SAS® Viya™ 3.1 ODS Graphics: Procedures Guide
Contents

PART 1 Introduction to the Procedures 1

Chapter 1 Introduction to SAS ODS Graphics Procedures 3
- About the SAS ODS Graphics Procedures 3
- Using SAS Studio 4
- Using Data That Is Processed In CAS 5
- Components of a Graph 6
- Creating Single-Cell Graphs 7
- Creating Multi-Cell Graphs 8
- Creating Paneled Scatter Plots 9
- About the Examples in This Book 10
- About the SASHELP and the SAS Sample Library 11
- References 11

Chapter 2 Overview of Plots and Charts 13
- Alphabetical List of Plots and Charts 14
- Basic Plots and Charts 14
- Fit and Confidence Plots 35
- Distribution Plots 39
- Categorization Plots and Charts 44

Chapter 3 SAS Statements That Are Used with ODS Graphics Procedures 55
- Overview of SAS Statements That Are Used with ODS Graphics Procedures 55
- Dictionary 56

PART 2 The Procedures 87

Chapter 4 SGPANEL Procedure 89
- Overview: SGPANEL Procedure 90
- Concepts: SGPANEL Procedure 91
- Syntax: SGPANEL Procedure 94
- Examples: SGPANEL Procedure 594

Chapter 5 SGPLOT Procedure 601
- Overview: SGPLOT Procedure 602
- Concepts: SGPLOT Procedure 604
- Syntax: SGPLOT Procedure 605
- Examples: SGPLOT Procedure 1187

Chapter 6 SGSCATTER Procedure 1201
- Overview: SGSCATTER Procedure 1201
- Concepts: SGSCATTER Procedure 1203
- Syntax: SGSCATTER Procedure 1205
- Examples: SGSCATTER Procedure 1250

Chapter 7 Common Concepts 1257
- Overview of the Common Concepts 1257
Plot Type Compatibility ... 1258
Plot Axes ... 1259
Legends ... 1260
Automatic Differentiation of Visual Attributes 1264
Fit Policies for Axis Tick Values, Curve Labels, and Data Labels 1265
Marker Fills and Outlines ... 1267

Chapter 8 • Commonly Used Attribute Options .. 1271
General Syntax for Attribute Options .. 1271
Line Attributes and Patterns ... 1272
Fill Attributes ... 1274
Marker Attributes and Symbols .. 1274
Text Attributes .. 1276
Units of Measurement ... 1277
Color-Naming Schemes .. 1278

PART 3 Controlling the Procedure Output .. 1285

Chapter 9 • Controlling the Appearance of Your Graphs 1287
Using Plot Options to Control Graph Appearance 1287
Using Data Skins .. 1291
Subpixel Rendering ... 1294
Output for Grouped versus Non-Grouped Data 1295
Style Elements for Use with ODS Graphics 1300

Chapter 10 • Managing Your Graphics with ODS 1309
Using the ODS GRAPHICS Statement 1309
Controlling the Size of Your Graph .. 1310
Adding Data Tips and Other Features 1311
Resetting ODS GRAPHICS Options ... 1312

PART 4 SG Attribute Maps .. 1313

Chapter 11 • Using Attribute Maps to Control Visual Attributes 1315
Overview of Attribute Maps .. 1315
About Discrete Attribute Maps ... 1315
About Range Attribute Maps ... 1316

Chapter 12 • Using Discrete Attribute Maps .. 1317
Main Tasks for Discrete Attribute Mapping 1317
Discrete Attribute Map Data Sets .. 1318
Modify the Procedure to Use the Discrete Attribute Map Data Set 1324
Example: Create a Plot That Uses a Single Discrete Attribute Map 1325
Example: Combine Multiple Discrete Attribute Maps in a Graph 1326
Example: Create a Panel That Uses an Attribute Map 1328
Example: Use a Discrete Attribute Map with an Axis Table 1329

Chapter 13 • Using Range Attribute Maps ... 1331
Main Tasks for Range Attribute Mapping 1331
Range Attribute Map Data Sets ... 1332
Modify the Procedure to Use the Range Attribute Map Data Set 1337
Part 1

Introduction to the Procedures

Chapter 1
 Introduction to SAS ODS Graphics Procedures .. 3

Chapter 2
 Overview of Plots and Charts ... 13

Chapter 3
 SAS Statements That Are Used with ODS Graphics Procedures 55
Chapter 1
Introduction to SAS ODS Graphics Procedures

About the SAS ODS Graphics Procedures

The ODS Graphics procedures, sometimes called ODS Statistical Graphics procedures, use ODS Graphics functionality to produce plots for exploratory data analysis and for customized statistical displays. The procedures provide a simple, high-level syntax that enables you to produce sophisticated graphs by using a wide array of plot types and layouts. You can create scatter plots, histograms, bar charts, box plots, classification panels, scatter plot matrices, and many other types of statistical and business graphs. Your graphs can have titles, footnotes, legends, and other graphics elements.

The procedures support statistical analysis and can create simple or complex graphical views of your data. Though the procedures were initially designed to facilitate the production of standard statistical graphs, they are also well suited for the production of non-statistical or business graphs.

These are the ODS Graphics procedures:

SGPLOT
creates single-cell plots with a variety of plot and chart types and overlays.
SGPANEL
creates classification panels for one or more classification variables. Each graph cell
in the panel can contain either a simple plot or multiple, overlaid plots.

Note: The SGPLOT and SGPANEL procedures largely support the same types of
plots and charts. For this reason, the two procedures have an almost identical
syntax. The main distinction between the two procedures is that the SGPANEL
procedure produces a panel of graphs, one for each level of a classification
variable.

SGSCATTER
creates scatter plot panels and scatter plot matrices with optional fits and ellipses.

An ODS destination must be open to create output from these procedures. In SAS
Studio, the ODS HTML5, ODS RTF, and ODS PDF destinations are open by default.
You can use the ODS destination options and the ODS GRAPHICS statement options to
control many aspects of your graph output. For more information, see Chapter 10,
“Managing Your Graphics with ODS,” on page 1309.

The procedures have two facilities that enable you to modify graph output:

• The SG annotation feature enables you to add text, shapes, images, and other
annotations to graph output.

• SG attribute maps enable you to control the visual attributes that are applied to
specific data values in your graphs. For example, if you create a graph that plots
items sold in different countries, you can specify the display attributes for the sales
data of each country by name. Attribute maps enable you to ensure that particular
visual attributes are applied based on the value of the data rather than the position of
the data in the data set.

The ODS Graphics procedures enable you to create complex statistical graphs that use
the principles of effective graphics\(^1\) to accurately communicate the results of your
analysis to your consumers. The minimal coding required enables you to focus on your
statistical analysis instead of the visual appearance of your graphs.

See Also

“Overview of ODS Graphics Software” on page 1467

Using SAS Studio

SAS Studio is a web interface to the SAS system. Using SAS Studio, you can write
programs as well as access your SAS resources such as data, libraries, and programs.
You can also use the predefined tasks in SAS Studio to create basic graphs and generate
the SAS code for those graphs.

By default, output is generated in the HTML, PDF, and RTF formats. After running your
code, you can download and open the generated output for these formats.

You can change the default output to specify only the output that you want. You can also
change the default style for your output to any of the ODS styles that are available. You
make these changes in the Preferences window in SAS Studio.

If you want greater control over your graphic output, you can customize the output
environment in SAS Studio.

\(^1\) For more information about the principles of effective graphics, see Cleveland (1993) and Robbins (2005).
Using Data That Is Processed In CAS

Overview of Using Data That Is Processed In CAS

When data resides in the SAS Cloud Analytic Services (CAS) environment, the data can be accessed by the ODS Graphics procedures through the CAS LIBNAME engine. The CAS LIBNAME engine enables the procedures to access and download CAS tables to the SAS client, such as SAS Studio. For more information about creating a LIBNAME, see SAS Cloud Analytic Services: Language Reference.

For this release of SAS Viya, the analytics for the ODS Graphics procedures are performed in the SAS client instead of the CAS environment. Therefore, for large data situations, it is recommended that you summarize or reduce the data before attempting to graph it. For example, in CAS procedure you can use the AGGREGATE action to summarize your large data to another CAS table, Then, you can reference the summarized CAS data from the SGPLOT or SGPANEL procedures to create a bar chart using the HBARPARM or VBARPARM statements.

For examples of graphing data that is processed in CAS, see SAS Cloud Analytic Services: Graphing Your Output.

User-Defined Formats

When using user-defined formats, be aware that a format created in the FORMAT procedure is not automatically made available to the CAS environment. To make sure the format is available to both the CAS environment and the SAS client, use the CASFMTLIB option on the FORMAT procedure to export the format to the CAS environment. With this option, the format is also written locally in the SAS client environment. The CASFMTLIB option enables the format used for the summarization process in CAS to match the format used for the graph rendering.

Data Order

The ODS Graphics procedures use data order in many instances to display your data. For example, when you create a graph that has grouped data, the group attribute assignment of the GraphData1 ... GraphData n style elements normally uses data order.

Data order in CAS tables can be unpredictable. Graphs generated using SAS local data are consistent across multiple runs. Graphs generated using CAS data might vary across multiple runs. Because of this unpredictability, when the procedures use CAS data, the group attribute assignment of GraphData1 ... GraphData n style elements is changed from data order to ascending order. For character data, the assignment is based on an ascending formatted order. For numeric data, the assignment is based on an unformatted ordinal order.

This sorting affects the following:

- style attributes
- group order
- order for the GroupDisplay= option
- discrete axes
The connect order for series, band, step, and box plots uses the axis order, by default.

Note: If you use a discrete attribute map, the group assignment mentioned above has no effect.

In addition, the following options that support DATA order do not support that value when using CAS data:

- SORT= option in the PANELBY statement (SGPANEL procedure)
- GROUPORDER= option in several statements including those for categorization plots, box plots, high-low plots, and others
- SORTORDER= option in the KEYLEGEND statement
- DISCRETEORDER option on the axis statement

Components of a Graph

In general, a graph is made up of the following parts:

- titles and footnotes
- one or more cells that contain a composite of one or more plots
- legends, which can reside inside or outside a cell

The following figure shows the different parts of a graph:

Figure 1.1 Components of a Graph
Graph

a visual representation of data. The graph can contain titles, footnotes, legends, and one or more cells that have one or more plots.

Cell

a distinct rectangular subregion of a graph that can contain plots, text, and legends.

Title

descriptive text that is displayed above any cell or plot areas in the graph.

Plot

a visual representation of data such as a scatter plot, a series line, a bar chart, or a histogram. Multiple plots can be overlaid in a cell.

Legend

refers collectively to the legend border, one or more legend entries (where each entry has a symbol and a corresponding label) and an optional legend title.

Axis

refers collectively to the axis line, the major and minor tick marks, the major tick mark values, and the axis label. Each cell has a set of axes that are shared by all the plots in the cell. In multi-cell graphs, the columns and rows of cells can share common axes if the cells have the same data type.

Footnote

descriptive text that is displayed below any cell or plot areas in the graph.

Creating Single-Cell Graphs

The SGPLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is assigned to a different vertical axis. Data labels have been added for easy reference.
The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```
proc sgplot data=sashelp.class;
  histogram height;
  density height;
  density height / type=kernel;
run;
```

The following example creates a panel of loess curves using the default PANEL layout.

```
title1 "Cholesterol Levels for Age > 60";
proc sgpanel data=sashelp.heart(
   where=(AgeAtStart > 60)) ;
panelby sex / novarname;
    loess x=weight y=cholesterol / clm;
run;
title1;
```

See Also

Chapter 5, “SGPLOT Procedure,” on page 601

Creating Multi-Cell Graphs

The SGPANEL procedure creates a panel for the values of one or more classification variables. Each graph cell in the panel can contain either a single plot or multiple overlaid plots.

The SGPANEL procedure supports most of the plots and overlays that the SGPLOT procedure supports. For this reason, the two procedures have an almost identical syntax. As with the SGPLOT procedure, options are available for specifying colors, marker symbols, and other attributes.

The procedure syntax supports four types of panel layouts: PANEL, LATTICE, COLUMNLATTICE, and ROWLATTICE.

The following example creates a panel of loess curves using the default PANEL layout. In the PANEL layout, each graph cell represents a specific crossing of values for one or more classification variables. A label above each cell identifies the crossing of values that is represented in the cell. By default, cells are created only for crossings that are represented in the data set.
The following example creates a panel of box plots in a LATTICE layout. The graph cells are arranged in rows and columns by using the values of two classification variables. Labels above each column and to the right of each row identify the classification value that is represented by that row or column. A cell is created for each crossing of classification values.

```sas
title1 "Distribution of Cholesterol Levels";
proc sgpanel data=sashelp.heart;
panelby weight_status sex / layout=lattice
   novarname;
hbox cholesterol;
run;
title1;
```

For more information about the SGPANEL procedure and the procedure syntax, see Chapter 4, “SGPANEL Procedure,” on page 90.

Creating Paneled Scatter Plots

The SGSCATTER procedure creates a paneled graph for multiple combinations of variables.

The procedure syntax supports the following features:

- three types of graph layouts: PLOT, COMPARE, and MATRIX
- basic scatter plots
- fit and confidence plots: loess curves, regression curves, penalized B-spline curves, and ellipses
- distribution plots: histograms and density curves (in the diagonal cells of a matrix)
- legends

The following example creates a panel using the PLOT layout. The PLOT statement creates a paneled graph of scatter plots where each cell has its own independent set of axes.

```sas
proc sgscatter data=sashelp.cars;
plot mpg_highway*weight msrp*horsepower
   / group=type;
run;
```
The following example creates a panel using the COMPARE layout. The COMPARE statement creates a paneled graph that uses common axes for each row and column of cells. Cells are created for all crossing of the X and Y variables.

```sas
proc sgscatter data=sashelp.cars;
    compare y=mpg_highway
        x=(weight enginesize horsepower )
        / group=type;
run;
```

The following example creates a panel using the MATRIX layout. The MATRIX statement creates a matrix of scatter plots where each cell represents a different combination of variables. In the diagonal cells, you can place labels or histograms with or without density curves.

```sas
proc sgscatter data=sashelp.iris
    (where=(species eq "Virginica");
    matrix petallength petalwidth sepallength
        / ellipse=(type=mean)
        diagonal=(histogram kernel);
run;
```

For more information about the SGSCATTER procedure and the procedure syntax, see Chapter 6, “SGSCATTER Procedure,” on page 1201.

About the Examples in This Book

The example programs that are shown in this document often provide all of the code that you need to generate the graphs that are shown in the figures. We encourage you to copy and paste the example code into your SAS session and generate the graphs for yourself. The examples are written to be runnable in SAS Studio. Unless otherwise noted, the examples use the default ODS destination.

Because of size limitations, the graphs in this document are typically not shown in their default size of 640 pixels by 480 pixels. They are scaled down to meet the size requirements of our documentation production system. When graphs are reduced in size, the smaller graphs might have scaled down font sizes. Also, their numeric axes might
display the tick values differently. Thus, the graphs that you generate from the example programs will not always look identical to the graphs that are shown in the figures. However, both graphs will accurately represent the data.

When you produce your own graphical output, you can change the graph size and attributes, if needed. You can use the ODS GRAPHICS statement options to control many aspects of your graph output. For more information, see Chapter 10, “Managing Your Graphics with ODS,” on page 1309.

About the SASHELP and the SAS Sample Library

Many examples process sample data contained in a SAS data set that is stored in the SASHELP library. Each example specifies the data set name.

In SAS Studio, you can access the SASHELP library in the Libraries section of the navigation pane.

Many of the examples in this guide also reside in the SAS Sample Library. These examples include the name of the sample library member in their syntax description.

You can download the SAS samples that are used by the ODS Graphics Procedures. Download these samples in zipped form from the documentation page for the Base SAS Output Delivery System (ODS) Graphics Suite on support.sas.com.

References

Chapter 2
Overview of Plots and Charts

Alphabetical List of Plots and Charts ... 14
Basic Plots and Charts ... 14
About Basic Plots and Charts ... 14
About Band Plots ... 15
About Block Plots ... 16
About Bubble Plots ... 17
About Fringe Plots ... 18
About Heat Maps ... 18
About High-Low Plots ... 20
About Lines ... 22
About Needle Plots ... 25
About Scatter Plots ... 26
About Series Plots ... 28
About Spline Plots ... 29
About Step Plots ... 30
About Text Plots ... 31
About Text Insets ... 32
About Vector Plots ... 34
Fit and Confidence Plots ... 35
About Fit and Confidence Plots ... 35
About Ellipse Plots ... 35
About Loess Plots ... 36
About Penalized B-Spline Plots ... 37
About Regression Plots ... 38
Distribution Plots ... 39
About Distribution Plots ... 39
About Box Plots ... 39
About Density Plots ... 41
About Histograms ... 42
Categorization Plots and Charts ... 44
About Categorization Plots and Charts ... 44
About Bar Charts ... 44
About Dot Plots ... 49
About Line Charts ... 50
About Waterfall Charts ... 52
Alphabetical List of Plots and Charts

The following table lists all of the plots and charts in alphabetical order for easy access. Select a plot or chart to see its description.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band plot</td>
<td>Line, parameterized</td>
</tr>
<tr>
<td>Bar chart</td>
<td>Line, reference</td>
</tr>
<tr>
<td>Block plot</td>
<td>Loess plot</td>
</tr>
<tr>
<td>Box plot</td>
<td>Needle plot</td>
</tr>
<tr>
<td>Bubble plot</td>
<td>Penalized B-Spline plot</td>
</tr>
<tr>
<td>Density plot</td>
<td>Regression plot</td>
</tr>
<tr>
<td>Dot plot</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>Ellipse plot</td>
<td>Series plot</td>
</tr>
<tr>
<td>Fringe plot</td>
<td>Spline plot</td>
</tr>
<tr>
<td>Heat map</td>
<td>Step plot</td>
</tr>
<tr>
<td>High-Low plot</td>
<td>Text Inset</td>
</tr>
<tr>
<td>Histogram</td>
<td>Text plot</td>
</tr>
<tr>
<td>Line chart</td>
<td>Vector plot</td>
</tr>
<tr>
<td>Line, drop</td>
<td>Waterfall chart</td>
</tr>
</tbody>
</table>

See Also

“Plot Type Compatibility” on page 1258

Basic Plots and Charts

About Basic Plots and Charts

You can use the SGPLOT and SGPANEL procedures to produce basic plots and charts.

The plot and chart statements include options for controlling how the output is displayed. Many of the options are unique to the particular plot or chart. However, some general options apply to most of the basic plots and charts.

For example, options enable you to do the following:

- specify colors, line attributes, and other visual features.
- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
- use a secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.
- reference an ID variable in attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
The basic plots and charts are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

```plaintext
ods graphics on / width=4in;
ods graphics on / width=4.5in;
```

See Also

“Plot Type Compatibility” on page 1258

About Band Plots

A band plot creates a band that highlights part of the plot and shows upper and lower limits. The input data should be sorted by the X or Y variable.

The following examples show upper and lower mean weight values for a class of students. The first two examples use the SGPLOT procedure to show the same band plotted along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a matrix that is paneled by gender.

```plaintext
title "Weight Limits on the Y Axis";
proc sgplot data=sashelp.classfit;
  where age > 12;
  band x=name lower=lowermean upper=uppermean;
run;
title;
```

```plaintext
title "Weight Limits on the X Axis";
proc sgplot data=sashelp.classfit;
  where age > 12;
  band y=name lower=lowermean upper=uppermean;
run;
title;
```

```plaintext
title "Weight Limits on the Y Axis";
proc sgplot data=sashelp.classfit;
  where age > 12;
  band x=name lower=lowermean upper=uppermean;
run;
title;
```
Options are available that enable you to customize the band plot and enhance its appearance. For example, you can do the following:

- add labels to the upper and lower edges of the band, specify how the labels are positioned, and set other attributes for the labels
- specify fill and outline attributes
- specify legend labels and plot transparency

Note: This list does not include all available options.

See Also

- “BAND Statement” on page 114 (SGPANEL procedure)
- “BAND Statement” on page 619 (SGPLOT procedure)

About Block Plots

Block plots show continuous ranges of data that have the same BLOCK= value. Block plots are available in the SGPLOT and SGPANEL procedures.

In the following example, blocks represent students of different ages.

Block plots can also be used with an interval (numeric linear or time) X variable. Options are available that enable you to customize the block plot and enhance its appearance. For example, you can do the following:

- specify attributes for the blocks, such as outlines, fill color, and transparency.
- alternate the fill color used by the blocks.
• control the display of the text within the blocks. For example, you can split block text into multiple lines in order to fit within the containing block.

Note: This list does not include all available options.

About Bubble Plots

Bubble plots show the relative magnitude of the values of a variable. The values of two variables determine the position of the bubble on the plot, and the value of a third variable determines the size of the bubble.

The following examples show the height and weight values for a class. The size of each bubble is determined by the student’s age. Examples are provided for the SGPLOT and SGPANEL procedures.

```
proc sgplot data=sashelp.class;
  bubble x=height y=weight size=age;
run;
```

```
proc sgpanel data=sashelp.class;
  panelby sex;
  bubble x=height y=weight size=age;
run;
```

Options are available that enable you to customize the bubble plot and enhance its appearance. For example, you can do the following:

• control the size of the largest and the smallest bubble
• specify fill and outline attributes, and data labels and their attributes
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page

Note: This list does not include all available options.

See Also

• “BUBBLE Statement” on page 129 (SGPANEL procedure)
• “BUBBLE Statement” on page 638 (SGPLOT procedure)
About Fringe Plots

A fringe plot displays data values as a fringe on the X or X2 axis of the plot, and often is used to enhance a histogram or a density plot.

The following examples use fringe lines to compare miles-per-gallon ratings for vehicles from different regions.

```sas
proc sgplot data=sashelp.cars;
  histogram mpg_highway;
  fringe mpg_highway / group=origin height=1in;
run;
```

```sas
proc sgpanel data=sashelp.cars noautolegend;
  where origin in("Europe" "USA");
  panelby origin;
  histogram mpg_highway;
  fringe mpg_highway / height=20 lineattrs=(color=red);
run;
```

Options are available that enable you to customize the fringe plot and enhance its appearance. For example, you can do the following:

- specify the height of the fringe lines, and control line attributes
- control the data tips that are displayed and their attributes
- specify legend labels and plot transparency

Note: This list does not include all available options.

See Also

- “FRINGE Statement” on page 166 (SGPANEL procedure)
- “FRINGE Statement” on page 678 (SGPLOT procedure)

About Heat Maps

Heat maps present data values as rectangular areas with varying colors. The rectangles correspond to X and Y crossings.

In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The frequency or some other statistic is computed for the
response variable. The grid is displayed by coloring each bin with a shade of color computed from a color gradient.

The following two examples create heat maps for participants in a heart disease study. The graphs plot weight and cholesterol. The heat map colors correspond to the frequency for the cholesterol count, as indicated by the gradient legend.

Parameterized heat maps create colored rectangles for each X and Y crossing based on specified response values.
Options are available that enable you to customize the heat map and enhance its appearance. For example, you can do the following:

- (HEATMAP statement only) control aspects of the bins. For example, you can specify the sizes of the bins.
- control the color ramp that is used for the color response.
- (HEATMAP statement only) specify the statistic to use for the response variable.
- specify outlines for the colored rectangles.
- control data tips. For example, you can specify the information to display as well as the format.

Note: This list does not include all available options.

See Also

- “HEATMAP Statement” on page 235 (SGPANEL procedure)
- “HEATMAP Statement” on page 750 (SGPLOT procedure)
- “HEATMAPPARM Statement” on page 242 (SGPANEL procedure)
- “HEATMAPPARM Statement” on page 760 (SGPLOT procedure)

About High-Low Plots

High-low plots show how several values of one variable relate to one value of another variable. Typically, each variable value on the horizontal axis has several corresponding values on the vertical axis.

The following examples show the stock trend for IBM during a particular year. The first two examples use the SGPLOT procedure to show the same plot along the X axis and the Y axis, respectively. The third example uses the SGPANEL procedure to show a paneled graph for Intel and Microsoft stock prices in the same year. Optional values have been specified for the closing stock prices, which are represented as tick marks on the high-low lines.
Options are available that enable you to customize the high-low plot and enhance its appearance. For example, you can do the following:

- use bars instead of lines to represent the data. If you use bars, then you can specify the fill and outline attributes for the bars.

- show tick marks for the open and closing values.

- specify labels and arrowheads for the high and low values.

- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines or bars within a group.

- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “HIGHLOW Statement” on page 249 (SGPANEL procedure)
• “HIGHLOW Statement” on page 768 (SGPLOT procedure)

About Lines

About Reference Lines
You can add horizontal or vertical reference lines to your graphics. You can draw a reference line for each value of a specified variable. Or you can specify one or more explicit values for the reference lines.

The following example shows the height values for a class of students. A horizontal reference line is overlaid on a series plot to show the average height.

```plaintext
proc sgplot data=sashelp.class;
  where (sex="F");
  series x=name y=height;
  reflow 60.8;
run;
```

Options are available that enable you to customize the reference line and enhance its appearance. For example, you can do the following:

- specify a horizontal or vertical line. In the SGPLOT procedure, you can associate the line with a secondary axis.
- specify line attributes, labels, and label attributes.
- specify legend labels and line transparency.
- specify an amount to offset all lines from discrete axis values.
- extend the plot axes to contain the reference lines.

Note: This list does not include all available options.

About Drop Lines
You can create one or more drop lines from data points to one or both axes. The lines can be horizontal, vertical, or both. A drop line is always drawn perpendicular from the specified point to the X, X2, Y, or Y2 axis.

The following examples show the weight values for a class of students. The example drops lines from the point (13, 90) to the respective points on both axes. The LINEATTRS= option specifies that line appearance is determined by the GraphData2 style element. The examples show drop lines in the SGPLOT and SGPANEL procedures.
Options are available that enable you to customize the drop line and enhance its appearance. For example, you can do the following:

- specify a horizontal line, a vertical line, or both. In the SGPLOT procedure, you can associate the line with a secondary axis.
- draw a drop line for each value of a specified variable.
- specify line attributes, labels, and label attributes.
- specify legend labels.
- specify an amount to offset all lines from discrete axis values.
- extend the plot axes to contain the drop lines.

Note: This list does not include all available options.

About Parameterized Lines

Parameterized lines are straight lines specified by a point and a slope. The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

The following example shows weight with respect to height for a class of students. A single line is generated by specifying values for the point and for the slope. The line in the example approximates a line of best fit.
You can generate multiple lines by specifying a numeric variable for any or all required arguments. Examples are provided for the SGPLOT and SGPANEL procedures. The following two examples create lines of best fit for male and female participants in a heart disease study. The lines show weight with respect to height.

The examples first sort the data set by male and female participants. The sorted data is written to a data set named HEART.

```sas
proc sort data=sashelp.heart(keep=height weight sex) out=heart;
by sex;
run;
```

The examples then use the REG procedure and output the regression statistics to a data set named STATS. The STATS data set includes the slope and the Y-intercept for the regression.

```sas
proc reg data=heart outest=stats(rename=(height=slope));
by sex;
model weight=height;
run;
```

Finally, the examples merge the HEART and STATS data sets.

```sas
data heartStats;
merge heart stats(keep=intercept slope sex);
run;
```

The first example uses the SGPLOT procedure to show lines of best fit for females and males in the study. The regression lines are labeled and have their own legend.
The following example uses the SGPANEL procedure to create the same information, which is paneled by gender.

```
proc sgpanel data=heartStats
   noautolegend;
panelby sex;
scatter x=height  y=weight;
lineparm x=0 y=intercept slope=slope;
run;
```

Options are available that enable you to customize the line and enhance its appearance. For example, you can do the following:

• specify line attributes, labels, and label attributes
• specify legend labels and line transparency
• prevent the line from being extended beyond the axis offset

Note: This list does not include all available options.

See Also

• “REFLINE Statement” on page 347 (SGPANEL procedure)
• “REFLINE Statement” on page 874 (SGPLOT procedure)
• “LINEPARM Statement” on page 294 (SGPANEL procedure)
• “LINEPARM Statement” on page 817 (SGPLOT procedure)

About Needle Plots

Needle plots use vertical line segments, or needles, to connect each data point to a baseline.

The following examples show the stock trend during a particular year. Examples are provided for the SGPLOT and SGPANEL procedures. Each example specifies an optional baseline value on the Y axis.

```
title "Stock Trend for IBM";
proc sgplot data=sashelp.stocks
   (where=(date >= "01jan2005"d and stock = "IBM"));
needle x=date y=close / baseline=80;
run;
title;
```
Options are available that enable you to customize the needle plot and enhance its appearance. For example, you can do the following:

- specify a baseline value, as shown in the example.
- add markers to the tips of the needles and specify marker attributes.
- add data labels and specify label attributes.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of needles within a group.
- specify an amount to offset all needle lines from discrete X values.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “NEEDLE Statement” on page 310 (SGPANEL procedure)
- “NEEDLE Statement” on page 834 (SGPLOT procedure)

About Scatter Plots

Scatter plots show the relationship of one variable to another, often revealing concentrations or trends in the data. Typically, each variable value on the horizontal axis can have any number of corresponding values on the vertical axis.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The third example includes error bars.
Options are available that enable you to customize the scatter plot and enhance its appearance. For example, you can do the following:

- add and customize error bars. The previous example shows error bars.
- specify how many times observations are repeated for computational purposes.
- specify marker attributes, data labels, and label attributes.
- specify an amount to offset all markers from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of markers within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.
About Series Plots

Series plots display a series of line segments that connect observations of input data. The following examples show series plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.

```plaintext
title "Stock Trend for IBM";
proc sgplot data=sashelp.stocks
   (where=(date >= "01jan2002"d
          and stock = "IBM");
series x=date y=close;
run;
title;
```

```plaintext
title "Stock Trend for IBM and Microsoft";
proc sgpanel data=sashelp.stocks
   (where=(date >= "01jan2002"d and
          (stock = "IBM" or stock = "Microsoft");
panelby stock;
series x=date y=close;
run;
title;
```

Options are available that enable you to customize the series plot and enhance its appearance. For example, you can do the following:

- specify line and marker attributes, data labels, curve labels, and label attributes.
- specify an amount to offset all markers from discrete axis values.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “SERIES Statement” on page 378 (SGPANEL procedure)
- “SERIES Statement” on page 905 (SGPLOT procedure)
About Spline Plots

Spline plots are similar to series plots but have a quadratic Bézier spline interpolation that produces smooth curves.

The following examples show spline plots for the SGPLOT and SGPANEL procedures. Each spline curve consists of three points. The curves are smooth and do not pass through the middle point.

Both examples use the following data:
```
data lines;
  input X Y Group $;
datalines;
  30  5 A
  15 15 A
  5  10 A
  30  5 B
  15 20 B
  7  15 B
;
run;
```

Options are available that enable you to customize the spline plot and enhance its appearance. For example, you can do the following:
- add arrows to the spline plot, as shown in the examples.
- specify line and arrow attributes, curve labels, and label attributes.
- specify an amount to offset all lines from discrete axis values.
control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group.

- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “SPLINE Statement” on page 397 (SGPANEL procedure)
- “SPLINE Statement” on page 927 (SGPLOT procedure)

About Step Plots

Step plots display a series of horizontal and vertical line segments that connect observations of input data. The plots use a step function to connect the data points. The vertical line can change at each step.

The following examples show step plots of stock trends. Examples are provided for the SGPLOT and SGPANEL procedures.

```plaintext
options are available that enable you to customize the step plot and enhance its appearance. For example, you can do the following:

- add and customize markers and error bars.
- specify line attributes, data labels, curve labels, and label attributes.
- specify an amount to offset all step lines from discrete axis values.
```
• control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the order of lines within a group

• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

• “STEP Statement” on page 410 (SGPANEL procedure)
• “STEP Statement” on page 941 (SGPLOT procedure)

About Text Plots

The TEXT statement displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The first two examples apply fills and outlines to the text markers.

title "Height and Weight";
proc sgplot data=sashelp.class;
 where (age>13);
 text x=weight y=height text=name / outline backfill;
run;
title;

title "Height and Weight";
proc sgplot data=sashelp.class;
 where (age>13);
 text x=weight y=height text=name / outline backfill;
run;
title;

title "Height and Weight";
proc sgpanel data=sashelp.class;
 where (age>13);
 panelby sex;
 text x=weight y=height text=name / outline backfill;
run;
title;
Although you can achieve similar results using the SCATTER statement with the MARKERCHAR= option, the TEXT statement gives you more control over the appearance of the text. For example, you can do the following:

- add fills and outlines to the text markers, as shown in the previous examples. You can also specify a back-light effect for the text.
- rotate the text, reposition the text, and specify text attributes such as font size.
- split the text at one or more specified characters.
- control the display of grouped data. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the axis to use for clustering.
- specify legend labels, plot transparency, and URLs for web pages that are displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also

- “TEXT Statement” on page 434 (SGPANEL procedure)
- “TEXT Statement” on page 964 (SGPLOT procedure)

About Text Insets

A text inset provides an easy way to add text to a graphic. You can insert a text string as well as a series of label-value pairs.

The following example shows a linear regression curve with a text inset in the upper left corner. This text inset specifies a text string and is available only with the SGPLOT procedure.
Insets are also available with the SGPANEL procedure. Unlike the SGPLOT procedure, panel insets do not accept text strings as arguments. The INSET statement in the SGPANEL procedure generates data-driven text from one or more variables. Typically, the variable is a computed numeric value, such as a mean or a sum. For non-computed variables, the statement displays the value of the first observation for each classification.

The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using a NOLABEL option.) The inset values come from the variable data.

The following example shows a panel of histograms along with a text inset for each panel.

To see the code for this example, see “Example: Panel with Insets” on page 287.

Options are available that enable you to customize the text inset and enhance its appearance. For example, you can do the following:

• show or hide a border
• position the text box within the plot
• specify text attributes, add a title, and specify title attributes
• align the labels and values when you specify label-value pairs (SGPLOT procedure only)

Note: This list does not include all available options.

See Also

• “INSET Statement” on page 804 (SGPLOT procedure)
• “INSET Statement” on page 284 (SGPANEL procedure)
About Vector Plots

Vectors are directed line segments. A vector plot is a two-dimensional graphic that uses vectors to represent both direction and magnitude at each point.

The following examples show the relationship of height to weight for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. Both examples specify optional X and Y origins and data labels.

```
title "Height and Weight - Females";
proc sgplot data=sashelp.class;
  where(sex="F");
  vector x=height y=weight
    / yorigin=75 xorigin=60
datalabel;
run;
title;
```

```
title "Height and Weight - All";
proc sgpanel data=sashelp.class;
  panelby sex;
  vector x=height y=weight
    / yorigin=75 xorigin=60
datalabel;
run;
title;
```

Options are available that enable you to customize the vector plot and enhance its appearance. For example, you can do the following:

• specify the origin, as shown in the examples.
• specify line attributes, data labels, and data label attributes. You can also show or hide the arrows, change the arrowhead shape, and the change the arrow direction.
• specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

• “VECTOR Statement” on page 513 (SGPANEL procedure)
• “VECTOR Statement” on page 1046 (SGPLOT procedure)
Fit and Confidence Plots

About Fit and Confidence Plots

You can use the SGPLOT and SGPANEL procedures to produce fit plots and ellipses (the ellipses plot is available with the SGPLOT procedure only). Fit plots represent the line of best fit (trend line) with confidence limits.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. However, some general options apply to most of the fit and confidence plots. For example, options enable you to do the following:

• add confidence limits (CLM) to the plot. When you add CLM limits, you can specify the confidence level, the transparency for the confidence limits, and other visual attributes. You can add CLM limits to loess, penalized B-spline, and regression plots.

• add prediction limits (CLI) for the individual predicted values. When you add CLI limits, you can specify the text that appears for the limits and other visual attributes. You can add CLI limits to penalized B-spline and regression plots.

• control the appearance of the markers and the fit line. You can also specify a smoothing parameter.

• add and customize curve and data labels.

• specify legend labels. You can also show or hide the legend entries for the CLM limits, the CLI limits, and the fit line.

• group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

• specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: Not all of these features are available for all of the plots. Also, the list does not include all available options.

The fit and confidence plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

```ods graphics on / width=4in;
ods graphics on / width=4.5in;
```

See Also

“Plot Type Compatibility” on page 1258

About Ellipse Plots

Ellipse plots create a confidence elliptical curve computed from input data. In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes. Ellipses are available only for the SGPLOT procedure. The SGPANEL procedure does not support ellipses.
The following example shows the relationship of height to weight for a class of students. The example consists of a scatter plot and two ellipses.

Here are the noteworthy features of the example:

- Both ELLIPSE statements use TYPE=PREDICTED. This is the default.
- One ELLIPSE statement uses ALPHA=.2 and the other uses ALPHA=.05.
- The automatically generated legend, which contains an entry for each ellipse and for the scatter plot, has been suppressed. Only the ellipses require a legend.
- A legend was created with entries only for the ellipses. Each ELLIPSE statement specifies a legend label and a plot name. The KEYLEGEND statement uses the NAME value to determine the entries in the legend.

```plaintext
proc sgplot data=sashelp.class
   noautolegend;
scatter x=height y=weight;
ellipse x=height y=weight /
   alpha=.2
   name="eighty"
   legendlabel="80% Prediction";
ellipse x=height y=weight /
   alpha=.05
   name="ninetyfive"
   legendlabel="95% Prediction";
keylegend "eighty" "ninetyfive";
run;
```

See Also

“ELLIPSE Statement” on page 675 (SGPLOT procedure)

About Loess Plots

A loess plot includes a scatter plot of two numeric variables along with an overlaid nonlinear fit line that enables you to perform locally weighted polynomial regression. You can specify the degree of the local polynomials to use for each local regression. You can also change the default smoothing technique that is applied to the fit.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. In both examples, the automatically generated legend for the fit line is not needed and has been suppressed.

```plaintext
proc sgplot data=sashelp.cars
   noautolegend;
where (origin = "Europe");
loess x=weight y=mpg_highway;
run;
```
proc sgpanel data=sashelp.cars
 noautolegend;
where (origin = "Europe");
panelby drivetrain;
 loess x=weight y=mpg_highway;
run;

See Also

- “LOESS Statement” on page 299 (SGPANEL procedure)
- “LOESS Statement” on page 823 (SGPLOT procedure)

About Penalized B-Spline Plots

A penalized B-spline curve includes a scatter plot of two numeric variables along with
an overlaid nonlinear fit line. You can specify the degree of the local polynomials to use
for each local regression. You can also change the default smoothing technique that is
applied to the fit.

The following examples show the relationship of height to weight and the line of best fit
for a class of students. Examples are provided for the SGPLOT and SGPANEL
procedures. In both examples, the automatically generated legend for the fit line is not
needed and has been suppressed.

proc sgplot data=sashelp.class
 noautolegend;
 pbspline x=height y=weight;
run;

proc sgplot data=sashelp.class
 noautolegend;
 pbe spline x=height y=weight;
run;
About Regression Plots

A regression plot includes a scatter plot of two numeric variables along with an overlaid linear or nonlinear fit line that enables you to perform a regression analysis. You can specify one of three types of regression equation: linear, quadratic, or cubic. You can display confidence limits for mean predicted values or individual predicted values.

The following examples show the relationship of height to weight and the line of best fit for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures. The first two examples show the same plot with a linear fit line and a cubic fit line, respectively. The third example shows a paneled graph. In all three examples, the automatically generated legend for the fit line is not needed and has been suppressed.
Distribution Plots

About Distribution Plots

You can use the SGPLOT and SGPANEL procedures to produce plots that characterize the frequency or the distribution of your data.

The plot statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each plot and the options that are available.

The distribution plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

ods graphics on / width=4in;

ods graphics on / width=4.5in;

See Also
“Plot Type Compatibility” on page 1258

About Box Plots

A box plot summarizes the data and indicates the median, upper and lower quartiles, and minimum and maximum values. The plot provides a quick visual summary that easily shows center, spread, range, and any outliers. The SGPLOT and SGPANEL procedures have separate statements for creating horizontal and vertical box plots.

The following examples show product sales summaries. Examples are provided for the SGPLOT and SGPANEL procedures.
The following two examples use the SGPLOT procedure to create a horizontal box plot and a vertical plot, respectively.

```
proc sgplot data=sashelp.prdsale;
  hbox actual;
run;
```

```
proc sgplot data=sashelp.prdsale;
  vbox actual;
run;
```

The following two examples use the SGPANEL procedure to create a horizontal box plot and a vertical plot, respectively. The box plots are paneled by product type.

```
proc sgpanel data=sashelp.prdsale;
  panelby prodtype;
  hbox actual;
run;
```

```
proc sgpanel data=sashelp.prdsale;
  panelby prodtype;
  vbox actual;
run;
```
Options are available that enable you to customize the box plot and enhance its appearance. For example, you can do the following:

- control the box width, the whisker cap shape, and the visual attributes for the mean marker, median line, and the connect lines. You can also hide the whisker caps, mean marker, median line, and the outliers.
- specify data labels and font attributes for the labels.
- specify the method to use for computing the percentiles for the plot.
- group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
- control the display of grouped boxes. For example, you can specify whether the boxes are overlaid or clustered, and the width of each cluster.
- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- specify legend labels and plot transparency.
- assign the analysis variable to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.
- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

See Also

- “HBOX Statement” on page 221 (SGPANEL procedure)
- “VBOX Statement” on page 499 (SGPANEL procedure)
- “HBOX Statement” on page 735 (SGPLOT procedure)
- “VBOX Statement” on page 1031 (SGPLOT procedure)

About Density Plots

After creating a histogram, you might use a density plot to fit various distributions to the data. The most common density plot uses the normal distribution, which is defined by the mean and the standard deviation.

A density plot can be used by itself, combined with another density plot, and overlaid on a histogram.

The following examples show a density plot overlaid on a histogram. Examples are provided for the SGPLOT and SGPANEL procedures.
proc sgplot data=sashelp.class;
histogram height;
density height;
run;

The SGPANEL example shows output that is paneled by gender. The UNISCALE=ROW option specifies that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

proc sgpanel data=sashelp.class;
panelby sex /
 uniscale=row;
histogram height;
density height;
run;

Options are available that enable you to customize the density plot and enhance its appearance. For example, you can do the following:

• control the visual attributes of the density line.
• specify a kernel distribution instead of normal. You can also specify the scaling that is used for the response axis.
• specify legend labels and plot transparency.

Note: This list does not include all available options.

See Also

• “DENSITY Statement” on page 139 (SGPANEL procedure)
• “DENSITY Statement” on page 648 (SGPLOT procedure)

About Histograms

Histograms consist of a series of columns representing the frequency of a variable over a discrete interval or class.

The following examples show the height distribution for a class of students. Examples are provided for the SGPLOT and SGPANEL procedures.
The SGPANEL example shows output that is paneled by gender. The UNISCALE=ROW option ensures that only the shared row axes are identical. The column axes vary based on the values of the height for the respective genders.

Options are available that enable you to customize the histogram and enhance its appearance. For example, you can do the following:

- control the visual attributes of the bins, such as fill color and outlines.
- specify the number of bins, their width, and the X coordinate of the first bin.
- specify legend labels and plot transparency.
- assign the response variable and the calculated values to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.

Note: This list does not include all available options.

See Also

- “HISTOGRAM Statement” on page 263 (SGPANEL procedure)
- “HISTOGRAM Statement” on page 782 (SGPLOT procedure)
Categorization Plots and Charts

About Categorization Plots and Charts

Categorization plots and charts produce a series of graph elements, one for each selected category of cases. For example, the relation between the age and the risk of a heart attack might differ between males and females. Categorization plots and charts can reveal patterns, complex interactions, exceptions, and anomalies.

You can use the SG PLOT and SGPANEL procedures to produce a variety of categorization plots and charts. The plot and chart statements include many options for controlling how the output is displayed. The options that are available depend on the plot type. The following sections describe each type and the options that are available.

The categorization plots are described in the following sections. If you run the examples, your output might differ somewhat depending on the size of your graphics. The examples here were specified to be a particular size using one of the following statements:

ods graphics on / width=4in;
ods graphics on / width=4.5in;

See Also

“Plot Type Compatibility” on page 1258

About Bar Charts

Overview of Standard and Parameterized Bar Charts

Bar charts use bars to represent statistics based on the values of a category variable. Bar charts are useful for displaying magnitudes and emphasizing differences.

You can use the SGPLOT and SGPANEL procedures to create the following:

- horizontal and vertical bar charts that summarize the values of a category variable. Use the HBAR and VBAR statements for the charts. These charts are compatible only with other categorization charts and plots.

- basic-compatible horizontal and vertical bar charts that summarize the values of a category variable. Use the HBARBASIC and VBARBASIC statements for the charts. These bar charts are compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

- parameterized horizontal and vertical bar charts that require a response variable in addition to the category variable. The response variable contains pre-summarized computed values such as a sum or a mean for each unique value of the category variable. Use the HBARParm and VBARParm statements for the charts. These bar charts are compatible with other basic charts and plots.

Options are available that enable you to customize both types of bar charts and enhance their appearance. For example, you can do the following:

- control the visual attributes of the bars, such as bar width, fill color, fill skin, and outlines.
• add data labels and specify font attributes for the labels.
• group the data by the values of a variable. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
• control the display of grouped bars. For example, you can specify the width of each cluster.
• specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
• specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
• specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

Bar Chart Examples
The following examples show statistics for different categories of smokers. The examples use the SGPLOT procedure to create a horizontal bar chart and a vertical bar chart, respectively. By default, the charts show the frequency for each category. The examples specify an optional response variable to show the average age at death for each category rather than the frequency.

```sas
proc sgplot data=sashelp.heart;
  hbar smoking_status / response=ageatdeath
      stat=mean;
run;
```

```sas
proc sgplot data=sashelp.heart;
  vbar smoking_status / response=ageatdeath
      stat=mean;
run;
```

The following two examples use the SGPANEL procedure to create a horizontal chart and a vertical chart, respectively. The bar charts are paneled by gender.
Bar charts includes options that are not applicable to parameterized bar charts. For example, you can do the following:

- specify the response variable and the statistic to use for its axis
- specify the order in which the response values are arranged
- show limit lines, specify the statistic to use for the limit lines, and specify the confidence level
- for grouped data, you can specify whether the bars are stacked or clustered
- specify how many times observations are repeated for computational purposes

Note: This list does not include all available options.

Basic-Compatible Bar Chart Examples
The following examples combine a bar chart with a scatter plot to show the age and height of students in a class. The examples specify an optional response variable and statistic to show the height average rather than the frequency.
Parameterized Bar Chart Examples

Note: Parameterized bar charts are considered basic charts rather than categorization charts. However, all bar charts are described here in one place.

The following examples show height averages for a class of students. The averages are obtained using the following program.

```
proc means data=sashelp.class alpha=.05 clm mean std;
  class age sex;
  var height;
  output out=classMean uclm=uclm lclm=lclm mean=mean;
run;
```

The following two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively. The response variable contains the computed mean values that were created with the MEANS procedure.
The following two examples use the SGPANEL procedure to create horizontal and vertical bar charts, respectively. The charts are paneled by gender.
You can also assign variables to the upper and lower limits of the bar chart. Parameterized bar charts enable you to pass in your own precomputed limits.

```sas
proc sgplot data=classMean;
  hbarparm category=age response=mean /
    limitlower=lclm
    limitupper=uclm;
run;
```

See Also
- “Plot Type Compatibility” on page 1258
- “HBAR Statement” on page 174 (SGPANEL procedure)
- “VBAR Statement” on page 449 (SGPANEL procedure)
- “HBAR Statement” on page 687 (SGPLOT procedure)
- “VBAR Statement” on page 980 (SGPLOT procedure)
- “HBARBASIC Statement” on page 706 (SGPLOT procedure)
- “VBARBASIC Statement” on page 1000 (SGPLOT procedure)
- “HBARPARAM Statement” on page 207 (SGPANEL procedure)
- “VBARPARAM Statement” on page 483 (SGPANEL procedure)
- “HBARPARAM Statement” on page 720 (SGPLOT procedure)
- “VBARPARAM Statement” on page 1014 (SGPLOT procedure)

About Dot Plots
Dot plots summarize horizontally the values of a category variable. By default, each dot represents the frequency for each value of the category variable.

The following examples show the frequency of different weights of patients in a study. The examples use the SGPLOT and SGPANEL procedures.

```sas
proc sgplot data=sashelp.heart;
  dot weight;
run;
```
Options are available that enable you to customize the dot plot and enhance its appearance. For example, you can do the following:

- specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.
- show limits for the plot. You can also specify the statistic for the limit lines and visual attributes of the lines.
- specify the color, size, and symbol for the markers.
- add data labels and specify font attributes for the labels.
- control the display of grouped markers, lines, and bars. For example, you can specify whether the groups are overlaid or clustered, and the ordering of dots within a group.
- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also:

- “DOT Statement” on page 146 (SGPANEL procedure)
- “DOT Statement” on page 655 (SGPLOT procedure)

About Line Charts

Line charts displays information as a series of data points connected by straight line segments. The SGPLOT and SGPANEL procedures have separate statements for creating horizontal and vertical line charts.

The following examples show mean weight values for a class. Examples are provided for the SGPLOT and SGPANEL procedures. The examples specify an optional response variable and use the mean statistic for that variable. The examples also add data point markers.

These two examples use the SGPLOT procedure to create a horizontal chart and a vertical chart, respectively.
The following two examples use the SGPANEL procedure to create panels of horizontal and vertical charts, respectively.

```
proc sgpanel data=sashelp.class;
panelby sex;
  hline age / response=height stat=mean markers;
run;
```

```
proc sgpanel data=sashelp.class;
panelby sex;
  vline age / response=height stat=mean markers;
run;
```
Options are available that enable you to customize the line chart and enhance its appearance. For example, you can do the following:

- specify an optional response variable and show the mean, the sum, or the frequency for that variable. You can also specify the order in which the response values are arranged.
- show limits for the chart. You can also specify the statistic for the limit lines and visual attributes of the lines.
- add data point markers and specify the color, size, and symbol for the markers.
- add curve and data labels and specify font attributes for the labels.
- control the display of grouped lines. For example, you can specify whether the groups are overlaid or clustered, the width of each cluster, and the ordering of lines within a group.
- specify an amount to offset graph elements from the category midpoints or from the discrete axis tick marks.
- specify legend labels, plot transparency, and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
- assign the category variable, the response variable, or both variables to the secondary axis (X2 or Y2). This option is available only for the SGPLOT procedure.
- specify the value of an ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This list does not include all available options.

See Also

- “HLINE Statement” on page 268 (SGPANEL procedure)
- “VLINE Statement” on page 522 (SGPANEL procedure)
- “HLINE Statement” on page 788 (SGPLOT procedure)
- “VLINE Statement” on page 1056 (SGPLOT procedure)

About Waterfall Charts

Waterfall charts show how the value of a variable increases or decreases until it reaches a final value. In the chart, bars represent an initial value of Y and a series of intermediate values identified by X leading to a final value of Y. Waterfall charts are available only for the SGPLOT procedure.

The following example shows average failure counts for capacitors.
Options are available that enable you to customize the waterfall chart and enhance its appearance. For example, you can do the following:

- specify the statistic for the response variable.
- specify an initial bar for the chart. You can also specify the tick value that is used for the initial bar and visual attributes of the bar.
- control the appearance of the bars. For example, you can do the following:
 - show or hide the bar outline
 - show or hide the bar fill
 - use a special effect (data skin) for the fill
 - specify a variable to use for the bar colors
 - specify attributes separately for the final bar
- add data labels and specify font attributes for the labels.
- specify plot transparency and URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Note: This list does not include all available options.

See Also
“WATERFALL Statement” on page 1073 (SGPLOT procedure)
Overview of SAS Statements That Are Used with ODS Graphics Procedures

The SAS ODS Graphics procedures support these statements in addition to statements that are unique to each procedure:

BY
processes your data by using one or more classification variables, and produces a separate graph for each unique combination of values.

FORMAT
associates SAS formats or user-defined formats with variables.

FOOTNOTE
adds footnotes to your graphs.

LABEL
associates descriptive labels with variables.

ODS GRAPHICS
enables you manage the settings for your graphics output.

TITLE
adds titles to your graphs.

WHERE
selects observations from SAS data sets that meet a particular condition.

The ODS GRAPHICS, TITLE, and FOOTNOTE statements are global statements. That is, they can be specified anywhere in your program and they remain in effect until you explicitly cancel or change them. The BY, FORMAT, and LABEL statements are associated with a specific procedure step.
Note: Some of the statements that can be used with traditional SAS procedures are not used with the ODS Graphics procedures.

Dictionary

BY Statement

Creates a separate graph for each BY group.

Used by: SGPANEL, SGPLOT, and SGSCATTER procedures

Syntax

```
BY <DESCENDING> variable-1 <... <DESCENDING> variable-n> <NOTSORTED> ;
```

Required Argument

variable

specifies the variable that the procedure uses to form BY groups. You can specify more than one variable. By default, observations in the data set must either be sorted in ascending order by all the variables that you specify, or be indexed appropriately.

Optional Arguments

DESCENDING

specifies that the data set is sorted in descending order by the specified variable. This option affects only the variable that immediately follows it—you must specify the DESCENDING option before each variable that is sorted in descending order. For example, the following code specifies a BY group that uses two variables that are both sorted in descending order:

```
by descending variable1 descending variable2;
```

NOTSORTED

specifies that the observations in the data set that have the same BY values are grouped together, but are not necessarily sorted in alphabetical or numeric order. For example, the observations might be sorted in chronological order using a date format such as DDMMYY.

The NOTSORTED option applies to all of the variables in the BY statement. You can specify the NOTSORTED option anywhere within the BY statement.

The requirement for ordering or indexing observations according to the values of BY variables is suspended when you use the NOTSORTED option. In fact, the procedure does not use an index if you specify the NOTSORTED option. For the NOTSORTED option, the procedure defines a BY group as a set of contiguous observations that have the same values for all BY variables. If observations that have the same value for the BY variables are not contiguous, then the procedure treats each new value that it encounters as the first observation in a new BY group. The procedure then creates a graph for that value.

Restriction

The NOTSORTED option is not supported by the SGPANEL procedure.
Details

Preparing Data for BY-Group Processing
Unless you specify the NOTSORTED or DESCENDING options, observations in the input data set must be in ascending numeric or alphabetic order. To prepare the data set, sort it with the SORT procedure using the same BY statement that you plan to use in the target procedure. Alternatively, you can create an appropriate index on the BY variables.

If the procedure encounters an observation that is out of order, an error message is generated.

If you need to group data in some other order, such as chronological order, you can still use BY-group processing. To do so, process the data so that observations are arranged in contiguous groups that have the same BY-variable values and specify the NOTSORTED option in the BY statement.

Controlling BY Lines
By default, the BY statement prints a BY line above each graph that contains the variable name followed by an equal sign and the variable value. For example, if you specify BY SITE in the procedure, the default heading when the value of SITE is London would be SITE=London.

To suppress the BY line, use the NOBYLINE option in an OPTION statement.

To display only the BY value, use the NOBYLINE option and then use the #BYVAL1 substitution in a TITLE statement.

Using the BY Statement with the SGPLOT Procedure
You can use the UNIFORM= option in the PROC SGPLOT statement to produce the same group markers, the same axis scaling, or both for all graphs in a BY group. By default, the group markers and axis scales might vary from graph to graph.

Using the BY Statement with the TITLE and FOOTNOTE Statements
The TITLE and FOOTNOTE statements can automatically include the BY variable name, BY variable values, or BY lines in the text that they produce. To insert BY variable information into the text strings used by these statements, use the #BYVAR, #BYVAL, and #BYLINE substitution options. For more information, see the description for the text-string argument in “TITLE and FOOTNOTE Statements” on page 80.

FOOTNOTE Statement
Writes up to 10 lines of text at the bottom of the graph.

Valid in: anywhere in your program
Used by: SGPLOT, SGPANEL, and SGSCATTER procedures
See: “TITLE and FOOTNOTE Statements” on page 80

Syntax
FOOTNOTE<1...10> <text-options> <"text-string–1"> ... <text-options> <"text-string–n"> ;
FORMAT Statement

Associates SAS formats or user-defined formats with variables.

Used by: SGPANEL, SGPLOT, and SGSCATTER procedures

Details

All features of the FORMAT statement are supported except as noted here. For more information, see “FORMAT Statement” in SAS Viya Statements: Reference.

The ODS Graphics procedures support Unicode values in user-defined formats. The Unicode value must be escaped with the (*ESC*) escape sequence as shown in the following examples:

```
"(*ESC*){unicode beta}"
"(*ESC*){unicode '03B2'x}"
```

The procedures do not support an escape character that is defined in an ODS ESCAPECHAR statement.

The following SAS formats are supported by the ODS Graphics procedures:

Table 3.1 Character Formats Supported by Java

<table>
<thead>
<tr>
<th></th>
<th>$ASCII</th>
<th>$BINARY</th>
<th>$CHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>$HEX</td>
<td>$OCTAL</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2 Numeric Formats Supported by Java

<table>
<thead>
<tr>
<th></th>
<th>BINAR Y</th>
<th>COMMA</th>
<th>COMMAX</th>
<th>COMMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>DOLLAR</td>
<td>DOLLARX</td>
<td>E</td>
<td>EURO</td>
</tr>
<tr>
<td>EUROX</td>
<td>F</td>
<td>HEX</td>
<td>LOGPROB</td>
<td>NEGPAREN</td>
</tr>
<tr>
<td>NLBEST</td>
<td>NLD</td>
<td>NLMNIAED</td>
<td>NLMNIAUD</td>
<td>NLMNIBGN</td>
</tr>
<tr>
<td>NLMNIBRL</td>
<td>NLMNICAD</td>
<td>NLMNICF</td>
<td>NLMNICNY</td>
<td>NLMNICZK</td>
</tr>
<tr>
<td>NLMNIDKK</td>
<td>NLMNIEEK</td>
<td>NLMNIEGP</td>
<td>NLMNIEUR</td>
<td>NLMNIGBP</td>
</tr>
<tr>
<td>NLMNIHKG</td>
<td>NLMNHIHK</td>
<td>NLMNIHUF</td>
<td>NLMNIHIDR</td>
<td>NLMNIILS</td>
</tr>
<tr>
<td>NLMNIIINR</td>
<td>NLMNIJPY</td>
<td>NLMNIKRW</td>
<td>NLMNILTL</td>
<td>NLMNILVL</td>
</tr>
<tr>
<td>NLMNIMOP</td>
<td>NLMNIMSN</td>
<td>NLMNIMYR</td>
<td>NLMNINOK</td>
<td>NLMNINZD</td>
</tr>
<tr>
<td>NLMNIPLN</td>
<td>NLMNIROL</td>
<td>NLMNIRUB</td>
<td>NLMNIRUR</td>
<td>NLMNISEK</td>
</tr>
<tr>
<td>NLMNISG</td>
<td>NLMNISKK</td>
<td>NLMNITHB</td>
<td>NLMNITRY</td>
<td>NLMNITWD</td>
</tr>
<tr>
<td>NLMNIUSD</td>
<td>NLMNIZAR</td>
<td>NLMNLAED</td>
<td>NLMNLAUD</td>
<td>NLMNLBGN</td>
</tr>
<tr>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>NLMNLBRL</td>
<td>NLMNLCAD</td>
<td>NLMNLCHF</td>
<td>NLMNLNCY</td>
<td>NLMNL CZK</td>
</tr>
<tr>
<td>NLMNLDKK</td>
<td>NLMNLEEK</td>
<td>NLMNLEG</td>
<td>NLMNLEUR</td>
<td>NLMNLGBP</td>
</tr>
<tr>
<td>NLMNLHKD</td>
<td>NLMNLHRK</td>
<td>NLMNLHUF</td>
<td>NLMNL IDR</td>
<td>NLMNILS</td>
</tr>
<tr>
<td>NLMNLINR</td>
<td>NLMNL JPY</td>
<td>NLMNLKRW</td>
<td>NLMNLTL</td>
<td>NLMNLLVL</td>
</tr>
<tr>
<td>NLMNL MOP</td>
<td>NLMNL MXN</td>
<td>NLMNL MYR</td>
<td>NLMNL NOK</td>
<td>NLMNL NZD</td>
</tr>
<tr>
<td>NLMNL PLN</td>
<td>NLMNL ROL</td>
<td>NLMNL RUB</td>
<td>NLMNL RUR</td>
<td>NLMNL SEK</td>
</tr>
<tr>
<td>NLMNL SGD</td>
<td>NLMNL SKK</td>
<td>NLMNL THB</td>
<td>NLMNL TRY</td>
<td>NLMNL TWD</td>
</tr>
<tr>
<td>NLMNL USD</td>
<td>NLMNL ZAR</td>
<td>NLMNY</td>
<td>NLMNY I</td>
<td>NLMNUM</td>
</tr>
<tr>
<td>NL NUMI</td>
<td>NLPCT</td>
<td>NLPCTI</td>
<td>NLP VALUE</td>
<td>NUMX</td>
</tr>
<tr>
<td>OCTAL</td>
<td>PERCENT</td>
<td>PERCENTN</td>
<td>P VALUE</td>
<td>ROMAN</td>
</tr>
<tr>
<td>RSTD OCNY</td>
<td>RSTD OYY</td>
<td>RSTD OYN</td>
<td>RSTD OYN</td>
<td>RSTD OYN</td>
</tr>
<tr>
<td>RSTD OYY</td>
<td>YEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3 Date and Time Formats Supported by Java

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Code</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRDFDD</td>
<td>AFRDFDE</td>
<td>AFRDFN</td>
<td>AFRDFDT</td>
<td>AFRDFD WN</td>
</tr>
<tr>
<td>AFRDF MN</td>
<td>AFRDFMY</td>
<td>AFRDFWX</td>
<td>AFRDFWKX</td>
<td>CATDFDD</td>
</tr>
<tr>
<td>CATDFDE</td>
<td>CATDFDN</td>
<td>CATDFDT</td>
<td>CATDFD WN</td>
<td>CATDFMN</td>
</tr>
<tr>
<td>CATDFMY</td>
<td>CATDFWX</td>
<td>CATDFWKX</td>
<td>CRODFDD</td>
<td>CRODFDE</td>
</tr>
<tr>
<td>CRODFDN</td>
<td>CRODFDT</td>
<td>CRODFD WN</td>
<td>CRODF MN</td>
<td>CRODF MY</td>
</tr>
<tr>
<td>CRODFWX</td>
<td>CRODFWKX</td>
<td>CSYDFD</td>
<td>CSYDFDE</td>
<td>CSYDFD N</td>
</tr>
<tr>
<td>CSYDFDT</td>
<td>CSYDFD WN</td>
<td>CSYDF MN</td>
<td>CSYDF MY</td>
<td>CSYDFD WX</td>
</tr>
<tr>
<td>CSYDFWKX</td>
<td>DANDFDD</td>
<td>DANDFDE</td>
<td>DANDF D N</td>
<td>DANDF DT</td>
</tr>
<tr>
<td>DANDF D WN</td>
<td>DAND F MN</td>
<td>DANDF MY</td>
<td>DANDFW DX</td>
<td>DANDFWKX</td>
</tr>
<tr>
<td>DATE</td>
<td>DATE AMPM</td>
<td>DATE TIME</td>
<td>DAY</td>
<td>DDM YY</td>
</tr>
<tr>
<td>DDM YYN</td>
<td>DESDF D</td>
<td>DESDF DE</td>
<td>DESDF D N</td>
<td>DESDF DT</td>
</tr>
<tr>
<td>DESDF D WN</td>
<td>DESDF MN</td>
<td>DESDF MY</td>
<td>DESDF WX</td>
<td>DESDF W KX</td>
</tr>
<tr>
<td>DEU DFDD</td>
<td>DEU DFDE</td>
<td>DEU DF DN</td>
<td>DEU DF DT</td>
<td>DEU DF D WN</td>
</tr>
<tr>
<td>DEU DF MN</td>
<td>DEU DF MY</td>
<td>DEU DF WX</td>
<td>DEU DF W KX</td>
<td>DON NAME</td>
</tr>
<tr>
<td>DTD DATE</td>
<td>DTM ON YY</td>
<td>DT W K DAT X</td>
<td>D T YEAR</td>
<td>DT YY QC</td>
</tr>
<tr>
<td>ENGDFD D</td>
<td>ENGDFDE</td>
<td>ENGDF D N</td>
<td>ENGDF DT</td>
<td>ENGDF D WN</td>
</tr>
<tr>
<td>ENGDFMN</td>
<td>ENGDFMY</td>
<td>ENGDFWDX</td>
<td>ENGDFWKX</td>
<td>ESPDFDD</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>ESPDFDE</td>
<td>ESPDFDN</td>
<td>ESPDFDT</td>
<td>ESPFDWN</td>
<td>ESPDFMN</td>
</tr>
<tr>
<td>ESPDFMY</td>
<td>ESPDFWDX</td>
<td>ESPDFWX</td>
<td>EURDFDD</td>
<td>EURDFDE</td>
</tr>
<tr>
<td>EURDFDN</td>
<td>EURDFDT</td>
<td>EURDFWDX</td>
<td>EURDFMY</td>
<td>EURDFMY</td>
</tr>
<tr>
<td>EURDFWX</td>
<td>EURDFWKX</td>
<td>FINDFDD</td>
<td>FINDFDE</td>
<td>FINDFDN</td>
</tr>
<tr>
<td>FINDFDT</td>
<td>FINDFDWN</td>
<td>FINDFMN</td>
<td>FINDFMY</td>
<td>FINDFWX</td>
</tr>
<tr>
<td>FINDFWXX</td>
<td>FRADFDD</td>
<td>FRADFDE</td>
<td>FRADFDMN</td>
<td>FRADFDT</td>
</tr>
<tr>
<td>FRADFWN</td>
<td>FRADFMY</td>
<td>FRADFMDN</td>
<td>FRADFMDW</td>
<td>FRADFWX</td>
</tr>
<tr>
<td>FRSDFDD</td>
<td>FRSDFDE</td>
<td>FRSDFDN</td>
<td>FRSDFDWN</td>
<td>FRSDFWX</td>
</tr>
<tr>
<td>FRSDFMN</td>
<td>FRSDFMY</td>
<td>FRSDFWDX</td>
<td>FRSDFWX</td>
<td>HHMM</td>
</tr>
<tr>
<td>HOUR</td>
<td>HUNDFDD</td>
<td>HUNDFE</td>
<td>HUNDFMN</td>
<td>HUNDFDT</td>
</tr>
<tr>
<td>HUNDFWN</td>
<td>HUNDFMN</td>
<td>HUNDFMY</td>
<td>HUNDFWX</td>
<td>HUNDFWX</td>
</tr>
<tr>
<td>ITADFDD</td>
<td>ITADFDE</td>
<td>ITADFDMN</td>
<td>ITADFDMT</td>
<td>ITADFDMT</td>
</tr>
<tr>
<td>ITADFMN</td>
<td>ITADFMY</td>
<td>ITADFMDN</td>
<td>ITADFMDT</td>
<td>ITADFMDT</td>
</tr>
<tr>
<td>JDATEMOM</td>
<td>JDATEQRW</td>
<td>JDATEQTR</td>
<td>JDATESEM</td>
<td>JDATESEM</td>
</tr>
<tr>
<td>JULDATE</td>
<td>JULDAY</td>
<td>JULIAN</td>
<td>MACDFDD</td>
<td>MACDFDE</td>
</tr>
<tr>
<td>MACDFDN</td>
<td>MACDFDT</td>
<td>MACDFWDX</td>
<td>MACDFWX</td>
<td>MACDFMY</td>
</tr>
<tr>
<td>MACDFWDX</td>
<td>MACDFWX</td>
<td>MMDDYY</td>
<td>MMDDYMN</td>
<td>MMSS</td>
</tr>
<tr>
<td>MMYY</td>
<td>MMYMN</td>
<td>MONNAME</td>
<td>MONTH</td>
<td>MONYY</td>
</tr>
<tr>
<td>NLDATE</td>
<td>NLDATMD</td>
<td>NLDATMN</td>
<td>NLDATEW</td>
<td>NLDATEN</td>
</tr>
<tr>
<td>NLDATEYM</td>
<td>NLDATEYQ</td>
<td>NLDATEYR</td>
<td>NLDATEYW</td>
<td>NLDATM</td>
</tr>
<tr>
<td>NLDATMAP</td>
<td>NLDATMDT</td>
<td>NLDATMM</td>
<td>NLDATMTM</td>
<td>NLDATMTZ</td>
</tr>
<tr>
<td>NLDATMW</td>
<td>NLDATMWN</td>
<td>NLDATMZ</td>
<td>NLDATMY</td>
<td>NLDATMYQ</td>
</tr>
<tr>
<td>NLDATMYR</td>
<td>NLDATMYW</td>
<td>NLDATMZ</td>
<td>NLDDFDD</td>
<td>NLDDFDE</td>
</tr>
<tr>
<td>NLDDFDN</td>
<td>NLDFFDT</td>
<td>NLDFFDWX</td>
<td>NLDFFDWX</td>
<td>NLDFFDWX</td>
</tr>
<tr>
<td>NLDFFDWX</td>
<td>NLDFFDWX</td>
<td>NLSTRMON</td>
<td>NLSTRQTR</td>
<td>NLSTRWCK</td>
</tr>
<tr>
<td>NLTIMAP</td>
<td>NLTIME</td>
<td>NORDFED</td>
<td>NORDFDE</td>
<td>NORDFDN</td>
</tr>
<tr>
<td>NORDFDT</td>
<td>NORDFDWN</td>
<td>NORDFMN</td>
<td>NORDFMY</td>
<td>NORDFWDX</td>
</tr>
<tr>
<td>NORDFWDX</td>
<td>NORDFWDX</td>
<td>POLDFDDE</td>
<td>POLDFDE</td>
<td>POLDFD</td>
</tr>
<tr>
<td>POLDFDWN</td>
<td>POLDFMN</td>
<td>POLDFMY</td>
<td>POLDFMDN</td>
<td>POLDFDT</td>
</tr>
<tr>
<td>POLDFDT</td>
<td>POLDFDWN</td>
<td>POLDFMY</td>
<td>POLDFWX</td>
<td>POLDFWX</td>
</tr>
</tbody>
</table>
LABEL Statement

Associates descriptive labels with variables.

Used by: SGPANEL, SGPLOT, and SGSCATTER procedures

Details

All features of the LABEL statement are supported. For more information, see “LABEL Statement” in *SAS Viya Statements: Reference*.

ODS GRAPHICS Statement

Enables or disables ODS Graphics processing and sets graphics environment options. This statement affects ODS template-based (ODS Graphics) graphics only.

Valid in: Anywhere

Category: ODS: Output Control

Default: ODS Graphics is enabled by default.

Syntax

```ods graphics <off | on> </option(s)> ;```
Summary of Optional Arguments

ANTIALIAS | NOANTIALIAS | ANTIALIAS= ON | OFF
specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph.

ANTIALIASMAX= n
specifies the maximum number of graphics elements before anti-aliasing is disabled.

ATTRPRIORITY=COLOR | NONE
specifies a priority for cycling of the group attributes.

BORDER | NOBORDER | BORDER=ON | OFF
specifies whether to draw a border around each graph.

BYLINE=NOBYLINE | TITLE | FOOTNOTE
specifies how the BY line is displayed in graphs.

DATASKINMAX= n
specifies the maximum number of skinned graphical elements allowed per plot.

DISCRETEMAX= n
specifies the maximum number of discrete values to be shown in any graph.

DRILLTARGET= "_blank" | "_self" | "_parent" | "_top" | "frame-name"
specifies the window that displays the drill-down output.

GROUPMAX= n
specifies the maximum number of group values to be shown in any graph.

HEIGHT= dimension
specifies the height of a graph.

IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF
specifies whether data tips are generated.

IMAGENAME= "filename"
specifies the base image filename.

LABELMAX= n
specifies the maximum number of labeled areas before labeling is disabled.

LABELPLACEMENT= GREEDY | SA
specifies the label-placement algorithm to use for positioning labels in the graphs.

LEGENDAREAMAX= n
specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.

LOESSOBSMAX= n
specifies an upper limit for the number of observations that can be used with a loess plot.

OBSMAX= n
specifies the maximum number of observations that are processed.

OUTPUTFMT= file–type | STATIC
specifies the output format used to generate image or vector graphic files.

PANELCELLMAX= n
specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables.

PUSH | POP
pushes and pops ODS GRAPHICS settings in a stack.

RESET | RESET= option
Reset one or more ODS GRAPHICS options to its default.
SCALE | NOSCALE | SCALE=ON | OFF specifies whether the content of any graph is scaled proportionally.

SCALEMARKERS | NOSCALEMARKERS | SCALEMARKERS=ON | OFF specifies whether the plot markers are to be scaled with the graph size.

SHOW writes the current ODS GRAPHICS settings to the SAS log.

STACKDEPTHMAX=n specifies the maximum stack depth for PUSH and POP requests.

SUBPIXEL | NOSUBPIXEL | SUBPIXEL=ON | OFF specifies whether subpixel rendering should be used for rendering ODS Graphics.

TIPMAX=n specifies the maximum number of distinct mouse-over areas allowed before data tips are disabled.

WIDTH=dimension specifies the width of any graph.

Without Arguments
If the ODS automatic graphic capabilities are currently disabled, then specifying the ODS GRAPHICS statement without options enables them. If the ODS automatic graphic capabilities are currently enabled, then specifying the ODS GRAPHICS statement leaves them enabled.

Required Arguments

ON enables ODS Graphics processing. This is the default if no argument is used.

Note: Beginning in SAS 9.4, ODS Graphics is enabled by default on all platforms except z/OS.

Alias YES

OFF disables ODS Graphics processing.

Alias NO

Optional Arguments

ANTIALIAS | NOANTIALIAS | ANTIALIAS= ON | OFF specifies whether anti-aliasing is applied to the rendering of the line and markers in any graph. Anti-aliasing smooths the appearance of lines and some markers. Text displayed in the graph is always anti-aliased. For graphical displays that plot large numbers of points it is recommended that ANTIALIAS=OFF be specified for performance considerations.

ANTIALIAS smooths jagged edges of all components in the graph.

NOANTIALIAS does not smooth jagged edges of components other than text in the graph.

ANTIALIAS=ON | OFF specifies whether anti-aliasing is applied to the rendering of the line and markers in the graph.
ON
smoothes jagged edges of all components in the graph.

**Alias** YES

OFF
does not smooth jagged edges of components other than text in the graph.

**Alias** NO

**Default** ANTIALIAS or ANTIALIAS=ON | YES

**Restriction** If the number of markers or lines in the plot exceeds the number specified by the ANTIALIASMAX= option, then the ANTIALIAS option is turned off. This is true even if you specify the option ANTIALIAS=ON or ANTIALIAS.

**ANTIALIASMAX= n**
specifies the maximum number of graphics elements before anti-aliasing is disabled. For example, if there are more than 400 scatter point markers to be anti-aliased and ANTIALIASMAX=400, then no markers are anti-aliased. The default value is 4000.

**Note:** The ANTIALIASMAX= option specifies the maximum number of graphics elements to be anti-aliased in each plot on a per-plot basis. The default is 4000. If any plot in a graph contains more than 4000 elements, anti-aliasing is disabled for that plot. Anti-aliasing is enabled for the rest of the graph in that case.

**n**
specifies a positive integer.

**Default** 4000

**ATTRPRIORITY=COLOR | NONE**
specifies a priority for cycling of the group attributes.

**COLOR**
assigns priority to the color attribute rotation by cycling through the list of colors while holding the marker symbol and line pattern constant. When all of the colors are exhausted, the marker symbol and line style attributes increment to the next element, and then the colors in the list are repeated. This pattern repeats as needed.

**NONE**
does not use an attribute priority in the rotation pattern, even if one is set in the active style’s AttrPriority attribute. The rotation pattern cycles progressively through the attribute lists.

**Default** The AttrPriority attribute of the graph style element, or NONE if the current style does not define the AttrPriority style attribute.

**Interaction** The default lists of data colors, contrast colors, marker symbols, and line patterns are set in the active style’s GraphData1–GraphDataN elements.

**Tip** Use the ATTRPRIORITY=NONE option if you want groups to be distinguished by color, marker, and line changes for all styles that use color.
**BORDER | NOBORDER | BORDER=ON | OFF**
specifies whether to draw a border around each graph.

**BORDER**
specifies whether to draw a border around the graph.

**NOBORDER**
specifies not to draw a border around any graph.

**BORDER=ON | OFF**
specifies whether to draw the graph with a border on the outermost layout.

**ON**
specifies to draw a border around the graph.

  Alias **YES**

**OFF**
specifies not to draw a border around the graph.

  Alias **NO**

**Default**  
**BORDER or BORDER=ON | YES**

**BYLINE=NOBYLINE | TITLE | FOOTNOTE**
specifies how the BY line is displayed in graphs when an analysis is run with a BY statement. By default, no BY line is displayed.

The following code is an example of how the placement of the BY line is controlled in each graph template:

```latex
define if (_BYTITLE_)
 entrytitle _BYLINE_ / textattrs=GraphValueText;
else
 if (_BYFOOTNOTE_)
 entryfootnote halign=left _BYLINE_;
 endif;
endif;
enddefine;
```

You can modify the graph template if you want to change how the BY line is displayed. Because most graphs have titles and few graphs have footnotes, the BY line looks better when it is displayed as a footnote.

When the BYLINE= option is specified, and there are BY groups, ODS creates a BY line and sets the appropriate special dynamic variables. The following table lists the special dynamic variables for BY lines.

**Table 3.4 Special Dynamic Variables for BY Lines**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>BYFOOTNOTE</em></td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to FOOTNOTE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
<tr>
<td><em>BYTITLE</em></td>
<td>This variable is set to 1 when you specify a BY statement and the ODS GRAPHICS BYLINE= option is set to TITLE. Otherwise, the variable is set to 0 or is NULL.</td>
</tr>
</tbody>
</table>
The variables in the table are set automatically only for analytical procedures that support ODS GRAPHICS. For all other procedures, the variables are not set automatically (NULL).

**NOBYLINE**

specifies that no BY line is displayed. NOBYLINE is the default.

**FOOTNOTE**

specifies that the BY line is displayed as a left-justified graph footnote. This is the recommended setting.

**TITLE**

specifies that the BY line is displayed as a centered graph title. Specifying TITLE is not recommended because graphs are not designed to have additional title lines.

Default **NOBYLINE**

**DATASKINMAX=n**

specifies the maximum number of skinned graphical elements allowed per plot.

\[ n \]

specifies a positive integer.

Default 200

**DISCRETEMAX=n**

specifies the maximum number of discrete values to be shown in any graph. Bar charts and box plots are examples of affected plot types. Scatter plots and other plot types can be affected if the data to be plotted is discrete or the axis is discrete.

\[ n \]

specifies a positive integer.

Default 1000

Tips Some plot layers might be unaffected by the DISCRETEMAX= option, and those layers are rendered. If all layers are affected, a blank graph is rendered.

If the value specified by the DISCRETEMAX= option is exceeded by any plot layer in the graph, that layer is not drawn and a warning message is issued.

**DRILLTARGET="_blank" | "_self" | "_parent" | "_top" | "frame-name"**

specifies the window that displays the drill-down output.

*Note:* This option is supported only for HTML.

"_blank"

opens a new browser window to display the drilldown output.

Default _blank is the default.

Requirements You must enclose _blank in quotation marks.

You must specify _blank in lowercase.

"_self"

opens the drill-down output in the same window.
Requirements You must enclose _self in quotation marks.
You must specify _self in lowercase.

"_parent"
opens the drill-down output in the parent frame.

Requirements You must enclose _parent in quotation marks.
You must specify _parent in lowercase.

"_top"
opens the drill-down output in the full body of the window.

Requirements You must enclose _top in quotation marks.
You must specify _top in lowercase.

"frame-name"
opens the drill down output in the named frame in the current window. If the name does not exist, the output is opened in a new window.

Requirement You must enclose frame-name in quotation marks.

GROUPMAX=n
specifies the maximum number of group values to be shown in any graph. Any graph that supports the GROUP= option is affected.

n specifies a positive integer.

Default 1000

Tip If the value specified by the GROUPMAX= option is exceeded by any plot layer in the graph, that layer is rendered. The system ignores the GROUP= option and issues a warning message.

HEIGHT=dimension
specifies the height of a graph.

dimension is a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Table 3.5</th>
<th>Units of Measure for Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>Centimeters</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>pct or %</td>
<td>Percentage</td>
</tr>
<tr>
<td>pt</td>
<td>Point size (72 points = 1 inch)</td>
</tr>
<tr>
<td>px</td>
<td>Pixels</td>
</tr>
</tbody>
</table>
Defaults

The value of the SAS registry entry "ODS > ODS GRAPHICS > Design Height" or the value of the DesignHeight= option in a STATGRAPH template. Typically, the value is 480px.

For the PRINTER destination, units of 1/150 of an inch

Tip

If only the HEIGHT= option is specified, then the default aspect of the graph is maintained.

**IMAGEMAP | NOIMAGEMAP | IMAGEMAP=ON | OFF**

controls data tips and drill down generation. Data tips are pieces of explanatory text that appear when you hold the mouse pointer over the data portions of a graph contained in an HTML page.

**IMAGEMAP**

specifies to generate data tips.

**NOIMAGEMAP**

specifies not to generate data tips.

**IMAGEMAP= ON | OFF**

controls data tips generation.

**ON**

specifies to generate data tips.

Alias YES

**OFF**

specifies not to generate data tips.

Alias NO

Default NOIMAGEMAP or IMAGEMAP=OFF | NO

Restrictions This option applies only when the ODS HTML destination is used.

An image map is not generated using SVG with ODS Graphics. The image map data that is used to produce tooltips and links is written directly in the SVG and is not part of the HTML.

Interaction When IMAGEMAP | IMAGEMAP=ON is specified and the ODS HTML destination is used, the IMAGE_DPI option in the ODS HTML destination is ignored, if specified, and the default image resolution of 96 DPI is used.

**IMAGENAME="filename"**

specifies the base image filename. If more than one image is generated, each is assigned filename as a base name followed by a number in order to create unique names. This numbering can be reset with the RESET=INDEX option. Path information (if needed) can be set with the GPATH= option on the ODS destination statement. The default path is the current output directory. A file extension for filename is automatically generated based on the OUTPUTFMT= option.

Default The name of the output object.

Restriction filename must be a single name. It must not include any path specification or image-format name extension.
Requirement: You must enclose `filename` in quotation marks.

See “Specifying and Resetting the Image Name” on page 78

**LABELMAX= n**
specifies the maximum number of labeled areas before labeling is disabled. For example, if there are more than 50 points to be labeled and LABELMAX=50, then no points are labeled.

$n$
specifies a positive integer.

**Default** 200

**Restriction** Data label collision avoidance is turned off under the following conditions:
- The number of observations with nonmissing labels exceeds the value specified by LABELMAX=.
- The number of observations exceeds five times the value specified by LABELMAX=.

A message is then sent to the SAS log.

**Tip** To turn off collision avoidance specify LABELMAX=0.

**LABELPLACEMENT= GREEDY | SA**
specifies the label-placement algorithm to use for positioning labels in the graphs. The following labels are affected:
- data labels for needle plots, scatter plots, series plots, step plots, and vector plots
- vertex labels for line charts
- curve labels when the curve label is positioned at the start or end of the curve

**GREEDY**
specifies the Greedy method for managing label collision. The Greedy method tries different placement combinations in order to find an optimal approximation that avoids collisions. Label placement using this method is often less optimal than label placement using the Simulated Annealing (SA) method. However, depending on the number of data points and the potential for label collisions, the Greedy process can be significantly faster.

