<td>CONVEXIT function</td>
<td>calculating convexity of noncontingent cash flows, 642</td>
</tr>
<tr>
<td>CONVEXIT function</td>
<td></td>
</tr>
<tr>
<td>Bessel function</td>
<td>finding nonzero roots and derivatives of, 784, 785</td>
</tr>
<tr>
<td>Biconjugate Gradient Algorithm, 543, 548</td>
<td></td>
</tr>
<tr>
<td>BIN function</td>
<td>dividing numeric values into bins, 621</td>
</tr>
<tr>
<td>BLANKSTR function</td>
<td>create blank strings, 623</td>
</tr>
<tr>
<td>BLOCK function</td>
<td>forming block-diagonal matrices, 623</td>
</tr>
<tr>
<td>BOX call</td>
<td>create box plot, 624</td>
</tr>
<tr>
<td>box-and-whiskers plot, 1168</td>
<td></td>
</tr>
<tr>
<td>BRANKS function</td>
<td>computing bivariate ranks, 627</td>
</tr>
<tr>
<td>BSPLINE function</td>
<td>computing B-spline basis, 628</td>
</tr>
</tbody>
</table>
Subject Index

counting missing values, 646
COUNTN function
counting nonmissing values, 647
COUNTUNIQUE function
counting unique values, 648
COV function
computing sample covariances, 649
COV2CORR function
convert covariance matrix, 649
COVLAG function
computing autocovariance estimates, 650
CREATE statement
creating new SAS data sets, 651
CSHAPE function
reshaping and repeating character values, 653
CUPROD function
calculating cumulative products, 656
CUSUM function
calculating cumulative sums, 655
CV function
compute the coefficient of variation, 656
CVEXHULL function
finding a convex hull, 657

Dataset and File Statements, 579
DATASETS function
obtaining names of SAS data sets, 657
DELETE call
deleting SAS data sets, 658
DELETE statement
marking observations for deletion, 659
DESIGN function
creating a design matrix, 660
DESIGNF function
creating a full-rank design matrix, 660
DET function
computing determinants of a square matrix, 661
DIAG function
creating a diagonal matrix, 662
DIF function
computing difference of lagged values, 663
DIMENSION function
returns the dimensions of a matrix, 663
DIRECT PRODUCT operator
takes the direct product of two matrices, 588
DISTANCE function
pairwise distance between points, 664
DIVISION operator
performs elementwise division, 589
DO DATA statement
repeating a loop until, 668
DO function
producing an arithmetic sequence, 665
DO statement
DATA clause, 668
grouping statements as a unit, 666
UNTIL clause, 669
WHILE clause, 669
DO statement, iterative
iteratively executing a DO group, 667
DO UNTIL statement
conditionally executing statements iteratively, 669
DO WHILE statement
conditionally executing statements iteratively, 669
DURATION function
calculating modified duration of noncontingent cash flows, 670

ECHELON function
reducing a matrix to row-echelon normal form, 671
EDIT statement
opening a SAS data set for editing, 672
EIGEN call
computing eigenvalues and eigenvectors, 673
Eigenvalue Decomposition
compared with ODE call, 908
EIGVAL function
computing eigenvalues, 677
EIGVEC function
computing right eigenvectors, 678
ELEMENT function
finding elements that are contained in a set, 678
ELEMENT MAXIMUM operator
selects the larger of two elements, 590
ELEMENT MINIMUM operator
selects the smaller of two elements, 591
END statement
ending a DO loop or DO statement, 679
ENDSUBMIT statement, 226
EXECUTE call
executing statements immediately, 679
EXECUTEFILE call
executing statements in a file, 680
EXP function
calculating the exponential, 683
EXPMATRIX function
exponential of a matrix, 683
ExportDataSetToR subroutine, 237
ExportMatrixToR subroutine, 237
FARMACOV call
generating an ARFIMA(\(p, d, q\)) process, 686
FARMAFIT call
estimation of an ARFIMA(\(p, d, q\)) model, 688
FARMALIK call
computing the log-likelihood for an ARFIMA(\(p, d, q\)) model, 689
FARMASIM call
genrating an ARFIMA\((p,d,q)\) process, 691
FDIF call
computing a fractionally differenced process, 692
FFT function
computing the finite Fourier transform, 693
FILE statement
opening or pointing to an external file, 695
FIND statement
finding observations, 696
FINISH statement
denoting the end of a module, 697
Forward rates, 698
Fractionally integrated time series analysis
ARFIMA modeling, 300
autocovariance function, 300
example, 297
fractional differencing, 300
generating a fractional time series, 300
log-likelihood function, 300
overview, 297
FREE statement
freeing matrix storage space, 698
FROOT function
univariate root finding, 699
FULL function
converting sparse to dense storage, 700
GAEND call
ending a genetic algorithm optimization, 702
GAGETMEM call
getting current members of the solution population for a genetic algorithm optimization, 702
GAGETVAL call
getting current solution objective function values for a genetic algorithm optimization, 703
GAINIT call
creating an initial solution population for a genetic algorithm optimization, 703
GAREEVAL call
reevaluating the objective function values for a solution population of a genetic algorithm optimization, 704
GAREGEN call
regenerating a solution population by application of selection and genetic operators, 705
GASETSCRO call
setting the crossover operator for a genetic algorithm optimization, 705
GASETMTU call
setting the mutation operator for a genetic algorithm optimization, 709
GASETOBJ call
setting the objective function for a genetic algorithm optimization, 711
GASETSEL call
setting the selection parameters for a genetic algorithm optimization, 712
GASSETUP function
setting up a genetic algorithm optimization problem, 713
GBLKVP call
defining a blanking viewport, 715
GBLKVPD call
deleting the blanking viewport, 716
GBXWHSKR call
box-and-whiskers plot, 1168
GCLOSE call
closing the graphics segment, 716
GDELETE call
deleting a graphics segment, 716
GDRAW call
drawing a polyline, 717
GDRAWL call
drawing individual lines, 717
GENEIG call
generalized eigenproblems, 718
Genetic Algorithm Functions, 583
GEOMEAN function
computes geometric means, 719
GGRID call
drawing a grid, 720
GINCLUDE call
including graphics segments, 721
GINV function
computing generalized inverses, 721
GOPEN call
opening graphics segments, 723
GOTO statement
jumping to a new statement, 724
GPIE call
drawing pie slices, 725
GPIEXY call
converting coordinates, 726
GPOINT call
plotting points, 727
GPOLY call
drawing and filling a polygon, 728
GPROBCNT call
probability contour plot, 1168
Graphics and Window Functions, 582

GSSCALE call  
calculating round numbers for labeling axes, 730
GSCRIPT call  
writing multiple text strings, 731
GSET call  
setting attributes for graphics segments, 732
GSHOW call  
showing a graph, 733
GSORT call  
computing the Gram-Schmidt orthonormalization, 733
GSTART call  
initializing the graphics system, 735
GSTOP call  
deactivating the graphics system, 736
GSTRLEN call  
finding the string length, 736
GTEXT and GVTEXT calls  
placing text on a graph, 737
GWINDOW call  
defining the data window, 738
GXAXIS and GYAXIS calls  
drawing an axis, 738
GXYPLOT call  
create scatter plot, 1168
HADAMARD function, 740
HALF function  
computing Cholesky decomposition, 741
HANKEL function  
generating a Hankel matrix, 741
HARMEAN function  
computes harmonic means, 742
HDIR function  
performing a horizontal direct product, 743
HEATMAPCONT call  
create a heat map, 743
HEATMAPDISC call  
create a heat map, 747
HERMITE function  
reducing a matrix to Hermite normal form, 749
HISTOGRAM Call  
create a histogram, 750
HOMOGEN function  
solving homogeneous linear systems, 752
I function  
creating an identity matrix, 753
IF-THEN/ELSE statement  
conditionally executing statements, 754
IFFT function  
computing the inverse finite Fourier transform, 755
IMLMLIB Module Library  
modules reference, 1064, 1167, 1169
overview, 1163, 1165, 1166
ImportDataSetFromR subroutine, 237
ImportMatrixFromR subroutine, 237
INDEX CREATION operator  
creates an index vector, 592
INDEX statement  
indexing a variable vector, 759
INFILE statement  
opening a file for input, 760
INPUT statement  
inputting data, 761
INSERT function  
inserting one matrix inside another, 763
INT function  
truncating a value, 764
INV function  
computing a matrix inverse, 764
Inverses  
Moore-Penrose inverse, 639, 1007, 1016–1018
INVUPDT function  
updating a matrix inverse, 766
IPF call  
performing an iterative proportional fit, 768
ISEMPTY function  
determine whether a matrix is empty, 779
ISM TIMSAC packages, 348, 349
ISSKIPPED function  
determine whether a module argument is skipped, 779
Iterative Algorithm, 780
ITSOLVER call  
solving a sparse linear system by using iterative methods, 780
J function  
creating a matrix of identical values, 784
Kalman filter subroutines  
covariance filtering and prediction, 281
diffuse covariance filtering and prediction, 281
diffuse fixed-interval smoothing, 281
examples, 282
fixed-interval smoothing, 281
one-step forecast for SSM, 792
one-step predictions, 785, 789
overview, 280
smoothed estimate, 789
smoothed state vectors, 795
syntax, 785
KRONECKER product  
takes the direct product of two matrices, 588
KURTOSIS function  
compute sample kurtosis, 797
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABEL</td>
<td>quadratic form maximization, 846</td>
</tr>
<tr>
<td>LAG function</td>
<td>computing lagged values, 797</td>
</tr>
<tr>
<td>LCP call</td>
<td>solving the linear complementarity problem, 802</td>
</tr>
<tr>
<td>Least absolute value regression, 798–801</td>
<td></td>
</tr>
<tr>
<td>LENGTH function</td>
<td>finding the lengths of character matrix elements, 805</td>
</tr>
<tr>
<td>Linear Algebra Functions, 576</td>
<td></td>
</tr>
<tr>
<td>Linear least squares</td>
<td>full-rank example, 950, 951</td>
</tr>
<tr>
<td>QR decomposition, 991</td>
<td></td>
</tr>
<tr>
<td>rank-deficient solutions, 1007, 1010, 1011, 1013–1015</td>
<td></td>
</tr>
<tr>
<td>LINK statement</td>
<td>jumping to another statement, 805</td>
</tr>
<tr>
<td>LIST statement</td>
<td>displaying observations of a data set, 806</td>
</tr>
<tr>
<td>LISTADDITEM call</td>