**SA**
specifies the Simulated Annealing method for managing label collision. The SA method attempts to determine the global minimization-of-cost function, which is based on a simulated annealing algorithm. The resulting label placement is usually better than placement using the Greedy method. However, depending on the number of data points and the potential for label collisions, the SA method can be significantly slower.

**Restriction** For BANDPLOT and LINECHART, the SA method has no effect on the curve labels when the CURVELABELPOSITION= option specifies START or END.

**Default** GREEDY

**LEGENDAREAMAX= n**
specifies an integer that is interpreted as the maximum percentage of the overall graphics area that a legend can occupy.
\(n\) specifies a positive integer.

**Alias**  
MAXLEGENDAREA=

**Default**  
20

**Range**  
0–100

**Tip**  
To turn off the legend, specify LEGENDAREAMAX=0. No warning is issued when the legend is turned off in this way.

**LOESSOBSMAX=** \(n\)

specifies an upper limit for the number of observations that can be used with a loess plot. If the number of observations of the loess plot exceeds the specified limit, the loess plot is not drawn.

For example, the following specifies that the most observations a loess plot can have is 1000.

\[
\text{LOESSOBSMAX=}1000
\]

**Alias**  
LOESSMAXOBS=

**Default**  
5000

**OBSMAX=** \(n\)

specifies the maximum number of observations that are processed. If the number of observations in the data set exceeds the value specified for OBSMAX=, the procedure step terminates with a log message.

\(n\) specifies a positive integer.

**Alias**  
MAXOBS=

**Default**  
2 million observations

**OUTPUTFORMAT=** file-type | STATIC

specifies the output format used to generate image or vector graphic files. If the image or vector graphic format is not valid for the active output destination, the format is automatically changed to the default format for that destination.

*file-type*

is the image or vector graphic format to be generated.

**STATIC**

uses the best quality static image format for the active output destination. This is the default output format.

**Tip**  
The STATIC keyword can be used to reset the output format to its default state.

**Default**  
STATIC

**PANELCELLMAX=** \(n\)

specifies the maximum number of cells in a graph panel where the number of cells is determined dynamically by classification variables. If the number of cells in the panel exceeds the specified limit, the panel is not drawn.


**n**

specifies a positive integer.

**Default** 10000

**Note** Graphs with DataPanel or DataLattice templates layouts are affected. In the ODS Graphics Procedures, this option affects graphs that are created with the SGPANEL procedure. If the value specified by the PANELCELLMAX= option is exceeded by any of these layouts, an empty graph is rendered and a warning message is issued.

**PUSH | POP**

pushes and pops ODS GRAPHICS settings in a stack. This feature enables you to temporarily save your custom settings in a stack and later restore those settings.

**PUSH**

pushes the current ODS GRAPHICS settings to a stack.

**POP**

restores the most recently pushed settings from the stack. For each PUSH action, you can specify a POP request. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed.

The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied.

**Interaction** You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. You can also use STACKDEPTHMAX= to empty the stack. For more information, see “Managing the Stack Depth” on page 80.

**Note** Order of specification is important when using the PUSH and POP options. For more information, see “About PUSH and POP” on page 79.

**Tip** Use the SHOW option to show the current ODS GRAPHICS settings.

**See** “Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 79

**RESET | RESET= option**

Reset one or more ODS GRAPHICS options to its default.

**RESET**

resets all options to their defaults.

**RESET=**

resets one of the following to its default:

**ALL**

resets all reset-options to their defaults.

**ANTIALIAS**

resets the ANTIALIAS= option to its default.

**See** ANTIALIAS= on page 63

**ANTIALIASMAX**

resets the ANTIALIASMAX= option to its default.
ATTRPRIORITY
resets the ATTRPRIORITY= option to its default.

See  ATTRPRIORITY= on page 64

BORDER
resets the BORDER= option to its default.

See  BORDER= on page 65

BYLINE
resets the BYLINE= option to its default.

See  BYLINE= on page 65

DATASKINMAX
resets the DATASKINMAX= option to its default.

See  DATASKINMAX= on page 66

DISCRETEMAX
resets the DISCRETEMAX= option to its default.

See  DISCRETEMAX= on page 66

DRILLTARGET
resets the DRILLTARGET= option to its default.

See  DRILLTARGET= on page 66

GROUPMAX
resets the GROUPMAX= option to its default.

See  GROUPMAX= on page 67

HEIGHT
resets the HEIGHT= option to its default.

See  HEIGHT= on page 67

IMAGEMAP
resets the IMAGEMAP= option to its default.

Note  Not all output destinations support this feature.

See  IMAGEMAP= on page 68

IMAGENAME
resets the IMAGENAME= option to its default.

See  IMAGENAME= on page 68

INDEX <(positive-integer)>  
resets the index counter that is appended to static image files.

When specifying this option, you can also specify the value for the index counter. The number that you specify must be enclosed in parentheses.
positive-integer determines the suffix for the next subsequent image, and increments with each new image.

See “Resetting the Image Name” on page 78

**LABELMAX**
resets the LABELMAX= option to its default.

See LABELMAX= on page 69

**LABELPLACEMENT**
specifies the label-placement algorithm to use for positioning labels in the graphs.

See LABELPLACEMENT= on page 69

**LEGENDAREAMAX**
resets the LEGENDAREAMAX= option to its default.

See LEGENDAREAMAX= on page 69

**LOESSOBSMAX**
resets the LOESSOBSMAX= option to its default.

See LOESSOBSMAX= on page 70

**OUTPUTFMT**
resets the OUTPUTFMT= option to its default.

See OUTPUTFMT= on page 70

**PANELCELLMAX**
resets the PANELCELLMAX= option to its default.

See PANELCELLMAX= on page 70

**SCALE**
resets the SCALE= option to its default.

See SCALE= on page 74

**SCALEMARKERS**
resets the SCALEMARKERS= option to its default.

See SCALEMARKERS= on page 74

**STACKDEPTHMAX**
resets the STACKDEPTHMAX= option to its default.

See STACKDEPTHMAX= on page 76

**SUBPIXEL**
resets the SUBPIXEL option to its default.

See SUBPIXEL on page 76

**TIPMAX**
resets the TIPMAX= option to its default.
See \texttt{TIPMAX = on page 77}

\textbf{WIDTH}

resets the \texttt{WIDTH=} option to its default.

See \texttt{WIDTH=} on page 77

\textbf{SCALE} | \texttt{NOSCALE} | \texttt{SCALE=}\texttt{ON} | \texttt{OFF}

specifies whether the content of any graph is scaled proportionally.

\texttt{SCALE}

scales the components of graph proportionally.

\texttt{NOSCALE}

does not scale the components of graph proportionally.

\texttt{SCALE=}\texttt{ON} | \texttt{OFF}

specifies whether the content of the graph is scaled proportionally.

\texttt{ON}

scales the components of graph proportionally.

Alias \texttt{YES}

\texttt{OFF}

does not scale the components of graph proportionally.

Aliases \texttt{NOSCALE}

\texttt{NO}

Default \texttt{SCALE} or \texttt{SCALE=}\texttt{ON} | \texttt{YES}

\textbf{SCALEMARKERS} | \texttt{NOSCALEMARKERS} | \texttt{SCALEMARKERS=}\texttt{ON} | \texttt{OFF}

specifies whether the plot markers are to be scaled with the graph size. The scaling factor is based on the height of the graph cells and the height of the graph.

\texttt{SCALEMARKERS}

scales the markers with the graph size.

\texttt{NOSCALE}

does not scale the markers with the graph size.

\texttt{SCALEMARKERS=}\texttt{ON} | \texttt{OFF}

specifies whether the plot markers are to be scaled with the graph size.

\texttt{ON}

scales the markers with the graph size.

Alias \texttt{YES}

\texttt{OFF}

does not scale the markers with the graph size.

Aliases \texttt{NOSCALE}

\texttt{NO}

Default \texttt{SCALEMARKERS} or \texttt{SCALEMARKERS=}\texttt{ON} | \texttt{YES}
Restriction Scaling is done only if the graph contains multiple cells or single nested cells.

SHOW writes the current ODS GRAPHICS settings to the SAS log. This option enables you to verify which settings are in effect. The option is especially useful when you use the PUSH and POP options to restore settings. For more information, see “Temporarily Saving and Restoring ODS GRAPHICS Settings” on page 79.

If no options have been specified, then SHOW lists those options for which ODS currently knows the default values.

The following statement resets all settings and shows the default values.

ods graphics / reset=all show;

Here are the default values displayed in the SAS log:

<table>
<thead>
<tr>
<th>ODS Graphics Settings</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output format:</td>
<td>STATIC</td>
</tr>
<tr>
<td>By line:</td>
<td>NOBYLINE</td>
</tr>
<tr>
<td>Antialias:</td>
<td>ON</td>
</tr>
<tr>
<td>Maximum lines observations:</td>
<td>5000</td>
</tr>
<tr>
<td>Maximum stack depth:</td>
<td>1024</td>
</tr>
<tr>
<td>Stack depth:</td>
<td>0</td>
</tr>
</tbody>
</table>

If you have specified the settings for one or more options, then SHOW includes those settings along with the defaults.

Order of specification is important when using the SHOW option. For example, the following statement shows the current settings and then sets the NOBORDER option.

ods graphics / show noborder;

However, the following statement sets the NOBORDER option and then shows the settings. The NOBORDER setting is shown in the log along with the other settings that are in effect.

ods graphics / noborder show;

The following statement resets all settings. It then sets the image width and shows the default settings along with the specified width.

ods graphics / reset=all width=5in show;

Here are the default values plus the image width, as displayed in the SAS log:

<table>
<thead>
<tr>
<th>ODS Graphics Settings</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output format:</td>
<td>STATIC</td>
</tr>
<tr>
<td>By line:</td>
<td>NOBYLINE</td>
</tr>
<tr>
<td>Antialias:</td>
<td>ON</td>
</tr>
<tr>
<td>Maximum lines observations:</td>
<td>5000</td>
</tr>
<tr>
<td>Image width:</td>
<td>5in</td>
</tr>
<tr>
<td>Maximum stack depth:</td>
<td>1024</td>
</tr>
<tr>
<td>Stack depth:</td>
<td>0</td>
</tr>
</tbody>
</table>

Tip If you have specified the settings for some options but want to see the default values without losing your specified settings, issue the following two statements. The first statement pushes your specified settings, resets all settings, and then lists options for which ODS currently knows the default values. The second statement restores your previous settings.

ods graphics / push reset=all show;
ods graphics / pop;
STACKDEPTHEMAX=n
specifies the maximum stack depth for PUSH and POP requests. The stack is used to temporarily store ODS GRAPHICS settings when you issue PUSH requests. PUSH saves the current settings to the stack and increments the stack depth. POP restores the most recently saved settings from the stack and decrements the stack depth.

n
specifies a positive integer.

If n is less than the current stack depth, then the stack is popped until its depth equals n. Popping the stack does not affect other option settings.

Defaults
1024 is the default maximum depth
0 is the default depth

Tips
To empty the stack and then reset it to the default maximum depth, issue the following statement:

```ods graphics / stackdepthmax=0 reset=stackdepthmax;```

You can use any of the following commands to reset the stack to its default maximum depth:

- `reset=stackdepthmax`
- `reset=all`
- `reset`
- `stackdepthmax=1024`

See
“Managing the Stack Depth” on page 80

SUBPIXEL | NOSUBPIXEL | SUBPIXEL=ON | OFF
specifies whether subpixel rendering should be used for rendering ODS Graphics. Subpixel rendering produces smoother curves and more precise bar spacing.

SUBPIXEL
always uses subpixel rendering, when applicable, for rendering lines and bars.

NOSUBPIXEL
never uses subpixel rendering.

SUBPIXEL=ON | OFF
specifies whether subpixel rendering should be used.

ON
always uses subpixel rendering, when applicable, for rendering lines and bars.

Alias YES

OFF
never uses subpixel rendering.

Alias NO

Default
Subpixel rendering is always enabled for vector-graphics output. It is enabled by default for image output, unless the graph contains a scatter plot or a scatter-plot matrix. In those cases, subpixel rendering is disabled by default.
Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1294

TIPMAX=n

specifies the maximum number of distinct mouse-over areas allowed before data tips are disabled. For example, if there are more than 400 points in a scatterplot, and TIPMAX=400, then no data tips appear. The default maximum value is 500.

Note: The TIPMAX= option specifies the maximum number of mouse-over areas allowed before data tips are disabled. This threshold is applied separately for each plot. The default is 500. If any plot in a graph contains more than 500 mouse-over areas, data tips are disabled for that plot. Data tips are enabled for the remaining plots in the graph.

n

specifies a positive integer.

Default 500

WIDTH=dimension

specifies the width of any graph.

dimension

is a nonnegative number followed by one of these units of measure:

<table>
<thead>
<tr>
<th>Table 3.6 Units of Measure for Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>pct</td>
</tr>
<tr>
<td>pt</td>
</tr>
<tr>
<td>px</td>
</tr>
</tbody>
</table>

Defaults The value of the SAS registry entry "ODS > ODS GRAPHICS > Design Width" or the value of the DesignWidth= option in a STATGRAPH template. Typically, this value is 640px.

For the PRINTER destination, units of 1/150 of an inch
Tip If only the WIDTH= option is specified, then the default aspect of the graph is maintained.

Details

Using the ODS GRAPHICS Statement
You can enable ODS Graphics by using one of the following equivalent statements:

```sas
ods graphics on;
ods graphics;
```

To disable ODS Graphics, specify the following statement:

```sas
ods graphics off;
```

Note: ODS Graphics is ON by default for procedures SGPLOT, SGPANEL, and SGSCATTER. For other products, the initial state of ODS Graphics is determined by a SAS Registry setting.

Specifying and Resetting the Image Name

Specifying the Image Name
For ODS Graphics output, by default, the ODS object name is used as the “root” name for the image output file. The following example creates a GIF image named REGPLOT:

```sas
ods graphics / imagename="regplot" outputfmt=gif;
```

The assigned name REGPLOT is treated as a "root" name and the first output created is named REGPLOT. Subsequent graphs are named REGPLOT1, REGPLOT2, and so on, with an increasing index counter. This numbering can be reset with the RESET=INDEX option.

Resetting the Image Name
The RESET=INDEX option enables you to reset the filename numbering sequence. For example, if you are developing a template and it takes several submissions to get the desired output, you can use the RESET or RESET=INDEX option to force each output to replace itself:

```sas
ods graphics / reset=index ... ;
```

This specification causes all subsequent images to be created with the default or current image name.

When specifying this option, you can also specify the value for the index counter. The value that you specify determines the suffix for the next subsequent image. For example:

```sas
ods graphics / reset=index(100) imagename="MyName";
```

The next graph that you produce is named MYNAME100.

This feature is useful for creating animated graphics. For example, for a sequence of 100 images, you might begin with the following statement:

```sas
ods graphics / reset=index(1) imagename="MyName";
```

In the example, your program produces 100 images named MYNAME1, MYNAME2, ..., MYNAME100. If you later add more images to the animation, you might submit the following:

```sas
ods graphics / reset=index(101) imagename="MyName";
```
Temporarily Saving and Restoring ODS GRAPHICS Settings

About PUSH and POP
Although you can use the RESET option to restore the default ODS GRAPHICS settings, there might be times when you want to save your current custom settings and later restore them. ODS enables you to temporarily store your custom settings in a stack created for this purpose, perform some other task with different settings, and then restore the previous settings.

The PUSH option saves the current ODS GRAPHICS settings to the stack and increments the stack depth. The POP option restores the most recently stored settings from the stack and decrements the stack depth.

This feature is useful when you run macros. Within a macro you can PUSH at the start of the macro and POP at the end. This enables your macro to have custom ODS GRAPHICS behaviors without affecting the calling environment.

You can specify PUSH as many times as you like up to the limit that is defined by the STACKDEPTHMAX= option. The pushed settings remain in the stack in the current SAS session until they are popped or the stack is emptied. For more information, see “Managing the Stack Depth” on page 80. For each PUSH request, you can specify a POP request. ODS issues a warning if you specify POP without a corresponding PUSH. In that case, nothing is popped because nothing has been pushed to the stack.

Order of specification is important when using the PUSH option. For example, the following statement pushes the NOBORDER option to the stack along with any other custom settings that are in effect.

 ods graphics / noborder push;

A subsequent POP request restores the pushed settings including NOBORDER.

However, the following statement pushes the current custom settings and then sets the NOBORDER option.

 ods graphics / push noborder;

Here, the subsequent POP request restores whatever border setting was in effect when the PUSH request was made.

TIP Use the SHOW option to show the ODS GRAPHICS settings that are currently in effect.

Settings That Can Be Pushed
The PUSH and POP commands apply to all ODS GRAPHICS options except the following: PUSH, POP, RESET=INDEX, and SHOW.

How Code Errors Affect the PUSH Operation
If the ODS GRAPHICS statement contains a syntax error, then the PUSH request is ignored.

For example, the PUSH request is ignored in the following statement:

 ods graphics / antialias=bogus push;

A syntax error (BOGUS) in ANTIALIAS causes the parser to ignore the remaining options. However, a simple semantics error does not prevent the remaining options from being handled. In the following statement, the PUSH request is honored.

 ods graphics / antialiasmax=-1 push;
In this statement, ANTIALIASMAX= –1 is invalid. The option expects a zero or a positive integer. In this case, a warning is issued to the log, but the PUSH occurs.

Note: Syntax errors in your code can have other unexpected results that are not described here.

Managing the Stack Depth

By default, the stack supports up to 1024 pushes. You can change the default by using the STACKDEPTHMAX= option.

If the specified STACKDEPTHMAX= value is less than the current stack depth, then the stack is popped until its depth equals the specified value. Popping the stack does not affect other option settings.

If you want to empty the stack, issue the following statement:

```plaintext
ods graphics / stackdepthmax=0 reset=stackdepthmax;
```

This statement first empties the stack of all PUSH requests and then restores the stack size to 1024.

TITLE and FOOTNOTE Statements

The TITLE and FOOTNOTE statements control the content, appearance, and placement of title and footnote text.

- **Valid in:** anywhere in your program
- **Used by:** SGPLOT, SGPANEL, and SGSCATTER procedures

Syntax

TITLE

```plaintext
<TITLE><1...10> <text-options> "<text-string–1"> ... <text-options> "<text-string-n"> ;
```

FOOTNOTE

```plaintext
<FOOTNOTE><1...10> <text-options> "<text-string–1"> ... <text-options> "<text-string-n"> ;
```

Required Argument

text-string

is a text string that can contain up to 512 characters. You must enclose text strings in either single or double quotation marks. The text appears exactly as you enter it in the statement, including uppercase and lowercase characters and spaces. Titles and footnotes automatically wrap to additional lines if necessary.

To use single quotation marks or apostrophes within the title, you can either:

- use a pair of single quotation marks together:
  ```plaintext
  footnote 'All''s well that ends well';
  ```

- enclose the text in double quotation marks:
  ```plaintext
  footnote "All's well that ends well";
  ```

Because the FOOTNOTE and TITLE statements concatenate all text strings, the strings must contain the correct spacing. With a series of strings, add spaces to the beginning of a text string rather than at the end, as in this example:

```plaintext
footnote color=red "Sales:" color=blue " 2000";
```
With fonts that support Unicode, you can produce specific characters by specifying a hexadecimal value. A trailing x identifies a string as a hexadecimal value. You must also enclose the character specification in a special ODS handler string, in the format (*ESC*){Unicode 'hexadecimal-value'x}. For example:

title "Regression with Confidence Limits ((*.ESC*){unicode '03B1'x}=.05)";

This statement produces the title, "Regression with Confidence Limits (α = .05)" because '03B1'x is the hexadecimal value for the lowercase Greek letter alpha in all Unicode fonts.

In addition, if you are using a BY statement, then you can include special options. For more information, see “Substituting BY Line Values in a Text String” on page 85.

Optional Arguments

BOLD

specifies that the font weight is bold for the text string.

Defaults

For titles, the default font weight is specified by the FONTWEIGHT attribute of the GraphTitleText style element in the current style.

For footnotes, the default font weight is specified by the FONTWEIGHT attribute of the GraphFootnoteText style element in the current style.

BCOLOR= color

specifies the background color for a box that you created with the BOX= option. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

This option has no effect if you do not also specify the BOX= option. By default, the background color is the same color as the background of the graph.

Alias BC=

BOX= 1 | 2 | 3 | 4

draws a box around one line of text. Specify a value between 1 and 4, where 1 specifies the thinnest line and 4 specifies the thickest line. Only the last BOX= option is used. The color of the box outline is determined by the GraphBorderLines element of the current style.

Alias BO

BSPACE= numeric-value<units>

specifies the amount of space between the text and the border of a box that you create with the BOX= option.

You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 86 for a list of the units that are supported.

If you do not specify a unit, then the size of the space is approximately 12n points. For example, if you specify BSPACE=2, then the space is approximately 24 points.

Alias BS=

Default 0
COLOR= color
specifies the color for the text. The COLOR= option affects all of the text strings that follow it in your TITLE or FOOTNOTE statement. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

You can use multiple colors by specifying multiple COLOR= options. For example, the following code produces a title where the first word is red and the second word is blue:

title color=red "Red" color=blue " Blue";

Alias C=

Defaults For titles, the default text color is specified by the COLOR attribute of the GraphTitleText style element in the current style.

For footnotes, the default font color is specified by the COLOR attribute of the GraphFootnoteText style element in the current style.

FONT= "system-font"
specifies a system font for the text string.

Alias F=

Defaults For titles, the default font is specified by the FONTFAMILY attribute of the GraphTitleText style element in the current style.

For footnotes, the default font is specified by the FONTFAMILY attribute of the GraphFootnoteText style element in the current style.

Note SAS/GRAPH software fonts such as SWISS cannot be used with statistical graphics procedures.

HEIGHT= numeric-value <units>
specifies the size of the text. You can also specify the unit of measurement. The following table lists the measurement units that are supported:

You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 86 for a list of the units that are supported.

If you do not specify a unit, then the size of the text is approximately 12n points. For example, if you specify HEIGHT=2, then the text size is approximately 24 points.

Alias H=

Defaults For the first title (title or title1), the default font size is specified by the FONTSIZE attribute of the GraphTitleText style element in the current style. For subsequent titles (titleN), the size is the FONTSIZE attribute of the GraphLabelFont style attribute.

For footnotes, the default font size is specified by the FONTSIZE attribute of the GraphFootnoteText style element in the current style.

ITALIC
specifies that the font style is italic for the text string.
Defaults

For titles, the default font style is specified by the FONTSTYLE attribute of the GraphTitleText style element in the current style.

For footnotes, the default font style is specified by the FONTSTYLE attribute of the GraphFootnoteText style element in the current style.

JUSTIFY= LEFT | CENTER | RIGHT

specifies the alignment of the text string. You can specify one of the following values:

- **LEFT | L**
 - aligns the text to the left.

- **CENTER | C**
 - aligns the text in the center.

 Note: By default, titles and footnotes are sometimes centered over the data area of the graph. However, when you explicitly specify center justification, titles and footnotes are always centered over the graph area.

- **RIGHT | R**
 - aligns the text to the right.

The JUSTIFY= option affects all of the text strings that follow it in your TITLE or FOOTNOTE statement. You can specify multiple alignments by using more than one JUSTIFY= option. For example, the following code creates a footnote where the first string is aligned to the left and the second string is aligned to the right:

```
footnote justify=left "Example 2" justify=right "Graph 3";
```

Alias

- **J=**

Default

- CENTER

LSPACE= numeric-value <units>

specifies the amount of space above the title text and below the footnote text.

You can also specify the unit of measure. See “Measurement Units for TITLE and FOOTNOTE Statement Options” on page 86 for a list of the units that are supported.

If you do not specify a unit, then the size of the space is approximately 12n points. For example, if you specify LSPACE=2, then the space is approximately 24 points.

- **Alias**
 - LS

- **Default**
 - 0

- **Interaction**
 - The LSPACE= option has no effect if you also specify the BOX= option.

Details

Summary of Text Options

text-options can be one or more of the following:

- appearance options:
 - **BOLD**
 - **COLOR= color**
• FONT= "system-font"
• HEIGHT= numeric-value <units>
• ITALIC
• placement and spacing options:
 • JUSTIFY= LEFT | CENTER | RIGHT
 • LSPACE= numeric-value <units>
• boxing and drawing options:
 • BCOLOR= color
 • BOX= numeric-value
 • BSPACE= numeric-value <units>

The following options are not supported by statistical graphics procedures:
• ANGLE=
• BLANK=
• DRAW=
• LANGLE=
• LINK=
• MOVE=
• ROTATE=
• UNDERLIN=
• WRAP

Using TITLE and FOOTNOTE Statements
You can define TITLE and FOOTNOTE statements anywhere in your SAS program. They are global and remain in effect until you cancel them or until you end your SAS session. All currently defined FOOTNOTE and TITLE statements are displayed automatically.

You can define up to ten TITLE statements and ten FOOTNOTE statements in your SAS session. A TITLE or FOOTNOTE statement without a number is equivalent to a TITLE1 or FOOTNOTE1 statement. It is not necessary to use sequential statement numbers—skipping a number in the sequence leaves a blank line.

You can use an unlimited number of text strings and options. Ensure that each option is placed before the text strings that you want it to modify.

The most recently specified TITLE or FOOTNOTE statement of any number completely replaces any other TITLE or FOOTNOTE statement of that number. In addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For example, if you define TITLE1, TITLE2, and TITLE3, then submitting a new TITLE2 statement cancels TITLE3.

The most recently specified TITLE or FOOTNOTE statement of any number completely replaces any other TITLE or FOOTNOTE statement of that number. In addition, it cancels all TITLE or FOOTNOTE statements of a higher number. For example, if you define TITLE1, TITLE2, and TITLE3, resubmitting the TITLE2 statement cancels TITLE3.

title4;
But remember that this cancels all other existing statements of a higher number.

To cancel all current TITLE or FOOTNOTE statements, use the TITLE1; or FOOTNOTE1; statement:

Substituting BY Line Values in a Text String

These options are available if a BY statement is in effect:

#BYLINE

substitutes the entire BY line without leading or trailing blanks for #BYLINE in the text string. The BY line uses the format `variable-name=value`.

#BYVALn | #BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the text string. Specify the variable with one of these:

- `n` specifies a variable by its position in the BY statement. For example, #BYVAL2 specifies the second variable in the BY statement.

- `BY-variable-name` specifies a variable from the BY statement by its name. For example, #BYVAL(YEAR) specifies the BY variable, YEAR. `variable-name` is not case sensitive.

#BYVARn | #BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the variable (whatever the BY line would normally display) for #BYVAR in the text string. Specify the variable with one of these:

- `n` specifies a variable by its position in the BY statement. For example, #BYVAR2 specifies the second variable in the BY statement.

- `BY-variable-name` specifies a variable from the BY statement by its name. For example, #BYVAR(SITES) specifies the BY variable, SITES. `Variable-name` is not case sensitive.

Note: A BY variable name displayed in a title or footnote is always in uppercase. If a label is used, then it appears as specified in the LABEL statement.

To use the #BYVAR and #BYVAL substitutions, insert the item in the text string at the position where you want the substitution text to appear. Both #BYVAR and #BYVAL specifications must be followed by a delimiting character. The character can be either a space or other non-alphanumeric character, such as a quotation mark. If no delimiting character is provided, then the specification is ignored and its text remains intact and is displayed with the rest of the string. To allow a #BYVAR or #BYVAL substitution to be followed immediately by other text, with no delimiter, use a trailing dot (as with macro variables). The trailing dot is not displayed in the resolved text. If you want a period to be displayed as the last character in the resolved text, use two dots after the #BYVAR or #BYVAL substitution.

The substitution for #BYVAR or #BYVAL does not occur in the following cases:

- if you use a #BYVAR or #BYVAL specification for a variable that is not named in the BY statement. For example, you might use #BYVAL2 when there is only one BY-variable or #BYVAL(ABC) when ABC is non-existent or is not a BY-variable.

- if there is no BY statement at all
For both cases, no error or warning message is issued. The option specification is displayed with the rest of the string. The graph continues to display a BY line at the top of the page unless you suppress it by using the NOBYLINE option in an OPTION statement.

Measurement Units for TITLE and FOOTNOTE Statement Options

Some of the options in the TITLE and FOOTNOTE statements give you the option to specify the unit of measurement. The following table lists the units that are supported:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 100 dots per inch</td>
</tr>
</tbody>
</table>

WHERE Statement

Selects observations from SAS data sets that meet a particular condition.

Used by: SGPANEL, SGPLOT, and SGSCATTER procedures

Details

All features of the WHERE statement are supported. For more information, see “WHERE Statement” in *SAS Viya Statements: Reference*.
Part 2

The Procedures

Chapter 4
SGPANEL Procedure .. 89

Chapter 5
SGPLOT Procedure .. 601

Chapter 6
SGSCATTER Procedure ... 1201

Chapter 7
Common Concepts ... 1257

Chapter 8
Commonly Used Attribute Options 1271
Chapter 4
SGPANEL Procedure

Overview: SGPANEL Procedure .. 90
Concepts: SGPANEL Procedure .. 91
Panel Creation ... 91
Concepts in Common with the SGPLOT Procedure 94
Syntax: SGPANEL Procedure ... 94
PROC SGPANEL Statement .. 96
PANELBY Statement ... 101
STYLEATTRS Statement ... 110
BAND Statement ... 114
BLOCK Statement ... 122
BUBBLE Statement ... 129
DENSITY Statement ... 139
DOT Statement ... 146
DROPLINE Statement .. 161
FRINGE Statement .. 166
GRADLEGEND Statement ... 170
HBAR Statement .. 174
HBARBASIC Statement ... 193
HBARPARM Statement ... 207
HBOX Statement .. 221
HEATMAP Statement ... 235
HEATMAPPARM Statement .. 242
HIGHLOW Statement .. 249
HISTOGRAM Statement ... 263
HLINE Statement ... 268
INSET Statement ... 284
KEYLEGEND Statement ... 288
LINEPARM Statement ... 294
LOESS Statement ... 299
NEEDLE Statement .. 310
PBSPLINE Statement ... 320
POLYGON Statement ... 333
REFLINE Statement ... 347
REG Statement .. 351
SCATTER Statement ... 363
SERIES Statement ... 378
SPLINE Statement ... 397
STEP Statement ... 410
SYMBOLCHAR Statement ... 424
SYMBOLIMAGE Statement .. 429
Overview: SGPANEL Procedure

The SGPANEL procedure creates a panel of graph cells for the values of one or more classification variables. For example, if a data set contains three variables (A, B and C) and you want to compare the scatter plots of B*C for each value of A, then you can use the SGPANEL procedure to create this panel. The SGPANEL procedure creates a layout for you automatically and splits the panel into multiple graphs if necessary.

The SGPANEL procedure can create a wide variety of plot types, and overlay multiple plots together in each graph cell in the panel. It can also produce several types of layout.

Here are some examples of panels that the SGPANEL procedure can create.

Table 4.1 Examples of Panels That Can Be Generated by the SGPANEL Procedure

```
The following code creates a panel of loess curves:

```title1 "Cholesterol Levels for Age > 60";
proc sgpanel data=sashelp.heart(
 where=(AgeAtStart > 60)) ;
panelby sex / novarname;
 loess x=weight y=cholesterol / clm;
run;
title1;
```
The following code creates a panel of vertical bar charts:

```
proc sgpanel data=sashelp.prdsale;
 panelby quarter;
 rowaxis label = "Sales";
 vbar product / response=predict stat=mean transparency=0.3;
 vbar product / response=actual stat=mean barwidth=0.5 transparency=0.3;
run;
```

The following code creates a panel of box plots in a lattice layout:

```
proc sgpanel data=sashelp.heart;
 panelby weight_status sex / layout=lattice novarname;
 hbox cholesterol;
run;
```

The following code creates a panel of cells with a histogram and a normal density curve:

```
proc sgpanel data=sashelp.heart noautolegend;
 panelby sex / novarname;
 histogram weight;
 density weight;
run;
```

### Concepts: SGPANEL Procedure

#### Panel Creation

The SGPANEL procedure has a required PANELBY statement that is used to define the classifier variables for the panel. This statement must be specified before any plot, axis, or legend statement or else an error occurs. You can use options in the PANELBY statement to control the attributes of the panel. For example, you can use the COLUMNS= option to specify the number of columns in the panel.
SGPANEL can use four different layouts, which are specified by the LAYOUT= option in the PANELBY statement. The layout determines how your classifier variables are used to create the panel, and also affects the number of classifier variables that you can specify.

The default layout is PANEL. With this layout, you can specify any number of classifier variables. The graph cells in the panel are arranged automatically, and the classifier values are displayed above each graph cell in the panel. When you specify multiple classifier variables, the order of the classifier variables determines how the graph cells are sorted.

**Figure 4.1 Example of the PANEL Layout**

Another layout is called LATTICE. This layout requires exactly two classifier variables. The values of the first variable are assigned as columns, and the values of the second variable are assigned as rows. The classifier values are displayed above the columns and to the right side of the rows.
Two additional layouts are available, which are called COLUMNLATTICE and ROWLATTICE. These layouts require exactly one classifier variable. The values of the classifier variable are assigned as cells in a single row or column.

If you have a large number of classifier variables, then the best method for creating a panel is to choose one or two classifiers for the PANELBY statement. Then specify the remaining variables in a BY statement. This method maximizes the space for the plots and generates results that are easier to interpret.
Concepts in Common with the SGPLOT Procedure

The following topics are located in the Chapter 7, “Common Concepts,” on page 1257 section. These topics describe concepts that are similar between the SGPANEL and SGPLOT procedures.

Table 4.2  Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1258)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1259)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1260)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1264)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1265)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1267)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers</td>
</tr>
</tbody>
</table>

Syntax: SGPANEL Procedure

- **Restriction:** This procedure is not supported by the CAS engine. However, the procedure can use data that has been processed in CAS. For more information, see “Using Data That Is Processed In CAS” on page 5.

- **Requirement:** The PANELBY statement and at least one plot statement are required.

- **Global statements:** BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE

```plaintext
PROC SGPANEL <option(s)>;
 PANELBY variable(s) <option(s)>;
 STYLEATTRS <option(s>)
 BAND X=variable Y=variable
 UPPER= numeric-value | numeric-variable
 LOWER= numeric-value | numeric-variable <option(s)>;
```
Syntax: SGPANEL Procedure

```
BLOCK X=category-variable BLOCK=block-variable </option(s)>;
BBUBBLE X=variable Y=variable SIZE=numeric-variable </option(s)>;
DENSITY response-variable </option(s)>;
DOT category-variable </option(s)>;
DROPLINE X=variable x-axis-value
 Y=variable | y-axis-value </option(s)>;
FRINGE numeric-variable </option(s)>;
GRADLEGEND "$name" </option(s)>;
HBAR category-variable </option(s)>;
HBARPARM CATEGORY= category-variable RESPONSE= numeric-variable </option(s)>;
HBARPARM CATEGORY= category-variable RESPONSE= numeric-variable </option(s)>;
HEATMAP X=variable Y=variable </option(s)>;
HEATMAPPARM X=variable Y=variable
 COLORGROUP=variable | COLORRESPONSE=numeric-variable </option(s)>;
HIGHLOW X=variable | Y=variable
 HIGH=numeric-variable LOW=numeric-variable </option(s)>;
HISTOGRAM response-variable </option(s)>;
HLINE category-variable </option(s)>;
INSETvariable <variable-n> </option(s)>
KEYLEGEND "$name-1" ... "$name-n" </option(s)>;
LINEPARM X=numeric-value | numeric-variable
 Y=numeric-value | numeric-variable
 SLOPE=numeric-value | numeric-variable </option(s)>;
LOESS X=numeric-variable Y=numeric-variable </option(s)>;
NEEDLE X=variable Y=numeric-variable </option(s)>;
PBSPLINE X=numeric-variable Y=numeric-variable </option(s)>;
POLYGON X=x-variable Y=y-variable ID=id-variable </option(s)>;
REFLINE value(s) </option(s)>;
REG X=numeric-variable Y=numeric-variable </option(s)>;
SCATTER X=variable Y=variable </option(s)>;
SERIES X=variable Y=variable </option(s)>;
SPLINE X=variable Y=variable </option(s)>;
STEP X=variable Y=variable </option(s)>;
SYMBOLCHAR NAME=identifier CHAR="hex-string" keyword </option(s)>;
SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" </option(s)>;
TEXT X=variable Y=variable TEXT=variable </option(s)>;
VBAR category-variable </option(s)>;
VBARBASIC category-variable </option(s)>;
VBARPARM CATEGORY= category-variable RESPONSE=numeric-variable </option(s)>;
VBOX analysis-variable </option(s)>;
VECTOR X=numeric-variable Y=numeric-variable </option(s)>;
VLINE <category-variable> </option(s)>;
```
**PROC SGPANEL Statement**

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, and control automatic legends and automatic attributes.

**Requirement:** An input data set is required.

### Syntax

PROC SGPANEL <options> ;

### Summary of Optional Arguments

- **ASPECT=**positive-number
  
  specifies the aspect ratio of the plot’s wall area.

- **CYCLEATTRS | NOCYCLEATTRS**
  
  specifies whether plots are drawn with unique attributes in the graph.

- **DATA=**input-data-set
  
  specifies the SAS data set that contains the variables to process.

- **DATATTRMAP=**discrete-attribute-map-data-set
  
  specifies the discrete attribute map data set that you want to use with the SGGSCATTER procedure.

- **DESCRIPTION=**"text-string"
  
  specifies a description for the output image.

- **NOAUTOLEGEND**
  
  disables automatic legends from being generated.

- **NOSUBPIXEL | SUBPIXEL**
  
  specifies whether subpixel rendering should be used for rendering line plots and bar charts.

- **OPAQUE | NOOPAQUE**
  
  specifies whether the graph background is opaque or transparent.

- **PAD=**dimension <units> | (pad-options)
  
  specifies the amount of extra space that is reserved inside the border of an annotated graph.

- **PCTLEVEL=**BY | CELL | GRAPH | GROUP
  
  specifies the scope of graph data that is calculated in percentages.

- **PCTNDEC=**numeric-value
  
  specifies the number of decimal spaces to be used to calculate the percent values.

- **RATTRMAP=**range-attribute-map-data-set
  
  specifies the range attribute map data set that you want to use with the procedure.

- **SGANNO=**annotation-data-set
  
  specifies the SG annotation data set that you want to use.
Optional Arguments

**ASPECT=**positive-number

specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall height divided by wall width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default: The wall area is sized to the maximum area that can fill the available space.

**CYCLEATTRS | NOCYCLEATTRS**

specifies whether plots are drawn with unique attributes in the graph. By default, the SGPANEL procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

**DATA=**input-data-set

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

**DATTRMAP=**discrete-attribute-map-data-set

specifies the discrete attribute map data set that you want to use with the SGPANEL procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Requirement: The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See: Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**DESCRIPTION=**“text-string”

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPANEL Procedure”.

Alias: DES

Note: The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.
Tip You can disable the alternate text in HTML output by specifying an empty string. That is, `DESCRIPTION=""`.

**NOAUTOLEGEND**

disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a KEYLEGEND statement.

**NOSUBPIXEL | SUBPIXEL**

specifies whether subpixel rendering should be used for rendering line plots and bar charts. Subpixel rendering produces smoother curves and more precise bar spacing.

**NOSUBPIXEL**

never uses subpixel rendering.

**SUBPIXEL**

always uses subpixel rendering, when applicable, for rendering lines and bars.

**Defaults**

When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Subpixel rendering is always enabled for vector-graphics output.

**Requirement**

Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the `ANTIALIAS=ON` option in the ODS GRAPHICS statement.

**Interaction**

If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the `ANTIALIASMAX=` option in the ODS GRAPHICS statement.

**See**

“Subpixel Rendering” on page 1294

“ODS GRAPHICS Statement” on page 61 for information about the `ANTIALIAS=` and `ANTIALIASMAX=` options.

**OPAQUE | NOOPAQUE**

specifies whether the graph background is opaque or transparent.

**Default**

OPAQUE

**Restriction**

The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an `OUTPUTFMT=` override to an image format, including PNG).

**Interaction**

When NOOPAQUE is specified, the background color is not used.

**PAD=dimension <units> | (pad-options)**

specifies the amount of extra space that is reserved inside the border of an annotated graph.
You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

- **LEFT=** *dimension <units>* specifies the amount of extra space to add to the left edge.
- **RIGHT=** *dimension <units>* specifies the amount of extra space to add to the right edge.
- **TOP=** *dimension <units>* specifies the amount of extra space to add to the top edge.
- **BOTTOM=** *dimension <units>* specifies the amount of extra space to add to the bottom edge.

**PCTLEVEL=** *BY | CELL | GRAPH | GROUP*

specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the STAT=PERCENT option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

- **BY** the percentages within each BY-group round up to 100%
  
  *Interaction* For this value to take effect, a BY-group must be specified in the procedure.

- **CELL** the percentages within each panel cell round up to 100%.

- **GRAPH** the percentages across the entire graph round up to 100%.

- **GROUP** the percentages across groups within a category round up to 100%.
  
  *Interaction* For this value to take effect, the GROUP= option must be specified in the plot statement.

In the following examples, the first example specifies a value of GRAPH (the default), and the second example specifies a value of GROUP.

```plaintext
ods graphics on / reset=all;
ods graphics on / width=4.5in;
```
PCTLEVEL=GRAPH
proc sgpanel data=sashelp.cars pctlevel=graph;
panelby origin;
where origin in("Asia" "Europe");
vbar type / response=horsepower stat=percent
   group=cylinders;
run;

PCTLEVEL=GROUP
proc sgpanel data=sashelp.cars pctlevel=group;
panelby origin;
where origin in("Asia" "Europe");
vbar type / response=horsepower stat=percent
   group=cylinders;
run;

In the graph that specifies PCTLEVEL=GRAPH, the bars collectively add up to 100%. Each bar represents a fraction of the total.

In the graph that specifies PCTLEVEL=GROUP, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.

**Default**

GRAPH

**Interaction**

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

**Tip**

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

PCTNDEC=numeric-value

specifies the number of decimal spaces to be used to calculate the percent values.

**Default**

The default number of decimals is based on the magnitude of the largest percentage value.

- 10% to 100% = 1
- .1% to < 1% = 3
- 1% to < 10% = 2
- < .1% = 4

**Interaction**

For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

**Tip**

You can use the PCTLEVEL= option in the PROC SGPANEL statement to control the scope of the percent calculations.
RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Requirement
The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See
Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

PANELBY Statement
Specifies one or more classification variables for the panel, the layout type, and other options for the panel.

Syntax
PANELBY variable(s) <option(s)>;

Summary of Optional Arguments

BORDER | NOBORDER
specifies whether borders are displayed around each cell in the panel.

COLHEADERPOS=TOP | BOTTOM | BOTH
specifies the location of the column headings in the panel.

COLUMNS=n
specifies the number of columns in the panel.

HEADERATTRS=style-element <(options)> | (options)
specifies the appearance of the column headings.

HEADERBACKCOLOR=color
specifies a background color for the cell headers.

LAYOUT=LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE
specifies the type of layout that is used for the panel.

MISSING
processes missing values as a valid classification value and creates cells for it.

NOHEADER
hides the cell headings.

NOHEADERBORDER
removes the border from the cell headings.

NOVARNAME
removes the variable names from the cell headings of a panel layout, or from the row and column headings of a lattice layout.

NOWALL
turns off the display of the graph wall.
ONEPANEL
  places the entire panel in a single output image.

PROPORTIONAL
  changes the size of the cells in proportion to the content of the discrete axis.

ROWHEADERPOS=LEFT | RIGHT | BOTH
  specifies the location of the row headings in the panel.

ROWS=n
  specifies the number of rows in the panel.

SKIPEMPTYCELLS
  specifies whether the external axes skip the empty cells in a partially filled grid.

SORT=sort-option | (sort-option-1 ... sort-option-n)
  specifies the sort order of the panel cells.

SPACING=n
  specifies the number of pixels between the rows and columns in the panel.

SPARSE
  enables the SGPANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set.

START=TOPLEFT | BOTTOMLEFT
  specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner.

UNISCALE=COLUMN | ROW | ALL
  scales the shared axes in the panel to be identical.

**Required Argument**

variable(s)
  specifies one or more classification variables for the panel.

**Optional Arguments**

BORDER | NOBORDER
  specifies whether borders are displayed around each cell in the panel. BORDER adds the borders. NOBORDER removes the borders. Depending on the current ODS style, the borders might be present by default.

COLHEADERPOS=TOP | BOTTOM | BOTH
  specifies the location of the column headings in the panel. Specify one of the following values:

  TOP
    places column headings at the top of each column.

  BOTTOM
    places column headings at the bottom of each column.

  BOTH
    places column headings at the top and bottom of each column.

  Default   TOP

Interaction
  This option has no effect if the panel uses the PANEL layout.

COLUMNS=n
  specifies the number of columns in the panel. By default, the number of columns is determined automatically based on the number of classifier values and the layout.
type. The SGPANEL procedure automatically splits the panel into multiple panel images (pages) as needed when your panel contains a large number of cells.

Specifying COLUMNS= enables you to control panel size. When the number of classification levels exceeds the number of cells in the panel, additional panels (images) are created. The last panel might be partially populated.

If you specify COLUMNS= without specifying a value for ROWS= (by default, ROWS=1), then one of the following occurs:

- The cells fill each row from left to right up to the requested number of columns before going to the next row. Each panel can have a maximum of three rows. For example, if you specify two columns, and the classifier has six values, the result is a 2-column by 3-row panel. If you specify two columns, and the classifier has eight values, the result is two panels, and each panel has two rows and two columns.

- If the number of classification variables is not divisible by the columns value, then the procedure simply creates multiple single-row panels. Each panel has the specified number of columns. In this scenario, the last panel is only partially populated.

However, if you also specify ROWS= with a value greater than one, then the procedure uses your specified values to determine the number of panels. Specifying both ROWS= and COLUMNS= enables you to define the precise layout, including how many cells are in a panel.

**HEADERATTRS=**<style-element> <(options)> | (options)

specifies the appearance of the column headings. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

<table>
<thead>
<tr>
<th>Default</th>
<th>GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>HEADERATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)</td>
</tr>
</tbody>
</table>

Here is an example that specifies a style element:

HEADERATTRS=GraphLabelText

**HEADERBACKCOLOR=**<color>

specifies a background color for the cell headers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**LAYOUT=**<LATTICE | PANEL | COLUMNLATTICE | ROWLATTICE>

specifies the type of layout that is used for the panel. Select one of the following values:

**LATTICE**

when you specify two classification variables, arranges the cells so that the values of the first variable are columns and the values of the second variable are rows. You can use LATTICE only when you specify exactly two classification variables.

**PANEL**

arranges the cells in rows and columns. The headings for each cell are placed at the top of the cell.
COLUMNLATTICE
arranges the cells in a single row. You can use the COLUMNLATTICE layout
only with a single classification variable.

ROWLATTICE
arranges the cells in a single column. You can use the ROWLATTICE layout
only with a single classification variable.

Default PANEL

MISSING
processes missing values as a valid classification value and creates cells for it. By
default, missing values are not processed as a classification value.

NOHEADER
hides the cell headings. This option is useful when a legend is displayed.

```
ods graphics on / reset=all;
ods graphics on / width=4in;
proc sgpanel data=sashelp.class;
 panelby sex / noheader noborder;
 vbar age / response=height group=sex;
run;
```

NOHEADERBORDER
removes the border from the cell headings.

NOVARNAME
removes the variable names from the cell headings of a panel layout, or from the row
and column headings of a lattice layout. For example, to change a row heading from
“Region=NorthEast” to “NorthEast,” specify the NOVARNAME option.

NOWALL
turns off the display of the graph wall. This option might be useful when your graph
contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall color is the same as the graph background, and it is
impossible to see the difference. However, if this is not the case with the style that
you use for a graph, then you might want to suppress the wall fill.

ONEPANEL
places the entire panel in a single output image. If you do not specify this option,
then the panel is automatically split into multiple images as appropriate.

Interactions When you use ONEPANEL with the PANEL layout, only one of the
ROWS= and COLUMNS= options can be used. If you specify both
options, then the value for COLUMNS= is used.

When you use ONEPANEL with the LATTICE layout, the ROWS=
and COLUMNS= options have no effect.
Note  This option is recommended only for panels with a small number of cells. If your panel is too large for the output image, then a blank image is created.

**PROPORTIONAL**
changes the size of the cells in proportion to the content of the discrete axis.

The following examples show the use of PROPORTIONAL on the X axis and on the Y axis. The first example adjusts the width of the two cells relative to the number of vertical bars along the X axis of each cell. The second example adjusts the height of the rows relative to the number of horizontal bars along the Y axis for each row.

```
ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
 where age > 14;
 panelby age / uniscale=row proportional;
 vbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

```
ods graphics / width=3.5in;
proc sgpanel data=sashelp.class;
 where age > 12;
 panelby age / uniscale=column proportional;
 hbar name / response=height stat=mean;
run;
ods graphics / reset=width;
```

**Requirements**
The axis must be discrete.

You must also use the UNISCALE= option in the statement. Otherwise, the discrete axis cannot scale independently.

**ROWHEADERPOS=LEFT | RIGHT | BOTH**
specifies the location of the row headings in the panel. Specify one of the following values:

**LEFT**
places row headings at the left side of each row.

**RIGHT**
places row headings at the right side of each row.

**BOTH**
places row headings at the left side and the right side of each row.

**Default**  RIGHT

**Interaction**  This option has no effect if the panel uses the PANEL layout.
ROWS=n
specifies the number of rows in the panel. By default, the number of rows is determined automatically based on the number of classifier values and the layout type. The SG PANEL procedure automatically splits the panel into multiple panel images (pages) as needed when your panel contains a large number of cells.

If you specify ROWS= without specifying a value for COLUMNS= (by default, COLUMNS=1), then one of the following occurs:

- The cells fill each row from left to right up to the requested number of rows. Each panel can have a maximum of three columns. For example, if you specify two rows, and the classifier has six values, the result is a three-column by two-row panel. If you specify two rows, and the classifier has eight values, the result is two panels. Each panel has two rows and two columns.

- If the number of classification variables is not divisible by the rows value, then the procedure simply creates multiple single-column panels. Each panel has the specified number of rows. The last panel is only partially populated.

However, if you also specify COLUMNS= with a value greater than one, then the procedure uses your specified values to determine the number of panels. Specifying both COLUMNS= and ROWS= enables you to define the precise layout, including how many cells are in a panel.

**SKIPEMPTYCELLS**

specifies whether the external axes skip the empty cells in a partially filled grid. If the number of classifier values does not match the number of cells in the rows and columns of the layout, then the grid is partially filled with data cells and padded with empty cells to complete the grid. Specifying the SKIPEMPTYCELLS option removes those empty cells.

In the following examples, the data cells are arranged in a two-column, two-row panel. The first graphic shows the panel padded with an empty cell. The are specifies SKIPEMPTYCELLS, and the panel contains no empty cells.

```sql
proc sgpanel data=sashelp.cars;
panelby origin;
scatter x=mpg_city y=msrp;
run;
```
The SKIPEMPTYCELLS option works whether the rows and columns are determined automatically or explicitly specified.

`SORT=sort-option | (sort-option-1 ...sort-option-n)`
specifies the sort order of the panel cells.

*Note:* This option affects only the order of the cells in your panel. It does not affect the order of the cell contents.

If you have multiple classification variables, you can control the sort for each variable using `(sort-option-1 ...sort-option-n)`. `(sort-option-1 ...sort-option-n)` can be one or more of the first five values listed below. If you attempt to use any other values (such as DATA or any value after DATA), the sort request is ignored and a message is written to the log.

`sort-option` can be one of the following values:

- **AUTO** sorts in ascending order for character data and numeric data. The sorts performed by PROC SORT and PROC SQL are also honored with this option. This option represents the default sorting behavior.
- **ASCENDING** sorts in ascending order using the unformatted values.
- **DESCENDING** sorts in descending order using the unformatted values.
- **ASCFORMAT** sorts in ascending order using the formatted values.
- **DESCFORMAT** sorts in descending order using the formatted values.
- **DATA** uses data order for the sort. This value is not supported with SAS Cloud Analytic Services (CAS) data. If DATA order is specified, the panel order is not guaranteed from one run to the next.
- **ASCMEAN** sorts by the ascending mean of the Y (or response) variable of the primary plot.
- **DESCMEAN** sorts by the descending mean of the Y (or response) variable of the primary plot.
- **ASCMEDIAN** sorts by the ascending median of the Y (or response) variable of the primary plot.
DESCMEDIAN sorts by the descending median of the Y (or response) variable of the primary plot.

ASCFREQ sorts by the ascending frequency of the class values.

DESCFREQ sorts by the descending frequency of the class values.

The sort-option is applied to your panel variables as follows:

- When a single sort-option is specified, the sort is applied to all panel variables.
- When (sort-option-1...sort-option-n) values are specified, sort-option-1 corresponds to the first PANELBY variable that is specified, sort-option-2 corresponds to the second variable, and so on.

If you do not specify enough sort-option values, the list is padded with AUTO. If you specify too many sort-option values, the rest of the list is ignored. If you want to skip the first variable but sort the second, use AUTO for the first variable.

The following example shows barley yields by year in ascending (formatted) order and by site in descending order.

```
proc sgpanel data=barley;
panelby year site / layout=lattice
onepanel sort=(ascformat descformat)
uniscale=column novarname;
dot variety / response=yield stat=mean
categoryorder=respasc;
run;
```

You cannot use a (sort-option-1...sort-option-n) list with a statistical sort, such as DESCMEAN. However, there is a way to obtain a statistical sort for multiple class variables:

1. Merge the statistic variable with the raw data by the class variables.
2. Use the SORT procedure to sort the data by the statistic variable.
3. In the SGPANEL procedure, specify SORT=DATA in the PANELBY statement.

Statistical sorts are most effective when you specify COLUMNS=1 or ROWS=1 in the PANELBY statement.
Restriction: Data order is not supported with CAS data. If SORT=DATA is specified, the panel order is not guaranteed from one run to the next.

**SPACING=**\( n \)

specifies the number of pixels between the rows and columns in the panel.

Default: 0

**SPARSE**

enables the SGPANEL procedure to create empty cells for crossings of the classification variables that are not present in the input data set. By default, empty cells are not created for the panel layout.

Interaction: This option has no effect if you specify LAYOUT=LATTICE.

**START=**TOPLEFT | BOTTOMLEFT

specifies whether the first cell in the panel is placed at the upper left corner or the lower left corner. Specify one of the following values:

- **TOPLEFT**
  
  places the cell for the first data crossing in the upper left corner.
  
  Cells are placed from left to right, starting in the top row. Each additional row is placed below the previous row.

  The following figure shows the placement of nine cells in a panel where START= TOPLEFT:

  \[
  \begin{array}{ccc}
  1 & 2 & 3 \\
  4 & 5 & 6 \\
  7 & 8 & 9 \\
  \end{array}
  \]

- **BOTTOMLEFT**
  
  places the cell for the first data crossing in the lower left corner. Cells are placed from left to right, starting in the bottom row. Each additional row is placed above the previous row.

  The following figure shows the placement of nine cells in a panel where START=BOTTOMLEFT:

  \[
  \begin{array}{ccc}
  7 & 8 & 9 \\
  4 & 5 & 6 \\
  1 & 2 & 3 \\
  \end{array}
  \]

Default: TOPLEFT

**UNISCALE=**COLUMN | ROW | ALL

scales the shared axes in the panel to be identical. Specify one of the following values:
COLUMN
   scales all of the column axes in the panel to be identical.

ROW
   scales all of the row axes in the panel to be identical.

ALL
   scales all of the column axes to be identical, and also scales all of the row axes to be identical.

Default  ALL

---

**STYLEATTRS Statement**

Specifies group attributes for a graph. The statement enables you to change group colors, markers, and so on, within the procedure, without having to change the ODS style template.

**Requirement:**  The procedure must include at least one plot statement, and at least one plot statement must specify the GROUP= option.

**Syntax**

```
STYLEATTRS <option(s)>;
```

**Summary of Optional Arguments**

- **BACKCOLOR=**\(color\)
  specifies the background color of the graph area.

- **DATACOLORS=**\(color-list\)
  specifies the fill colors for the graphics elements.

- **DATACONTRASTCOLORS=**\(color-list\)
  specifies the contrast colors for the graphics elements, such as lines and markers.

- **DATALINEPATTERNS=**\(line-pattern-list\)
  specifies the list of line patterns for the graph data lines.

- **DATASYMBOLS=**\(marker-symbol-list\)
  specifies the list of marker symbol for the graph data.

- **WALLCOLOR=**\(color\)
  specifies the color of the plot wall area.

**Optional Arguments**

- **BACKCOLOR=**\(color\)
  specifies the background color of the graph area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

  **Default**  The Color attribute of the GraphBackground style element

  **Examples**
  
  backcolor=CXFF0000
  
  backcolor=light_blue
**DATACOLORS=(color-list)**
specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**
The colors that are defined in the GraphData1 ... GraphData\textit{n} style elements in the current style are used.

**Interaction**
Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.

**Note**
When this option is specified, the colors cycle through \textit{color-list} rather than the colors that are defined in the GraphData1 ... GraphData\textit{n} style elements. When the colors in \textit{color-list} are exhausted, the colors repeat.

**Example**
datacolors=(CXFF0000 green blue)

**DATACONTRASTCOLORS=(color-list)**
specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**
The contrast colors that are defined in the GraphData1 ... GraphData\textit{n} style elements in the current style are used.

**Interaction**
Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

**Note**
When this option is specified, the colors cycle through \textit{color-list} rather than the contrast colors that are defined in the GraphData1 ... GraphData\textit{n} style elements. When the colors in \textit{color-list} are exhausted, the colors repeat.

**Example**
datacontrastcolors=(orange cyan #FF0000)

**DATALINEPATTERNS=(line-pattern-list)**
specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

**Default**
The line patterns that are defined in the GraphData1 ... GraphData\textit{n} style elements in the current style are used.

**Interaction**
Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

**Note**
When this option is specified, the line patterns cycle through \textit{line-pattern-list} rather than the line patterns that are defined in the GraphData1 ... GraphData\textit{n} style elements. When the patterns in \textit{line-pattern-list} are exhausted, the patterns repeat.
Example  
datalinepatterns=(dot solid longdash 26)

**DATASYMBOLS=(marker-symbol-list)**

specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See the list of marker symbols on page 1275.

**Default**

The symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements in the current style are used.

**Interaction**

Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

**Note**

When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

Example  
datasyMBOLS=(circle square triangle star)

**WALLCOLOR=color**

specifies the color of the plot wall area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

The following figure shows a light blue wall color.

![Light Blue Wall Color](image)

**Default**

The Color attribute of the GraphWalls style element

**Examples**

wallcolor=CXFF0000

wallcolor=light_blue

**Details**

*How the Attributes Are Cycled*

The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.
In this example, which uses the HTMLBlue style for the ODS HTML5 destination, the procedure uses a color-priority rotation pattern.

With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

```
<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
</tr>
<tr>
<td>14 15 16</td>
</tr>
</tbody>
</table>
```

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

ATTRPRIORITY=COLOR | NONE

**Note:** The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the SGPLOT procedure:

```
ods graphics / attrpriority=none;
```

Now, the following options in the STYLEATTRS statement are applied in alternating order:

```
datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)
```

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

```
<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 12 13</td>
</tr>
<tr>
<td>14 15 16</td>
</tr>
</tbody>
</table>
```

**See Also**

“ODS GRAPHICS Statement” on page 61
Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
- The default ODS style is HTMLBlue. For the HTMLBlue style, the ATTRPRIORITY defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.

```plaintext
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
 by age;
run;

/* Generate the graph using the sorted data */
proc sgpanel data=class;
 panelby sex;
 styleattrs
 datacontrastcolors=(red green blue)
 datalinepatterns=(dot solid);
 series x=height y=weight / group=age;
 keylegend;
run;
```

BAND Statement

Creates a band that highlights part of a plot.

**Restriction:** The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.

**Note:** The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.
Example: “About Band Plots” on page 15

Syntax

BAND X=variable | Y=variable
UPPER=numeric-value | numeric-variable
LOWER=numeric-value | numeric-variable
<option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.
DISCRETEOFFSET=numeric-value
  specifies an amount to offset all bands from discrete X or Y tick values.
FILL | NOFILL
  specifies whether the area fill is visible.
FILLATTRS=style-element <(options)> | (options)
  specifies the fill color and transparency.
LINEATTRS=style-element <(options)> | (options)
  specifies the appearance of the lines in the plot.
NOEXTEND
  when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot.
OUTLINE | NOOUTLINE
  specifies whether the outlines of the band are visible.
TRANSPARENCY=value
  specifies the degree of transparency for the plot.
TYPE=SERIES | STEP
  specifies how the data points for the lower and upper band boundaries are connected.

Data tip options

TIP=(variable-list) | NONE
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
  applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
  specifies a variable that is used to group the data.
NOMISSINGGROUP
  specifies that missing values of the group variable are not included in the plot.
Label options

\[
\text{CURVELABELATTRS}=\text{style-element} \ (<\text{options}>) \ | \ (<\text{options})
\]

specifies the appearance of the labels in the plot when you specify a curve label.

\[
\text{CURVELABELLOWER} = \text{"text-string"}
\]

adds a label to the lower edge of the band.

\[
\text{CURVELABELPOS} = \text{MIN} \ | \ \text{MAX} \ | \ \text{START} \ | \ \text{END}
\]

specifies the location of the curve label.

\[
\text{CURVELABELUPPER} = \text{"text-string"}
\]

adds a label to the upper edge of the band.

\[
\text{LEGENDLABEL} = \text{"text-string"}
\]

specifies a label that identifies the elements from the band plot in the legend.

\[
\text{SPLITCHAR} = \text{"character-list"}
\]

specifies one or more characters used to split the text used for curve labels into multiple lines.

\[
\text{SPLITCHARNODROP}
\]

specifies that the split characters are included in the displayed value.

\[
\text{SPLITJUSTIFY} = \text{LEFT} \ | \ \text{CENTER} \ | \ \text{RIGHT}
\]

specifies the horizontal alignment of the value text that is being split.

Plot reference options

\[
\text{MODELNAME} = \text{"plot-name"}
\]

specifies the name of a plot from which to derive the interpolation for the band.

\[
\text{NAME} = \text{"text-string"}
\]

specifies a name for the plot.

Required Arguments

\[
\text{X=} \text{variable} \ | \ \text{Y=} \text{variable}
\]

specifies a variable that is used to plot the band along the x or y axis.

\[
\text{LOWER=} \text{numeric-value} \ | \ \text{numeric-variable}
\]

specifies the lower value for the band. You can specify either a constant numeric value or a numeric variable.

\[
\text{UPPER=} \text{numeric-value} \ | \ \text{numeric-variable}
\]

specifies the upper value for the band. You can specify either a constant numeric value or a numeric variable.

Optional Arguments

\[
\text{ATTRID} = \text{character-value}
\]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

\[
\text{CURVELABELATTRS}=\text{style-element} \ (<\text{options}>) \ | \ (<\text{options})
\]

specifies the appearance of the labels in the plot when you specify a curve label. You can specify the appearance by using a style element or by specifying specific
options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
- Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Interaction
- This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOWER =“text-string”
adds a label to the lower edge of the band. Specify the label text.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction
- This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.

CURVELABELUPPER =“text-string”
adds a label to the upper edge of the band. Specify the label text.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bands from discrete X or Y tick values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement
- This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.
The default status of the area fill is specified by the DisplayOpts style attribute of the GraphBand style element in the current style.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

\textbf{FILLATTRS=style-element \langle(options)\rangle | (options)}

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

\textbf{Defaults}

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

0.0 transparency

This option has no effect if you specify the NOFILL option.

\textbf{GROUP=variable}

specifies a variable that is used to group the data. A separate band is created for each unique value of the grouping variable.

\textbf{LEGENDLABEL=“text-string”}

specifies a label that identifies the elements from the band plot in the legend. By default, the label “Band” is used for ungrouped data, and the group values are used for grouped data.

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

\textbf{LINEATTRS=style-element \langle(options)\rangle | (options)}

specifies the appearance of the lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

\textbf{Defaults}

GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle.

For line thickness, GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attribute is LineThickness.

This option has no effect unless you also specify the OUTLINES option.

\textbf{MODELNAME="plot-name"}

specifies the name of a plot from which to derive the interpolation for the band.

If you do not specify this option, then the band is interpolated in the same way as a series plot.
Requirement \textit{plot-name} must be the name that has been assigned with the associated plot’s NAME= option.

See “Details” on page 122

\textbf{NAME=\textit{	extquotesingle text-string	extquotesingle}}

specifies a name for the plot. You can use the name to refer to this plot in other statements.

\textbf{Note} The \textit{text-string} is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

\textbf{Tip} This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

\textbf{NOEXTEND}

when you specify numeric values for UPPER= and LOWER=, specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

\textbf{Interaction} This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

\textbf{NOMISSINGGROUP}

specifies that missing values of the group variable are not included in the plot.

\textbf{OUTLINE | NOOUTLINE}

specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

\textbf{Default} The default status of the band outlines is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

\textbf{Interactions} Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

\textbf{SPLITCHAR=\textit{\textquotesingle character-list	extquotesingle}}

specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

\textit{\textquotesingle character-list	extquotesingle} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR=\textquotesingle abc\textquotesingle}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
**Interactions**  
This option has no effect unless either CURVELABELLOWER or CURVELABELUPPER is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**  
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

---

**SPLITCHARNODROP**  
specifies that the split characters are included in the displayed value.

**Interaction**  
This option has no effect unless SPLITCHAR= is also specified.

**See**  
“Overview of Collision Avoidance” on page 1265

---

**SPLITJUSTIFY=**  
**LEFT | CENTER | RIGHT**  
specifies the horizontal alignment of the value text that is being split.

**Default**  
LEFT

**Interaction**  
This option has no effect unless you specify the SPLITCHAR= option.

**See**  
“Overview of Collision Avoidance” on page 1265

---

**TIP=(variable-list) | NONE**  
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**  
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**  
suppresses the data tips from this plot.

**Requirement**  
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**  
This option replaces all of the information that is displayed by default.

**Tip**  
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  
tip=(age weight)

**TIPFORMAT=(format-list)**  
applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL= option to assign labels to the list of variables.

**See**

*SAS Viya Formats and Infmts: Reference*

**Example**

`tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of variables.

**Example**

`tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**

0.0

**Range**

0 (completely opaque) to 1 (completely transparent)

**TYPE=SERIES | STEP**

specifies how the data points for the lower and upper band boundaries are connected.

You can specify one of the following:

**SERIES**

the data points are connected directly using line segments, as in a series plot.
STEP

the data points are connected using a step function, as in a step plot.

Default SERIES

Details

The MODELNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```plaintext
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```

Figure 4.4  Fitted Band Plot Example

---

**BLOCK Statement**

Creates one or more rectangular blocks containing text values. The width of each block corresponds to specified numeric intervals. Block plots show continuous ranges of data that have the same BLOCK= value.

**Requirement:** The BLOCK statement must be used with another plot statement, which establishes the axis type for the Y axis.

**Example:**  "About Block Plots" on page 16

**Syntax**

```plaintext
BLOCK X=category-variable BLOCK=block-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ALTFILLATTRS=style-element <(options)> | (options)**
  - specifies the appearance of alternate fills for the blocks.

- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.
FILL | NOFILL
specifies whether the blocks are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the appearance of the fill for the blocks.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the block outlines.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the blocks.

Block text options

BLOCKLABEL=variable
specifies a column to use for alternative text in the blocks.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

SPLITCHAR=“character-list”
specifies one or more characters used to split block text values into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the block text values.

VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE
specifies how text values are adjusted to fit within the containing block.

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks.

VALUEVALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the value text within the blocks.

Label options

LABEL <=“text-string”> | NOLABEL
specifies an external label for a single block plot.

LABELATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the external block labels.

LABELPOS=BOTTOM | LEFT | RIGHT | TOP
specifies the position for the block label for a single block plot.

Plot options

CLASS=variable
creates a stack of block plots, with one block plot for each unique value of the specified variable.

EXTENDMISSING
extends the previous block value if the current value is missing.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

Plot reference options

NAME=“text-string”
specifies a name for the plot.

**Required Arguments**

\[ X=\text{category-variable} \]

specifies X axis positions. When the X axis is numeric and the specified variable is numeric, values are expected to be in sorted, ascending order. If the X axis is discrete and the specified column is numeric, values are treated as numeric-discrete.

\[ \text{BLOCK}=\text{block-variable} \]

specifies the variable that classifies the observations into distinct subsets.

**Optional Arguments**

\[ \text{ALTFILLATTRS}=\text{style-element} <(\text{options})> | (\text{options}) \]

specifies the appearance of alternate fills for the blocks. This option in conjunction with the FILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Requirement

FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction

This option has no effect if you specify the NOFILL option.

Note

The TRANSPARENCY= attribute affects only the alternate fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips

The FILLATTRS= option controls the fill color of non-alternate blocks.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

\[ \text{ATTRID}=\text{character-value} \]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

\[ \text{BLOCKLABEL}=\text{variable} \]

specifies a column to use for alternative text in the blocks.

Interaction

This option overrides the default text for the blocks.

Tip

The font and color attributes for the alternative text are specified by the VALUEATTRS= option.
CLASS=variable
creates a stack of block plots, with one block plot for each unique value of the specified variable.

Interaction To label the blocks by the class values, specify the BLOCKLABEL= option using the same class variable.

EXTENDMISSING
extends the previous block value if the current value is missing.

FILL | NOFILL
specifies whether the blocks are filled.

Default FILL

Interaction The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

FILLATTRS=style-element <(options)> | (options)
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Requirement FILLTYPE=ALTERNATE must be specified for this option to have any effect.

Interaction This option has no effect if you specify the NOFILL option.

Note The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

Tips The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

FILLTYPE=MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

MULTICOLOR
Blocks are filled with the COLOR attribute of the GraphData1 ... GraphData\n style elements.

ALTERNATE
Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.

Default MULTICOLOR

Interaction This option has no effect if NOFILL is also specified.

LABEL <=“text-string”> | NOLABEL
specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.
The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.

By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

**LABELATTRS=**

specifies the color and font attributes of the external block labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData

**Examples**

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LABELPOS=**

specifies the position for the block label for a single block plot.

**Default**

LEFT

This option has no effect if NOLABEL is also specified.

**LINEATTRS=**

specifies the appearance of the block outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Defaults**

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

This option has no effect if the NOOUTLINE option is also specified.

**NAME=**

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCLASS**
suppresses blocks that correspond to missing values of the CLASS= value.

**OUTLINE | NOOUTLINE**
specifies whether the blocks have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default  OUTLINE

Interaction  The NOOUTLINE option can be used with the NOFILL option to hide both the outline and the fill.

**NOVALUES | VALUES**
specifies whether the block values are displayed or hidden.

Default  VALUES

Tip  The font and color attributes for the text values are specified by the VALUEATTRS= option.

**SPLITCHAR=“character-list”**
specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

Default  The default split character is a space.

Interactions  This option has no effect unless VALUEFITPOLICY= specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY= is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.
Interaction  This option has no effect unless SPLITCHAR= is also specified.

**TRANSPARENCY=numeric-value**
specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default  GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples  VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

**VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE**
specifies how text values are adjusted to fit within the containing block. Select one of the following values:

**NONE**
No attempt is made to fit values that collide with the text values in adjacent blocks.

**SHRINK**
All values are reduced in font size until they all fit.

**SPLIT**
If a value does not fit within the containing block, it is split at a split character. No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value.

If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

Default  The default split character is a space.

Tip  Use the SPLITCHAR= option to specify a split character.

**SPLITALWAYS**
Text values are split at a split character in all blocks.

Default  The default split character is a space.

Tip  Use the SPLITCHAR= option to specify a split character.
TRUNCATE
Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

Default: SPLIT

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal alignment of the value text within the blocks. This option changes the text alignment regardless of whether you split values or specify the VALUEFITPOLICY= option.

Select one of the following values:

LEFT
left-aligned within the block

CENTER
center-aligned within the block

RIGHT
right-aligned within the block

START
center-aligned at the starting value of the block

Default: CENTER

Interaction: This option has no effect if you also specify the NOVALUES option.

VALUEVALIGN=TOP | CENTER | BOTTOM
specifies the vertical alignment of the value text within the blocks.

Default: TOP

Interaction: This option has no effect if you also specify the NOVALUES option.

Details
The BLOCK statement provides several options for changing the appearance of the blocks and the text values inside the blocks.

The syntax for these display attributes is almost identical between the SGPANEL and SGPLOT procedures, and is described in the following topics in the SGPLOT chapter:

• “Changing the Appearance of Block Text Values” on page 636
• “Changing the Appearance of Block Fills” on page 637

BUBBLE Statement
Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.

Example: “About Bubble Plots” on page 17
Syntax

\textbf{BUBBLE} \texttt{X=variable Y=variable SIZE=numeric-variable \langle/option(s)\rangle;}

\textbf{Summary of Optional Arguments}

\textbf{Appearance options}

\textbf{ABSSCALE}
\hspace{1em} specifies that the \texttt{SIZE=} column values are interpreted in the same units as the axes rather than as relative values.

\textbf{ATTRID=character-value}
\hspace{1em} specifies the value of the ID variable in a discrete attribute map data set.

\textbf{BRADIUSMAX=numeric-value}
\hspace{1em} specifies the size of the radius of the largest bubble.

\textbf{BRADIUSMIN=numeric-value}
\hspace{1em} specifies the size of the radius of the smallest bubble.

\textbf{COLORMODEL=style-element | (color-list)}
\hspace{1em} specifies a color ramp that is to be used with the \texttt{COLORRESPONSE=} option.

\textbf{COLORRESPONSE=numeric-column}
\hspace{1em} specifies the numeric column that is used to map colors to a gradient legend.

\textbf{DATASKIN=None | CRISP | GLOSS | MATTE | PRESSED | SHEEN}
\hspace{1em} specifies a special effect to be used on the plot.

\textbf{DRAWORDER=SIZE | DATA}
\hspace{1em} specifies whether the bubbles are drawn according to bubble size or according to data order.

\textbf{FILL | NOFILL}
\hspace{1em} specifies whether the bubbles are filled.

\textbf{FILLATTRS=style-element \langle(options)\rangle | (options)}
\hspace{1em} specifies the fill color and transparency.

\textbf{LINEATTRS=style-element \langle(options)\rangle | (options)}
\hspace{1em} specifies the appearance of the outlines for the bubbles.

\textbf{OUTLINE | NOOUTLINE}
\hspace{1em} specifies whether the outlines of the bubbles are visible.

\textbf{RATTRID=character-value}
\hspace{1em} specifies the value of the ID variable in a range attribute map data set.

\textbf{TRANSPARENCY=value}
\hspace{1em} specifies the degree of transparency for the plot.

\textbf{Data tip options}

\textbf{TIP=(variable-list) | NONE}
\hspace{1em} specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\textbf{TIPFORMAT=(format-list)}
\hspace{1em} applies formats to the list of data tip variables that you specify in the \texttt{TIP=} option.

\textbf{TIPLABEL=(label-list)}
\hspace{1em} applies labels to the list of data tip variables that you specify in the \texttt{TIP=} option.

\textbf{Group options}
GROUP=variable
    specifies a variable that is used to group the data.

NOMISSINGGROUP
    specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
    displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
    specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
    specifies the label that identifies the bubble plot in the legend.

SPLITCHAR="character-list"
    splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
    specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
    specifies a name for the plot.

Required Arguments

X=variable
    specifies the variable for the X axis.

Y=variable
    specifies the variable for the Y axis.

SIZE=numeric-variable
    specifies the variable that controls the size of the bubbles. The minimum and maximum values automatically provide the range that is used to determine bubble sizes. You can control this range manually by using the BRADIUSMAX and BRADIUSMIN options.

Tip    You can use the ABSSCALE option to interpret the bubble size in the same units as the axes rather than as relative values.
Optional Arguments

ABSSCALE
specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values. By default, the bubble sizes are scaled to represent the value range of the SIZE= column.

For example, suppose a graph contains only two bubbles, and their sizes are 2 and 4. These two bubbles appear the same as they would if their sizes were 4000 and 8000, respectively. By contrast, when ABSSCALE is specified, the size values are interpreted in the same units as the axes.

Restriction This option is ignored if the X or Y axis is discrete.

Interaction When this option is used, the BRADIUSMAX= and BRADIUSMIN= options are ignored.

Note The bubbles might be drawn as ellipses if the X and Y axes are scaled differently.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

BRADIUSMAX=numeric-value
specifies the size of the radius of the largest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Restriction The BRADIUSMAX= value must be greater than the BRADIUSMIN= value if one is specified. If BRADIUSMAX is not greater, an error is generated and a message is written to the SAS log.

Note If you specify the maximum size as a percentage, this is interpreted as a percentage of the graph's height.

BRADIUSMIN=numeric-value
specifies the size of the radius of the smallest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Restriction The BRADIUSMIN= value must be smaller than the BRADIUSMAX= value if one is specified. If BRADIUSMIN is not smaller, an error is generated and a message is written to the SAS log.

Note If you specify the minimum size as a percentage, this is interpreted as a percentage of the graph's height.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example: colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement: The list of colors must be enclosed in parentheses.

Example: colormodel=(blue yellow green)

Default: The ThreeColorAltRamp style element

Interaction: For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction: If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip: The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See: “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

DATALABEL. variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**  
This option has no effect unless the DATALABEL option is also specified.

**Examples**  
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:  
DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**  
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>Bottom Left</th>
<th>Bottom Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>Top Left</td>
<td>Top Right</td>
<td></td>
</tr>
</tbody>
</table>

**Interactions**  
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**  
specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Skin Type</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image" alt="None" /></td>
</tr>
<tr>
<td>CRISP</td>
<td><img src="image" alt="Crisp" /></td>
</tr>
<tr>
<td>GLOSS</td>
<td><img src="image" alt="Gloss" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image" alt="Matte" /></td>
</tr>
<tr>
<td>PRESSED</td>
<td><img src="image" alt="Pressed" /></td>
</tr>
<tr>
<td>SHEEN</td>
<td><img src="image" alt="Sheen" /></td>
</tr>
</tbody>
</table>

**Default**  
NONE

**Restriction**  
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot.
statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Note**

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DRAWORDER=SIZE | DATA**

specifies whether the bubbles are drawn according to bubble size or according to data order.

**SIZE**

draws the bubbles according to bubble size, from the largest to the smallest.

**DATA**

draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

<table>
<thead>
<tr>
<th>DRAWORDER=SIZE</th>
<th>DRAWORDER=DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="DRAWORDER=SIZE" /></td>
<td><img src="image2.png" alt="DRAWORDER=DATA" /></td>
</tr>
</tbody>
</table>

**Default** SIZE

**FILL | NOFILL**

specifies whether the bubbles are filled. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Default** FILL

**Interactions**

Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

**Defaults**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency
### GROUP=variable

specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1... GraphData\text{n} style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

**Interaction**

This option is ignored if the COLORRESPONSE= option is also used.

### LEGENDLABEL="text-string"

specifies the label that identifies the bubble plot in the legend.

**Default**

By default, the label for the SIZE= variable is used for ungrouped data, and the group values are used for grouped data.

**Interaction**

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

### LINEATTRS=style-element \(<(options)\rangle\) | (options)

specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**

GraphData\text{Default} style element in the current style for ungrouped data. GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**Interaction**

This option has no effect if you also specify the NOOUTLINE option.

### NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip**

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

### NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

**Interaction**

This option has no effect unless GROUP= is also specified.

### OUTLINE | NOOUTLINE

specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.
Default	OUTLINE
**Interactions** | Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**RATTRID=** *character-value*

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

**SPLITCHAR=** *"character-list"*

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

*"character-list"* is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default	Values are not split.
**Interactions** | This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

Interaction	This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

 Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

color-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default: By default, no HTML links are created.

Interaction: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

DENSITY Statement
Creates a density curve that shows the distribution of values in your data.

Interaction: The DENSITY statement can be combined only with the DENSITY and HISTOGRAM statements in the SGPANEL procedure.
Examples:

“About Density Plots” on page 41

“Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” on page 594

Syntax

\[
\text{DENSITY response-variable } \langle\text{option(s)}\rangle;
\]

Summary of Optional Arguments

Appearance options

\[
\text{ATTRID=character-value}
\]

specifies the value of the ID variable in a discrete attribute map data set.

\[
\text{LINEATTRS=style-element } \langle\text{options}\rangle | \langle\text{options}\rangle
\]

specifies the appearance of the density line.

\[
\text{TRANSPARENCY=value}
\]

specifies the degree of transparency for the plot.

Axis options

\[
\text{SCALE=COUNT | DENSITY | PERCENT | PROPORTION}
\]

specifies the scaling that is used for the response axis.

Group options

\[
\text{GROUP=variable}
\]

specifies a variable that is used to group the data.

Label options

\[
\text{CURVELABEL=“text-string”}
\]

adds a label for the density curve.

\[
\text{CURVELABELATTRS=style-element } \langle\text{options}\rangle | \langle\text{options}\rangle
\]

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

\[
\text{CURVELABELPOS=END | MAX | MIN | START}
\]

specifies the location of the curve label.

\[
\text{LEGENDLABEL=“text-string”}
\]

specifies a label that identifies the density plot in the legend.

\[
\text{SPLITCHAR=“character-list”}
\]

splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally.

\[
\text{SPLITCHARNODROP}
\]

specifies that the split characters are included in the displayed value.

\[
\text{SPLITJUSTIFY=LEFT | CENTER | RIGHT}
\]

specifies the horizontal alignment of the value text that is being split.

Plot options

\[
\text{FREQ=numeric-variable}
\]

specifies a variable for the frequency count for each observation in the input data.

\[
\text{TYPE=NORMAL } \langle\text{normal-opts}\rangle | \text{KERNEL } \langle\text{kernel-opts}\rangle
\]

specifies the type of distribution curve that is used for the density plot.

\[
\text{WEIGHT=numeric-variable}
\]
specifies how observations are weighted.

**Plot reference options**

`NAME="text-string"`

specifies a name for the plot.

**Required Argument**

`response-variable`

specifies the variable for the x axis. The variable must be numeric.

**Optional Arguments**

`ATTRID=character-value`

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

`CURVELABEL="text-string"`

adds a label for the density curve.

`CURVELABELATTRS=style-element <(options)> | (options)`

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELPOS=END | MAX | MIN | START**

specifies the location of the curve label. Specify one of the following values:

`END`

places the curve label at the last point on the curve.

`MAX`

places the label at the part of the curve closest to the maximum X axis value.
MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default

END

Interactions
This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note
If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is “Normal.” If you specify TYPE=KERNEL, then the default label is “Kernel.”

Note
User-specified parameters from the TYPE= option are included in the label by default.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphFit style element in the current style. The affected attributes are ContrastColor,LineStyle, and LineThickness

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**SCALE=COUNT | DENSITY | PERCENT | PROPORTION**
specifies the scaling that is used for the response axis. Specify one of the following values:

- **COUNT**
  the axis displays the frequency count.

- **DENSITY**
  the axis displays the density estimate values.

- **PERCENT**
  the axis displays values as a percentage of the total.

- **PROPORTION**
  the axis displays values in proportion to the total.