<td>adds a new item to the end of a list, 807</td>
</tr>
<tr>
<td>LISTCREATE function</td>
<td>creates a new list, 807</td>
</tr>
<tr>
<td>LISTDELETEITEM call</td>
<td>deletes an item from a list, 808</td>
</tr>
<tr>
<td>LISTDELETEITEM call</td>
<td>removes the name of an item, 809</td>
</tr>
<tr>
<td>LISTGETALLNAMES function</td>
<td>gets names for all named elements, 809</td>
</tr>
<tr>
<td>LISTGETITEM function</td>
<td>gets the value of an item, 810</td>
</tr>
<tr>
<td>LISTGETNAME function</td>
<td>gets the names used in a list, 811</td>
</tr>
<tr>
<td>LISTGETSUBITEM function</td>
<td>gets the value of an item in a nested sublist, 812</td>
</tr>
<tr>
<td>LISTINDEX function</td>
<td>gets the numeric positions of items, 812</td>
</tr>
<tr>
<td>LISTINSERTITEM call</td>
<td>inserts an item at a specified position, 813</td>
</tr>
<tr>
<td>LISTLEN function</td>
<td>gets the number of items in a list, 814</td>
</tr>
<tr>
<td>Lists, 580</td>
<td></td>
</tr>
<tr>
<td>LISTSETITEM call</td>
<td>sets the value of an existing list item, 814</td>
</tr>
<tr>
<td>LISTSETNAME call</td>
<td>sets the name of an item, 815</td>
</tr>
<tr>
<td>LISTSETSUBITEM call</td>
<td>sets the value of an item in a nested sublist, 815</td>
</tr>
<tr>
<td>LMS call</td>
<td>performing robust regression, 816</td>
</tr>
<tr>
<td>LOAD statement</td>
<td>loading modules and matrices, 825</td>
</tr>
<tr>
<td>LOC function</td>
<td>finding nonzero elements of a matrix, 825</td>
</tr>
<tr>
<td>LOG function</td>
<td>taking the natural logarithm, 826</td>
</tr>
<tr>
<td>LOGABSDET function</td>
<td>compute the log of the absolute value of the determinant, 827</td>
</tr>
<tr>
<td>LOGICAL operator</td>
<td>perform elementwise logical comparisons, 593</td>
</tr>
<tr>
<td>LP call</td>
<td>solving the linear programming problem, 827</td>
</tr>
<tr>
<td>LP SOLVE call</td>
<td>solving the linear programming problem, 828</td>
</tr>
<tr>
<td>LTS call</td>
<td>performs robust regression, 830</td>
</tr>
<tr>
<td>LUPDT call, 837</td>
<td></td>
</tr>
<tr>
<td>MAD function</td>
<td>univariate median absolute deviation, 838</td>
</tr>
<tr>
<td>MAGIC Function</td>
<td>return magic square, 840</td>
</tr>
<tr>
<td>MAHALANOBIS function</td>
<td>compute Mahalanobis distance, 841</td>
</tr>
<tr>
<td>MARG call</td>
<td>evaluating marginal totals, 842</td>
</tr>
<tr>
<td>Matrix decomposition</td>
<td>Cholesky decomposition, 1007–1009</td>
</tr>
<tr>
<td>complete orthogonal decomposition, 607, 638</td>
<td></td>
</tr>
<tr>
<td>downdating and updating, 990–992, 1006</td>
<td></td>
</tr>
<tr>
<td>QR decomposition, 920–922, 924, 947–951</td>
<td></td>
</tr>
<tr>
<td>matrix exponential, 683</td>
<td></td>
</tr>
<tr>
<td>Matrix Inquiry Functions, 570</td>
<td></td>
</tr>
<tr>
<td>Matrix Reshaping Functions, 571</td>
<td></td>
</tr>
<tr>
<td>Matrix Sorting and By-Group Processing Functions, 571</td>
<td></td>
</tr>
<tr>
<td>MATTRIB statement</td>
<td>associating printing attributes with matrices, 844</td>
</tr>
<tr>
<td>MAX function</td>
<td>finding the maximum value of matrix, 846</td>
</tr>
<tr>
<td>MCD call, 849</td>
<td></td>
</tr>
<tr>
<td>MEAN function</td>
<td>computing sample means, 853</td>
</tr>
<tr>
<td>Median computation, 855</td>
<td></td>
</tr>
<tr>
<td>Minimum Residual Algorithm, 543, 547</td>
<td></td>
</tr>
<tr>
<td>MOD function</td>
<td>computing the modulo (remainder), 859</td>
</tr>
<tr>
<td>MODULEI call, 860</td>
<td></td>
</tr>
<tr>
<td>MODULEIC function</td>
<td>calling an external function, 861</td>
</tr>
<tr>
<td>MODULEIN function</td>
<td></td>
</tr>
</tbody>
</table>
Subject Index