**Default**
PERCENT

**SPLITCHAR="character-list"**
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Interactions**
This option has no effect unless CURVELABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**
“Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.
Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Overview of Collision Avoidance” on page 1265

**SPLITJUSTIFY=**LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default  LEFT

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Overview of Collision Avoidance” on page 1265

**TRANSPARENCY=**value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**TYPE =**NORMAL  |KERNEL < (kernel-opts)>|

specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

**NORMAL**  < (normal-opts)>

specifies a normal density estimate, with a mean and a standard deviation.

*normal-opts* can be one or more of the following values:

**MU=**numeric-value

specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

**SIGMA=**numeric-value

specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a positive number. By default, the standard deviation value is calculated from the data.

**KERNEL**  < (kernel-opts)>

specifies a nonparametric kernel density estimate.

*kernel-opts* can be:

**C=**numeric-value

specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

The value that you specify for the C= suboption affects the value of \( \lambda \) as shown in the following equation:

\[
\lambda = cQn^{-\frac{1}{5}}
\]

In this equation \( c \) is the standardized bandwidth, \( Q \) is the interquartile range, and \( n \) is the sample size.

**WEIGHT=**NORMAL | QUADRATIC | TRIANGULAR

specifies the weight function. You can specify either normal, quadratic, or triangular weight function.
Default NORMAL

**WEIGHT=numeric-variable**

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

**Requirement** The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Details**

**Normal Density Function**

When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[ p(x) = \frac{100h\%}{\sigma\sqrt{2\pi}} \exp\left( -\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^2 \right) \text{ for } \text{for } -\infty < x < \infty \]

In the equation, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. You can specify \( \mu \) by using the MU= suboption and \( \sigma \) by using the SIGMA= suboption.

**Kernel Density Function**

When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[ \hat{f}_h(x) = \frac{100h\%}{nh\lambda} \sum_{i=1}^{n} K_0\left(\frac{x - x_i}{\lambda}\right) \]

In the equation, \( K_0(\cdot) \) is the weight function, \( \lambda \) is the bandwidth, \( n \) is the sample size, and \( x_i \) is the \( i \)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \( K_0(\cdot) \).

**Kernel Density Weight Functions**

The formulas for the weight functions are as follows.

**NORMAL**

\[ K_0(t) = \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{1}{2}t^2 \right) \text{ for } -\infty < t < \infty \]

**QUADRATIC**

\[ K_0(t) = \frac{3}{2}\left(1 - t^2\right) \text{ for } |t| \leq 1 \]

**TRIANGULAR**

\[ K_0(t) = 1 - |t| \text{ for } |t| \leq 1 \]
DOT Statement

Creates a dot plot that summarizes the values of a category variable.

**Interaction:** The DOT statement can be combined only with other horizontal categorization plot statements.

**Example:** “About Dot Plots” on page 49

### Syntax

```
DOT category-variable <option(s)>
```

### Summary of Optional Arguments

**Appearance options**

- `ATTRID=character-value`
  specifies the value of the ID variable in a discrete attribute map data set.

- `COLORMODEL=style-element | (color-list)`
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

- `COLORRESPONSE=numeric-column`
  specifies the numeric column that is used to map colors to a gradient legend.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
  specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
  specifies an amount to offset all dots from discrete category values.

- `RATTRID=character-value`
  specifies the value of the ID variable in a range attribute map data set.

- `TRANSPARENCY=value`
  specifies the degree of transparency for the plot.

**Data tip options**

- `TIP=(variable-list) | NONE`
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- `TIPFORMAT=(format-list)`
  applies formats to the list of data tip variables that you specify in the TIP= option.

- `TIPLABEL=(label-list)`
  applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- `CLUSTERWIDTH=numeric-value`
  specifies the width of the group clusters as a fraction of the midpoint spacing.

- `GROUP=variable`
  specifies a variable that is used to group the data.

- `GROUPDISPLAY=CLUSTER | OVERLAY`
  specifies how to display grouped dots.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when
there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=UPPER | LOWER | BOTH
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT= STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as valid category value and creates a dot for it.

RESPONSE= response-variable
specifies a numeric response variable for the plot.

URL= character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT= numeric-variable
specifies how observations are weighted.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument
category-variable
specifies the variable whose values determine the categories of data represented by the dots.

Optional Arguments
ALPHA= numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.
If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID= character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.
RESPDESC
sorts by the response values in descending order.

Default
By default, the plot is sorted in ascending order based on the category values.

Restriction
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement
This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions
When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default
0.8

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLOREMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  

```
colormodel=TwoColorRamp
```

(color-list)  
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example  

```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column  
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

COLORSTAT=FREQ | PCT | SUM | MEAN  
specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count

PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response

MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

**Note**

This option is independent of the STAT= and RESPONSE= options.

**DATALABEL <=variable>**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:
Table 4.4 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>None</th>
<th>Crisp</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matte</td>
<td>Matte</td>
<td>Pressed</td>
<td>Sheen</td>
</tr>
</tbody>
</table>

**Default**: NONE

**Restriction**: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**: You can use the MARKERATTRS= option to specify a filled marker symbol.

**Note**: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all dots from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

**Default**: 0.0 (no offset)

**Requirement**: This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**Requirement**: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interaction**: Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**: For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**: If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
If the value is not an integer, only the integer portion is used.

**Interaction**

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interactions**

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**Note**

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

specifies how to display grouped dots.

**CLUSTER**

grouped items are drawn adjacent to each other.

**OVERLAY**

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

**Default**

OVERLAY

**Restriction**

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

**Interaction**

This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**

orders the groups within a category in data order of the group variable.
Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
LIMITS=UPPER | LOWER | BOTH
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. Specify one of the following values:

BOTH
  adds lower and upper limit lines to the plot.

LOWER
  adds lower limit lines to the plot.

UPPER
  adds upper limit lines to the plot.

Interaction  Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
  confidence limits

STDDEV
  standard deviation

STDERR
  standard error

Default  CLM

Interaction  If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH. Limits lines are displayed only when you specify STAT=MEAN.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.
Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MISSING

for group data, processes missing values as valid category value and creates a dot for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT= STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.
RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ the frequencies, which are calculated as follows:
   • If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
   • If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT the percentage, which is calculated as follows:
   • If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
   • If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.
SUM
the sum of the response variable. This is the default value when you specify the 
RESPONSE= option.

Interaction For this value to take effect, you must also specify the 
RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the 
FREQ or PERCENT statistic is calculated (FREQ is the default). If you 
specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable 
name in the axis label and the legend (if it is created). However, if a 
label has been assigned to the variable, then the label appears in the 
axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend 
labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes 
the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response 
variable. However, when a custom label is assigned to the response variable, the 
procedure does not display the statistic. In each case, you can control whether the 
statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic 
is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the 
LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over 
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are 
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS 
GRAPHICS statement in order to generate data tips. For example, 
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by 
default.
**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

**TIPFORMAT=(*format-list*)**

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Viya Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

**TIPLABEL=(*label-list*)**

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=**

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)
**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable* specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


**Default**

By default, no HTML links are created.

**Interactions**

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**WEIGHT=numeric-variable**

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

**Requirement**

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Interaction**

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

---

**DROPLINE Statement**

Creates one or more drop lines from data points to one or both axes. The line or lines can be horizontal, vertical, or both.

**Interaction:**

When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

**See:** *“About Drop Lines”* on page 22

**Syntax**

```plaintext
DROPLINE X=variable | x-axis-value
Y=variable | y-axis-value <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
  
  specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
  
  specifies an amount to offset all drop lines from discrete X or Y values.
LINEATTRS=\textit{style-element \langle(options)\rangle | (options)}

specifies the appearance of the drop line.

\textbf{TRANSPARENCY=\textit{value}}

specifies the degree of transparency for the plot.

\textbf{Axis options}

\textbf{DROPTO=BOTH | X | Y}

specifies the axis to which the line is dropped.

\textbf{NOCLIP}

extends the plot axes to contain the drop lines.

\textbf{Label options}

\textbf{LABEL \langle=variable\rangle | \langle="text-string-1" \ldots "text-string-n"\rangle>}

creates labels for each drop line.

\textbf{LABELATTRS=\textit{style-element \langle(options)\rangle | (options)}}

specifies the appearance of the labels.

\textbf{LEGENDLABEL="text-string"}

specifies a label that identifies the plot in the legend.

\textbf{Plot reference options}

\textbf{NAME="text-string"}

specifies a name for the plot.

\textbf{Required Arguments}

\textbf{X=\textit{variable} | x-axis-value}

specifies the X coordinate of the drop line or drop lines. If you specify an \textit{x-axis-value} that is a text string, enclose the string in quotation marks.

\textbf{Requirement}

Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

\textbf{Y=\textit{variable} | y-axis-value}

specifies the Y coordinate of the drop line or drop lines. If you specify a \textit{y-axis-value} that is a text string, enclose the string in quotation marks.

\textbf{Requirement}

Values must agree in type with the Y-axis data type.

\textbf{Optional Arguments}

\textbf{DATASKIN=\textit{NONE} | \textit{CRISP} | \textit{GLOSS} | \textit{MATTE} | \textit{PRESSED} | \textit{SHEEN}}

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

\textbf{Table 4.5 DATASKIN Options for Lines}

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all drop lines from discrete X or Y values.

- **Default**: 0.0 (no offset)
- **Range**: -0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.
- **Requirement**: This option is applicable only when the X or Y axis is discrete.

**DROPTO=BOTH | X | Y**

specifies the axis to which the line is dropped.

- **BOTH**: draws droplines to both axes.
- **X**: draws droplines to the X axis.
- **Y**: draws droplines to the Y axis.

**LABEL <=variable> | <=("text-string-1" ... "text-string-n")>**

creates labels for each drop line. If you do not specify a label value, the value for that line is used as the label.

If you specify a label value, the following options are available.

- **variable**: a variable for the label value.
  - **Restriction**: This label variable is used only when a variable is used for the DROPLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

- **"text-string-1" ... "text-string-n"**: a text string for the label value.
  - **Restriction**: The label string does not apply when a variable is used for the DROPLINE value. In that situation, the label string is ignored and a message is written to the log.

**LABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\ n style elements.

Interaction

This option has no effect unless the LABEL option is also specified.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"

specifies a label that identifies the plot in the legend. By default, the label “drop” is used.

Interaction

This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the drop line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP

extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)
Details

A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

Example

This example shows a DROPLINE statement originating from the point (X=3, Y=5) and dropping to both axes. The data form a parabola, which is divided in the panel depending on whether the curve is going down or up.

```
/* Create data set with X and Y variables
that plot a parabola.*/
data test;
 length Status $4;
 do X=0 to 8 by 0.25;
 Y=(x-3)*(x-3) + 5;
 if X >= 3 then Status='Up';
 else Status='Down';
 output;
 end;
run;

/* Create the plot and drop lines.
Specify a label and line attributes for the drop lines.*/
```

Drop lines at Inflection Point

![Graph showing drop lines at inflection point](image)
title "Drop lines at Inflection Point";
proc sgpanel data=test;
panelby Status;
series x=x y=y;
dropline x=3 y=5 / dropto=both label="(3,5)"
   lineattrs=(color=blue pattern=dot);
rowaxis min=0;
run;
title;

FRINGE Statement
Creates a fringe plot on the X axis of an X-Y plot.

Interaction: Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots).

Example: “About Fringe Plots” on page 18

Syntax
FRINGE numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
   specifies the value of the ID variable in a discrete attribute map data set.
HEIGHT=dimension <units>
   specifies the height of the fringe lines.
LINEATTRS=style-element <(options)> | (options)
   specifies the appearance of the fringe lines.
TRANSPARENCY=value
   specifies the degree of transparency for the plot.

Data tip options
TIP=(variable-list) | NONE
   specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
   applies formats to the list of data tip roles that you specify in the TIP= option.
TIPLABEL=(label-list)
   applies labels to the list of data tip roles that you specify in the TIP= option.

Group options
GROUP=variable
   specifies a variable that is used to group the data.
NOMISSINGGROUP
   specifies that missing values of the group variable are not included in the plot.

Label options
LEGENDLABEL="text-string"
specifies a label that identifies the fringe plot in the legend.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Required Argument
numeric-variable
specifies the variable that provides the X coordinates of the data values.

Optional Arguments
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

HEIGHT=dimension <units>
specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.
The following table contains the units that are available:

**Table 4.6 Measurement Units**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default 10px

**LEGENDLABEL="text-string"**

specifies a label that identifies the fringe plot in the legend.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the fringe lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\_n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NAME="text-string"**

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.
**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL option to assign labels to the list of roles.

**See**

*SAS Viya Formats and Informats: Reference*

**Example**

tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

---

GRADLEGEND Statement

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)

See: “Using Gradient Color Legends” on page 1262

Syntax

GRADLEGEND <"name"> <option(s)>;

Summary of Optional Arguments

Appearance options

BORDER | NOBORDER
specifies whether a border is visible around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the legend values.
Legend options

“name”
specifies the name of the plot that you want to include in the legend.

Scale options

EXTRACTSCALE <=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width.

Optional Arguments

“name”
specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.

Default
If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.

Restriction
Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

BORDER | NOBORDER
specifies whether a border is visible around the legend.

Default
NOBORDER

EXTRACTSCALE <=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

You can also specify whether to use a named scale or a scientific-notation scale.

DEFAULT
extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as $10^n$) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of $1/10$ ($10^{-n}$) for values less than 1 trillionth.

SCIENTIFIC
extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as $10^n$ for values greater than 1, or a multiple of $1/10$ expressed as $10^{-n}$ for values less than 1.
The following examples show a gradient legend before and after EXTRACTSCALE= is specified:

<table>
<thead>
<tr>
<th>Default Scale</th>
<th>EXTRACTSCALE Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Scale Image]</td>
<td>![EXTRACTSCALE Specified Image]</td>
</tr>
<tr>
<td>Weight 100000</td>
<td>Weight (millions) 0.5</td>
</tr>
<tr>
<td>Weight 200000</td>
<td>Weight (millions) 0.6</td>
</tr>
<tr>
<td>Weight 300000</td>
<td>Weight (millions) 1.0</td>
</tr>
<tr>
<td>Weight 400000</td>
<td>Weight (millions) 1.2</td>
</tr>
<tr>
<td>Weight 500000</td>
<td>Weight (millions) 1.4</td>
</tr>
</tbody>
</table>

**Default**

DEFAULT

**Restriction**

The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

**INTEGER**

specifies that integers are used for the gradient legend.

**NOTITLE**

removes the default title. The default title is the name of the response variable.

**OUTERPAD=dimension | (pad-options)**

specifies the amount of extra space that is added outside the legend border.

**dimension**

specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

**(pad-options)**

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space added to the left side.
- **RIGHT=dimension** specifies the amount of extra space added to the right side.
- **TOP=dimension** specifies the amount of extra space added to the top.
- **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

**Note**

Sides that are not assigned padding are padded with the default amount.

**Tip**

Use pad-options to create non-uniform padding.

**Default**

No padding

**Note**

The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.
**Example**  “Example: Gradient Legend That Uses the OUTERPAD= Option” on page 174

**POSITION=TOP | BOTTOM | LEFT | RIGHT**  
specifies the position of the legend within the graph.

**Default**  RIGHT

**Notes**  
By default, if you use more than one GRADLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then those legends are placed at that position.

**TITLE=“text-string”**  
specifies a title for the legend.

**Default**  If you do not specify this option, then the name of the legend variable is displayed as the title.

**TITLEATTRS=style-element <(options)> | (options)**  
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**  
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\text{n} style elements.

**Examples**  
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:  
TITLEATTRS=GraphTitleText

**VALUEATTRS=style-element <(options)> | (options)**  
specifies the color and font attributes of the legend values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Default**  
GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Notes**  
When you specify style-element, only the style attributes Color, FontFamily, FontSize, FontStyle, and FontWeight are used.

If you specify one or more options but do not include all the font properties (color, family, size, style, and weight), non-specified properties are derived from the default GraphValueText style element.
Examples

valueattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
valueattrs=GraphTitleText

The following example specifies a style element and overrides the color and weight:
valueattrs=GraphDataText (color=red weight=bold)

Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps an age scale to a color gradient. The OUTERPAD= option adds padding to the top and bottom of the gradient.

```
title "Height and Weight Distribution";
proc sgpanel data=sashelp.heart;
panelby sex;
scatter x=height y=weight /
 colorresponse=ageatdeath name="scatter"
 markerattrs=(symbol=squarefilled size=6px);
gradlegend "scatter" /
 outerpad=(top=20px bottom=20px);
run;
title;
```

**HBAR Statement**

Creates a bar chart that summarizes the values of a category variable.
The HBAR statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1258.

Bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

“About Bar Charts” on page 44
“Example 3: Creating a Panel of Bar Charts” on page 597

Syntax

HBAR category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

NOZEROBARS
suppresses zero-length bars.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.
Data tip options

\[\text{TIP}=(\text{variable-list}) \mid \text{NONE}\]

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\[\text{TIPFORMAT}=(\text{format-list})\]

applies formats to the list of data tip variables that you specify in the \text{TIP=} option.

\[\text{TIPLABEL}=(\text{label-list})\]

applies labels to the list of data tip variables that you specify in the \text{TIP=} option.

Group options

\[\text{CLUSTERWIDTH}=\text{numeric-value}\]

specifies the cluster width as a ratio of the maximum width.

\[\text{GROUP}=	ext{variable}\]

specifies a variable that is used to group the data.

\[\text{GROUPDISPLAY}=\text{STACK} \mid \text{CLUSTER}\]

specifies how to display grouped bars.

\[\text{GROUPORDER}=\text{DATA} \mid \text{REVERSEDATA} \mid \text{ASCENDING} \mid \text{DESCENDING}\]

specifies the ordering of the groups within a category.

Label options

\[\text{DATALABEL} \leq \text{variable}\]

displays a label for each data point.

\[\text{DATALABELATTRS}=\text{style-element} <(\text{options})> \mid (\text{options})\]

specifies the appearance of the labels in the plot when you use the \text{DATALABEL=} option.

\[\text{DATALABELFITPOLICY}=\text{NONE}\]

specifies that no fit policy is implemented for the bar labels.

\[\text{LEGENDLABEL}=	ext{“text-string”}\]

specifies the label that identifies the bar chart in the legend.

\[\text{SEGLABEL}\]

displays a label inside each segment of a stacked bar.

\[\text{SEGLABELATTRS}=\text{style-element} <(\text{options})> \mid (\text{options})\]

specifies the text properties of the bar segment label text.

\[\text{SEGLABELFITPOLICY}=\text{NONE} \mid \text{NOCLIP} \mid \text{THIN}\]

specifies a policy for fitting the bar segment labels within the bar segments.

\[\text{SEGLABELFORMAT}=\text{format}\]

specifies the text format used to display the bar segment labels.

\[\text{STATLABEL} \mid \text{NOSTATLABEL}\]

specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

\[\text{LIMITATTRS}=\text{style-element} <(\text{options})> \mid (\text{options})\]

specifies the appearance of the limit lines in the plot.

\[\text{LIMITS}=\text{BOTH} \mid \text{LOWER} \mid \text{UPPER}\]

specifies which limit lines to display.

\[\text{LIMITSTAT}=\text{CLM} \mid \text{STDDEV} \mid \text{STDERR}\]

specifies the statistic for the limit lines.

\[\text{NUMSTD}=n\]
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

**Plot options**

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.

- **CATEGORYORDER=RESPASC | RESPDESC**
  specifies the order in which the categories are arranged.

- **FREQ=numeric-variable**
  specifies a variable for the frequency count for each observation in the input data.

- **MISSING**
  for group data, processes missing values as valid category value and creates a bar for it.

- **RESPONSE=response-variable**
  specifies a numeric response variable for the plot.

- **URL=character-variable**
  specifies an HTML page to be displayed when parts of the plot are selected.

- **WEIGHT=numeric-variable**
  specifies how observations are weighted.

**Plot reference options**

- **NAME="text-string"**
  specifies a name for the plot.

**Statistics options**

- **COLORSTAT=FREQ | PCT | SUM | MEAN**
  specifies the statistic to use for computing the response colors.

- **STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
  specifies the statistic for the horizontal axis.

**Required Argument**

- **category-variable**
  specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

  Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

**Optional Arguments**

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

  **Default** .05

  **Interactions** This option has no effect if you do not specify LIMITSTAT=CLM.

  If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interactions If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
The GraphAxisLines style element in the current style.

The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

To suppress the baseline, set the line thickness to 0 as follows:
```
baselineattrs=(thickness=0)
```

**CATEGORYORDER=RESPASC | RESPDESC**

specifies the order in which the categories are arranged. Specify one of the following values:

**RESPASC**
sorts by the response values in ascending order.

**RESPDESC**
sorts by the response values in descending order.

By default, the plot is sorted in ascending order based on the category values.

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

**CLUSTERWIDTH=numeric-value**

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).
CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default** 0.8

**Interactions** This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=** *style-element | (color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

*(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default** The ThreeColorAltRamp style element

**Interaction** For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**COLORRESPONSE=** *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction** If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.
Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 170
"Using Gradient Color Legends” on page 1262

**COLORSTAT=**FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>frequency count</td>
</tr>
<tr>
<td>PCT</td>
<td>percentages between 0 and 100</td>
</tr>
</tbody>
</table>

When the COLORRESPONSE= option is specified, the following values are valid:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>sum values for the color response</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean values for the color response</td>
</tr>
</tbody>
</table>

Defaults
SUM when you also specify the COLORRESPONSE= option.
FREQ when do not specify the COLORRESPONSE= option.

Note
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL <=variable>**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Interactions
This option has no effect if you also specify the GROUPDISPLAY=STACK option.

By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**DATALABELATTRS=**style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.
**Examples**

```
DATALABELATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

**DATALABELFITPOLICY=NONE**

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify `DATALABELFITPOLICY=NONE`.

**Default**

Show the labels unless they collide.

**Interaction**

This option has no effect unless `DATALABEL=` is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 4.7 DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NONE</strong></td>
</tr>
<tr>
<td><img src="image" alt="NONE" /></td>
</tr>
<tr>
<td><strong>MATTE</strong></td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**

If you also specify NOFILL, then the data skin is applied to the outlines.

**Note**

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

**Default**

0.0 (no offset)
Range
-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default
FILL

Interactions
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element<(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default
SOLID

Interaction
This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated $n$ times for computational purposes, where $n$ is the value of the numeric variable.
Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\textsl{n} style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Nota: CLUSTER is supported only when the category axis is discrete.

Default

STACK

Interaction

This option is ignored unless GROUP= is specified.
Tip  The distance between the group elements in a cluster is controlled by
CLUSTERWIDTH=.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

*Note:* This value is not supported with SAS Cloud Analytic Services (CAS) data.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable.

*Note:* This value is not supported with CAS data.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

**Default**  ASCENDING

**Interactions**

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Notes**

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=“text-string”**
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=** `<style-element> <(options)> | (options)`
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

**LIMITS=** `BOTH | LOWER | UPPER`
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

- **BOTH**: adds lower and upper limit lines to the plot.
- **LOWER**: adds lower limit lines to the plot.
- **UPPER**: adds upper limit lines to the plot.

Default By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions Limit lines are displayed only when you specify STAT= MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

**LIMITSTAT=** `CLM | STDDEV | STDERR`
specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**: confidence limits
- **STDDEV**: standard deviation
- **STDERR**: standard error

Default CLM

Interactions If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.
If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

**MISSING**
for group data, processes missing values as valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

**NAME="text-string"**
specifies a name for the plot. You can use the name to refer to this plot in other statements.

*Note* The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

*Tip* This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOZEROBARS**
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default" /></td>
<td><img src="image2.png" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

*Note* If BASELINE= is specified, a zero-length bar value equals the baseline.

*Tip* This option is useful when the bar chart baseline is suppressed.

**NUMSTD=n**
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

**OUTLINE | NOOUTLINE**
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

*Interactions* Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
Note, however, that you cannot specify a line pattern for the bar outline.

Default: GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and
LineThickness

Interaction: This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the
response variable are displayed on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when
GROUPDISPLAY=STACK, this option displays a label inside each bar segment.
Each segment label displays the statistic for that bar segment, as shown in the
following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips For a grouped bar chart when GROUPDISPLAY=STACK, to display a label
for each bar segment and a label for the entire bar, specify both SEGLABEL
and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label
text.

Use the SEGLABELFORMAT= option to modify the format of the segment
labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the
segments.
SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment
labels might overlap other graphical elements. The segment labels are not
considered when the axis ranges are computed. As a result, segment labels that
extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do
not fit within the plot area extend into the graph axis area and might overlap axis
elements.

THIN
drops any bar segment label that does not fit within its segment.
The label text height must not exceed the bar width, and the label length must not
exceed the segment length.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if
no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

• If you specify the RESPONSE= option, FREQ calculates the frequency of the
response variable.

• If you do not specify the RESPONSE= option, FREQ calculates the
frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the
RESPONSE= option.
MEDIAN

the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

* If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
* If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM

the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the
procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

**Defaults**
The statistic is displayed for the response variable.
When a custom label is assigned to the response variable, the statistic is not displayed.

**Interactions**
This option has no effect unless the RESPONSE= option is specified.
This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

*(variable-list)*
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**
suppresses the data tips from this plot.

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Viya Formats and Informats: Reference*
Example  
tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**  
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**  
This option has no effect unless TIP= is also specified.

**Tip**  
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**  
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**  
0.0

**Range**  
0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**  

**Default**  
By default, no HTML links are created.

**Interactions**  
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**WEIGHT=numeric-variable**

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.
### Requirement
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

### Interaction
If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

---

## HBARBASIC Statement

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

**Note:** When using the HBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

**See:** Basic plot types on page 1258

**Example:** “About Bar Charts” on page 44

## Syntax

```
HBARBASIC category-variable <option(s)>;
```

## Summary of Optional Arguments

### Appearance options

- **ATTRID=** character-value
  - specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=** numeric-value
  - specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=** style-element (options) | (options)
  - specifies the appearance of the baseline.

- **COLORMODEL=** style-element | (color-list)
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=** numeric-column
  - specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=** numeric-value
  - specifies an amount to offset all bars from the category midpoints.

- **FILL | NOFILL**
  - specifies whether the bars are filled.

- **FILLATTRS=** style-element (options) | (options)
  - specifies the fill color and transparency.

- **FILLTYPE=** SOLID | GRADIENT
  - specifies the fill type that is applied to the chart.

- **NOZEROBARS**
  - suppresses zero-length bars.
OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options
BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options
TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options
DATALABEL
displays the bar statistic value for each bar.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

**Plot options**

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=\*response-variable*
specifies a numeric response variable for the plot.

URL=\*character-variable*
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

NAME="text-string"
specifies a name for the plot.

**Statistics options**

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the horizontal axis.

**Required Argument**

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

**Optional Arguments**

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8
1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER
Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary
plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODELPARAM=** *style-element* | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
```
colormodel=TwoColorRamp
```

*(color-list)*
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**
```
colormodel=(blue yellow green)
```

**Default**
The ThreeColorAltRamp style element

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**COLORRESPONSE=** *numeric-column*
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interactions**

- If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.
- This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

**Tip**
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**
“GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

**COLORSTAT=** *FREQ | PCT | SUM | MEAN*
specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:
FREQ  frequency count
PCT  percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM  sum values for the color response
MEAN  mean values for the color response

Defaults  SUM when you also specify the COLORRESPONSE= option.
          FREQ when do not specify the COLORRESPONSE= option.

Note  This option is independent of the STAT= and RESPONSE= options.

DATALABEL

Displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default  No label is shown

Interaction  By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Tip  The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element <(options)> | (options)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction  This option has no effect unless the DATALABEL option is also specified.

Examples  DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText
**DATALABELFITPOLICY=NONE**
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default: Show the labels unless they collide.

Interaction: This option has no effect unless DATALABEL= is also specified.

**DATALABELFORMAT=** *format*
specifies the text format used to display the bar label.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless DATALABEL= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>No skin</td>
</tr>
<tr>
<td>CRISP</td>
<td>Crisp</td>
</tr>
<tr>
<td>GLOSS</td>
<td>Gloss</td>
</tr>
<tr>
<td>MATTE</td>
<td>Matte</td>
</tr>
<tr>
<td>PRESSED</td>
<td>Pressed</td>
</tr>
<tr>
<td>SHEEN</td>
<td>Sheen</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=** *numeric-value*
specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)
Range

-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction

If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default

FILL

Interactions

Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=

style-element (<options>) | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data.

0.0 transparency

FILLTYPE=SOLID | GRADIENT

specifies the fill type that is applied to the chart.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of
the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**Note**
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

<table>
<thead>
<tr>
<th>**GROUPDISPLAY=STACK</th>
<th>CLUSTER**</th>
<th>specifies how to display grouped bars.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>STACK</strong></td>
<td>groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.</td>
<td></td>
</tr>
<tr>
<td><strong>CLUSTER</strong></td>
<td>displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong>:</td>
<td>CLUSTER is supported only when the category axis is discrete.</td>
<td></td>
</tr>
</tbody>
</table>

**Default**: STACK

**Interaction**: This option is ignored unless GROUP= is specified.

**Tip**: The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

<table>
<thead>
<tr>
<th>**GROUPORDER=DATA</th>
<th>REVERSEDATA</th>
<th>ASCENDING</th>
<th>DESCENDING**</th>
<th>specifies the ordering of the groups within a category.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DATA</strong></td>
<td>orders the groups within a category in data order of the group variable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong>:</td>
<td>This value is not supported with SAS Cloud Analytic Services (CAS) data.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>REVERSEDATA</strong></td>
<td>orders the groups within a category in the reverse data order of the group variable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong>:</td>
<td>This value is not supported with CAS data.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
ASCENDING

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default" /></td>
<td><img src="image2" alt="NOZEROBARS Specified" /></td>
</tr>
</tbody>
</table>

Note  If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip  This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default  OUTLINE

Interactions  Specifying OUTLINE also hides the fill color.

| Interaction | Specifying OUTLINE also hides the fill color. |

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default  GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction  This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See  Chapter 13, “Using Range Attribute Maps,” on page 1331
RESPONSE = response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<table>
<thead>
<tr>
<th>Make</th>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.68</td>
<td>29.906</td>
<td>26.647</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>27.116</td>
<td>25.13</td>
</tr>
<tr>
<td></td>
<td>23.04</td>
<td>29.544</td>
<td>24.222</td>
</tr>
</tbody>
</table>

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS = style-element <(options)> | (options)

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default

The GraphDataText style element.

Interaction

This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY = NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.
Default	THIN
Interaction | This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=** *format*
specifies the text format used to display the bar segment labels.

Default	The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.
Interaction | This option has no effect unless SEGLABEL is also specified.

**STAT=** *FREQ | PCT | SUM | MEAN | PROPORTION*
specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

- **FREQ** frequency count
- **PCT | PERCENT** percentages between 0 and 100
- **PROPORTION** proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

- **SUM** sum values for the response
- **MEAN** mean values for the response

Defaults	SUM when you also specify the RESPONSE= option.
Interaction | FREQ when do not specify the RESPONSE= option.

When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

**TIP=**(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list) a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE suppresses the data tips from this plot.

Requirement	You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
Interaction | ODS GRAPHICS ON / IMAGEMAP=ON;

This option replaces all of the information that is displayed by default.
Tip	Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
Example | tip=(category response)

**TIPFORMAT=(format-list)**
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the *format-list* and the *role-list* that is specified for the TIP= option. A format must be provided for each role, using the same order as the *role-list*. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement | A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction | This option has no effect unless TIP= is also specified.
Tip | Use the TIPLABEL option to assign labels to the list of roles.
See | [SAS Viya Formats and Informats: Reference](https://docs.sas.com/sas/viya/1.4/HTML/default/viewer.htm#refentry_sect_1789902347713683563519)
Example | tipformat=(auto F5.2)

**TIPLABEL=(label-list)**
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the *label-list* and the *role-list* that is specified for the TIP= option. A label must be provided for each role, using the same order as the *role-list*. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement | A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction | This option has no effect unless TIP= is also specified.
Tip | Use the TIPFORMAT option to assign formats to the list of roles.
Example | tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default	0.0
Range | 0 (completely opaque) to 1 (completely transparent)
**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

---

**HBARPARM Statement**

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

**Requirement:**
The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

**Interaction:**
The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1258.

**Note:**
An important distinction between HBARPARM and HBAR is that the response variable is required for HBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

**Example:**
"About Bar Charts" on page 44

---

**Syntax**

```
HBARPARM CATEGORY=category-variable RESPONSE=numeric-variable <\option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

*ATTRID=character-value*
specifies the value of the ID variable in a discrete attribute map data set.

*BARWIDTH=numeric-value*
specifies the width of the bars as a ratio of the maximum possible width.

*BASELINEATTRS=style-element <(options)> | (options)*
specifies the appearance of the baseline.

*COLORMODEL=style-element | (color-list)*
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency.

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

**LEGENDLABEL="text-string"**

specifies the label that identifies the bar chart in the legend.

**NOZEROBARS**

suppresses zero-length bars.

**OUTLINE | NOOUTLINE**

specifies whether the bars have outlines.

**OUTLINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the bar outlines.

**RATTRID=character-value**

specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=value**

specifies the degree of transparency for the plot.

**Axis options**

**BASELINE=numeric-value**

specifies the response axis intercept for the baseline.

**Bar options**

**FILL | NOFILL**

specifies whether the bars are filled.

**Data tip options**

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=numeric-value**

specifies the cluster width as a ratio of the maximum width.

**GROUP=variable**

specifies a variable that is used to group the data.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

**DATALABEL <=variable>

displays a label for each data point.

**DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

**DATALABELFITPOLICY=NONE

specifies that no fit policy is implemented for the bar labels.

**SEGLABEL

displays a label inside each segment of a stacked bar.

**SEGLABELATTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text.

**SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

**SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

Limit options

**LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot.

**LIMITLOWER=numeric-variable

specifies values for the lower endpoints on the limit lines.

**LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines.

Plot options

**MISSING

for group data, processes missing values as a valid category value and creates
a bar for it.

**URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

**NAME="text-string"

specifies a name for the plot.

Required Arguments

**CATEGORY=category-variable

specifies the variable that categorizes the data. All values are treated as discrete
values. The input data for this variable should contain unique values. When the
category values are not unique, a warning is logged, and multiple bars are
superimposed at the duplicated category values. The CATEGORY axis is always
discrete.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

**RESPONSE=numeric-variable

specifies a numeric response variable. The input data is expected to be pre-
summarized computed values (sum, mean, and so on).
### Optional Arguments

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**BARWIDTH=numeric-value**

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=numeric-value**

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
The GraphAxisLines style element in the current style.

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

**CLUSTERWIDTH=numeric-value**

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

*color-list*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement** The list of colors must be enclosed in parentheses.
Example  
colormodel=(blue yellow green)

Default  
The ThreeColorAltRamp style element

Interaction  
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction  
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip  
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  
“GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

*Note:* By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**DATALABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction  
This option has no effect unless the DATALABEL option is also specified.

Examples  
DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELFITPOLICY=NONE**
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible.
To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**Default**
Show the labels unless they collide.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 4.9 **DATASKIN Options for Filled Areas**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
</tr>
<tr>
<td><img src="image1" alt="Image" /></td>
<td><img src="image2" alt="Image" /></td>
<td><img src="image3" alt="Image" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="image4" alt="Image" /></td>
<td><img src="image5" alt="Image" /></td>
<td><img src="image6" alt="Image" /></td>
</tr>
</tbody>
</table>

**Default**
NONE

**Restriction**
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**
If you also specify NOFILL, then the data skin is applied to the outlines.

**Note**
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all bars from the category midpoints.

**Default**
0.0 (no offset)

**Range**
-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

**Interaction**
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**FILL | NOFILL**
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.
**FILL**

Default: **FILL**

Interactions: Specifying **FILL** also hides the outlines.

If **NOFILL** and **NOOUTLINE** are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

Specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

0.0 transparency

Interaction: This option has no effect if you specify the **NOFILL** option.

**FILLTYPE=SOLID | GRADIENT**

Specifies the fill type that is applied to the chart.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction: Data skin SHEEN cannot be used when **FILLTYPE=GRADIENT** is in effect. You can use one of the other data skins in that case.

Tip: Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in **FILLATTRS=**, to set the initial transparency in the gradients.

Default: **SOLID**

Interaction: This option has no effect if **NOFILL** is also specified.

**GROUP=variable**

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction: When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note: For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-
CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphData style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.
By default, the groups in the legend are shown in the order that is specified in `GROUPORDER=`. The order in the legend can be changed using the `SORTORDER=` option in the `KEYLEGEND` statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

The `LEGENDLABEL="text-string"` specifies the label that identifies the bar chart in the legend. By default, the label of the `RESPONSE=` variable is used. If there is no response variable label, the name of the response variable is used.

The `LIMITATTRS=` option has no effect if you also specify the `GROUP=` option in the same plot statement.

The `LIMITLOWER=` option specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end. The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either `LIMITLOWER=` or `LIMITUPPER=` is specified.)

If `LIMITUPPER=` is also specified, then the plot displays the lower and upper segments of the limit lines. This option is ignored if `GROUP=` is specified and `GROUPDISPLAY=STACK`.

The appearance of the limit lines can be controlled by the `LIMITATTRS=` option.
LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default  The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions  If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

Note  If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip  This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default  OUTLINE
Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**OUTLINEATTRS=**<style-element> (options)>

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

**Default**

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**

This option has no effect if NOOUTLINE is also specified.

**RATTRID=**character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

**SEGLABEL**

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

<table>
<thead>
<tr>
<th></th>
<th>SUV</th>
<th>Sedan</th>
<th>Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.88</td>
<td>29.00</td>
<td>26.47</td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>27.11</td>
<td>25.13</td>
</tr>
<tr>
<td></td>
<td>20.04</td>
<td>29.54</td>
<td>24.22</td>
</tr>
</tbody>
</table>

**Tips**

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.
Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS= style-element *(options)* | *(options)*

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY= NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

NONE

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT= format

specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
```
tip=(age weight)
```

### TIPFORMAT=(format-list)
- Applies formats to the list of data tip variables that you specify in the TIP= option.
- Provides a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
- A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL= option to assign labels to the list of variables.

**See**
*SAS Viya Formats and Informs: Reference*

**Example**
```
tipformat=(auto F5.2)
```

### TIPLABEL=(label-list)
- Applies labels to the list of data tip variables that you specify in the TIP= option.
- Provides a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
- A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.
Example  

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

HBOX Statement

Creates a horizontal box plot that shows the distribution of your data.

Restriction: This plot has plot compatibility restrictions. See Table 7.2 on page 1259.

Interaction: The HBOX statement cannot be used together with other plot statements in the SGPANEL procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

See: “Visual Description of Box Plot Percentile Boundaries” on page 234

Example: “About Box Plots” on page 39

Syntax

HBOX numeric-analysis-variable /option(s);

Summary of Optional Arguments

Appearance options

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
specifies the width of the box.

**CAPSHAPE=** **BRACKET | LINE | SERIF NONE**
specifies the shape of the whisker cap lines.

**CONNECT=** **MEAN | MEDIAN | Q1 | Q3 | MIN | MAX**
specifies that a connect line joins a statistic from box to box.

**CONNECTATTRS=style-element <(options)> | (options)**
specifies the appearance of the lines that connect multiple boxes.

**DATASKIN=** **NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**DISCRETEOFFSET=** **numeric-value**
specifies an amount to offset all boxes from the discrete tick marks.

**EXTREME**
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

**FILL | NOFILL**
specifies whether the boxes are filled with color.

**FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency.

**INTBOXWIDTH=** **numeric-value**
specifies the box width when an interval category (Y) variable is specified.

**LINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the box outlines.

**MEANATTRS=style-element <(options)> | (options)**
specifies the appearance of the marker that represents the mean in the box.

**MEDIANATTRS=** **style-element <(options)> | (options)**
specifies the appearance of the line that represents the median.

**NOCAPS**
hides the cap lines for the whiskers.

**NOMEAN**
hides the mean marker.

**NOMEDIAN**
hides the median line.

**NOOUTLIERS**
hides the outliers from the plot.

**NOTCHES**
specifies that the boxes be notched.

**OUTLIERATTRS=** **style-element <(options)> | (options)**
specifies the appearance of the marker that represents the outliers.

**TRANSPARENCY=** **value**
specifies the degree of transparency for the plot.

**WHISKERATTRS=** **style-element <(options)> | (options)**
specifies the appearance of the whisker and cap lines.

**WHISKERPCT=** **number**
specifies the whisker length, in percentile units.

**Data tip options**

**TIP=(role-list) | NONE**
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=(label-list)
  applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
  specifies the cluster width as a ratio of the midpoint spacing.

GROUP=variable
  specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
  specifies how to display grouped boxes.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
  adds data labels for the outlier markers.

DATALABELATTRS=style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

LABELFAR
  specifies that only the far outliers have data labels.

LEGENDLABEL="text-string"
  specifies a label that identifies the box plot in the legend.

SPLITCHAR="character-list"
  splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
  specifies the category variable for the plot.

FREQ=numeric-variable
  specifies a variable for the frequency count for each observation in the input data.

MISSING
  for group data, processes missing values as a valid category value and creates a box for it.

PERCENTILE=1 | 2 | 3 | 4 | 5
  specifies a method for computing the percentiles for the plot.

SPREAD
  relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
  specifies how observations are weighted.

Plot reference options

NAME="text-string"
  specifies a name for the plot.
**Required Argument**

numeric-analysis-variable

specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

**Optional Arguments**

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317 “Overview of Attribute Maps” on page 1315

BOXWIDTH=numeric-value

specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF NONE

specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

CATEGORY=category-variable

specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX

specifies that a connect line joins a statistic from box to box.
Interaction

This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip

You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element<(options)> | (options)

specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor,LineStyle, and LineThickness.

Interactions

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples

CONNECTATTRS=(Color="light green"Pattern=MediumDashThickness=4)

This example specifies a style element:

CONNECTATTRS=GraphData3

DATALABEL <variable>

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note

This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element<(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily,FontSize,FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interactions

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 4.10  DATASKIN Options for Box Plots**

<table>
<thead>
<tr>
<th></th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image1" alt="Diagram" /></td>
<td><img src="image2" alt="Diagram" /></td>
<td><img src="image3" alt="Diagram" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image4" alt="Diagram" /></td>
<td><img src="image5" alt="Diagram" /></td>
<td><img src="image6" alt="Diagram" /></td>
</tr>
</tbody>
</table>

**Default**  NONE

**Restriction**  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**Interaction**  If you also specify NOFILL, then the data skin is applied to the outlines.

**Note**  When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

**Default**  0.0 (no offset)

**EXTREME**
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL | NOFILL**
specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

**Default**  FILL
FILLATTRS=style-element <(options)> | (options)

Specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction

This option has no effect if you specify the NOFILL option.

FREQ=numeric-variable

Specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

Specifies how to display grouped boxes.

CLUSTER

The boxes are drawn adjacent to each other.
OVERLAY

al all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData

Defaults

| CLUSTER for a discrete category axis |
| OVERLAY for a linear axis |

Restriction

| GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. |

Interaction

| This option is ignored unless GROUP= is specified. |

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

| DATA. Is using CAS data, the default is ASCENDING. |

Interactions

| The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data. |

| This option is ignored unless GROUP= is specified. |

By default, the groups in the legend are shown in the order that is specified in GROUPORDER= . The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

| Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting. |

| The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For |
character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**INTBOXWIDTH=** `numeric-value`

specifies the box width when an interval category (Y) variable is specified.

**Restriction**
The axis type for the category axis must be LINEAR, and the variable must be numeric.

**Example**
```latex
proc sgpanel data=sashelp.class;
panelby sex;
hbox weight / category=height intboxwidth=50 ;
rowaxis type=linear;
run;
```

**LABELFAR**
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

**Note** This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

**LEGENDLABEL=** `"text-string"`

specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

**LINEATTRS=** `style-element (options)`

specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData`n` style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**Interactions**
This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

**MEANATTRS=** `style-element (options)`

specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

**Default**
GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphData`n` style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.
MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphBoxMedian style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction
This option is ignored if the NOMEDIAN option is also specified.

MISSING
for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
hides the cap lines for the whiskers.

Interaction
Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[ \text{median} \pm 1.58 \left( \frac{\text{IQR}}{\sqrt{N}} \right) \]

For a visual description of the parts of a box plot, see “Details” on page 234.

OUTLIERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

**Default**
GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

<table>
<thead>
<tr>
<th><strong>PERCENTILE</strong> = 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a method for computing the percentiles for the plot.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>5 (empirical distribution function with averaging)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The percentile definition and default are the same as those that are used by the PCTLDEF= option of the UNIVARIATE procedure and the QNTLDEF= option of the SUMMARY procedure.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SPLITCHAR=“character-list”**
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=“abc”

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**	Values are not split.
**Interactions**	This option has no effect unless DATALABEL is specified.
	When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
	You can specify the justification of the text by using the SPLITJUSTIFY= option.
**Notes**	When multiple characters are specified, the order of the characters in the list is not significant.
	The split characters are case sensitive.
**See**	“Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

| **Interaction** | This option has no effect unless SPLITCHAR= is also specified. |
| **See** | “Overview of Collision Avoidance” on page 1265 |
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(mean median)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.
Tip Use the TIPLABEL option to assign labels to the list of roles.

See *SAS Viya Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

**TIPLABEL=**(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**WHISKERATTRS=style-element <(options)> | (options)**
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272. 

options can be one or more of the following:

Default GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData<sub>n</sub> style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.
WHISKERPCT=number

specifies the whisker length, in percentile units. When this option is specified, 
number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
- 10 specifies the 10th percentile low and the 90th percentile high
- 25 specifies the 25th percentile low and the 75th percentile high

**Default**
The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

**Range**
0–25

**Notes**
When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

### Details

**Statement Summary**

The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

**Visual Description of Box Plot Percentile Boundaries**

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

*Note:* Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots as well.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5\ IQR$). Outliers that are beyond upper and lower far fences ($\pm 3\ IQR$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are $3*IQR$ from the box have data labels.

**HEATMAP Statement**

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

**Example:**  “About Heat Maps” on page 18

**Syntax**

```
HEATMAP X=variable Y=variable <option(s)>;
```
Summary of Optional Arguments

Appearance options

COLORMODEL=style-element | (color-list)
    specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-variable
    specifies a numeric variable that is used to color the regions of the heat map.

COLORSTAT=FREQ | PCT | SUM | MEAN
    specifies the statistic to use for the COLORRESPONSE= variable.

FILLATTRS=(TRANSPARENCY=number)
    specifies the transparency of the area fill in the rectangles.

OUTLINE
    displays an outline around each colored region.

OUTLINEATTRS=style-element (options)
    specifies the appearance of the rectangle outlines.

RATTRID=character-value
    specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
    specifies the degree of transparency for the plot.

Axis options

SHOWXBINS
    specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
    specifies that bins be used as the basis for the Y axis tick marks.

XENDLABELS
    specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

YENDLABELS
    specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Binning options

XBINSIZE=positive-number
    specifies the horizontal size of bins in X axis coordinate system units.

XBINSTART=positive-number
    specifies the data value for the first bin of the X role.

YBINSIZE=positive-number
    specifies the vertical size of bins in Y axis coordinate system units.

YBINSTART=positive-number
    specifies the data value for the first bin of the Y role.

Data options

DISCRETEX
    forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
    forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

**TIPFORMAT=(format-list)**

applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

### Plot options

**FREQ=numeric-variable**

specifies a variable for the frequency count for each observation in the input data.

**WEIGHT=numeric-variable**

specifies how observations are weighted.

### Plot reference options

**NAME="text-string"**

specifies a name for the plot.

### Required Arguments

**X=variable**

specifies the variable for the X axis.

**Y=variable**

specifies the variable for the Y axis.

**Required**

If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

### Optional Arguments

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**
  
  specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**
  
  specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**
  
  specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```
(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.
Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-variable specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

COLORSTAT=FREQ | PCT | SUM | MEAN specifies the statistic to use for the COLORRESPONSE= variable.

Defaults FREQ

SUM if COLORRESPONSE= is specified

DISCRETEX forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.
Interaction If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.
Interaction If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number) specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.
Range 0 (opaque) to 1 (entirely transparent)
Interaction This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.

Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:
outline transparency=0.2 fillattrs=(transparency=0.6)

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE
displays an outline around each colored region.

Default No outline is displayed

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.
### SHOWYBINS

specifies that bins be used as the basis for the Y axis tick marks.

| Default | Without this option, a standard axis is used, ignoring bin boundaries and midpoints. |
| Interaction | When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored. |

### TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a rectangle.

- **(role-list)**
  - a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

- **NONE**
  - suppresses the data tips from this plot.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>ODS GRAPHICS ON / IMAGEMAP=ON;</strong></td>
</tr>
</tbody>
</table>

| Interaction | This option replaces all of the information that is displayed by default. |

| Tip | Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables. |

| Example | tip=(x y) |

### TIPFORMAT=(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

| Default | The column format of the tip variable, or BEST6 if no format is assigned to a numeric column |
| Requirement | A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option. |
Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

See

SAS Viya Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

XBINSIZE=positive-number

specifies the horizontal size of bins in X axis coordinate system units. The bins always span the X data range.

Default Determined by the system.

See “Binning Options” on page 758

XBINSTART=positive-number

specifies the data value for the first bin of the X role. The bins always span the X data range.

Default Determined by the system.
See “Binning Options” on page 758

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interaction This option has no effect unless the SHOWXXBINS option is also used.

**YBINSIZE=positive-number**
specifies the vertical size of bins in Y axis coordinate system units. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 758

**YBINSTART=positive-number**
specifies the data value for the first bin of the Y role. The bins always span the Y data range.

Default Determined by the system.

See “Binning Options” on page 758

**YENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Default If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interaction This option has no effect unless the SHOWYBINS option is also used.

---

**HEATMAPPARM Statement**

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

**Requirements:** The COLORGROUP= role or the COLORRESPONSE= role must be specified. The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

**Note:** The data for a parameterized heat map should contain only one observation for each X and Y value pair.

**Example:** “About Heat Maps” on page 18

**Syntax**

HEATMAPPARM X=variable Y=variable
COLORGROUP=variable </(option)>;
HEATMAPPARM X=variable Y=variable
COLORRESPONSE=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

NOMISSINGCOLOR
 excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map.

OUTLINE
displays an outline around each colored region.

OUTLINEATTRS=style-element <(options) | (options)
specifies the appearance of the rectangle outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS
specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

Axis options

SHOWXBINS
 specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
 specifies that bins be used as the basis for the Y axis tick marks.

XENDLABELS
 specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

YENDLABELS
 specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Data options

DISCRETEX
 forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
 forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

**TIPFORMAT=**(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=**(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

**Plot options**

**URL=**character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME="*text-string*"
specifies a name for the plot.

### Required Arguments

**X=**variable
specifies the variable for the X axis.

**Y=**variable
specifies the variable for the Y axis.

**COLORGROUP=**variable
specifies a variable that is used to color the regions of the heat map.

**COLORRESPONSE=**numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Note: This feature applies to the COLORGROUP variable in the heat map.

### Optional Arguments

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This feature applies to the COLORGROUP variable in the heat map.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

**COLORMODEL=style-element (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

*(color-list)*
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**
The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default**
The ThreeColorAltRamp style element

**Interaction**
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

**DISCRETEX**
forces the X axis to be discrete when the X= variable is numeric.

**Requirement**
If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

**Interaction**
If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

**DISCRETEY**
forces the Y axis to be discrete when the Y= variable is numeric.

**Requirement**
If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

**Interaction**
If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.
**FILLATTRS=(TRANSPARENCY=number)**

- **Specifies:** The transparency of the area fill in the rectangles.
- **Default:** The TRANSPARENCY= option value.
- **Range:** 0 (opaque) to 1 (entirely transparent)
- **Interaction:** This option overrides the TRANSPARENCY= option for the colored region only. It does not affect the region outlines.
- **Note:** The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.
- **Tip:** You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:
  
  ```
 outline transparency=0.2 fillattrs=(transparency=0.6)
  ```

**NAME=“text-string”**

- **Specifies:** A name for the plot. You can use the name to refer to this plot in other statements.
- **Note:** The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
- **Tip:** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCOLOR**

- **Excludes:** Missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.
- **Default:** Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

**OUTLINE**

- **Displays:** An outline around each colored region.
- **Default:** No outline is displayed.

**OUTLINEATTRS=style-element | (options)**

- **Specifies:** The appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
- **Default:** GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
### RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**See** Chapter 13, “Using Range Attribute Maps,” on page 1331

### SHOWXBINS

specifies that bins be used as the basis for the X axis tick marks.

**Default** Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

**Interaction** When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

### SHOWYBINS

specifies that bins be used as the basis for the Y axis tick marks.

**Default** Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

**Interaction** When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

### TIP=(role-list) | NONE

specifies the information to display when the cursor is positioned over a rectangle.

**(role-list)** a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

**NONE** suppresses the data tips from this plot.

**Requirement** You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(x y)`

TIPFORMAT=(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the \textit{format-list} and the \textit{role-list} that is specified for the TIP= option. A format must be provided for each role, using the same order as the \textit{role-list}. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPLABEL option to assign labels to the list of roles.
See	\textit{SAS Viya Formats and Informs: Reference}
Example	tipformat=(auto F5.2)

\textbf{TIPLABEL=\{label-list\}}

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the \textit{label-list} and the \textit{role-list} that is specified for the TIP= option. A label must be provided for each role, using the same order as the \textit{role-list}. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of roles.
Example	tiplabel=(auto "Class Weight")

\textbf{TRANSPARENCY=\textit{value}}

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

| Default | 0.0 |
| Range | 0 (completely opaque) to 1 (completely transparent) |

\textbf{URL=\textit{character-variable}}

specifies an HTML page to be displayed when parts of the plot are selected.

\textit{character-variable}

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

HIGHLOW Statement

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

Note: This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

Example: "About High-Low Plots" on page 20
Syntax

HIGHLOW X=variable | Y=variable
HIGH=numeric-variable LOW=numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

CLIPCAP
 displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
 specifies the type of cap used for the clip cap.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all lines or bars from the category midpoints.

FILL | NOFILL
 specifies whether the area fill is visible for bars.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

INTERVALBARWIDTH=numeric-value
 specifies the thickness of the bar when the X (or Y) data is numeric.

LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the outlines for the band.

OUTLINE | NOOUTLINE
 specifies whether the outlines of the bars are visible.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width.

GROUP=variable

specifies a variable that is used to group the data.

GROUPDISPLAY=OVERLAY | CLUSTER

specifies how to display grouped data.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Label options

HIGHLABEL=variable

specifies the label to be shown at the high end of the line or bar.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

LEGENDLABEL="text-string”

specifies a label that identifies the elements from the band plot in the legend.

LOWLABEL=variable

specifies the label to be shown at the low end of the line or bar.

Plot options

CLOSE=numeric-variable

specifies the data for the CLOSE tick on the bar or line.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the high end of the bar or line.

LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the low end of the bar or line.

OPEN=numeric-variable

specifies the data for the OPEN tick on the bar or line.

TYPE=BAR | LINE

specifies how the data is to be represented.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string”

specifies a name for the plot.

Required Arguments

X=variable | Y=variable

specifies a variable that is used to plot the values along the N or Y axis.
Note: If you specify `X=variable`, then the statement creates vertical lines or bars on the X axis, and the `HIGH` and `LOW` values are plotted along the Y axis. Conversely, if you specify `Y=variable`, then the statement creates horizontal lines or bars on the Y axis, and the `HIGH` and `LOW` values are plotted along the X axis.

`HIGH=numeric-variable` specifies the upper value for the floating lines or bars.

`LOW=numeric-variable` specifies the lower value for the floating lines or bars.

Optional Arguments

ATTRID=character-value specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

BARWIDTH=numeric-value specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default 0.85

Requirement This option is applicable only when the X or Y axis is discrete.

Interaction This option has no effect unless `TYPE=BAR`.

CLIPCAP displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the `MIN=` and `MAX=` axis options are specified for an axis and a data value exceeds the specified axis range, the bar or line for that value is clipped. If the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y axis range. The cap is a vertical arrowhead that points toward the clip edge (▼ or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by the X axis range. The cap is a horizontal arrowhead that points toward the clip edge (◀ or ▶).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side where the bar or line was clipped.

Interaction Clip indicators appear only when `CLIPCAP` is specified and the data values exceed the axis range that is specified by the `MIN=` and `MAX=` options. When the `MIN=` and `MAX=` options are not specified, the axis
range is adjusted to accommodate the data values, and clipping does not occur.

Note

When the high-low TYPE=LINE, you can change the appearance of the clip cap using the CLIPCAPSHAPE= option.

Tip

If you specify the HIGHLABEL or LOWLABEL option, and the bar or line is clipped, the label value is still drawn outside the tip of the clip cap. If the entire bar or line is clipped, no labels are shown.

CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW

specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

DEFAULT

Requirement

The shape can be changed only when TYPE=LINE (the default value).

CLOSE= numeric-variable

specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has higher X values. For a horizontal plot, the value is represented by an indicator on the side with higher Y values.

CLUSTERWIDTH= numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Requirement

This option is applicable only when the X or Y axis is discrete.

Interactions

This option is applicable only when TYPE=BAR.

This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

COLORMODEL= style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example colormodel=TwoColorRamp

color-list specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN specifies a special effect to be used on the plot. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 4.11 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High-low plots can specify lines rather than bars.

Table 4.12 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>Options</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>None</td>
</tr>
<tr>
<td>CRISP</td>
<td>Crisp</td>
</tr>
<tr>
<td>GLOSS</td>
<td>Gloss</td>
</tr>
<tr>
<td>MATTE</td>
<td>Matte</td>
</tr>
<tr>
<td>PRESSED</td>
<td>Pressed</td>
</tr>
<tr>
<td>SHEEN</td>
<td>Sheen</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: If you also specify NOFILL, then the data skin is applied to the outlines.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET= numeric-value

Specifies an amount to offset all lines or bars from the category midpoints. Specify a value from −0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset from the category midpoints)

Requirement: This option is applicable only when the X or Y axis is discrete.

FILL | NOFILL

Specifies whether the area fill is visible for bars. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default: The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

Interaction: This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.
FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataConfidence style element in the current
style for ungrouped data. GraphData1 ... GraphData\n style elements in
the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group
value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot
statements, such as a box plot overlaid with a scatter plot, the
assignment of group attributes does not always align between the plots.
If you need to control the group attribute assignment for these types of
plots, consider using an attribute map. For more information, see
Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on
page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are
mapped in ascending order of the group values. By default for non-
CAS data, the group values are mapped in data order. Appearance
attributes are assigned sequentially to group values after they have been
ordered. This means that the visual attributes assigned to the group
values might differ in the graphs that result from reading CAS and non-
CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the
GROUPMAX= option in the ODS GRAPHICS statement to change the
maximum number of groups that can be processed.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how to display grouped data.

OVERLAY
groups are overlaid without any clustering. Each group is represented by unique
visual attributes derived from the GraphData1... GraphData\n style elements in
the current style.

CLUSTER
observations with different group values are displayed in adjacent clusters around
the category value. Each set of group values is centered at the midpoint tick mark
for the category.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is
discrete.

Interactions GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR.
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA. Is using CAS data, the default is ASCENDING.

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

This option is applicable only when GROUPDISPLAY=CLUSTER and TYPE=BAR.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.
All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.

The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 4.6 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>Default</th>
<th>Restriction</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.</td>
<td>When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.</td>
</tr>
</tbody>
</table>

HIGHLABEL=\textit{variable}

specifies the label to be shown at the high end of the line or bar.

INTERVALBARWIDTH=\textit{numeric-value}

specifies the thickness of the bar when the X (or Y) data is numeric.

- **Default**: The default thickness of the bar is derived from the minimum interval between the data values along X or Y.
- **Requirement**: This option is applicable only when the X or Y axis is a linear axis or a TIME axis.
- **Interaction**: This option has no effect unless TYPE=BAR.

LABELATTRS=\textit{style-element <(options)> | (options)}

specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the colors change to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"

specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect unless you also specify the OUTLINES option.

LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW

specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

• When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
• When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
• When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.
The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

Figure 4.7 Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>NONE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FILLARROW</th>
<th>OPENARROW</th>
<th>CLOSEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction: When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

LOWLABEL=variable

specifies the label to be shown at the low end of the line or bar.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP

specifies that missing values of the group variable are not included in the plot.

Interaction: This option has no effect unless GROUP= is also specified.

OPEN=numeric-variable

specifies the data for the OPEN tick on the bar or line.

For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

OUTLINE | NOOUTLINE

specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.
<table>
<thead>
<tr>
<th>Default</th>
<th>OUTLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option has no effect unless TYPE=BAR.</td>
</tr>
<tr>
<td></td>
<td>Specifying OUTLINE also hides the fill color.</td>
</tr>
<tr>
<td></td>
<td>If NOOUTLINE and NOFILL are both specified, then both options are ignored.</td>
</tr>
</tbody>
</table>

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See
Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

**Interaction**  
This option replaces all of the information that is displayed by default.

**Tip**  
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**  
tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**  
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPLABEL= option to assign labels to the list of variables.

See  SAS Viya Formats and Informats: Reference

Example  tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**TYPE=BAR | LINE**

specifies how the data is to be represented. BAR uses fill and outline attributes. LINE uses line attributes.

Default  LINE

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

HISTOGRAM Statement

Creates a histogram that displays the frequency distribution of a numeric value.

Interaction:

The HISTOGRAM statement can be combined only with DENSITY statements in the SGPANEL procedure.

Note:

The range of the response variable is automatically divided into an appropriate number of bins.

Examples:

“About Histograms” on page 42

“Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots” on page 594

Syntax

```
HISTOGRAM response-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot.

- **FILL | NOFILL**

specifies whether the area fill is visible.

- **FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency.

- **FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

- **OUTLINE | NOOUTLINE**

specifies whether outlines are displayed for the bars.

- **TRANSPARENCY=value**

specifies the degree of transparency for the plot.

Group options

- **GROUP=variable**

specifies a variable that is used to group the data.

Label options

- **DATALABEL <= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>**

specifies the statistic to display at the end of each bin.

- **LEGENDLABEL=“text-string”**
specifies a label that identifies the histogram in the legend.

Plot options

- **BINSTART=numeric-value**
 specifies the X coordinate of the first bin.

- **BINWIDTH=numeric-value**
 specifies the bin width.

- **BOUNDARY=LOWER | UPPER**
 specifies how boundary values are assigned to bins.

- **FREQ=numeric-variable**
 specifies a variable for the frequency count for each observation in the input data.

- **NBINS=numeric-value**
 specifies the number of bins.

- **SCALE=COUNT | PERCENT | PROPORTION**
 specifies the scaling that is applied to the vertical axis.

- **WEIGHT=numeric-variable**
 specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Plot reference options

- **NAME="text-string"**
 specifies a name for the plot.

Required Argument

- **response-variable**
 specifies a response variable for the histogram.

Optional Arguments

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

 See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

 “Overview of Attribute Maps” on page 1315

- **BINSTART=numeric-value**
 specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

 Default The default value is determined by the system.

- **BINWIDTH=numeric-value**
 specifies the bin width. The system determines the number of bins. The bins always span the range of the data.

 Default The default value is determined by the system.
Restriction The maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log.

Interaction This option is ignored if the NBINS= option is also specified.

BOUNDARY=LOWER | UPPER
specifies how boundary values are assigned to bins.

LOWER
specifies that boundary values are assigned to the lower bin.

UPPER
specifies that boundary values are assigned to the upper bin.

Default UPPER

DATALABEL <= NONE | AUTO | COUNT | DENSITY | PERCENT PROPORTION>=
specifies the statistic to display at the end of each bin. You can specify one of the following:

NONE
suppresses the data labels.

AUTO
uses the SCALE= option value. By default, SCALE=PERCENT.

COUNT | DENSITY | PERCENT | PROPORTION
specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bin.

Default If DATALABEL is specified without a value, then the default is AUTO.

Interaction When DATALABEL=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bin.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 4.13 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![None]</td>
</tr>
<tr>
<td>CRISP</td>
<td>![Crisp]</td>
</tr>
<tr>
<td>GLOSS</td>
<td>![Gloss]</td>
</tr>
<tr>
<td>MATTE</td>
<td>![Matte]</td>
</tr>
<tr>
<td>PRESSED</td>
<td>![Pressed]</td>
</tr>
<tr>
<td>SHEEN</td>
<td>![Sheen]</td>
</tr>
</tbody>
</table>

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

Default
NONE

FILL | NOFILL
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default
The default status of the area fill is specified by the DisplayOpts style attribute of the GraphHistogram style element in the current style.

Interactions
Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=

style-element *(options)*
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData<n> style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FILLTYPE=

SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bin is filled with the color that is assigned to the bin fill area.

GRADIENT
a gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.
Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"
specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NBINS=numeric-value
specifies the number of bins. The system determines the BINWIDTH= value. The bins always span the range of the data.

The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with the NBINS= option.

Default The default number of bins is determined by the system.

Range 2–10,000

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.
The default status of the bar outlines is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.

Interactions

Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SCALE=COUNT | PERCENT | PROPORTION

specifies the scaling that is applied to the vertical axis. Specify one of the following values:

COUNT

the axis displays the frequency count.

PERCENT

the axis displays values as a percentage of the total.

PROPORTION

the axis displays values as proportions (0.0 to 1.0) of the total.

Default PERCENT

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeriic-variable

specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

HLINE Statement

Creates a horizontal line chart (the line is vertical). You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

Interaction:

The HLINE statement can be combined only with other categorization plot statements in the SGPANEL procedure. See "Plot Type Compatibility" on page 1258.

Example:

"About Line Charts" on page 50

Syntax

```
HLINE category-variable </option(s)>
```
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from the discrete category values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a category variable to divide the values into groups.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

CURVELABEL <="text-string">
adds a label for the line.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.
DATLABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there
is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options
LIMITATTRS=style-element (options) | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options
FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element (options) | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element (COLOR=color) | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the plot.

Plot options
ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a line for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Statistics options
STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument
category-variable
specifies the variable whose values determine the categories of data represented by
the lines.

Optional Arguments
ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between
0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.
If your plot is overlaid with other categorization plots, then the first
ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BREAK
breaks the line whenever the computed statistic for a category value is missing. For
example, if a response variable is used and it has all missing values for a certain
category value, the SUM or MEAN for this category value will be missing. By
default in such cases, the response value for the previous category is joined to the
response value for the next category value by a line segment. If BREAK is specified,
this segment is not drawn.

Interaction This option is ignored when the Y axis is discrete and the MISSING
option is specified. To break the line at missing values in that case,
remove the MISSING option.

Note The observation is excluded from the graph when there is a missing
value for the FREQ variable.
CATEGORYORDER=RESPASC | RESPDESC

specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default
By default, the plot is sorted in ascending order based on the category values.

Restriction
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement
This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions
When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes
When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default
0.8

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.
CURVELABEL "<text-string>"
adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

Interaction If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textit{n} style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.14 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

Table 4.15 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td>PRESS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHEEN</td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKIN= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value specifies an amount to offset all lines from the discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

FILLEDOUMLINEDMARKERS specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

FREQ=numeric-variable specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.
Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a category variable to divide the values into groups. A separate plot is created for each unique value of the category variable.

Interaction
If you specify more than one categorization plot statement, then all of the plots must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then the GROUP= option has no effect.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.

Default
OVERLAY

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
ASCENDING
Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL= "text-string"

specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS= style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS= BOTH | LOWER | UPPER

adds limit lines to the plot. Specify one of the following values:

BOTH

adds lower and upper limit lines to the plot.

LOWER

adds lower limit lines to the plot.

UPPER

adds upper limit lines to the plot.
By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following:

- **CLM**: confidence limits
- **STDDEV**: standard deviation
- **STDERR**: standard error

Default: CLM

If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS= specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS= specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS= specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatan style elements in the current style for grouped data.
Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=<style-element <(options)>> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS

adds data point markers to the plot.

MISSING

for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive
number, including decimals.

Default 1

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the
response variable are displayed on the horizontal axis.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not
enough room to display the text normally. The text value is split into one or more
lines as needed. The split occurs every occurrence of the specified split character or
characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or
DATALABEL is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both
types of labels. If you do not want to split both types with the same
split character, consider using an overlaid plot in your graph. You can
then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.
See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default: LEFT

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction: For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction: For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias: PCT

Interactions: The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note: If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.
SUM
the sum of the response variable. This is the default value when you specify the
RESPONSE= option.

Interaction For this value to take effect, you must also specify the
RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction If you do not also specify the RESPONSE= option, then only the
FREQ or PERCENT statistic is calculated (FREQ is the default). If you
specify RESPONSE=, then you can use any of the statistics.

Interaction When the graph is generated, the statistic is appended to the variable
name in the axis label and the legend (if it is created). However, if a
label has been assigned to the variable, then the label appears in the
axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend
labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes
the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response
variable. However, when a custom label is assigned to the response variable, the
procedure does not display the statistic. In each case, you can control whether the
statistic is displayed.

Defaults The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic
is not displayed.

Interactions This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the
LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```plaintext
tip=(age weight)
```

TIPFORMAT= *(format-list)*

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Viya Formats and Informats: Reference

Example

```plaintext
tipformat=(auto F5.2)
```

TIPLABEL= *(label-list)*

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

```plaintext
tiplabel=(auto "Class Weight")
```

TRANSPARENCY= *value*

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)
URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

INSET Statement

Adds a text box to each panel cell of the graph.

Restriction: Only one INSET statement can be specified in the PROC SGPANEL step. If more than one is specified, the first inset is generated and a message is logged for the additional statements.

See: “About Text Insets” on page 32

Syntax

```
INSET variable <…variable-n> <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **BACKCOLOR**=color

 specifies the background color of the inset.

- **BORDER | NOBORDER**

 specifies whether to display a border around the text box.
NOLABEL
suppresses the label.

OPAQUE
forces the inset background to be opaque rather than transparent.

POSITION=position-value
specifies the position of the text box within the plot.

SEPARATOR="string"
specifies one or more characters to place between the data label and the data value.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the text box.

TITLE="text-string"
specifies a title for the text box.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

Required Argument

variable <...variable-n>
specifies one or more variables to use for the data-driven text inside the inset.
Typically, the variable is a computed numeric value, such as a mean or a sum. For non-computed variables, the statement displays the value of the first observation for each classification.

The inset labels are derived from the variable labels, or variable names if the labels are not present. (You can suppress the labels using the NOLABEL option.) The inset values come from the variable data.

Tip: If the text does not fit in the space provided, the inset might become clipped. Use the TEXTATTRS= option to change the font size or other font characteristics.

Optional Arguments

BACKCOLOR=color
specifies the background color of the inset. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default: By default, the background is transparent.

Interaction: If BACKCOLOR= is set, then the OPAQUE option is also set automatically.

BORDER | NOBORDER
specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

NOLABEL
suppresses the label.

OPAQUE
forces the inset background to be opaque rather than transparent. This option is useful when a transparent background makes the text in the inset difficult to see. For example, if the inset is positioned on top of a histogram, specifying OPAQUE sets the inset off from the histogram.
The background is transparent unless BACKCOLOR= is also specified.

If BACKCOLOR= is specified, the background is always opaque.

POSITION=position-value

specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
<tr>
<td>LEFT</td>
<td>RIGHT</td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.

SEPARATOR="string"

specifies one or more characters to place between the data label and the data value. With fonts that support Unicode, you can produce specific characters by specifying a hexadecimal value. A trailing \(x \) identifies a string as a hexadecimal value. You must also enclose the character specification in a special ODS handler string, in the format (*ESC*)\{Unicode 'hexadecimal-value'x\}. For example:

```
separator="(*ESC*){unicode '03B1'x}";
```

This option produces the lowercase Greek letter alpha for the separator.

This option is ignored if NOLABEL is also specified.

TEXTATTRS=style-element <(options)> | (options)

specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Tip

The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.

Examples

```
TEXTATTRS=(Color=Green Family=Arial Size=8
       Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
TEXTATTRS=GraphDataText
```

TITLE="text-string"

specifies a title for the text box. The title text is always center-aligned.

TITLEATTRS=style-element <(options)> | (options)

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.
Default

GraphLabelText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Examples

```
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
TITLEATTRS=GraphTitleText
```

Example: Panel with Insets

```plaintext
/* Calculate the mean height and weight for the inset */
proc means data=sashelp.class nway;
  class sex;
  var weight height;
  output out=stats mean(weight)=mean_weight mean(height)=mean_height;
run;

/* Sort the data */
proc sort data=sashelp.class out=class;
  by sex;
run;

/* Match-merge the inset data with the original data */
data merged;
  merge class stats;
  by sex;
  label mean_height = "mean(height)";
  label mean_weight = "mean(weight)";
run;

proc sgpanel data=merged;
  panelby sex;
  histogram weight;
  density weight;
  inset mean_weight mean_height /
```

KEYLEGEND Statement

Adds a legend to the plot.

Syntax

KEYLEGEND <"name-1" ..."name-n"> <option(s)>;

Summary of Optional Arguments

Appearance options

ACROSS=n
specifies the number of columns in the legend.

BORDER | NOBORDER
specifies whether the border around the legend is visible.

DOWN=n
specifies the number of rows in the legend.

LINELENGTH=dimension <units>
specifies the length of the line glyph for line entries in the legend.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=position-value
specifies the position of the legend within the graph outside of the axes.

TITLE="text-string"
adds a title to the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the legend value labels.

Legend options

EXCLUDE=("item-name1" <"item-name2" ...>)
specifies a list of legend entries to exclude from the display.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL
specifies which visual attributes to display for legend entries in the legend.

"name-1" ... "name-n"
specifies the names of one or more plots that you want to include in legend.

Marker options

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels.
AUTOOUTLINE

specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

FILLASPECT=GOLDEN | positive-number

specifies an aspect ratio for the fill swatches based on their height.

FILLHEIGHT= dimension

specifies the height of the fill swatches.

SCALE=positive-number

specifies a scale factor that is to be applied to the fill swatch height.

Optional Arguments

“name-1” ... “name-n”

specifies the names of one or more plots that you want to include in legend. Each name that you specify must correspond to a value that you entered for the NAME= option in a plot statement.

Default

If you do not specify a name, then the legend contains references to all of the plots in the graph.

Note

The names specified here determine which plots are included, but not the labels that appear in the legend for those plots. To specify labels, use the LEGENDLABEL= option on the plot statements.

ACROSS=n

specifies the number of columns in the legend. By default, the number of columns is determined automatically.

Note

Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the ACROSS= option.

AUTOITEMSIZE

specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels. These proportional sizes take effect regardless of the attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

Tip

Use the VALUEATTRS= option to control the font size for the legend value labels.

AUTOOUTLINE

specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.
When this option is not specified, the legend fill swatches are always outlined.

Note
The outlines are always 1 pixel wide with a solid pattern.

BORDER | NOBORDER
specifies whether the border around the legend is visible. The BORDER option shows the border. The NOBORDER option hides the border.

Default
BORDER

DOWN=n
specifies the number of rows in the legend. By default, the number of rows is determined automatically.

Note
Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the DOWN= option.

EXCLUDE=(“item-name1” <“item-name2” ...)>
specifies a list of legend entries to exclude from the display.

Default
No items are excluded.

Requirements
Each item name must be enclosed in quotation marks and separated from adjacent names by a space.

Note
When the specified names are compared with the legend entry names, leading blanks are honored and trailing blanks are ignored.

Tip
For plots with groups, you can exclude specific group values.

Example
The following example excludes items Truck and Wagon from the legend.

```plaintext
exclude=("Truck" "Wagon")
```

FILLASPECT=GOLDEN | positive-number
specifies an aspect ratio for the fill swatches based on their height.

GOLDEN
specifies the golden ratio of 1.618 (width = 1.618 * height).

positive-number
specifies a custom aspect ratio.

Default
The system determines the aspect.

Interaction
This option is ignored when AUTOITEMSIZE is specified.

Tip
Use FILLHEIGHT= to specify the height.

FILLHEIGHT= dimension
specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see "Units of Measurement" on page 1277.

Default
The system determines the height.
Interaction
This option is ignored when AUTOITEMSIZE is specified.

Tip
Use FILLASPECT= to specify the aspect ratio.

LINELENGTH=dimension <units>
specifies the length of the line glyph for line entries in the legend. The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default
The length is determined automatically by the system.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

dimension
specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

(pad-options)
a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

LEFT=dimension specifies the amount of extra space added to the left side.

RIGHT=dimension specifies the amount of extra space added to the right side.

TOP=dimension specifies the amount of extra space added to the top.

BOTTOM=dimension specifies the amount of extra space added to the bottom.

Note
Sides that are not assigned padding are padded with the default amount.

Tip
Use pad-options to create non-uniform padding.

Default
No padding

Note
The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

POSITION=position-value
specifies the position of the legend within the graph outside of the axes. The positions are as follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.
Note
By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.

SCALE= *positive-number*

specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

Default 1

Restriction This option does not apply to markers with pattern fills.

Interaction This option is ignored when AUTOITEMSIZE is specified.

Tips Use FILLHEIGHT= to change the base height.

Use FILLASPECT= to specify the width.

SORTORDER= *ASCENDING | DESCENDING*

specifies the sort order to use for the legend entry labels.

Defaults When the procedure contains more than one plot statement, the default is based on the order of the plot statements.

For grouped data, the default is derived from the data order. If using SAS Cloud Analytic Services (CAS) data, the default is ASCENDING.

Interaction This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

TITLE= "*text-string"

adds a title to the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Defaults No title unless the legend shows group values

If the legend shows group values, then the group variable is displayed by default as the title. In this case, to remove the title, specify TITLE="".

Requirement *text-string* must be enclosed in quotation marks.

TITLEATTRS= *style-element <(options)> | (options)*

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

TITLEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER
MARKERCOLOR | MARKERSYMBOL
specifies which visual attributes to display for legend entries in the legend. The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying TYPE=MARKERSYMBOL displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the TYPE specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords FILLCOLOR or MARKERSYMBOL result in the display of a single attribute. Other keywords (for example, FILL, LINE, or MARKER) result in legends that display a set of visual attributes. For example, the keyword LINE results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to LINEPATTERN or MARKERSYMBOL, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords FILLCOLOR, LINECOLOR, and MARKERCOLOR, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the CONTRASTCOLOR attribute of the GraphOutlines style element.

Default All attributes are displayed.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples

valueattrs=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)
Here is an example that specifies a style element:
valueattrs=GraphTitleText

Example

```
proc sgpanel data=sashelp.class noautolegend;
   panelby sex;
   histogram height;
   density height /
      type=kernel
      name="kernel"
      lineattrs=(color = red);
   keylegend "kernel" /
      title="Density Plot"
      titleattrs=(color = red);
run;
```

LINEPARM Statement

Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.

Requirement: The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

Example: “About Parameterized Lines” on page 23

Syntax

```
LINEPARM X=numeric-value | numeric-variable
```
Y=numeric-value | numeric-variable
SLOPE=numeric-value | numeric-variable
</option(s>);

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the line.

NOEXTEND
prevents the line from being extended beyond the axis offset.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <"text-string">
adds a label for the line.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MAX | MIN
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CLIP
specifies that the data for the line is ignored when determining the data ranges for the axes.

Plot reference options

NAME="text-string"
specifies a name for the plot.
Required Arguments

\[X= \text{numeric-value} | \text{numeric-variable} \]

specifies the X coordinate of a point.

Notes

Values are in the units of the data.

If the value specified for the \(X= \) option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

\[Y= \text{numeric-value} | \text{numeric-variable} \]

specifies the Y coordinate of a point.

Notes

Values are in the units of the data.

If the value specified for the \(Y= \) option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.

If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

\[\text{SLOPE=} \text{numeric-value} | \text{numeric-variable} \]

specifies the slope of the line. The slope can be positive or negative.

Tips

SLOPE=0 creates a horizontal line (parallel to the X axis).

SLOPE= . (missing value) creates a vertical line (parallel to the Y axis).

Optional Arguments

\[\text{ATTRID=} \text{character-value} \]

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See

Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

\[\text{CLIP} \]

specifies that the data for the line is ignored when determining the data ranges for the axes. Each axis scale is determined by the other plots in the overlay. This might result in the line not being displayed if its data range is not within the data ranges of the other plots. This option ensures that the line is displayed.

\[\text{CURVELABEL} \text{<="text-string"}> \]

adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.

Interaction

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall
outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MAX | MIN

specifies the location of the curve label. Specify one of the following values:

- **MIN** places the curve label at the minimum value for the X axis.
- **MAX** places the curve label at the maximum value for the X axis.

Default

MAX

Interaction

This option has no effect unless CURVELABEL is also specified.

GROUP=variable

specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

LEGENDLABEL=“text-string”

specifies a label that identifies the plot in the legend. By default, the label “LineParm” is used (if you specify a numeric value for Y) or the Y variable name is used (if you specify a variable for Y).

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR=“character-list”
specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless CURVELABEL is also specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.
The split characters are case sensitive.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLITCHARNODROP</td>
<td>Specifies that the split characters are included in the displayed value.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless SPLITCHAR= is also specified.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLITJUSTIFY=LEFT</td>
<td>CENTER</td>
</tr>
<tr>
<td>Default</td>
<td>LEFT</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPARENCY=value</td>
<td>Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.</td>
</tr>
<tr>
<td>Default</td>
<td>0.0</td>
</tr>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

LOESS Statement

Creats a fitted loess curve.

Example:
“About Loess Plots” on page 36

Syntax

```
LOESS X=numeric-variable Y=numeric-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 Specifies the value of the ID variable in a discrete attribute map data set.

- **LINEATTRS=style-element <(options)> | (options)**
 Specifies the appearance of the fit curve.

- **NOMARKERS**
 Removes the scatter markers from the plot.

- **SMOOTH=numeric-value**
 Specifies a smoothing parameter value.

- **TRANSPARENCY=value**
 Specifies the degree of transparency for the plot.
Data tip options

\(\text{TIP}=(\text{variable-list}) | \text{NONE} \)

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\(\text{TIPFORMAT}=(\text{format-list}) \)

applies formats to the list of data tip variables that you specify in the TIP= option.

\(\text{TIPLABEL}=(\text{label-list}) \)

applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

\(\text{GROUP}=(\text{variable}) \)

specifies a classification variable to divide the values into groups.

Label options

\(\text{CURVELABEL}<"\text{text-string}"> \)

adds a label for the curve.

\(\text{CURVELABELATTRS}=(\text{style-element} <(\text{options})> | (\text{options}) \)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

\(\text{CURVELABELPOS}=\text{MIN} | \text{MAX} | \text{START} | \text{END} \)

specifies the location of the curve label.

\(\text{DATALABEL}<=\text{variable}> \)

displays a label for each data point.

\(\text{DATALABELATTRS}=(\text{style-element} <(\text{options})> | (\text{options}) \)

specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\(\text{DATALABELPOS}=\text{position} \)

specifies the location of the data label with respect to the plot.

\(\text{SPLITCHAR}="\text{character-list}" \)

plits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

\(\text{SPLITCHARNODROP} \)

specifies that the split characters are included in the displayed value.

\(\text{SPLITJUSTIFY}=\text{LEFT} | \text{CENTER} | \text{RIGHT} \)

specifies the horizontal alignment of the value text that is being split.

Legend options

\(\text{LEGENDLABEL}="\text{text-string}" \)

specifies a label that identifies the fit line in the legend.

\(\text{NOLEGCLM} \)

hides the legend entry for the mean value confidence limits.

\(\text{NOLEGFIT} \)

hides the legend entry for the fit line.

Limit options

\(\text{CLM}<="\text{text-string}"> \)

creates confidence limits.

\(\text{CLMATTRS}=(\text{style-element} | (\text{CLMAttributeOptions}) \)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression.

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

MAXPOINTS=n
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

REWEIGHT=n
specifies the number of iterative reweighting steps to apply to the data.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME=“text-string”
specifies a name for the plot.

Required Arguments

X=numeric-variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default .05
Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you also specify the CLM option.

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

CLM <= *text-string*>

creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS = *style-element | (CLMAttributeOptions)*

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. *CLMAttributeOptions* can be one or both of the following:

CLMFILLATTRS = *style-element | (COLOR=*

You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

CLMLINEATTRS = *style-element (<(options)> | (options)*

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData* n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Default The default appearance of the confidence limits is specified by the GraphConfidence style element in the current style.

Interaction The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY= *numeric-value*

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0
CURVELABEL <="text-string">
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction This option has no effect unless the CURVELABEL option is also specified.
DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>position</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1
FILLEDOUTLINEMARKERS

specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction
Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

GROUP=variable
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interaction
If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP option is used, the data is rendered in sorted order by the group variable.

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default CUBIC

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.
By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL=="text-string"

specifies a label that identifies the fit line in the legend. By default, the label “Loess” is used, along with the value of the SMOOTH= option if specified.

LINEATTRS==style-element <(options)> | (options)

specifies the appearance of the fit curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults

For grouped data, GraphData1 ... GraphData\(n\) style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note

If you overlay multiple Loess plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData\(n\) style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS==style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS==style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MAXPOINTS=\(n\)
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default 201

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLM hides the legend entry for the mean value confidence limits.

NOLEGFIT hides the legend entry for the fit line.

NOMARKERS removes the scatter markers from the plot.

REWEIGHT=\(n\)
specifies the number of iterative reweighting steps to apply to the data.
SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.

SPLITCHAR=“character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default: LEFT

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See: “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement: You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction: This option replaces all of the information that is displayed by default.

Note: The option affects only the scatter plot in this statement.

Tip: Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example: tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Viya Formats and Informats: Reference

Example: tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Details
For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]

NEEDLE Statement
Creates a plot with needles connecting each point to the baseline.

Restriction: The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

Example: “About Needle Plots” on page 25
Syntax

NEEDLE X=variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
 specifies an amount to offset all needle lines from discrete X values.

LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the needle lines.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is
 positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
 option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped needles.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the
 plot.

Label options

DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERS
adds markers to the tips of the needles.

Plot options

BASELINE=numeric-value
specifies a value on the Y axis for the baseline.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=variable
specifies the variable for the x axis.

Y=numeric-variable
specifies a numeric variable for the y axis.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BASELINE=numeric-value
specifies a value on the Y axis for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the axis.

Default 0
Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

<table>
<thead>
<tr>
<th>BASELINEATTRS=</th>
<th>style-element <(options)></th>
<th>(options)</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
The GraphAxisLines style element in the current style.

Notes
The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

<table>
<thead>
<tr>
<th>Default</th>
<th>0.8</th>
</tr>
</thead>
</table>

Interactions
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

DATALABEL <variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.
Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.16 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.
Table 4.17 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all needle lines from discrete X values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the X axis is discrete.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction: When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note: For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.
Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS Graphics statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped needles.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDatan style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA. Is using CAS data, the default is ASCENDING.

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=<"text-string"

specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=<style-element <(options)> | (options)

specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=<style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction

This option has no effect unless you also specify the MARKERS option.

MARKERS

adds markers to the tips of the needles.
NAME="text-string"
 specifies a name for the plot. You can use the name to refer to this plot in other
 statements.

 Note The text-string is case-sensitive, cannot contain spaces, and must define a
 unique name within the procedure.

 Tip This option is often used with legend statements in order to coordinate the use
 of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

 Interaction This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when there is not
 enough room to display the text normally. The text value is split at every occurrence
 of the specified split character or characters.

 "character-list" is one or more characters with no delimiter between each character
 and enclosed in quotation marks. For example, to specify the split characters a, b,
 and c, use the following option:

 SPLITCHAR="abc"

 When multiple split characters are specified, each character in the list is treated as a
 separate split character unless the specified characters appear consecutively in the
 value. In that case, all of the specified split characters together are treated as a single
 split character.

 If the value does not contain any of the specified split characters, a split does not
 occur.

 Default Values are not split.

 Interactions This option has no effect unless DATALABEL is specified.

 When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

 You can specify the justification of the text by using the
SPLITJUSTIFY= option.

 Notes When multiple characters are specified, the order of the characters in
 the list is not significant.

 The split characters are case sensitive.

 See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

 Interaction This option has no effect unless SPLITCHAR= is also specified.

 See “Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

PBSPLINE Statement

Creates a fitted penalized B-spline curve.

Example: “About Penalized B-Spline Plots” on page 37
Syntax

PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)>(options)
 specifies the appearance of the fitted curve.

NKNOTS=n
 specifies the number of evenly spaced internal knots.

SMOOTH=numeric-value
 specifies a smoothing parameter value.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Label options

CURVELABEL ="text-string"
 adds a label for the curve.

CURVELABELATTRS=style-element <(options)>(options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
 specifies the location of the curve label.

DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element <(options)>(options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
 specifies the location of the data label with respect to the plot.

SPLITCHAR=“character-list”
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.
Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the B-spline curve in the legend.

NOLEGCLI
hides the legend entry for the individual value prediction limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <"text-string">
creates prediction limits for the individual predicted values.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

CLM <"text-string">
creates confidence limits.

CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

NOMARKERS
removes the scatter markers from the plot.

PBSPLINE options

MAXPOINTS=n
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

DEGREE=n
specifies the degree of the spline transformation.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

GROUP=variable
specifies a classification variable to divide the values into groups.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

X=numeric-variable
specifies the variable for the x axis.

Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

CLI <="text-string”>
creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

The default style element is GraphPredictionLimits.

The CLMATTRS = option has no effect unless you also specify the CLI option.

CLM <"text-string">
creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS =style-element | (CLMAtributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAttributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

The GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData\nstyle elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

CLMLETTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

The default appearance of the confidence limits is specified by the GraphConfidence style element in the current style.

The CLMATTRS = option has no effect unless you also specify the CLM option.

This option takes effect only if you also specify the CLM option.
CURVELABEL. \texttt{<="text-string">}
adds a label for the curve. You can also specify the label text. If you do not specify a
label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the
points used to determine the position of the curve label might fall
outside the graph area. In this case, the curve label might not be
displayed, or its position might not be correct.

When a group variable is specified, the group values are always used
for labels.

CURVELABELATTRS=\texttt{style-element \texttt{(options)}> (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL=
option. You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to
override specific appearance attributes.

For a description of the text options, see \textit{“Text Attributes”} on page 1276.

Defaults GraphValueText style element in the current style. The affected
attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style
(ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the
GraphData1...GraphData\texttt{n} style elements.

Interaction This option has no effect unless the CURVELABEL option is also
specified.

Examples \texttt{CURVELABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)}

Here is an example that specifies a style element:
\texttt{CURVELABELATTRS=GraphTitleText}

CURVELABELPOS=\texttt{MIN | MAX | START | END}
specifies the location of the curve label. Specify one of the following values:

\texttt{MIN}
places the label at the part of the curve closest to the minimum X axis value.

\texttt{MAX}
places the label at the part of the curve closest to the maximum X axis value.

\texttt{START}
places the curve label at the first point on the curve.

\texttt{END}
places the curve label at the last point on the curve.

Default \texttt{END}

Interaction This option has no effect unless the CURVELABEL option is also
specified.
DATALABEL \(<=variable\>

Displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction: This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=\(style-element \langle (options)\rangle \mid \langle (options)\rangle\)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interaction: This option has no effect unless the DATALABEL option is also specified.

Examples

\[\text{DATALABELATTRS}=(\text{Color} = \text{Green} \ \text{Family} = \text{Arial} \ \text{Size} = 8 \ \text{Style} = \text{Italic} \ \text{Weight} = \text{Bold})\]

Here is an example that specifies a style element:

\[\text{DATALABELATTRS} = \text{GraphLabelText}\]

DATALABELPOS=\(position\)

Specifies the location of the data label with respect to the plot. \(position\) can be one of the following values:

<table>
<thead>
<tr>
<th>(position)</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction: This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DEGREE=\(n\)

Specifies the degree of the spline transformation.

Default: 3

Range: 0–10
Restriction DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interactions If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP option is used, the data is rendered in sorted order by the group variable.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is specified, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.
Markers that represent the same response value are overlaid, which results in some markers being obscured.

This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL=“text-string”
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults
For grouped data, GraphData1 ... GraphData style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data.
Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n \) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MAXPOINTS=\(n \)

specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Default 201

NAME="text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NKNOTS=\(n \)

specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When
SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots are usually enough to follow the functional form found in most data.

Default 100
Range 0 to 1000

NOLEGCLI
hide the legend entry for the individual value prediction limits.

NOLEGCLM
hide the legend entry for the mean value confidence limits.

NOLEGFIT
hide the legend entry for the fit line.

NOMARKERS
remove the scatter markers from the plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.

SPLITCHAR="character-list"
 splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list) applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.</td>
</tr>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPLABEL= option to assign labels to the list of variables.</td>
</tr>
<tr>
<td>See</td>
<td>SAS Viya Formats and Informats: Reference</td>
</tr>
<tr>
<td>Example</td>
<td>tipformat=(auto F5.2)</td>
</tr>
</tbody>
</table>

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

When the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.
Details

For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

$$\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}$$

POLYGON Statement

Draws a polygon from data stored in a data set.

Restriction: You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead.

Syntax

POLYGON X=x-variable Y=y-variable ID=id-variable <\option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BACKLIGHT=number
 specifies that label text should have a back light of a contrasting color.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

FILL | NOFILL
 specifies whether the polygons are filled.

FILLATTRS=style-element <(options)> | (options)
 specifies the fill color and transparency.

LINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the polygon outline.

OUTLINE | NOOUTLINE
 specifies whether the polygons have outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

ROTATE=numeric-column | number | expression
 specifies the angle of rotation for the polygon measured in degrees.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options
XOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

YOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is specified.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LABEL <=variable>
specifies a label for the polygon curve.

LABELATTRS=style-element <(options)*)((options)
specifies the appearance of the labels in the plot.

LABELLOC=INSIDEBOX | OUTSIDEBOX
specifies the location of the polygon label.

LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon label.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

SPLITCHAR="character-list”
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
 specifies a name for the plot.

Required Arguments

X=\textit{x-variable}
 specifies the variable for the X values.

Y=\textit{y-variable}
 specifies the variable for the Y values.

ID=\textit{id-variable}
 specifies the variable for the ID values that identify the polygon or polygons. All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.

Optional Arguments

\texttt{ATTRID=character-value}
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

\texttt{BACKL LIGHT=number}
 specifies that label text should have a back light of a contrasting color. \texttt{number} specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Defaults 0.5 when no GROUP= or COLORRESPONSE= option is used.
 0.75 when the GROUP= or COLORRESPONSE= option is used.

Range 0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note This option is most effective when text color has a low level of contrast
 with the background. It is also effective when the background is cluttered.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element specifies the name of a style element. The style element should contain these style attributes:

 STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

 NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

 ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

color-list specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See

“GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

Table 4.18 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Default NONE
Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

FILL | NOFILL
specifies whether the polygons are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.

Default NOFILL
Interactions Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency
Interaction This option has no effect if you specify the NOFILL option.
GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is
specified. The plot elements for each group value are automatically distinguished by
different visual attributes.

The polygon attributes for each unique group value are derived from the
GraphData1–GraphDataN and GraphMissing style elements. If the polygon is filled,
then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR
attribute is used for the polygon outline. If the polygon is not filled, then the
CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

Interactions

When this option is used and the value is a variable associated with an
ATTRID= option, the attribute mapping defined by the associated
attribute map is used.

This option is ignored if the COLORRESPONSE= option is also used.

LABEL <=variable>
specifies a label for the polygon curve.

Default
When no variable is provided, the ID variable is used for labels.

Interaction
If a variable is supplied, rows that have the same ID value are expected
to have the same value. If they do not, the ID value’s first row
determines the polygon label.

Tip
The font and color attributes for the label are specified by the
LABELATTRS= option.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default
GraphDataText style element in the current style. The affected
attributes are Color, FontFamily, FontSize, FontWeight, and FontStyle.

Interaction
This option has no effect unless the LABEL= option is also specified.

Examples
LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphValueText

LABELLOC=INSIDEBOX | OUTSIDEBOX
specifies the location of the polygon label.

INSIDEBOX
inside the polygon.

OUTSIDEBOX
outside the polygon but inside the plot area.

Default
INSIDEBOX

Interactions
This option has no effect unless the LABEL= option is also specified.
The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the \texttt{LABELPOS=} option.

\textbf{LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX}

specifies the position of the polygon label. Specify one of the following values:

- **CENTER**
 centers the label.

 \textbf{Interaction} \quad \texttt{LABELPOS=CENTER} has no effect if you also specify \texttt{LABELLOC=OUTSIDEBOX}. The default label position is used in this case.

- **XMIN**
 places the label at the part of the polygon closest to the minimum X axis value, centered in the Y axis range.

- **XMAX**
 places the label at the part of the polygon closest to the maximum X axis value, centered in the Y axis range.

- **YMIN**
 places the label at the part of the polygon closest to the minimum Y axis value, centered in the X axis range.

- **YMAX**
 places the label at the part of the polygon closest to the maximum Y axis value, centered in the X axis range.

\textbf{Default} \quad CENTER

\textbf{Interactions} \quad This option has no effect unless the \texttt{LABEL=} option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the \texttt{LABELLOC=} option.

When \texttt{LABELLOC=OUTSIDE}, increasing the length of the label might cause the available plot area to decrease. Also, when \texttt{LABELLOC=OUTSIDE}, the label might collide with the axis ticks and tick values.

\textbf{LEGENDLABEL=“text-string”}

specifies the label that identifies the polygon in the legend.

\textbf{LINEATTRS=style-element (<options>) | (options)}

specifies the appearance of the polygon outline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

\textbf{Defaults} \quad For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attributes of the GraphOutlines style element, and the ContrastColor and LineStyle attributes of the GraphData1 – GraphData\textit{n} style elements.
NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other statements.

<table>
<thead>
<tr>
<th>Note</th>
<th>The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip</td>
<td>This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.</td>
</tr>
</tbody>
</table>

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

| Interaction | This option has no effect unless GROUP= is also specified. |

OUTLINE | NOOUTLINE
specifies whether the polygons have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

<table>
<thead>
<tr>
<th>Default</th>
<th>OUTLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>If NOOUTLINE and NOFILL are both specified, then both options are ignored.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the LINEATTRS= option to control the appearance of the outline.</td>
</tr>
</tbody>
</table>

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

| See | Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315 |

ROTATE= numeric-column | number | expression
specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 (no rotation is performed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEBOX and CENTER respectively.</td>
</tr>
</tbody>
</table>
| Notes | An angle that exceeds 360 degrees in absolute value can be specified.
Rotating a polygon might cause clipping in some cases. |
ROTATELABEL= AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.
Specify one of the following:

AUTO
rotates the label with the rotation of the polygon.

NONE
does not rotate the label with the rotation of the polygon. The label position
remains fixed regardless of the polygon rotation.

VERTICAL
rotates the label to a vertical position.

Default AUTO

Interaction If ROTATION= is also specified, then ROTATELABEL= VERTICAL is ignored.

SPLITCHAR= "character-list"
splits the text for data labels at the specified character or characters when there is not
enough room to display the text normally. The text value is split at every occurrence
of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR= "abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

Default A single space

Interactions This option has no effect unless LABEL= is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)
TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

XOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Default 0.0 (no offset)

Range –0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.

Requirement The X axis must be discrete.
OFFSET=numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Default
0.0 (no offset)

Range
–0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.

Requirement
The Y axis must be discrete.

Details

Overview
The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point to the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.

Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.

Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.
Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
- specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.
- specify an HTML page to display when the selectable polygon is clicked.

Drawing a Single Polygon

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

```plaintext
data polydata;
  input id $1-2 x y;
datalines;
P1  40  100
P1  20  220
P1 160 200
P1 180  80
P1  40 100
;
run;
proc sgplot data=polydata;
  polygon X=x Y=y ID=id / fill outline;
run;
```

The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.
Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

```sas
data polydata;
  input id x y;
datalines;
  1  0  0
  1 20  0
  1 20 30
  1  0 30
  1  0  0
  2 30  0
  2 50  0
  2 40 30
  2 30  0
  3 60  0
  3 80  5
  3 80 15
  3 70 30
  3 60 30
  3 60  0
;
run;
```

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.
The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Example

For examples, see the following examples as used in the SGPLOT procedure:

- “Example 1: Create a Single Filled Hexagon” on page 872
- “Example 2: Use a Polygon to Highlight Data in a Scatter Plot” on page 872

REFLINE Statement

Creates a horizontal or vertical reference line.

Syntax

REFLINE variable | value-1 <…value-n> <option(s)>;

Summary of Optional Arguments

Appearance options

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element <options> | (options)
specifies the appearance of the reference line.

NOCLIP
extends the plot axes to contain the reference lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

AXIS=X | Y
specifies the axis that contains the reference line values.

Label options

LABEL <=variable> | <=(“text-string-1” ... “text-string-n”)
creates labels for each reference line.

LABELATTRS=style-element <options> | (options)
specifies the appearance of the labels.

LABELPOS=MIN | MAX
specifies the position of the labels.

LEGENDLABEL=“text-string”
specifies a label that identifies the plot in the legend.

SPLITCHAR=“character-list”
splits the text for labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=*LEFT | CENTER | RIGHT*
specifies the horizontal alignment of the value text that is being split.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Arguments

variable
draws a reference line for each value of the specified variable.

value-1 <... value-n>
draws one or more reference lines at the values that you specify.

Optional Arguments

AXIS=X | Y
specifies the axis that contains the reference line values. For example, if you specify AXIS= X, vertical reference lines are drawn at points on the X axis.

Default Y

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.19 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.
DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

**LABEL <=variable> | <=("text-string-1" ... "text-string-n")>
creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

variable
a variable for the label value.

Restriction This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

"text-string-1" ... "text-string-n"
a text string for the label value.

Restriction The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

LABELPOS=MIN | MAX
specifies the position of the labels. MIN specifies the label is placed at the minimum value of the data axis. MAX specifies that the label is placed at the maximum value of the data axis.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “Reference Line” is used.
Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the reference line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP
extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

SPLITCHAR="character-list"
splits the text for labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY= LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TRANSPARENCY= value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

REG Statement
Creates a fitted regression line or curve.

Interaction: A linear regression (DEGREE=1) cannot be used with logarithmic axes.

Examples: “About Regression Plots” on page 38
“Example 2: Creating a Panel of Regression Curves” on page 595

Syntax
REG X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line.

TRANSPARENCY=value
specifies the degree of transparency for the plot.
Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a classification variable to divide the values into groups.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <="variable">
displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR=“character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the regression curve in the legend.

NOLEGCLI
hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <="text-string”>
creates prediction limits for the individual predicted values.
CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
 specifies the appearance of the individual value prediction limits by using an
 ODS style element or by specifying attributes for the outlines.

CLM <="text-string”>
 creates confidence limits.

CLMATTRS =style-element | (CLMAttributeOptions)
 specifies the appearance of the mean value confidence limits by using an
 ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numeric-value
 specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.

JITTER
 specifies that data markers are jittered when multiple observations have the
 same response value.

MARKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
 specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker outlines.

NOMARKERS
 removes the scatter markers from the plot.

Plot options

ALPHA=numeric-value
 specifies the confidence level for the confidence limits.

DEGREE=n
 specifies the degree of the polynomial fit.

FREQ=numeric-variable
 specifies a variable for the frequency count for each observation in the input
 data.

MAXPOINTS=n
 specifies the maximum number of predicted points for the regression curve
 and for any confidence limits.

WEIGHT=numeric-variable
 specifies how observations are weighted.

Plot reference options

NAME="text-string”
 specifies a name for the plot.

Required Arguments

X=numeric-variable
 specifies the variable for the x axis.

Y=numeric-variable
 specifies the variable for the y axis.
Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

CLI <="text-string”>
creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Default The default style element is GraphPredictionLimits.

Interaction The CLIATTRS = option has no effect unless you also specify the CLI option.

CLM <="text-string”>
creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAttributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-
naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
- GraphConfidence style element in the current style for ungrouped data.
- GraphData1 ... GraphData\(_n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction
- CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Default
- The default appearance of the confidence limits is specified by the GraphConfidence style element in the current style.

Interaction
- The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction
- This option takes effect only if you also specify the CLM option.

CURVELABEL <=“text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
- If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.
- When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
- GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.
Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
```
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
CURVELABELATTRS=GraphTitleText
```

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

- **MIN**
 places the label at the part of the curve closest to the minimum X axis value.

- **MAX**
 places the label at the part of the curve closest to the maximum X axis value.

- **START**
 places the curve label at the first point on the curve.

- **END**
 places the curve label at the last point on the curve.

Default
END

Interaction
This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction
This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.
Examples

\texttt{DATALABELATR\texttt{=\{Color=Green Family=Arial Size=8 Style=Italic Weight=Bold\}}}

Here is an example that specifies a style element:

\texttt{DATALABELATR\texttt{=\{GraphLabelText\} DATALABELPOS=position}}

\texttt{DATALABELPOS=position}

specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

\texttt{DEGREE=n}

specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

Range 0–10

\texttt{FILLEDOUTLINEDMARKERS}

specifies that markers have a fill and an outline.

Requirement

The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

\texttt{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note

If the value is not an integer, only the integer portion is used.
GROUP=variable

specifies a classification variable to divide the values into groups. A separate plot is created for each unique value of the classification variable.

Interactions If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

When the GROUP option is used, the data is rendered in sorted order by the group variable.

JITTER

specifies that data markers are jittered when multiple observations have the same response value. When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of jittering.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

This option affects only how the scatter plot is drawn. It has no effect on the REG curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL="text-string"

specifies a label that identifies the regression curve in the legend. By default, the label “Regression” is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults For grouped data, GraphData1 ... GraphDataN style elements in the current style are used. The affected attributes are ContrastColor and
LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData_n style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=

Specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=

Specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=

Specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MAXPOINTS=\n
specifies the maximum number of predicted points for the regression curve and for any confidence limits.

Default 10

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLI

hides the legend entry for the individual predicted value confidence limits.

NOLEGCLM

hides the legend entry for the mean value confidence limits.

NOLEGFIT

hides the legend entry for the fit line.

NOMARKERS

removes the scatter markers from the plot.

SPLITCHAR=“character-list”

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.
Values are not split.

This option has no effect unless either CURVELABEL or DATALABEL is specified. When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

When you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

“Overview of Collision Avoidance” on page 1265

specifies that the split characters are included in the displayed value.

This option has no effect unless SPLITCHAR= is also specified.

“Overview of Collision Avoidance” on page 1265

specifies the horizontal alignment of the value text that is being split.

LEFT

This option has no effect unless you specify the SPLITCHAR= option.

“Overview of Collision Avoidance” on page 1265

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

This option replaces all of the information that is displayed by default.
The option affects only the scatter plot in this statement.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

`tip=(age weight)`

TIPFORMAT(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips. A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT= option to assign formats to the list of variables.

TIPLABEL(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips. A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of variables.

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.
WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction When the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

SCATTER Statement
Creates a scatter plot.

Example: “About Scatter Plots” on page 26

Syntax
SCATTER X=variable Y=variable </option(s)>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values.

ERRORBARATTRS=style-element </options> | (options)
specifies the appearance of the error bars in the plot.

LABELSTRIP
strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped markers.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.

SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are jittered when multiple observations have the same response value.

JITTERWIDTH=positive-number
specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

MARKERATTRS=<value>
specifies the appearance of the markers in the plot.

MARKERCHAR=<value>
specifies a variable whose values replace the marker symbols in the plot.

MARKERCHARATTRS=<value>
specifies the appearance of the markers in the plot when you use the MARKERCHAR= option.

MARKERFILLATTRS=<value>
specifies the color of the marker fill.

MARKEROUTLINEATTRS=<value>
specifies the appearance of the marker outlines.

Plot options

FREQ=<value>
specifies a variable for the frequency count for each observation in the input data.

URL=<value>
specifies an HTML page to be displayed when parts of the plot are selected.

XERRORLOWER=<value>
specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=<value>
specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=<value>
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=<value>
specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME=<value>
specifies a name for the plot.

Required Arguments

X=<value>
specifies the variable for the x axis.

Y=<value>
specifies the variable for the y axis.

Optional Arguments

ATTRID=<value>
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

“Overview of Attribute Maps” on page 1315.
CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

<table>
<thead>
<tr>
<th>Default</th>
<th>0.8</th>
</tr>
</thead>
</table>

Interactions

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **style-element**

 specifies the name of a style element. The style element should contain these style attributes:

 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

 Example

 | colormodel=TwoColorRamp |

- **(color-list)**

 specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

 You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

 Requirement The list of colors must be enclosed in parentheses.

 Example

 | colormodel=(blue yellow green) |

 Default The ThreeColorAltRamp style element

 Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.
COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

DATALABEL. <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabel1Text

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>VALUE</th>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td></td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td></td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
This option has no effect unless you also specify the DATALABEL option. This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

Table 4.20 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction You can use the MARKERATTRS= option to specify a filled marker symbol.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all markers from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element (options)> | (options)

specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:
COLOR=color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.

PATTERN=line-pattern
specifies the line pattern for the line. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default The default line pattern is specified by the LineStyle attribute of the GraphError style element in the current style.

THICKNESS=n <units>
specifies the thickness of the line. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default The default line thickness is specified by the LineThickness attribute of the GraphError style element in the current style.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.
Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped markers.

CLUSTER
 grouped items are drawn adjacent to each other.

OVERLAY
 grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData*n style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

 For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
 orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
 orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
 orders the groups within a category in ascending order of the group variable.

DESCENDING
 orders the groups within a category in descending order of the group variable.

Default DATA. Is using CAS data, the default is ASCENDING.
Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JITTER

specifies that data markers are jittered when multiple observations have the same response value. When jittering is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.

Note: Although the examples were created using the SGPLOT procedure, the jittering feature works the same in the SGPANEL procedure.

The following figures show a box plot and a scatter plot. The figures show the case in which the X axis is discrete and the Y axis is linear.

Table 4.21 X Axis Is Discrete and Y Axis Is Linear

In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers
that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

Table 4.22 Both Axes Are Linear

<table>
<thead>
<tr>
<th>Default</th>
<th>Interaction</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.</td>
<td>This option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.</td>
<td>By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.</td>
</tr>
</tbody>
</table>

JITTERWIDTH= *positive-number*

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

<table>
<thead>
<tr>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>The specified number can be greater than 1.</td>
</tr>
</tbody>
</table>

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot. The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.

<table>
<thead>
<tr>
<th>Interactions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>This option affects marker strings only when the MARKERCHAR= option is specified.</td>
<td>This option affects data labels only when DATALABEL is specified.</td>
</tr>
</tbody>
</table>
Tip Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

LEGENDLABEL="text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERCHAR=variable

specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6. format is used.

Interaction The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

MARKERCHARATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData\textsubscript{1}...GraphData\textsubscript{n} style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples **MARKERCHARATTRS=**(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

MARKERCHARATTRS=GraphValueText

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not
enough room to display the text normally. The text value is split at every occurrence
of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:
SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.
<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ODS GRAPHICS / IMAGEMAP=ON;</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option replaces all of the information that is displayed by default.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.</td>
</tr>
<tr>
<td>Example</td>
<td>tip=(age weight)</td>
</tr>
</tbody>
</table>

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPLABEL= option to assign labels to the list of variables.</td>
</tr>
<tr>
<td>See</td>
<td>SAS Viya Formats and Informats: Reference</td>
</tr>
<tr>
<td>Example</td>
<td>tipformat=(auto F5.2)</td>
</tr>
</tbody>
</table>

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default
0.0

Range
0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS ON / IMAGEMAP=ON;
```

XERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the X error bars.

XERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the X error bars.

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.
SERIES Statement

Creates a series plot.

Example: About Series Plots on page 28

Syntax

SERIES X=variable Y=variable <option(s)>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
 specifies a position for arrowheads.
ARROWHEADSCALE=positive-number
 specifies an arrowhead scale factor based on the thickness of the arrow line.
ARROWHEADSHAPE= OPEN | FILLED | BARBED
 specifies a shape for arrowheads.
ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.
COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.
COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.
DISCRETEOFFSET=numeric-value
 specifies an amount to offset all lines from discrete X or Y values.
LINEATTRS=style-element (<options>) | (options)
 specifies the appearance of the series line.
RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.
THICKMAX=dimension
 specifies the maximum line thickness when a response variable is used to determine the line thickness.
THICKMAXRESP=numeric-value
 specifies the response value that corresponds to the maximum line thickness.
THICKRESP=numeric-variable
 specifies a response variable that is used to map a line thickness to each group value.
TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Connect options

CONNECTORDER=XVALUES | XAXIS
 specifies how to connect the data points to form the series line.
Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPMC=variable
specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

GROUPMS=variable
specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

LCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC= variable.

LPATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
adds a label for the curve.
CURVELABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies a label that identifies the series plot in the legend.

SPLITCHAR="character-list”
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element (options) | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element (COLOR=color) | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the series plot data points.

Plot options

BREAK
creates a break in the line for each missing value for the Y variable.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string”
specifies a name for the plot.

Series options

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices.

Required Arguments

X=variable
specifies the variable for the x axis.
Y=variable
 specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
 specifies a position for arrowheads. The arrowheads are placed at the starting
 and ending points using the X values in data order. In order to position the arrowheads
 properly, you might need to sort the data by the X column.

 START displays an arrowhead at the starting point of each line.
 END displays an arrowhead at the ending point of each line.
 BOTH displays an arrowhead at each end of each line.

 Default No arrowheads are displayed when this option is not specified

ARROWHEADSCALE=positive-number
 specifies an arrowhead scale factor based on the thickness of the arrow line.

 Default 1.0

 Interaction ARROWHEADPOS= must also be specified for this option to have any
 effect.

 Tip Use a factor greater than 1.0 to make a larger arrowhead.

ARROWHEADSHAPE=OPEN | FILLED | BARBED
 specifies a shape for arrowheads.

 The following figure shows each of the arrowhead shapes.

<table>
<thead>
<tr>
<th>OPEN</th>
<th>FILLED</th>
<th>BARBED</th>
</tr>
</thead>
</table>

 Default OPEN

 Interaction ARROWHEADPOS= must also be specified for this option to have any
 effect.

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set. You specify
 this option only if you are using an attribute map to control visual attributes of the
 graph.

 See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

 “Overview of Attribute Maps” on page 1315

BREAK
 creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.
 Specify a value from 0.0 (narrowest) to 1.0 (widest).
Default

Interactions

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=

This option specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

color-list

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

CONNECTORDER=XVALUES | XAXIS
specifies how to connect the data points to form the series line.

XVALUES
connects data points in the order read from the X variable.

XAXIS
connects data points as they occur (minimum-to-maximum) along the X axis.

Defaults XVALUES
XAXIS for CAS data

For certain types of series lines (for example, time series) when the input data might not be sorted by the X variable, set this option to XAXIS to assure the expected connect order.

CURVELABEL’autres-string”
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphDataN style elements.

This option has no effect unless the CURVELABEL option is also specified.
Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default END

Interaction This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.23 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>DATASKIN Options for Lines</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![NONE]</td>
<td>![CRISP]</td>
<td>![GLOSS]</td>
</tr>
<tr>
<td>MATTE</td>
<td>![MATTE]</td>
<td>![PRESSED]</td>
<td>![SHEEN]</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 4.24 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>DATASKIN Options for Markers</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>![NONE]</td>
<td>![CRISP]</td>
<td>![GLOSS]</td>
</tr>
<tr>
<td>MATTE</td>
<td>![MATTE]</td>
<td>![PRESSED]</td>
<td>![SHEEN]</td>
</tr>
</tbody>
</table>

Default **NONE**

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.
DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions
This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData n style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips
Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

See
For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData n style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tips
Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.
See For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPM variable
specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphDatann style elements based on the GROUPM= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPM= variable with an attribute map ID.

See For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPMS variable
specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphDatann style elements based on the GROUPMS= variable instead of the GROUP= variable.

Interactions
The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Tips
Use the GROUPMC= option to set the marker color. You can also use the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable with an attribute map ID.

See For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPORDER
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.
Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA. Is using CAS data, the default is ASCENDING.

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC= variable. This option enables the plot to associate an attribute map with the line color group. The option specifies the value of the ID variable that maps attributes to LINECOLOR in the attribute map.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLC= option is specified.

This option overrides the COLOR= suboption of the LINEATTRS= option.
LEGENDLABEL="text-string"

specifies a label that identifies the series plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element<(options)> | (options)

specifies the appearance of the series line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

LPATTRID=discrete-attr-variable

specifies an attribute map ID variable to be associated with the GROUPLP= variable. This option enables the plot to associate an attribute map with the line pattern group. The option specifies the value of the ID variable that maps attributes to LINEPATTERN in the attribute map.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPLP= option is specified.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See For an overview, see “Example: Using Group Options, and Group Options with an Attribute Map” on page 925.

Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315

MARKERATTRS=style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default

GraphDataDefault style element in the current style for ungrouped data.

GraphData1 ... GraphData n style elements in the current style for
grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction

This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS= *style-element* `<(COLOR=color)> | (COLOR=color)`

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data.

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS= *style-element* `<(options)> | (options)`

specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions

This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS

adds data point markers to the series plot data points.

MCATTRID= *discrete-attr-variable*

specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker.
color group. The option specifies the value of the ID variable that maps attributes to
MARKERCOLOR in the attribute map.

Requirement The procedure statement must specify the attribute map data set using
the DATTRMAP= option.

Interactions This option is ignored unless the GROUPMC= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the COLOR= suboption of the
MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot
statement. Doing so can cause unexpected results.

See For an overview, see “Example: Using Group Options, and Group
Options with an Attribute Map” on page 925.

Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on
page 1315

MSATTRID= discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPMS=
variable. This option enables the plot to associate an attribute map with the marker
symbol group. The option specifies the value of the ID variable that maps attributes
to MARKERSYMBOL in the attribute map.

Requirement The procedure statement must specify the attribute map data set using
the DATTRMAP= option.

Interactions This option is ignored unless the GROUPMS= option is specified.

This option is ignored unless the MARKERS option is specified.

This option overrides the SYMBOL= suboption of the
MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot
statement. Doing so can cause unexpected results.

See For an overview, see “Example: Using Group Options, and Group
Options with an Attribute Map” on page 925.

Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on
page 1315

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

THICKMAX=dimension

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

Default

The maximum value in the response column that is specified in the THICKRESP= option.
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(age weight)

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips. A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

<table>
<thead>
<tr>
<th>Default</th>
<th>The column format of the tip variable, or BEST6 if no format is assigned to a numeric column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirement</td>
<td>A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless TIP= is also specified.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use the TIPLABEL= option to assign labels to the list of variables.</td>
</tr>
<tr>
<td>See</td>
<td><strong>SAS Viya Formats and Informs</strong>: Reference</td>
</tr>
<tr>
<td>Example</td>
<td><code>tipformat=(auto F5.2)</code></td>
</tr>
</tbody>
</table>

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option. Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips. A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
Example	`tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable**
  - specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**SPLINE Statement**

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

**Note:** The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 409.

**Example:** “About Spline Plots” on page 29

**Syntax**

SPLINE X=variable Y=variable </option(s)>;

**Summary of Optional Arguments**

**Appearance options**

ARROWHEADPOS= START | END | BOTH  
specifies a position for arrowheads.

ARROWHEA DSCALE= positive-number  
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED  
specifies a shape for arrowheads.

ATTRID=character-value  
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)  
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column  
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN  
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value  
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element <(options)> | (options)  
specifies the appearance of the spline line.

RATTRID=character-value  
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to
determine the line thickness.

**THICKMAXRESP=** *numeric-value*
specifies the response value that corresponds to the maximum line thickness.

**THICKRESP=** *numeric-variable*
specifies a response variable that is used to map a line thickness to each
group value.

**TRANSPARENCY=** *value*
specifies the degree of transparency for the plot.

**Data tip options**

**TIP=**(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

**TIPFORMAT=**(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

**TIPLABEL=**(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

**Group options**

**CLUSTERWIDTH=** *numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing.

**GROUP=** *variable*
specifies a variable that is used to group the data.

**GROUPDISPLAY=** CLUSTER | OVERLAY
specifies how to display grouped lines.

**GROUPLC=** *variable*
specifies a variable that determines the line colors for a grouped plot
independently of the GROUP= variable.

**GROUPLP=** *variable*
specifies a variable that determines the line patterns for a grouped plot
independently of the GROUP= variable.

**GROUPORDER=** DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

**NOMISSINGGROUP**
specifies that missing values of the group variable are not included in the
plot.

**Label options**

**CURVELABEL <="text-string">**
adds a label for the curve.

**CURVELABELATTRS=** *style-element (<options>)| (options)*
specifies the appearance of the labels in the plot when you use the
CURVELABEL= option.

**CURVELABELPOS=** MIN | MAX | START | END
specifies the location of the curve label.

**LEGENDLABEL="text-string"**
specifies a label that identifies the spline plot in the legend.

**SPLITCHAR="character-list"**
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Plot options**

**BREAK**
creates a break in the line for each missing value for the Y variable.

**SEGPOINTS=positive-integer**
specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME="text-string"**
specifies a name for the plot.

**Required Arguments**

**X=variable**
specifies the variable for the x axis.

**Y=variable**
specifies the variable for the y axis.

**Optional Arguments**

**ARROWHEADPOS= START | END | BOTH**
specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.

END displays an arrowhead at the ending point of each line.

BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

**ARROWHEADSCALE=positive-number**
specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

**ARROWHEADSHAPE= OPEN | FILLED | BARBED**
specifies a shape for arrowheads.
The following figure shows each of the arrowhead shapes.

```
<table>
<thead>
<tr>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILLED</td>
</tr>
<tr>
<td>BARBED</td>
</tr>
</tbody>
</table>
```

**Default** OPEN

**Interaction** ARROWHEADPOS= must also be specified for this option to have any effect.

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**BREAK**
creates a break in the line for each missing value for the Y variable.

**CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

**Example**
```
BREAK
```

**COLOREMOREL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**
```
COLOREMOREL=TwoColorRamp
```
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example
colormodel=(blue yellow green)

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

CURVELABEL <="text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
Interaction: This option has no effect unless the CURVELABEL option is also specified.

Examples: CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default: END

Interaction: This option has no effect unless the CURVELABEL option is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.25 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.
**DISCRETEOFFSET=** numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

**GROUP=** variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=** CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

**GROUPLC=** variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData style elements based on the GROUPLC= variable instead of the GROUP= variable.
Interactions: The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips: Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

See: For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPLP=variable

specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the GROUPLP= variable instead of the GROUP= variable.

Interactions: The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Tip: Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

See: For an overview, see Using Group Options on page 925 in the SGPLOT procedure.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Interactions: The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Notes**

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

---

**LEGENDLABEL="text-string"**

specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the spline line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**NAME="text-string"**

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**NOMISSINGGROUP**

This option has no effect unless GROUP= is also specified.

**RATTRID=character-value**

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
SEGPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

Default 20

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265
**SPLITJUSTIFY=** *LEFT* | *CENTER* | *RIGHT*

specifies the horizontal alignment of the value text that is being split.

<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

**THICKMAX=** *dimension*

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

<table>
<thead>
<tr>
<th>Default</th>
<th>Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
</tbody>
</table>

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

<table>
<thead>
<tr>
<th>Interaction</th>
<th>The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
</tbody>
</table>

**THICKMAXRESP=** *numeric-value*

specifies the response value that corresponds to the maximum line thickness.

<table>
<thead>
<tr>
<th>Default</th>
<th>The maximum value in the response column that is specified in the THICKRESP= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interaction</th>
<th>The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
</tbody>
</table>

**THICKRESP=** *numeric-variable*

specifies a response variable that is used to map a line thickness to each group value.

<table>
<thead>
<tr>
<th>Default</th>
<th>The GraphDataDefault style element LineThickness attribute.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.</td>
</tr>
<tr>
<td>Requirement</td>
<td>The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.</td>
</tr>
</tbody>
</table>
Interactions  
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

*variable-list*

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```
tip=(age weight)
```

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips. A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPLABEL= option to assign labels to the list of variables.

**See**

*SAS Viya Formats and Informats: Reference*

**Example**

```
tipformat=(auto F5.2)
```

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

Details

Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.
STEP Statement

Creates a step plot.

Restriction: The vertical axis that is used with the STEP statement cannot be a discrete axis.

Example: “About Step Plots” on page 30

Syntax

```
STEP X=variable Y=numeric-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ARROWHEADPOS= START | END | BOTH`
 specifies a position for arrowheads.
- `ARROWHEADSCALE=positive-number`
 specifies an arrowhead scale factor based on the thickness of the arrow line.
- `ARROWHEADSHAPE= OPEN | FILLED | BARBED`
 specifies a shape for arrowheads.
- `ATTRID=character-value`
 specifies the value of the ID variable in a discrete attribute map data set.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
 specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value`
 specifies an amount to offset all step lines from discrete X values.
- `ERRORBARATTRS=style-element <(options)> | (options)`
 specifies the appearance of the error bars in the plot.
- `JUSTIFY=LEFT | CENTER | RIGHT`
 specifies the location of each step relative to its data point.
- `LINEATTRS=style-element <(options)> | (options)`
 specifies the appearance of the step line.
NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

THICKMAX=*dimension*
specifies the maximum line thickness when a response variable is used to
determine the line thickness.

THICKMAXRESP=*numeric-value*
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=*numeric-variable*
specifies a response variable that is used to map a line thickness to each
group value.

TRANSPARENCY=*value*
specifies the degree of transparency for the plot.

Data tip options

TIP=(*variable-list*) | NONE
specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

TIPFORMAT=(*format-list*)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(*label-list*)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

CLUSTERWIDTH=*numeric-value*
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=*variable*
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped step lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the
plot.

Label options

CURVELABEL <="*text-string"">
adds a label for the curve.

CURVELABELATTRS=*style-element* <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <="*variable"">
displays a label for each data point.

DATALABELATTRS=*style-element* <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

DATALABELPOS=*position*
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"

specifies a label that identifies the step plot in the legend.

SPLITCHAR="character-list"

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Marker options

FILLEDOUTLINEMARKERS

specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the marker outlines.

MARKERS

adds markers to the step plot data points.

Plot options

BREAK

creates a break in the line for each missing value.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

YERRORLOWER=numeric-variable

specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable

specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

X=variable

specifies the variable for the x axis.

Y=numeric-variable

specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS=START | END | BOTH

specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START

displays an arrowhead at the starting point of each line.
END displays an arrowhead at the ending point of each line.

BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

ARROWHEADSCALE= *positive-number*

specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

ARROWHEADSHAPE= OPEN | FILLED | BARBED

specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

```
OPEN
FILLED
BARBED
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BREAK

creates a break in the line for each missing value.

CLUSTERWIDTH= *numeric-value*

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective
midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

CURVELABEL<="text-string">

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

MIN

places the label at the part of the curve closest to the minimum X axis value.

MAX

places the label at the part of the curve closest to the maximum X axis value.

START

places the curve label at the first point on the curve.

END

places the curve label at the last point on the curve.
This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1…GraphData*n* style elements.

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8

| Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOOLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:
Table 4.26 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 4.27 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESS</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET= numeric-value
specifies an amount to offset all step lines from discrete X values. Specify a value from –0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X axis is discrete.

ERRORBARATTRS= style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions
This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped step lines.

CLUSTER

grouped items are drawn adjacent to each other.

OVERLAY

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...

GraphData style elements in the current style.

Default
OVERLAY

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions
This option is ignored unless GROUP= is specified.
For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA. Is using CAS data, the default is ASCENDING.

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point. Figure 4.9 on page 419 shows the effect of each option:
LEGENDLABEL="text-string"
specifies a label that identifies the step plot in the legend. By default, the label of the
Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the step line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page
1274.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped
data. The affected attributes are ContrastColor and
MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS
option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

Default Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphDataN style elements in
the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

This option overrides any color that is specified with the
MARKERATTRS= option.

You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData data elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS
adds markers to the step plot data points.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Interaction
The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction
This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.
"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR="abc"}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default} Values are not split.

\textbf{Interactions} This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

\textbf{Notes} When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

\textbf{Tip} If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

\textbf{See} “Overview of Collision Avoidance” on page 1265

\texttt{SPLITCHARNODROP}

specifies that the split characters are included in the displayed value.

\textbf{Interaction} This option has no effect unless SPLITCHAR= is also specified.

\textbf{See} “Overview of Collision Avoidance” on page 1265

\texttt{SPLITJUSTIFY=LEFT | CENTER | RIGHT}

specifies the horizontal alignment of the value text that is being split.

\textbf{Default} \texttt{LEFT}

\textbf{Interaction} This option has no effect unless you specify the SPLITCHAR= option.

\textbf{See} “Overview of Collision Avoidance” on page 1265

\texttt{THICKMAX=dimension}

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Ten times the thickness that is specified by the GraphDataDefault style</td>
</tr>
<tr>
<td></td>
<td>element LineThickness attribute.</td>
</tr>
<tr>
<td>Interactions</td>
<td>The THICKRESP= option must be specified for this option to have any effect.</td>
</tr>
<tr>
<td></td>
<td>The THICKMAXRESP= option specifies the response value at which this maximum</td>
</tr>
<tr>
<td></td>
<td>line thickness is reached. The line thickness for response values that</td>
</tr>
<tr>
<td></td>
<td>exceed the THICKMAXRESP= value are set to the value that is specified by</td>
</tr>
<tr>
<td></td>
<td>this option.</td>
</tr>
<tr>
<td></td>
<td>If the line thickness that is calculated from the THICKMAX= and THICKMAX</td>
</tr>
<tr>
<td></td>
<td>MAXRESP= option values is less than 0.5 for a line, that line is not drawn.</td>
</tr>
</tbody>
</table>

THICKMAXRESP= `numeric-value`

specifies the response value that corresponds to the maximum line thickness.

Default	The maximum value in the response column that is specified in the
	THICKRESP= option.
Interactions	The THICKRESP= option must be specified for this option to have any effect.
	The thickness for all lines that exceed the maximum response value is
	set to the value specified in the THICKMAX= option.
	If the line thickness that is calculated from the THICKMAX= and THICKMAX
	MAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP= `numeric-variable`

specifies a response variable that is used to map a line thickness to each group value.

Default	The GraphDataDefault style element LineThickness attribute.
Restriction	The THICKRESP= values are assumed to be constant for each group value. If
	the THICKRESP column has multiple values for a single GROUP value, only one
	of the THICKRESP= values is used for that group.
Requirement	The GROUP= option must be specified with the THICKRESP= option. Otherwise,
	the THICKRESP= option is ignored.
Interactions	When the column values are all zero, all negative, or all missing, this
	option is ignored. In that case, the default line thickness is used for all
	of the lines.
	The THICKNESS= suboption of the LINEATTRS= option overrides this option for
	the line thickness attribute.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Viya Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.
Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.
Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.

YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

SYMBOLCHAR Statement
Defines a marker symbol using a Unicode character that can be referenced in other statements.

Syntax

SYMBOLCHAR NAME=identifier
CHAR="hex-string" | keyword < /option(s)>;

Summary of Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees.
SCALE=\textit{double}
 specifies a scale factor for the marker symbol as a percentage.

\textbf{TEXTATTRS}=\textit{style-element <options> | (options)}
 specifies the appearance of the text in the marker symbol.

VOFFSET=\textit{offset}
 specifies a vertical offset for the marker symbol.

\textbf{Required Arguments}

\textbf{NAME}=\textit{identifier}
 specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique \textit{identifier}. The identifier is not case-sensitive.

\textbf{Interaction}
 If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See the \textit{list of marker symbols on page} 1275.

\textbf{Note}
 Do not enclose the identifier in quotation marks.

\textbf{CHAR}="\textit{hex-string}"x | \textit{keyword}
 specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

"\textit{hex-string}"x
 specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the Unicode hexadecimal constants at the following URL: \url{http://www.unicode.org/charts/charindex.html}

\textit{keyword}
 specifies a SAS keyword for a Unicode character, such as alpha or alpha_u. See Appendix 2, “Reserved Keywords and Unicode Values,” on page 1463.

\textbf{Note}: The “_u” in a keyword makes the character uppercase.

\textbf{TIP}
 This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.

\textbf{Optional Arguments}

\textbf{HOFFSET}=\textit{offset}
 specifies a horizontal offset for the marker symbol.

\textbf{Default} 0 (the marker symbol is centered on its data point)

\textbf{Range} –0.5 to +0.5, where 0.5 represents one-half of the original marker size.

\textbf{Note} A positive offset moves the marker symbol to the right while a negative offset moves it to the left.
ROTATE=number

specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default

0 (no rotation is performed)

Note

An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double

specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character’s height.

Default

1.0 (100%)

Range

Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

TEXTATTRS=style-element <(options)> | (options)

specifies the appearance of the text in the marker symbol. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Note:

Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The color and size text attributes are derived from the MARKERATTRS= option in the plot statement.

Default

GraphUnicodeText style element in the current style. The affected attributes are FontFamily, FontStyle, and FontWeight.

Examples

TEXTATTRS=(Family=Arial Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TEXTATTRS=GraphDataText

VOFFSET=offset

specifies a vertical offset for the marker symbol.

Default

0 (the marker symbol is centered on its data point)

Range

−0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note

A positive offset moves the marker symbol up while a negative offset moves it down.

Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statements. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This
enables you to use SYMBOLCHAR statements in IF/ELSE statements. Symbol specifications also are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can modify the appearance of markers that are created by the SYMBOLCHAR statement in the following ways:

- use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option in the plot statement.

 Note: The WEIGHT= suboption has no effect on these markers.

- use the FAMILY=, WEIGHT=, and STYLE= suboptions of the TEXTATTRS= option in the SYMBOLCHAR statement to format the symbol character. The color and size are controlled using the MARKERATTRS= option.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLCHAR Example

This example specifies the SAS keyword DELTA_U, which produces the delta (Δ) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.

```sas
proc sgpanel data=sashelp.class;
```
Example 2: SYMBOLCHAR Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign colors and symbols for each grouping of the variable SIZE.

In the example, the following marker symbols are used:

- ✓ indicates students who weigh 60 pounds or more
- ✗ indicates students who weigh less than 60 pounds

The procedure uses two SYMBOLCHAR statements to identify the marker symbols used in the plot. The example creates marker symbols from the Unicode check mark, heavy character ('2714'x) and the Ballot X character ('2717'x). The example then shows how to use the symbols in a scatter plot.

```sas
/* Create a data set with the group variable SIZE. */
data classHeight;
  set sashelp.class;
  size="Short";
  if height >= 60 then size="Tall";
run;
```
/* Create the attribute map that assigns colors
and symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markercolor $ markersymbol $;
datalines;
myid Short green greeny
myid Tall red redx
;
run;

/* Specify the marker symbols used in the scatter plot,
and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12))
dattrmap=myattrmap;
 panelby sex;
 symbolchar name=redX char='2714'x;
 symbolchar name=greenY char='2717'x;
 scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;

 SYMBOLIMAGE Statement
Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.

Syntax
SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" < /option(s)>;

Summary of Optional Arguments

HOFFSET=offset
 specifies a horizontal offset for the marker symbol.

ROTATE=number
 specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
 specifies a scale factor for the marker symbol as a percentage.

VOFFSET=offset
 specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
 specifies an identifier for the marker symbol. The identifier can be used in statements
 that support marker symbols.

Interaction
If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See the list of marker symbols on page 1275.
Note: Do not enclose the identifier in quotation marks.

IMAGE="image-file-specification"

specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements

The image file specification must be enclosed in quotation marks.

The image file must be located on the local file system. URL access is not supported.

Example

image="c:\temp\mylogo.gif"

Optional Arguments

HOFFSET=offset

specifies a horizontal offset for the marker symbol.

Default

0 (the marker symbol is centered on its data point)

Range

–0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note

A positive offset moves the marker symbol to the right while a negative offset moves it to the left.

ROTATE=number

specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default

0 (no rotation is performed)

Note

An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double

specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default

1.0 (100%)

Range

Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

VOFFSET=offset

specifies a vertical offset for the marker symbol.

Default

0 (the marker symbol is centered on its data point)

Range

–0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note

A positive offset moves the marker symbol up while a negative offset moves it down.
Details

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.

The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUTLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLIMAGE Example

This example specifies the image file for a triangle (▽). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.
Example 2: SYMBOLIMAGE Used with an SG Attribute Map

This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

- ✓ indicates students who weigh 60 pounds or more
- ✗ indicates students who weigh less than 60 pounds

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
 set sashelp.class;
 size="Short";
 if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
 input ID $ value $ markersymbol $;
datalines;
 myid Short greeny
 myid Tall redx
run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgpanel data=classHeight (where=(15 > age >= 12))
dattrmap=myattrmap;
panelby sex;
symbolimage name=redx image='c:\temp\redCheck.png';
symbolimage name=greeny image='c:\temp\greenX.png';
scatter x=name y=height / attrid=myid
 markerattrs=(size=15pt)
 group=size;
run;
TEXT Statement

Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.

Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

Example: “About Text Plots” on page 31

Syntax

```
TEXT X=variable Y=variable TEXT=variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 - specifies the value of the ID variable in a discrete attribute map data set.
- **BACKFILL**
 - displays filled bounding boxes around the text.
- **BACKLIGHT=number**
 - specifies a back-light effect for the marker text.
- **COLORMODEL=style-element | (color-list)**
 - specifies a color ramp that is to be used with the COLORRESPONSE= option.
- **COLORRESPONSE=numeric-column**
 - specifies the numeric column that is used to map colors to a gradient legend.
- **CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)**
 - specifies whether this plot's space requirements contribute to the calculation of the axis offsets.
- **DISCRETEOFFSET=numeric-value**
 - specifies an amount to offset all markers from discrete X or Y values.
- **FILLATTRS=style-element <(options)> | (options)**
 - specifies the fill color and transparency.
- **OUTLINE**
 - displays outlined bounding boxes around the text.
- **OUTLINEATTRS=style-element <(options)> | (options)**
 - specifies the appearance of the outlines around the text boxes.
- **PAD=dimension <units> | (pad-options)**
 - specifies the amount of extra space that is added inside the text-marker border.
- **RATTRID=character-value**
 - specifies the value of the ID variable in a range attribute map data set.
- **TRANSPARENCY=value**
 - specifies the degree of transparency for the plot.

Axis options
CLUSTERAXIS= X | Y
specifies the axis to use for clustering groups when
GROUPDISPLAY=CLUSTER.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Legend options
LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.

Plot options
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
specifies a name for the plot.

Text options
POSITION=position-option
specifies the position of the text with respect to the location of the data point.
ROTATE=number | numeric-column
specifies the angle of rotation in degrees for the text markers.
SIZEMAX=dimension<unit>
specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.
SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size for text markers.
SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable is used to size the font for text values.
SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each
text value.
SPLITCHAR="character-list"
splits the text at the specified character or characters when there is not
enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.
SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.
SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character
count.
STRIP
specifies that leading and trailing blanks should be stripped from the marker
text before it is displayed.
TEXTATRIS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text.
VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text
bounding box or the text baseline.

Required Arguments

X=variable
specifies the variable for the x axis.
Y=variable
specifies the variable for the y axis.
TEXT=variable
specifies the variable for the text values that are used for the markers.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BACKFILL
displays filled bounding boxes around the text.

Tips
Use the OUTLINE option to specify outlined boxes around the text.

Use the TRANSPARENCY= option to change the transparency of the backfill
and the text. To change the transparency of only the backfill, use the
TRANSPARENCY= suboption of the FILLATTRS= OPTION.
BACKLIGHT=number

specifies a back-light effect for the marker text. The effect is applied to the marker text only. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified to help illustrate the back-light effect.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

Range 0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

Default Uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

Interaction The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. The GROUP= option must also be used.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8
This option is applicable only when the GROUP option is specified,
when GROUPDISPLAY=CLUSTER, and when the category axis is
discrete.

The default cluster widths can vary for different types of plots. If your
graph contains plot overlays, the default cluster width for the primary
plot statement is applied to all the other overlaid plots that use default
values. If you specify the cluster width for a plot, then your specified
value is honored.

COLOREMODEL= _style-element_ | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these
style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the
 COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the
 COLORRESPONSE= column. This attribute is not
 required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the
 COLORRESPONSE= column.

Example
`colormodel=TwoColorRamp`

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use
style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For
more information, see “Color-Naming Schemes” on page 1278. The list can
contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example
`colormodel=(blue yellow green)`

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must
also be specified in the statement.

COLORRESPONSE= _numeric-column_

specifies the numeric column that is used to map colors to a gradient legend. The fill
colors are assigned according to the legend gradient.

Interaction
If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip
The color ramp is specified by the COLOREMODEL= option. The color
ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

CONTRIBUTEOFFSETS= ALL | NONE | (axis-offset-list)

specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.

The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTEOFFSETS= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

ALL

the space requirements for this plot are contributed to the axis offset calculations.

NONE

the space requirements for this plot are not contributed to the axis offset calculations.

(axis-offset-list)

a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

- **XMAX**
 - the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.

- **XMIN**
 - the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.

- **YMAX**
 - the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.

- **YMIN**
 - the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default **ALL**

DISCRETEOFFSET= numeric-value

specifies an amount to offset all markers from discrete X or Y values.

Default **0.0** (no offset)

Range **-0.5** (left offset) to **+0.5** (right offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLATTRS= style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

- **0.0** transparency
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData... GraphData... style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.
Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

OUTLINE
displays outlined bounding boxes around the text.

Tip Use the BACKFILL option to display filled bounding boxes around the text.

OUTLINEATTRS=style-element <options> | (options)
specifies the appearance of the outlines around the text boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless OUTLINE is also specified.

PAD=dimension <units> | (pad-options)
specifies the amount of extra space that is added inside the text-marker border.

dimension specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:

LEFT=dimension<units> TOP=dimension<units>
RIGHT=dimension<units> BOTTOM=dimension<units>

Default Padding is a fraction of the font height.

Note Sides that are not assigned padding are padded with the default amount.

Tips This option is meaningful only when you also specify OUTLINE, BACKFILL, or both.

Use pad-options to create non-uniform padding.
Note: The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

POSITION=position-option

specifies the position of the text with respect to the location of the data point. Specify one of the following position options:

- **BOTTOM**
- **CENTER**
- **TOP**
- **BOTTOMLEFT**
- **LEFT**
- **TOPLEFT**
- **BOTTOMRIGHT**
- **RIGHT**
- **TOPRIGHT**

The VCENTER= option specifies whether the position is relative to the text bounding box or the text baseline. By default, the positions are relative to the text bounding box. The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

<table>
<thead>
<tr>
<th>POSITION= When VCENTER=BBOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CENTER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TOP</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.

<table>
<thead>
<tr>
<th>POSITION= When VCENTER=BASELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Default: CENTER

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

ROTATE=number | numeric-column

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in
clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0

SIZEMAX=dimension<unit>
specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

Default Three times the size specified in the GraphDataText style element for the maximum response variable value marker.

Interactions
The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips
Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size for text markers.

Default The maximum value in the response column specified in the SIZERESPONSE= option.
The SIZERESPONSE= option must be specified for this option to have any effect.

When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.

The SIZERESPONSE= numeric-variable specifies a response variable that is used to determine the font size for each text value.

Default: The size specified in the GraphDataText style element for all text values.

Notes: When the variable value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value. When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on. When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip: Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.
SPLITCHAR="character-list"
splits the text at the specified character or characters when there is not enough room
to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

"character-list" is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default: Values are not split.

Interactions: When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes: When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See: “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction: This option has no effect unless SPLITCHAR= is also specified.

See: “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default: LEFT

Interaction: This option has no effect unless you specify the SPLITCHAR= option.

See: “Overview of Collision Avoidance” on page 1265

SPLITPOLICY=NONE | SPLIT | SPLITALWAYS
specifies a policy for avoiding collisions among the text markers.

NONE
does not split the text for text markers that collide.

SPLIT
splits the marker text at a split character only if a split is needed at that character
in order to make the text fit the available space. No split occurs at split characters
that occur where a split is not needed. If the text does not contain any of the
specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.

See See the SPLITCHAR= option for information about specifying the split characters.

SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See See the SPLITCHAR= option for information about specifying the split characters.

Default NONE

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every width-in-characters characters.

Default Uses the width of the longest inter-split-character substring.

Restriction This option has an effect only when SPLITPOLICY=SPLIT.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default Blanks are not stripped

Tip Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

 ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data
tips.

A one-to-one correspondence exists between the label-list and the variable-list that is
specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSARENTY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

VCENTER=BBOX | BASELINE
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

BBOX
vertically centers the text with respect to its bounding box.

BASELINE
vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

Default BBOX

Tip Use the POSITION= option to specify the text position with respect to the text bounding box or the text baseline.
VBAR Statement

Creates a vertical bar chart that summarizes the values of a category variable.

Interaction: The VBAR statement can be combined only with other vertical categorization plot statements in the SG PANEL procedure. See “Plot Type Compatibility” on page 1258.

Tip: Bar charts can be combined with basic plot types using the HBAR BASIC and VBAR BASIC statements.

Example: “About Bar Charts” on page 44

Syntax

VBAR category-variable </option(s)>;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element (options) | (options)**
 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all bars from the category midpoints.

- **FILL | NOFILL**
 specifies whether the bars are filled.

- **FILLATTRS=style-element (options) | (options)**
 specifies the fill color and transparency.

- **FILLTYPE=SOLID | GRADIENT**
 specifies the fill type that is applied to the chart.

- **NOZEROBARS**
 suppresses zero-length bars.

- **OUTLINE | NOOUTLINE**
 specifies whether the bars have outlines.

- **OUTLINEATTRS=style-element (options) | (options)**
 specifies the appearance of the bar outlines.

- **RATTRID=character-value**
 specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.
Axis options

BASELINE=numeric-value
specifies the response axis intercept for the baseline.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"
plits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.
Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.
Optional Arguments

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interactions If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.
Tips

The appearance of the baseline is controlled by the `BASELINEATTRS=` option.

To suppress the baseline, use the `BASELINEATTRS=` option to set the line thickness to 0.

BASELINEATTRS= `style-element <(options)> | (options)`

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

The `GraphAxisLines` style element in the current style.

Notes

The baseline is always drawn by default.

When `style-element` is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

```plaintext
baselineattrs=(thickness=0)
```

CATEGORYORDER= `RESPASC | RESPDESC`

specifies the order in which the categories are arranged. Specify one of the following values:

- **RESPASC**

sorts by the response values in ascending order.

- **RESPDESC**

sorts by the response values in descending order.

Default

By default, the plot is sorted in ascending order based on the category values.

Restriction

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement

This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the `ROWS=` option or the `COLUMNS=` option in the `PANELBY` statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.

Interactions

When a group variable is used with the `CATEGORYORDER=` option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the `GROUPORDER=` option are both specified, the `GROUPORDER=` option is ignored.

Notes

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.
CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH= numeric-value
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL= style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default The ThreeColorAltRamp style element
Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE= numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

COLORSTAT= FREQ | PCT | SUM | MEAN

specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count

PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response

MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option. FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Interaction This option has no effect if you also specify the GROUPDISPLAY=STACK option.

DATALABELATTRS= style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=

specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- **NONE**
 - does not rotate the bar labels. Labels that are too long overlap.

- **ROTATE**
 - rotates the text 90 degrees, but only if collisions occur.

- **SPLIT**
 - splits the labels at the character or characters specified in the SPLITCHAR= option.

 No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default

The default split character is a space.

Tips

Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

SPLITALWAYS

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default

The default split character is a space.

Tips

Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults

ROTATE if the column is numeric.

SPLIT if the column is character.

Interaction

This option has no effect unless DATALABEL= is also specified.

See

“Overview of Collision Avoidance” on page 1265
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars.
The effect that a data skin has on a filled area depends on the skin type, the graph
style, and the color of the skinned element. Most of the skins work best with lighter
colors over a medium to large filled area. Specify one of the following:

Table 4.30 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>Effect</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>CRISP</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>GLOSS</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>MATTE</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>PRESSED</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>SHEEN</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

Default NONE
Restriction The ODS GRAPHICS option DATASKINMAX= controls the
maximum number of graphics elements that are skinned in a plot
statement. The maximum number is 200 by default. When this limit is
exceeded for a plot, the specified data skin is not applied. Use the
DATASKINMAX= option to increase or decrease the maximum limit.

Interaction If you also specify NOFILL, then the data skin is applied to the
outlines.

Note When determining the maximum number of graphics elements that are
skinned in a plot statement, the procedure evaluates the plot elements
in each cell separately. It is possible for a plot in one cell to reach the
maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)
Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the
distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the
offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the
bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=

```
style-element <(options)> | (options)
```

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults

<table>
<thead>
<tr>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.</td>
<td>0.0 transparency</td>
</tr>
</tbody>
</table>

Interaction

This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT

specifies the fill type that is applied to the chart.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Defaults

<table>
<thead>
<tr>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLID</td>
<td></td>
</tr>
</tbody>
</table>

Interaction

This option has no effect if NOFILL is also specified.

FREQ=

```
numeric-variable
```

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restrictions

If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=

```
variable
```

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\n style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. By default, no limits are displayed unless you specify either the LIMITS= option or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

Default
By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interactions
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default
CLM

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip: This option is useful when the bar chart baseline is suppressed.

NUMSTD=n

specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default: 1

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default: OUTLINE

Interactions: Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Note, however, that you cannot specify a line pattern for the bar outline.

Default: GraphOutlines style element in the current style for ungrouped data.

GraphData1 ... GraphData_n style elements in the current style for
grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID= `character-value`

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

RESPONSE= `response-variable`

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS= `style-element <(options)> | (options)`

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.
SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.
 The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Interaction This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ

the frequencies, which are calculated as follows:

• If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.

• If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN

the mean of the response variable.

Interaction

For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN

the median of the response variable.

Interaction

For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.

• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias

PCT
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the `PCTLEVEL=` option in the `PROC SGPANEL` statement.

You can use the `PCTNDEC=` option in the `SGPANEL` procedure statement to control the number of decimals to be used when calculating the percent values.

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

The sum of the response variable. This is the default value when you specify the `RESPONSE=` option.

For this value to take effect, you must also specify the `RESPONSE=` option.

SUM when you also specify the `RESPONSE=` option.

FREQ when do not specify the `RESPONSE=` option.

If you do not also specify the `RESPONSE=` option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify `RESPONSE=`, then you can use any of the statistics.

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

`STATLABEL` | `NOSTATLABEL`

specifies whether the response variable statistic is displayed in the axis and legend labels. `STATLABEL` forces the statistic to be displayed. `NOSTATLABEL` removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

This option has no effect unless the `RESPONSE=` option is specified.

This option has no effect if you specify the axis label using the `LABEL=` option in an `AXIS` statement.

`TIP=(variable-list) | NONE`

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the *variable-list*. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Viya Formats and Informat*: Reference

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option
provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that
is specified for the TIP= option. A label must be provided for each variable, using the
same order as the *variable-list*. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable
that is listed in the TIP= option. When AUTO is used, the label is
obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPhICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

VBARBASIC Statement
Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Note: When using the VBARBASIC statement, axes are not guaranteed to be uniform across BY groups.

See: Basic plot types on page 1258

Example: “About Bar Charts” on page 44
Syntax

VBARBASIC category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**

 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element <(options)> | (options)**

 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**

 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**

 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**

 specifies an amount to offset all bars from the category midpoints.

- **FILL | NOFILL**

 specifies whether the bars are filled.

- **FILLATTRS=style-element <(options)> | (options)**

 specifies the fill color and transparency.

- **FILLTYPE=SOLID | GRADIENT**

 specifies the fill type that is applied to the chart.

- **NOZEROBARS**

 suppresses zero-length bars.

- **OUTLINE | NOOUTLINE**

 specifies whether the bars have outlines.

- **OUTLINEATTRS=style-element <(options)> | (options)**

 specifies the appearance of the bar outlines.

- **RATTRID=character-value**

 specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=value**

 specifies the degree of transparency for the plot.

Axis options

- **BASELINE=numeric-value**

 specifies the response axis intercept for the baseline.

Data tip options

- **TIP=(role-list) | NONE**

 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**

 applies formats to the list of data tip roles that you specify in the TIP= option.

- **TIPLABEL=(label-list)**

 applies labels to the list of data tip roles that you specify in the TIP= option.
Group options

\texttt{CLUSTERWIDTH=numeric-value}

specifies the cluster width as a ratio of the maximum width.

\texttt{GROUP=variable}

specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=STACK \mid CLUSTER}

specifies how to display grouped bars.

\texttt{GROUPORDER=DATA \mid REVERSEDATA \mid ASCENDING \mid DESCENDING}

specifies the ordering of the groups within a category.

Label options

\texttt{DATALABEL}

displays the bar statistic value for each bar.

\texttt{DATALABELATTRS=style-element \langle(options)\rangle \mid (options)}

specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option.

\texttt{DATALABELFITPOLICY=NONE}

specifies that no fit policy is implemented for the bar labels.

\texttt{DATALABELFORMAT=format}

specifies the text format used to display the bar label.

\texttt{LEGENDLABEL=“text-string”}

specifies the label that identifies the bar chart in the legend.

\texttt{SEGLABEL}

displays a label inside each segment of a stacked bar.

\texttt{SEGLABELATTRS=style-element \langle(options)\rangle \mid (options)}

specifies the text properties of the bar segment label text.

\texttt{SEGLABELFITPOLICY=NONE \mid NOCLIP \mid THIN}

specifies a policy for fitting the bar segment labels within the bar segments.

\texttt{SEGLABELFORMAT=format}

specifies the text format used to display the bar segment labels.

Plot options

\texttt{MISSING}

for group data, processes missing values as a valid category value and creates a bar for it.

\texttt{RESPONSE=response-variable}

specifies a numeric response variable for the plot.

\texttt{URL=character-variable}

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

\texttt{NAME=“text-string”}

specifies a name for the plot.

Statistics options

\texttt{COLORSTAT=FREQ \mid PCT \mid SUM \mid MEAN}

specifies the statistic to use for computing the response colors.

\texttt{STAT=FREQ \mid PCT \mid SUM \mid MEAN \mid PROPORTION}

specifies the statistic for the vertical axis.
Required Argument

category-variable

specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Optional Arguments

ATTRID= *character-value*

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BARWIDTH= *numeric-value*

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE= *numeric-value*

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.
To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=<style-element> <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When **style-element** is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors. When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.

FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL
displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.
Default: No label is shown

Tip: The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interaction: This option has no effect unless the DATALABEL option is also specified.

Examples:

```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
DATALABELATTRS=GraphLabelText
```

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default: Show the labels unless they collide.

Interaction: This option has no effect unless DATALABEL= is also specified.

DATALABELFORMAT=format
specifies the text format used to display the bar label.

Default: The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction: This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 4.31 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>No data skin applied.</td>
</tr>
<tr>
<td>CRISP</td>
<td>Crisp data skin.</td>
</tr>
<tr>
<td>GLOSS</td>
<td>Glossy data skin.</td>
</tr>
<tr>
<td>MATTE</td>
<td>Matte data skin.</td>
</tr>
<tr>
<td>PRESSED</td>
<td>Pressed data skin.</td>
</tr>
<tr>
<td>SHEEN</td>
<td>Sheen data skin.</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note: When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default: FILL

Interactions: Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATRHS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.
Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

| 0.0 transparency |

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction
Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip
Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default
SOLID

Interaction
This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions
If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...
GraphData style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK

Interaction This option is ignored unless GROUP= is specified.

Tip The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If BASELINE= is specified, a zero-length bar value equals the baseline.

This option is useful when the bar chart baseline is suppressed.
OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines.
The NOOUTLINE option hides the outlines.

<table>
<thead>
<tr>
<th>Default</th>
<th>OUTLINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>Specifying OUTLINE also hides the fill color.</td>
</tr>
<tr>
<td></td>
<td>If NOOUTLINE and NOFILL are both specified, then both options are ignored.</td>
</tr>
</tbody>
</table>

OUTLINEATTRS=\texttt{style-element \langle(options)\rangle} | \langle(options)\rangle
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

<table>
<thead>
<tr>
<th>Default</th>
<th>GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect if NOOUTLINE is also specified.</td>
</tr>
</tbody>
</table>

RATTRID=\texttt{character-value}
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

RESPONSE=\texttt{response-variable}
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=\texttt{style-element \langle\texttt{options}\rangle} | \texttt{(options)}
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=\texttt{NONE} | \texttt{NOCLIP} | \texttt{THIN}
specifies a policy for fitting the bar segment labels within the bar segments.

\textbf{NONE}
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

\textbf{NOCLIP}
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

\textbf{THIN}
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.
SEGLABELFORMAT=\textit{format}

specifies the text format used to display the bar segment labels.

| Default | The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned. |
| Interaction | This option has no effect unless SEGLABEL is also specified. |

STAT=\textit{FREQ} | \textit{PCT} | \textit{SUM} | \textit{MEAN} | \textit{PROPORTION}

specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ	frequency count	
PCT	PERCENT	percentages between 0 and 100
PROPORTION	proportions between 0 and 1	

For bar charts with a RESPONSE= variable, the following values are valid:

| SUM | sum values for the response |
| MEAN | mean values for the response |

| Defaults | SUM when you also specify the RESPONSE= option. |
| Interaction | FREQ when do not specify the RESPONSE= option. |

When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=\textit{(role-list)} | \textit{NONE}

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\textit{(role-list)}

a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

\textit{Note}: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

\textit{NONE}

suppresses the data tips from this plot.

\textit{Requirement}

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

\begin{verbatim}
ODS GRAPHICS ON / IMAGEMAP=ON;
\end{verbatim}

\textit{Interaction}

This option replaces all of the information that is displayed by default.

\textit{Tip}

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

\textit{Example}

\texttt{tip=(category response)}
TIPFORMAT=(format-list)
 applies formats to the list of data tip roles that you specify in the TIP= option.
 Provide a space-separated list of formats enclosed in parentheses. This option
 provides a way to control the format of the data that appears in data tips.
 A one-to-one correspondence exists between the format-list and the role-list that is
 specified for the TIP= option. A format must be provided for each role, using
 the same order as the role-list. If you do not want to apply a format to a role, use the
 AUTO keyword instead.

 Default: The column format of the tip variable, or BEST6 if no format is
 assigned to a numeric column

 Requirement: A format or the keyword AUTO must be provided for each variable
 that is listed in the TIP= option.

 Interaction: This option has no effect unless TIP= is also specified.

 Tip: Use the TIPLABEL option to assign labels to the list of roles.

 See: SAS Viya Formats and Informats: Reference

 Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)
 applies labels to the list of data tip roles that you specify in the TIP= option.
 Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
 option provides a way to specify labels for the data that appears in data tips.
 A one-to-one correspondence exists between the label-list and the role-list that is
 specified for the TIP= option. A label must be provided for each role, using the same
 order as the role-list. If you do not want to apply a custom label to a role, use the
 AUTO keyword instead.

 Requirement: A label or the keyword AUTO must be provided for each role that is
 listed in the TIP= option. When AUTO is used, the label is obtained
 from the variable.

 Interaction: This option has no effect unless TIP= is also specified.

 Tip: Use the TIPFORMAT option to assign formats to the list of roles.

 Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value
 specifies the degree of transparency for the plot. The transparency that you specify
 applies to all aspects of the plot statement.

 Default: 0.0

 Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.
 character-variable
 specifies a variable that contains a valid HTML page reference (HREF) for each
 plot element that is to have an active link.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```sas
ODS GRAPHICS ON / IMAGEMAP=ON;
```

VBARPARM Statement

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.

Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction: The VBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1258.

Note: An important distinction between VBARPARM and VBAR is that the response variable is required for VBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 44

Syntax

```sas
VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**

 specifies the width of the bars as a ratio of the maximum possible width.

- **BASELINEATTRS=style-element <(options)> | (options)**

 specifies the appearance of the baseline.

- **COLORMODEL=style-element | (color-list)**

 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**

 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

 specifies a special effect to be used on the plot.
DISCRETEOFFSET=numeric-value
 specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element<(options)> | (options)
 specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
 specifies the fill type that is applied to the chart.

NOZEROBARS
 suppresses zero-length bars.

OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.

OUTLINEATTRS=style-element<(options)> | (options)
 specifies the appearance of the bar outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
 specifies the response axis intercept for the baseline.

Data tip options

TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the cluster width as a ratio of the maximum width.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
 specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element<(options)> | (options)
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend.

SEGLABEL

displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)

specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format

specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list"

splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Limit options

LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot.

LIMITLOWER=numeric-variable

specifies values for the lower endpoints on the limit lines.

LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines.

Plot options

MISSING

for group data, processes missing values as a valid category value and creates a bar for it.

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"

specifies a name for the plot.

Required Arguments

CATEGORY=category-variable

specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values.

The CATEGORY axis is always discrete.

RESPONSE=numeric-variable

specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
The GraphAxisLines style element in the current style.

The baseline is always drawn by default.

When \textit{style-element} is specified, only the style element’s \textit{COLOR}, \textit{LINESTYLE}, and \textit{LINETHICKNESS} attributes are used.

To suppress the baseline, set the line thickness to 0 as follows:
\texttt{baselineattrs=(thickness=0)}

\textbf{CLUSTERWIDTH=}\texttt{numeric-value}

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

This option is applicable only when the \textit{GROUP} option is specified, when \textit{GROUPDISPLAY=}CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

\textbf{COLORMODEL=}\texttt{style-element} \mid \texttt{(color-list)}

specifies a color ramp that is to be used with the \textit{COLORRESPONSE=} option.

\textit{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\begin{itemize}
 \item \texttt{STARTCOLOR} specifies the color for the smallest data value of the \textit{COLORRESPONSE=} column.
 \item \texttt{NEUTRALCOLOR} specifies the color for the midpoint of the range of the \textit{COLORRESPONSE=} column. This attribute is not required when you specify a two-color ramp model.
 \item \texttt{ENDCOLOR} specifies the color for the highest data value of the \textit{COLORRESPONSE=} column.
\end{itemize}

\texttt{Example} \texttt{colormodel=TwoColorRamp}

\texttt{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as \texttt{GraphData3:Color}.

You can specify colors using a number of different color-naming schemes. For more information, see “\textit{Color-Naming Schemes} on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

\textbf{Requirement} The list of colors must be enclosed in parentheses.
Example
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 170
“Using Gradient Color Legends” on page 1262

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

NONE does not rotate the bar labels. Labels that are too long overlap.
rotate the text 90 degrees, but only if collisions occur.

splits the labels at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

The default split character is a space.

Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

The default split character is a space.

Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN=NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
<td>GLOSS</td>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
If you also specify NOFILL, then the data skin is applied to the outlines.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default
0.0 (no offset)

Range
-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction
If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default
FILL

Interactions
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\ n style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.
GRADIENT
 A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

GROUP=variable
 Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
 Specifies how to display grouped bars.

STACK
 Groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

CLUSTER
 Displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default STACK
Interaction

This option is ignored unless GROUP= is specified.

Tip

The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

ASCENDING

Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=“text-string”

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interactions If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string”
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.
RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element<(options)> | (options)

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN

specifies a policy for fitting the bar segment labels within the bar segments.
NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.
The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN
Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.
Interaction This option has no effect unless SEGLABEL is also specified.

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.
Interaction This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.
See *SAS Viya Formats and Informats: Reference*

Example

`tipformat=(auto F5.2)`

TIPLABEL=(*label-list*)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

`tiplabel=(auto "Class Weight")`

TRANSPARENCY=(*value*)

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=(*character-variable*)

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

`ODS GRAPHICS ON / IMAGEMAP=ON;`
VBOX Statement

Creates a vertical box plot that shows the distribution of your data.

Restriction: This plot has plot compatibility restrictions. See Table 7.2 on page 1259.

Interaction: The VBOX statement cannot be used together with other plot statements in the SGPANEL procedure. Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

See: “Visual Description of Box Plot Percentile Boundaries” on page 512

Example: “About Box Plots” on page 39

Syntax

```
VBOX numeric-analysis-variable <option(s)>
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **BOXWIDTH=numeric-value**
 specifies the width of the box.

- **CAPSHAPE=BRACKET | LINE | SERIF | NONE**
 specifies the shape of the whisker cap lines.

- **CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX**
 specifies that a connect line joins a statistic from box to box.

- **CONNECTATTRS=style-element <(options)> | (options)**
 specifies the appearance of the lines that connect multiple boxes.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all boxes from the discrete tick marks.

- **EXTREME**
 specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

- **FILL | NOFILL**
 specifies whether the boxes are filled with color.

- **FILLATTRS=style-element <(options)> | (options)**
 specifies the fill color and transparency.

- **INTBOXWIDTH=numeric-value**
 specifies the box width when an interval category (X) variable is specified.

- **LINEATTRS=style-element <(options)> | (options)**
 specifies the appearance of the box outlines.

- **MEANATTRS=style-element <(options)> | (options)**
 specifies the appearance of the marker that represents the mean in the box.

- **MEDIANATTRS=style-element <(options)> | (options)**
 specifies the appearance of the line that represents the median.
NOCAPS
 hides the cap lines for the whiskers.

NOMEAN
 hides the mean marker.

NOMEDIAN
 hides the median line.

NOOUTLIERS
 hides the outliers from the plot.

NOTCHES
 specifies that the boxes be notched.

OUTLIERATTRS=\texttt{style-element <\textit{options}> | (\textit{options})}
 specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=\texttt{value}
 specifies the degree of transparency for the plot.

WHISKERATTRS=\texttt{style-element <\textit{options}> | (\textit{options})}
 specifies the appearance of the whisker and cap lines.

WHISKERPCT=\texttt{number}
 specifies the whisker length, in percentile units.

Data tip options

\texttt{TIP=\textit{role-list} | NONE}
 specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

\texttt{TIPFORMAT=\textit{format-list}}
 applies formats to the list of data tip roles that you specify in the TIP= option.

\texttt{TIPLABEL=\textit{label-list}}
 applies labels to the list of data tip roles that you specify in the TIP= option.

Group options

\texttt{CLUSTERWIDTH=\textit{numeric-value}}
 specifies the cluster width as a ratio of the midpoint spacing.

\texttt{GROUP=\textit{variable}}
 specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=CLUSTER | OVERLAY}
 specifies how to display grouped boxes.

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}
 specifies the ordering of the groups within a category.

Label options

\texttt{DATALABEL <=\textit{variable>}}
 adds data labels for the outlier markers.

\texttt{DATALABELATTRS=\texttt{style-element <\textit{options}> | (\textit{options})}}
 specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\texttt{LABELFAR}
 specifies that only the far outliers have data labels.

\texttt{LEGENDLABEL=\textit{text-string}}
 specifies a label that identifies the box plot in the legend.