calling an external function, 861

Modules, 579
MULTIPLICATION operator, elementwise
  performs elementwise multiplication, 594
MULTIPLICATION operator, matrix
  performs matrix multiplication, 596
Multivariate sampling, 960, 976–979
MVE call, 862

NAME function
  listing the names of arguments, 867
NCOL function
  finding the number of columns of a matrix, 868
NLENG function
  finding the size of an element, 870
Nonlinear optimization subroutines
  advanced examples, 395
  conjugate gradient optimization, 873
  control parameters vector, 392, 393
  double-dogleg optimization, 874, 876
  feasible point computation, 880
  finite difference approximations, 876–879
  finite-difference approximations, 377, 378
  global vs. local optima, 370
  hybrid quasi-Newton optimization, 881, 883
  Kuhn-Tucker conditions, 371
  least squares methods, 881, 883, 884
  Levenberg-Marquardt optimization, 883, 884
  Nelder-Mead simplex optimization, 884–886, 888
  Newton-Raphson optimization, 888–890
  Newton-Raphson ridge optimization, 891, 893
  objective function and derivatives, 372–377
  options vector, 381–385
  parameter constraints, 379–381
  printing optimization history, 394, 395
  quadratic optimization, 898, 899, 901
  quasi-Newton optimization, 893, 894, 896–898
  return codes, 372
  termination criteria, 385, 387, 389–391
  trust-region optimizations, 901, 902

NORM function
  finding the vector of matrix norm, 902
NORMAL function
  generating a pseudorandom normal deviate, 903
NROW function
  finding the number of rows of a matrix, 904
NUM function
  producing a numeric representation of a character matrix, 904

Numerical Analysis Functions, 576
Numerical integration, 951, 952, 954, 955, 957
  adaptive Romberg method, 952
  of differential equations, 904, 906–908, 910
  specifying subintervals, 952
  two-dimensional integration, 955

ODSGRAPH call, 911
OPSCAL Function, 913
Optimization Subroutines, 577
ORPOL function
  generating orthogonal polynomials, 914
Orthogonal factorization, 1007–1009
Orthogonalization
  by ORTVEC call, 920–922, 924

PACKAGE HELP statement
  display help files, 925
PACKAGE INFO statement
  display information, 926
PACKAGE INSTALL statement
  install one or more packages, 926
PACKAGE LIBNAME statement
  create a libref, 927
PACKAGE LIST statement
  list packages, 928
PACKAGE LOAD statement
  create a libref, 929
PACKAGE statement
  install and use packages, 924
PACKAGE UNINSTALL statement
  uninstall packages, 930

Packages, 581
PALETTE function
  return color palette, 931
PARENTNAME function
  return name of argument, 930
PAUSE statement
  interrupting module execution, 936
percentiles, 945

POLYROOT function
  finding zeros of a real polynomial, 936
POWER operator, elementwise
  raises each element to a power, 596
POWER operator, matrix
  raises a matrix to a power, 597
PRINT statement
  printing matrix values, 937

Printing matrices, 1171
PROD function
  multiplying all elements, 939
PRODUCT function
  multiplying matrices of polynomials, 939
PURGE statement
  removing observations marked for deletion, 940
PUSH call, 941
PUT statement
  writing data to an external file, 943
PV function
calculating present value, 944

**QNTL call**
- computing sample quantiles, 945

**Quadratic form maximization**, 847, 848
- quantiles, 945

**QUARTILE function**
- quartile computation, 957
- quartiles, 957

**QUEUE call**
- queuing SAS statements, 958

**QUIT statement**
- exiting from PROC IML, 959

**R language**, 233

**RANCOMB function**
- generate random combinations, 959

**RANDFUN function**
- generating random numbers, 962

**RANDGEN call**
- generating random numbers, 962

**Random multivariate sampling**, 960, 976–979

**Random Number Generation**, 572

**RANDSEED call**
- generating random numbers, 983

**RANGE function**
- finding the range of values, 983

**RANK function**
- ranking elements of a matrix, 984

**RANKTIE function**
- ranking elements of a matrix, 986

**RANPERK function**
- generate random permutations, 981

**RANPERM function**
- generate random permutations, 982

**RATES function**
- converting interest rates, 988

**RATIO function**
- dividing matrix polynomials, 989

**READ statement**
- reading observations from a data set, 994

**Reduction Functions**, 570

**Regression**, 1170
- best subsets, 848
- least absolute value, 798–801
- response surface, 1169

**REMOVE function**
- discarding elements from a matrix, 995

**REMOVE statement**
- removing matrices from storage, 996

**RENAME call**
- renaming SAS data sets, 996

**REPEAT function**
- creating a new matrix of repeated values, 996

**REPLACE statement**
- replacing values, 997

**RESET statement**
- setting processing options, 998

**Reshaping matrices**, 1005

**Response surface regression**, 1169

**RESUME statement**
- resuming execution, 1000

**RETURN statement**
- returning to caller, 1000

**ROOT function**
- performing the Cholesky decomposition of a matrix, 1001

**ROW function**, 1003

**ROWCAT function**
- concatenating rows without blank compression, 1003

**ROWCATC function**
- concatenating rows with blank compression, 1004

**RUN statement**
- executing statements in a module, 1006

**SAMPLE statement**
- sampling from a finite set, 1019

**SAVE statement**
- saving data, 1020

**Scalar Functions**, 569

**SCATTER call**
- create scatter plot, 1021

**Sequential tests**, 1024–1027, 1029–1031, 1033–1035
- group sequential methods, 1031
- minimizing average sample number (ASN), 1033–1035
- randomized clinical trials, 1033–1035
- scaling, 1026
- shifting, 1027