\texttt{SPLITCHAR=\textit{character-list}}
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally.
SPLIT CHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CATEGORY=category-variable
specifies the category variable for the plot.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as a valid category value and creates a box for it.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

SPREAD
relocates outlier points that have identical values to prevent overlapping.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Required Argument

numeric-analysis-variable
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.
LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

CATEGORY=category-variable
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphConnectLine style element in the current style for ungrouped data.

GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

Examples

CONTACTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:

CONNECTATTRS=GraphData3
DATALABEL <variable>
adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily,FontSize,FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 4.33 DATASKIN Options for Box Plots</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Although the figure shows horizontal boxes, the data skin for vertical boxes is identical.

Default NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is
exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

Note

When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

DISCRETEOFFSET= *numeric-value*

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default 0.0 (no offset)

EXTREME

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

FILL | NOFILL

specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

FILLATTRS= *style-element (<options>) | (options)*

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

FREQ= *numeric-variable*

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated *n* times for computational purposes, where *n* is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.
GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Defaults CLUSTER for a discrete category axis
OVERLAY for a linear axis

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.
ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA. Is using CAS data, the default is ASCENDING.

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes
Attributes such as color, symbol, and pattern are assigned to each group in the DATA order by default, regardless of the GROUPORDER= option setting.

The ASCENDING and DESCENDING settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

Restriction
The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example
proc sgpanel data=sashelp.class;
 panelby sex;
 vbox weight / category=height intboxwidth=50;
 colaxis type=linear;
 run;

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note
This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL="text-string"
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.
LINEATTRS=style-element *(options)* | *(options)*

specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interactions

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=style-element *(options)* | *(options)*

specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default

GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MEDIANATTRS=style-element *(options)* | *(options)*

specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphBoxMedian style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option is ignored if the NOMEDIAN option is also specified.

MISSING

for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note

The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
 hides the cap lines for the whiskers.

Interaction Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN
 hides the mean marker.

NOMEDIAN
 hides the median line.

NOOOUTLIERS
 hides the outliers from the plot.

NOTCHES
 specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:
 \[\text{median} \pm 1.58 \frac{(\text{IQR})}{\sqrt{N}} \]

For a visual description of the parts of a box plot, see “Details” on page 511.

OUTLIERATTRS=\textit{style-element} \langle\textit{options}\rangle | \langle\textit{options}\rangle
 specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphOutlier style element in the current style for ungrouped data.
 GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
 specifies a method for computing the percentiles for the plot.

Default 5 (empirical distribution function with averaging)

Note The percentile definition and default are the same as those that are used by the PCTLDEF= option of the UNIVARIATE procedure and the QNTLDEF= option of the SUMMARY procedure.

SPLITCHAR=\textit{character-list}
 splits the text for data labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“\textit{character-list}” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR=“abc”
When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless Datalabel is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY= *LEFT | CENTER | RIGHT*
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1265

SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note
This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

NONE
suppresses the data tips from this plot.
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```tip=(mean median)```

TIPFORMAT= *(format-list)*

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the *format-list* and the *role-list* that is specified for the TIP= option. A format must be provided for each role, using the same order as the *role-list*. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

Example

```tipformat=(auto F5.2)```

**TIPLABEL=** *(label-list)*

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the *label-list* and the *role-list* that is specified for the TIP= option. A label must be provided for each role, using the same order as the *role-list*. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of roles.

**Example**

```tiplabel=(auto "Class Weight")```
TRANSPARENCY=value
 specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numic-variable
 specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

WHISKERPCT=number
 specifies the whisker length, in percentile units. When this option is specified, \textit{number} is used as the low percentile, and 100–\textit{number} is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10\text{th} percentile low and the 90\text{th} percentile high
25 specifies the 25\text{th} percentile low and the 75\text{th} percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25\text{th} to the 75\text{th} percentile.

Details

Statement Summary
The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries

Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Figure 4.10 Parts of a Box Plot

In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.
Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 \text{ IQR}$). Outliers that are beyond upper and lower far fences ($\pm 3 \text{ IQR}$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

VECTOR Statement

Creates a vector plot that draws arrows from a point of origin to each data point.

Example: “About Vector Plots” on page 34

Syntax

VECTOR X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

- **ARROWDIRECTION=IN | OUT | BOTH**

 specifies the location of the arrowheads for the vectors.

- **ARROWHEADSHAPE=shape**

 specifies the shape of the arrowheads for the vectors.

- **ATTRID=character-value**

 specifies the value of the ID variable in a discrete attribute map data set.

- **COLORMODEL=style-element | (color-list)**

 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**

 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

 specifies a special effect to be used on the plot.

- **LINEATTRS=style-element <(options)> | (options)**

 specifies the appearance of the vector line.

- **NOARROWHEADS**

 removes the arrowheads from the vectors.

- **RATTRID=character-value**

 specifies the value of the ID variable in a range attribute map data set.

- **THICKMAX=dimension**

 specifies the maximum line thickness when a response variable is used to determine the line thickness.

- **THICKMAXRESP=numeric-value**

 specifies the response value that corresponds to the maximum line thickness.

- **THICKRESP=numeric-variable**

 specifies a response variable that is used to map a line thickness to each group value.

- **TRANSPARENCY=value**

 specifies the degree of transparency for the plot.

Data tip options
TIP=(variable-list) | NONE
 specifies the data tip information to be displayed when the cursor is
 positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP=
 option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP=
 option.

Group options
GROUP=variable
 specifies a variable that is used to group the data.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the
 plot.

Label options
DATALABEL <=variable>
 displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.

DATALABELPOS=position
 specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
 specifies a label that identifies the vector plot in the legend.

SPLITCHAR="character-list"
 splits the text for data labels at the specified character or characters when
 there is not enough room to display the text normally.

SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Plot options
XORIGIN=numeric-value | numeric-variable
 specifies the X coordinate of the origin for the vectors.

YORIGIN=numeric-value | numeric-variable
 specifies the Y coordinate of the origin for the vectors.

Plot reference options
NAME="text-string"
 specifies a name for the plot.

Required Arguments
X=numeric-variable
 specifies a numeric variable for the x axis.

Y=numeric-variable
 specifies numeric variable for the y axis.
Optional Arguments

ARROWDIRECTION=IN | OUT | BOTH
specifies the location of the arrowheads for the vectors. Specify one of the following:

- **IN**
 places the arrowheads at the origin of the vector.

- **OUT**
 places the arrowheads at the ending point of the vector.

- **BOTH**
 places arrowheads at both the origin and ending point of the vector.

Default **OUT**

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors. Specify one of the following:

- **OPEN**
 resembles the letter "V".

- **CLOSED**
 an outline of a triangle.

- **FILLED**
 a solid triangle.

- **BARBED**
 a solid triangle with an indent at the base.

Default **OPEN**

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See [Chapter 12, “Using Discrete Attribute Maps,” on page 1317](#)

“Overview of Attribute Maps” on page 1315

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **style-element**
 specifies the name of a style element. The style element should contain these style attributes:

 - **STARTCOLOR**
 specifies the color for the smallest data value of the COLORRESPONSE= column.

 - **NEUTRALCOLOR**
 specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

 - **ENDCOLOR**
 specifies the color for the highest data value of the COLORRESPONSE= column.
Example: `colormodel=TwoColorRamp`

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement: The list of colors must be enclosed in parentheses.

Example: `colormodel=(blue yellow green)`

Default: The ThreeColorAltRamp style element

Interaction: For this option to take effect, the COLORRESPONSE= option must also be specified in the statement.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction: If the GROUP= option is also specified in the statement, then the GROUP= option is ignored.

Tip: The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See: “GRADLEGEND Statement” on page 170

“Using Gradient Color Legends” on page 1262

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=<style-element><(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction: This option has no effect unless the DATALABEL option is also specified.

Examples: `DATALABELATTRS=(Color=Green Family=Arial Size=8`
Here is an example that specifies a style element:

\[\text{DATALABELATTRS=} \text{GraphLabelText} \]

DATALABELPOS= \textit{position}

specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottom Left</th>
<th>Bottom Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>Top</td>
<td>Top Left</td>
<td>Top Right</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when \textit{GROUP=} is also specified.

DATASKIN= \texttt{NONE} | \texttt{CRISP} | \texttt{GLOSS} | \texttt{MATTE} | \texttt{PRESSED} | \texttt{SHEEN}

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

\textbf{Table 4.34 DATASKIN Options for Lines}

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Note
When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.

GROUP= \textit{variable}
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.
LEGENDLABEL="text-string"
specifies a label that identifies the vector plot in the legend. By default, the label of
the Y variable or the group value for each plot element is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the
GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the vector line. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOARROWHEADS
removes the arrowheads from the vectors.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SPLITCHAR="character-list"
splits the text for data labels at the specified character or characters when there is not
enough room to display the text normally. The text value is split at every occurrence
of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

THICKMAX=

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default

Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions

The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.
THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
TIPFORMAT= *(format-list)*

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Viya Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL= *(label-list)*

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)
XORIGIN=numeric-value | numeric-variable
specifies the X coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default 0

YORIGIN=numeric-value | numeric-variable
specifies the Y coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default 0

VLINE Statement

Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR statement to create a bar-line chart.

Interaction: The VLINE statement can be combined only with other categorization plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1258.

See:

Examples: “About Line Charts” on page 50
“Example 4: Creating a Panel of Line Charts” on page 598

Syntax

VLINE category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BREAK
breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete category values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

CURVELABEL <="text-string">>
adds a label for the line plot.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELPOS=MIN | MAX | START | END
specifies the location of the curve label.

DATALABEL <=variable>>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list"
splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.
NUMSTD=\(n\)
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

MARKERS
adds data point markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as a valid category value and creates a line for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies how observations are weighted.

Plot reference options

NAME="text-string"
specifies a name for the plot.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the lines.
Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default: .05

Interactions: This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BREAK
breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.

Note: The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default: By default, the plot is sorted in ascending order based on the category values.

Restriction: This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Requirement: This option requires that you configure the panel to use either one column or one row, depending on the orientation of your charts. Use the ROWS= option or the COLUMNS= option in the PANELBY statement. If you do not use this option and your graph contains multiple cells, the specified sort order is not correctly applied to all cells.
Interactions

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

CURVELABEL <=“text-string”>

adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

Interaction If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATRRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATRRS=GraphTitleText

CURVELABELPOS=MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

MIN
places the label at the part of the curve closest to the minimum X axis value.

MAX
places the label at the part of the curve closest to the maximum X axis value.

START
places the curve label at the first point on the curve.

END
places the curve label at the last point on the curve.

Default
END

Interaction

This option has no effect unless the CURVELABEL option is also specified.

DATALABEL <variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATRRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATRRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATRRS=GraphLabelText
DATALABELPOS=position

specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 4.35 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 4.36 DATASKIN Options for Markers

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
Note	When determining the maximum number of graphics elements that are skinned in a plot statement, the procedure evaluates the plot elements in each cell separately. It is possible for a plot in one cell to reach the maximum threshold, but the plot in a different cell does not.
DISCRETEOFFSET=numeric-value	specifies an amount to offset all lines from discrete category values. Specify a value from –0.5 (left offset) to +0.5 (right offset).
Default	0.0 (no offset)
Requirement	This option is applicable only when the category axis is discrete.
FILLEDOUTLINEDMARKERS	specifies that markers have a fill and an outline.
Requirement	The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.
Interactions	This option has no effect unless MARKERS is also specified. Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
See	For usage information and an example, see “Marker Fills and Outlines” on page 1267.
FREQ=numeric-variable	specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.
Restrictions	If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis. If the value is not an integer, only the integer portion is used.
Interaction	If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.
GROUP=variable	specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interactions	If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated. When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.
Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData2n style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
changed using the `SORTORDER=` option in the `KEYLEGEND` statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Notes

Attributes such as color, symbol, and pattern are assigned to each group in the `DATA` order by default, regardless of the `GROUPORDER=` option setting.

The `ASCENDING` and `DESCENDING` settings linguistically sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

`LEGENDLABEL=“text-string”`

specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction

The `LEGENDLABEL=` option has no effect if you also specify the `GROUP=` option in the same plot statement.

`LIMITATTRS=style-element <(options)> | (options)`

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphError style element in the current style. The affected attributes are `ContrastColor`, `LineStyle`, and `LineThickness`.

`LIMITS=BOTH | LOWER | UPPER`

adds limit lines to the plot. Specify one of the following values:

- **BOTH**
 adds lower and upper limit lines to the plot.

- **LOWER**
 adds lower limit lines to the plot.

- **UPPER**
 adds upper limit lines to the plot.

Default

By default, no limit lines are displayed. However, if you specify the `LIMITSTAT=` option, then the default is BOTH.

Interaction

Limit lines are displayed only when you specify `STAT= MEAN`.

`LIMITSTAT=CLM | STDDEV | STDERR`

specifies the statistic for the limit lines. Specify one of the following statistics:
CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default
CLM

Interaction
If you specify the LIMITSTAT= option, then the default value for the
LIMITS= option is BOTH.

LINEATTRS=style-element<(options)> | (options)
specifies the appearance of the lines in the line plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

MARKERATTRS=style-element<(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped
data. The affected attributes are ContrastColor and
MarkerSymbol.

Interaction
This option has no effect unless you also specify the MARKERS
option.

MARKERFILLATTRS=style-element<(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData n style elements in
the current style for grouped data.

Interactions
This option has no effect unless FILLOUTLINEDEMARKERS is
also specified.

This option overrides any color that is specified with the
MARKERATTRS= option.
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
 • line color
 • line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS
adds data point markers to the plot.

MISSING
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
specifies a name for the plot. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1
RESPONSE=`response-variable`

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

SPLITCHAR=`"character-list"`

splits the text for curve and data labels at the specified characters when there is not enough room to display the text normally. The text value is split into one or more lines as needed. The split occurs every occurrence of the specified split character or characters.

`"character-list"` is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

<table>
<thead>
<tr>
<th>Default</th>
<th>Interactions</th>
<th>Notes</th>
<th>Tip</th>
<th>See</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values are not split.</td>
<td>This option has no effect unless either CURVELABEL or DATALABEL is specified.</td>
<td>When multiple characters are specified, the order of the characters in the list is not significant.</td>
<td>If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=`LEFT | CENTER | RIGHT`

specifies the horizontal alignment of the value text that is being split.

Default

LEFT
Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

• If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.

• If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

• If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.

• If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the SGPANEL procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.
Defaults

SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

Restriction

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL

specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(age weight)
TIPFORMAT=(format-list)
appplies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
appplies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

WEIGHT=numeric-variable
specifies how observations are weighted. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

COLAXIS Statement
Specifies the axis options for each X axis in the panel. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

COLAXIS option(s);

Summary of Optional Arguments

Appearance options

ALTERNATE
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.
GRID
creates grid lines at each tick on the axis.
GRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the grid lines.
MINORGRID
creates grid lines at each minor tick on the axis.
MINORGRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the minor grid lines.

Axis options
DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.
INTEGER
specifies that only integers are used for tick mark values.
INTERVAL=interval-value
specifies the tick interval for a time axis.
LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.
LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.
LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.
MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).
MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).
MINOR
adds minor tick marks to a linear, log, or time axis.
MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.
MINORINTERVAL=time-interval
specifies the time interval between minor ticks.
NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.
OFFSETMAX=numeric-value
specifies an offset that follows the highest data value on the axis.
OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis.
REFTICKS <(options)>
adds tick marks to the side of the panel that is opposite from the specified axis.
REVERSE
specifies that the tick values are displayed in reverse (descending) order.
THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

**THRESHOLDMIN=** numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

**TYPE=** DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

**Text options**

**FITPOLICY=** policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

**LABEL=** "text-string"
specifies a label for the axis.

**LABELATTRS=** style-element <(options)> | (options)
specifies the appearance of the axis labels.

**LABELPOS=** CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

**SPLITCHAR=** "character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

**VALUEATTRS=** style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

**VALUES=** (values-list) | ("string-list")
specifies the values for the ticks on an axis.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

**VALUESFORMAT=** DATA | SAS-format
specifies how to format the values for major tick marks.

**VALUESHINT**
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

**VALUESROTATE=** DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

**Optional Arguments**

**ALTERNATE**
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

**COLORBANDS=** NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.
The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Thomas</td>
</tr>
<tr>
<td>Alice</td>
<td>Alice</td>
</tr>
<tr>
<td>James</td>
<td>James</td>
</tr>
<tr>
<td>Joyce</td>
<td>Joyce</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED
DISPLAY=ALL | NONE | *(options)*
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. Options can be any of the following:

**NOLABEL**
- hides the axis label

**NOLINE**
- hides the axis line

**Tips**
This value hides the axis line, but has no effect on the cell border. To hide the border, specify NOBORDER in the PANELBY statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

**NOTICKS**
- hides the tick marks on the axis

**NOVALUES**
- hides the tick mark values on the axis

**Default**
ALL

**Interaction**
If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

**Example**
DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=*

specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

**NONE**
- does not split the values.

**ROTATE**
- rotates the value text 45 degrees.

**TIP**
Use VALUESROTATE= to specify how the tick values are rotated on the axis.

**Note:** With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**ROTATETHIN**
- attempts to use ROTATE, and then THIN to fit the values.

**Note:** With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**SPLIT**
- splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.
The default split character is a space.

This option has no effect unless the axis is discrete.

You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

The default split character is a space.

This option has no effect unless the axis is discrete.

You can specify the split character using the SPLITCHAR= option.

SPLITROTATE
attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

STAGGER
shifts the values up and down.

STAGGERROTATE
attempts to use STAGGER, and then ROTATE to fit the values.

Interaction When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
attempts to use STAGGER, and then THIN to fit the values.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction This option does not affect logarithmic axes.

See “Fit Policies for Axes” on page 1266

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.
GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default
GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphData\textsubscript{n} style elements in the current style for
grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
GRIDATTRS=\{color=green pattern=longdash thickness=2\}

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only
linear axes.

INTERVAL=interval-value
specifies the tick interval for a time axis. The interval that you select must be
consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select \textit{AUTO, SECOND,}
\textit{MINUTE,} or \textit{HOUR}.

Specify one of the following values:

\begin{table}
\centering
\caption{Time Intervals}
\begin{tabular}{|l|l|l|l|}
\hline
INTERVAL & Unit & Tick interval & Default tick value format \\
\hline
AUTO & DATE, TIME, or DATETIME & automatically chosen & automatically chosen \\
\hline
SECOND & TIME or DATETIME & second & TIME8. \\
\hline
MINUTE & TIME or DATETIME & minute & TIME8. \\
\hline
HOUR & TIME or DATETIME & hour & TIME8. \\
\hline
DAY & DATE or DATETIME & day & DATE9. \\
\hline
TENDAY & DATE or DATETIME & 10 days & DATE9. \\
\hline
WEEK & DATE or DATETIME & 7 days & DATE9. \\
\hline
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

**LABEL=**"text-string"

specifies a label for the axis.

**LABELATTRS=**style-element (options) | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

**Examples**

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LABELPOS=**CENTER | DATACENTER | LEFT | RIGHT

specifies the position of the axis label.

**CENTER**

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values.

**DATACENTER**

centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values.
**LEFT**
positions the label to the left of the axis area. The label is centered vertically in
the axis area.

**RIGHT**
positions the label to the right of the axis area. The label is centered vertically in
the axis area.

The following figure shows the CENTER and DATACENTER positions for the red
X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the
axis in order to demonstrate the difference between CENTER and DATACENTER.
CENTER centers the labels on the entire axis area, including the offset.
DATACENTER centers the labels on the tick display areas, which does not include
the offset.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>![CENTER Image]</td>
<td>![DATACENTER Image]</td>
</tr>
</tbody>
</table>

The next figure shows the LEFT and RIGHT positions for the same axis labels.

<table>
<thead>
<tr>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>![LEFT Image]</td>
<td>![RIGHT Image]</td>
</tr>
</tbody>
</table>

**Default**  CENTER

**LOGBASE=2 | 10 | e**
specifies the base value for the logarithmic scale.

Default  10

Interaction  This option has no effect unless you also specify TYPE=LOG.
LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic
axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified
LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 4.11 on page
547.

Figure 4.11  Graph Axes with LOGEXPAND

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by
the exponent. For example, if you specified LOGBASE=10, the tick marks might
be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 4.12
on page 547.

Figure 4.12  An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically.
In some cases an intermediate tick mark is placed between the first and second
marks.

For example, if the data on this axis range from 14 to 1154, and you specify
LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000,
1200. See Figure 4.13 on page 547.

Figure 4.13  An Axis with LINEAR

Default  LOGEXPAND
Interaction  This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option
and the MIN and MAX options. This option enables you to choose your preferred
way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.
Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```
rowaxis type=log logbase=10 logstyle=logexpand
logvtype=exponent
min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```
colaxis type=log logbase=10 logstyle=logexponent
logvtype=expanded
values=(10 100 1000 10000 100000);
```

**MAX=numeric-value**

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

**MIN=numeric-value**

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

**Tip**
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

**MINOR**
adds minor tick marks to a linear, log, or time axis.

Restriction	This option has no effect on discrete axes.
Interaction	This option has no effect if you specify the VALUES= option.
Tip	Use MINORCOUNT= to specify the number of tick marks.

**MINORCOUNT=numeric-value**
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

| Restriction | This option applies to linear and log axes only. |
| Note        | This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks. |

**MINORGRID**
creates grid lines at each minor tick on the axis.

| Interaction | This option has no effect unless GRID is also specified for the axis. |

**MINORGRIDATTRS=style-element <(options)> | (options)**
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default	GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.
Interaction	This option has no effect unless MINORGRID is also specified.
Tip	You can use GRIDATTRS= to change the appearance of the major grid lines.
Examples	MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

```
MINORGRIDATTRS=GraphAxisLines
```

**MINORINTERVAL=time-interval**
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select *AUTO, SECOND, MINUTE, or HOUR*.

For information about the intervals that you can select, see Table 4.37 on page 544.

**Default** AUTO

**Restriction** This option applies to time axes only.

**Note** This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**NOTIMESPLIT** prevents a time axis from splitting the time, date, or datetime values into two rows.

**Restriction** This option applies to time axes only.

**OFFSETMAX=numeric-value** specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

**Default** The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**OFFSETMIN=numeric-value** specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

**Default** The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**REFTICKS <=(options)>** adds tick marks to the side of the panel that is opposite from the specified axis. You can also specify *options*:

**LABEL**

in addition to the tick marks, displays the axis label.

**VALUES**

in addition to the tick marks, displays the values that are represented by the tick marks.

**REVERSE**

specifies that the tick values are displayed in reverse (descending) order.

**SPLITCHAR=“character-list”**

splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.
“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[ \text{SPLITCHAR}="abc" \]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default	Values are not split.
Restriction	This option has no effect unless the axis is discrete.
Interactions	This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes. When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP. You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes	When multiple characters are specified, the order of the characters in the list is not significant. The split characters are case sensitive.
See	“Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP** specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

**SPLITJUSTIFY=LEFT | CENTER | RIGHT** specifies the horizontal alignment of the value text that is being split.

Default LEFT

See “Overview of Collision Avoidance” on page 1265

**THRESHOLDMAX=numeric-value**

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default	0.30
Range	0 to 1
Restriction	This option applies to linear axes only.

See “Overview of Collision Avoidance” on page 1265
Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then that the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.
Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

**TIME**
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

**Examples**
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

**VALUES=(values-list ) | (“string-list”)**
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- **VALUES= (values-list )** specifies tick values for linear, time, and logarithmic axes.
- **VALUES=(“string-list”)** specifies tick values for discrete axes. The values can be character or numeric.

**VALUES=(values-list )**
specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:

- `value <...value-n>`: creates ticks for specific values. For example, **VALUES=(0 50 100)** places tick marks at 0, 50, and 100.

- `value-1 TO value-2 BY increment-value`:
  - creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks. For example, **VALUES=(0 to 100 by 50)** creates tick marks at 0, 50, and 100.

*Note:* If you omit the `increment-value`, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.
creates ticks for specific values, and also creates ticks for a range of values.
The start of the value range is specified by value-1 and the end of the range is
specified by value-2. The increment-value specifies the interval between the
ticks.

For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at
–5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the
increment value is 1. You can use a negative integer for increment to specify a
value list in descending order. In all forms, multiple n values can be separated by
blanks or commas. Here are some examples:

• values=(2 4 6)
• values=(6,4,2)
• values=(2 to 10 by 2)
• values=(50 to 10 by –5)

If the specified range is not evenly divisible by the increment value, the highest
value displayed on the axis is the last incremental value below the ending value
for the range. For example, this value list produces a maximum axis value of 9:

values=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

value <...value-n>
creates ticks for specific values. For example, VALUES=("25MAY08"d
"04JUL08"d "23AUG08"d) places tick marks at 25MAY08, 04JUL08,
and 23AUG08.

value-1 TO value-2 BY increment-value
creates ticks for a range of values. The start of the value range is specified by
value-1 and the end of the range is specified by value-2. The increment-value
specifies the interval between the ticks. For example,
VALUES=("01JAN08"d to "01MAY08"d by month) creates tick
marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL=
option.

Restrictions This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the
option has no effect.

Interactions For logarithmic axes, use the LOGVTYPE option to control
whether the values in the VALUES option are treated as expanded
values or as exponents. A typical case for using exponents is when
plotting your data using log base e.

If a custom format is applied to the value, the raw value is plotted
first and then formatted.

Tip Use the VALUESDISPLAY= option to specify string replacement
text for the specified values.
VALUES= ("string-list")
For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Note: For an example that is used in the SGPLOT procedure, see Table 5.39 on page 1101.

Restrictions
This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
values=("Sedan" "Sports" "Wagon" "SUV")

The following example specifies the axis tick values 10, 20, 30, and 40:
values=("10" "20" "30" "40")

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=("14" "15") valuesdisplay=("fourteen" "fifteen")

TIP Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction
This option applies only to discrete axes. Linear, date, and time axes are not supported.
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

**VALUESFORMAT=DATA | SAS-format**

specifies how to format the values for major tick marks.

*Note:* This option supports discrete and logarithmic axes.

**DATA**

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**

specifies a format to apply to the major tick values.

*Restriction* This option currently honors most, but not every, SAS format.

*Note* If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

*Restriction* For discrete axes, only character formats are supported.

*Interactions* This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE =LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE =LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

**VALUESHINT**

specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

*Interaction* This option has no effect unless you also specify the VALUES= option.

**VALUESROTATE=DIAGONAL | VERTICAL**

specifies how the tick values are rotated on the axis.

**DIAGONAL**

rotates the tick values to a 45-degree diagonal position.

**VERTICAL**

rotates the tick values to a 90-degree vertical position. The values are always drawn from bottom to top.

*Default* DIAGONAL
Interactions: This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

**COLAXISTABLE Statement**

Creates an event plot of input data along the X axis, placing data values at specific locations inside the axis. The SGPANEL procedure can contain multiple COLAXISTABLE statements.

*Interactions:* When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with a COLAXISTABLE statement, the COLAXISTABLE statement is rejected with a message.

Axis tables are separate plots and are unaware of the options specified in the accompanying plots.

Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

**Syntax**

COLAXISTABLE variable <…variable-n> /option(s);

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set.

- **COLORGROUP=variable**
  specifies a variable that is used to determine the color of the table values.

- **DROPONMISSING**
  specifies that the entire axis table is dropped when all of the values are missing.

- **NOMISSINGCHAR**
  suppresses the display of the MISSING character (.) for missing numeric values.

- **PAD=dimension | (pad-options)**
  specifies the amount of extra space that is added inside the table border.

- **POSITION=BOTTOM | TOP**
  specifies the position of the axis table at the bottom or top of the graph.

- **SEPARATOR**
  creates a separating line between the axis table or axis tables and the plot.

- **TEXTGROUP=attribute-map-group-variable**
  specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

- **TEXTGROUPID=attribute-map-id**
  specifies an attribute ID for the TEXTGROUP= option.
\textbf{VALUEATTRS} = \textit{style-element} \langle\textit{options}\rangle \mid \langle\textit{options}\rangle

specifies the appearance of the axis table values.

\textbf{Class options}

\textbf{CLASS} = \textit{variable}

creates a separate axis table for each unique value of the specified variable.

\textbf{CLASSDISPLAY} = \textit{STACK} \mid \textit{CLUSTER}

specifies how the class values are displayed.

\textbf{CLASSORDER} = \textit{DATA} \mid \textit{REVERSEDATA} \mid \textit{ASCENDING} \mid \textit{DESCENDING}

specifies the order in which the class values are displayed.

\textbf{NOMISSINGCLASS}

specifies that missing values of the class variable are not included in the table.

\textbf{Label options}

\textbf{LABEL} \mid \textbf{NOLABEL} \mid \textbf{LABEL} = "text-string"

specifies whether the table label is shown or hidden.

\textbf{LABELATTRS} = \textit{style-element} \langle\textit{options}\rangle \mid \langle\textit{options}\rangle

specifies the color and font attributes of the axis table label.

\textbf{LABELPOS} = \textit{LEFT} \mid \textit{RIGHT}

specifies the position of the labels at the left or right side of the axis table.

\textbf{STATLABEL} \mid \textbf{NOSTATLABEL}

specifies whether the variable statistic is displayed in the table’s label.

\textbf{Plot options}

\textbf{STAT} = \textit{FREQ} \mid \textit{MEAN} \mid \textit{MEDIAN} \mid \textit{PERCENT} \mid \textit{SUM}

specifies the statistic for the axis table.

\textbf{X} = \textit{variable}

Specifies the X variable to use to align the table values to the X axis.

\textbf{Plot reference options}

\textbf{NAME} = “text-string”

specifies a name for the plot.

\textbf{Title options}

\textbf{TITLE} = “text-string”

specifies a title for the axis table.

\textbf{TITLEATTRS} = \textit{style-element} \langle\textit{options}\rangle \mid \langle\textit{options}\rangle

specifies the appearance of the title for the axis table.

\textbf{Required Argument}

\textit{variable} \langle\ldots\textit{variable-n}\rangle

specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are stacked one on the other. Any options that you add to the statement apply to all the variables that are specified in that statement.

\textbf{Note} When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.
Optional Arguments

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

**CLASS=**variable
creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

**Restriction**
The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

**Interaction**
If NOLABEL is also specified, then the class labels are removed.

**Tips**
Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.
Use the CLASSORDER= option to control the order in which the class values are displayed.

**CLASSDISPLAY=STACK | CLUSTER**
specifies how the class values are displayed.

**STACK**
displays the class values vertically at each midpoint value on the X axis.

**CLUSTER**
displays the class values horizontally at each midpoint value on the X axis.

**Default**
STACK

**Interaction**
For this option to have any effect, the CLASS= option must be specified.

**CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the order in which the class values are displayed.

**DATA**
displays the class values in the order in which they occur in the data.

**REVERSEDATA**
displays the class values in the reverse order from which they occur in the data.

**Tip**
This option is useful when the plot axis is reversed.

**ASCENDING**
displays the class values in ascending order.

**DESCENDING**
displays the class values in descending order.

**Default**
DATA
Interactions

This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable

specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData*n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction

When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note

This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING

specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"

specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Defaults

LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the labels.

Tip

Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATTRS=style-element <(options)> | (options)

specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n style elements.

Restriction

Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.
Interactions  
This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

**LABELPOS=**LEFT | RIGHT

specifies the position of the labels at the left or right side of the axis table.

Default  LEFT

**NAME=**"text-string"

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip**  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGCHAR**

suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

**NOMISSINGCLASS**

specifies that missing values of the class variable are not included in the table.

**Interaction**  For this option to have any effect, the CLASS= option must be specified.

**PAD=**dimension | (pad-options)

specifies the amount of extra space that is added inside the table border.

**dimension**

specifies a dimension to use for the extra space at the table border.

**(pad-options)**

a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

**TOP=**dimension

specifies the amount of extra space added to the top.

Default  0 px

**BOTTOM=**dimension

specifies the amount of extra space added to the bottom.

Default  0 px

**Note**  Sides that are not assigned padding are padded with the default amount of space.

**Tip**  Use pad-options to create non-uniform padding.
Note  The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

**POSITION=BOTTOM | TOP**
specifies the position of the axis table at the bottom or top of the graph.

Default  BOTTOM

**SEPARATOR**
creates a separating line between the axis table or axis tables and the plot.

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:

**FREQ**
the frequency of the axis table variable.

Interaction  For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

**MEAN**
the mean of the axis table variable.

**MEDIAN**
the median of the axis table variable.

Interaction  For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

**PERCENT**
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias  PCT

Interaction  For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the PROC SGPANEL statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note  If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**
the sum of the axis table variable.
Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.
The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label. STATLABEL forces the statistic to be displayed in the label. NOSTATLABEL removes the statistic from the label.

Defaults The statistic is displayed for the variable.
When a custom label is assigned to the variable, the statistic is not displayed.

Interaction This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Requirement The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction When this option is specified, the COLORGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TITLE="text-string"
specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip Use the TITLEATTRS= option to modify the title text attributes.
TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interactions
This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element: TITLEATTRS=GraphTitleText

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\(n\) style elements.

Interaction
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
Here is an example that specifies a style element: VALUEATTRS=GraphTitleText

X=variable
Specifies the X variable to use to align the table values to the X axis.

Default
X variable of the primary plot
Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Example: COLAXISTABLE Statements

This example shows axis tables along the X axis of a scatter plot that plots student height.

<table>
<thead>
<tr>
<th>Sex = F</th>
<th>Sex = M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>62.5</td>
<td></td>
</tr>
<tr>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>52.5</td>
<td></td>
</tr>
<tr>
<td>64.5</td>
<td>64.3</td>
</tr>
<tr>
<td>59.5</td>
<td>59.0</td>
</tr>
<tr>
<td>77</td>
<td>67.3</td>
</tr>
<tr>
<td>63</td>
<td>59</td>
</tr>
<tr>
<td>96.6</td>
<td>64.3</td>
</tr>
<tr>
<td>128</td>
<td>57.5</td>
</tr>
</tbody>
</table>

Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student above the X axis. The ages appear on different rows because the CLASS=AGE option is used.
- The second axis table statement specifies two variables, height and weight.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=5in;
proc sgpanel data=sashelp.class (where=(age < 13));
panelby sex / uniscale=row;
scatter x=name y=height;
colaxistable age / class=age title="Student Age"
 valueattrs=(color=red)
 labelattrs=(color=red)
 titleattrs=(color=red);
colaxistable weight height / valueattrs=(color=blue);
run;
```

For an example that shows vertical axis tables along the Y axis, see “Example: ROWAXISTABLE Statements” on page 593.
ROWAXIS Statement

Specifies the axis options for each Y axis in the panel. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

ROWAXIS option(s);

Summary of Optional Arguments

Appearance options

   ALTERNATE
      adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

   COLORBANDATTRS= style-element <(options)> | (options)
      specifies the fill appearance of the color band.

   COLORBANDS=NONE | EVEN | ODD
      specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

   DISPLAY=ALL | NONE | (options)
      specifies which features of the axis are displayed.

   GRID
      creates grid lines at each tick on the axis.

   GRIDATTRS= style-element <(options)> | (options)
      specifies the appearance of the grid lines.

   MINORGRID
      creates grid lines at each minor tick on the axis.

   MINORGRIDATTRS= style-element <(options)> | (options)
      specifies the appearance of the minor grid lines.

Axis options

   DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
      specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

   INTEGER
      specifies that only integers are used for tick mark values.

   INTERVAL=interval-value
      specifies the tick interval for a time axis.

   LOGBASE=2 | 10 | e
      specifies the base value for the logarithmic scale.

   LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
      specifies how to scale and format the values for the major tick marks for logarithmic axes.

   LOGVTYPE=EXPANDED | EXPONENT
      specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.
MAX=numeric-value
   specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
   specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
   adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
   specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
   specifies the time interval between minor ticks.

NOTIMESPLIT
   prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=numeric-value
   specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
   specifies an offset that precedes the lowest data value on the axis.

REFTICKS <=(options)> 
   adds tick marks to the side of the panel that is opposite from the specified axis.

REVERSE
   specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
   Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
   Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
   specifies the type of axis.

Text options

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
   specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

LABEL="text-string"
   specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
   specifies the appearance of the axis labels.

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP
   specifies the position of the axis label.

SPLITCHAR="character-list"
   splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP
   specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
   specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels.

**VALUES=(values-list) | ("string-list")**
specifies the values for the ticks on an axis.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

**VALUESFORMAT=DATA | SAS-format**
specifies how to format the values for major tick marks.

**VALUESHALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

**VALUESHINT**
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

**Optional Arguments**

**ALTERNATE**
adds reference ticks to each side of the panel and alternates the tick values for each row or column between the two sides.

**COLORBANDS=NONE | EVEN | ODD**
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![ODD Image]</td>
<td>![EVEN Image]</td>
</tr>
</tbody>
</table>

**Default**
NONE

**Restriction**
This option applies to discrete axes only.

**Interaction**
Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

**Note**
The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

**Tip**
Use the COLORBANDATTRS= option to customize the color bands.
COLORBANDATTRS=\texttt{style-element \langle(options)\rangle} | \langle(options)\rangle 

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction  This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA  
places the values in the order in which they appear in the data.

\textit{Note}: This value is not supported with SAS Cloud Analytic Services (CAS) data.

FORMATTED  
sorts the formatted values in ascending character order.

UNFORMATTED  
sorts the unformatted values in ascending character order.

Default  UNFORMATTED

DISPLAY=\texttt{ALL} | \texttt{NONE} | \langle(options)\rangle

specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed.

You can also hide specific features by specifying options. \textit{Options} can be any of the following:

\texttt{NOLABEL}  
hides the axis label

\texttt{NOLINE}  
hides the axis line

\textit{Tips}  
This value hides the axis line, but has no effect on the cell border. To hide the border, specify NOBORDER in the PANELBY statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

\texttt{NOTICKS}  
hides the tick marks on the axis

\texttt{NOVALUES}  
hides the tick mark values on the axis

Default  \texttt{ALL}

Interaction  If the ALTERNATE option is also specified, the DISPLAY option affects both the primary axis and the alternate axis.

Example  \texttt{DISPLAY=(NOTICKS NOVALUES)}
FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there
is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters where a split is not needed. In that case, the
split character is displayed with the text value. If the value does not contain any
of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the
SPLITCHAR= option. If the value does not contain any of the specified split
characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

THIN
removes some of the values from the axis.

Default THIN

See “Fit Policies for Axes” on page 1266

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each
minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for
grouped data.
Interaction  This option has no effect unless GRID is also specified.

Examples  GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

**INTEGER**

specifies that only integers are used for tick mark values. This option affects only linear axes.

**INTERVAL=interval-value**

specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

**Table 4.38  Time Intervals**

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME orDATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

**LABEL=**"text-string"

specifies a label for the axis.

**LABELATTRS=**style-element <(options)> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

| LABELATTRS= (Color=Green Family=Arial Size=8 Style=Italic Weight=Bold) |
| Here is an example that specifies a style element: LABELATTRS=GraphTitleText |

**LABELPOS=**BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.

**BOTTOM**

positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.

**CENTER**

centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

**DATACENTER**

centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values.

**TOP**

positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area. If there is not sufficient room in the axis area to display the label, the label expands to the right of the axis.
The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

### CENTER

**CENTER**

- Sex = F
- Sex = M

### DATACENTER

**DATACENTER**

- Sex = F
- Sex = M

The next figure shows the TOP and BOTTOM positions for the same axis labels.

### TOP

**TOP**

- Sex = F
- Sex = M

### BOTTOM

**BOTTOM**

- Sex = F
- Sex = M

#### Default

**CENTER**

**LOGBASE=2 | 10 | e**

specifies the base value for the logarithmic scale.

**Default** 10

**Interaction** This option has no effect unless you also specify TYPE=LOG.

**LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT**

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:
LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 4.14 on page 574.

Figure 4.14  Graph Axes with LOGEXPAND

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 4.15 on page 574.

Figure 4.15  An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 4.16 on page 574.

Figure 4.16  An Axis with LINEAR

Default LOGEXPAND

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.

Default EXPANDED
### Interaction

This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

### Tip

This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

### Examples

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
rowaxis type=log logbase=10 logstyle=logexpand
logvtype=exponent
min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
colaxis type=log logbase=10 logstyle=logexponent
logvtype=expanded
values=(10 100 1000 10000 100000);
```

### MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

#### Restriction

This option affects linear, log, and time axes only.

#### Interactions

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

#### Tip

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

### MIN=numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

#### Restriction

This option affects linear, log, and time axes only.

#### Interactions

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction This option has no effect on discrete axes.

Interaction This option has no effect if you specify the VALUES= option.

Tip Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction This option applies to linear and log axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)
Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 4.38 on page 571.

**Default**  
AUTO

**Restriction**  
This option applies to time axes only.

**Note**  
This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

**NOTIMESPLIT**  
prevents a time axis from splitting the time, date, or datetime values into two rows.

**Restriction**  
This option applies to time axes only.

**OFFSETMAX=** numeric-value  
specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

**Default**  
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**Interaction**  
For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. For these plots, OFFSETMAX= creates an offset at the end of the Y axis nearer to the origin.

**OFFSETMIN=** numeric-value  
specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

**Default**  
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

**Interaction**  
For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. For these plots, OFFSETMIN= creates an offset at the end of the Y axis farther from the origin.

**REFTICKS <=(options)>**  
adds tick marks to the side of the panel that is opposite from the specified axis. You can also specify options:

**LABEL**  
in addition to the tick marks, displays the axis label.
VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.

Interactions This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT
THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default: 0.30

Range: 0 to 1

Restriction: This option applies to linear axes only.

Tips: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default: 0.30

Range: 0 to 1

Restriction: This option applies to linear axes only.

Tips: If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then that the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.
LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list ) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

• VALUES= (values-list ) specifies tick values for linear, time, and logarithmic axes.

• VALUES= (“string-list” ) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list )
specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:
creates ticks for specific values. For example, \texttt{VALUES=(0 50 100)} places tick marks at 0, 50, and 100.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=(0 to 100 by 50)} creates tick marks at 0, 50, and 100.

\textit{Note:} If you omit the \texttt{increment-value}, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\texttt{<value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>}

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks.

For example, \texttt{VALUES=(-5 10 to 50 by 20 75)} creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple \texttt{n} values can be separated by blanks or commas. Here are some examples:

- \texttt{values=(2 4 6)}
- \texttt{values=(6,4,2)}
- \texttt{values=(2 to 10 by 2)}
- \texttt{values=(50 to 10 by –5)}

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

\texttt{values=(0 to 10 by 3)}

For values on a time axis, the values list can be one of the following:

\texttt{value <...value-n>}

creates ticks for specific values. For example, \texttt{VALUES=("25MAY08"d "04JUL08"d "23AUG08"d)} places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\texttt{value-1 TO value-2 BY increment-value}

creates ticks for a range of values. The start of the value range is specified by \texttt{value-1} and the end of the range is specified by \texttt{value-2}. The \texttt{increment-value} specifies the interval between the ticks. For example, \texttt{VALUES=("01JAN08"d to "01MAY08"d by month)} creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the \texttt{INTERVAL=} option.

\textbf{Restrictions} This option has no effect on discrete axes.

\begin{itemize}
  \item If your \texttt{VALUES=} option creates more than 1000 values, then the option has no effect.
\end{itemize}
Interactions

For logarithmic axes, use the LOGVTYPE option to control whether the values in the VALUES option are treated as expanded values or as exponents. A typical case for using exponents is when plotting your data using log base e.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

VALUES=(“string-list”)

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

Note: For an example that is used in the SGPLOT procedure, see Table 5.39 on page 1101.

Restrictions

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

values=("Sedan" "Sports" "Wagon" "SUV")

The following example specifies the axis tick values 10, 20, 30, and 40:

values=("10" "20" "30" "40")

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

values=("14" "15") valuesdisplay=("fourteen" "fifteen")

Tip

Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the
graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

**VALUESDISPLAY=**
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

**Restriction**
This option applies only to discrete axes. Linear, date, and time axes are not supported.

**Interaction**
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

**Example**
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=("14" "15")
valuesdisplay=("fourteen" "fifteen")
```

**VALUESFORMAT=DATA | SAS-format**
specifies how to format the values for major tick marks.

**Note:** This option supports discrete and logarithmic axes.

**DATA**
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

**SAS-format**
specifies a format to apply to the major tick values.

**Restriction**
This option currently honors most, but not every, SAS format.

**Note**
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

**Restriction**
For discrete axes, only character formats are supported.

**Interactions**
This option is ignored when LOGSTYLE=LOGEXponent.

When LOGSTYLE =LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE =LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

**VALUESHALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

**Default**
RIGHT
Interaction This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

VALUESHINT specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction This option has no effect unless you also specify the VALUES= option.

ROWAXISTABLE Statement

Creates an event plot of input data along the axis, placing data values at specific locations inside the axis. The SGPANEL procedure can contain multiple ROWAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has a VBAR statement along with a ROWAXISTABLE statement, the ROWAXISTABLE is rejected with a message.

Axis tables are separate plots and are unaware of the options specified in the accompanying plots.

Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

Syntax

ROWAXISTABLE variable <…variable-n> <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.

POSITION=LEFT | RIGHT
specifies the position of the axis table at the left or right side of the graph cell.

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

**TEXTGROUP=attribute-map-group-variable**
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

**TEXTGROUPID=attribute-map-id**
specifies an attribute ID for the TEXTGROUP= option.

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the axis table values.

**VALUEALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the column values relative to the column width in the axis table.

**VALUEJUSTIFY=LEFT | CENTER | RIGHT**
specifies the justification of the column values relative to the column width in the axis table.

**Class options**

**CLASS=variable**
creates a separate axis table for each unique value of the specified variable.

**CLASSDISPLAY=STACK | CLUSTER**
specifies how the class values are displayed.

**CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the order in which the class values are displayed.

**NOMISSINGCLASS**
specifies that missing values of the class variable are not included in the table.

**Label options**

**LABEL | NOLABEL | LABEL="text-string"**
specifies whether the table label is shown or hidden.

**LABELATTRS=style-element <(options)> | (options)**
specifies the color and font attributes of the axis table label.

**LABELALIGN=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the column labels.

**LABELJUSTIFY=LEFT | CENTER | RIGHT**
specifies the justification of the labels, when displayed.

**LABELPOS=BOTTOM | TOP**
specifies the position of the labels at the bottom or top of the axis table.

**STATLABEL | NOSTATLABEL**
specifies whether the variable statistic is displayed in the table’s label.

**Plot options**

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
specifies the statistic for the axis table.

**Y=variable**
Specifies the Y variable to use to align the table values to the Y axis.

**Plot reference options**

**NAME="text-string"**
specifies a name for the plot.

**Title options**
TITLE="text-string"
    specifies a title for the axis table.
TITLEATTRS=style-element <(options)> | (options)
    specifies the appearance of the title for the axis table.
TITLEHALIGN=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the column title, when displayed.
TITLEJUSTIFY=LEFT | CENTER | RIGHT
    specifies the justification of the column title, when displayed.

**Required Argument**

`variable <...variable-n>`
    specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.

**Note** When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.

**Optional Arguments**

**ATTRID=character-value**
    specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
    “Overview of Attribute Maps” on page 1315

**CLASS=variable**
    creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

**Restriction** The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

**Interaction** If NOLABEL is also specified, then the class labels are removed.

**Tips** Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.

Use the CLASSORDER= option to control the order in which the class values are displayed.

**CLASSDISPLAY=STACK | CLUSTER**
    specifies how the class values are displayed.

**STACK**
    displays the class values horizontally at each midpoint value on the Y axis.
CLUSTER
displays the class values vertically at each midpoint value on the Y axis.

Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default DATA

Interactions This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, that group order variable is used as the class order variable for all axis tables.

For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData\n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

LABEL | NOLABEL | LABEL="text-string"
specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Defaults LABEL
If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the labels.

**Tip** Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

**LABELATTRS=**<style-element><(options)> | (options)

specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Restriction**

Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

**Interactions**

This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

**LABELHALIGN=**<LEFT | CENTER | RIGHT

specifies the horizontal alignment of the column labels.

**Default**

Uses the effective value of the LABELJUSTIFY= option.

**Interaction**

This option has no effect if NOLABEL is also specified.

**LABELJUSTIFY=**<LEFT | CENTER | RIGHT

specifies the justification of the labels, when displayed.

**Default**

Uses LEFT for text values or RIGHT for numeric values.

**LABELPOS=**<BOTTOM | TOP

specifies the position of the labels at the bottom or top of the axis table.

**Default**

BOTTOM

**NAME=**“text-string”

specifies a name for the plot. You can use the name to refer to this plot in other statements.

**Note**

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Interaction For this option to have any effect, the CLASS= option must be specified.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.

dimension
specifies a dimension to use for the extra space at the table border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

LEFT=dimension
specifies the amount of extra space added to the left side.

Default 4 px

RIGHT=dimension
specifies the amount of extra space added to the right side.

Default 4 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

POSITION=LEFT | RIGHT
specifies the position of the axis table at the left or right side of the graph cell.

Default RIGHT

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:
FREQ
the frequency of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions
For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPANEL statement.

You can use the PCTNDEC= option in the PROC SGPANEL statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label. STATLABEL forces the statistic to be displayed in the label. NOSTATLABEL removes the statistic from the label.

Defaults The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.
Interaction  This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Requirement  The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP option is ignored.

Interaction  When this option is specified, the COLORGROUP= option is ignored.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default  If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TITLE="text-string"
specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip  Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interactions  This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.
### TITLEATTRS

The `TITLEATTRS=` option specifies the attributes of the column title.

**Examples**

```plaintext
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
TITLEATTRS=GraphTitleText
```

<table>
<thead>
<tr>
<th>TITLEHALIGN=LEFT</th>
<th>CENTER</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the horizontal alignment of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The <code>TITLEHALIGN=</code> option specifies the alignment and also helps avoid clipping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td><strong>Interaction</strong></td>
<td>This option takes effect only when <code>TITLE=</code> is also specified.</td>
<td></td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>Use the <code>TITLEJUSTIFY=</code> option to specify justification for the title.</td>
<td></td>
</tr>
</tbody>
</table>

### TITLEJUSTIFY=LEFT | CENTER | RIGHT

The `TITLEJUSTIFY=` option specifies the justification of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The `TITLEJUSTIFY=` option specifies the justification and also helps avoid clipping.

**Default**

LEFT

**Interaction**

This option takes effect only when `TITLE=` is also specified.

**Tip**

Use the `TITLEHALIGN=` option to specify title alignment.

### VALUEATTRS=style-element <(options)> | (options)

The `VALUEATTRS=` option specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

**Examples**

```plaintext
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```plaintext
VALUEATTRS=GraphTitleText
```

### VALUEHALIGN=LEFT | CENTER | RIGHT

The `VALUEHALIGN=` option specifies the horizontal alignment of the column values relative to the column width in the axis table. This option aligns the text within the column based on the longest string.

**Examples**

```plaintext
VALUEHALIGN=LEFT
```

**Interaction**

This option takes effect only when `VALUE=` is also specified.

**Tip**

Use the `VALUEHALIGN=` option to specify title alignment.
Default Uses the effective value of the VALUEJUSTIFY= option.

**VALUEJUSTIFY=LEFT | CENTER | RIGHT**
specifies the justification of the column values relative to the column width in the axis table. This option horizontally aligns the table values center, left, or right relative to the column width.

Default LEFT for text values or RIGHT for numeric values.

**Y=variable**
Specifies the Y variable to use to align the table values to the Y axis.

Default Y variable of the primary plot

Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

### Example: ROWAXISTABLE Statements

This example shows two axis tables along the Y axis of a bar chart that charts student height.

Here are the noteworthy features about the axis tables:

- The first axis table statement displays the age (in red) of each student.
- The second axis table statement specifies the weight. Both axis tables are located to the right of the Y axis by default.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in height=3.5in;
```
proc sgpanel data=sashelp.class (where=(age > 13));
panelby sex / layout=rowlattice uniscale=column;
  hbar name / response=height stat=mean;
  rowaxistable age / stat=mean
    valueattrs=(color=red)
    labelattrs=(color=red);
  rowaxistable weight / valueattrs=(color=blue)
    stat=mean
    labelattrs=(color=blue);
run;

For an example that shows horizontal axis tables along the X axis, see “Example: COLAXISTABLE Statements” on page 565.

Examples: SGPANEL Procedure

Example 1: Creating a Panel of Graph Cells with Histograms and Density Plots

Features:
- HISTOGRAM statement
- DENSITY statement

Sample library member:
- SGPNHST

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a panel of graph cells with histograms and density plots.

Output

![Cholesterol Distribution in Heart Study](image)
Program

proc sgpanel data=sashelp.heart noautolegend;
  title "Cholesterol Distribution in Heart Study";
  panelby sex;
  histogram cholesterol;
  density cholesterol;
run;
title;

Program Description

Create the panel and specify the title.

proc sgpanel data=sashelp.heart noautolegend;
  title "Cholesterol Distribution in Heart Study";

Specify the classification variable for the panel.

  panelby sex;

Create the histogram and density plots.

  histogram cholesterol;
  density cholesterol;
run;

Cancel the title.

title;

Example 2: Creating a Panel of Regression Curves

Features:
REG statement

Sample library member:
SGPNREG

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a panel of regression curves. The COLUMNS= option in the PANELBY statement specifies that the panel has three columns of graph cells.
Output

Program

```r
proc sgpanel data=sashelp.iris;
 title "Scatter plot for Fisher iris data";
 panelby species / columns=3;
 reg x=sepallength y=sepalwidth / cli clm;
run;
```

Program Description

Create the panel and specify the title.

```r
proc sgpanel data=sashelp.iris;
 title "Scatter plot for Fisher iris data";
```

Specify the classification variable for the panel. The COLUMNS= option specifies the number of columns in the panel.

```r
panelby species / columns=3;
```

Create the regression curve. The CLI option creates individual predicted value confidence limits. The CLM option creates mean value confidence limits.

```r
reg x=sepallength y=sepalwidth / cli clm;
run;
```

Cancel the title.

```r
title;
```
Example 3: Creating a Panel of Bar Charts

Features: HBAR statement
Sample library member: SGPNBAR

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a panel of bar charts. The COLUMNS= option in the PANELBY statement specifies that the panel contains a single column of cells.

Output

```
proc sgpanel data=sashelp.prdsale;
 title "Yearly Sales by Product";
 proc sgpanel data=sashelp.prdsale;
 title "Yearly Sales by Product";
```
panelby year / novarname columns=1;

hbar product / response=actual;
run;
title;

**Program Description**

Create the panel and set the title.

```sas
proc sgpanel data=sashelp.prdsale;
title "Yearly Sales by Product";
```

Specify the classification variable for the panel. The NOVARNAME option specifies that the variable name is not shown in the heading for each cell. The COLUMNS= option specifies the number of columns in the panel.

```sas
panelby year / novarname columns=1;
```

Create the horizontal bar chart. The RESPONSE= option specifies the response variable for the chart.

```sas
hbar product / response=actual;
run;
```

Cancel the title.

```sas
title;
```

**Example 4: Creating a Panel of Line Charts**

**Features:**
- VLINE statement

**Sample library member:**
- SGPNLIN

**Note:**
For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.

This example shows a panel of line plots with grouped data.
Program

proc sgpanel data=sashelp.prdsale;
  where product in ('CHAIR' 'SOFA');
  title 'Yearly Sales by Product';
  panelby year / spacing=5 novarname;
  vline month / response=actual group=product;
run;

title;

Program Description

Create the panel and specify a title.

proc sgpanel data=sashelp.prdsale;
  where product in ('CHAIR' 'SOFA');
  title 'Yearly Sales by Product';

Specify the classification variable for the panel. The SPACING= option specifies the number of pixels between the panels in the plot. The NOVARNAME option specifies that the classification variable name is not shown in the headings for each cell.

  panelby year / spacing=5 novarname;

Create the vertical line plot. The RESPONSE= option specifies the response variable. The GROUP= option specifies the group variable.

  vline month / response=actual group=product;
run;

cancel the title.

title;
Overview: SGPLOT Procedure

The SGPLOT procedure creates one or more plots and overlays them on a single set of axes. You can use the SGPLOT procedure to create statistical graphics such as histograms and regression plots, in addition to simple graphics such as scatter plots and line plots. Statements and options enable you to control the appearance of your graph and add additional features such as legends and reference lines.

The SGPLOT procedure can create a wide variety of plot types, and can overlay plots together to produce many different types of graphs.

Here are some examples of graphs that the SGPLOT procedure can create.

Table 5.1  Examples of Graphs That Can Be Generated by the SGPLOT Procedure

The following code creates an ellipse plot:

```
proc sgplot data=sashelp.class;
 scatter x=height y=weight;
 ellipse x=height y=weight;
run;
```
The following code creates a horizontal box plot:
```
proc sgplot data=sashelp.cars;
 hbox weight / category=origin;
run;
```

The following code creates a graph with two series plots:
```
title "Power Generation (GWh)";
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
 xaxis type=discrete;
 series x=year y=coal / datalabel;
 series x=year y=naturalgas / datalabel y2axis;
run;
title;
```

The following code creates a graph with a histogram, a normal density curve, and a kernel density curve:
```
proc sgplot data=sashelp.class;
 histogram height;
 density height;
 density height / type=kernel;
run;
```

The following code creates a graph with two bar charts:
```
proc sgplot data=sashelp.prdsale;
 yaxis label="Sales" min=200000;
 vbar country / response=predict;
 vbar country / response=actual
 barwidth=0.5
 transparency=0.2;
run;
```
Concepts: SGPLOT Procedure

Overview of the SGPLOT Procedure

The SGPLOT procedure creates single-cell graphs with a wide range of plot types including density, dot, needle, series, bar, histograms, box, and others. The procedure can compute and display loess fits, polynomial fits, penalized B-spline fits, and ellipses. You can also add text, legends, and reference lines. Options are available for specifying colors, marker symbols, and other attributes of plot features. You can customize the axes by using axis statements such as XAXIS and YAXIS.

Plot statements can be combined to create more informative graphs. The following example shows two series plots that are overlaid in a single graph. Each plot is assigned to a different vertical axis. Data labels have been added for easy reference.

```sas
proc sgplot data=sashelp.electric(where=(year >= 2001 and customer="Residential"));
xaxis type=discrete;
series x=year y=coal / datalabel;
series x=year y=naturalgas / datalabel y2axis;
run;
```

The following example creates a graph with a histogram, a normal density curve, and a kernel density curve.

```sas
proc sgplot data=sashelp.class;
histogram height;
density height;
density height / type=kernel;
run;
```

Concepts in Common with the SGPANEL Procedure

The following topics are located in the Chapter 7, “Common Concepts,” on page 1257 section. These topics describe concepts that are similar between the SGPANEL and SGPLOT procedures.
Table 5.2  Common Concepts

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1258)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1259)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1260)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
<tr>
<td>“Automatic Differentiation of Visual Attributes” (p. 1264)</td>
<td>explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned</td>
</tr>
<tr>
<td>“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1265)</td>
<td>describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally</td>
</tr>
<tr>
<td>“Marker Fills and Outlines” (p. 1267)</td>
<td>describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.</td>
</tr>
</tbody>
</table>

Syntax: SGPLOT Procedure

Restriction: This procedure is not supported by the CAS engine. However, the procedure can use data that has been processed in CAS. For more information, see “Using Data That Is Processed In CAS” on page 5.

Requirement: At least one plot statement is required.

Global statements:

PROC SGPLOT <option(s)>;

STYLEATTRS <option(s)>

BAND X=variable Y=variable
    UPPPER= numeric-value | numeric-variable
    LOWER= numeric-value | numeric-variable <option(s)>;

BLOCK X=category-variable BLOCK=block-variable <option(s)>;

BUBBLE X=variable Y=variable SIZE=numeric-variable <option(s)>;

DENSITY response-variable <option(s)>;

DOT category-variable <option(s)>;

DROPLINE X=variable x-axis-value
         Y=variable | y-axis-value <option(s)>;

ELLIPSE X=numeric-variable Y=numeric-variable <option(s)>;
FRINGE numeric-variable <option(s)>;
GRADLEGEND "name" <option(s)>
HBAR category-variable <option(s)>
HBAR BASIC category-variable <option(s)>
HBAR PARM CATEGORY= category-variable RESPONSE= numeric-variable <option(s)>
HBOX analysis-variable <option(s)>
HEATMAP X=variable Y=variable <option(s)>
HEATMAP PARM X=variable Y=variable COLORGROUP=variable | COLORRESPONSE=numeric-variable <option(s)>
HIGHLOW X=variable | Y=variable HIGH=numeric-variable LOW=numeric-variable <option(s)>
HISTOGRAM response-variable <option(s)>
HLINE category-variable <option(s)>
INSET "text-string-1" ... "text-string-n" | (label-list) <option(s)>
KEYLEGEND "name-1" ... "name-n" <option(s)>
LINE PARM X=numeric-value | numeric-variable Y=numeric-value | numeric-variable SLOPE=numeric-value | numeric-variable <option(s)>
LOESS X=numeric-variable Y=numeric-variable <option(s)>
NEEDLE X=variable Y=numeric-variable <option(s)>
PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>
POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>
REFLINE value(s) <option(s)>
REG X=numeric-variable Y=numeric-variable <option(s)>
SCATTER X=variable Y=variable <option(s)>
SERIES X=variable Y=variable <option(s)>
SPLINE X=variable Y=variable <option(s)>
STEP X=variable Y=variable <option(s)>
SYMBOL CHAR NAME=identifier CHAR="hex-string" keyword <option(s)>
SYMBOL IMAGE NAME=identifier IMAGE="image-file-specification" <option(s)>
TEXT X=variable Y=variable TEXT=variable <option(s)>
VBAR category-variable <option(s)>
VBAR BASIC category-variable <option(s)>
VBAR PARM CATEGORY=category-variable RESPONSE=numeric-variable <option(s)>
VBOX analysis-variable <option(s)>
VECTOR X=numeric-variable Y=numeric-variable <option(s)>
VLINE <category-variable> <option(s)>
WATERFALL CATEGORY=variable RESPONSE=numeric-variable <option(s)>
XAXIS <option(s)>
X2AXIS <option(s)>
XAXISTABLE variable <...variable-n> <option(s)>
YAXIS <option(s)>

Chapter 5 • SGPLOT Procedure
**PROC SGPLOT Statement**

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description, write template code to a file, control the uniformity of axes, and control automatic legends and automatic attributes.

**Requirement:** An input data set is required.

**Syntax**

PROC SGPLOT <options> ;

**Summary of Optional Arguments**

- **ASPECT=** *positive-number*
  
  specifies the aspect ratio of the plot’s wall area.

- **CYCLEATTRS | NOCYCLEATTRS**
  
  specifies whether plots are drawn with unique attributes in the graph.

- **DATA=** *input-data-set*
  
  specifies the SAS data set that contains the variables to process.

- **DATTRMAP=** *discrete-attribute-map-data-set*
  
  specifies the discrete attribute map data set that you want to use with the procedure.

- **DESCRIPTION=** "*text-string*
  
  specifies a description for the output image.

- **NOAUTOLEGEND**
  
  disables automatic legends from being generated.

- **NOBORDER**
  
  removes the data-area border from the plot.

- **NOSUBPIXEL | SUBPIXEL**
  
  specifies whether subpixel rendering should be used for rendering plots and charts.

- **NOWALL**
  
  turns off the display of the graph wall’s fill and outline.

- **OPAQUE | NOOPAQUE**
  
  specifies whether the graph background is opaque or transparent.

- **PAD=** *dimension <units> | (pad-options)*
  
  specifies the amount of extra space that is reserved inside the border of an annotated graph.

- **PCTLEVEL=** **BY | GRAPH | GROUP**
  
  specifies the scope of graph data that is calculated in percentages.

- **PCTNDEC=** *numeric-value*
  
  specifies the number of decimal spaces to be used to calculate the percent values.

- **RATTRMAP=** *range-attribute-map-data-set*
  
  specifies the range attribute map data set that you want to use with the procedure.
\text{SGANNO=annotation-data-set}

specifies the SG annotation data set that you want to use.

\text{TMPLOUT="filename"}

writes the Graph Template Language code for your graph to a file.

\text{UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP}

specifies how to control axis scaling and marker attributes when you use a BY statement.

\section*{Optional Arguments}

\text{ASPECT=positive-number}

specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing \text{wall-height} divided by \text{wall-width}. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default The wall area is sized to the maximum area that can fill the available space.

\text{CYCLEATTRS | NOCYCLEATTRS}

specifies whether plots are drawn with unique attributes in the graph. By default, the SGPLOT procedure automatically assigns unique attributes in many situations, depending on the types of plots that you specify. If the plots do not have unique attributes by default, then the CYCLEATTRS option assigns unique attributes to each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

For example, if you specify the CYCLEATTRS option and you create a graph with a SERIES statement and a SCATTER statement, then the two plots will have different colors.

If you specify the NOCYCLEATTRS option, then plots have the same attributes unless you specify appearance options such as the LINEATTRS= option.

\text{DATA=input-data-set}

specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

\text{DATTRMAP=discrete-attribute-map-data-set}

specifies the discrete attribute map data set that you want to use with the procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

\text{Requirement} The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

\text{See} Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

\text{DESCRIPTION="text-string"}

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
• the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGPlot Procedure”.

Alias DES

Notes The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

NOAUTOLEGEND

disables automatic legends from being generated. By default, legends are created automatically for some plots, depending on their content. This option has no effect if you specify a KEYLEGEND statement.

NOBORDER

removes the data-area border from the plot.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering plots and charts. Subpixel rendering produces smoother curves and more precise bar spacing.

NOSUBPIXEL

never uses subpixel rendering for rendering curved lines.

SUBPIXEL

always uses subpixel rendering, when applicable, for rendering lines and bars.

Defaults When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Subpixel rendering is always enabled for vector-graphics output.

Requirement Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

Interaction If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

Tip For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

See “Subpixel Rendering” on page 1294

“ODS GRAPHICS Statement” on page 61 for information about the ANTIALIAS= and ANTIALIASMAX= options.

NOWALL

turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.
For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

**OPAQUE | NOOPAQUE**
specifies whether the graph background is opaque or transparent.

<table>
<thead>
<tr>
<th>Default</th>
<th>OPAQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction</td>
<td>The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).</td>
</tr>
<tr>
<td>Interaction</td>
<td>When NOOPAQUE is specified, the background color is not used.</td>
</tr>
</tbody>
</table>

**PAD=dimension <units> | (pad-options)**
specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

*pad-options* can be one or more of the following:

- **LEFT=dimension <units>**
  - specifies the amount of extra space to add to the left edge.

- **RIGHT=dimension <units>**
  - specifies the amount of extra space to add to the right edge.

- **TOP=dimension <units>**
  - specifies the amount of extra space to add to the top edge.

- **BOTTOM=dimension <units>**
  - specifies the amount of extra space to add to the bottom edge.

**PCTLEVEL=BY | GRAPH | GROUP**
specifies the scope of graph data that is calculated in percentages. When you calculate percentages using the STAT=PERCENT option, the calculation can be performed at different levels in the graph. The percentages within the selected level attempt to round up to 100%.

**BY**
- the percentages within each BY-group round up to 100%

**Interaction**
- For this value to take effect, a BY-group must be specified in the procedure.
GRAPH
the percentages across the entire graph round up to 100%

GROUP
the percentages across groups within a category round up to 100%

Interaction For this value to take effect, the GROUP= option must be specified in the plot statement.

In the following examples, the first example specifies a value of GRAPH (the default), and the second example specifies a value of GROUP.

ods graphics on / reset=all;
ods graphics on / width=4.5in;

PCTLEVEL=GRAPH
proc sgplot data=sashelp.class pctlevel=graph;
  vbar age / response=height stat=percent
    group=sex;
run;

PCTLEVEL=GROUP
proc sgplot data=sashelp.class pctlevel=group;
  vbar age / response=height stat=percent
    group=sex;
run;

In the graph that specifies PCTLEVEL=GRAPH, the bars collectively add up to 100%. Each bar represents a fraction of the total.

In the graph that specifies PCTLEVEL=GROUP, each bar adds up to 100% of the category data represented by the bar. In this case, the categories are age.

Default GRAPH

Interaction For this option to take effect, STAT=PERCENT must be specified for a plot in the procedure.

Tip You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

PCTNDEC=numeric-value
specifies the number of decimal spaces to be used to calculate the percent values.
The default number of decimals is based on the magnitude of the largest percentage value.

- 10% to 100% = 1
- .1% to < 1% = 3
- 1% to < 10% = 2
- < .1% = 4

For this option to take effect, \texttt{STAT=PERCENT} must be specified for a plot in the procedure.

You can use the \texttt{PCTLEVEL=} option in the \texttt{PROC SGPLOT} statement to control the scope of the percent calculations.

\texttt{RATTRMAP=range-attribute-map-data-set}

specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

\texttt{SGANNO=annotation-data-set}

specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

\texttt{TMPLOUT=“filename”}

writes the Graph Template Language code for your graph to a file. Writing your template code to a file can be useful for building larger Graph Template Language definitions.

Graphs that contain summarized data (for example, bar, line, and dot) do not generate a useable template. For summarized data, the procedure sets internal values for one or more variables, and these internal values do not exist in the data set that is used with the procedure.

\texttt{UNIFORM=GROUP | SCALE | ALL | XSCALE | YSCALE | XSCALEGROUP | YSCALEGROUP}

specifies how to control axis scaling and marker attributes when you use a BY statement.

Specify one of the following values:

\texttt{ALL}

specifies that both the legend group values and the axis scaling are shared between all of the levels of the BY variable or variables.

\texttt{GROUP}

specifies that the legend group values are shared between all of the levels of the BY variable or variables. This option is applicable only when the \texttt{GROUP=} option is specified for the plot.

\texttt{SCALE}

specifies that the axis scaling is shared between all of the levels of the BY variable or variables.
**STYLEATTRS Statement**

Specifies attributes for a graph. The statement enables you to change colors, markers, and so on, within the procedure, without having to change the ODS style template.

**Requirement:** The procedure must include at least one plot statement.

**Interaction:** At least one plot statement must specify the GROUP= option in order for the data attributes to take effect. This requirement applies to the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options.

**Syntax**

```
STYLEATTRS <option(s)>
```

**Summary of Optional Arguments**

**Axis options**
AXISBREAK=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
specifies a symbol to use on the axis lines to indicate a break in the axis.

AXISEXTENT=FULL | DATA
specifies the extent of the axis line for all axes.

Style options

BACKCOLOR=color
specifies the background color of the graph area.

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements.

DATACONTRASTCOLORS=(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers.

DATALINEPATTERNS=(line-pattern-list)
specifies the list of line patterns for the graph data lines.

DATASYMBOLS=(marker-symbol-list)
specifies the list of marker symbol for the graph data.

WALLCOLOR=color
specifies the color of the plot wall area.

Optional Arguments

AXISBREAK=BRACKET | NOTCH | SLANTEDLEFT | SLANTEDRIGHT | SQUIGGLE | SPARK | Z
specifies a symbol to use on the axis lines to indicate a break in the axis.

The following figure shows an example of each symbol on a horizontal linear axis for ranges 1–4 and 6–10.

<table>
<thead>
<tr>
<th>BRACKET</th>
<th>NOTCH</th>
<th>SLANTEDLEFT</th>
<th>SLANTEDRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="BRACKET Example" /></td>
<td><img src="image2" alt="NOTCH Example" /></td>
<td><img src="image3" alt="SLANTEDLEFT Example" /></td>
<td><img src="image4" alt="SLANTEDRIGHT Example" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPARK</th>
<th>SQUIGGLE</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image5" alt="SPARK Example" /></td>
<td><img src="image6" alt="SQUIGGLE Example" /></td>
<td><img src="image7" alt="Z Example" /></td>
</tr>
</tbody>
</table>

Default
When this option is not specified, the default break is a sine wave across the plot area.

Restriction
This option applies to linear and time axes only.

Requirements
For this option to have any effect, the DISPLAY= option for the axis must include the axis line.

For this option to have any effect, the RANGES= option for the axis must be used to specify ranges for a broken axis.

AXISEXTENT=FULL | DATA
specifies the extent of the axis line for all axes. This option also turns off the wall border so that the axis lines can be clearly seen.

FULL
the axis lines extend along the entire length of the axis.
DATA

the axis lines extend through the data range from the minimum offset to the maximum offset.

The following figure shows a simple example of each value for the X and Y axis lines. Both axes specify a small minimum offset. For the DATA value, the axis lines extend through the data range from the minimum offset. No maximum offset was used in the example.

---

**Default**
FULL

**Tips**

Use the OFFSETMIN and OFFSETMAX axis options to specify the offsets.

Use the THRESHOLDMIN and THRESHOLDMAX axis options to specify a threshold for displaying one more tick mark at the low or high end of the axis.

**BACKCOLOR=**color

specifies the background color of the graph area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**
The Color attribute of the GraphBackground style element

**Examples**
backcolor=CXFF0000
backcolor=light_blue

**DATACOLORS=(color-list)**

specifies the fill colors for the graphics elements. The graphics elements can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**
The colors that are defined in the GraphData1 ... GraphDataN style elements in the current style are used.

**Requirement**
For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

**Interaction**
Where applicable, the COLOR= suboption of any plot option related to fill color overrides the DATACOLORS= option.
When this option is specified, the colors cycle through *color-list* rather than the colors that are defined in the GraphData1 ... GraphData n style elements. When the colors in *color-list* are exhausted, the colors repeat.

**Example**

datacolors=(CXFF0000 green blue)

**DATACONTRASTCOLORS=(color-list)**

specifies the contrast colors for the graphics elements, such as lines and markers. The lines and markers can be in grouped plots or in overlaid multiple plots with the CYCLEATTRS feature in effect.

Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**

The contrast colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

**Requirement**

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

**Interaction**

Where applicable, the COLOR= suboption of any plot option related to a marker or line color overrides the DATACONTRASTCOLORS= option.

**Note**

When this option is specified, the colors cycle through *color-list* rather than the contrast colors that are defined in the GraphData1 ... GraphData n style elements. When the colors in *color-list* are exhausted, the colors repeat.

**Example**

datacontrastcolors=(orange cyan #FF0000)

**DATALINEPATTERNS=(line-pattern-list)**

specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

**Default**

The line patterns that are defined in the GraphData1 ... GraphData n style elements in the current style are used.

**Requirement**

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

**Interaction**

Where applicable, the PATTERN= suboption of any plot option related to line attributes overrides the DATALINEPATTERNS= option.

**Note**

When this option is specified, the line patterns cycle through *line-pattern-list* rather than the line patterns that are defined in the GraphData1 ... GraphData n style elements. When the patterns in *line-pattern-list* are exhausted, the patterns repeat.

**Example**

datalinepatterns=(dot solid longdash 26)

**DATASYMBOLS=(marker-symbol-list)**

specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See the list of marker symbols on page 1275.

**Example**

datasymbols=(dot circle square triangle cross)
The symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements in the current style are used.

For this option to have an effect, at least one plot statement in the procedure must specify the GROUP= option.

Where applicable, the SYMBOL= suboption of the MARKERATTRS= option overrides the DATASYMBOLS= option.

When this option is specified, the symbols cycle through marker-symbol-list rather than the symbols that are defined in the GraphData1 ... GraphData\textsubscript{n} style elements. When the symbols in marker-symbol-list are exhausted, the symbols repeat.

datasymbols=(circle square triangle star)

**WALLCOLOR=**<color>

specifies the color of the plot wall area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

The following figure shows a light blue wall color.

![Light Blue Wall Color](image)

The Color attribute of the GraphWalls style element

wallcolor=CXFF0000

wallcolor=light_blue

**Details**

**How the Attributes Are Cycled**

The STYLEATTRS feature cycles the attributes in the order specified in your attribute list until the group values are exhausted. If the specified attribute list is exhausted first, then the list is repeated. If you specify multiple options, the STYLEATTRS feature combines the options as it cycles through.

In the following example, the DATACONTRASTCOLORS= option specifies three contrast colors used for markers. The DATALINEPATTERNS= option specifies two line patterns.

\begin{verbatim}
datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)
\end{verbatim}

In this example, which uses the HTMLBlue style for the ODS HTML5 destination, the procedure uses a color-priority rotation pattern.
With the color-priority rotation pattern, marker symbols and line patterns are held constant while each color in the list is applied to the marker symbol or line.

In the example, the dotted line pattern is held constant while the procedure applies red, green, and blue colors to the dotted lines for the consecutive group values. If there are more group values, the options apply the red, green, and blue colors to solid lines.

The following figure shows an example rotation for an age grouping.

<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

You can change this rotation pattern by using the ATTRPRIORITY= option in the ODS GRAPHICS statement. The ATTRPRIORITY= option controls the rotation pattern for the attributes derived from the GraphData1 ...GraphDataN style elements for the style that is in effect.

Here is the general syntax for the option.

ATTRPRIORITY=COLOR | NONE

Note: The default behavior for this option depends on the ODS style that is in use. For the HTMLBlue style, ATTRPRIORITY in the style is set to COLOR. For other styles, ATTRPRIORITY in the style is set to NONE.

You can use the ATTRPRIORITY= option to control the rotation pattern for the attributes that you specify with the STYLEATTRS feature.

To change the rotation pattern in the previous example, specify the following before you invoke the SGPLOT procedure:

ods graphics / attrpriority=none;

Now, the following options in the STYLEATTRS statement are applied in alternating order:

```plaintext
datacontrastcolors=(red green blue)
datalinepatterns=(dot solid)
```

In the output, a red dotted line pattern is applied for the first group crossing, a solid green line pattern is applied for the second, a blue dotted line pattern is applied for the third, and so on.

The following figure shows the rotation for the age grouping with no priority rotation.

<table>
<thead>
<tr>
<th>Student Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

See Also
“ODS GRAPHICS Statement” on page 61

Example: Sorted Data with Contrast Colors and Line Patterns Specified

This example has the following features:

- The input data is sorted by the group variable.
The default ODS style is HTMLBlue. For the HTMLBlue style, the ATTRPRIORITY defaults to COLOR. Therefore, the procedure uses a color-priority rotation pattern to determine the output colors and line patterns.

```sas
/* Sort the data set by the group variable */
proc sort data=sashelp.class out=class;
 by age;
run;

/* Generate the graph using the sorted data */
proc sgplot data=class;
 styleattrs
 datacontrastcolors=(red green blue)
 datalinepatterns=(dot solid);
 series x=height y=weight / group=age;
 keylegend;
run;
```

**BAND Statement**

Creates a band that highlights part of a plot.

**Restriction:** The axis that the UPPER and LOWER values are placed on cannot be a discrete axis. For example, if you specify a variable for Y, the plot cannot use a discrete horizontal axis.

**Note:** The input data should be sorted by the X or Y variable. If the data is not sorted, the graph might produce unpredictable results.

**Examples:**
- “About Band Plots” on page 15
- “Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1193

**Syntax**

```
BAND X=variable | Y=variable
UPPER=numeric-value | numeric-variable
```
LOWER=numeric-value | numeric-variable
<option(s)>;

**Summary of Optional Arguments**

**Appearance options**

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bands from discrete X or Y tick values.

FILL | NOFILL
specifies whether the area fill is visible.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the band.

NOEXTEND
specifies that the band does not extend beyond the first and last data points in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

TYPE=SERIES | STEP
specifies how the data points for the lower and upper band boundaries are connected.

**Axes options**

X2AXIS
assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

**Data tip options**

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you specify a curve label.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELLOWertext-string
adds a label to the lower edge of the band.

CURVELABELPOS=AUTO | MIN | MAX | START | END
specifies the location of the curve label.

CURVELABELUPPER=text-string
adds a label to the upper edge of the band.

LEGENDLABEL=text-string
specifies a label that identifies the elements from the band plot in the legend.

SPLITCHAR=character-list
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot reference options

MODELNAME="plot-name"
specifies the name of a plot that is used as a model for the interpolation for the band.

NAME=text-string
assigns a name to a plot statement.

Required Arguments

X=variable | Y=variable
specifies a variable that is used to plot the band along the x or y axis.

LOWER=numeric-value | numeric-variable
specifies the lower value for the band. You can specify either a constant numeric value or a numeric variable.

UPPER=numeric-value | numeric-variable
specifies the upper value for the band. You can specify either a constant numeric value or a numeric variable.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
**CURVELABELATTRS=**<style-element><(options)>(options)

specifies the appearance of the labels in the plot when you specify a curve label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**

This option has no effect unless CURVELABELLOWER or CURVELABELUPPER is also specified.

**Examples**

CURVELABELATTRS= (Color=Green Family=Ariıl Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

---

**CURVELABELLOC=**OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default** INSIDE

---

**CURVELABELLOWER=**"text-string"

adds a label to the lower edge of the band. Specify the label text.

**CURVELABELPOS=**AUTO | MIN | MAX | START | END

specifies the location of the curve label. Specify one of the following values:

**AUTO**

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**

This value takes effect only when CURVELABELLOC=OUTSIDE.

**MIN**

places the label at the part of the curve closest to the minimum X axis value.

**MAX**

places the label at the part of the curve closest to the maximum X axis value.

**START**

places the curve label at the first point on the curve.

**END**

places the curve label at the last point on the curve.

**Default** END
Interactions: This option has no effect unless the CURVELABELLOWER= or CURVELABELUPPER= option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**CURVELABELUPPER =“text-string”**
adds a label to the upper edge of the band. Specify the label text.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all bands from discrete X or Y tick values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default:** 0.0 (no offset)

**Requirement:** This option is applicable only when the X or Y axis is discrete.

**FILL | NOFILL**
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

**Default:**

The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

**Interactions:**
Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

**Defaults:**

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data.

0.0 transparency

**Interaction:**
This option has no effect if you specify the NOFILL option.

**GROUP=variable**
specifies a variable that is used to group the data. A separate band is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

**LEGENDLABEL=“text-string”**
specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

**Interaction:**
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineStyle, and LineThickness.

For line thickness, GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attribute is LineThickness.

Interaction
This option has no effect unless you also specify the OUTLINES option.

MODELNAME="plot-name"
specifies the name of a plot that is used as a model for the interpolation for the band.

Default
If you do not specify this option, then the band is interpolated in the same way as a series plot.

Requirement
plot-name must be the name that has been assigned with the associated plot’s NAME= option.

See
“Details” on page 627

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOEXTEND
specifies that the band does not extend beyond the first and last data points in the plot. By default, the band extends to the edges of the plot area.

Interaction
This option has no effect if you do not specify numeric values for the UPPER= and LOWER= options.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

OUTLINE | NOOUTLINE
specifies whether the outlines of the band are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default
The default status of the band outlines is specified by the DisplayOpts attribute of the GraphBand.
**SPLITCHAR=“character-list”**

specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters. This option affects both the upper and lower curve labels if they are displayed.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data
tips.

A one-to-one correspondence exists between the label-list and the variable-list that is
specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

**TRANSAPRENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**TYPE=SERIES | STEP**
specifies how the data points for the lower and upper band boundaries are connected. You can specify one of the following:

**SERIES**
the data points are connected directly using line segments, as in a series plot.

**STEP**
the data points are connected using a step function, as in a step plot.

Default SERIES

**X2AXIS**
assigns the variable that is assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the variable that is assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

**Details**
The MODELNAME= option fits a band to another plot. This is particularly useful for plots that use a special interpolation such as step plots.

The following code fragment fits a band to a step plot:

```plaintext
band x=t upper=ucl lower=lcl / modelname="myname" transparency=.5;
step x=t y=survival / name="myname";
```
**BLOCK Statement**

Creates one or more rectangular blocks containing text values. The width of each block corresponds to specified numeric intervals. Block plots show continuous ranges of data that have the same BLOCK= value.

**Requirement:** The BLOCK statement must be used with another plot statement, which establishes the axis type for the Y axis.

**Example:** “About Block Plots” on page 16

**Syntax**

```
BLOCK X=category-variable BLOCK=block-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `ALTTEXTATTRS=style-element <(options)> | (options)`
  - Specifies the appearance of alternate fills for the blocks.
- `ATTRID=character-value`
  - Specifies the value of the ID variable in a discrete attribute map data set.
- `FILL | NOFILL`
  - Specifies whether the blocks are filled.
- `FILLATTRS=style-element <(options)> | (options)`
  - Specifies the appearance of the fill for the blocks.
- `FILLTYPE=MULTICOLOR | ALTERNATE`
  - Specifies how the blocks are filled.
- `LINEATTRS=style-element <(options)> | (options)`
  - Specifies the appearance of the block outlines.
- `OUTLINE | NOOUTLINE`
  - Specifies whether the blocks have outlines.
- `TRANSPARENCY=numeric-value`
  - Specifies the degree of transparency for the blocks.
**Axis options**

- **X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.

**Block options**

- **POSITION=BOTTOM | CENTER | TOP**
  positions the block plot at the bottom, center, or top of the graph.

**Block text options**

- **BLOCKLABEL=variable**
  specifies a column to use for alternative text in the blocks.
- **NOVALUES | VALUES**
  specifies whether the block values are displayed or hidden.
- **SPLITCHAR=“character-list”**
  specifies one or more characters used to split block text values into multiple lines.
- **SPLITCHARNODROP**
  specifies that the split characters are included in the displayed value.
- **VALUEATTRS=style-element (options) | (options)**
  specifies the appearance of the block text values.
- **VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE**
  specifies how text values are adjusted to fit within the containing block.
- **VALUEHALIGN=LEFT | CENTER | RIGHT | START**
  specifies the horizontal alignment of the value text within the blocks.
- **VALUEVALIGN=TOP | CENTER | BOTTOM**
  specifies the vertical alignment of the value text within the blocks.

**Label options**

- **LABEL <=“text-string” | NOLABEL**
  specifies an external label for a single block plot.
- **LABELATTRS=style-element (options) | (options)**
  specifies the color and font attributes of the external block label(s).
- **LABELPOS=BOTTOM | LEFT | RIGHT | TOP**
  specifies the position for the block label for a single block plot.

**Plot options**

- **CLASS=variable**
  creates a stack of block plots, with one block plot for each unique value of the specified variable.
- **EXTENDMISSING**
  extends the previous block value if the current value is missing.
- **NOMISSINGCLASS**
  suppresses blocks that correspond to missing values of the CLASS= value.

**Plot reference options**

- **NAME="text-string"**
  assigns a name to a plot statement.
**Required Arguments**

**X=category-variable**

specifies X axis positions. When the X-axis is numeric and the specified variable is numeric, values are expected to be in sorted, ascending order. If the X-axis is discrete and the specified column is numeric, values are treated as numeric-discrete.

**BLOCK=block-variable**

specifies the variable that classifies the observations into distinct subsets.

**Optional Arguments**

**ALTFILLATTRS=style-element <(options)> | (options)**

specifies the appearance of alternate fills for the blocks. This option in conjunction with the FILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

- **Requirement**: FILLTYPE=ALTERNATE must be specified for this option to have any effect.
- **Interaction**: This option has no effect if you specify the NOFILL option.
- **Note**: The TRANSPARENCY= attribute affects only the alternate fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.
- **Tips**: The FILLATTRS= option controls the fill color of non-alternate blocks.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**BLOCKLABEL=variable**

specifies a column to use for alternative text in the blocks.

- **Interaction**: This option overrides the default text for the blocks.
- **Tip**: The font and color attributes for the alternative text are specified by the VALUEATTRS= option.

**CLASS=variable**

creates a stack of block plots, with one block plot for each unique value of the specified variable.
Interaction  To label the blocks by the class values, specify the BLOCKLABEL option using the same class variable.

**EXTRIMISSING**
extends the previous block value if the current value is missing.

**FILL | NOFILL**
specifies whether the blocks are filled.

**Default**  FILL

**Interaction**  The NOFILL option can be used with the NOOUTLINE option to hide both the fill and the outline.

**FILLATTRS=**  style-element <(options)> | (options)
specifies the appearance of the fill for the blocks. This option in conjunction with the ALTFILLATTRS= option controls fill appearance when FILLTYPE=ALTERNATE. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

**Requirement**  FILLTYPE=ALTERNATE must be specified for this option to have any effect.

**Interaction**  This option has no effect if you specify the NOFILL option.

**Note**  The TRANSPARENCY= attribute affects only the fill blocks. To set the same transparency for both the fill blocks and the alternate fill blocks, use the TRANSPARENCY= option in the BLOCK statement.

**Tips**  The ALTFILLATTRS= option controls the alternate fill color.

To make all block fill areas the same color, set the FILLATTRS= and ALTFILLATTRS= options to the same value.

**FILLTYPE=**  MULTICOLOR | ALTERNATE
specifies how the blocks are filled.

**MULTICOLOR**  
Blocks are filled with the COLOR attribute of the GraphData1 … GraphDataN style elements.

**ALTERNATE**  
Blocks are filled alternating between the colors specified by the FILLATTRS= and ALTFILLATTRS= options.

**Default**  MULTICOLOR

**Interaction**  This option has no effect if NOFILL is also specified.

**LABEL <="text-string"> | NOLABEL**
specifies an external label for a single block plot. If you specify the LABEL option, the procedure displays the name of the block variable. You can override that label by providing your own text.

**Default**  The label text is the variable label of the BLOCK= variable. If there is no variable label, the variable name is used.
Interactions

By default, the label appears to the left of the plot. You can specify a different position for the label using the LABELPOS= option.

You can specify the font and color attributes for the label using the LABELATTRS= option.

**LABELATTRS=style-element <(options)> | (options)**

specifies the color and font attributes of the external block label(s). You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8
            Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LABELPOS=** BOTTOM | LEFT | RIGHT | TOP

specifies the position for the block label for a single block plot.

Default

LEFT

Interaction

This option has no effect if NOLABEL is also specified.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the block outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect if the NOOUTLINE option is also specified.

**NAME=** “text-string”

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCLASS
suppresses blocks that correspond to missing values of the CLASS= value.

OUTLINE | NOOUTLINE
specifies whether the blocks have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interaction The NOOUTLINE option can be used with the NOFILL option to hide both the outline and the fill.

NOVALUES | VALUES
specifies whether the block values are displayed or hidden.

Default VALUES

Tip The font and color attributes for the text values are specified by the VALUEATRFS= option.

POSITION=BOTTOM | CENTER | TOP
positions the block plot at the bottom, center, or top of the graph. This option is useful when the graph contains more than one plot.

Default CENTER

SPLITCHAR=\textquoteleft{}character-list\textquoteright{}
specifies one or more characters used to split block text values into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing block.

\textquoteleft{}character-list\textquoteright{} is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\textbackslash{}SPLITCHAR=\textquoteleft{}abc\textquoteright{}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the values in the adjacent blocks.

**Default**
The default split character is a space.

**Interactions**
This option has no effect unless VALUEFITPOLICY= specifies SPLIT or SPLITALWAYS. The default value for VALUEFITPOLICY= is SPLIT.

When the text value is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**TRANSPARENCY=numeric-value**
specifies the degree of transparency for the blocks. Transparency affects both the fill and the alternate fills, if enabled. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

**Default**
0.0

**VALUEATTRS=style-element <(options)> | (options)**
specifies the appearance of the block text values. This option affects the default values that are associated with the BLOCK= argument. If BLOCKLABEL= is specified, then the option affects those values instead.

You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Default**
GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

**Examples**
VALUEATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

**VALUEFITPOLICY=NONE | SHRINK | SPLIT | SPLITALWAYS | TRUNCATE**
specifies how text values are adjusted to fit within the containing block. Select one of the following values:

**NONE**
No attempt is made to fit values that collide with the text values in adjacent blocks.
SHRINK
   All values are reduced in font size until they all fit.

SPLIT
   If a value does not fit within the containing block, it is split at a split character.
   No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value.

   If the value does not contain any of the specified split characters, a split does not occur. In that case, if the value does not fit the available space, it might collide with the adjoining values.

   Default The default split character is a space.
   Tip Use the SPLITCHAR= option to specify a split character.

SPLITALWAYS
   Text values are split at a split character in all blocks.

   Default The default split character is a space.
   Tip Use the SPLITCHAR= option to specify a split character.

TRUNCATE
   Any value that does not fit is truncated. For a numeric column, an asterisk (*) is substituted for the entire value whenever truncation occurs. For a character column, the truncated portion of the text is replaced by an ellipsis (...).

   Default SPLIT

VALUEALIGN=LEFT | CENTER | RIGHT | START
   specifies the horizontal alignment of the value text within the blocks. This option changes the text alignment regardless of whether you split values or specify the VALUEFITPOLICY= option.

   Select one of the following values:

   LEFT
      left-aligned within the block

   CENTER
      center-aligned within the block

   RIGHT
      right-aligned within the block

   START
      center-aligned at the starting value of the block

   Default CENTER
   Interaction This option has no effect if you also specify the NOVALUES option.

VALUEALIGN=TOP | CENTER | BOTTOM
   specifies the vertical alignment of the value text within the blocks.

   Default TOP
   Interaction This option has no effect if you also specify the NOVALUES option.
**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**Details**

**Changing the Appearance of Block Text Values**

By default, values for the variable that is specified in the BLOCK= argument appear as text in the blocks. You have several options for changing the text or its appearance.

The following table lists the tasks that you can perform along with the options that are involved in performing the task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>hide or show the values</td>
<td>NOVALUES</td>
</tr>
<tr>
<td>use a different variable for alternative text in the blocks</td>
<td>BLOCKLABEL=</td>
</tr>
<tr>
<td>change the font characteristics of the text</td>
<td>VALUEATTRS=</td>
</tr>
<tr>
<td>align the text horizontally</td>
<td>VALUEHAIGN=</td>
</tr>
<tr>
<td>align the text vertically</td>
<td>VALUEVAIGN=</td>
</tr>
<tr>
<td>specify how text values are adjusted to fit within the containing block</td>
<td>VALUEFITPOLICY=</td>
</tr>
<tr>
<td>for text that is split into multiple lines within the block, specify either or both of the following:</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>• one or more characters used to split the text value</td>
<td></td>
</tr>
<tr>
<td>• that the split characters are included in the displayed value</td>
<td></td>
</tr>
</tbody>
</table>

The following DATA step creates a SPEC column with two values: Teen and Pre-Teen.

```plaintext
data class1;
 set sashelp.class;
 where sex="F";
 length spec $10;
 if age > 12 then spec='Teen';
 else spec='Pre-Teen';
run;
```

The SPEC column is used for the blocks in the examples below. The value fit policy is specified as VALUEFITPOLICY=SPLIT. Based on this policy, the text values split if they do not fit within their block. The examples split the block text on the “-” character.

In the first example, the split character does not appear in the blocks.
The next example specifies the SPLITCHARNODROP option. This option forces the split character to appear in the graph.

```
proc sgplot data=class1;
 block x=name block=spec /
 valuefitpolicy=split
 splitchar="-.*";
 series x=name y=weight / markers
 markerattrs=(size=10pt);
run;
```

Notice that the series plot does not contrast well against the block plots. There are two simple changes that you can make to improve the graph:

- Position the block plot above or below the series plot. The POSITION= option positions the block plot at the bottom, center, or top of the graph. This option is available only with the SGPLOT procedure.
- Change the display attributes of the block plot or the series plot. The following section provides more information about block plot display attributes.

### Changing the Appearance of Block Fills

If you want to change the appearance of the fills, you have several options.

The following table lists the tasks that you can perform along with the options that are involved in performing the task:

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>change the transparency of the fills for all blocks</td>
<td>TRANSPARENCY=</td>
</tr>
<tr>
<td>change the color or transparency for the fills when you are alternating fill colors</td>
<td>FILLTYPE= FILLATTRS= ALTFILLATTRS=</td>
</tr>
</tbody>
</table>
For example, the previous example in “Changing the Appearance of Block Text Values” on page 636 showed a block plot overlaid on a series plot. For that example, you might want the block fills to provide more contrast with the series plot. The following example builds on the previous plot and specifies colors and transparency for alternating fills.

```
proc sgplot data=class1;
block x=name block=spec /
 valuefitpolicy=split
 splitchar="-"
 filltype=alternate
 fillattrs=(color=orange)
 altfillattrs=(color=green)
 transparency=.8;
series x=name y=weight / markers
 markerattrs=(size=10pt);
run;
```

The FILLTYPE=ALTERNATE option alternates the block fills. You can then specify a fill color for the primary and alternate fills using the FILLATTRS= option and the ALTFILLATTRS= option, respectively. Finally, the example changes the transparency of the block plot to 80%.

**Bubble Statement**

Creates a bubble plot in which two variables determine the location of the bubble centers and a third variable controls the size of the bubble.

**Example:** “About Bubble Plots” on page 17

**Syntax**

```
BUBBLE X=variable Y=variable SIZE=numerical-variable option(s);
```

**Summary of Optional Arguments**

**Appearance options**

- **ABSSCALE**
  - specifies that the SIZE= column values are interpreted in the same units as the axes rather than as relative values.
- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.
- **BRADIUSMAX=numerical-value**
  - specifies the size of the radius of the largest bubble.
- **BRADIUSMIN=numerical-value**
  - specifies the size of the radius of the smallest bubble.
- **COLORMODEL=style-element | (color-list)**
  - specifies a color ramp that is to be used with the COLORRESPONSE= option.
- **COLORRESPONSE=numerical-column**
  - specifies the numeric column that is used to map colors to a gradient legend.
- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot.

**DRAWORDER=SIZE | DATA**
- specifies whether the bubbles are drawn according to bubble size or according to data order.

**FILL | NOFILL**
- specifies whether the bubbles are filled.

**FILLATTRS=style-element <(options)> | (options)**
- specifies the fill color and transparency.

**LINEATTRS=style-element <(options)> | (options)**
- specifies the appearance of the outlines for the bubbles.

**OUTLINE | NOOUTLINE**
- specifies whether the outlines of the bubbles are visible.

**RATTRID=character-value**
- specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=value**
- specifies the degree of transparency for the plot.

### Axis options

**X2AXIS**
- assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

**Y2AXIS**
- assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

### Data tip options

**TIP=(variable-list) | NONE**
- specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=(format-list)**
- applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**
- applies labels to the list of data tip variables that you specify in the TIP= option.

### Group options

**GROUP=variable**
- specifies a variable that is used to group the data.

**NOMISSINGGROUP**
- specifies that missing values of the group variable are not included in the plot.

### Label options

**DATALABEL <=variable>**
- displays a label for each data point.

**DATALABELATTRS=style-element <(options)> | (options)**
- specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELPOS=position**
- specifies the location of the data label with respect to the plot.
LEGENDLABEL="text-string"
  specifies the label that identifies the bubble plot in the legend.

SPLITCHAR="character-list"
  splits the text for data labels at the specified character(s) when there is not
  enough room to display the text normally.

SPLITCHARNODROP
  specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
  specifies the horizontal alignment of the value text that is being split.

Plot options
  URL=character-variable
  specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
  NAME="text-string"
  assigns a name to a plot statement.

Required Arguments
  X=variable
  specifies the variable for the X axis.

  Y=variable
  specifies the variable for the Y axis.

  SIZE=numeric-variable
  specifies the variable that controls the size of the bubbles. The minimum and
  maximum values automatically provide the range that is used to determine bubble
  sizes. You can control this range manually by using the BRADIUSMAX and
  BRADIUSMIN options.

Optional Arguments
  ABSSCALE
  specifies that the SIZE= column values are interpreted in the same units as the axes
  rather than as relative values. By default, the bubble sizes are scaled to represent the
  value range of the SIZE= column. For example, if only two bubbles are drawn with
  sizes of 2 and 4, then they appear the same as only two bubbles with sizes of 4000
  and 8000. By contrast, when ABSSCALE is specified, the size values are interpreted
  in the same units as the axes.

  Restriction
   This option is ignored if the X or Y axis is discrete.

  Interaction
   When this option is used, the BRADIUSMAX= and BRADIUSMIN= options are ignored.

  Note
   The bubbles might be drawn as ellipses if the X and Y axes are scaled
differently.

  ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set. You specify
  this option only if you are using an attribute map to control visual attributes of the
  graph.

See  Chapter 12, “Using Discrete Attribute Maps,” on page 1317
BRADIUSMAX=\textit{numeric-value}
specifies the size of the radius of the largest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

\textbf{Restriction}
The BRADIUSMAX= value must be greater than the BRADIUSMIN= value if one is specified. If BRADIUSMAX is not greater, an error is generated and a message is written to the SAS log.

\textbf{Note}
If you specify the maximum size as a percentage, this is interpreted as a percentage of the graph's height.

BRADIUSMIN=\textit{numeric-value}
specifies the size of the radius of the smallest bubble. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

\textbf{Restriction}
The BRADIUSMIN= value must be smaller than the BRADIUSMAX= value if one is specified. If BRADIUSMIN is not smaller, an error is generated and a message is written to the SAS log.

\textbf{Note}
If you specify the minimum size as a percentage, this is interpreted as a percentage of the graph's height.

\textbf{COLORMODELEQUALstyle-element} | (\textit{color-list})
specifies a color ramp that is to be used with the COLORRESPONSE= option.

\textit{style-element}
specifies the name of a style element. The style element should contain these style attributes:

\begin{itemize}
  \item \textbf{STARTCOLOR} specifies the color for the smallest data value of the COLORRESPONSE= column.
  \item \textbf{NEUTRALCOLOR} specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
  \item \textbf{ENDCOLOR} specifies the color for the highest data value of the COLORRESPONSE= column.
\end{itemize}

\textbf{Example}
colormodel=TwoColorRamp

\textit{color-list}
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

\textbf{Requirement}
The list of colors must be enclosed in parentheses.

\textbf{Example}
colormodel=(blue yellow green)

\textbf{Default}
The ThreeColorAltRamp style element
For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction**
If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**
“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

**DATALABEL <=variable>**
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>position</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions. This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN** specifies a special effect to be used on the plot. The data skin affects all bubbles. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

| Table 5.3  DATASKIN Options for Bubbles |
|---|---|---|
| NONE | CRISP | GLOSS |
| ![NONE](image) | ![CRISP](image) | ![GLOSS](image) |
| MATTE | PRESSED | SHEEN |
| ![MATTE](image) | ![PRESSED](image) | ![SHEEN](image) |

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DRAWORDER=SIZE | DATA** specifies whether the bubbles are drawn according to bubble size or according to data order.

**SIZE**

draws the bubbles according to bubble size, from the largest to the smallest.

**DATA**

draws the bubbles according to data order.

The following figure shows the effect of SIZE and DATA on four bubbles. The bubble labels indicate the data order, and the bubble sizes increase linearly starting with 1.

<table>
<thead>
<tr>
<th>DRAWORDER=SIZE</th>
<th>DRAWORDER=DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="DRAWORDER=SIZE" /></td>
<td><img src="image" alt="DRAWORDER=DATA" /></td>
</tr>
</tbody>
</table>
**FILL | NOFILL**
specifies whether the bubbles are filled. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default	FILL

**Interactions**
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

**Defaults**
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

0.0 transparency

**Interaction**
This option has no effect if you specify the NOFILL option.

**GROUP=**

specifies a variable that is used to group the data. The bubbles for each group value are automatically distinguished by different colors.

When this option is used, the bubble colors are taken from the GraphData1... GraphData\(n\) style elements. If the bubbles are filled, then the COLOR attribute is used for bubble fill and CONTRASTCOLOR is used for the bubble outline. If the bubbles are not filled, then the CONTRASTCOLOR and PATTERN are used for the bubble outlines.

When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.

**Interaction**
This option is ignored if the COLORRESPONSE= option is also used.

**LEGENDLABEL=**

specifies the label that identifies the bubble plot in the legend.

**Default**
By default, the label for the SIZE= variable is used for ungrouped data, and the group values are used for grouped data.

**Interaction**
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LINEATTRS=**

specifies the appearance of the outlines for the bubbles. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

| Default | GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData<sub>n</sub> style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness. |
| Interaction | This option has no effect if you also specify the NOOUTLINE option. |

### NAME="text-string"

Assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

### NOMISSINGGROUP

Specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

### OUTLINE | NOOUTLINE

Specifies whether the outlines of the bubbles are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default** OUTLINE

**Interactions** Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

### RATTRID=character-value

Specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**See** Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

### SPLITCHAR="character-list"

Splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.
Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the **format-list** and the **variable-list** that is specified for the TIP= option. A format must be provided for each variable, using the same order as the **variable-list**. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  This option has no effect unless TIP= is also specified.

**Tip**  Use the TIPLABEL= option to assign labels to the list of variables.

**See**  *SAS Viya Formats and Informats: Reference*

**Example**  tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the **label-list** and the **variable-list** that is specified for the TIP= option. A label must be provided for each variable, using the same order as the **variable-list**. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**  This option has no effect unless TIP= is also specified.

**Tip**  Use the TIPFORMAT option to assign formats to the list of variables.

**Example**  tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**  0.0

**Range**  0 (completely opaque) to 1 (completely transparent)
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

X2AXIS
assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

DENSITY Statement
Creates a density curve that shows the distribution of values for a numeric variable.

Restriction: The DENSITY statement cannot be used with discrete axes.

Interaction: The DENSITY statement can be combined only with DENSITY and HISTOGRAM statements in the SGPLOT procedure.

Examples: “About Density Plots” on page 41
“Example 8: Combining Histograms with Density Plots” on page 1195

Syntax
DENSITY response-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the density line.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

TYPE=NORMAL < (normal-opts)> | KERNEL < (kernel-opts)>
specifies the type of distribution curve that is used for the density plot.

**Axis options**

SCALE= *scaling-type*

specifies the scaling that is used for the response axis.

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

**Group options**

GROUP= *variable*

specifies a variable that is used to group the data.

**Label options**

CURVELABEL= ”text-string”

adds a label for the density curve.

CURVELABELATTRS= *style-element* *(options)* | *(options)*

specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC= OUTSIDE | INSIDE

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS= AUTO | END | MAX | MIN | START

specifies the location of the curve label.

LEGENDLABEL= ”text-string”

specifies a label that identifies the density plot in the legend.

SPLITCHAR= ”character-list”

splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY= LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

**Plot options**

FREQ= *numeric-variable*

specifies a variable for the frequency count for each observation in the input data.

WEIGHT= *numeric-variable*

specifies a variable that contains values to be used as weights for the calculations.

Y2AXIS

assigns the calculated result to the secondary (right) vertical axis.

**Plot reference options**

NAME= ”text-string”

assigns a name to a plot statement.

**Required Argument**

*response-variable*

specifies the variable for the x axis. The variable must be numeric.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

CURVELABEL="text-string"
adds a label for the density curve.

CURVELABELATTRSS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
CURVELABELATTRSS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRSS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.
MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"
specifies a label that identifies the density plot in the legend. By default, the label identifies the type of density curve. If you specify TYPE=NORMAL, then the default label is “Normal.“ If you specify TYPE=KERNEL, then the default label is “Kernel.“

Note User-specified parameters from the TYPE= option are included in the label by default.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the density line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphFit style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.
Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**SCALE=** *scaling-type*
specifies the scaling that is used for the response axis. Specify one of the following values:

- **COUNT**
  the axis displays the frequency count.

- **DENSITY**
  the axis displays the density estimate values.

- **PERCENT**
  the axis displays values as a percentage of the total.

- **PROPORTION**
  the axis displays values in proportion to the total.

Default DENSITY

Note The PROPORTION scale can be used only when you combine a density plot and a histogram together.

**SPLITCHAR=** "character-list"
splits the text for curve labels at the specified character or characters when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless CURVELABEL is specified.

- When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

- You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

- The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default  LEFT

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Overview of Collision Avoidance” on page 1265

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

TYPE =NORMAL < (normal-opts)> | KERNEL < (kernel-opts)>
specifies the type of distribution curve that is used for the density plot. Specify one of the following keywords:

NORMAL < (normal-opts)>
specifies a normal density estimate, with a mean and a standard deviation.

normal-opts can be one or more of the following values:

MU=numeric-value
specifies the mean value that is used in the density function equation. By default, the mean value is calculated from the data.

SIGMA=numeric-value
specifies the standard deviation value that is used in the density function equation. The value that you specify for the SIGMA= suboption must be a positive number. By default, the standard deviation value is calculated from the data.

KERNEL < (kernel-opts)>
specifies a nonparametric kernel density estimate.

kernel-opts can be:

C=numeric-value
specifies the standardized bandwidth for a number that is greater than 0 and less than or equal to 100.

The value that you specify for the C= suboption affects the value of \( \lambda \) as shown in the following equation:

\[
\lambda = cQn^{-\frac{1}{5}}
\]

In this equation \( c \) is the standardized bandwidth, \( Q \) is the interquartile range, and \( n \) is the sample size.
WEIGHT=NORMAL | QUADRATIC | TRIANGULAR
specifies the weight function. You can specify either normal, quadratic, or triangular weight function.

**Default**  NORMAL

**Default**  NORMAL

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the calculated result to the secondary (right) vertical axis.

**Details**

**Normal Density Function**
When the type of the density curve is NORMAL, the fitted density function equation is as follows.

\[ p(x) = \frac{100h}{\sigma \sqrt{2\pi}} \exp \left( -\frac{1}{2} \left( \frac{x - \mu}{\sigma} \right)^2 \right) \text{ for } -\infty < x < \infty \]

In the equation, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. You can specify \( \mu \) by using the MU= suboption and \( \sigma \) by using the SIGMA= suboption.

**Kernel Density Function**
When the TYPE of the density curve is KERNEL, the general form of the kernel density estimator is as follows.

\[ \hat{f}_\lambda(x) = \frac{100h}{n\lambda} \sum_{i=1}^{n} K_0 \left( \frac{x - x_i}{\lambda} \right) \]

In the equation, \( K_0(\cdot) \) is the weight function, \( \lambda \) is the bandwidth, \( n \) is the sample size, and \( x_i \) is the \( i \)th observation. You can use the C= suboption to specify the bandwidth and the WEIGHT= suboption to specify the weight function \( K_0(\cdot) \).

**Kernel Density Weight Functions**
The formulas for the weight functions are as follows.

**NORMAL**

\[ K_0(t) = \frac{1}{\sqrt{2\pi}} \exp \left( -\frac{1}{2} t^2 \right) \text{ for } -\infty < t < \infty \]

**QUADRATIC**
The equation is:
\[ K_0(t) = \frac{3}{4} (1 - t^2) \text{ for } |t| \leq 1 \]

And:
\[ K_0(t) = 1 - |t| \text{ for } -1 \leq t \leq 1 \]

**DOT Statement**

Creates a dot plot that summarizes the values of a category variable.

**Interaction:**
The DOT statement can be combined only with other horizontal categorization plot statements.

**Examples:**
“About Dot Plots” on page 49
“Example 7: Adding Statistical Limits to a Dot Plot” on page 1194

**Syntax**

`DOT category-variable </option(s)>;`

**Summary of Optional Arguments**

**Appearance options**

`ATTRID=character-value`
specifies the value of the ID variable in a discrete attribute map data set.

`COLORMODEL=style-element | (color-list)`
specifies a color ramp that is to be used with the COLORRESPONSE= option.

`COLORRESPONSE=numeric-column`
specifies the numeric column that is used to map colors to a gradient legend.

`DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
specifies a special effect to be used on the plot.

`DISCRETEOFFSET=numeric-value`
specifies an amount to offset all dots from discrete category values.

`RATTRID=character-value`
specifies the value of the ID variable in a range attribute map data set.

`TRANSPARENCY=value`
specifies the degree of transparency for the plot.

**Data tip options**

`TIP=(variable-list) | NONE`
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

`TIPFORMAT=(format-list)`
applies formats to the list of data tip variables that you specify in the TIP= option.

`TIPLABEL=(label-list)`
applies labels to the list of data tip variables that you specify in the TIP= option.
Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped dots.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.
Plot options

**ALPHA=** numeric-value
specifies the confidence level for the confidence limits.

**CATEGORYORDER=** RESPASC | RESPDESC
specifies the order in which the categories are arranged.

**FREQ=** numeric-variable
specifies a variable for the frequency count for each observation in the input data.

**MISSING**
for group data, processes missing values as valid category value and creates a dot for it.

**RESPONSE=** response-variable
specifies a numeric response variable for the plot.

**URL=** character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

**WEIGHT=** numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

**NAME=** "text-string"
assigns a name to a plot statement.

Statistics options

**COLORSTAT=** FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

**STAT=** FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the dots.

Optional Arguments

**ALPHA=** numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

<table>
<thead>
<tr>
<th>Default</th>
<th>.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option has no effect if you do not specify LIMITSTAT=CLM.</td>
</tr>
<tr>
<td>If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.</td>
<td></td>
</tr>
</tbody>
</table>

**ATTRID=** character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 12, “Using Discrete Attribute Maps,” on page 1317
**CATEGORYORDER=RESPASC | RESPDESC**

specifies the order in which the categories are arranged. Specify one of the following values:

- **RESPASC**
  - sorts by the response values in ascending order.

- **RESPDESC**
  - sorts by the response values in descending order.

**Default**

By default, the plot is sorted in ascending order based on the category values.

**Restrictions**

This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

**Interactions**

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

**Notes**

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=numeric-value**

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

**Default**

0.8

**Interactions**

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default
values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=** `style-element | (color-list)`  
specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*  
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**  
specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**  
specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**  
specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**  
`colormodel=TwoColorRamp`

*(color-list)*  
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**  
The list of colors must be enclosed in parentheses.

**Example**  
`colormodel=(blue yellow green)`

**Default**  
The ThreeColorAltRamp style element

**Interaction**  
For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=** `numeric-column`  
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction**  
If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**  
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**  
“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

**COLORSTAT=** `FREQ | PCT | SUM | MEAN`  
specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:

- **FREQ**  
frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>sum values for the color response</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean values for the color response</td>
</tr>
</tbody>
</table>

Defaults
- SUM when you also specify the COLORRESPONSE= option.
- FREQ when you do not specify the COLORRESPONSE= option.

**Note**
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL** <variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
- GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
- Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
- This option has no effect unless the DATALABEL option is also specified.

Examples
- `DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)`

Here is an example that specifies a style element:
- `DATALABELATTRS=GraphLabelText`

**DATALABELPOS=DATA | LEFT | RIGHT**
specifies the location of the data label. Specify one of the following values:

**DATA**
places the label on the data primitives (at the right edge of the dots).

**LEFT**
places the label to the left of the dots.

**RIGHT**
places the label to the right of the dots.

Default DATA

Interaction
- This option has no effect unless you also specify the DATALABEL option.
This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 5.4</th>
<th>DATASKIN Options for Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>CRISP</td>
</tr>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
</tr>
<tr>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: You can use the MARKERATTRS= option to specify a filled marker symbol.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all dots from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default: 0.0 (no offset)

Requirement: This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

Requirement: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction: Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped dots.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\( n \) style elements in the current style.

Default OVERLAY
Restriction  GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default ASCENDING

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the dot plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, then the legend label is “Frequency”.

The LEGENDLABEL=option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending horizontally from each dot. Upper limits extend to the right of the dot and lower limits extend to the left of the dot. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. Specify one of the following values:

- BOTH: adds lower and upper limit lines to the plot.
- LOWER: adds lower limit lines to the plot.
- UPPER: adds upper limit lines to the plot.

Default: By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction: Limit lines are displayed only when you specify STAT=MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

- CLM: confidence limits
- STDDEV: standard deviation
- STDERR: standard error

Default: CLM

Interactions: If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.
**MARKERFILLATTRS**=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

---

**Default**

GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped
data. The affected attributes are ContrastColor and MarkerSymbol.

**MARKERFILLATTRS**=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

**MARKEROUTLINEATTRS**=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

**MISSING**

for group data, processes missing values as valid category value and creates a dot for
it. If more than one chart is specified in the procedure, the MISSING option affects
the group calculations for all of the charts.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NUMSTD=n
specifies the number of standard units for the limit lines when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default 1

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
"Overview of Attribute Maps” on page 1315

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable for each category value are displayed on the horizontal axis.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.
Notes  When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See  “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default  LEFT

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis. Specify one of the following:

FREQ
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction  For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction  For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the `PCTLEVEL=` option in the PROC SGPLOT statement.

You can use the `PCTNDEC=` option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

For this value to take effect, you must also specify the `RESPONSE=` option.

When a custom label is assigned to the response variable, the statistic is displayed. The statistic is not displayed if a custom label is assigned to the variable.

This option has no effect unless the `RESPONSE=` option is specified.

This option has no effect if you specify the axis label using the `LABEL=` option in an AXIS statement.

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
  a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
  suppresses the data tips from this plot.

Requirement
  You must specify the IMAGEMAP=ON option in the ODS
  GRAPHICS statement in order to generate data tips. For example,
  add the following statement before your procedure:
  
  ODS GRAPHICS / IMAGEMAP=ON;

Interaction
  This option replaces all of the information that is displayed by
default.

Tip
  Use the TIPFORMAT and TIPLABEL options to assign formats and
  labels to the list of variables.

Example
  tip=(age weight)

TIPFORMAT=(format-list)
  applies formats to the list of data tip variables that you specify in the TIP= option.
  Provide a space-separated list of formats enclosed in parentheses. This option
  provides a way to control the format of the variable data that appears in the data tips.
  A one-to-one correspondence exists between the format-list and the variable-list that
  is specified for the TIP= option. A format must be provided for each variable, using
  the same order as the variable-list. If you do not want to apply a format to a variable,
  use the AUTO keyword instead.

Default
  The column format of the tip variable, or BEST6 if no format is
  assigned to a numeric column

Requirement
  A format or the keyword AUTO must be provided for each variable
  that is listed in the TIP= option.

Interaction
  This option has no effect unless TIP= is also specified.

Tip
  Use the TIPLABEL= option to assign labels to the list of variables.

See
  SAS Viya Formats and Informats: Reference

Example
  tipformat=(auto F5.2)

TIPLABEL=(label-list)
  applies labels to the list of data tip variables that you specify in the TIP= option.
  Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
  option provides a way to specify labels for the variable data that appears in the data tips.
  A one-to-one correspondence exists between the label-list and the variable-list that
  is specified for the TIP= option. A label must be provided for each variable, using the
  same order as the variable-list. If you do not want to apply a custom label to a
  variable, use the AUTO keyword instead.
Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tlabel=(auto "Class Weight")

**TRANSPARENCY=**\( \text{value} \)

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=**\( \text{character-variable} \)

specifies an HTML page to be displayed when parts of the plot are selected.

\( \text{character-variable} \)

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**WEIGHT=**\( \text{numeric-variable} \)

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

---

**DROPLINE Statement**

Creates one or more drop lines from data point(s) to one or both axes. The line(s) can be horizontal, vertical, or both.
Restriction: When the DROPLINE variable is the same as the response variable of a categorical chart that is specified in the procedure, the DROPLINE statement is ignored.

See: “About Drop Lines” on page 22

Syntax

DROPLINE X=variable | x-axis-value
Y=variable | y-axis-value <option(s)>;

Summary of Optional Arguments

Appearance options

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all drop lines from discrete X or Y values.

LINEATTRS=style-element <(options) | (options)
specifies the appearance of the drop line.

NOCLIP
extends the plot axes to contain the drop lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

DROPTO=BOTH | X | Y
specifies the axis to which the line is dropped.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Label options

LABEL <=variable> | <=("text-string-1" ... "text-string-n")>
creates labels for each drop line.

LABELATTRS=style-element <(options) | (options)
specifies the appearance of the labels.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable | x-axis-value
specifies the X coordinate of the drop line(s). If you specify an x-axis-value that is a text string, enclose the string in quotation marks.
Values must agree in type with the X-axis data type. For example, you should use numeric SAS date or time values (or SAS date/time constants) for a time axis.

**Y=variable | y-axis-value**
specifies the Y coordinate of the drop line(s). If you specify a y-axis-value that is a text string, enclose the string in quotation marks.

Values must agree in type with the Y-axis data type.

### Optional Arguments

**DATASKIN=**NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 5.5  DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all drop lines from discrete X or Y values.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset) where 0.5 represents half the distance between discrete ticks.

Requirement: This option is applicable only when the X or Y axis is discrete.

**DROPTO=**BOTH | X | Y

specifies the axis to which the line is dropped.

- BOTH: draws dropline(s) to both axes.
- X: draws dropline(s) to the X axis, or to the X2 axis if specified.
- Y: draws dropline(s) to the Y axis, or to the Y2 axis if specified.
LABEL <=variable> | <=("text-string-1" ... "text-string-n")>
creates labels for each drop line. If you do not specify a label value, the value for that line is used as the label.

If you specify a label value, the following options are available.

variable
a variable for the label value.

Restriction This label variable is used only when a variable is used for the DROPLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

"text-string-1" ... "text-string-n"
a text string for the label value.

Restriction The label string does not apply when a variable is used for the DROPLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “drop” is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the drop line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP
extends the plot axes to contain the drop lines. By default, if a line is created outside of the data range, then the line is not visible. This option has no effect if you do not create lines that are outside of the data range.

TRANSPARENCY=\textit{value}
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Details
A drop line is always drawn perpendicular from the specified point to the X or Y axis. Axis offsets do not apply to drop lines, so they always meet the axis line.

The DROPTO= option controls whether a horizontal or vertical drop line is created. DROPTO=X specifies the horizontal axis for a vertical drop line, and DROPTO=Y specifies the vertical axis for a horizontal drop line. DROPTO=BOTH specifies both axes.

A DROPLINE statement must be used with another plot statement that establishes the axis scale for the DROPTO= points. For example, a drop line can be used with a scatter plot or a histogram. You can generate multiple drop lines by specifying a column for X and Y. The column type (numeric or string) must agree with the type of data presented on the axis.

Example
This example shows a DROPLINE statement originating from the point (X=3, Y=5) and dropping to both axes.
/* Create data set with X and Y variables that plot a parabola.*/
data test;
  do X=0 to 8 by 0.25;
    Y=(x-3)*(x-3) + 5;
    output;
  end;
rung;
/* Create the plot and drop lines. Specify a label and line attributes for the drop lines.*/
title "Drop lines at Inflection Point";
proc sgplot data=test;
  series x=x y=y;
  dropline x=3 y=5 / dropto=both label="(3,5)"
    lineattrs=(color=blue pattern=dot);
  yaxis min=0;
rung;
title;

**ELLIPSE Statement**

Adds a confidence or prediction ellipse to another plot.

**Restriction:** In order to produce useful output, the ELLIPSE statement should be used with another plot statement that uses numeric axes.

**Examples:**

"About Ellipse Plots" on page 35
"Example 5: Adding a Prediction Ellipse to a Scatter Plot" on page 1191

**Syntax**

ELLIPSE X=numeric-variable Y=numeric-variable <option(s)>;
### Summary of Optional Arguments

#### Appearance options
- **FILL | NOFILL**
  specifies whether the area fill is visible.
- **FILLATTRS=style-element <(options)> | (options)**
  specifies the fill color and transparency.
- **LEGENDLABEL="text-string"**
  specifies a label that identifies the ellipse in the legend.
- **LINEATTRS=style-element <(options)> | (options)**
  specifies the appearance of the outlines for the ellipse.
- **OUTLINE | NOOUTLINE**
  specifies whether the outlines of the ellipse are visible.
- **TRANSPARENCY=value**
  specifies the degree of transparency for the plot.

#### Axis options
- **X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.
- **Y2AXIS**
  assigns the Y variable to the secondary (right) vertical axis.

#### Plot options
- **ALPHA=numeric-value**
  specifies the confidence level for the ellipse.
- **CLIP**
  specifies that the data for the ellipse is ignored when determining the data ranges for the axes.
- **FREQ=numeric-variable**
  specifies a variable for the frequency count for each observation in the input data.
- **TYPE =MEAN | PREDICTED**
  specifies the type of ellipse.

#### Plot reference options
- **NAME="text-string"**
  assigns a name to a plot statement.

### Required Arguments
- **X=numeric-variable**
  specifies a numeric variable for the X axis.
- **Y=numeric-variable**
  specifies a numeric variable for the Y axis.

### Optional Arguments
- **ALPHA=numeric-value**
  specifies the confidence level for the ellipse.
  **Default** `.05`
Range 0.01 (complete confidence) to 0.99 (no confidence)

**CLIP**
specifies that the data for the ellipse is ignored when determining the data ranges for the axes. By default, the data for the ellipse is considered when determining the data ranges for the axes.

Interaction This option is automatically set if you specify UNIFORM=SCALE or UNIFORM=ALL option in the PROC SGPLOT statement.

**FILL | NOFILL**
specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default The default status of the area fill is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element<(options)> | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

0.0 transparency

**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

**LEGENDLABEL=“text-string”**
specifies a label that identifies the ellipse in the legend. By default, the label describes the confidence value of the ellipse and the type of ellipse. For example, “95% Prediction Ellipse.”

**LINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the outlines for the ellipse. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
GraphData

Default style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip   This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE | NOOUTLINE

specifies whether the outlines of the ellipse are visible. The OUTLINE option shows the outlines and hides the fill. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpts attribute of the GraphEllipse style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

TYPE =MEAN | PREDICTED

specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume a bivariate normal distribution.

Default PREDICTED

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

FRINGE Statement

Creates a fringe plot on the X axis of an X-Y plot.

Interaction: Fringe plots can be overlaid with all plots except with box plots and categorical charts (bar charts, line plots, and dot plots).

Example: “About Fringe Plots” on page 18
Syntax

FRINGE numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fringe lines.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

HEIGHT=dimension <units>
specifies the height of the fringe lines.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LEGENDLABEL="text-string"
specifies a label that identifies the needle plot in the legend.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Argument

numeric-variable
specifies the variable that provides the X coordinates of the data values.
Optional Arguments

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes. Each distinct group value is represented in the graph by a different line color. Line patterns are not changed across groups.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**HEIGHT=dimension <units>**
specifies the height of the fringe lines. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
</tbody>
</table>
### Unit Description

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default 10px

**LEGENDLABEL=** "text-string"

specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

**Interaction** The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the fringe lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NAME="text-string"**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**(variable-list)**

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.

**Requirement** You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:
ODS GRAPHICS / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPLABEL= option to assign labels to the list of variables.

See
SAS Viya Formats and Informats: Reference

Example
tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
GRADLEGEND Statement

Generates a gradient legend that maps the data range of a response variable to a range of colors. You can use up to four GRADLEGEND statements in a procedure. The GRADLEGEND statement is used in conjunction with the COLORRESPONSE= option. (The COLORRESPONSE= option is specified in the plot statement and indicates the response variable that is used to map the colors.)

See: “Using Gradient Color Legends” on page 1262

Syntax

GRADLEGEND <"name"> <option(s)>;

Summary of Optional Arguments

Appearance options

BORDER | NOBORDER
specifies whether a border is visible around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEATTRS=style-element <(options)> | (options)
specifies the color and font attributes of the legend values.

Legend options

"name"
specifies the name of the plot that you want to include in the legend.

Scale options

EXTRACTSCALE <=DEFAULT | SCIENTIFIC>
extracts a scale factor from the tick values and uses it to reduce the tick value width.
Optional Arguments

"name"

specifies the name of the plot that you want to include in the legend. The name that you specify must correspond to a value that you entered for the NAME= option in a plot statement. The plot statement must also specify the COLORRESPONSE= option.

Default

If no name is specified, the legend references whichever plot statement specifies the COLORRESPONSE= option. If the procedure contains more than one plot with a COLORRESPONSE= option and you do not specify a plot name, then the legend attempts to reference both or all of these plots. The resulting legend might be hard to read.

Restriction

Only one name can be specified. If you want a continuous legend for more than one plot, you can use multiple GRADLEGEND statements. You can use up to four GRADLEGEND statements in a procedure.

BORDER | NOBORDER

specifies whether a border is visible around the legend.

Default

NOBORDER

EXTRACTSCALE <=DEFAULT | SCIENTIFIC>

extracts a scale factor from the tick values and uses it to reduce the tick value width. The scale used is appended to the legend title as shown in the following example.

Total Sales (millions)

For long legend titles, if the scale does not fit the available space, then the title is truncated, and the scale is appended to the truncated title. Ellipses indicate that the label was truncated as shown in the following example.

Total Sales for the Fourth Quarter Of ... (millions)

In extreme cases where the title does not fit even with truncation, the title is dropped.

You can also specify whether to use a named scale or a scientific-notation scale.

DEFAULT

extracts a named scale. A named scale can be millions, billions, or trillions for values of 999 trillion or less, or a multiple of 10 (denoted as $10^n$) for values over 999 trillion. For small fractional tick values, the scale factor is set to ensure that the absolute value of the smallest value is greater than 1. The scale can be millionth, billionth, or trillionth for values of 1 trillionth or more, or a multiple of $1/10$ ($10^{-n}$) for values less than 1 trillionth.

SCIENTIFIC

extracts a scientific-notation scale. A scientific-notation scale is a multiple of 10 expressed as $10^n$ for values greater than 1, or a multiple of $1/10$ expressed as $10^{-n}$ for values less than 1.

The following examples show a gradient legend before and after EXTRACTSCALE= is specified:

<table>
<thead>
<tr>
<th>Default Scale</th>
<th>EXTRACTSCALE Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The scale that is extracted by the EXTRACTSCALE= option is derived from the English locale.

**INTEGER**

specifies that integers are used for the gradient legend.

**NOTITLE**

removes the default title. The default title is the name of the response variable.

Default The default title is displayed.

**OUTERPAD=dimension (pad-options)**

specifies the amount of extra space that is added outside the legend border.

*dimension*

specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

*(pad-options)*

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=dimension** specifies the amount of extra space added to the left side.
- **RIGHT=dimension** specifies the amount of extra space added to the right side.
- **TOP=dimension** specifies the amount of extra space added to the top.
- **BOTTOM=dimension** specifies the amount of extra space added to the bottom.

**Note**

Sides that are not assigned padding are padded with the default amount.

**Tip**

Use *pad-options* to create non-uniform padding.

Default No padding

**Note**

The default units for *dimension* are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

**Example**

“Example: Gradient Legend That Uses the OUTERPAD= Option” on page 687

**POSITION=TOP | BOTTOM | LEFT | RIGHT**

specifies the position of the legend within the graph.

Default **RIGHT**

**Notes**

By default, if you use more than one GRADLEGEND statement, then each legend is placed in a different position.
If you specify more than one legend with the same position, then those legends are placed at that position.

**TITLE="text-string"**
specifies a title for the legend.

Default: If you do not specify this option, then the name of the legend variable is displayed as the title.

**TITLEATTRS=style-element <(options)> | (options)**
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples:

```plaintext
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
TITLEATTRS=GraphTitleText
```

**VALUEATTRS=style-element <(options)> | (options)**
specifies the color and font attributes of the legend values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Notes: When you specify style-element, only the style attributes Color, FontFamily, FontSize, FontStyle, and FontWeight are used.

If you specify one or more options but do not include all the font properties (color, family, size, style, and weight), non-specified properties are derived from the default GraphValueText style element.

Examples:

```plaintext
valueattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
valueattrs=GraphTitleText
```

The following example specifies a style element and overrides the color and weight:

```
valueattrs=GraphDataText (color=red weight=bold)
```
Example: Gradient Legend That Uses the OUTERPAD= Option

The following example shows a gradient legend that maps a density scale to a color gradient. The OUTERPAD= option adds padding to the top and bottom of the gradient.

```sas
title "Height and Weight Distribution";
proc sgplot data=sashelp.gridded(where=(count>0));
 scatter x=height y=weight /
 colorresponse=density name="scatter"
 markerattrs=(symbol=squarefilled size=6px);
 gradlegend "scatter" /
 outerpad=(top=20px bottom=20px);
run;
title;
```

**HBAR Statement**

Creates a horizontal bar chart that summarizes the values of a category variable.

- **Interaction:** The HBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1258.
- **Tip:** Bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.
- **Example:** “About Bar Charts” on page 44

**Syntax**

```
HBAR category-variable <option(s)>;
```
Summary of Optional Arguments

Appearance options

ATTRID=character-value
    specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
    specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element | (options)
    specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
    specifies a color ramp that is to be used with the COLORRESPONSE=
    option.

COLORRESPONSE=numeric-column
    specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
    specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
    specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
    specifies whether the bars are filled.

FILLATTRS=style-element | (options)
    specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
    specifies the fill type that is applied to the chart.

NOZEROBARS
    suppresses zero-length bars.

OUTLINE | NOOUTLINE
    specifies whether the bars have outlines.

OUTLINEATTRS=style-element | (options)
    specifies the appearance of the bar outlines.

RATTRID=character-value
    specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
    specifies the degree of transparency for the plot.

Axis options

BASELINE=numeric-value
    specifies the response axis intercept for the baseline.

X2AXIS
    assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
    assigns the category variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
    specifies the data tip information to be displayed when the cursor is
    positioned over the graphics element.

TIPFORMAT=(format-list)
    applies formats to the list of data tip variables that you specify in the TIP=
    option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH=numeric-value**
  specifies the cluster width as a ratio of the maximum width.

- **GROUP=variable**
  specifies a variable that is used to group the data.

- **GROUPDISPLAY=STACK | CLUSTER**
  specifies how to display grouped bars.

- **GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
  specifies the ordering of the groups within a category.

**Label options**

- **DATALABEL <variable>**
  displays a label for each bar.

- **DATALABELATTRS=style-element <(options)> | (options)**
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELFITPOLICY=NONE**
  specifies that no fit policy is implemented for the bar labels.

- **DATALABELPOS=DATA | LEFT | RIGHT**
  specifies the location of the data label.

- **LEGENDLABEL="text-string"**
  specifies the label that identifies the bar chart in the legend.

- **SEGLABEL**
  displays a label inside each segment of a stacked bar.

- **SEGLABELATTRS=style-element <(options)> | (options)**
  specifies the text properties of the bar segment label text.

- **SEGLABELFITPOLICY=NONE | NOCLIP | THIN**
  specifies a policy for fitting the bar segment labels within the bar segments.

- **SEGLABELFORMAT=format**
  specifies the text format used to display the bar segment labels.

- **STATLABEL | NOSTATLABEL**
  specifies whether the response variable statistic is displayed in the axis and legend labels.

**Limit options**

- **LIMITATTRS=style-element <(options)> | (options)**
  specifies the appearance of the limit lines in the plot.

- **LIMITS=BOTH | LOWER | UPPER**
  specifies which limit lines to display.

- **LIMITSTAT=CLM | STDDEV | STDERR**
  specifies the statistic for the limit lines.

- **NUMSTD=n**
  specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

**Plot options**

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.
CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Statistics options
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument
category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments
ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions
This option has no effect if you do not specify LIMITSTAT=CLM.
If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**BARWIDTH=** `numeric-value`  
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of `1`, then there is no space between the bars. If you specify a width of `.5`, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

**Defaults**  
`.8`  
1.0 when the `GROUP` option is specified and `GROUPDISPLAY=CLUSTER`

**Range**  
0.0 (narrowest) to 1.0 (widest)

**Interaction**  
When the `GROUP` option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

---

**BASELINE=** `numeric-value`  
 specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

**Default**  
`0`

**Interactions**  
If `GROUPDISPLAY=STACKED` is specified, this option is ignored.

When a logarithmic response axis is used and `BASELINE=` specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set `BASELINE=` to a positive value.

**Tips**  
The appearance of the baseline is controlled by the `BASELINEATTRS=` option.

To suppress the baseline, use the `BASELINEATTRS=` option to set the line thickness to 0.

---

**BASELINEATTRS=** `style-element <(options)> | (options)`  
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**  
The `GraphAxisLines` style element in the current style.

**Notes**  
The baseline is always drawn by default.
When `style-element` is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**
To suppress the baseline, set the line thickness to 0 as follows:
```
baselineattrs=(thickness=0)
```

**CATEGORYORDER=RESPASC | RESPDESC**
specifies the order in which the categories are arranged. Specify one of the following values:

**RESPASC**
sorts by the response values in ascending order.

**RESPDESC**
sorts by the response values in descending order.

**Default**
By default, the plot is sorted in ascending order based on the category values.

**Restrictions**
This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

**Interactions**
When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

**Notes**
When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

**CATEGORYORDER=** can be specified when a group variable is used.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=numeric-value**
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

`CLUSTERWIDTH` is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default**
0.8
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=style-element | (color-list)**

specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

**(color-list)**

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**

The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default**

The ThreeColorAltRamp style element

**Interaction**

For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=numeric-column**

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction**

If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**

“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262
COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ  frequency count
PCT   percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM   sum values for the color response
MEAN  mean values for the color response

Defaults  SUM when you also specify the COLORRESPONSE= option.
          FREQ when do not specify the COLORRESPONSE= option.

Note  This option is independent of the STAT= and RESPONSE= options.

DATALABEL <variable>
displays a label for each bar. If you specify a variable, then the values of that variable
are used for the data labels. If you do not specify a variable, then the values of the
calculated response are used for the data labels.

Interactions  This option has no effect if you also specify the
GROUPDISPLAY=STACK option.

By default, the data label fit policy is to show the labels unless they
collide. As a result, the labels sometimes might not be visible. To
show the labels regardless of how they fit, specify
DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL=
option. You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to
override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  GraphDataText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight .

Color attribute of the GraphDataText style element in the current style
(ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the
GraphData1...GraphData n style elements.

Interaction  This option has no effect unless the DATALABEL option is also
specified.

Examples  DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText
**DATALABELFITPOLICY=NONE**
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

**Default**
Show the labels unless they collide.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

**DATALABELPOS=DATA | LEFT | RIGHT**
specifies the location of the data label. Specify one of the following values:

**DATA**
places the label on the data primitives (at the right edge of the bars).

**LEFT**
places the label to the left of the bars.

**RIGHT**
places the label to the right of the bars.

**Default**
DATA

**Interactions**
This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 5.7 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th></th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
<td></td>
</tr>
</tbody>
</table>

**Default**
NONE
Restriction  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction  If you also specify NOFILL, then the data skin is applied to the outlines.

\textbf{DISCRETEOFFSET=} \textit{numeric-value}

specifies an amount to offset all bars from the category midpoints.

Default  0.0 (no offset)

Range  -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction  If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

\textbf{FILL | NOFILL}

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default  FILL

Interactions  Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

\textbf{FILLATTRS=} \textit{style-element \langle(options)\rangle | (options)}

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDatann style elements in the current style for grouped data.

0.0 transparency

Interaction  This option has no effect if you specify the NOFILL option.

\textbf{FILLTYPE=} \textit{SOLID | GRADIENT}

specifies the fill type that is applied to the chart.

\textbf{SOLID}

each bar is filled with the color that is assigned to the bar fill area.

\textbf{GRADIENT}

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.
Interaction  Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip  Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default  SOLID

Interaction  This option has no effect if NOFILL is also specified.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions  If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Interaction  If the value is not an integer, only the integer portion is used.

If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions  If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note  For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip  ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.
STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default: STACK

Interaction: This option is ignored unless GROUP= is specified.

Tip: The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions: The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note: The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric...
data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

**Interaction**
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interaction**
This option has no effect unless you also specify either the LIMITS= or LIMITSTAT= option.

**LIMITS=BOTH | LOWER | UPPER**

specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. Upper limits extend to the right of the bar and lower limits extend to the left of the bar. Specify one of the following values:

- **BOTH**
  adds lower and upper limit lines to the plot.

- **LOWER**
  adds lower limit lines to the plot.

- **UPPER**
  adds upper limit lines to the plot.

**Default**
By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default.

**Interaction**
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

**LIMITSTAT=**CLM | STDDEV | STDERR

specifies the statistic for the limit lines. Specify one of the following statistics:

- **CLM**
  confidence limits
STDDEV
standard deviation

STDERR
standard error

Default CLM

Interactions If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT=option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="https://via.placeholder.com/150" alt="Diagram" /></td>
<td><img src="https://via.placeholder.com/150" alt="Diagram" /></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.
OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL
displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

**SEGLABELATTRS=**

Specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Default** The GraphDataText style element.

**Interaction** This option has no effect unless SEGLABEL is also specified.

**SEGLABELFITPOLICY=**

Specifies a policy for fitting the bar segment labels within the bar segments.

**NONE**

No attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**

Does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**

Drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

**Default** THIN

**Interaction** This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=**

Specifies the text format used to display the bar segment labels.

**Default** The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

**Interaction** This option has no effect unless SEGLABEL is also specified.

**STAT=**

Specifies the statistic for the horizontal axis. Specify one of the following:
FREQ
  the frequencies, which are calculated as follows:
  • If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
  • If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
  the mean of the response variable.
  Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
  the median of the response variable.
  Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
  the percentage, which is calculated as follows:
  • If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
  • If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
  the sum of the response variable. This is the default value when you specify the RESPONSE= option.
  Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
### Restriction
If you do not also specify the `RESPONSE=` option, then only the `FREQ` or `PERCENT` statistic is calculated (FREQ is the default). If you specify `RESPONSE=`, then you can use any of the statistics.

### Interaction
When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

### STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. `STATLABEL` forces the statistic to be displayed. `NOSTATLABEL` removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

#### Defaults
The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

#### Interactions
This option has no effect unless the `RESPONSE=` option is specified.

This option has no effect if you specify the axis label using the `LABEL=` option in an AXIS statement.

### TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

#### (variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

#### NONE
suppresses the data tips from this plot.

#### Requirement
You must specify the `IMAGEMAP=ON` option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the `TIPFORMAT` and `TIPLABEL` options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the `TIP=` option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

See: SAS Viya Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list) applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL=character-variable specifies an HTML page to be displayed when parts of the plot are selected.

character-variable specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

<table>
<thead>
<tr>
<th>Default</th>
<th>By default, no HTML links are created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option affects graphics output that is created through the ODS HTML destination only.</td>
</tr>
</tbody>
</table>

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

HBARBASIC Statement

Creates a horizontal bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

Note:

When using the HBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

See:

Basic plot types on page 1258

Example:

“About Bar Charts” on page 44

Syntax

```
HBARBASIC category-variable <option(s)>;
```

Summary of Optional Arguments

Appearance options

```
ATTRID=character-value
```

specifies the value of the ID variable in a discrete attribute map data set.

```
BARWIDTH=numeric-value
```

specifies the width of the bars as a ratio of the maximum possible width.

```
BASELINEATTRS=style-element <(options)> | (options)
```

specifies the appearance of the baseline.
COLORMODEL=\textit{style-element} \ (\textit{color-list})
\hspace{1em} specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=\textit{numeric-column}
\hspace{1em} specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE \ | \ CRISP \ | \ GLOSS \ | \ MATTE \ | \ PRESSED \ | \ SHEEN
\hspace{1em} specifies a special effect to be used on the plot.

DISCRETEOFFSET=\textit{numeric-value}
\hspace{1em} specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
\hspace{1em} specifies whether the bars are filled.

FILLATTRS=\textit{style-element} \ <\textit{(options)}> \ | \ <\textit{(options)}>
\hspace{1em} specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
\hspace{1em} specifies the fill type that is applied to the chart.

NOZEROBARS
\hspace{1em} suppresses zero-length bars.

OUTLINE | NOOUTLINE
\hspace{1em} specifies whether the bars have outlines.

OUTLINEATTRS=\textit{style-element} \ <\textit{(options)}> \ | \ <\textit{(options)}>
\hspace{1em} specifies the appearance of the bar outlines.

RATTRID=\textit{character-value}
\hspace{1em} specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=\textit{value}
\hspace{1em} specifies the degree of transparency for the plot.

\textbf{Axis options}

BASELINE=\textit{numeric-value}
\hspace{1em} specifies the response axis intercept for the baseline.

X2AXIS
\hspace{1em} assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
\hspace{1em} assigns the category variable to the secondary (right) vertical axis.

\textbf{Data tip options}

TIP=\textit{(role-list)} \ | \ NONE
\hspace{1em} specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=\textit{(format-list)}
\hspace{1em} applies formats to the list of data tip roles that you specify in the TIP= option.

TIPLABEL=\textit{(label-list)}
\hspace{1em} applies labels to the list of data tip roles that you specify in the TIP= option.

\textbf{Group options}

CLUSTERWIDTH=\textit{numeric-value}
\hspace{1em} specifies the cluster width as a ratio of the maximum width.

GROUP=\textit{variable}
\hspace{1em} specifies a variable that is used to group the data.

GROUPDISPLAY=STACK \ | \ CLUSTER
\hspace{1em} specifies how to display grouped bars.

GROUPORDER=DATA \ | \ REVERSEDATA \ | \ ASCENDING \ | \ DESCENDING
specifies the ordering of the groups within a category.

Label options

- **DATALABEL**
 - Displays the bar statistic value for each bar.

- **DATALABELATTRS=**
 - Specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELFITPOLICY=NONE**
 - Specifies that no fit policy is implemented for the bar labels.

- **DATALABELFORMAT=**
 - Specifies the text format used to display the bar label.

- **LEGENDLABEL=**
 - Specifies the label that identifies the bar chart in the legend.

- **SEGLABEL**
 - Displays a label inside each segment of a stacked bar.

- **SEGLABELATTRS=**
 - Specifies the text properties of the bar segment label text.

- **SEGLABELFITPOLICY=NONE | NOCLIP | THIN**
 - Specifies a policy for fitting the bar segment labels within the bar segments.

- **SEGLABELFORMAT=**
 - Specifies the text format used to display the bar segment labels.

Plot options

- **MISSING**
 - For group data, processes missing values as a valid category value and creates a bar for it.

- **RESPONSE=**
 - Specifies a numeric response variable for the plot.

- **URL=**
 - Specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

- **NAME=**
 - Assigns a name to a plot statement.

Statistics options

- **COLORSTAT=FREQ | PCT | SUM | MEAN**
 - Specifies the statistic to use for computing the response colors.

- **STAT=FREQ | PCT | SUM | MEAN | PROPORTION**
 - Specifies the statistic for the horizontal axis.

Required Argument

- **category-variable**
 - Specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.
Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value

specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

 To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

The GraphAxisLines style element in the current style.

Notes

The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip

To suppress the baseline, set the line thickness to 0 as follows:

baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default

0.8

Interactions

This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.
Example \(\text{colormodel}=(\text{blue yellow green})\)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interactions If the GROUP= option is also specified, then the GROUP= option is ignored.

This option is ignored if COLORSTAT=FREQ or COLORSTAT=PCT.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:

FREQ frequency count
PCT percentages between 0 and 100

When the COLORRESPONSE= option is specified, the following values are valid:

SUM sum values for the color response
MEAN mean values for the color response

Defaults SUM when you also specify the COLORRESPONSE= option.

FREQ when do not specify the COLORRESPONSE= option.

Note This option is independent of the STAT= and RESPONSE= options.

DATALABEL
displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default No label is shown

Interaction By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.
Tip

The font and color attributes for the label are specified by the DATALABELATTRS= option. The text format is specified by the DATALABELFORMAT= option.

DATALABELATTRS=<style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALabelattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

Datalabelattrs=GraphLabelText

DATALABELFITPOLICY=NONE

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible.

To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default

Show the labels unless they collide.

Interaction

This option has no effect unless DATALABEL= is also specified.

DATALABELFORMAT=format

specifies the text format used to display the bar label.

Default

The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction

This option has no effect unless DATALABEL= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 5.8 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

- Default: 0.0 (no offset)
- Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.
- Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

- Default: FILL
- Interaction: Specifying FILL also hides the outlines.
 - If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

- Defaults: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.
 - 0.0 transparency
FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

SOLID
each bar is filled with the color that is assigned to the bar fill area.

GRADIENT
a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER
specifies how to display grouped bars.

STACK
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is
represented by unique visual attributes derived from the GraphData1...
GraphData au style elements in the current style.

CLUSTER
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

<table>
<thead>
<tr>
<th>Default</th>
<th>STACK</th>
</tr>
</thead>
</table>

Interaction
This option is ignored unless GROUP= is specified.

Tip
The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

<table>
<thead>
<tr>
<th>Default</th>
<th>ASCENDING</th>
</tr>
</thead>
</table>

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the
observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

Default

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOOUTLINE Option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip IF NOOUTLINE and NOFILL are both specified, then both options are ignored.
OUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

RESPONSE=response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

SUV - 21.68 18.7 20.04

Sedan 29.900 27.110 28.544

Sports - 26.647 25.13 24.222

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the horizontal axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ frequency count
PCT | PERCENT percentages between 0 and 100
PROPORTION proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM sum values for the response
MEAN mean values for the response

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Interaction When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(category response)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example

```
tylabel=(auto "Class Weight")
```

TRANSPARENCY= value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL= character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example

```
```

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

X2AXIS

assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the category variable to the secondary (right) vertical axis.

HBARPARM Statement

Creates a horizontal bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.
Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See "Plot Type Compatibility" on page 1258.

Note: An important distinction between HBARPARM and HBAR is that the response variable is required for HBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: "About Bar Charts" on page 44

Syntax

```
HBARPARM CATEGORY=category-variable RESPONSE=numeric-variable <
  option(s)>;
```

Summary of Optional Arguments

Appearance options

- `ATTRID=character-value`: specifies the value of the ID variable in a discrete attribute map data set.
- `BARWIDTH=numeric-value`: specifies the width of the bars as a ratio of the maximum possible width.
- `BASELINEATTRS=style-element <(options)> | (options)`: specifies the appearance of the baseline.
- `COLORMODEL=style-element | (color-list)`: specifies a color ramp that is to be used with the COLORRESPONSE= option.
- `COLORRESPONSE=numeric-column`: specifies the numeric column that is used to map colors to a gradient legend.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`: specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value`: specifies an amount to offset all bars from the category midpoints.
- `FILL | NOFILL`: specifies whether the bars are filled.
- `FILLATTRS=style-element <(options)> | (options)`: specifies the fill color and transparency.
- `FILLTYPE=SOLID | GRADIENT`: specifies the fill type that is applied to the chart.
- `LEGENDLABEL="text-string"`: specifies the label that identifies the bar chart in the legend.
- `NOZEROBARS`: suppresses zero-length bars.
- `OUTLINE | NOOUTLINE`: specifies whether the bars have outlines.
- `OUTLINEATTRS=style-element <(options)> | (options)`: specifies the appearance of the bar outlines.
- `RATTRID=character-value`: specifies the value of the ID variable in a range attribute map data set.
TRANSPARENCY=\textit{value}
\hspace{1em} specifies the degree of transparency for the plot.

\textbf{Axis options}

\texttt{BASELINE=\textit{numeric-value}}
\hspace{1em} specifies the response axis intercept for the baseline.

\texttt{X2AXIS}
\hspace{1em} assigns the response variable to the secondary (top) horizontal axis.

\texttt{Y2AXIS}
\hspace{1em} assigns the category variable to the secondary (right) vertical axis.

\textbf{Data tip options}

\texttt{TIP=(\textit{variable-list}) | NONE}
\hspace{1em} specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

\texttt{TIPFORMAT=(\textit{format-list})}
\hspace{1em} applies formats to the list of data tip variables that you specify in the TIP= option.

\texttt{TIPLABEL=(\textit{label-list})}
\hspace{1em} applies labels to the list of data tip variables that you specify in the TIP= option.

\textbf{Group options}

\texttt{CLUSTERWIDTH=\textit{numeric-value}}
\hspace{1em} specifies the cluster width as a ratio of the maximum width.

\texttt{GROUP=\textit{variable}}
\hspace{1em} specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=STACK | CLUSTER}
\hspace{1em} specifies how to display grouped bars.

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}
\hspace{1em} specifies the ordering of the groups within a category.

\textbf{Label options}

\texttt{DATALABEL <=\textit{variable}>}
\hspace{1em} displays a label for each data point.

\texttt{DATALABELATTRS=\textit{style-element <(options)>} | (options)}
\hspace{1em} specifies the appearance of the labels in the plot when you use the DATALABEL= option.

\texttt{DATALABELFITPOLICY=NONE}
\hspace{1em} specifies that no fit policy is implemented for the bar labels.

\texttt{DATALABELPOS=DATA | LEFT | RIGHT}
\hspace{1em} specifies the location of the data label.

\texttt{SEGLABEL}
\hspace{1em} displays a label inside each segment of a stacked bar.

\texttt{SEGLABELATTRS=\textit{style-element <(options)>} | (options)}
\hspace{1em} specifies the text properties of the bar segment label text.

\texttt{SEGLABELFITPOLICY=NONE | NOCLIP | THIN}
\hspace{1em} specifies a policy for fitting the bar segment labels within the bar segments.

\texttt{SEGLABELFORMAT=\textit{format}}
\hspace{1em} specifies the text format used to display the bar segment labels.
Limit options

LIMITATTRS=style-element (options) | (options)
specifies the appearance of the limit lines in the plot.

LIMITLOWER=numeric-variable
specifies values for the lower endpoints on the limit lines.

LIMITUPPER=numeric-variable
specifies values for the upper endpoints on the limit lines.

Plot options

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

CATEGORY=category-variable
specifies the variable that categorizes the data. All values are treated as discrete
values. The input data for this variable should contain unique values. When the
category values are not unique, a warning is logged, and multiple bars are
superimposed at the duplicated category values. The CATEGORY axis is always
discrete.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

RESPONSE=numeric-variable
specifies a numeric response variable. The input data is expected to be pre-
summarized computed values (sum, mean, and so on).

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The
maximum width is equal to the distance between the center of each bar and the
centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If
you specify a width of .5, then the width of the bars is equal to the space between
the bars.

If this option is not specified, the bar width automatically adjusts based on the
number of bars to be displayed and the wall width.
Defaults

\[
\begin{align*}
\text{1.0 when the GROUP option is specified and} \\
\text{GROUPDISPLAY=CLUSTER}
\end{align*}
\]

Range

0.0 (narrowest) to 1.0 (widest)

Interaction

When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

BASELINE=numeric-value

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips

The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

\[
\text{baselineattrs=(thickness=0)}
\]

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL= _style-element_ | (_color-list_)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

color-list

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE= _numeric-column_

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction

If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262
DATALABEL <=variable=>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

Note: By default, the data label fit policy is to show the labels unless they collide. As a result, the labels sometimes might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=NONE
specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default
Show the labels unless they collide.

Interaction
This option has no effect unless DATALABEL= is also specified.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label. Specify one of the following values:

DATA
places the label on the data primitives (at the right edge of the bars).

LEFT
places the label to the left of the bars.

RIGHT
places the label to the right of the bars.

Default
DATA

Interactions
This option has no effect unless you also specify the DATALABEL option.
This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option does not support the splitting or rotation of data labels.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

<table>
<thead>
<tr>
<th>DATASKIN Options for Filled Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>CRISP</td>
</tr>
<tr>
<td>GLOSS</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
<tr>
<td>PRESSED</td>
</tr>
<tr>
<td>SHEEN</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all bars from the category midpoints.

Default

0.0 (no offset)

Range

-0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction

If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default

FILL
Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=<style-element (options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults

Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

Interaction

This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT

specifies the fill type that is applied to the chart.

SOLID

each bar is filled with the color that is assigned to the bar fill area.

GRADIENT

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction

When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been
ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

specifies how to display grouped bars.

STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...GraphData style elements in the current style.

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default

STACK

Interaction

This option is ignored unless GROUP= is specified.

Tip

The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default

ASCENDING

Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=“text-string”

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITLOWER=numeric-variable

specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

Default

The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

Interaction

If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

LIMITUPPER=numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.
The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

MISSING

for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS

suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

Specifying OUTLINE also hides the fill color.

OUTLINE | NOOUTLINE

specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.
If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)

specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data.

GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
SEGLABELATRGS=\texttt{style-element} <\texttt{(options)}> | \texttt{(options)}

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default \texttt{The GraphDataText style element.}

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=\texttt{NONE} | \texttt{NOCLIP} | \texttt{THIN}

specifies a policy for fitting the bar segment labels within the bar segments.

\texttt{NONE}

no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

\texttt{NOCLIP}

does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

\texttt{THIN}

drops any bar segment label that does not fit within its segment.

The label text height must not exceed the bar width, and the label length must not exceed the segment length.

Default \texttt{THIN}

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=\texttt{format}

specifies the text format used to display the bar segment labels.

Default \texttt{The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.}

Interaction This option has no effect unless SEGLABEL is also specified.

TIP=(\texttt{variable-list}) | \texttt{NONE}

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(\texttt{variable-list})

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

\texttt{NONE}

suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

\texttt{ODS GRAPHICS / IMAGEMAP=ON;}
Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```plaintext
tip=(age weight)
```

TIPFORMAT=(format-list)

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Viya Formats and Informs: Reference

Example

```plaintext
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

```plaintext
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Example http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

HBOX Statement

Creates a horizontal box plot that shows the distribution of your data.

Restriction: This plot has plot compatibility restrictions. See Table 7.2 on page 1259.

Interaction: Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

See: “Visual Description of Box Plot Percentile Boundaries” on page 748

Examples: “About Box Plots” on page 39
“Example 9: Creating a Horizontal Box Plot” on page 1197

Syntax

```
HBOX numeric-analysis-variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

```
ATTRID=character-value
```
specifies the value of the ID variable in a discrete attribute map data set.

```
BOXWIDTH=numeric-value
```
specifies the width of the box.
CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL | NOFILL
specifies whether the boxes are filled with color.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (Y) variable is specified.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines.

MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box.

MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median.

NOCAPS
hides the cap lines for the whiskers.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched.

OUTLIERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the outliers.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

WHISKERATTRS=style-element <(options)> | (options)
specifies the appearance of the whisker and cap lines.

WHISKERPCT=number
specifies the whisker length, in percentile units.

Axis options

X2AXIS
assigns the analysis variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.
Data tip options

\texttt{TIP=(role-list) | NONE}
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

\texttt{TIPFORMAT=(format-list)}
applies formats to the list of data tip roles that you specify in the \texttt{TIP=} option.

\texttt{TIPLABEL=(label-list)}
applies labels to the list of data tip roles that you specify in the \texttt{TIP=} option.

Group options

\texttt{CLUSTERWIDTH=numeric-value}
specifies the cluster width as a ratio of the midpoint spacing.

\texttt{GROUP=variable}
specifies a variable that is used to group the data.

\texttt{GROUPDISPLAY=CLUSTER | OVERLAY}
specifies how to display grouped boxes.

\texttt{GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING}
specifies the ordering of the groups within a category.

Label options

\texttt{DATALABEL \leq variable}
adds data labels for the outlier markers.

\texttt{DATALABELATTRS=style-element \langle(options)\rangle | (options)}
specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option.

\texttt{LABELFAR}
specifies that only the far outliers have data labels.

\texttt{LEGENDLABEL=“text-string”}
specifies a label that identifies the box plot in the legend.

\texttt{SPLITCHAR=“character-list”}
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

\texttt{SPLITCHARNODROP}
specifies that the split characters are included in the displayed value.

\texttt{SPLITJUSTIFY=LEFT | CENTER | RIGHT}
specifies the horizontal alignment of the value text that is being split.

Plot options

\texttt{CATEGORY=category-variable}
specifies the category variable for the plot.

\texttt{FREQ=numeric-variable}
specifies a variable for the frequency count for each observation in the input data.

\texttt{MISSING}
for group data, processes missing values as a valid category value and creates a box for it.

\texttt{PERCENTILE=1 | 2 | 3 | 4 | 5}
specifies a method for computing the percentiles for the plot.

\texttt{SPREAD}
relocates outlier points that have identical values to prevent overlapping.

\texttt{WEIGHT=numeric-variable}
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

```plaintext
NAME=“text-string”
```

assigns a name to a plot statement.

Required Argument

`numeric-analysis-variable`

specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

Optional Arguments

ATTRID=character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BOXWIDTH=numeric-value

specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF | NONE

specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET

displays a straight line with brackets.

LINE

displays a straight line.

SERIF

displays a short straight line.

NONE

does not display a cap.

Default SERIF

CATEGORY=category-variable

specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).
Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Examples CONNECTATTRS={Color="light green" Pattern=MediumDash Thickness=4}
This example specifies a style element: CONNECTATTRS=GraphData3

DATALABEL <=variable>
adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

Note This option has no effect unless the plot contains outlier points.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

\texttt{DATALABELATTS=\{Color=Green Family=Arial Size=8 Style=Italic Weight=Bold\}}

Here is an example that specifies a style element:

\texttt{DATALABELATTS=GraphLabelText}

\texttt{DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN}

specifies a special effect to be used on the plot. The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

\textbf{Table 5.10 DATASKIN Options for Box Plots}

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![None Image]</td>
<td>![Crisp Image]</td>
<td>![Gloss Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Matte Image]</td>
<td>![Pressed Image]</td>
<td>![Sheen Image]</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction

If you also specify NOFILL, then the data skin is applied to the outlines.

\texttt{DISCRETEOFFSET=}\texttt{numeric-value}

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default

0.0 (no offset)

\texttt{EXTREME}

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.
FILL | NOFILL
specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default FILL

FILLATTRS=style-element<(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction
This option has no effect if you specify the NOFILL option.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restrictions
If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction
If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.
GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped boxes.

CLUSTER
the boxes are drawn adjacent to each other.

OVERLAY
all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData n style elements in the current style.

Defaults

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER</td>
<td>for a discrete category axis</td>
</tr>
<tr>
<td>OVERLAY</td>
<td>for a linear axis</td>
</tr>
</tbody>
</table>

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

Interaction
This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA. If using CAS data, the default is ASCENDING.

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric
data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=`numeric-value`

specifies the box width when an interval category (Y) variable is specified.

Restriction
The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example
```
proc sgplot data=sashelp.class;
  hbox weight / category=height intboxwidth=20;
  yaxis type=linear;
run;
```

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.

Note
This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

LEGENDLABEL=“`text-string`”
specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

LINEATTRS=`style-element <(options)> | (options)`
specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData`n` style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

Interactions
This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

MEANATTRS=`style-element <(options)> | (options)`
specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphBoxMean style element in the current style for ungrouped data. GraphData1 ... GraphData`n` style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.
MEDIANATTRS=style-element <(options)> | (options)
specifies the appearance of the line that represents the median. You can specify the
appearance by using a style element or by specifying specific options. If you specify
a style element, you can also specify options to override specific appearance
attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default
GraphBoxMedian style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for
grouped data. The affected attributes are ContrastColor, LineStyle, and
LineThickness.

Interaction This option is ignored if the NOMEDIAN option is also specified.

MISSING
for group data, processes missing values as a valid category value and creates a box
for it. If more than one chart is specified in the procedure, the MISSING option
affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOCAPS
hides the cap lines for the whiskers.

Interaction Using several options that hide box features can cause the NOCAPS
option to be ignored. For example, if you use NOCAPS, NOFILL,
NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement,
the NOCAPS option might be ignored.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched. The endpoints of the notches are at the following
computed locations:

\[
\text{median} \pm 1.58 \left(\frac{\text{IQR}}{\sqrt{N}} \right)
\]

For a visual description of the parts of a box plot, see “Details” on page 748.

OUTLIERATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the outliers. You can specify
the appearance by using a style element or by specifying specific options. If you
specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default

GraphOutlier style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5

specifies a method for computing the percentiles for the plot.

Default 5 (empirical distribution function with averaging)

See “Calculating Percentiles” on page 749

SPLITCHAR=“character-list”

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

SPREAD
relocates outlier points that have identical values to prevent overlapping.

Note This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

(role-list)
a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(mean median)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.
Tip

Use the TIPLABEL option to assign labels to the list of roles.

See

SAS Viya Formats and Informats: Reference

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the *label-list* and the *role-list* that is specified for the TIP= option. A label must be provided for each role, using the same order as the *role-list*. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of roles.

Example

```
tiplabel=(auto "Class Weight")
```

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

WHISKERATTRS=style-element <(options)> | (options)

specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction

This option is ignored if the NOMEDIAN option is also specified.
WHISKERPCT=number
specifies the whisker length, in percentile units. When this option is specified, number is used as the low percentile, and 100–number is used as the high percentile.

Here are some examples of values and their effect:

0 specifies the high and low extremes
10 specifies the 10th percentile low and the 90th percentile high
25 specifies the 25th percentile low and the 75th percentile high

Default The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR

Range 0–25

Notes When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

X2AXIS
assigns the analysis variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

Details

Statement Summary
The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the horizontal axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries
Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.

Note: Although the following figure shows a vertical box plot, the basic concepts apply to horizontal box plots as well.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences (± 1.5 IQR). Outliers that are beyond upper and lower far fences (± 3 IQR) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are 3*IQR from the box have data labels.

Calculating Percentiles

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let \(n \) be the number of nonmissing values for a variable, and let \(X_1, X_2, \ldots, X_n \) represent the ordered values of the variable. \(X_1 \) is the smallest value, \(X_2 \) is the next smallest, and \(X_n \) is the largest value. Let the \(r \)th percentile be \(y \), set:

\[
 p = \frac{r}{100}
\]

and let:

\[
 np = j + g
\]

when \(\text{PERCENTILE}=1, 2, 3, \text{or} 5 \), or let:

\[
 (n + 1)p = j + g
\]
when PERCENTILE=4, where \(j \) is the integer part of \(np \), and \(g \) is the fractional part of \(np \). Then the PERCENTILE= option defines the \(t \)th percentile, \(y \), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at (X_{np})</td>
<td>(y = (1 - g)x_j + gx_{j+1})</td>
<td>(x_0) is taken to be (x_1)</td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to (np)</td>
<td>(y = x_j)</td>
<td>Used when (g < \frac{1}{2}) or when (g = \frac{1}{2}) and (j) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_{j+1})</td>
<td>Used when (g = \frac{1}{2}) and (j) is odd or when (g > \frac{1}{2})</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>(y = x_j)</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_{j+1})</td>
<td>Used when (g > 0)</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at (x_{(n+1)p})</td>
<td>(y = (1 - g)x_j + gx_{j+1})</td>
<td>(x_{n+1}) is taken to be (x_n)</td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>(y = \frac{1}{2}(x_j + x_{j+1}))</td>
<td>Used when (g = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y = x_{j+1})</td>
<td>Used when (g > 0)</td>
</tr>
</tbody>
</table>

HEATMAP Statement

Creates a plot of color-coded rectangles for the response variable of a pair of X and Y variables after it bins the data in two dimensions.

Example: “About Heat Maps” on page 18

Syntax

HEATMAP X=variable Y=variable </option(s)>;

Summary of Optional Arguments

Appearance options

- \texttt{COLORMODEL=style-element | (color-list)}
 - specifies a color ramp that is to be used with the \texttt{COLORRESPONSE=} option.
- \texttt{COLORRESPONSE=numeric-variable}
 - specifies a numeric variable that is used to color the regions of the heat map.
- \texttt{COLORSTAT=FREQ | PCT | SUM | MEAN}
specifies the statistic to use for the COLORRESPONSE= variable.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

OUTLINE
displays an outline around each colored region.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

XENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

YENDLABELS
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Binning options

NXBINS=positive-integer
specifies the number of bins to use for the X role.

NYBINS=positive-integer
specifies the number of bins to use for the Y role.

XBINSIZE=positive-number
specifies the horizontal size of bins in X axis coordinate system units.

XBINSTART=positive-number
specifies the data value for the first bin of the X role.