**SERIES call**
- create series plot, 1036

**Set Functions**, 578

**SETDIF function**
- comparing elements of two matrices, 1038

**SETIN statement**
- making a data set current for input, 1039

**SETOUT statement**
- making a data set current for output, 1040

**SHAPE function**
- reshaping and repeating values, 1041

**SHAPECOL function**
- reshaping and repeating values, 1042

**SHOW statement**
- printing system information, 1043

**SIGN REVERSE operator**
- reverses the signs of elements, 598

**SKEWNESS function**
compute sample skewness, 1045
SOLVE function
  solving a system of linear equations, 1045
SOLVELIN call
  solving a sparse symmetric linear system by
direct decomposition, 1046
SORT call
  sorting a matrix, 1047
SORT statement
  sorting a SAS data set, 1048
SORTNDX call
  creating a sorted index for a matrix, 1049
SOUND call
  producing a tone, 1050
SPARSE function
  converting dense to sparse storage, 1051
Sparse Matrix Algorithms, 543, 780
  preconditioners, 543, 1046
Splines, 1052, 1060
  integration of splines, 1059
SPOT function
  calculating spot rates, 1061
SQRSYM function
  converting to a square matrix, 1062
SQR function
  calculating the square root, 1062
SQRVECH function
  converting to a square matrix, 1063
SSQ function
  calculating the sum of squares, 1063
Standardizing numeric data, 1064
START statement
  defining a module, 1064
Statistical Functions, 573
Statistical Graphics, 581
STD function
  computing sample standard deviation, 1066
STOP statement
  stopping execution of statements, 1066
STORAGE function
  listing names of matrices and modules, 1067
STORE statement
  storing matrices and modules, 1067
SUBMIT statement, 226
  parameter substitution, 227, 240
  R statements, 235
  submit R statements, 1069
  submit SAS statements, 1069
SUBSCRIPTS
  select submatrices, 599
SUBSTR function
  taking substrings of matrix elements, 1071
  Substring replacement, 1005
SUBTRACTION operator
  subtracts corresponding matrix elements, 600
SUM function
  summing all elements, 1072
SUMMARY statement
  computing summary statistics, 1072
SVD call
  computing the singular value decomposition,
  1075
SWEEP function
  sweeping a matrix, 1077
SYMSQR function
  converting to a symmetric matrix, 1078
T function
  transposing a matrix, 1079
TABLEADDVAR call
  adds columns from a matrix to a table, 1079
TABLECREATE function
  creates a table from a matrix, 1081
TABLECREATEFROMDATASET function
  creates a table from a SAS data set, 1081
TABLEGETVARDATA function
  creates a matrix from columns of a table, 1082
TABLEGETVARFORMAT function
  returns the formats of the specified columns, 1082
TABLEGETVARINDEX function
  returns the column indices for specified names, 1083
TABLEGETVARINFORMAT function
  returns the informats of the specified columns, 1084
TABLEGETVARLABEL function
  returns the labels of the specified columns, 1084
TABLEGETVARNUMERIC function
  indicates whether the specified column names
  exist, 1086
TABLEISVARMIX function
  indicates whether the specified columns are
  numeric, 1087
TABLEPRINT call
  displays a table, 1087
TABLERIMNAMEVAR call
  changes the names of columns, 1090
Tables, 580
TABLESETVARFORMAT call
  sets the formats of the specified columns, 1091
TABLESETVARINFORMAT call
  sets the informats of the specified columns, 1092
TABLESETVARLABEL call
  sets the labels of the specified columns, 1092
TABLEWROTTODATASET call
creates a SAS data set from a table, 1093
TABULATE call
counting the number of elements in each category, 1094
Termination Statements, 582
Time series analysis and control
AR model selection, 302, 1113
ARMA model prediction, 324, 1111
Bayesian constrained least squares, 343–345
Bayesian seasonal adjustment, 321, 333, 334, 1102, 1103
ISM TIMSAC packages, 348, 349
least squares and Householder transformation, 342, 343
locally stationary multivariate time series, 1108, 1109
locally stationary time series, 1107, 1108
minimum AIC method, 302, 305–307, 329–331
missing values, 347
multivariate time series, 324, 338, 339, 1111
nonstationary covariance function analysis, 1112
nonstationary data analysis, 308, 310, 312–315, 318–321
nonstationary time series, 334–337, 1104, 1106, 1107
overview, 300
periodic AR model, 1110, 1111
roots of AR and MA equations, 327, 328, 1112
smoothness priors modeling, 332, 1104, 1106, 1107
spectral analysis, 339–341
state space and Kalman filter method, 345–347
VAR model, 305–307, 351, 352, 1109, 1110
Time Series Functions, 574
TOEPLITZ function
generating a Toeplitz matrix, 1094
TPSPLINE call
computing thin-plate smoothing splines, 1096
TPSPLNEV call
evaluating thin-plate smoothing splines, 1098
TRACE function
summing diagonal elements, 1101
TRANSPOSE operator
transposing a matrix, 601
Triangular linear systems, 1101
TYPE function
determining matrix types, 1114
UNIFORM function
generating pseudorandom uniform deviates, 1115
UNION function
performing unions of sets, 1115
UNIQUE function
sorting and removing duplicates, 1115
UNIQUEBY function
processing BY groups in a matrix, 1115
USE statement
opening SAS data sets, 1117
VALSET call
perform indirect assignments, 1118
VALUE function
retrieving values, 1119
VAR Function
computing a sample variance, 1120
VARMACOV Call
computing cross-covariance matrices, 1120
VARMALIK Call
computing log-likelihood function, 1122
VARMASIM Call
generating VARMA(p,q) time series, 1123
VEC operator, 1043
VECDIAG function
creating vector from diagonal, 1125
VECH function, 1126
Vector time series analysis
cross-covariance matrix, 296
example, 293, 295
generating a multivariate normal, 297
generating a multivariate time series, 297
log-likelihood function, 296
overview, 293
roots of VARMA characteristic function, 297
VNORMAL Call
generating multivariate normal random series, 1126
VTSROOT Call
calculating characteristic roots, 1128
Wavelet Analysis Functions, 583
WAVFT call
computing fast wavelet transform, 1129
WAVGET call
extracting wavelet information, 1132
WAVIFT call
computing inverse fast wavelet transform, 1134
WAVPRINT call
printing wavelet information, 1136
WAVTHRSH call
thresholding wavelet detail coefficients, 1137
XMULT function
performing extended-precision matrix multiplication, 1137
XSECT function
intersecting sets, 1138
YIELD function
  calculating yield-to-maturity of a cash-flow stream, 1138
Syntax Index