YBINSIZE=positive-number
specifies the vertical size of bins in Y axis coordinate system units.

YBINSTART=positive-number
specifies the data value for the first bin of the Y role.

Data options

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Data tip options

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

\texttt{TIPFORMAT=\{format-list\}}

applies formats to the list of data tip roles that you specify in the TIP= option.

\texttt{TIPLABEL=\{label-list\}}

applies labels to the list of data tip roles that you specify in the TIP= option.

\textbf{Plot options}

\texttt{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data.

\texttt{WEIGHT=numeric-variable}

specifies a variable that contains values to be used as weights for the calculations.

\textbf{Plot reference options}

\texttt{NAME=\textquoteright\texttt{text-string\textquoteright\}}

assigns a name to a plot statement.

\textbf{Required Arguments}

\texttt{X=variable}

specifies the variable for the X axis.

Requirement If you specify a numeric variable and the X axis type is discrete, then you must also specify \texttt{DISCRETEX} in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

\texttt{Y=variable}

specifies the variable for the Y axis.

Requirement If you specify a numeric variable and the Y axis type is discrete, then you must also specify \texttt{DISCRETEY} in the HEATMAP statement. Otherwise, the heat map might not be drawn correctly.

\textbf{Optional Arguments}

\texttt{COLORMODEL=\texttt{style-element} \textbar{} \texttt{\{color-list\}}}

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\texttt{style-element}

specifies the name of a style element. The style element should contain these style attributes:

\texttt{STARTCOLOR}

specifies the color for the smallest data value of the COLORRESPONSE= column.

\texttt{NEUTRALCOLOR}

specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

\texttt{ENDCOLOR}

specifies the color for the highest data value of the COLORRESPONSE= column.

\textbf{Example}

\texttt{colormodel=TwoColorRamp}
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numer-ic-vari-able
specifies a numeric variable that is used to color the regions of the heat map.

Tip The color ramp is specified by the COLOmODEL= option. The color ramp represents the range of unique response values.

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for the COLORRESPONSE= variable.

Defaults FREQ

SUM if COLORRESPONSE= is specified

DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

Requirement If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Requirement If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

Default The TRANSPARENCY= option value.

Range 0 (opaque) to 1 (entirely transparent)
Interaction This option overrides the TRANSPARENCY= option for the filled region only.

Tip You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:

```
outline transparency=0.2 fillattrs=(transparency=0.6)
```

FREQ=numeric-variable

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

NAME=“text-string”

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The **text-string** is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NXBINS=positive-integer

specifies the number of bins to use for the X role. The system determines the XBINSIZE= and XBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.

Range 2 or more

See “Binning Options” on page 758

NYBINS=positive-integer

specifies the number of bins to use for the Y role. The system determines the YBINSIZE= and YBINSTART= values, if not specified. The bins always span the range of the data.

Default Determined by the system.

Range 2 or more

See “Binning Options” on page 758

OUTLINE

displays an outline around each colored region.

Default No outline is displayed
OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default

GraphOutlines style element in the current style. The affected attributes
are ContrastColor, LineStyle, and LineThickness.

Interaction

This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

Default

Without this option, a standard axis is used, ignoring bin boundaries
and midpoints.

Restriction

This option is ignored when a BY variable is used and uniform axis
scaling is specified. (You specify uniform axis scaling using the
UNIFORM= option in the PROC SGPLOT statement.)

Interaction

When this option is used, the XENDLABELS= option determines how
the axis ticks and value labels are displayed. When this option is not
specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

Default

Without this option, a standard axis is used, ignoring bin boundaries
and midpoints.

Restriction

This option is ignored when a BY variable is used and uniform axis
scaling is specified. (You specify uniform axis scaling using the
UNIFORM= option in the PROC SGPLOT statement.)

Interaction

When this option is used, the YENDLABELS= option determines how
the axis ticks and value labels are displayed. When this option is not
specified, the YENDLABELS= option is ignored.

TIP=(role-list) | NONE
specifies the information to display when the cursor is positioned over a rectangle.

(role-list)

a space-separated list of unique heat map roles enclosed in parentheses. The roles
for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the
data obtained from the specified roles.
NONE

suppresses the data tips from this plot.

Requirement

You must specify the **IMAGEMAP=ON** option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```tip=(x y)```

TIPFORMAT=(format-list)

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the **format-list** and the **role-list** that is specified for the TIP= option. A format must be provided for each role, using the same order as the **role-list**. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or **BEST6** if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

See

SAS Viya Formats and Informats: Reference

Example

```tipformat=(auto F5.2)```

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the **label-list** and the **role-list** that is specified for the TIP= option. A label must be provided for each role, using the same order as the **role-list**. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**

A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**

This option has no effect unless TIP= is also specified.

**Tip**

Use the TIPFORMAT option to assign formats to the list of roles.
Example

tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0
Range: 0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**XBINSIZE=positive-number**
specifies the horizontal size of bins in X axis coordinate system units. The system determines the NxBINS= and XBINSTART= values, if not specified. The bins always span the X data range.

Default: Determined by the system.
See “Binning Options” on page 758

**XBINSTART=positive-number**
specifies the data value for the first bin of the X role. The system determines the NxBINS= and XBINSIZE= values, if not specified. The bins always span the X data range.

Default: Determined by the system.
See “Binning Options” on page 758

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

Default: If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.
Interaction: This option has no effect unless the SHOWXBINS option is also used.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**YBINSIZE=positive-number**
specifies the vertical size of bins in Y axis coordinate system units. The system determines the NyBINS= and YBINSTART= values, if not specified. The bins always span the Y data range.

Default: Determined by the system.
See “Binning Options” on page 758

**YBINSTART=** *positive-number*

specifies the data value for the first bin of the Y role. The system determines the NYBINS= and YBIN SIZE= values, if not specified. The bins always span the Y data range.

Default: Determined by the system.

See “Binning Options” on page 758

**YENDLABELS**

specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

Default: If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints.

Interaction: This option has no effect unless the SHOWYBINS option is also used.

**Details**

**Binning Options**

**Overview of Binning Options**

In a heat map, each variable range is subdivided into equal size bins to create a rectangular grid of bins. The number of observations that fall into each bin is computed, and the grid is displayed by coloring each bin with a shade of color computed from a color gradient. You can use the COLORRESPONSE= option to specify the variable that is used for the color gradient. You can also use the COLORSTAT= option to specify the statistic to apply to the variable.

*Note:* Although the examples in this section were created in the SGPLOT procedure, the general concepts apply also to heat maps in the SGPANEL procedure.

Heat maps have several options for controlling how bins are used to represent the data. You can do the following:

- specify the number of bins (SGPLOT procedure only)
- specify the bin size
- specify the bin start values

The following sections describe the binning options and show how they interact.
The examples are all based on the following simple program:

```sas
ods graphics / width=4.5in;
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city;
run;
ods graphics / reset=all;
```

**Specifying the Number of Bins**

The NXBINS= and NYBINS= options specify the number of bins to use for the X role and the Y role respectively. The system determines the bin size and bin start values, if not specified.

*Note:* The NXBINS= and NYBINS= options are available only in the SGPLOT procedure. In the SGPANEL procedure, you can manage bins using the options to control bin size and bin start values.

In the following example, the number of bins is reduced to 11 on both axes. The example uses the SHOWYBINS option to make it easier to see the number of bins along the Y axis.

The following occur when you run this example:

- fewer bins are used to represent the data.
- because the bins always span the range of the data, the size of each bin increases. If you also specify the XBINSIZE, YBINSIZE, or both options, those options are ignored in order to accommodate the data.

```sas
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city /
 nxbins=11
 nybins=11 showybins;
run;
```

Conversely, if you increase the number of bins, more bins are available to represent the data, and the size of each bin decreases.

**Specifying the Bin Size**

The XBINSIZE= and YBINSIZE= options specify the size of bins along the X role and the Y role in their respective data units. The system determines the number of bins and the bin start values, if not specified.

In the following example, the bin size is increased for both the X and Y roles.

```sas
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city /
 nxbins=11
 nybins=11 showybins;
run;
```
The following occur when you run this example:

- the size of each bin increases.
- because the bins always span the range of the data, fewer bins are used to represent the data.

```plaintext
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city / xbinsize=500 ybinsize=5;
run;
```

**Specifying the Bin Start Values**

The XBINSTART= and YBINSTART= options specify the data value for the first bin of the X and Y roles, respectively. The system determines the number of bins and the bin size, if not specified.

In the following example, the bin start values are increased for both the X and Y roles.

The following occur when you run this example:

- bins are drawn only for the data that starts with the specified values. In this case, the bins represent the intersection of data values in which X >= 4000 and Y >= 20.
- because the bins always span the range of the data, the size of each bin increases and fewer bins are used to represent the data.

```plaintext
proc sgplot data=sashelp.cars;
 heatmap x=weight y=mpg_city /
 ybinstart=20 xbinstart=4000;
run;
```

**HEATMAPPARM Statement**

Creates a plot that represents the values of three variables. Generating an X, Y grid of rectangles from the values of two independent variables, it colors the rectangles to represent the values of a third variable, which can be a response variable or a group variable.

**Requirements:** The COLORGROUP= role or the COLORRESPONSE= role must be specified.
The data must have at least two bins for both the X and Y axes. Otherwise, the heat map is not drawn.

**Note:** The data for a parameterized heat map should contain only one observation for each X and Y value pair.

**Example:** “About Heat Maps” on page 18

### Syntax

```
HEATMAPPARM X=variable Y=variable
COLORGROUP=variable </option(s)>;
HEATMAPPARM X=variable Y=variable
COLORRESPONSE=numeric-variable </option(s)>;
```

### Summary of Optional Arguments

**Appearance options**

- **ATTRID=character-value**
  
  specifies the value of the ID variable in a discrete attribute map data set.

- **COLORMODEL=style-element | (color-list)**
  
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **FILLATTRS=(TRANSPARENCY=number)**
  
  specifies the transparency of the area fill in the rectangles.

- **NOMISSINGCOLOR**
  
  excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map.

- **OUTLINE**
  
  displays an outline around each colored region.

- **OUTLINEATTRS=style-element <(options)> | (options)**
  
  specifies the appearance of the rectangle outlines.

- **RATTRID=character-value**
  
  specifies the value of the ID variable in a range attribute map data set.

- **TRANSAPARENCY=value**
  
  specifies the degree of transparency for the plot.

- **XVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
  
  specifies whether the input X values represent midpoints, lower endpoints, or upper endpoints of the bins.

- **YVALUES=MIDPOINTS | LEFTPOINTS | RIGHTPOINTS**
  
  specifies whether the input Y values represent midpoints, lower endpoints, or upper endpoints of the bins.

**Axis options**

- **SHOWXBINS**
  
  specifies that bins be used as the basis for the X axis tick marks.

- **SHOWYBINS**
  
  specifies that bins be used as the basis for the Y axis tick marks.

- **X2AXIS**
  
  assigns the X variable to the secondary (top) horizontal axis.

- **XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**YENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the Y axis.

**Data options**

**DISCRETEX**
forces the X axis to be discrete when the X= variable is numeric.

**DISCRETEY**
forces the Y axis to be discrete when the Y= variable is numeric.

**Data tip options**

**TIP=(role-list) | NONE**
specifies the information to display when the cursor is positioned over a rectangle.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=(label-list)**
applies labels to the list of data tip roles that you specify in the TIP= option.

**Plot options**

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME="text-string"**
assigns a name to a plot statement.

**Required Arguments**

**X=variable**
specifies the variable for the X axis.

**Requirement**
If you specify a numeric variable and the X axis type is discrete, then you must also specify DISCRETEX in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

**Y=variable**
specifies the variable for the Y axis.

**Requirement**
If you specify a numeric variable and the Y axis type is discrete, then you must also specify DISCRETEY in the HEATMAPPARM statement. Otherwise, the heat map might not be drawn correctly.

**COLORGROUP=variable**
specifies a variable that is used to color the regions of the heat map.

**Requirement**
This argument is required when the response variable is of type discrete.
COLORRESPONSE=numeric-variable
specifies a numeric variable that is used to color the regions of the heat map.

Requirement  This argument is required when the response variable is of type interval.

Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

Note: This feature applies to the COLORGROUP variable in the heat map.

See  Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.
DISCRETEX
forces the X axis to be discrete when the X= variable is numeric.

Requirement  If X= specifies a numeric variable and the X axis type is discrete, then you must specify DISCRETEX. Otherwise, the heat map might not be drawn correctly.

Interaction  If X= specifies a character variable, then this option is ignored, and the X axis is considered to be discrete.

DISCRETEY
forces the Y axis to be discrete when the Y= variable is numeric.

Requirement  If Y= specifies a numeric variable and the Y axis type is discrete, then you must specify DISCRETEY. Otherwise, the heat map might not be drawn correctly.

Interaction  If Y= specifies a character variable, then this option is ignored, and the Y axis is considered to be discrete.

FILLATTRS=(TRANSPARENCY=number)
specifies the transparency of the area fill in the rectangles.

Default  The TRANSPARENCY= option value.

Range  0 (opaque) to 1 (entirely transparent)

Interaction  This option overrides the TRANSPARENCY= option for the filled region only.

Note  The fill colors are determined by the COLORRESPONSE= or COLORGROUP= variable.

Tip  You can combine this option with TRANSPARENCY= to set one transparency for the outline but a different transparency for the fill. Example:
    outline transparency=0.2 fillattrs=(transparency=0.6)

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCOLOR
excludes missing values of the COLORGROUP= variable or of the COLORRESPONSE= variable from the heat map. If missing color values are present, observations with missing COLORGROUP= or COLORRESPONSE= values are not displayed in the heat map. However, their values are still represented on the axis.

Default  Without this option, missing values are included in the heat map. The attributes of the missing value are determined by the GraphMissing style element unless a discrete attribute map is in effect, the MISSING= system
option changes the default missing character, or a user-defined format is applied to the group value. In those cases, the attributes of the missing group value are determined by a GraphData1–GraphDataN style element instead of by the GraphMissing style element.

OUTLINE

displays an outline around each colored region.

Default  No outline is displayed

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the rectangle outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default  GraphOutlines style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction  This option has no effect unless OUTLINE is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See  Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SHOWXBINS
specifies that bins be used as the basis for the X axis tick marks.

Default  Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction  This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)

Interaction  When this option is used, the XENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the XENDLABELS= option is ignored.

SHOWYBINS
specifies that bins be used as the basis for the Y axis tick marks.

Default  Without this option, a standard axis is used, ignoring bin boundaries and midpoints.

Restriction  This option is ignored when a BY variable is used and uniform axis scaling is specified. (You specify uniform axis scaling using the UNIFORM= option in the PROC SGPLOT statement.)
Interaction

When this option is used, the YENDLABELS= option determines how the axis ticks and value labels are displayed. When this option is not specified, the YENDLABELS= option is ignored.

**TIP=(role-list) | NONE**

specifies the information to display when the cursor is positioned over a rectangle.

(role-list)

a space-separated list of unique heat map roles enclosed in parentheses. The roles for TIP include X, Y, and COLORRESPONSE. Data tips are displayed using the data obtained from the specified roles.

NONE

suppresses the data tips from this plot.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```sql
ODS GRAPHICS ON / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

tip=(x y)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL option to assign labels to the list of roles.

See

*SAS Viya Formats and Informats: Reference*

Example

tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.
A one-to-one correspondence exists between the *label-list* and the *role-list* that is specified for the TIP= option. A label must be provided for each role, using the same order as the *role-list*. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of roles.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**XENDLABELS**
specifies that axis ticks and value labels are drawn at the endpoints of the bins for the X axis.

**Default**
If this option is not used, then the axis ticks and value labels are drawn at the bin midpoints. This is true regardless of whether the XVALUES= option identifies the X data as endpoint values or midpoint values.

**Interaction**
This option has no effect unless the SHOWXBINS option is also used.
**HIGHLOW Statement**

Creates a display of floating vertical or horizontal lines or bars that represent high and low values. The statement also gives you the option to display open and close values as tick marks and to specify a variety of plot attributes.

**Note:** This plot does not summarize data. If multiple observations have the same X or Y value, the observations are all plotted separately based on their values.

**Examples:**

"About High-Low Plots" on page 20
"Example 11: Creating a High-Low Chart" on page 1199

**Syntax**

```
HIGHLOW X=variable | Y=variable
HIGH=numeric-variable LOW=numeric-variable </option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  
  specifies the value of the ID variable in a discrete attribute map data set.

- **BARWIDTH=numeric-value**
  
  specifies the width of the bars as a ratio of the maximum possible width.

- **CLIPCAP**
  
  displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range.
CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW
   specifies the type of cap used for the clip cap.

COLORMODEL=style-element | (color-list)
   specifies a color ramp that is to be used with the COLORRESPONSE=
   option.

COLORRESPONSE=numeric-column
   specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
   specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
   specifies an amount to offset all lines or bars from the category midpoints.

FILL | NOFILL
   specifies whether the area fill is visible for bars.

FILLATTRS=style-element <(options)> | (options)
   specifies the fill color and transparency.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
   specifies the type of cap used at the high end of the bar or line.

INTERVALBARWIDTH=numeric-value
   specifies the thickness of the bar when the X (or Y) data is numeric.

LINEATTRS=style-element <(options)> | (options)
   specifies the appearance of the outlines for the band.

LOWLABEL=variable
   specifies the label to be shown at the low end of the line or bar.

OUTLINE | NOOUTLINE
   specifies whether the outlines of the bars are visible.

RATTRID=character-value
   specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
   specifies the degree of transparency for the plot.

Axis options

   X2AXIS
   assigns the X variable to the secondary (top) horizontal axis.

   Y2AXIS
   assigns the Y variable to the secondary (right) vertical axis.

Data tip options

   TIP=(variable-list) | NONE
   specifies the data tip information to be displayed when the cursor is
   positioned over the graphics element.

   TIPFORMAT=(format-list)
   applies formats to the list of data tip variables that you specify in the TIP=
   option.

   TIPLABEL=(label-list)
   applies labels to the list of data tip variables that you specify in the TIP=
   option.

Group options

   CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the maximum width.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=OVERLAY | CLUSTER
specifies how to display grouped data.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

HIGHLABEL=variable
specifies the label to be shown at the high end of the line or bar.

LABELATTRS=style-element< (options)> | (options)
specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options.

LEGENDLABEL="text-string"
specifies a label that identifies the elements from the band plot in the legend.

Plot options

CLOSE=numeric-variable
specifies the data for the CLOSE tick on the bar or line.

LOWCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
specifies the type of cap used at the low end of the bar or line.

OPEN=numeric-variable
specifies the data for the OPEN tick on the bar or line.

TYPE=BAR | LINE
specifies how the data is to be represented.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME=“text-string”
assigns a name to a plot statement.

Required Arguments

X=variable | Y=variable
specifies a variable that is used to plot the values along the N or Y axis.

Note If you specify X=variable, then the statement creates vertical lines or bars on the X axis and the HIGH and LOW values are plotted along the Y axis. Conversely, if you specify Y=variable, then the statement creates horizontal lines or bars on the Y axis and the HIGH and LOW values are plotted along the X axis.

HIGH=numeric-variable
specifies the upper value for the floating lines or bars.

LOW=numeric-variable
specifies the lower value for the floating lines or bars.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no distance between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default 0.85

Requirement This option is applicable only when the X or Y axis is discrete.

Interaction This option has no effect unless TYPE=BAR.

CLIPCAP

displays a clip indicator cap at the end of a bar or line when the bar or line extends beyond the axis range. The cap indicates where clipping has occurred. When the MIN= and MAX= axis options are specified for an axis and a data value exceeds the specified axis range, the bar or line for that value is clipped. If the bar or line already has a high or low cap, it is replaced by the clip cap.

For vertical bars, the clip cap is added to the end of the bar that is clipped by the Y axis range. The cap is a vertical arrowhead that points toward the clip edge (▼ or ▲).

For horizontal bars, the clip cap is added to the end of the bar that is clipped by the X axis range. The cap is a horizontal arrowhead that points toward the clip edge (◀ or ▶).

If an entire bar or line is clipped, a clip cap is displayed at the high or low side where the bar or line was clipped.

Interactive Clip indicators appear only when CLIPCAP is specified and the data values exceed the axis range that is specified by the MIN= and MAX= options. When the MIN= and MAX= options are not specified, the axis range is adjusted to accommodate the data values, and clipping does not occur.

When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

Note When the high-low TYPE=LINE, you can change the appearance of the clip cap using the CLIPCAPSHAPE= option.

Tip If you specify the HIGHLABEL or LOWLABEL option, and the bar or line is clipped, the label value is still drawn outside the tip of the clip cap. If the entire bar or line is clipped, no labels are shown.
CLIPCAPSHAPE= DEFAULT | SERIF | BARBEDARROW | CLOSEDARROW | OPENARROW

specifies the type of cap used for the clip cap.

The following table shows each clip-cap shape.

<table>
<thead>
<tr>
<th>DEFAULT</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚰️</td>
<td>⬅️</td>
<td>➡️</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLOSEDARROW</th>
<th>OPENARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚰️</td>
<td>⬅️</td>
</tr>
</tbody>
</table>

Default: DEFAULT

Requirement: The shape can be changed only when TYPE=LINE (the default value).

CLOSE=numeric-variable

specifies the data for the CLOSE tick on the bar or line. For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has higher X values. For a horizontal plot, the value is represented by an indicator on the side with higher Y values.

CLUSTERWIDTH=numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Requirement: This option is applicable only when the X or Y axis is discrete.

Interactions: This option is applicable only when TYPE=BAR.

This option is applicable only when the GROUP option is specified and GROUPDISPLAY=CLUSTER.

COLORMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp
(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 683
“Using Gradient Color Legends” on page 1262

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 5.11 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="MATTE" /></td>
<td><img src="image" alt="PRESSED" /></td>
<td><img src="image" alt="SHEEN" /></td>
</tr>
</tbody>
</table>

High-low plots can specify lines rather than bars.

Table 5.12 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

If you also specify NOFILL, then the data skin is applied to the outlines.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all lines or bars from the category midpoints. Specify a value from -0.5 (left offset) to +0.5 (right offset).

The default status of the area fill is specified by the DisplayOpts attribute of the GraphBand style element in the current style.

This option is applicable only when the X or Y axis is discrete.

This option has no effect unless TYPE=BAR.

Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

The Color attribute of the GraphData1Confidence style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

This option has no effect if you specify the NOFILL option.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=OVERLAY | CLUSTER**

specifies how to display grouped data.

**OVERLAY**

groups are overlaid without any clustering. Each group is represented by unique visual attributes derived from the GraphData1... GraphData_n style elements in the current style.

**CLUSTER**

observations with different group values are displayed in adjacent clusters around the category value. Each set of group values is centered at the midpoint tick mark for the category.

**Default**

OVERLAY

**Restriction**

GROUPDISPLAY=CLUSTER has no effect unless the X or Y axis is discrete.

**Interactions**

GROUPDISPLAY=CLUSTER is applicable only when TYPE=BAR.

This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**

orders the groups within a category in data order of the group variable.

*Note:* This value is not supported with SAS Cloud Analytic Services (CAS) data.

**REVERSEDATA**

orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

*Note:* This value is not supported with CAS data.

**ASCENDING**

orders the groups within a category in ascending order of the group variable.
DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA. If using CAS data, the default is ASCENDING.

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

This option is applicable only when GROUPDISPLAY=CLUSTER and TYPE=BAR.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note
The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

HIGHCAP=character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW
specifies the type of cap used at the high end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

• When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
• When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
• When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.
The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

**Figure 5.3** Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>Caps Style</th>
<th>NONE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Diagram of Caps Styles]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

Interaction: When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**HIGHLABEL=** *variable*

specifies the label to be shown at the high end of the line or bar.

**INTERVALBARWIDTH=** *numeric-value*

specifies the thickness of the bar when the X (or Y) data is numeric.

Default: The default thickness of the bar is derived from the minimum interval between the data values along X or Y.

Requirement: This option is applicable only when the X or Y axis is a linear axis or a TIME axis.

Interaction: This option has no effect unless TYPE=BAR.

**LABELATTRS=** *style-element <(options)> | (options)*

specifies the appearance of the labels in the plot when you use the HIGHLABEL= option, the LOWLABEL= option, or both options. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults: Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

**Examples**

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

**LEGENDLABEL=**`"text-string"`  
specifies a label that identifies the elements from the band plot in the legend. By default, the label “band” is used for ungrouped data, and the group values are used for grouped data.

**Interaction**  
The LEGENDLABEL= option has no effect if you also specify the GROUP= option.

**LINEATTRS=**`
style-element (options) | (options)`  
specifies the appearance of the outlines for the band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**  
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**Interaction**  
This option has no effect unless you also specify the OUTLINES option.

**LOWCAP=**`character-variable | NONE | SERIF | BARBEDARROW | FILLEDARROW | OPENARROW | CLOSEDARROW`  
specifies the type of cap used at the low end of the bar or line. You can specify one of the keywords, or you can specify a character variable that contains one of the keywords.

All of the keywords can be specified for any high-low chart. However, the effect of each keyword depends on the setting for the TYPE= option and also the fill state of the bars, when displayed:

- When TYPE=BAR and the bars are filled, FILLEDARROW is used for all settings other than NONE.
- When TYPE=BAR and the bars are not filled, CLOSEDARROW is used for all settings other than NONE.
- When TYPE=LINE and CLOSEDARROW is specified, FILLEDARROW is used instead.
The following figure shows the effect of each cap value on horizontal lines, filled bars, and unfilled bars.

**Figure 5.4** Horizontal High and Low Cap Shapes for Lines, Filled Bars, and Unfilled Bars

<table>
<thead>
<tr>
<th>NONE</th>
<th>SERIF</th>
<th>BARBEDARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="NONE" /></td>
<td><img src="image2" alt="SERIF" /></td>
<td><img src="image3" alt="BARBEDARROW" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FilledArrow</th>
<th>OpenArrow</th>
<th>ClosedArrow</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image4" alt="FilledArrow" /></td>
<td><img src="image5" alt="OpenArrow" /></td>
<td><img src="image6" alt="ClosedArrow" /></td>
</tr>
</tbody>
</table>

**Default** NONE

**Restriction** Caps are not displayed for very short bars. Bar height must be at least twice the size of the cap in order for the cap to appear.

**Interaction** When TYPE=BAR, the caps are drawn to fit within the bar width. The width of the bar itself might be reduced.

**LOWLABEL=** *variable*

Specifies the label to be shown at the low end of the line or bar.

**NAME=** "*text-string*"

Assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

Specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**OPEN=** *numeric-variable*

Specifies the data for the OPEN tick on the bar or line.

For a vertical plot, the tick value is represented by an indicator on the side of the bar or line that has lower X values. For a horizontal plot, the value is represented by an indicator on the side with lower Y values.

**OUTLINE | NOOUTLINE**

Specifies whether the outlines of the bars are visible. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.
**Default**
- OUTLINE

**Interactions**
- This option has no effect unless TYPE=BAR.
- Specifying OUTLINE also hides the fill color.
- If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**RATTRID=** *character-value*

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**See** Chapter 13, “Using Range Attribute Maps,” on page 1331 “Overview of Attribute Maps” on page 1315

**TIP=** *(variable-list) | NONE*

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

*(variable-list)*

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

**NONE**

suppresses the data tips from this plot.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```latex
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)

**TIPFORMAT=** *(format-list)*

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

TYPE=BAR | LINE

specifies how the data is to be represented. BAR uses fill and outline attributes. LINE uses line attributes.

Default  LINE

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

---

**HISTOGRAM Statement**

Creates a histogram that displays the frequency distribution of a numeric variable.

**Interaction:**
The HISTOGRAM statement can be combined only with DENSITY statements in the SGPLOT procedure.

**Note:**
The range of the response variable is automatically divided into an appropriate number of bins.

**Examples:**
“About Histograms” on page 42
“Example 8: Combining Histograms with Density Plots” on page 1195

---

**Syntax**

```
HISTOGRAM response-variable <option(s)>;
```

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value`
  specifies the value of the ID variable in a discrete attribute map data set.

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
  specifies a special effect to be used on the plot.

- `FILL | NOFILL`
  specifies whether the area fill is visible.

- `FILLATTRS=style-element <(options)> | (options)`
  specifies the fill color and transparency.

- `FILLTYPE=SOLID | GRADIENT`
  specifies the fill type that is applied to the chart.

- `OUTLINE | NOOUTLINE`
  specifies whether outlines are displayed for the bars.

- `TRANSPARENCY=value`
  specifies the degree of transparency for the plot.

**Axis options**

- `X2AXIS`
  assigns the response variable to the secondary (top) horizontal axis.

- `Y2AXIS`
  assigns the calculated values to the secondary (right) vertical axis.
Group options

\texttt{GROUP=variable}

specifies a variable that is used to group the data.

Label options

\texttt{DATALABEL <= NONE \mid AUTO \mid COUNT \mid DENSITY \mid PERCENT PROPORTION>}

specifies the statistic to display at the end of each bin.

\texttt{LEGENDLABEL="text-string"}

specifies a label that identifies the histogram in the legend.

Plot options

\texttt{BINSTART=numeric-value}

specifies the X coordinate of the first bin.

\texttt{BINWIDTH=numeric-value}

specifies the bin width.

\texttt{BOUNDARY=LOWER \mid UPPER}

specifies how boundary values are assigned to bins.

\texttt{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data.

\texttt{NBINS=numeric-value}

specifies the number of bins.

\texttt{SCALE=COUNT \mid PERCENT \mid PROPORTION}

specifies the scaling that is applied to the vertical axis.

\texttt{SHOWBINS}

specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis.

\texttt{WEIGHT=numeric-variable}

specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Plot reference options

\texttt{NAME="text-string"}

assigns a name to a plot statement.

Required Argument

\texttt{response-variable}

specifies the response variable for the histogram.

Optional Arguments

\texttt{ATTRID=character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315
**BINSTART=** *numeric-value*

specifies the X coordinate of the first bin. Use this option in conjunction with the BINWIDTH= or NBINS= options to specify bins. If neither BINWIDTH= nor the NBINS= option is specified, the system determines the number of bins. If the BINSTART value results in excluding the entire range of data, it is ignored and the default BINSTART value is used.

**Default** The default value is determined by the system.

**BINWIDTH=** *numeric-value*

specifies the bin width. The system determines the number of bins. The bins always span the range of the data.

**Default** The default value is determined by the system.

**Restriction** The maximum number of bins is limited to approximately 10,000. If the number of bins computed from the data and the BINWIDTH= value exceeds 10,000, SAS computes a new bin-width value that yields approximately 10,000 bins. A warning of the change is written to the SAS log.

**Interactions** This option is ignored if the NBINS= option is also specified.

**BOUNDARY=** LOWER | UPPER

specifies how boundary values are assigned to bins.

- **LOWER** specifies that boundary values are assigned to the lower bin.
- **UPPER** specifies that boundary values are assigned to the upper bin.

**Default** UPPER

**DATALABEL <= NONE | AUTO | COUNT | DENSITY | PERCENT | PROPORTION>**

specifies the statistic to display at the end of each bin. You can specify one of the following:

- **NONE** suppresses the data labels.
- **AUTO** uses the SCALE= option value. By default, SCALE=PERCENT.
- **COUNT | DENSITY | PERCENT | PROPORTION** specifies that the count, density, percentage, or proportion statistic is to be displayed at the end of each bar.

**Default** If DATALABEL is specified without a value, then the default is AUTO.

**Interaction** When DATALABEL=AUTO, the SCALE= option determines the statistic that is displayed at the end of each bar.

**DATASKIN=** NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all filled bins. The effect that a data skin has on a filled area depends on the skin type, the graph
style, and the color of the skinned element. Most of the skins work best with lighter
colors over a medium to large filled area. Specify one of the following:

Table 5.13  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="NONE.png" alt="Image" /></td>
<td><img src="CRISP.png" alt="Image" /></td>
<td><img src="GLOSS.png" alt="Image" /></td>
</tr>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
<tr>
<td><img src="MATTE.png" alt="Image" /></td>
<td><img src="PRESSED.png" alt="Image" /></td>
<td><img src="SHEEN.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Default  NONE

Restriction  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction  If you also specify NOFILL, then the data skin is applied to the outlines.

FILL | NOFILL

specifies whether the area fill is visible. The FILL option shows the area fill. The NOFILL option hides the area fill.

Default  The default status of the area fill is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.

Interactions  Specifying FILL also hides any visible outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

0.0 transparency

Interaction  This option has no effect if you specify the NOFILL option.

FILLTYPE=SOLID | GRADIENT

specifies the fill type that is applied to the chart.
SOLID

- each bin is filled with the color that is assigned to the bin fill area.

GRADIENT

- a gradient is used to determine the fill color. Each bin is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bin to fully transparent at the baseline.

Interaction

- Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

- Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

- SOLID

Interaction

- This option has no effect if NOFILL is also specified.

FREQ=numeric-variable

- specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restriction

- If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note

- If the value is not an integer, only the integer portion is used.

GROUP=variable

- specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Tip

- ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL="text-string"

- specifies a label that identifies the histogram in the legend. By default, the label of the response variable is used.

NAME="text-string"

- assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

- The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

- This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NBINS=numeric-value

- specifies the number of bins. The system determines the BINWIDTH= value. The bins always span the range of the data.

- The procedure attempts to produce tick values that are easily interpreted (for example, 5, 10, 15, 20). The procedure sometimes adjusts the location of the first bin and the bin width accordingly. As a result, the number of bins shown in the plot might not exactly match the number specified with NBINS=. 

Chapter 5 • SGPLOT Procedure
The default number of bins is determined by the system.

Range 2 to 10,000

OUTLINE | NOOUTLINE
specifies whether outlines are displayed for the bars. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default The default status of the outlines is specified by the DisplayOpts attribute of the GraphHistogram style element in the current style.

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

SCALE=COUNT | PERCENT | PROPORTION
specifies the scaling that is applied to the vertical axis. Specify one of the following values:

COUNT the axis displays the frequency count.

PERCENT the axis displays values as a percentage of the total.

PROPORTION the axis displays values as proportions (0.0 to 1.0) of the total.

Default PERCENT

SHOWBINS
specifies that the midpoints of the value bins are used to create the tick marks for the horizontal axis. By default, the tick marks are created at regular intervals based on the minimum and maximum values.

TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable in the input data set that contains values to be used as weights for bin-width calculations.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

X2AXIS assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS assigns the calculated values to the secondary (right) vertical axis.
**HLINE Statement**

Creates a horizontal line chart. You can use the HLINE statement with the HBAR statement to create a horizontal bar-line chart.

**Interaction:** The HLINE statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1258.

**Example:** “About Line Charts” on page 50

**Syntax**

```
HLINE category-variable <(option(s))>
```

**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=character-value**
  - specifies the value of the ID variable in a discrete attribute map data set.

- **BREAK**
  - breaks the line whenever the computed statistic for a category value is missing.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
  - specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
  - specifies an amount to offset all lines from the discrete category values.

- **LINEATTRS=style-element <(options)> | (options)**
  - specifies the appearance of the lines in the line plot.

- **TRANSPARENCY=value**
  - specifies the degree of transparency for the plot.

**Axis options**

- **X2AXIS**
  - assigns the response variable to the secondary (top) horizontal axis.

- **Y2AXIS**
  - assigns the category variable to the secondary (right) vertical axis.

**Data tip options**

- **TIP=(variable-list) | NONE**
  - specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=(format-list)**
  - applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=(label-list)**
  - applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- **CLUSTERWIDTH=numeric-value**
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

CURVELABEL <="text-string">
adds a label for the line.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <="variable">
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=DATA | LEFT | RIGHT
specifies the location of the data label.

LEGENDLABEL="#text-string" 
specifies the label that identifies the line plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options
FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data.

MISSING
groups data, processes missing values as a valid category value and creates a line for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the horizontal axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the lines.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.
If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BREAK
breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.

Interaction This option is ignored when the Y axis is discrete and the MISSING option is specified. To break the line at missing values in that case, remove the MISSING option.

Note The observation is excluded from the graph when there is a missing value for the FREQ variable.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC
sorts by the response values in ascending order.

RESPDESC
sorts by the response values in descending order.

Default By default, the plot is sorted in ascending order based on the category values.

Restrictions This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.
When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=** numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

**Default**

0.8

**Interactions**

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**CURVELABEL.**<="text-string”>

adds a label for the line. You can also specify the label text. If you do not specify a label, then the label from the response variable is used.

**Interaction**

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

**CURVELABELATTRS=**style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS= (Color=Green Family=Arial Size=8
Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.
This option has no effect unless the DATALABEL option is also specified.

**Examples**

    DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

    DATALABELATTRS=GraphLabelText

**DATALABELPOS**

<table>
<thead>
<tr>
<th>DATA</th>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>places the label on the data primitives (at the right edge of the lines).</td>
<td>places the label to the left of the lines.</td>
<td>places the label to the right of the lines.</td>
</tr>
</tbody>
</table>

**Default**

DATA

**Interactions**

This option has no effect unless you also specify the DATALABEL option.

This option displays limit information when limits are specified.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

**DATASKIN**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a special effect to be used on the plot. The data skin affects all plot lines.</td>
<td>Specify one of the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 5.14  DATASKIN Options for Lines**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

**Table 5.15  DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATA\SKIN\MAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATA\SKIN\MAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=**\textit{numeric-value}

specifies an amount to offset all lines from the discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKER\ATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILL\ATTRS= and MARKEROUTLINE\ATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**FREQ=**\textit{numeric-variable}

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=**\textit{variable}

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not
specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData...GraphData style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot. Specify one of the following values:

BOTH
adds lower and upper limit lines to the plot.

LOWER
adds lower limit lines to the plot.

UPPER
adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.
Interaction

Limit lines are displayed only when you specify STAT=MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
  confidence limits

STDDEV
  standard deviation

STDERR
  standard error

Default CLM

Interaction If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.
This option overrides any color that is specified with the MARKERATTRS= option.

**Tip**
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**MARKEROUTLINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

**Tip**
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**MARKERS**
adds markers to the plot.

**MISSING**
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

**NAME="text-string"**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note**
The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip**
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NUMSTD=n**
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.
RESPONSE=response-variable
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.
<table>
<thead>
<tr>
<th>Default</th>
<th>LEFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction</td>
<td>This option has no effect unless you specify the SPLITCHAR= option.</td>
</tr>
<tr>
<td>See</td>
<td>“Overview of Collision Avoidance” on page 1265</td>
</tr>
</tbody>
</table>

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**

specifies the statistic for the horizontal axis. Specify one of the following:

**FREQ**
the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

**MEAN**
the mean of the response variable.

**MEDIAN**
the median of the response variable.

**PERCENT**
the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

**Alias**
PCT

**Interactions**
The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the =PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

**Note**
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

**SUM**
the sum of the response variable. This is the default value when you specify the RESPONSE= option.
For this value to take effect, you must also specify the RESPONSE= option.

SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.

If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
Example  tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

See  *SAS Viya Formats and Informats: Reference*

Example  tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPLABEL= option to assign labels to the list of variables.

Example  tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement  The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction  If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

INSET Statement
Adds a text box inside the axes of the plot.

Example:  “About Text Insets” on page 32

Syntax
INSET "text-string" <… "text-string-n"> </option(s)>;
INSET (label-list) </option(s)>;

Summary of Optional Arguments

Appearance options
-  BORDER | NOBORDER
  specifies whether to display a border around the text box.
-  LABELALIGN=LEFT | CENTER | RIGHT
  specifies how the labels are aligned when you specify label-value pairs.
POSITION=position-value
specifies the position of the text box within the plot.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the text box.

TITLE=“text-string”
specifies a title for the text box.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEALIGN=LEFT | CENTER | RIGHT
specifies how text values are aligned.

**Required Argument**

text-string-list | (label-list)
you must specify one of the following arguments:

**text-string-list**
specifies one or more quoted text strings. Each string is placed on a separate line in the text box (for example, "My line 1" "My line 2").

**Tip** You can use the VALUEALIGN= option to align the text values. They can be centered in the graph, or right- or left-justified.

**(label-list)**
specifies a series of quoted labels and values for the text box.

Specify your label-value pairs as follows:

("label-1" = "value-1" ... "label-n" = "value-n")

Here is an example: ("My label 1" = "My value 1" "My label 2" = "My value 2").

**Tip** You can use the LABELALIGN= and VALUEALIGN= options to align the labels and the values, respectively.

You can format the text in insets and add special characters using the following syntax:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<em>ESC</em>) {sup 'string'}</td>
<td>Specifies that the string appears as a superscript.</td>
</tr>
<tr>
<td>(<em>ESC</em>) {sub 'string'}</td>
<td>Specifies that the string appears as a subscript.</td>
</tr>
<tr>
<td>(<em>ESC</em>) {unicode 'hexadecimal-value'x }</td>
<td>Specifies a glyph (graphical character) to be displayed using its Unicode hexadecimal value or a SAS keyword equivalent.</td>
</tr>
</tbody>
</table>

**Note:** (*ESC*) is the default ODS escape character. You can set your own escape character with the ODS ESCAPECHAR="character"; statement.

In the following inset statement, the Greek letter alpha denotes the alpha value for the confidence limits in a graph. The R-Square value is displayed using the superscript format:

```
inset (*(*ESC*){unicode alpha}" = "0.05"
 "R(*ESC*){sup '2'}" = "0.7705") / border;
```
Here is the text inset for this example:

```
\begin{tabular}{ll}
 a & 0.05 \\
 R^2 & 0.7705 \\
\end{tabular}
```

**Optional Arguments**

**BORDER | NOBORDER**
specifies whether to display a border around the text box. The BORDER option displays the border. The NOBORDER option hides the border.

**LABELALIGN=LEFT | CENTER | RIGHT**
specifies how the labels are aligned when you specify label-value pairs. Specify one of the following:

- **LEFT**
  
  aligns the text to the left.

- **CENTER**
  
  aligns the text to the center.

- **RIGHT**
  
  aligns the text to the right.

Default: LEFT

**POSITION=position-value**
specifies the position of the text box within the plot. The position values are as follows:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>BottomLeft</th>
<th>BottomRight</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOP</td>
<td></td>
<td>TOpleft</td>
<td>TOPRight</td>
</tr>
<tr>
<td>LEFT</td>
<td></td>
<td>RIGHT</td>
<td></td>
</tr>
</tbody>
</table>

If you do not specify a position, then a position is determined automatically.

**TEXTATTRS=style-element <(options)> | (options)**
specifies the appearance of the text in the text box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

- Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

- GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

**Tip**

- The GraphDataText style element makes the text slightly smaller. The GraphLabelText style element makes the text slightly larger.
**KEYLEGEND Statement**

Adds a legend to the plot.

**Examples**
```
TEXTATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
TEXTATTRS=GraphDataText
```

**TITLE=**"text-string"
specifies a title for the text box. The title text is always center-aligned.

**TITLEATTRS=style-element <(options)> | (options)**
specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Examples**
```
TITLEATTRS=(Color=Green Family=Arial Size=8
 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
TITLEATTRS=GraphTitleText
```

**VALUEALIGN=LEFT | CENTER | RIGHT**
specifies how text values are aligned.

Use this option to specify either of the following:
- how the values are aligned when you specify quoted label-value pairs in a \((label-list)\)
- how the quoted strings are aligned when you specify a \(text-string-list\)

Specify one of the following values.

**LEFT**
aligns the text to the left.

**CENTER**
aligns the text to the center.

**RIGHT**
aligns the text to the right.

**Default** RIGHT
Examples:

“Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1191
“Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1193
“Example 8: Combining Histograms with Density Plots” on page 1195

Syntax

KEYLEGEND <"name-1" ..."name-n"> <option(s)>;

Summary of Optional Arguments

Appearance options

ACROSS=n
specifies the number of columns in the legend.

BORDER | NOBORDER
specifies whether the border around the legend is visible.

DOWN=n
specifies the number of rows in the legend.

LINELENGTH=dimension <units>
specifies the length of the line glyph for line entries in the legend.

LOCATION=OUTSIDE | INSIDE
specifies whether the legend is placed outside or inside the axis area.

OPAQUE | NOOPAQUE
OPAQUE removes the legend’s transparency.

OUTERPAD=dimension | (pad-options)
specifies the amount of extra space that is added outside the legend border.

POSITION=position-value
specifies the position of the legend within the graph.

TITLE="text-string"
specifies a title for the legend.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the legend value labels.

Legend options

EXCLUDE=(“item-name” <... “item-nameN” ...>)
specifies a list of legend entries to exclude from the display.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL
specifies which visual attributes to display for legend entries in the legend.

“name-1” ... “name-n”
specifies the names of one or more plots that you want to include in the legend.

Marker options

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels.
AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.

FILLASPECT=GOLDEN | positive-number
specifies an aspect ratio for the fill swatches based on their height.

FILLHEIGHT= dimension
specifies the height of the fill swatches.

SCALE=positive-number
specifies a scale factor that is to be applied to the fill swatch height.

Optional Arguments
“name-1” ... “name-n”
specifies the names of one or more plots that you want to include in the legend. Each name that you specify must correspond to a value that you entered for the NAME= option in a plot statement.

Default
If you do not specify a name, then the legend contains references to all of the plots in the graph.

Note
The names specified here determine which plots are included, but not the labels that appear in the legend for those plots. To specify labels, use the LEGENDLABEL= option on the plot statements.

ACROSS=n
specifies the number of columns in the legend. By default, the number of columns is determined automatically.

Note
Depending on the number of legend entries and the number of columns and rows that you specify, the legend might not fit in your graph. If your legend does not appear, then you might need to specify a different value for the ACROSS= option.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend value labels. These proportional sizes take effect regardless of the attributes that are used in the plot.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Asia Europe USA]</td>
<td>![Asia Europe USA]</td>
</tr>
</tbody>
</table>

Tip
Use the VALUEATTRS= option to control the font size for the legend value labels.

AUTOOUTLINE
specifies that the outline settings in the plot statements determine whether the fill swatches in the legend have outlines.
When this option is not specified, the legend fill swatches are always outlined.

The outlines are always 1 pixel wide with a solid pattern.

**BORDER | NOBORDER**
specifies whether the border around the legend is visible. The BORDER option shows the border. The NOBORDER option hides the border.

**DOWN=n**
specifies the number of rows in the legend. By default, the number of rows is determined automatically.

**EXCLUDE=("item-name" <... "item-nameN" ...>)**
specifies a list of legend entries to exclude from the display.

**FILLASPECT=GOLDEN | positive-number**
specifies an aspect ratio for the fill swatches based on their height.

**GOLDEN**
specifies the golden ratio of 1.618 (width = 1.618 * height).

**positive-number**
specifies a custom aspect ratio.

**FILLHEIGHT= dimension**
specifies the height of the fill swatches. You can also specify the unit of measure. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.
Interaction  This option is ignored when AUTOITEMSIZE is specified.

Tip  Use FILLASPECT= to specify the aspect ratio.

**LINELENGTH=**<i>dimension <units></i>

specifies the length of the line glyph for line entries in the legend. The default units for <i>dimension</i> are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default  The length is determined automatically by the system.

**LOCATION=**OUTSIDE | INSIDE

specifies whether the legend is placed outside or inside the axis area. The OUTSIDE option places the legend outside of the axis area. The INSIDE option places the legend inside the axis area.

Default  OUTSIDE

Interaction  If LOCATION=INSIDE and POSITION= is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see “Example 2: Legend with a Position Specified inside the Axis Area” on page 815.

**OPAQUE | NOOPAQUE**

OPAQUE removes the legend’s transparency. This feature is useful when the legend is positioned within the graph area, and you want to hide the graphics elements that are behind the legend.

Default  NOOPAQUE (the legend background is transparent)

**OUTERPAD=**<i>dimension | (pad-options)</i>

specifies the amount of extra space that is added outside the legend border.

<i>dimension</i>

specifies a dimension to use for the extra space at the left, right, top, and bottom of the legend border.

<i>(pad-options)</i>

a space-separated list of one or more of the following name-value pair options, enclosed in parentheses:

- **LEFT=**<i>dimension</i> specifies the amount of extra space added to the left side.
- **RIGHT=**<i>dimension</i> specifies the amount of extra space added to the right side.
- **TOP=**<i>dimension</i> specifies the amount of extra space added to the top.
- **BOTTOM=**<i>dimension</i> specifies the amount of extra space added to the bottom.

**Note**  Sides that are not assigned padding are padded with the default amount.

**Tip**  Use <i>pad-options</i> to create non-uniform padding.
Default  No padding

Note  The default units for dimension are pixels. If you want to specify values in other units, then you must specify the units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

**POSITION=**position-value

specifies the position of the legend within the graph. The positions are as follows:

- **BOTTOM**
  places the legend at the bottom of the graph.

- **BOTTOMLEFT**
  places the legend at the bottom left corner of the graph.

- **BOTTOMRIGHT**
  places the legend at the bottom right corner of the graph.

- **LEFT**
  places the legend at the left side of the graph.

- **RIGHT**
  places the legend at the right side of the graph.

- **TOP**
  places the legend at the top of the graph.

- **TOPLEFT**
  places the legend at the top left corner of the graph.

- **TOPRIGHT**
  places the legend at the top right corner of the graph.

Defaults  **BOTTOM**

If LOCATION=INSIDE is specified, the legend is automatically positioned near an edge of the plot area that has the least amount of collision with the data.

Interaction  If LOCATION=INSIDE and POSITION= is also specified with any value, you might need to offset the axis in order to make space for the legend within the axis area. For more information, see “Example 2: Legend with a Position Specified inside the Axis Area” on page 815.

Notes  By default, if you use more than one KEYLEGEND statement, then each legend is placed in a different position.

If you specify more than one legend with the same position, then all of your legends are placed at that position.

**SCALE=**positive-number

specifies a scale factor that is to be applied to the fill swatch height. Values greater than 1 increase the height while values less than 1 reduce the height.

Default  1

Restriction  This option does not apply to markers with pattern fills.

Interaction  This option is ignored when AUTOITEMSIZE is specified.
Tips

Use FILLHEIGHT= to change the base height.

Use FILLASPECT= to specify the width.

SORTORDER=ASCENDING | DESCENDING

specifies the sort order to use for the legend entry labels.

Defaults

When the procedure contains more than one plot statement, the default is based on the order of the plot statements.

For grouped data, the default is derived from the data order. If using SAS Cloud Analytic Services (CAS) data, the default is ASCENDING.

Interaction

This option overrides the order that is set by any constituent plot statement’s GROUPORDER= option.

TITLE="text-string"

specifies a title for the legend. The title is placed to the left of the legend body, except in the following cases:

- the legend contains two or more rows of items
- the legend title length exceeds the space that is available on the left side of the legend

In those cases, the title is placed above the legend body.

Defaults

No title unless the legend shows group values

If the legend shows group values, then the group variable is displayed by default as the title. In this case, to remove the title, specify TITLE="".

Requirement

text-string must be enclosed in quotation marks.

TITLEATTRS=style-element <(options)> | (options)

specifies the appearance of the title. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples

TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

TITLEATTRS=GraphTitleText
TYPE=FILL | FILLCOLOR | LINE | LINECOLOR | LINEPATTERN | MARKER | MARKERCOLOR | MARKERSYMBOL

specifies which visual attributes to display for legend entries in the legend. The legend entries can be distinguished as fills, lines, or markers.

For example, suppose a plot statement contributing to the legend contains markers. The example plot uses group data, and different marker symbols indicate the various groups. Specifying TYPE=MARKERSYMBOL displays the different marker symbols in the legend.

This option can be used as a filter. If a statement contributing to the legend does not have any visual attributes that match the TYPE specified, then the legend does not display any entries from that statement.

Some keywords can be used to create specialized legends that display a single visual attribute. For example, keywords FILLCOLOR or MARKERSYMBOL result in the display of a single attribute. Other keywords (for example, FILL, LINE, or MARKER) result in legends that display a set of visual attributes. For example, the keyword LINE results in the display of both line color and line pattern for legend entries that include lines in their display.

If this option is set to LINEPATTERN or MARKERSYMBOL, then a filled symbol is drawn using the same text color as the color used for the legend entry labels. The symbol is sized automatically. For keywords FILLCOLOR, LINECOLOR, and MARKERCOLOR, the filled symbols are drawn as outlined color swatches. The outline is 1 pixel wide, and its color is controlled by the CONTRASTCOLOR attribute of the GraphOutlines style element.

Default All attributes are displayed.

VALUEATTRS=style-element <(options)> | (options)

specifies the appearance of the legend value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples valueattrs=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

valueattrs=GraphTitleText
Examples

Example 1: Legend for Two Ellipses

```
ods graphics / reset width=4in;
proc sgplot data=sashelp.class
 noautolegend;
 scatter x=height y=weight;
 ellipse x=height y=weight /
 alpha=.2
 name="eighty"
 legendlabel="80% Prediction";
 ellipse x=height y=weight /
 alpha=.05
 name="ninetyfive"
 legendlabel="95% Prediction";
 keylegend "eighty" "ninetyfive";
run;
```

Example 2: Legend with a Position Specified inside the Axis Area

If POSITION= and LOCATION= INSIDE are both specified, you might need to offset the axis in order to make space for the legend within the axis area.

The following example specifies LOCATION= INSIDE and POSITION= BOTTOM. In the graph, the legend collides with the data. To avoid this problem, the graph specifies an
OFFSETMIN= value for the Y axis. (If the legend’s position was at the top of the plot, an OFFSETMAX= value would be specified instead.)

Note: For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top. As a result, you use OFFSETMAX= to create an offset at the bottom of the axis. OFFSETMIN= is used to create an offset at the top of the axis for these plot types.

The following example specifies LOCATION=INSIDE and POSITION=TOPRIGHT. To avoid having the legend collide with the graph, the code specifies an OFFSETMAX=
value for the X axis. The OFFSETMAX= value is applied to the end of the axis farther from the origin.

```plaintext
ods graphics / reset width=4in;
title "Average Height of Teenage Students";
proc sgplot data=sashelp.class;
 where age >= 12 and age < 16;
 hbar age / response=height stat=mean;
 keylegend / location=inside
 position=topright;
 xaxis offsetmax=0.3 display=(nolabel);
 yaxis grid;
run;
title;
```

**LINEPARM Statement**

Creates a straight line specified by a point and a slope. You can generate a single line by specifying a constant for each required argument. You can generate multiple lines by specifying a numeric variable for any or all required arguments.

**Requirement:** The statement must be used with another plot statement that is derived from data values that provide boundaries for the axis area. For example, the LINEPARM statement can be used with a scatter plot or a histogram.

**Example:** “About Parameterized Lines” on page 23

**Syntax**

```
LINEPARM X=numeric-value | numeric-variable
Y=numeric-value | numeric-variable
SLOPE=numeric-value | numeric-variable
</option(s)>;
```
Summary of Optional Arguments

Appearance options

ATTRID=\text{character-value}
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=\text{style-element} \ (<\text{options}> \mid \text{options})
specifies the appearance of the line.

NOEXTEND
prevents the line from being extended beyond the axis offset.

TRANSPARENCY=\text{value}
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Group options

GROUP=\text{variable}
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL \leftarrow{\text{\textquotedblleft\text{text-string}\textquotedblright}}
adds a label for the line.

CURVELABELATTRS=\text{style-element} \ (<\text{options}> \mid \text{options})
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE \mid INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO \mid MIN \mid MAX
specifies the location of the curve label.

LEGENDLABEL=\text{\textquotedblleft\text{text-string}\textquotedblright}
specifies a label that identifies the plot in the legend.

SPLITCHAR=\text{\textquotedblleft\text{character-list}\textquotedblright}
specifies one or more characters used to split the text used for curve labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT \mid CENTER \mid RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

CLIP
specifies that the data for the line is ignored when determining the data ranges for the axes.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

**Required Arguments**

**X=numeric-value | numeric-variable**
specifies the X coordinate of a point.

**Notes** Values are in the units of the data.
- If the value specified for the X= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.
- If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**Y=numeric-value | numeric-variable**
specifies the Y coordinate of a point.

**Notes** Values are in the units of the data.
- If the value specified for the Y= option is outside of the data range, then the data range is extended to include the specified point. This behavior can be changed with the CLIP= option.
- If you specify a variable, and the variable contains any missing values, no line is drawn for the respective observation.

**SLOPE=numeric-value | numeric-variable**
specifies the slope of the line. The slope can be positive or negative.

**Tips** SLOPE=0 creates a horizontal line (parallel to the X axis).
- SLOPE=. (missing value) creates a vertical line (parallel to the Y axis).

**Optional Arguments**

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

**See** Chapter 12, “Using Discrete Attribute Maps,” on page 1317
- “Overview of Attribute Maps” on page 1315

**CLIP**
specifies that the data for the line is ignored when determining the data ranges for the axes. Each axis scale is determined by the other plots in the overlay. This might result in the line not being displayed if its data range is not within the data ranges of the other plots. This option ensures that the line is displayed.

**CURVELABEL <="text-string”**
adds a label for the line. You can also specify the label text. If you do not specify a label, then SLOPE=value is used. If you specify a GROUP variable, the group value is shown instead of the slope.
Interaction If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

CURVELABELATTRS=style-element<(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the CURVELABEL option is also specified.

Examples CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

Interactions This option is used in conjunction with the CURVELABELPOS= option to determine where the labels appear.

This option has no effect unless CURVELABEL is also specified.

CURVELABELPOS=AUTO | MIN | MAX
specifies the location of the curve label. Specify one of the following values:

AUTO determines the best label position automatically. The line label is positioned near the line boundary along unused axes whenever possible (typically Y2 and X2).

Interaction This value is available only when CURVELABELLOC=OUTSIDE. If CURVELABELLOC=INSIDE, you must specify either MIN or MAX.

MIN places the curve label at the minimum value for the X axis.

MAX places the curve label at the maximum value for the X axis.
Defaults

AUTO when CURVELABELLOC=OUTSIDE

MAX when CURVELABELLOC=INSIDE

Interaction

This option has no effect unless CURVELABEL is also specified.

**GROUP=variable**
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

**LEGENDLABEL=“text-string”**
specifies a label that identifies the plot in the legend. By default, the label “LineParm” is used (if you specify a numeric value for Y) or the Y variable name is used (if you specify a variable for Y).

Interaction

The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LINEATTRS=**

specifies the appearance of the line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**NAME=“text-string”**

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note

The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip

This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOEXTEND**

prevents the line from being extended beyond the axis offset. When specified, there might be a gap between the line and the axis. The gap is controlled by the axis offset. If the offset is set to 0, then there is no gap.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

Interaction

This option has no effect unless GROUP= is also specified.

**SPLITCHAR=“character-list”**

specifies one or more characters used to split the text used for curve labels into multiple lines. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.
“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Interactions**
This option has no effect unless CURVELABEL is also specified.

**Notes**
- When multiple characters are specified, the order of the characters in the list is not significant.
- The split characters are case sensitive.

---

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**
“Overview of Collision Avoidance” on page 1265

---

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Default**
LEFT

**Interaction**
This option has no effect unless you specify the SPLITCHAR= option.

**See**
“Overview of Collision Avoidance” on page 1265

---

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

---

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

---

**Y2AXIS**

assigns the Y variable to the secondary (right) vertical axis.
LOESS Statement

Creates a fitted loess curve.

Example: “About Loess Plots” on page 36

Syntax

LOESS X=numeric-variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit curve.

NOMARKERS
removes the scatter markers from the plot.

SMOOTH=numeric-value
specifies a smoothing parameter value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

Label options

CURVELABEL <=“text-string”>
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).
CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.
DATALABEL <=variable>
displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.
DATALABELPOS=position
specifies the location of the data label with respect to the plot.
LEGENDLABEL="text-string"
specifies a label that identifies the fit line in the legend.
SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options
NOLEGCLM
hides the legend entry for the mean value confidence limits.
NOLEGFIT
hides the legend entry for the fit line.

Limit options
CLM <="text-string">
creates confidence limits.
CLMATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.
CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits.

Marker options
FILLEDDOUTLINEMARKERS
specifies that markers have a fill and an outline.
JITTER
specifies that data markers are offset when multiple observations have the same response value.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.
Plot options

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.

- **DEGREE=1 | 2**
  specifies the degree of the local polynomials to use for each local regression.

- **INTERPOLATION=CUBIC | LINEAR**
  specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

- **MAXPOINTS=n**
  specifies the maximum number of predicted points for the loess fit and the corresponding limits.

- **REWEIGHT=n**
  specifies the number of iterative reweighting steps to apply to the data.

- **WEIGHT=numeric-variable**
  specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

- **NAME="text-string"**
  assigns a name to a plot statement.

Required Arguments

- **X=numeric-variable**
  specifies the variable for the x axis.

- **Y=numeric-variable**
  specifies the variable for the y axis.

Optional Arguments

- **ALPHA=numeric-value**
  specifies the confidence level for the confidence limits.
  - **Default**: .05
  - **Range**: 0.01 (complete confidence) to 0.99 (no confidence)
  - **Interaction**: This option has no effect unless you also specify the CLM option.

- **ATTRID=character-value**
  specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
  - **See**: Chapter 12, “Using Discrete Attribute Maps,” on page 1317
  - **Overview of Attribute Maps” on page 1315

- **CLM <="text-string">**
  creates confidence limits. The optional text string overrides the default legend label for the confidence limit.
CLMATTRS = style-element | (CLMAttributeOptions )
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAttributeOptions can be one or both of the following:

CLMFILLATTRS = style-element | (COLOR=color)
Specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

CLMLINEATTRS = style-element <(options) > | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction CLMLINEATTRS= has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Interaction The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY = numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

Interaction This option takes effect only if you also specify the CLM option.

CURVELABEL <=“text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS = style-element <(options) > | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.
Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATRERS=\{Color=Green Family=Arial Size=8
               Style=Italic Weight=Bold\}

Here is an example that specifies a style element:
CURVELABELATRERS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default  INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction  This value takes effect only when CURVELABELLOC=OUTSIDE.

END

places the curve label at the last point on the curve.

MAX

places the label at the part of the curve closest to the maximum X axis value.

MIN

places the label at the part of the curve closest to the minimum X axis value.

START

places the curve label at the first point on the curve.

Default  END

Interactions  This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL  <=variable>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction  This option has no effect if you also specify the NOMARKERS option.
**DATALABELATTRS=**<em>style-element &lt;(options)&gt; | (options)</em>
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
- GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
- Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```
Here is an example that specifies a style element:
```
DATALABELATTRS=GraphLabelText
```

**DATALABELPOS=**<em>position</em>
specifies the location of the data label with respect to the plot. <em>position</em> can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

**Interactions**
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DEGREE=1 | 2**
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

**Default**
1

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.
**Interaction**

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**GROUP=variable**

specifies a variable that is used to group the data. A separate plot is created for each unique value of the category variable. The plot elements for each group value are automatically distinguished by different visual attributes.

**INTERPOLATION=CUBIC | LINEAR**

specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

*Default* CUBIC

**JITTER**

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Image" /></td>
<td><img src="image2.png" alt="JITTER Specified Image" /></td>
</tr>
</tbody>
</table>

*Default*  
Markers that represent the same response value are overlaid, which results in some markers being obscured.

**Notes**

This option affects only how the scatter plot is drawn. It has no effect on the LOESS curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**LEGENDLABEL=“text-string”**

specifies a label that identifies the fit line in the legend. By default, the label “Loess” is used, along with the value of the SMOOTH= option if specified.
LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the fit curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults
For grouped data, GraphData1 ... GraphDataₙ style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note
If you overlay multiple Loess plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphDataₙ style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.

MARKERATTRS=style-element <(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)

specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataₙ style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip: You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MAXPOINTS=\(n\)
specifies the maximum number of predicted points for the loess fit and the corresponding limits.

Default: 201

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

REWEIGHT=\(n\)
specifies the number of iterative reweighting steps to apply to the data.

Default: 0

Interaction: This option has no affect if you do not specify the WEIGHT option.
SMOOTH=\textit{numeric-value}\n
specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.

\textbf{SPLITCHAR=$\text{"character-list"}$}\n
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

$\text{"character-list"}$ is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR="abc"}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

\textbf{Default}\n
Values are not split.

\textbf{Interactions}\n
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

\textbf{Notes}\n
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

\textbf{Tip}\n
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

\textbf{See}\n
“Overview of Collision Avoidance” on page 1265

\textbf{SPLITCHARNODROP}\n
specifies that the split characters are included in the displayed value.

\textbf{Interaction}\n
This option has no effect unless SPLITCHAR= is also specified.

\textbf{See}\n
“Overview of Collision Avoidance” on page 1265

\textbf{SPLITJUSTIFY=LEFT | CENTER | RIGHT}\n
specifies the horizontal alignment of the value text that is being split.

\textbf{Default}\n
LEFT

\textbf{Interaction}\n
This option has no effect unless you specify the SPLITCHAR= option.
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

    ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.
A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tipLabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numerical-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Details**
For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]

**NEEDLE Statement**
Creates a plot with needles connecting each point to the baseline.

**Restriction:**
The vertical axis that is used with the NEEDLE statement cannot be a discrete axis.

**Example:**
“About Needle Plots” on page 25
Syntax

**NEEDLE** X=variable Y=numeric-variable </option(s)>;

**Summary of Optional Arguments**

**Appearance options**

- `ATTRID=character-value` specifies the value of the ID variable in a discrete attribute map data set.
- `BASELINEATTRS=style-element <(options)> | (options)` specifies the appearance of the baseline.
- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN` specifies a special effect to be used on the plot.
- `DISCRETEOFFSET=numeric-value` specifies an amount to offset all needle lines from discrete X values.
- `LINEATTRS=style-element <(options)> | (options)` specifies the appearance of the needle lines.
- `TRANSPARENCY=value` specifies the degree of transparency for the plot.

**Axis options**

- `BASELINE=numeric-value` specifies the Y-intercept for the baseline.
- `X2AXIS` assigns the X variable to the secondary (top) horizontal axis.
- `Y2AXIS` assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

- `TIP=(variable-list) | NONE` specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
- `TIPFORMAT=(format-list)` applies formats to the list of data tip variables that you specify in the TIP= option.
- `TIPLABEL=(label-list)` applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

- `CLUSTERWIDTH=numeric-value` specifies the width of the group clusters as a fraction of the midpoint spacing.
- `GROUP=variable` specifies a variable that is used to group the data.
- `GROUPDISPLAY=CLUSTER | OVERLAY` specifies how to display grouped needles.
- `GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING` specifies the ordering of the groups within a category.
- `NOMISSINGGROUP` specifies that missing values of the group variable are not included in the plot.
Label options

**DATALABEL <=variable>**
displays a label for each data point.

**DATALABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot when you use the **DATALABEL=** option.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**LEGENDLABEL="" text-string""**
specifies a label that identifies the needle plot in the legend.

**SPLITCHAR=""character-list""**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

Marker options

**MARKERATTRS=style-element <(options)> | (options)**
specifies the appearance of the markers in the plot.

**MARKERS**
adds markers to the tips of the needles.

Plot options

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

**NAME="" text-string""**
assigns a name to a plot statement.

**Required Arguments**

**X=variable**
specifies the variable for the x axis.

**Y=numeric-variable**
specifies the variable for the y axis.

**Optional Arguments**

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**BASELINE=numeric-value**
specifies the Y-intercept for the baseline. The baseline is always displayed in the plot, even when this option is not specified. In that case, the default value is used.
When this option is specified, the axis range is adjusted to include the baseline, and
the baseline is placed at the specified value on the axis.

Default 0

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line
thickness to 0.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.
Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified,
when GROUPDISPLAY=CLUSTER, and when the category axis is
discrete.

For interval data, when markers are displayed and
GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect,
the size of the markers in each cluster might be reduced to no less than
5 pixels in order to display the cluster within the smallest effective
midpoint space. If you need larger markers in that case, use the
MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your
graph contains plot overlays, the default cluster width for the primary
plot statement is applied to all the other overlaid plots that use default
values. If you specify the cluster width for a plot, then your specified
value is honored.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that
variable are used for the data labels. If you do not specify a variable, then the values
of the Y variable are used for the data labels.
**DATALABELATTRS=** `style-element <(options)> | (options)`  

Specifies the appearance of the labels in the plot when you use the `DATALABEL=` option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**  
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**  
This option has no effect unless the `DATALABEL` option is also specified.

**Examples**  
```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
DATALABELATTRS=GraphLabelText
```

**DATALABELPOS=** `position`  

Specifies the location of the data label with respect to the plot. `position` can be one of the following values:

<table>
<thead>
<tr>
<th>Position</th>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Left</td>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>Topleft</td>
<td>Topright</td>
<td></td>
</tr>
</tbody>
</table>

**Interaction**  
This option has no effect unless you also specify the `DATALABEL` option.

This option displays group values for each category when `GROUP=` is also specified.

**DATASKIN=** `NONE | CRISP |GLOSS | MATTE | PRESSED | SHEEN`  

Specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Data Skin</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

**Table 5.17  DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>Option</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td><img src="image1" alt="Image" /></td>
<td><img src="image2" alt="Image" /></td>
</tr>
<tr>
<td>MATTE</td>
<td><img src="image3" alt="Image" /></td>
<td><img src="image4" alt="Image" /></td>
</tr>
</tbody>
</table>

| Default | NONE |

**Restriction**
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=numeric-value**
specifies an amount to offset all needle lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

| Default | 0.0 (no offset) |

**Requirement**
This option is applicable only when the X axis is discrete.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**Note**
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER |OVERLAY**
specifies how to display grouped needles.
CLUSTER
  grouped items are drawn adjacent to each other.

OVERLAY
  grouped items are drawn at the exact coordinate and might overlap. Each group
  is represented by unique visual attributes derived from the GraphData...
  GraphData style elements in the current style.

Default          OVERLAY

Restriction    GROUPDISPLAY=CLUSTER can take effect only when the category
  axis is discrete. If necessary, use a TYPE=DISCRETE option on the
  axis statement.

Interactions  This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and
GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect,
the size of the markers in each cluster might be reduced to no less than
5 pixels in order to display the cluster within the smallest effective
midpoint space. If you need larger markers in that case, use the
MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
  specifies the ordering of the groups within a category.

DATA
  orders the groups within a category in data order of the group variable.

  Note: This value is not supported with SAS Cloud Analytic Services (CAS)
  data.

REVERSEDATA
  orders the groups within a category in the reverse data order of the group
  variable. This option is useful when you want to reverse the category axis.

  Note: This value is not supported with CAS data.

ASCENDING
  orders the groups within a category in ascending order of the group variable.

DESCENDING
  orders the groups within a category in descending order of the group variable.

Default          DATA. If using CAS data, the default is ASCENDING.

Interactions    The DATA and REVERSEDATA values have no effect when you are
  using SAS Cloud Analytic Services data.

  This option is ignored unless GROUP= is specified.

  By default, the groups in the legend are shown in the order that is
  specified in GROUPORDER=. The order in the legend can be
  changed using the SORTORDER= option in the KEYLEGEND
  statement.

  The default group order can vary for different types of plots. If your
  graph contains plot overlays, the default group order for the first plot
  statement is applied to all the other overlaid plots that use default
values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL=" " "text-string"
specifies a label that identifies the needle plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the needle lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS option.

MARKERS
adds markers to the tips of the needles.

NAME=" " "text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.
Interaction  This option has no effect unless GROUP= is also specified.

SPLITCHAR="character-list"
_splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default  LEFT

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Overview of Collision Avoidance” on page 1265
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data
tips.

A one-to-one correspondence exists between the label-list and the variable-list that
is specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.
Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: `tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

`character-variable`
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default: By default, no HTML links are created.

Interaction: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

---

**PBSPLINE Statement**

Creates a fitted penalized B-spline curve.

**Example:**  “About Penalized B-Spline Plots” on page 37

**Syntax**

```
PBSPLINE X=numeric-variable Y=numeric-variable <option(s)>;
```
**Summary of Optional Arguments**

**Appearance options**

- **ATTRID=** character-value
  specifies the value of the ID variable in a discrete attribute map data set.

- **LINEATTRS=** style-element <(options)> | (options)
  specifies the appearance of the fitted curve.

- **NKNOTS=** n
  specifies the number of evenly spaced internal knots.

- **SMOOTH=** numeric-value
  specifies a smoothing parameter value.

- **TRANSPARENCY=** value
  specifies the degree of transparency for the plot.

**Axis options**

- **X2AXIS**
  assigns the X variable to the secondary (top) horizontal axis.

- **Y2AXIS**
  assigns the Y variable to the secondary (right) vertical axis.

**Data tip options**

- **TIP=** variable-list | NONE
  specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **TIPFORMAT=** format-list
  applies formats to the list of data tip variables that you specify in the TIP= option.

- **TIPLABEL=** label-list
  applies labels to the list of data tip variables that you specify in the TIP= option.

**Label options**

- **CURVELABEL <=** text-string
  adds a label for the curve.

- **CURVELABELATTRS=** style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

- **CURVELABELLOC=** OUTSIDE | INSIDE
  specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

- **CURVELABELPOS=** AUTO | END | MAX | MIN | START
  specifies the location of the curve label.

- **DATALABEL <=** variable
  displays a label for each data point.

- **DATALABELATTRS=** style-element <(options)> | (options)
  specifies the appearance of the labels in the plot when you use the DATALABEL= option.

- **DATALABELPOS=** position
  specifies the location of the data label with respect to the plot.

- **SPLITCHAR=** "character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

**SPLITCHAR**

specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Legend options**

**LEGENDLABEL="text-string"**

specifies a label that identifies the B-spline curve in the legend.

**NOLEGCLI**

hides the legend entry for the individual value prediction limits.

**NOLEGCLM**

hides the legend entry for the mean value confidence limits.

**NOLEGFIT**

hides the legend entry for the fit line.

**Limit options**

**CLI <="text-string"**

creates prediction limits for the individual predicted values.

**CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))**

specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

**CLM <="text-string"**

creates confidence limits.

**CLMATTRS =style-element | (CLMAttributeOptions)**

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

**CLMTRANSPARENCY=numeric-value**

specifies the degree of transparency for the confidence limits.

**Marker options**

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**JITTER**

specifies that data markers are offset when multiple observations have the same response value.

**MARKERATTRS=style-element <(options)> | (options)**

specifies the appearance of the markers in the plot.

**MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)**

specifies the color of the marker fill.

**MARKEROUTLINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the marker outlines.

**NOMARKERS**

removes the scatter markers from the plot.

**PBSPLINE options**

**MAXPOINTS=n**

specifies the maximum number of predicted points for the spline curve and for any confidence limits.
Plot options

**ALPHA=**numeric-value
specifies the confidence level for the confidence limits.

**DEGREE=**non-negative-integer
specifies the degree of the spline transformation.

**FREQ=**numeric-variable
specifies a variable for the frequency count for each observation in the input data.

**GROUP=**variable
specifies a variable that is used to group the data.

**WEIGHT=**numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

**NAME=**“text-string”
assigns a name to a plot statement.

Required Arguments

**X=**numeric-variable
specifies the variable for the x axis.

**Y=**numeric-variable
specifies the variable for the y axis.

Optional Arguments

**ALPHA=**numeric-value
specifies the confidence level for the confidence limits.

Default .05

Range 0.01 (complete confidence) to 0.99 (no confidence)

Interaction This option has no effect unless you specify the CLI or CLM option (or both).

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

**CLI <=**“text-string”>
creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

**CLIATTRS =**style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:
**CLILINEATTRS**=

Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**

GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

<table>
<thead>
<tr>
<th>Default</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default style element is GraphPredictionLimits.</td>
<td>The CLIATTRS = option has no effect unless you also specify the CLI option.</td>
</tr>
</tbody>
</table>

**CLM**

creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

**CLMMATTRS**=

specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. **CLMAttributeOptions** can be one or both of the following:

**CLMFILLATTRS**=

Specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**CLMLINEATTRS**=

Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**

GraphConfidence style element in the current style for ungrouped data. **GraphData1** ... **GraphData** style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

<table>
<thead>
<tr>
<th>Default</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CLMLINEATTRS = has no effect unless you change the display options in the style element to display outlines. See the preceding code example.</td>
<td>The CLMATTRS = option has no effect unless you also specify the CLM option.</td>
</tr>
</tbody>
</table>

**CLMTRANSPARENCY**=

specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

<table>
<thead>
<tr>
<th>Default</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Interaction  This option takes effect only if you also specify the CLM option.

**CURVELABEL <="text-string"**

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

**Interactions**

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

**CURVELABELATTRS=style-element <|options>| (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default  INSIDE

**CURVELABELPOS=AUTO | END | MAX | MIN | START**

specifies the location of the curve label. Specify one of the following values:

**AUTO**

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**

This value takes effect only when CURVELABELLOC=OUTSIDE.

**END**

places the curve label at the last point on the curve.

**MAX**

places the label at the part of the curve closest to the maximum X axis value.
MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**DATALABEL** <=*variable*>
displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction This option has no effect if you also specify the NOMARKERS option.

**DATALABELATTRS=style-element *(options)* | *(options)*
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData$n$ style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples **DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)**

Here is an example that specifies a style element:

**DATALABELATTRS=GraphLabelText**

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot. *position* can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

\textbf{DEGREE=non-negative-integer}

specifies the degree of the spline transformation.

\begin{itemize}
  \item \textbf{Default} \hspace{1cm} 3
  \item \textbf{Range} \hspace{1cm} 0–10
  \item \textbf{Restriction} \hspace{1cm} DEGREE= and NKNOTS= cannot be set to 0 simultaneously. When both are set to 0, an error results.
\end{itemize}

\textbf{FILLEDOUTLINEDMARKERS}

specifies that markers have a fill and an outline.

\begin{itemize}
  \item \textbf{Requirement} \hspace{1cm} The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.
  \item \textbf{Interaction} \hspace{1cm} Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.
  \item \textbf{See} \hspace{1cm} For usage information and an example, see “Marker Fills and Outlines” on page 1267.
\end{itemize}

\textbf{FREQ=numeric-variable}

specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n\) times for computational purposes, where \(n\) is the value of the numeric variable.

\begin{itemize}
  \item \textbf{Restriction} \hspace{1cm} If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
  \item \textbf{Note} \hspace{1cm} If the value is not an integer, only the integer portion is used.
\end{itemize}

\textbf{GROUP=variable}

specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

\begin{itemize}
  \item \textbf{Interactions} \hspace{1cm} If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.
  \item \hspace{1cm} When the GROUP option is used, the data is rendered in sorted order by the group variable.
\end{itemize}

\textbf{JITTER}

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.
The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default" /></td>
<td><img src="image2" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

**Default**
Markers that represent the same response value are overlaid, which results in some markers being obscured.

**Notes**
This option affects only how the scatter plot is drawn. It has no effect on the PBSPLINE curve. By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

**LEGENDLABEL=**"text-string"
specifies a label that identifies the B-spline curve in the legend. By default, the label “Penalized B-Spline” is used with the SMOOTH= value if specified, or else the group value for each B-spline is used.

**LINEATTRS=style-element<(options)> | (options)**
specifies the appearance of the fitted curve. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Defaults**
For grouped data, GraphData1 ... GraphData\(n\) style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Note**
If you overlay multiple PBSpline plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphData\(n\) style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page
1274.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped
data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

Default Color attribute of the GraphDataDefault style element in the current
style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped
data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

This option overrides any color that is specified with the
MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify
attributes for the marker outline.

See For usage information and an example, see “Marker Fills and
Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData_n style elements in the current style for grouped
data. The affected attributes are ContrastColor and LineThickness.

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is
also specified.

Tip You can also use the MARKERFILLATTRS= option to specify
attributes for the fill.

See For usage information and an example, see “Marker Fills and
Outlines” on page 1267.
**MAXPOINTS=n**
specifies the maximum number of predicted points for the spline curve and for any confidence limits.

Default 201

**NAME="text-string"**
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

*Note*  The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

*Tip*  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NKNOTS=n**
specifies the number of evenly spaced internal knots. By default, a large number of knots (100) is specified, which allows for a lack of smoothness in the results. However, the final function is typically much smoother due to the penalty. When SMOOTH=0 is specified, you should typically request fewer knots than the default because there is no penalty for lack of smoothness. For example, ten or fewer knots is usually enough to follow the functional form found in most data.

Default 100

Range 0 to 1000

**NOLEGCLI**
hides the legend entry for the individual value prediction limits.

**NOLEGCLM**
hides the legend entry for the mean value confidence limits.

**NOLEGFIT**
hides the legend entry for the fit line.

**NOMARKERS**
removes the scatter markers from the plot.

**SMOOTH=numeric-value**
specifies a smoothing parameter value. If you do not specify this option, a smoothing value is determined automatically.

**SPLITCHAR="character-list"**
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Interactions**
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Default**
LEFT

**Interaction**
This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

**TIP=(variable-list) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```
Interaction  This option replaces all of the information that is displayed by default.

Note  The option affects only the scatter plot in this statement.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPLABEL= option to assign labels to the list of variables.

See  SAS Viya Formats and Informats: Reference

Example  

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  

tiplabel=(auto "Class Weight")
TRANSPARENCY=value
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction When the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Details
For the SMOOTH= option, the smoothing parameter value must be greater than the minimum value that is determined by the following equation.

\[
\text{minimum} = \frac{\text{degree} + 1}{\text{number of observations}}
\]

POLYGON Statement
Draws one or more polygons from data stored in a data set. This statement can be used with other basic plot and fit plot statements.

Restriction: You cannot overlay a polygon with a bar chart using the HBAR or VBAR statements. If you need to overlay a polygon plot on a bar chart, use an HBARPARM or VBARPARM statement instead.

Syntax
POLYGON X=x-variable Y=y-variable ID=id-variable <option(s)>;

Summary of Optional Arguments
Appearance options
ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.
BACKLIGHT=number
specifies that label text should have a back light of a contrasting color.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

FILL | NOFILL
specifies whether the polygon(s) are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the polygon outline.

OUTLINE | NOOUTLINE
specifies whether the polygon(s) have outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

ROTATE= numeric-column | number | expression
specifies the angle of rotation for the polygon measured in degrees.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

XOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.

YOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
creates a separate polygon color or outline pattern for each unique grouping that is specified.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

LABEL <=variable>
specifies a label for the polygon curve.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot.

LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE
specifies the location of the polygon label.

LABELPOS=CENTRER | XMIN | XMAX | YMIN | YMAX
specifies the position of the polygon's label.

LEGENDLABEL="text-string"
specifies the label that identifies the polygon in the legend.

ROTATELABEL=AUTO | NONE | VERTICAL
specifies the rotation of the polygon label with respect to the rotation of the polygon.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=x-variable
specifies the variable for the X values.

Y=y-variable
specifies the variable for the Y values.

ID=id-variable
specifies the variable for the ID values that identify the polygon(s). All data rows for a single polygon must have the same ID value. Only unformatted values in the ID= column are used.

When multiple polygons are defined in the same data set, all rows with the same ID value must be in contiguous rows. The ID values cannot be interspersed.
Optional Arguments

**ATTRID=**character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
"Overview of Attribute Maps” on page 1315

**BACKLIGHT=**number
specifies that label text should have a back light of a contrasting color. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the label. In these examples, FILL has also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Label</td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, FILL has also been specified. The third example shows green text against a white background (no fill).

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Label</td>
<td>Label</td>
</tr>
</tbody>
</table>

**Defaults**

0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

**Range**

0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

**Note**

This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

**COLORMODEL=**style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

**STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
NEUTRALCOLOR  specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR  specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)  specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example  colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element

Interaction  For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column  specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction  If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  “GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN  specifies a special effect to be used on the plot. The data skin affects all filled polygons. Specify one of the following:

Table 5.18  DATASKIN Options for Filled Areas

| DATASKIN Options for Filled Areas |
|----------|----------|----------|
| NONE     | CRISP    | GLOSS    |
|          |          |          |
| MATTE    | PRESSED  | SHEEN    |
|          |          |          |
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

If you also specify NOFILL, then the data skin is applied to the outlines.