ABORT statement, 602
ABS function, 603
ADDITION operator, 584
ALL function, 603
ALLCOMB function, 604
ALLPERM function, 605
ANY function, 606
APPCORT call, 607
APPEND statement, 608
APPLY function, 611
ARMACOV call, 612
ARMALIK call, 614
ARMASIM function, 615
BAR call, 617
Basic time series subroutines
   ARMACOV subroutine, 279
   ARMALIK subroutine, 279
   ARMASIM function, 279
   example, 278
   overview, 278
BIN function, 621
BLANKSTR function, 623
BLOCK function, 623
BOX call, 624
BRANKS function, 627
BSPLINE function, 628
BTRAN function, 630
BYTE function, 631
CALL statement, 632
CHANGE call, 632
CHAR function, 633
CHOSE function, 634
CLOSE statement, 635
CLOSEFILE statement, 635
COL function, 636
COLVEC function, 637
COMPARISON operator, 585
COMPORT call, 638
CONCAT function, 641
CONCATENATION operator, horizontal, 586
CONCATENATION operator, vertical, 587
CONTENTS function, 642
CONVEXIT function, 642
CORR function, 643
CORR2COV function, 645
COUNTMISS function, 646
COUNTN function, 647
COUNTUNIQUE function, 648
COV function, 649
COV2CORR function, 649
COVLAG function, 650
CREATE statement, 651
CSHAPE function, 653
CUPROD function, 656
CUSUM function, 655
CV function, 656
CVEXHULL function, 657
DATASETS function, 657
DELETE call, 658
DELETE statement, 659
DESIGN function, 660
DESIGNF function, 660
DET function, 661
DIAG function, 662
DIF function, 663
DIMENSION function, 663
DIRECT PRODUCT operator, 588
DISTANCE function, 664
DIVISION operator, 589
DO DATA statement, 668
DO function, 665
DO statement, 666
DO statement, iterative, 667
DO UNTIL statement, 669
DO WHILE statement, 669
DURATION function, 670
ECHELON function, 671
EDIT statement, 672
EIGEN call, 673
EIGVAL function, 677
EIGVEC function, 678
ELEMENT function, 678
ELEMENT MAXIMUM operator, 590
ELEMENT MINIMUM operator, 591
END statement, 679
ENDSUBMIT statement, 679
EXECUTE call, 679
EXECUTEFILE call, 680
EXP function, 683
EXPANDGRID Function, 684
EXPMATRIX function, 683
EXPORTDATASETTO call, 684
EXPORTMATRIXTO call, 685
| Syntax Index |
|--------------|-----------------|
| FARMACOV call, 686 | GPORTPOP call, 729 |
| FARMAFIT call, 688 | GPORTSTK call, 729 |
| FARMALIK call, 689 | GPROBCNT call, 1168 |
| FARMASIM call, 691 | GSSCALE call, 730 |
| FDIF call, 692 | GSCRIPT call, 731 |
| FFT function, 693 | GGET call, 732 |
| FILE statement, 695 | GSHOW call, 733 |
| FIND statement, 696 | GSORT call, 733 |
| FINISH statement, 697 | GSTART call, 735 |
| FORWARD function, 698 | GSTOP call, 736 |
| Fractional time series subroutines | GSTRLEN call, 736 |
| syntax, 300 | GTEXT and GVTEXT calls, 737 |
| Fractionally integrated time series subroutines | GWINDOW call, 738 |
| example, 297 | GXAXIS and GYAXIS calls, 738 |
| FARMACOV subroutine, 300 | GXYPLOT call, 1168 |
| FARMAFIT subroutine, 300 | HADAMARD function, 740 |
| FARMALIK subroutine, 300 | HALF function, 741 |
| FARMASIM subroutine, 300 | HANKEL function, 741 |
| FDIF subroutine, 300 | HARMEN function, 742 |
| overview, 297 | HDIR function, 743 |
| FREE statement, 698 | HEATMAPCONT call, 743 |
| FROOT function, 699 | HEATMAPDISC call, 747 |
| FULL function, 700 | HERMITE function, 749 |
| GAEND call, 702 | HISTOGRAM Call, 750 |
| GAGETMEM call, 702 | HOMOGEN function, 752 |
| GAGETVAL call, 703 | I function, 753 |
| GAINIT call, 703 | IF-THEN/ELSE statement, 754 |
| GAREEVAL call, 704 | IFFT function, 755 |
| GAREGEN call, 705 | IMLMLIB Module Library |
| GASETCRO call, 705 | modules reference, 1064, 1167, 1169 |
| GASETMUT call, 709 | overview, 1163, 1165 |
| GASETOBJ call, 711 | IMPORTDATASETFROMR call, 756 |
| GASETSEL call, 712 | IMPORTMATRIXFROMR call, 758 |
| GASETUP function, 713 | INDEX CREATION operator, 592 |
| GBLKVP call, 715 | INDEX statement, 759 |
| GBLKVPD call, 716 | INFILE statement, 760 |
| GBXWHSKR call, 1168 | INPUT statement, 761 |
| GCLOSE call, 716 | INSERT function, 763 |
| GDELETE call, 716 | INT function, 764 |
| GDRAW call, 717 | INV function, 764 |
| GDRAWL call, 717 | INVUPDT function, 766 |
| GENEIG call, 718 | IPF call, 768 |
| GEOMEAN function, 719 | ISEMPTY function, 779 |
| GGRID call, 720 | ISSKIPPED function, 779 |
| GINCLUDE call, 721 | ITSOLVER call, 780 |
| GINV function, 721 | J function, 784 |
| GOPEN call, 723 | JROOT function, 784, 785 |
| GOTO statement, 724 | KALCVF call, 283, 290, 291, 785, 789 |
| GPIE call, 725 | KALCVS call, 789 |
| GPIXEY call, 726 | KALDIFF call, 291, 792 |
| GPOINT call, 727 | KALDFS call, 795 |
Kalman filter subroutines
   examples, 282
   KALCVF subroutine, 281
   KALCVS subroutine, 281
   KALDFF subroutine, 281
   KALDFS subroutine, 281
   overview, 280
   syntax, 281, 785
KRONECKER product, 588
KURTOSIS function, 797

LAG function, 797
LAV call, 798–801
LCP call, 802
LENGTH function, 805
LINK statement, 805
LIST statement, 806
LISTADDITEM call, 807
LISTCREATE function, 807
LISTDELETEITEM call, 808
LISTDELETEITEMNAME call, 809
LISTGETALLNAMES function, 809
LISTGETITEM function, 810
LISTGETITEMNAME function, 811
LISTGETSUBITEM function, 812
LISTINDEX function, 812
LISTINSERTITEM call, 813
LISTLEN function, 814
LISTSETITEM call, 814
LISTSETNAME call, 815
LISTSETSUBITEM call, 815
LMS call, 816
LOAD statement, 825
LOC function, 825
LOG function, 826
LOGABSDET function, 827
LOGICAL operator, 593
LP call, 827
LPSOLVE call, 828
LTS call, 830
LUPDT call, 837
MAD function, 838
MAGIC Function, 840
MAHALANOBIS function, 841
MARG call, 842
MATTRIB statement, 844
MAX function, 846
MAXQFORM call, 846–848
MCD call, 849
MEAN function, 853
MEDIAN function, 855
MILPSOLVE call, 855
MIN function, 859
MOD function, 859
MODULEI call, 860
MODULEIC function, 861
MODULEIN function, 861
MULTIPLICATION operator, elementwise, 594
MULTIPLICATION operator, matrix, 596
MVE call, 862
NAME function, 867
NCOL function, 868
NDX2SUB function, 868
NLENG function, 870
Nonlinear optimization subroutines
   advanced examples, 395
   introductory examples, 361
   details, 370
   NLPCG Call, 399
   NLPCG call, 873
   NLPDD Call, 403, 407, 424, 874, 876
   NLPDD call, 874
   NLPFD call, 414, 877, 879
   NLPFD call, 876, 878
   NLPFEA call, 880
   NLPFQN Call, 881, 883
   NLPFQN call, 881
   NLPFG Call, 415, 884
   NLPML call, 883
   NLPNMS Call, 884, 888
   NLPNMS call, 884, 885
   NLPNRA Call, 889, 890
   NLPNRA call, 888
   NLPNRR call, 891
   NLPNRR call, 891
   NLPQ call, 408, 410, 428, 894, 896–898
   NLPQ call, 893
   NLPQUA Call, 899, 901
   NLPQUA call, 898
   NLPTR Call, 397, 413, 902
   NLPTR call, 901
   overview, 359
   syntax, 870
NORM function, 902
NORMAL function, 903
NROW function, 904
NUM function, 904
ODE call, 904, 906–908, 910
ODSGRAPH call, 911
OK= option
   SUBMIT statement, 1070
OPSCAL function, 913
ORPOL function, 914
ORTVEC call, 920–922, 924
PACKAGE HELP statement, 925
Syntax Index

PACKAGE INFO statement, 926
PACKAGE INSTALL statement, 926
PACKAGE LIBNAME statement, 927
PACKAGE LIST statement, 928
PACKAGE LOAD statement, 929
PACKAGE statement, 924
PACKAGE UNINSTALL statement, 930
PALETTE function, 931
PARENTNAME function, 930
PAUSE statement, 936
POLYROOT function, 936
POWER operator, elementwise, 596
POWER operator, matrix, 597
PRINT statement, 937
PROC IML Statement, 8, 551
PROD function, 939
PRODUCT function, 939
PURGE statement, 940
PUSH call, 941
PUT statement, 943
PV function, 944
QNTL call, 945
QR call, 947–951
QUAD call, 951, 952, 954, 955, 957
QUADREG call, 1169
QUARTILE function, 957
QUEUE call, 958
QUIT statement, 959

R option
   SUBMIT statement, 1070
RANCOMB function, 959
RANDDIRICHLET function, 960
RANDFUN function, 962
RANDGEN call, 962
RANDMULTINOMIAL function, 976
RANDMVN function, 977
RANDNORMAL function, 978
RANDSEED call, 983
RANDWISHART function, 979
RANGE function, 983
RANK function, 984
RANKTIE function, 986
RANPERK function, 981
RANPERM function, 982
RATES function, 988
RATIO function, 989
RDODT call, 990–992
READ statement, 994
REGRESS call, 1170
REMOVE function, 995
REMOVE statement, 996
RENAME call, 996
REPEAT function, 996
REPLACE statement, 997
RESET statement, 998
RESUME statement, 1000
RETURN statement, 1000
ROOT function, 1001
ROW function, 1003
ROWCAT function, 1003
ROWCATC function, 1004
ROWVEC function, 1005
RSUBSTR function, 1005
RUN statement, 1006
RUPDT call, 990–992, 1006
RZLIND call, 1007–1011, 1013–1018
SAMPLE statement, 1019
SAVE statement, 1020
SCATTER call, 1021
SEQ call, 1024–1027, 1029–1031, 1033–1035
SEQSCALE call, 1024–1027, 1029–1031, 1033–1035
SEQSHIFT call, 1024–1027, 1029–1031, 1033–1035
SERIES call, 1036
SETDIF function, 1038
SETIN statement, 1039
SETOUT statement, 1040
SHAPE function, 1041
SHAPECOL function, 1042
SHOW statement, 1043
SIGN REVERSE operator, 598
SKEWNESS function, 1045
SOLVE function, 1045
SOLVELIN call, 1046
SORT call, 1047
SORT statement, 1048
SORTNDX call, 1049
SOUND call, 1050
SPARSE function, 1051
SPLINE call, 1052
SPLINEC call, 1052
SPLINEV function, 1060
SPOT function, 1061
SQRSYM function, 1062
SQRT function, 1062
SQRVECH function, 1063
SSQ function, 1063
STANDARD function, 1064
START statement, 1064
STD function, 1066
STOP statement, 1066
STORAGE function, 1067
STORE statement, 1067
SUB2NDX call, 1068
SUBMIT statement, 1069
   OK= option, 1070
R option, 1070
SUBSCRIPTS, 599
SUBSTR function, 1071
SUBTRACTION operator, 600
SUM function, 1072
SUMMARY statement, 1072
SVD call, 1075
SWEEP function, 1077
SYMSIZE= option, 8, 551
PROC IML statement, 8
SYMSQR function, 1078

T function, 1079
TABLEADDVAR call, 1079
TABLECREATE function, 1081
TABLECREATEFROMDATASET function, 1081
TABLEGTVARDATA function, 1082
TABLEGTVARFORMAT function, 1082
TABLEGTVARINDEX function, 1083
TABLEGTVARINFORMAT function, 1084
TABLEGTVARLABEL function, 1084
TABLEGTVARNAME function, 1085
TABLEGTVARTYPE function, 1086
TABLEISEXISTINGVAR function, 1086
TABLEISVARNUMERIC function, 1087
TABLEPRINT call, 1087
TABLERENAMENVAR call, 1090
TABLESETVARFORMAT call, 1091
TABLESETVARINFORMAT call, 1092
TABLESETVARLABEL call, 1092
TABLEWRITEETODATASET call, 1093
TABPRT call, 1171
TABULATE call, 1094
TIMSAC subroutines
advanced examples, 350
details, 329
introductory examples, 302
overview, 300
syntax, 329
TSBAYSEA subroutine, 321, 1102, 1103
TSDECOMP subroutine, 320, 1104, 1106, 1107
TSMLOCAR subroutine, 308, 1107, 1108
TSMLOMAR subroutine, 318, 1108, 1109
TSMULMAR subroutine, 305–307, 351, 352, 1109, 1110
TSPEARS subroutine, 1110, 1111
TSPRED subroutine, 324, 352, 1111
TSROOT subroutine, 327, 328, 1112
TSTVCAR subroutine, 1112
TSUNIMAR subroutine, 1113
TOEPLITZ function, 1094
TPSPLINE call, 1096
TPSPLNEV call, 1098
TRACE function, 1101

TRANSPOSE operator, 601
TRISOLV function, 1101
TYPE function, 1114
UNIFORM function, 1115
UNION function, 1115
UNIQUE function, 1115
UNIQUEBY function, 1115
USE statement, 1117
VALSET call, 1118
VALUE function, 1119
VAR Function, 1120
VARMACOV Call, 1120
VARMALIK Call, 1122
VARMASIM Call, 1123
VECDIAG function, 1125
VECH function, 1126
Vector time series subroutines
example, 293, 295
overview, 293
syntax, 296
VARMACOV subroutine, 296
VARMALIK subroutine, 296
VARMASIM subroutine, 297
VNORMAL subroutine, 297
VTSROOT subroutine, 297
VNORMAL Call, 1126
VTSROOT Call, 1128
WAVFT call, 1129
WAVGET call, 1132
WAVIFT call, 1134
WAVPRINT call, 1136
WAVTHRSH call, 1137
WORKSIZE= option, 8, 551
PROC IML statement, 8
XMULT function, 1137
XSECT function, 1138

YIELD function, 1138
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.