**FILL | NOFILL**
specifies whether the polygon(s) are filled. The FILL option shows the fill color for the polygons. The NOFILL option hides the fill color.

- **Default**: NOFILL
- **Interaction**: Specifying FILL also hides the outlines.
  - If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=**
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

- **Defaults**: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.
  - 0.0 transparency
  - This option has no effect if you specify the NOFILL option.

**GROUP=**
creates a separate polygon color or outline pattern for each unique grouping that is specified. The plot elements for each group value are automatically distinguished by different visual attributes.

The polygon attributes for each unique group value are derived from the GraphData1–GraphDataN and GraphMissing style elements. If the polygon is filled, then the COLOR attribute is used for the polygon fill and the CONTRASTCOLOR attribute is used for the polygon outline. If the polygon is not filled, then the CONTRASTCOLOR and PATTERN attributes are used for the polygon outline.

- **Interaction**: When this option is used and the value is a variable associated with an ATTRID= option, the attribute mapping defined by the associated attribute map is used.
This option is ignored if the COLORRESPONSE= option is also used.

**LABEL <=variable>**
specifies a label for the polygon curve.

**Default**
When no variable is provided, the ID variable is used for labels.

**Interaction**
If a variable is supplied, rows that have the same ID value are expected to have the same value. If they do not, the ID value’s first row determines the polygon label.

**Tip**
The font and color attributes for the label are specified by the LABELATTRS= option.

**LABELATTRS=style-element <(options)> | (options)**
specifies the appearance of the labels in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Default**
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontWeight, and FontStyle.

**Interaction**
This option has no effect unless the LABEL= option is also specified.

**Examples**
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphValueText

**LABELLOC=INSIDEBOX | OUTSIDEBOX | OUTSIDE**
specifies the location of the polygon label.

**INSIDEBOX**
inside the polygon.

**OUTSIDEBOX**
outside the polygon but inside the plot area.

**OUTSIDE**
outside the plot area.

**Default**
INSIDEBOX

**Interaction**
This option has no effect unless the LABEL= option is also specified.

The label’s exact position is relative to the polygon’s X and Y data ranges and is determined by the combination of this option and the LABELPOS= option.

**LABELPOS=CENTER | XMIN | XMAX | YMIN | YMAX**
specifies the position of the polygon’s label. Specify one of the following values:

**CENTER**
centers the label.
Interaction  

**LABELPOS=CENTER** has no effect if you also specify  
**LABELLOC=OUTSIDE** or **LABELLOC=OUTSIDEBBOX**. The  
default label position is used in those cases.

---

**XMIN**  
places the label at the part of the polygon closest to the minimum X axis value,  
centered in the Y axis range.

**XMAX**  
places the label at the part of the polygon closest to the maximum X axis value,  
centered in the Y axis range.

**YMIN**  
places the label at the part of the polygon closest to the minimum Y axis value,  
centered in the X axis range.

**YMAX**  
places the label at the part of the polygon closest to the maximum Y axis value,  
centered in the X axis range.

---

Default  
**CENTER**

Interactions  
This option has no effect unless the **LABEL=** option is also specified.

The label’s exact position is relative to the polygon’s X and Y data  
ranges and is determined by the combination of this option and the  
**LABELLOC=** option.

When **LABELLOC=OUTSIDE**, increasing the length of the label  
might cause the available plot area to decrease. Also, when  
**LABELLOC=OUTSIDE**, the label might collide with the axis ticks  
and tick values.

---

**LEGENDLABEL=“text-string”**  
specifies the label that identifies the polygon in the legend.

**LINEATTRS=style-element <(options)> | (options)**  
specifies the appearance of the polygon outline. You can specify the appearance by  
using a style element or by specifying specific options. If you specify a style  
element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page  
1272.

Defaults  
For non-grouped data, the GraphOutlines style element.

For grouped data, the LineThickness attributes of the GraphOutlines  
style element, and the ContrastColor and LineStyle attributes of the  
GraphData1 – GraphDataN style elements.

Interactions  
This option is ignored if the **NOOUTLINE** option is also specified.

This option is ignored if the **DATASKIN=** option is also specified.

Note  
If this option is used with grouped data, the **COLOR=** suboption has  
the effect of holding the polygon outline color constant across all  
group values.
**NAME=**"text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

**Note** The *text-string* is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

**Tip** This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOMISSINGGROUP**

specifies that missing values of the group variable are not included in the plot.

**Interaction** This option has no effect unless GROUP= is also specified.

**OUTLINE | NOOUTLINE**

specifies whether the polygon(s) have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

**Default** OUTLINE

**Interaction** If NOOUTLINE and NOFILL are both specified, then both options are ignored.

**Tip** Use the LINEATTRS= option to control the appearance of the outline.

**RATTRID=**character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

**See** Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

**ROTATE=** numeric-column | number | expression

specifies the angle of rotation for the polygon measured in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

**Default** 0 (no rotation is performed)

**Interaction** When this option is specified, the LABELLOC= and LABELPOS= settings are ignored and they are automatically set to INSIDEBOOX and CENTER respectively.

**Notes** An angle that exceeds 360 degrees in absolute value can be specified.

Rotating a polygon might cause clipping in some cases.

**ROTATELABEL=**AUTO | NONE | VERTICAL

specifies the rotation of the polygon label with respect to the rotation of the polygon. Specify one of the following:

**AUTO**

rotates the label with the rotation of the polygon.
NONE

does not rotate the label with the rotation of the polygon. The label position
remains fixed regardless of the polygon rotation.

VERTICAL

rotates the label to a vertical position.

Default AUTO

Interaction If ROTATION= is also specified, then ROTATELABEL=VERTICAL is ignored.

SPLITCHAR="character-list"

splits the text for data labels at the specified character(s) when there is not enough
room to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

Default A single space

Interactions This option has no effect unless LABEL= is specified.

When the text is split, the split characters are not included in the
displayed value by default. If you want the split characters to appear in
the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the
SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in
the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.
TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data
tips.
A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of variables.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

**Default**
0.0

**Range**
0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example**

**Default**
By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

X2AXIS
assigns the response variable to the secondary (top) horizontal axis.

XOFFSET=numeric-value | numeric-variable
specifies an amount to offset all polygon segment starting and ending points from discrete X values.

Default
0.0 (no offset)

Range
–0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between discrete ticks.

Requirement
The X axis must be discrete.

Y2AXIS
assigns the category variable to the secondary (right) vertical axis.
YOFFSET= numeric-value | numeric-variable

specifies an amount to offset all polygon segment starting and ending points from discrete Y values.

- **Default**: 0.0 (no offset)
- **Range**: –0.5 (downward) to +0.5 (upward), where 0.5 represents half the distance between discrete ticks.
- **Requirement**: The Y axis must be discrete.

Details

Overview

The POLYGON statement draws a polygon from a series of X-Y value pairs that are stored in a SAS data set. The first X-Y value pair defines the starting point of the polygon. When the next X-Y pair is encountered in the data set, a line is drawn from the starting point to the second X-Y point. For subsequent X-Y pairs, a line is drawn from the previous X-Y point to the current X-Y point. This pattern repeats until all of the segments have been drawn.

Using the POLYGON statement, you can draw any data-driven shape on your graph, which enables you to highlight data features, outline data boundaries, and so on. If you later want to modify your polygon, you need only modify the polygon data in the graph data set.

You can specify a “hole” in a polygon. A data row with missing X and Y values indicates that the rows that follow specify the X and Y points for the hole, which is inside the outer polygon.

Here is the sequence:

1. The initial data rows specify the outer polygon.
2. A row with missing X and Y values signals the beginning of a hole.
3. Subsequent data rows specify the X and Y points for the hole.

Multiple holes can be specified. Each hole is specified by a data row with missing X and Y values, followed by a series of rows that specify the X and Y points for the hole.

Requirements for the Polygon Data Set

In the simplest case of a single polygon, your data set must provide an X, Y, and ID column that stores the X-Y values and the ID for your polygon. The X-Y values in the first data set observation must specify the starting point of your polygon. The X-Y values in the subsequent observations must provide the points of each segment in the order in which the polygon is to be drawn. There should be no gaps in the data. In order to close the polygon, you can specify the starting X-Y values in your last observation, although this is not required. If your last observation does not close the polygon, the POLYGON statement automatically draws a segment from your last point back to the starting point in order to close the polygon.

If you want to draw multiple polygons, your ID column must specify a unique identifier string for each polygon. The identifier string associates the observations in the data set with a specific polygon. All of the observations for each individual polygon must be grouped together by ID and must be arranged in the order in which the polygon segments are to be drawn.
Options are available that enable you to customize the polygon and enhance its appearance. For example, you can do the following:

- show or hide the fill and outline, and specify line and fill attributes. You can also apply a data skin as well as transparency to the polygon.
- rotate the polygon.
- offset the polygon from the X or Y axis.
- specify a label, the locations of the label, and label attributes. You can also rotate the label and specify how it fits in the allotted space when there is not enough room to display the text normally.
- specify an HTML page to display when the selectable polygon is clicked.

Drawing a Single Polygon

For a single polygon, the POLYGON data set contains an X and Y column that defines the polygon points, and an ID column. The polygon segments are drawn in the order in which they occur in the data. If the polygon overlaps any graphics elements that were drawn earlier, those elements are obscured. In that case, you can use transparency to enable the underlying graphics elements to show through.

Here is an example data set for a simple four-sided polygon identified as P1 that starts at point X=40, Y=100.

```plaintext
data polydata;
  input id $1-2 x y;
datalines;
P1 40  100
P1 20  220
P1 160 200
P1 180 80
P1 40  100
;
run;
proc sgplot data=polydata;
  polygon X=x Y=y ID=id / fill outline;
run;
```

The following figure shows how the polygon is drawn.

As shown in the figure, the polygon starting point is X=40, Y=100. The first segment (S1) is drawn from the starting point to X=20, Y=220. The second segment is drawn from X=20, Y=220 to X=160, Y=200. The remaining two segments (S3 and S4) follow the same pattern. Although provided in this example, the last observation (X=40, Y=100) is not required. If not provided in the data, the POLYGON statement draws the last segment (S4) automatically in order to close the polygon.
Drawing Multiple Polygons

For multiple polygons, the POLYGON data ID column specifies a unique identifier for all of the observations that are associated with each polygon. The X and Y columns specify the polygon points. The polygons are overlaid on the graph in the order in which they occur in the data. For overlapping polygons, each polygon obscures part or all of the polygons and graphics elements that were drawn before it. In that case, you can use transparency to enable the underlying polygons and graphics elements to show through.

Here is an example data set for three separate polygons.

```plaintext
data polydata;
  input id x y;
datalines;
  1  0  0
  1 20  0
  1 20 30
  1  0 30
  1  0  0
  2 30  0
  2 50  0
  2 40 30
  2 30  0
  3 60  0
  3 80  5
  3 80 15
  3 70 30
  3 60 30
  3 60  0
;run;
```

In addition to the ID, X, and Y columns, the LABEL column is added to label the polygons in the output. Notice that the observations for each ID value are grouped together in the data set. The observations for each ID must occur contiguously in the data. Otherwise, unexpected results might occur.

The following figure shows how the polygons are drawn from this data. Reference lines are provided to help you locate the polygon points in the output.
The polygons are drawn in the order in which they appear in the data: rectangle (ID=1), triangle (ID=2), and polygon (ID=3). The red dot on each shape indicates the starting point for that shape, and the gray arrows and dots indicate the subsequent points and drawing progression for each shape.

Examples

Example 1: Create a Single Filled Hexagon

This example shows creates a single filled hexagon.

```
ods graphics / width=3in;

data polydata;
  input id $1-3 X Y;
datalines;
  Tri 40  40
  Tri 30  70
  Tri 40  100
  Tri 50  100
  Tri 60  70
  Tri 50  40
; run;

proc sgplot data=polydata;
polygon X=x Y=y id=id / fill outline
  lineattrs=GraphData3 ;
xaxis min=30 max=70;
yaxis min=40 max=110;
run;
```

Example 2: Use a Polygon to Highlight Data in a Scatter Plot

This example shows you how to use the POLYGON statement to draw a filled polygon that highlights data in an iris petal dimension scatter plot. The polygon surrounds the markers for the Setosa species in order to highlight the data with a yellow highlight for that species.

```
ods graphics / width=3in;

data polydata;
  input species $1-3 X Y;
  input petal-length  petal-width;
datalines;
  Setosa  3.08  5.2
  Setosa  3.21  5.1
  Setosa  3.36  4.8
  Setosa  3.17  4.4
  Setosa  3.42  4.5
  Setosa  3.60  4.2
; run;

proc sgplot data=polydata;
polygon X=x Y=y / fill=yellow;
  polygon X=x Y=y id=species ;
xaxis min=3.0 max=3.7;
yaxis min=4.0 max=5.5;
run;
```
/* Generate the data for the polygon */
data polydata;
 input polyID polyX polyY label $8-40;
datalines;
 1 9 2 Setosa
 1 13 5
 1 16 7
 1 17 6
 1 20 5
 1 20 1
 1 17 1
 1 15 0
 1 14 0
 1 11 0
; run;

/* Concatenate the SASHELP.IRIS and polygon data into data set IRIS */
data iris;
 set sashelp.iris polydata;
run;

/* Create the graph */
title "Iris Petal Dimensions";
proc sgplot data=iris;
 scatter x=petallength y=petalwidth / name="s" group=species;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.2
 name="p80" legendlabel="80%" lineattrs=graphconfidence;
 ellipse x=petallength y=petalwidth / type=predicted alpha=.05
 name="p95" legendlabel="95%" lineattrs=graphconfidence2;
 polygon x=polyX y=polyY id=polyID / fill
 fillattrs=(color=yellow transparency=0.75)
 label=label labelloc=outsidebbox labelpos=ymax;
run;
title;
To draw a single polygon, the data set must provide an X, Y, and ID column. The data specifies the polygon points around the Setosa data in the clockwise direction. A LABEL column is added to provide a label for the polygon in the plot output.

In the POLYGON statement, the FILLATTRS= option specifies the fill color as yellow and a fill transparency of 0.75. The LABEL= option specifies the column in the data set that contains the polygon label text. The LABELLOC= and LABELPOS= options place the polygon label outside of and above the polygon’s bounding box.

To draw the polygon, the POLYGONPLOT statements starts at X=9, Y=2, and draws a segment between each point in data order. The last point, X=11, Y=0, does not close the polygon. To close the polygon, the POLYGON statement draws a segment between X=11, Y=0 and X=9, Y=2 automatically.

If you want to highlight the Versicolor data instead of the Setosa data, you need only modify the data in the POLYDATA data set to draw a polygon around the Versicolor data instead. You do not have to make any changes to the SGPLOT procedure.

REFLINE Statement

Creates a horizontal or vertical reference line.

Example:
“About Reference Lines” on page 22

Syntax

```
REFLINE variable | value-1 < …value-n> <option(s)>;
```

Summary of Optional Arguments

Appearance options

- `DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN`
 specifies a special effect to be used on the plot.

- `DISCRETEOFFSET=numeric-value`
 specifies an amount to offset all lines from discrete X or Y values.

- `LINEATTRS=style-element <(options)> | (options)`
 specifies the appearance of the reference line.

- `NOCLIP`
 extends the plot axes to contain the reference lines.

- `TRANSPARENCY=numeric-value`
 specifies the degree of transparency for the plot.

Axis options

- `AXIS=X | X2 | Y | Y2`
 specifies the axis that contains the reference line values.

Label options

- `LABEL <=variable> | <=("text-string-1" ... "text-string-n")>`
 creates labels for each reference line.

- `LABELATTRS=style-element <(options)> | (options)`
 specifies the appearance of the labels.

- `LABELLOC=INSIDE | OUTSIDE`
 specifies whether the labels are placed inside or outside of the plot area.
LABELPOS=AUTO | MIN | MAX
specifies the position of the labels.

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend.

SPLITCHAR="character-list"
splits the text for labels at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Required Arguments

variable
draws a reference line for each value of the specified variable.

value-1 <... value-n>
draws one or more reference lines at the values that you specify.

Optional Arguments

AXIS=X | X2 | Y | Y2
specifies the axis that contains the reference line values. For example, if you specify AXIS= X, vertical reference lines are drawn at points on the X axis.

Default Y

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 5.19 DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.
DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

**LABEL <=variable> | <=("text-string-1" ... "text-string-n")>

creates labels for each reference line. If you do not specify a label value, the reference value for that line is used as the label.

If you specify a label value, the following options are available.

variable

a variable for the label value.

Restriction This label variable is used only when a variable is used for the REFLINE value. If this condition fails, the label variable is ignored and a message is written to the log.

"text-string-1" ... "text-string-n"

a text string for the label value.

Restriction The label string does not apply when a variable is used for the REFLINE value. In that situation, the label string is ignored and a message is written to the log.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Interaction This option has no effect unless the LABEL option is also specified.

Examples

```
LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
LABELATTRS=GraphTitleText
```

LABELLOC=INSIDE | OUTSIDE

specifies whether the labels are placed inside or outside of the plot area. The INSIDE option places the labels inside the plot area. The OUTSIDE option places the labels outside of the plot area.

Default OUTSIDE
LABELPOS=AUTO | MIN | MAX
specifies the position of the labels. MIN specifies the label is placed at the minimum value of the data axis. MAX specifies that the label is placed at the maximum value of the data axis. AUTO places the label automatically.

Default AUTO

LEGENDLABEL="text-string"
specifies a label that identifies the plot in the legend. By default, the label “Reference Line” is used.

Interaction This option has no effect unless you also specify the NAME= option.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the reference line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphReference style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCLIP
extends the plot axes to contain the reference lines. By default, if a reference line is created outside of the data range, then the reference line is not visible. This option has no effect if you do not create reference lines that are outside of the data range.

SPLITCHAR="character-list"
splits the text for labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit within the containing graphics element.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.
Interactions

This option has no effect unless LABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

REG Statement

Creates a fitted regression line or curve.

Interaction:

A linear regression (DEGREE=1) cannot be used with logarithmic axes.

Examples:

“About Regression Plots” on page 38
“Example 4: Adding Prediction and Confidence Bands to a Regression Plot” on page 1190

Syntax

REG X=numeric-variable Y=numeric-variable <option(s)>;
Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

LEGENDLABEL="text-string"
specifies a label that identifies the regression curve in the legend.

NOLEGCLI
hides the legend entry for the individual value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

Limit options

CLI <="text-string”>
creates prediction limits for the individual predicted values.

CLIATTRS =style-element | (CLILINEATTRS=style-element <(options)> | (options))
specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines.

CLM <="text-string”>
creates confidence limits.

CLMAATTRS =style-element | (CLMAttributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes.

CLMTRANSPARENCY=numerical-value
specifies the degree of transparency for the confidence limits.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

NOMARKERS
removes the scatter markers from the plot.

Plot options

ALPHA=numerical-value
specifies the confidence level for the confidence limits.

DEGREE=n
specifies the degree of the polynomial fit.

FREQ=numerical-variable
specifies a variable for the frequency count for each observation in the input data.

MAXPOINTS=\(n \)

specifies the maximum number of predicted points for the regression curve and for any confidence limits.

WEIGHT= numeric-variable

specifies a variable that contains values to be used as weights for the calculations.

Plot reference options

NAME="text-string"

assigns a name to a plot statement.

Required Arguments

X= numeric-variable

specifies the variable for the x axis.

Y= numeric-variable

specifies the variable for the y axis.

Optional Arguments

ALPHA= numeric-value

specifies the confidence level for the confidence limits.

- **Default** .05
- **Range** 0.01 (complete confidence) to 0.99 (no confidence)
- **Interaction** This option has no effect unless you specify the CLI or CLM option (or both).

ATTRID= character-value

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

- **See** Chapter 12, “Using Discrete Attribute Maps,” on page 1317
- “Overview of Attribute Maps” on page 1315

CLI <="text-string">

creates prediction limits for the individual predicted values. The optional text string overrides the default legend label for the prediction limits.

CLIATTRS = style-element | (CLILINEATTRS=style-element <(options)> | (options))

specifies the appearance of the individual value prediction limits by using an ODS style element or by specifying attributes for the outlines. The outline attributes can be the following:

CLILINEATTRS= style-element <(options)> | (options)

Specify the line attributes of the prediction limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphPredictionLimits style element in the current style for ungrouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Default
The default style element is GraphPredictionLimits.

Interaction
The CLIATTRS = option has no effect unless you also specify the CLI option.

CLM <"text-string”>
creates confidence limits. The optional text string overrides the default legend label for the confidence limit.

CLMATTRS = style-element | (CLMAtributeOptions)
specifies the appearance of the mean value confidence limits by using an ODS style element or by specifying fill and line attributes. CLMAtributeOptions can be one or both of the following:

CLMFILLATTRS=style-element | (COLOR=color)
Specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

CLMLINEATTRS=style-element <(options)> | (options)
Specify the line attributes of the confidence limits. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphConfidence style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Interaction
CLMLINEATTRS = has no effect unless you change the display options in the style element to display outlines. See the preceding code example.

Interaction
The CLMATTRS = option has no effect unless you also specify the CLM option.

CLMTRANSPARENCY=numeric-value
specifies the degree of transparency for the confidence limits. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

Interaction
This option takes effect only if you also specify the CLM option.

CURVELABEL <="text-string”>
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.
Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.

Examples

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default

INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction

This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.
DATALABEL \(<=\text{variable}\)>

Displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

Interaction
This option has no effect if you also specify the NOMARKERS option.

DATALABELATTRS=style-element \(<\text{options}>\) | \(\text{options}\)

Specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position

Specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Bottomleft</th>
<th>Bottomright</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>Center</td>
<td>Center</td>
</tr>
<tr>
<td>Top</td>
<td>Top</td>
<td>Top</td>
</tr>
</tbody>
</table>

Interaction
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.
DEGREE=n
specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

- **Default**: 1
- **Range**: 0–10

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

- **Requirement**: The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

- **Interaction**: Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

- **See**: For usage information and an example, see “Marker Fills and Outlines” on page 1267.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \(n \) times for computational purposes, where \(n \) is the value of the numeric variable.

- **Restriction**: If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

- **Note**: If the value is not an integer, only the integer portion is used.

GROUP=variable
specifies a variable that is used to group the data. A separate plot is created for each unique value of the grouping variable. The plot elements for each group value are automatically distinguished by different visual attributes.

- **Interactions**: If you specify the GROUP= option in multiple fit plot statements, then the first GROUP= variable is used for all of the fit plots that specify GROUP=.

 When the GROUP option is used, the data is rendered in sorted order by the group variable.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.
The following partial images show the effect of jittering.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Default Image]</td>
<td>![JITTER Specified Image]</td>
</tr>
</tbody>
</table>

Default: Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes: This option affects only how the scatter plot is drawn. It has no effect on the REG curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

LEGENDLABEL= specifies a label that identifies the regression curve in the legend. By default, the label “Regression” is used.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LINEATTRS= specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults: For grouped data, GraphData1 ... GraphDataN style elements in the current style are used. The affected attributes are ContrastColor and LineStyle. The LineThickness attribute comes from the GraphFit element in the current style.

For ungrouped data, the GraphFit style element in the current style is used. The affected attributes are ContrastColor, LineStyle, and LineThickness.

Note: If you overlay multiple REG plots using ungrouped data, the procedure uses GraphFit and GraphFit2 for the first two plots. If three or more plots are requested, the GraphData1 ... GraphDataN style elements are used instead for the ContrastColor and LineStyle attributes. In this case, the LineThickness attribute comes from the GraphFit element.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction
This option has no effect unless FILLEDOUTLINEMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.
MAXPOINTS=n
specifies the maximum number of predicted points for the regression curve and for any confidence limits.

Default 10

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOLEGCLI
hides the legend entry for the individual value confidence limits.

NOLEGCLM
hides the legend entry for the mean value confidence limits.

NOLEGFIT
hides the legend entry for the fit line.

NOMARKERS
removes the scatter markers from the plot.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.
The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```plaintext
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Note
The option affects only the scatter plot in this statement.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default: The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

Requirement: A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPLABEL= option to assign labels to the list of variables.

See: SAS Viya Formats and Informats: Reference

Example: tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement except the confidence limits. The CLMTRANSPARENCY option must still be used to control transparency for confidence limits.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.
Interaction

When the CLI= option is used with this option, the confidence band for individual predicted values is displayed as a high-low plot instead of a band.

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

SCATTER Statement

Creates a scatter plot.

Examples:

- “About Scatter Plots” on page 26
- “Example 1: Grouping a Scatter Plot” on page 1187
- “Example 5: Adding a Prediction Ellipse to a Scatter Plot” on page 1191
- “Example 6: Creating Lines and Bands from Pre-Computed Data” on page 1193

Syntax

```
SCATTER X=variable Y=variable <option(s)>
```

Summary of Optional Arguments

Appearance options

- **ATTRID=character-value**
 specifies the value of the ID variable in a discrete attribute map data set.

- **COLORMODEL=style-element | (color-list)**
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **COLORRESPONSE=numeric-column**
 specifies the numeric column that is used to map colors to a gradient legend.

- **DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
 specifies a special effect to be used on the plot.

- **DISCRETEOFFSET=numeric-value**
 specifies an amount to offset all markers from discrete X or Y values.

- **ERRORBARATTRS=style-element <options> | (options)**
 specifies the appearance of the error bars in the plot.

- **LABELSTRIP**
 strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot.

- **RATTRID=character-value**
 specifies the value of the ID variable in a range attribute map data set.

- **TRANSPARENCY=value**
 specifies the degree of transparency for the plot.

Axis options

- **X2AXIS**
 assigns the X variable to the secondary (top) horizontal axis.
Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped markers.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.
NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options
DATALABEL <=variable>
displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.
DATALABELPOS=position
specifies the location of the data label with respect to the plot.
LEGENDBLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.
SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options
FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.
JITTER
specifies that data markers are offset when multiple observations have the same response value.

\textbf{JITTERWIDTH} = \textit{positive-number}

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

\textbf{MARKERATTRS} = \textit{style-element \langle\textit{options}\rangle} | \langle\textit{options}\rangle

specifies the appearance of the markers in the plot.

\textbf{MARKERCHAR} = \textit{variable}

specifies a variable whose values replace the marker symbols in the plot.

\textbf{MARKERCHARATTRS} = \textit{style-element \langle\textit{options}\rangle} | \langle\textit{options}\rangle

specifies the appearance of the markers in the plot when you use the \textbf{MARKERCHAR=} option.

\textbf{MARKERFILLATTRS} = \textit{style-element \langle\textit{COLOR}=\textit{color}\rangle} | \langle\textit{COLOR}=\textit{color}\rangle

specifies the color of the marker fill.

\textbf{MARKEROUTLINEATTRS} = \textit{style-element \langle\textit{options}\rangle} | \langle\textit{options}\rangle

specifies the appearance of the marker outlines.

\textbf{Plot options}

\textbf{FREQ} = \textit{numeric-variable}

specifies a variable for the frequency count for each observation in the input data.

\textbf{URL} = \textit{character-variable}

specifies an HTML page to be displayed when parts of the plot are selected.

\textbf{XERRORLOWER} = \textit{numeric-variable}

specifies a variable that contains the lower endpoints for the X error bars.

\textbf{XERRORUPPER} = \textit{numeric-variable}

specifies a variable that contains the upper endpoints for the X error bars.

\textbf{YERRORLOWER} = \textit{numeric-variable}

specifies a variable that contains the lower endpoints for the Y error bars.

\textbf{YERRORUPPER} = \textit{numeric-variable}

specifies a variable that contains the upper endpoints for the Y error bars.

\textbf{Plot reference options}

\textbf{NAME} = \textit{“text-string”}

assigns a name to a plot statement.

\textbf{Required Arguments}

\textbf{X} = \textit{variable}

specifies the variable for the x axis.

\textbf{Y} = \textit{variable}

specifies the variable for the y axis.

\textbf{Optional Arguments}

\textbf{ATTRID} = \textit{character-value}

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
Overview of Attribute Maps on page 1315

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example
colormodel=TwoColorRamp

(color-list) specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example
colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element
For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See “GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDatan style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples **DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)**

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all marker symbols. If the symbol is not filled, then the data skin is applied to the outlines. Specify one of the following:

| Table 5.20 DATASKIN Options for Markers |
|-------------|-----------------|-----------------|
| NONE | CRISP | GLOSS |
| ![NONE] | ![CRISP] | ![GLOSS] |
| MATTE | PRESSED | SHEEN |
| ![MATTE] | ![PRESSED] | ![SHEEN] |

Default NONE

Restriction The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction You can use the MARKERATTRS= option to specify a filled marker symbol.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all markers from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

ERRORBARATTRS=style-element <(options)> | (options)
specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by using suboptions. If you specify a style element, you can also specify suboptions to override specific appearance attributes.

options can be one or more of the following:

COLOR=color
specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default The default color is specified by the ContrastColor attribute of the GraphError style element in the current style.
PATTERN=\textit{line-pattern} specifies the line pattern for the line. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default The default line pattern is specified by the LineStyle attribute of the GraphError style element in the current style.

\textbf{THICKNESS=\textit{n <units>}} specifies the thickness of the line. You can also specify the unit of measure. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default The default line thickness is specified by the LineThickness attribute of the GraphError style element in the current style.

\textbf{FILLEDOUTLINEDMARKERS} specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

\textbf{FREQ=\textit{numeric-variable}} specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \textit{n} times for computational purposes, where \textit{n} is the value of the numeric variable.

Restriction If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

Note If the value is not an integer, only the integer portion is used.

\textbf{GROUP=\textit{variable}} specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.
Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped markers.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER</td>
<td>grouped items are drawn adjacent to each other.</td>
</tr>
<tr>
<td>OVERLAY</td>
<td>grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData\textsubscript{n} style elements in the current style.</td>
</tr>
</tbody>
</table>

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions This option is ignored unless GROUP= is specified.

For interval data, when GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>orders the groups within a category in data order of the group variable.</td>
</tr>
</tbody>
</table>

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVERSEDATA</td>
<td>orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.</td>
</tr>
</tbody>
</table>

Note: This value is not supported with CAS data.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCENDING</td>
<td>orders the groups within a category in ascending order of the group variable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCENDING</td>
<td>orders the groups within a category in descending order of the group variable.</td>
</tr>
</tbody>
</table>

Default DATA. If using CAS data, the default is ASCENDING.

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

Note: This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

JITTER

specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following examples show how the jittering differs based on the variable type that is being plotted on the X and Y axes.

Table 5.21 X Axis Is Discrete and Y Axis Is Linear

<table>
<thead>
<tr>
<th>Observations</th>
<th>Ascending</th>
<th>Descending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Y-axis</td>
<td>4.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

In the first case (No Jittering), markers that represent the same Y value are overlaid, which results in some markers being obscured.

In the second figure, the JITTER option is specified in the SCATTER statement. In this case, one-dimensional systematic jittering occurs along the X axis. The markers that represent the same Y value are offset along the X axis from the midpoint of that value in order to make all of the markers visible.

The next figures show the case in which both axes are linear. In the first figure (No Jittering), markers that represent the same X and Y bin value are overlaid, which results in some markers being obscured. In the second figure, two-dimensional random jittering occurs along the X and Y axes. The markers are offset randomly along both the X and Y axes in order to make all of the markers visible.

Table 5.22 Both Axes Are Linear

<table>
<thead>
<tr>
<th>Observations</th>
<th>Ascending</th>
<th>Descending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>X-axis</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Y-axis</td>
<td>5.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>
When JITTER is not specified, markers that represent the same response value are overlaid. As a result, some markers might be obscured.

This option is not supported if MARKERCHAR= is also specified. The combination of these two options can produce unpredictable results.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JITTERWIDTH=positive-number

specifies the width of the jitter space as a fraction of either the midpoint spacing or of the minimal interval width.

Default 0.85

Notes The specified number can be greater than 1.

When used with a discrete axis, changes to JITTERWIDTH= take effect only as long as the markers overlap. Once the specified jitter width reaches the point where the markers are clustered side-by-side without overlapping, further increases to JITTERWIDTH= have no effect on the markers.

LABELSTRIP

strips leading and trailing blanks from marker characters or data labels with fixed positions before they are displayed in the plot. The MARKERCHAR= option specifies the variable that provides the marker strings that are used in place of marker symbols.

This option affects marker strings only when the MARKERCHAR= option is specified.

This option affects data labels only when DATALABEL is specified.

Tip Stripping the blanks from the numeric value strings helps center each string relative to its data point. Stripping is useful when you want to overlay the data values near or inside the markers for a plot.

LEGENDLABEL="text-string"

specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MARKERATTRS=style-element<(options)> | (options)

specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.
MARKERCHAR=variable
specifies a variable whose values replace the marker symbols in the plot. If a format is associated with the variable, then the formatted values are used as the marker symbols. If there is not a format associated with the variable and the variable contains numeric data, then the BEST6. format is used.

Interaction
The MARKERCHAR= option overrides the DATALABEL= option and the SYMBOL= suboption of the MARKERATTRS= option.

MARKERCHARATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot when you use the MARKERCHAR= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
ContrastColor attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1 ... GraphData style elements.

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Examples
MARKERCHARATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
MARKERCHARATTRS=GraphValueText

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by
using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for
grouped data. The affected attributes are ContrastColor and
LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEMARKERS is
also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify
attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines”
on page 1267.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

Interaction
The appearance of the error bars is controlled by the
ERRORBARATTRS= option.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction
This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See
Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315
SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.
NONE

suppresses the data tips from this plot.

Requirement

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction

This option replaces all of the information that is displayed by default.

Tip

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example

```
tip=(age weight)
```

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Viya Formats and Informats: Reference

Example

```
tipformat=(auto F5.2)
```

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.
Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

<table>
<thead>
<tr>
<th>Default</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
</tbody>
</table>

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

|---------|-----------------------------------|

<table>
<thead>
<tr>
<th>Default</th>
<th>By default, no HTML links are created.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option affects graphics output that is created through the ODS HTML destination only.</td>
</tr>
<tr>
<td></td>
<td>This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:</td>
</tr>
<tr>
<td></td>
<td>ODS GRAPHICS ON / IMAGEMAP=ON;</td>
</tr>
</tbody>
</table>

X2AXIS

assigns the X variable to the secondary (top) horizontal axis.

<table>
<thead>
<tr>
<th>XERRORLOWER=numeric-variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a variable that contains the lower endpoints for the X error bars.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XERRORUPPER=numeric-variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a variable that contains the upper endpoints for the X error bars.</td>
</tr>
</tbody>
</table>

Y2AXIS

assigns the Y variable to the secondary (right) vertical axis.

<table>
<thead>
<tr>
<th>YERRORLOWER=numeric-variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a variable that contains the lower endpoints for the Y error bars.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YERRORUPPER=numeric-variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a variable that contains the upper endpoints for the Y error bars.</td>
</tr>
</tbody>
</table>

SERIES Statement

Creates a line plot.

Examples:

“About Series Plots” on page 28

“Example 3: Plotting Three Series” on page 1189
Syntax

SERIES X=variable Y=variable <option(s)>;

Summary of Optional Arguments

Appearance options

ARROWHEAPOSE= START | END | BOTH
specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the series line.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Connect options

CONNECTORDER=XVALUES | XAXIS
specifies how to connect the data points to form the series line.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
 applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
 applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
 specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
 specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
 specifies how to display grouped lines.

GROUPLC=variable
 specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
 specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPMC=variable
 specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable.

GROUPMS=variable
 specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the ordering of the groups within a category.

LCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLC= variable.

LPATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPLP= variable.

MCATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMC= variable.

MSATTRID=discrete-attr-variable
 specifies an attribute map ID variable to be associated with the GROUPMS= variable.

NOMISSINGGROUP
 specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
 adds a label for the curve.

CURVELABELATRGS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option.
CURVELABELLOC=OUTSIDE | INSIDE
 specifies whether the curve label is placed inside the plot axes (INSIDE) or
 outside of the plot axes (OUTSIDE).
CURVELABELPOS=AUTO | END | MAX | MIN | START
 specifies the location of the curve label.
DATALABEL <=variable>
 displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
 specifies the appearance of the labels in the plot when you use the
 DATALABEL= option.
DATALABELPOS=position
 specifies the location of the data label with respect to the plot.
LEGENDLABEL=“text-string”
 specifies a label that identifies the series plot in the legend.
SPLITCHAR=“character-list”
 specifies one or more characters used to split the text used for curve and data
 labels into multiple lines.
SPLITCHARNODROP
 specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the value text that is being split.

Marker options
 FILLEDOUTLINEDMARKERS
 specifies that markers have a fill and an outline.
 MARKERATTRS=style-element <(options)> | (options)
 specifies the appearance of the markers in the plot.
 MARKERFILLATTRS=style-element <COLOR=color> | (COLOR=color)
 specifies the color of the marker fill.
 MARKEROUTLINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the marker outlines.
 MARKERS
 adds data point markers to the series plot data points.

Plot options
 BREAK
 creates a break in the line for each missing value for the Y variable.
 URL=character-variable
 specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
 NAME=“text-string”
 assigns a name to a plot statement.

Series options
 SMOOTHCONNECT
 specifies that a smoothed line passes through all vertices.

Required Arguments
 X=variable
 specifies the variable for the x axis.
Y=variable
specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.

END displays an arrowhead at the ending point of each line.

BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

```
OPEN ↦
FILLED ↪
BARBED ↫
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

For interval data, when markers are displayed and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL= *style-element* | *(color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **style-element**
 - specifies the name of a style element. The style element should contain these style attributes:
 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```plaintext
colormodel=TwoColorRamp
```

- **(color-list)** specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

```plaintext
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE= *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.
Interaction

If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

CONNECTORDER=XVALUES | XAXIS

specifies how to connect the data points to form the series line.

XVALUES
connects data points in the order read from the X variable.

XAXIS
connects data points as they occur (minimum-to-maximum) along the X axis.

Defaults

XVALUES

XAXIS for CAS data

Tip

For certain types of series lines (for example, time series) when the input data might not be sorted by the X variable, set this option to XAXIS to assure the expected connect order.

CURVELABEL.<=“text-string”>

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element (options) | (options)

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect unless the CURVELABEL option is also specified.
Examples
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
```
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
DATALABELATTRS=GraphLabelText
```

DATALABELPOS=\textit{position} specifies the location of the data label with respect to the plot. \textit{position} can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions
This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

DATASKIN=\texttt{NONE} | \texttt{CRISP} | \texttt{GLOSS} | \texttt{MATTE} | \texttt{PRESSED} | \texttt{SHEEN} specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

Table 5.23 \textit{DATASKIN Options for Lines}

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

Table 5.24 \textit{DATASKIN Options for Markers}

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

DISCRETEOFFSET=numeric-value

specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement This option is applicable only when the X or Y axis is discrete.

FILLEDOUTLINEDMARKERS

specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Interactions This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

GROUP=variable

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY

specifies how to display grouped lines.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

Default

OVERLAY

Restriction

GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions

This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphDataN style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions

The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips

Use the GROUPLP= option to set the line pattern.

Use the LCATTRID= option to associate the GROUPLC= variable with an attribute map ID.

You can also use LINEATTRS= option to set the line pattern and thickness.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 925

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphDataN style elements based on the GROUPLP= variable instead of the GROUP= variable.
The GROUP= option must be specified for this option to have any effect.

This option overrides the PATTERN= suboption of the LINEATTRS= option.

Use the GROUPPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

Use the LPATTRID= option to associate the GROUPLP= variable with an attribute map ID.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925

GROUPMC=variable

specifies a variable that determines the marker colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series marker colors are selected from the GraphData1–GraphData\(_n\) style elements based on the GROUPMC= variable instead of the GROUP= variable.

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the COLOR= suboption of the MARKERATTRS= option.

Use the GROUPMS= option to set the marker symbol. You can also use the MARKERATTRS= option to set the marker size and symbol.

Use the MCATTRID= option to associate the GROUPMC= variable with an attribute map ID.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925

GROUPMS=variable

specifies a variable that determines the marker symbols for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series marker symbols are selected from the GraphData1–GraphData\(_n\) style elements based on the GROUPMS= variable instead of the GROUP= variable.

The GROUP= option must be specified for this option to have any effect.

The MARKERS option must also be specified for this option to have any effect.

This option overrides the SYMBOL= suboption of the MARKERATTRS= option.
Tips
Use the GROUPMC= option to set the marker color. You can also use
the MARKERATTRS= option to set the marker size and color.

Use the MSATTRID= option to associate the GROUPMS= variable
with an attribute map ID.

See
“Example: Using Group Options, and Group Options with an
Attribute Map” on page 925

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS)
data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group
variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default
DATA. If using CAS data, the default is ASCENDING.

Interactions
The DATA and REVERSEDATA values have no effect when you are
using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is
specified in GROUPORDER=. The order in the legend can be
changed using the SORTORDER= option in the KEYLEGEND
statement.

The default group order can vary for different types of plots. If your
graph contains plot overlays, the default group order for the first plot
statement is applied to all the other overlaid plots that use default
values. If you specify the group order for a plot, then your specified
value is honored.

Note
The ASCENDING and DESCENDING settings sort the group values
within each category for display position purposes only. For numeric
data, the order is based on the unformatted values. For character data,
the order is based on the formatted values. The data order of the
observations and the visual attributes that are assigned to the group
values remain unchanged.

LCATTRID=discrete-attr-variable
specifies an attribute map ID variable to be associated with the GROUPLC=
variable. This option enables the plot to associate an attribute map with the line color
group. The option specifies the value of the ID variable that maps attributes to
LINECOLOR in the attribute map.
<table>
<thead>
<tr>
<th>Requirement</th>
<th>The procedure statement must specify the attribute map data set using the DATTRMAP= option.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>This option is ignored unless the GROUPLC= option is specified. This option overrides the COLOR= suboption of the LINEATTRS= option.</td>
</tr>
<tr>
<td>Note</td>
<td>Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.</td>
</tr>
<tr>
<td>See</td>
<td>“Example: Using Group Options, and Group Options with an Attribute Map” on page 925</td>
</tr>
</tbody>
</table>

LEGENDLABEL=“text-string”

specifies a label that identifies the series plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the series line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

LPATTRID=discrete-attr-variable

specifies an attribute map ID variable to be associated with the GROUPLP= variable. This option enables the plot to associate an attribute map with the line pattern group. The option specifies the value of the ID variable that maps attributes to LINEPATTERN in the attribute map.

Requirement

The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions

This option is ignored unless the GROUPLP= option is specified. This option overrides the PATTERN= suboption of the LINEATTRS= option.

Note

Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See

“Example: Using Group Options, and Group Options with an Attribute Map” on page 925

Chapter 12, “Using Discrete Attribute Maps,” on page 1317
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data.
 GraphData1 ... GraphData_n style elements in the current style for
grouped data. The affected attributes are ContrastColor and
 MarkerSymbol.

Interaction This option has no effect unless you also specify the MARKERS
 option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

Default Color attribute of the GraphDataDefault style element in the current
 style for ungrouped data. GraphData1 ... GraphData_n style elements in the
 current style for grouped data.

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is
 also specified.

 This option overrides any color that is specified with the
 MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify
 attributes for the marker outline.

See For usage information and an example, see “Marker Fills and
 Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data.
 GraphData1 ... GraphData_n style elements in the current style for
grouped data. The affected attributes are ContrastColor and
 LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is
 also specified.
Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS adds data point markers to the series plot data points.

MCATTRID=discrete-attr-variable specifies an attribute map ID variable to be associated with the GROUPMC= variable. This option enables the plot to associate an attribute map with the marker color group. The option specifies the value of the ID variable that maps attributes to MARKERCOLOR in the attribute map.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPMC= option is specified. This option is ignored unless the MARKERS option is specified. This option overrides the COLOR= suboption of the MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925 Chapter 12, “Using Discrete Attribute Maps,” on page 1317

MSATTRID=discrete-attr-variable specifies an attribute map ID variable to be associated with the GROUPMS= variable. This option enables the plot to associate an attribute map with the marker symbol group. The option specifies the value of the ID variable that maps attributes to MARKERSYMBOL in the attribute map.

Requirement The procedure statement must specify the attribute map data set using the DATTRMAP= option.

Interactions This option is ignored unless the GROUPMS= option is specified. This option is ignored unless the MARKERS option is specified. This option overrides the SYMBOL= suboption of the MARKERATTRS= option.

Note Do not use this option and the ATTRID= option in the same plot statement. Doing so can cause unexpected results.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925 Chapter 12, “Using Discrete Attribute Maps,” on page 1317
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices. The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.
Interactions This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

THICKMAX=

specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.
THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Default The maximum value in the response column that is specified in the THICKRESP= option.

Interactions The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

Default The GraphDataDefault style element LineThickness attribute.

Restriction The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.
Example

tip=(age weight)

TIPFORMAT=\(\text{format-list}\)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the *format-list* and the *variable-list* that is specified for the TIP= option. A format must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPLABEL= option to assign labels to the list of variables.

See

SAS Viya Formats and Informats: Reference

Example

tipformat=(auto F5.2)

TIPLABEL=\(\text{label-list}\)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction

This option has no effect unless TIP= is also specified.

Tip

Use the TIPFORMAT option to assign formats to the list of variables.

Example

tiplabel=(auto "Class Weight")

TRANSPARENCY=\(\text{value}\)

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default

0.0

Range

0 (completely opaque) to 1 (completely transparent)

URL=\(\text{character-variable}\)

specifies an HTML page to be displayed when parts of the plot are selected.
character-variable
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default
By default, no HTML links are created.

Interactions
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Example: Using Group Options, and Group Options with an Attribute Map

When you specify the GROUP= option, you specify a variable that is used to group the lines of your series plot. The plot lines and markers, if enabled, for each group value are automatically distinguished by different visual attributes.

The SERIES plot statement also includes four group options that give you additional control over grouped output:

• GROUPLC= specifies a variable that determines the line colors for the grouped series plot.
• GROUPLP= specifies a variable that determines the line patterns for the grouped series plot.
• GROUPMC= specifies a variable that determines the marker colors for the grouped series plot.
• GROUPMS= specifies a variable that determines the marker symbols for the grouped series plot.

When you specify one or more of these group options, you override the particular attribute (line color, line pattern, marker color, or marker symbol) from the GROUP= option.

The following example shows line attributes that are specified using the GROUP= and GROUPLC= options. The GROUPLC option is used to distinguish Microsoft stock close values from IBM and Intel stock close values. The Microsoft values have red lines.
data stocks;
 set sashelp.stocks;
 emphasis = 2;
 if stock eq 'Microsoft' then emphasis=1;
run;

title 'Microsoft Compared to IBM and Intel';
proc sgplot data=stocks (where=(date >= "01jan2003"d));
 series x=date y=close /
 group=stock grouplc=emphasis;
run;
title;

You can associate group variables with an attribute map.

Use the following attribute ID variables:

- LCATTRID= associates the GROUPLC= variable with an attribute map ID.
- LPATTRID= associates the GROUPLP= variable with an attribute map ID.
- MCATTRID= associates the GROUPMC= variable with an attribute map ID.
- MSATTRID= associates the GROUPMS= variable with an attribute map ID.

Here is a simple example that shows attribute mapping of grouped markers.

/* Create the data set. */
data myclass;
 set sashelp.class;
 length type $10;
 if age > 12 then type='Teen';
 else type='Pre-Teen';
 label type="Age Group";
run;

/* Create the attribute map. */
data mymap;
 retain id "mytest";
 input value $ markersymbol $;
The series plots show markers that are determined by an attribute map.

SPLINE Statement

Creates a series plot with a quadratic Bézier spline interpolation that produces smooth curves.

Note: The spline plot is not guaranteed to intersect the original data points. For more information, see “Details” on page 940.

Example: “About Spline Plots” on page 29

Syntax

```
SPLINE X=variable Y=variable </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ARROWHEADPOS=** `START` | `END` | `BOTH`
 - specifies a position for arrowheads.

- **ARROWHEADSCALE=** `positive-number`
 - specifies an arrowhead scale factor based on the thickness of the arrow line.
ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE=
option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values.

LINEATTRS=style-element | <(options)> | (options)
specifies the appearance of the spline line.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to
determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each
group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is
positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable.

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string">
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

LEGENDLABEL="text-string"
specifies a label that identifies the spline plot in the legend.

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options

BREAK
creates a break in the line for each missing value for the Y variable.

SEGPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the INTERVAL= axis option.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

X=variable
specifies the variable for the x axis.
Y=variable
specifies the variable for the y axis.

Optional Arguments

ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.

START displays an arrowhead at the starting point of each line.

END displays an arrowhead at the ending point of each line.

BOTH displays an arrowhead at each end of each line.

Default No arrowheads are displayed when this option is not specified

ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

```
OPEN
FILLED
BARBED
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).
Interactions

This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLOR**MODE**L=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTCOLOR</td>
<td>specifies the color for the smallest data value of the COLORRESPONSE= column.</td>
</tr>
<tr>
<td>NEUTRALCOLOR</td>
<td>specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.</td>
</tr>
<tr>
<td>ENDCOLOR</td>
<td>specifies the color for the highest data value of the COLORRESPONSE= column.</td>
</tr>
</tbody>
</table>

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement

The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction

If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLO**M**ODE**L= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 683
Using Gradient Color Legends” on page 1262

CURVELABEL <"text-string">
adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

Interactions
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

CURVELABELATTRS=style-element (options) | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData_n style elements.

Interaction
This option has no effect unless the CURVELABEL option is also specified.

Examples
CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
CURVELABELATTRS=GraphTitleText

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

Default
INSIDE

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label. Specify one of the following values:

AUTO
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

Interaction
This value takes effect only when CURVELABELLOC=OUTSIDE.

END
places the curve label at the last point on the curve.

MAX
places the label at the part of the curve closest to the maximum X axis value.
MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions
This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all lines from discrete X or Y values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

Requirement
This option is applicable only when the X or Y axis is discrete.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.
Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped lines.

CLUSTER grouped items are drawn adjacent to each other.

OVERLAY grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphData_n style elements in the current style.

Default OVERLAY

Restriction GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction This option is ignored unless GROUP= is specified.

GROUPLC=variable
specifies a variable that determines the line colors for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line colors are selected from the GraphData1–GraphData_n style elements based on the GROUPLC= variable instead of the GROUP= variable.

Interactions The GROUP= option must be specified for this option to have any effect.

This option overrides the COLOR= suboption of the LINEATTRS= option.

Tips Use the GROUPLP= option to set the line pattern.

You can also use LINEATTRS= option to set the line pattern and thickness.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925

GROUPLP=variable
specifies a variable that determines the line patterns for a grouped plot independently of the GROUP= variable. When this option is specified with the GROUP= option, the series line patterns are selected from the GraphData1–GraphData_n style elements based on the GROUPLP= variable instead of the GROUP= variable.
The GROUP= option must be specified for this option to have any effect. This option overrides the PATTERN= suboption of the LINEATTRS= option.

Use the GROUPLC= option to set the line color. You can also use the LINEATTRS= option to set the line thickness and color.

See “Example: Using Group Options, and Group Options with an Attribute Map” on page 925

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=, The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"

specifies a label that identifies the spline plot in the legend. By default, the label of the Y variable or the group value for each marker is used.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the spline line. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SEGPOINTS=positive-integer
specifies a multiplier to apply to the time interval that is in effect for the
INTERVAL= axis option.

Default 20

SPLITCHAR="character-list"
specifies one or more characters used to split the text used for curve and data labels
into multiple lines. The text value is split at every occurrence of the specified split
character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

Tip
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See
“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See
“Overview of Collision Avoidance” on page 1265

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default
Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.
If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKMAXRESP=numeric-value

specifies the response value that corresponds to the maximum line thickness.

Default
The maximum value in the response column that is specified in the THICKRESP= option.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKRESP=numeric-variable

specifies a response variable that is used to map a line thickness to each group value.

Default
The GraphDataDefault style element LineThickness attribute.

Restriction
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

Requirement
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

Interactions
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```
Interaction  This option replaces all of the information that is displayed by default.

Tip  Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example  `tip=(age weight)`

### TIPFORMAT=(format-list)

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default**  The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

**Requirement**  A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**  This option has no effect unless TIP= is also specified.

**Tip**  Use the TIPLABEL= option to assign labels to the list of variables.

**See**  *SAS Viya Formats and Informs: Reference*

**Example**  `tipformat=(auto F5.2)`

### TIPLABEL=(label-list)

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

**Requirement**  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**  This option has no effect unless TIP= is also specified.

**Tip**  Use the TIPFORMAT option to assign formats to the list of variables.

**Example**  `tiplabel=(auto "Class Weight")`

### TRANSPARENCY=value

Specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.
Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

**Example** http://www.sas.com/en_us/home.html

Default By default, no HTML links are created.

**Interactions**
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**X2AXIS**
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the Y variable to the secondary (right) vertical axis.

**Details**
Bézier curves are used to achieve smooth curves. They do this by approximating sequences of line segments.

The following figure shows an example of a spline plot overlaid on a series plot. As shown here, the spline plot does not always intersect the original data points.

**Figure 5.5** Spline and Series Plots
STEP Statement

Creates a step plot.

Restriction: The vertical axis that is used with the STEP statement cannot be a discrete axis.

Example: “About Step Plots” on page 30

Syntax

STEP X=variable Y=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ARROWHEADPOS= START | END | BOTH
  specifies a position for arrowheads.

ARROWHEADSCALE=positive-number
  specifies an arrowhead scale factor based on the thickness of the arrow line.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
  specifies a shape for arrowheads.

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
  specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
  specifies an amount to offset all step lines from discrete X values.

ERRORBARATRTRS=style-element <options> | (options)
  specifies the appearance of the error bars in the plot.

JUSTIFY=LEFT | CENTER | RIGHT
  specifies the location of each step relative to its data point.

LINEATRTRS=style-element <options> | (options)
  specifies the appearance of the step line.

THICKMAX=dimension
  specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
  specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
  specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

Axis options

X2AXIS
  assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
  assigns the Y variable to the secondary (right) vertical axis.
Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

CLUSTERWIDTH=numeric-value
spe speaking the width of the group clusters as a fraction of the midpoint spacing.

GROUP=variable
specifies a variable that is used to group the data.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped step lines.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

NOERRORCAPS
suppresses the serif cap on error bars, if error bars are displayed.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

CURVELABEL <="text-string”>
adds a label for the curve.

CURVELABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the CURVELABEL= option.

CURVELABELLOC=OUTSIDE | INSIDE
specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

CURVELABELPOS=AUTO | END | MAX | MIN | START
specifies the location of the curve label.

DATALABEL <=variable>
displays a label for each data point.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

LEGENDLABEL="text-string”
specifies a label that identifies the step plot in the legend.

SPLITCHAR="character-list”
specifies one or more characters used to split the text used for curve and data labels into multiple lines.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Marker options
FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.
MARKERS
adds markers to the step plot data points.

Plot options
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
YERRORLOWER=numeric-variable
specifies a variable that contains the lower endpoints for the Y error bars.
YERRORUPPER=numeric-variable
specifies a variable that contains the upper endpoints for the Y error bars.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Step options
BREAK
creates a break in the line for each missing value for the Y variable.

Required Arguments
X=variable
specifies the variable for the x axis.
Y=numeric-variable
specifies the variable for the y axis.

Optional Arguments
ARROWHEADPOS= START | END | BOTH
specifies a position for arrowheads. The arrowheads are placed at the starting and ending points using the X values in data order. In order to position the arrowheads properly, you might need to sort the data by the X column.
START displays an arrowhead at the starting point of each line.
END displays an arrowhead at the ending point of each line.
BOTH displays an arrowhead at each end of each line.
Default No arrowheads are displayed when this option is not specified
ARROWHEADSCALE=positive-number
specifies an arrowhead scale factor based on the thickness of the arrow line.

Default 1.0

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

Tip Use a factor greater than 1.0 to make a larger arrowhead.

ARROWHEADSHAPE= OPEN | FILLED | BARBED
specifies a shape for arrowheads.

The following figure shows each of the arrowhead shapes.

```
OPEN ———>
FILLED ———>
BARBED ———>
```

Default OPEN

Interaction ARROWHEADPOS= must also be specified for this option to have any effect.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify
this option only if you are using an attribute map to control visual attributes of the
graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BREAK
creates a break in the line for each missing value for the Y variable.

CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.
Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified,
when GROUPDISPLAY=CLUSTER, and when the category axis is
discrete.

For interval data, when markers are displayed and
GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect,
the size of the markers in each cluster might be reduced to no less than
5 pixels in order to display the cluster within the smallest effective
midpoint space. If you need larger markers in that case, use the
MARKERATTRS= option to specify a larger marker size.

The default cluster widths can vary for different types of plots. If your
graph contains plot overlays, the default cluster width for the primary
plot statement is applied to all the other overlaid plots that use default
values. If you specify the cluster width for a plot, then your specified value is honored.

**CURVELABEL <="text-string"**

adds a label for the curve. You can also specify the label text. If you do not specify a label, the label from the Y variable is used.

**Interactions**

If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

When a group variable is specified, the group values are always used for labels.

**CURVELABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\_n style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

CURVELABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

CURVELABELATTRS=GraphTitleText

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default**

INSIDE

**CURVELABELPOS=AUTO | END | MAX | MIN | START**

specifies the location of the curve label. Specify one of the following values:

**AUTO**

places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**

This value takes effect only when CURVELABELLOC=OUTSIDE.

**END**

places the curve label at the last point on the curve.
MAX
places the label at the part of the curve closest to the maximum X axis value.

MIN
places the label at the part of the curve closest to the minimum X axis value.

START
places the curve label at the first point on the curve.

Default END

Interactions This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

DATALABEL <=variable>
displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction This option has no effect unless the DATALABEL option is also specified.

Examples DATALABELATTRS={Color=Green Family=Arial Size=8 Style=Italic Weight=Bold}

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATALABELPOS=position
specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>
Interactions

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.

**DATASKIN**=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN

specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

<table>
<thead>
<tr>
<th>Table 5.26  DATASKIN Options for Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>

If you specify markers with the plot, then the data skin affects the markers as well.

<table>
<thead>
<tr>
<th>Table 5.27  DATASKIN Options for Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
</tr>
<tr>
<td>MATTE</td>
</tr>
</tbody>
</table>

**Default**

NONE

**Restriction**

The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET**=numeric-value

specifies an amount to offset all step lines from discrete X values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default**

0.0 (no offset)

**Requirement**

This option is applicable only when the X axis is discrete.

**ERRORBARATTRS**=style-element<(options)> | (options)

specifies the appearance of the error bars in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default  GraphError style element in the current style. The affected attributes are ContrastColor,LineStyle, and LineThickness.

**FILLEDOUTLINEDMARKERS**

specifies that markers have a fill and an outline.

**Requirement**
The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interactions**
This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**Note**
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

specifies how to display grouped step lines.

**CLUSTER**
grouped items are drawn adjacent to each other.

**OVERLAY**
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

**Default**
OVERLAY
Restriction  GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interactions  This option is ignored unless GROUP= is specified.

For interval data, when markers are displayed, and GROUPDISPLAY=CLUSTER and CLUSTERWIDTH= are in effect, the size of the markers in each cluster might be reduced to no less than 5 pixels in order to display the cluster within the smallest effective midpoint space. If you need larger markers in that case, use the MARKERATTRS= option to specify a larger marker size.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default  DATA. If using CAS data, the default is ASCENDING.

Interactions  The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note  The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.
JUSTIFY=LEFT | CENTER | RIGHT
specifies the location of each step relative to its data point. Figure 5.6 on page 950 shows the effect of each option:

Figure 5.6 Values for JUSTIFY=

LEGENDLABEL="text-string"
specifies a label that identifies the step plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the step line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

INTERACTION This option has no effect unless you also specify the MARKERS option.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

INTERACTION This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.
Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS adds markers to the step plot data points.

NAME="text-string" assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOERRORCAPS suppresses the serif cap on error bars, if error bars are displayed.

Interaction The appearance of the error bars is controlled by the ERRORBARATTRS= option.

NOMISSINGGROUP specifies that missing values of the group variable are not included in the plot.

Interaction This option has no effect unless GROUP= is also specified.
**SPLITCHAR=“character-list”**
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**
Values are not split.

**Interactions**
This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**Tip**
If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

**See**
“Overview of Collision Avoidance” on page 1265

---

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Interaction**
This option has no effect unless SPLITCHAR= is also specified.

**See**
“Overview of Collision Avoidance” on page 1265

---

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**Default**
LEFT

**Interaction**
This option has no effect unless you specify the SPLITCHAR= option.

**See**
“Overview of Collision Avoidance” on page 1265
**THICKMAX=dimension**
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

**Default**
Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

**Interactions**
The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKMAXRESP=numeric-value**
specifies the response value that corresponds to the maximum line thickness.

**Default**
The maximum value in the response column that is specified in the THICKRESP= option.

**Interactions**
The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKRESP=numeric-variable**
specifies a response variable that is used to map a line thickness to each group value.

**Default**
The GraphDataDefault style element LineThickness attribute.

**Restriction**
The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

**Requirement**
The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

**Interactions**
When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.
TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over
the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example tip=(age weight)

TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that
is specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.
Requirement  A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction  This option has no effect unless TIP= is also specified.

Tip  Use the TIPFORMAT option to assign formats to the list of variables.

Example  tiplabel=(auto "Class Weight")

**TRANSPARENCY=** value  
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

**URL=** character-variable  
specifies an HTML page to be displayed when parts of the plot are selected.

character-variable  
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

**X2AXIS**  
assigns the X variable to the secondary (top) horizontal axis.

**Y2AXIS**  
assigns the Y variable to the secondary (right) vertical axis.

**YERRORLOWER=** numeric-variable  
specifies a variable that contains the lower endpoints for the Y error bars.

**YERRORUPPER=** numeric-variable  
specifies a variable that contains the upper endpoints for the Y error bars.

---

**SYMBOLCHAR Statement**  
Defines a marker symbol using a Unicode character that can be referenced in other statements.
Syntax

SYMBOLCHAR NAME=identifier
CHAR="hex-string''x | keyword <option(s)>;

Summary of Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
specifies a scale factor for the marker symbol as a percentage.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the marker symbol.

VOFFSET=offset
specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLCHAR statements are used in a procedure, each statement must have a unique identifier. The identifier is not case-sensitive.

Interaction
If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See the list of marker symbols on page 1275.

Note
Do not enclose the identifier in quotation marks.

CHAR="hex-string''x | keyword
specifies a glyph (character) to be used as the marker symbol. The character is specified using its Unicode specification or its keyword equivalent.

"hex-string''x
specifies a four-byte hexadecimal constant, such as '03c3'x, that represents a Unicode character in the current font. You can find a complete listing of the Unicode hexadecimal constants at the following URL: http://www.unicode.org/charts/charindex.html

keyword
specifies a SAS keyword for a Unicode character, such as alpha or alpha_u. See Appendix 2, “Reserved Keywords and Unicode Values,” on page 1463.

Note: The “_u” in a keyword makes the character uppercase.

TIP
This statement attempts to access the specified Unicode value in the current font. Some fonts do not support accessing characters using their Unicode value while other fonts support only a limited set of Unicode values. If the Unicode value is not accessible, this statement might be ignored or a nonprintable character might be substituted.
Optional Arguments

HOFFSET=offset
specifies a horizontal offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol to the right while a negative offset moves it to the left.

ROTATE=number
specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default 0 (no rotation is performed)

Note An angle that exceeds 360 degrees in absolute value can be specified.

SCALE=double
specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default 1.0 (100%)

Range Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

TEXTATTRS=style-element <(options)> | (options)
specifies the appearance of the text in the marker symbol. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Note: Only the text attributes FAMILY=, STYLE=, and WEIGHT= are used. The color and size text attributes are derived from the MARKERATTRS= option in the plot statement.

Default GraphUnicodeText style element in the current style. The affected attributes are FontFamily, FontStyle, and FontWeight.

Examples TEXTATTRS=(Family=Arial Style=Italic Weight=Bold)
Here is an example that specifies a style element:
TEXTATTRS=GraphDataText

VOFFSET=offset
specifies a vertical offset for the marker symbol.

Default 0 (the marker symbol is centered on its data point)

Range -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note A positive offset moves the marker symbol up while a negative offset moves it down.
Details

The SYMBOLCHAR statement defines a custom marker symbol from a Unicode character. The custom marker symbol can be specified in any plot statement that uses markers.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

The procedure can contain more than one SYMBOLCHAR statements. In addition, you can have more than one SYMBOLCHAR statement that defines the same character. This enables you to use SYMBOLCHAR statements in IF/ELSE statements. Symbol specifications also are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can modify the appearance of markers that are created by the SYMBOLCHAR statement in the following ways:

• use the COLOR=, SIZE=, and TRANSPARENCY= suboptions of the MARKERATTRS= option in the plot statement.

  Note: The WEIGHT= suboption has no effect on these markers.

• use the FAMILY=, WEIGHT=, and STYLE= suboptions of the TEXTATTRS= option in the SYMBOLCHAR statement to format the symbol character. The color and size are controlled using the MARKERATTRS= option.

• When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLCHAR Example

This example specifies the SAS keyword DELTA_U, which produces the delta ( Δ) Unicode symbol. The symbol is rotated, and a bold font style is applied. The scatter plot statement references the symbol name and specifies the marker size.
proc sgplot data=sashelp.class;
  symbolchar name=sym1 char=delta_u / rotate=180
textattrs=(Weight=Bold);
  scatter x=weight y=height / markerattrs=(symbol=sym1 size=15pt);
run;

Example 2: SYMBOLCHAR Used with an SG Attribute Map
This example generates different marker symbols for students in a class based on their
height. The example uses an SG attribute map to assign colors and symbols for each
grouping of the variable SIZE.

In the example, the following marker symbols are used:

✓
indicates students who weigh 60 pounds or more

✗
indicates students who weigh less than 60 pounds

The procedure uses two SYMBOLCHAR statements to identify the marker symbols
used in the plot. The example creates marker symbols from the Unicode check mark,
heavy character (’2714’x) and the Ballot X character (’2717’x). The example then shows
how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
  set sashelp.class;
  size="Short";
  if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns colors 
and symbols for each grouping of SIZE. */
data myattrmap;
  input ID $ value  $ markercolor $ markersymbol $;
  datalines;
  myid  Short   green  greeny  
  myid  Tall    red    redx  
 ;
run;

/* Specify the marker symbols used in the scatter plot, 
and apply the SG attribute map. */
proc sgplot data=classHeight (where=(age >= 12)) dattrmap=myattrmap ;
symbolchar name=redx char='2714'x;
symbolchar name=greeny char='2717'x;
scatter x=name y=height / attrid=myid
  markerattrs=(size=15pt)
  group=size;
run;

SYMBOLIMAGE Statement

Defines a marker symbol using an image. The marker symbol can then be referenced in other statements.
Syntax

SYMBOLIMAGE NAME=identifier IMAGE="image-file-specification" < /option(s)>;

Summary of Optional Arguments

HOFFSET=offset
  specifies a horizontal offset for the marker symbol.

ROTATE=number
  specifies the angle of rotation for the marker symbol in degrees.

SCALE=double
  specifies a scale factor for the marker symbol as a percentage.

VOFFSET=offset
  specifies a vertical offset for the marker symbol.

Required Arguments

NAME=identifier
  specifies a unique identifier for the marker symbol. The identifier can be used in statements that support marker symbols. If multiple SYMBOLIMAGE statements are used in a procedure, each statement must have a unique identifier. The name identifier is not case-sensitive.

Interaction
  If the identifier matches one of the system-provided symbol names such as CIRCLE, the system symbol is replaced by the user-defined symbol. See the list of marker symbols on page 1275.

Note
  Do not enclose the identifier in quotation marks.

IMAGE="image-file-specification"
  specifies the name and location of the image file. The supported image types are GIF, JPEG, and PNG.

Requirements
  The image file specification must be enclosed in quotation marks.

  The image file must be located on the local file system. URL access is not supported.

Example
  image="c:\temp\mylogo.gif"

Optional Arguments

HOFFSET=offset
  specifies a horizontal offset for the marker symbol.

Default
  0 (the marker symbol is centered on its data point)

Range
  -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note
  A positive offset moves the marker symbol to the right while a negative offset moves it to the left.
**ROTATE=number**

specifies the angle of rotation for the marker symbol in degrees. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in the clockwise direction.

Default: 0 (no rotation is performed)

Note: An angle that exceeds 360 degrees in absolute value can be specified.

**SCALE=double**

specifies a scale factor for the marker symbol as a percentage. The scale factor is applied to the character's height.

Default: 1.0 (100%)

Range: Greater than zero. Very small (for example, 0.1) or very large (for example, 4) scale factors can make the markers invisible or truncated, respectively.

**VOFFSET=offset**

specifies a vertical offset for the marker symbol.

Default: 0 (the marker symbol is centered on its data point)

Range: -0.5 to +0.5, where 0.5 represents one-half of the original marker size.

Note: A positive offset moves the marker symbol up while a negative offset moves it down.

**Details**

The SYMBOLIMAGE statement defines a custom marker symbol from an image that is stored in an image file. The image file must exist on the local file system. URL access is not supported. The supported image formats are GIF, JPG, and PNG.

The custom marker symbol can then be specified in any plot statement that supports the MARKERATTRS= option. These plots include the following:

- marker-based plots such as dot and scatter plots.
- line-based plots that enable the addition of markers. These plots include line plots, fit plots (loess, PBspline, regression), needle, series, and step plots.

The custom marker symbol can also be specified for the value of the MARKERSYMBOL variable in an attribute map.

Symbol specifications are not validated at compile time. An invalid specification might not generate a warning when the output is rendered and might create unexpected results.

You can use the SIZE= and TRANSPARENCY= suboptions of the MARKERATTRS= option to modify the appearance of markers that are created by the SYMBOCHAR statement. The COLOR= and WEIGHT= suboptions have no effect on these markers.

The FILLEDOUTLINEDMARKERS= option also has no effect on these markers.

When you use the SCALE= option, you might need to test the output with multiple trials before you find the best output. This is true especially if you also specify the marker size (using the MARKERATTRS= option in the plot statement).

When rendering the graphics output, the procedure performs the following steps:

1. makes adjustments for the HOFFSET and VOFFSET values, if they are specified
2. scales the markers as specified by the SCALE= option
3. clips the markers to the size that is specified in the MARKERATTRS= option in the plot statement
4. rotates the markers, if ROTATE= is specified

Examples

Example 1: Simple SYMBOLIMAGE Example
This example specifies the image file for a triangle (▽). The image is rotated 90 degrees. The scatter plot statement references the symbol name and specifies the marker size.

```
proc sgplot data=sashelp.class;
 symbolimage name=sym1 image="c:\temp\triangle.png" / rotate=90;
 scatter x=weight y=height / markerattrs=(symbol=sym1 size=10pt);
run;
```

Example 2: SYMBOLIMAGE Used with an SG Attribute Map
This example generates different marker symbols for students in a class based on their height. The example uses an SG attribute map to assign symbols for each grouping of the variable SIZE.

In the example, the following images are used:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>indicates students who weigh 60 pounds or more</td>
</tr>
<tr>
<td>✗</td>
<td>indicates students who weigh less than 60 pounds</td>
</tr>
</tbody>
</table>

The procedure uses two SYMBOLIMAGE statements to identify the marker symbols used in the plot. The example then shows how to use the symbols in a scatter plot.
/* Create a data set with the group variable SIZE. */
data classHeight;
  set sashelp.class;
  size="Short";
  if height >= 60 then size="Tall";
run;

/* Create the attribute map that assigns symbols for each grouping of SIZE. */
data myattrmap;
  input ID $ value $ markersymbol $;
  datalines;
  myid Short greeny
  myid Tall redx
;
run;

/* Specify the marker symbols used in the scatter plot, and apply the SG attribute map. */
proc sgplot data=classHeight (where=(16> age >= 12))
  datattrmap=myattrmap;
  symbolimage name=redx image='c:\temp\redCheck.png';
  symbolimage name=greeny image='c:\temp\greenX.png';
  scatter x=name y=height / attrid=myid
    markerattrs=(size=15pt)
      group=size;
run;

TEXT Statement
Displays the associated text values at (X, Y) locations in the graph. The text can be numbers or characters.
Tip: Use the TEXT statement rather than the SCATTER statement with the MARKERCHAR= option when you want more control over the appearance of the text. The TEXT statement enables you to rotate the text to any angle, manage the text position, split the text into multiple lines, display a bounding box around the text, add a back-light effect to the text, and so on.

Example: “About Text Plots” on page 31

Syntax

TEXT X=variable Y=variable TEXT=variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
  specifies the value of the ID variable in a discrete attribute map data set.

BACKFILL
  displays filled bounding boxes around the text.

BACKLIGHT=number
  specifies that the text should have a back light of a contrasting color.

COLORMODEL=style-element | (color-list)
  specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
  specifies the numeric column that is used to map colors to a gradient legend.

CONTRIBUTEOFFSETS=ALL | NONE | (axis-offset-list)
  specifies whether this plot’s space requirements contribute to the calculation of the axis offsets.

DISCRETEOFFSET=numeric-value
  specifies an amount to offset all markers from discrete X or Y values.

FILLATTRS=style-element <options> | (options)
  specifies the fill color and transparency.

OUTLINE
  displays outlined bounding boxes around the text.

OUTLINEATTRS=style-element <options> | (options)
  specifies the appearance of the outlines around the text boxes.

PAD=dimension <units> | (pad-options)
  specifies the amount of extra space that is added inside the text-marker border.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

Axis options

CLUSTERAXIS= X | Y
  specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

X2AXIS
  assigns the X variable to the secondary (top) horizontal axis.
Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
CLUSTERWIDTH=numeric-value
specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.
NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Legend options
LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend.

Plot options
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

Plot reference options
NAME="text-string"
assigns a name to a plot statement.

Text options
POSITION=position-option
specifies the position of the text with respect to the location of the data point.
ROTATE=number | numeric-column
specifies the angle of rotation in degrees for the text markers.
SIZEMAX=dimension<unit>
specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.
SIZEMAXRESPONSE=number
specifies the response value that corresponds to the maximum font size for text markers.
SIZEMIN=dimension<unit>
specifies the minimum font size for text markers when a response variable is used to size the font for text values.
SIZERESPONSE=numeric-variable
specifies a response variable that is used to determine the font size for each text value.

**SPLITCHAR=“character-list”**
splits the text at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

**SPLITPOLICY=NONE | SPLIT | SPLITALWAYS**
specifies a policy for avoiding collisions among the text markers.

**SPLITWIDTH=width-in-characters**
specifies the maximum width of each split line, expressed as a character count.

**STRIP**
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

**TEXTATTRS=style-element | style-element (text-options) | (text-options)**
specifies the color and font properties of the marker text.

**VCENTER=BBOX | BASELINE**
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

**Required Arguments**

**X=variable**
specifies the variable for the x axis.

**Y=variable**
specifies the variable for the y axis.

**TEXT=variable**
specifies the variable for the text values that are used for the markers.

**Optional Arguments**

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

- See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
  “Overview of Attribute Maps” on page 1315

**BACKFILL**
displays filled bounding boxes around the text.

**Tips** Use the OUTLINE option to specify outlined boxes around the text.

- Use the TRANSPARENCY= option to change the transparency of the backfill and the text. To change the transparency of only the backfill, use the TRANSPARENCY= suboption of the FILLATTRS= OPTION.
BACKLIGHT=number

specifies that the text should have a back light of a contrasting color. The effect is applied to the marker text only. number specifies the degree of the back-light effect.

The following figures show the effect of applying back light to the text. In these examples, both BACKFILL and OUTLINE have also been specified.

<table>
<thead>
<tr>
<th>BACKLIGHT=0</th>
<th>BACKLIGHT=1</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Text" /></td>
<td><img src="image" alt="Text" /></td>
</tr>
</tbody>
</table>

The back light is based on text color. For dark colors, a white back-light effect is used. For lighter colors, a black back-light effect is used. The following figures show the back-light effects when full back light is applied (BACKLIGHT=1). In the first two examples, BACKFILL and OUTLINE have been specified. The third example shows green text against a white background.

<table>
<thead>
<tr>
<th>Black Text</th>
<th>Gray Text</th>
<th>Green Text</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Text" /></td>
<td><img src="image" alt="Text" /></td>
<td><img src="image" alt="Text" /></td>
</tr>
</tbody>
</table>

Defaults 0.5 when no GROUP= or COLORRESPONSE= option is used.

0.75 when the GROUP= or COLORRESPONSE= option is used.

Range 0.0–1.0, where 0.0 specifies no effect and 1.0 specifies maximum effect

Note This option is most effective when text color has a low level of contrast with the background. It is also effective when the background is cluttered.

CLUSTERAXIS= X | Y

specifies the axis to use for clustering groups when GROUPDISPLAY=CLUSTER.

Default Uses the discrete axis for clustering groups when only one axis is discrete. Uses the X axis for clustering if both axes are discrete or interval.

Interaction The GROUPDISPLAY= option must be set to CLUSTER for this option to have any effect. The GROUP= option must also be used.

CLUSTERWIDTH=numeric-value

specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

Interactions This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.
The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=** *style-element | (color-list)*

specifies a color ramp that is to be used with the COLORRESPONSE= option.

*style-element*

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**

```
colormodel=TwoColorRamp
```

*(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**

The list of colors must be enclosed in parentheses.

**Example**

```
colormodel=(blue yellow green)
```

**Default**

The ThreeColorAltRamp style element

**Interaction**

For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=** *numeric-column*

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction**

If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**

“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

**CONTRIBUTEOFFSETS=** *ALL | NONE | (axis-offset-list)*

specifies whether this plot's space requirements contribute to the calculation of the axis offsets. This value determines which axis offsets can be affected by the plot.
The plot statement can implement an offset that prevents clipping of any text strings that appear at the ends of the axes. The offset is based on the longest string. If the character lengths vary significantly, this can result in wasted space when the shorter strings appear near the ends of the axes. In that case, you can use the CONTRIBUTEOFFSETS= option to modify or eliminate this plot’s contribution to the offset calculations in order to reclaim that space.

**ALL**

the space requirements for this plot are contributed to the axis offset calculations.

**NONE**

the space requirements for this plot are not contributed to the axis offset calculations.

**(axis-offset-list)**

a space-delimited list of specific contributions that this plot makes to the axis offset calculations. The list is one or more of the following values enclosed in parentheses:

- **XMAX** the space requirements for this plot are contributed to the X-axis offset calculation for the maximum end.
- **XMIN** the space requirements for this plot are contributed to the X-axis offset calculation for the minimum end.
- **YMAX** the space requirements for this plot are contributed to the Y-axis offset calculation for the maximum end.
- **YMIN** the space requirements for this plot are contributed to the Y-axis offset calculation for the minimum end.

Default  **ALL**

DISCRETEOFFSET=**numeric-value**

specifies an amount to offset all markers from discrete X or Y values.

Default  0.0 (no offset)

Range  -0.5 (left offset) to +0.5 (right offset)

Requirement  This option is applicable only when the X or Y axis is discrete.

FILLATTRS=**style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults  Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

- 0.0 transparency

Interaction  This option has no effect unless BACKFILL is also specified.

GROUP=**variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.
Interaction
When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note
For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip
ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=CLUSTER | OVERLAY
specifies how to display grouped text markers.

CLUSTER
grouped items are drawn adjacent to each other.

OVERLAY
grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphDataN style elements in the current style.

Default
OVERLAY

Restriction
GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

Interaction
This option is ignored unless GROUP= is specified.

LEGENDLABEL="text-string"
specifies a label that identifies the markers from the plot in the legend. By default, the label of the Y variable or the group value for each marker is used.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.
**OUTLINE**

displays outlined bounding boxes around the text.

**Tip**  Use the BACKFILL option to display filled bounding boxes around the text.

**OUTLINEATTRS=** `style-element <(options)> | (options)`

specifies the appearance of the outlines around the text boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the outline.

**Default**  
GraphOutlines style element in the current style for ungrouped data.  
GraphData1 ... GraphData`n` style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

**Interaction**  This option has no effect unless OUTLINE is also specified.

**PAD=** `dimension <units> | (pad-options)`

specifies the amount of extra space that is added inside the text-marker border.

- `dimension` specifies a dimension to use for the extra space at the left, right, top, and bottom of the text-marker border.

- `pad-options` in parentheses is a space-separated list of one or more of the following name-value-pair options enclosed in parentheses:
  
  - LEFT=`dimension<units>`
  - TOP=`dimension<units>`
  - RIGHT=`dimension<units>`
  - BOTTOM=`dimension<units>`

**Default**  Padding is a fraction of the font height.

**Note**  Sides that are not assigned padding are padded with the default amount.

**Tips**  This option is meaningful only when you also specify OUTLINE, BACKFILL, or both.

- `Use pad-options` to create non-uniform padding.

**Note**  The default units for `dimension` are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.
POSITION=position-option

specifies the position of the text with respect to the location of the data point. Specify one of the following position options:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>CENTER</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOMLEFT</td>
<td>LEFT</td>
<td>TOPLEFT</td>
</tr>
<tr>
<td>BOTTOMRIGHT</td>
<td>RIGHT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

The VCENTER= option specifies whether the position is relative to the text bounding box or the text baseline. By default, the positions are relative to the text bounding box. The following figure shows the effect of each of these values on the position of an outlined text when VCENTER=BBOX is in effect. The red dot indicates the data-point location.

When CENTER, LEFT, or RIGHT is specified, and VCENTER=BASELINE is in effect, the positions are relative to the text baseline as shown in the following figure.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331 “Overview of Attribute Maps” on page 1315

ROTATE=number | numeric-column

specifies the angle of rotation in degrees for the text markers. Positive angles are measured in the counter-clockwise direction, and negative angles are measured in clockwise direction. An angle that exceeds 360 degrees in absolute value can be used.

Default 0
SIZEMAX=dimension<unit>:

specifies the maximum font size for the largest text marker when a response variable is used to size the text-marker font.

The following table contains the units that are available:

Table 5.28 Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

By default, the font size of the text values that are associated with the maximum response variable value is set to the value specified by this option.

Default

Three times the size specified in the GraphDataText style element for the maximum response variable value marker.

Interactions

The SIZERESPONSE= option must be specified for this option to have any effect.

The SIZEMAXRESPONSE= option specifies the response value at which the maximum font size for a text marker is reached. The font size for all text values that exceed the SIZEMAXRESPONSE= value is set to the value specified in this option.

Tips

Use the SIZEMAXRESPONSE= option to specify the response value at which the maximum font size for a text marker is reached.

Use the SIZEMIN= option to specify the minimum font size for text markers.

SIZEMAXRESPONSE=number:

specifies the response value that corresponds to the maximum font size for text markers.

Default

The maximum value in the response column specified in the SIZERESPONSE= option.

Interaction

The SIZERESPONSE= option must be specified for this option to have any effect.

Note

When this option is used with the SIZEMAX= option, the response value is set at the maximum size. Any response values larger than SIZEMAXRESPONSE= are constrained to the SIZEMAX= font size.
**TEXT Statement**

**SIZEMIN=**<dimension><unit>

specifies the minimum font size for text markers when a response variable is used to size the font for text values.

The following table contains the units that are available:

**Table 5.29  Measurement Units**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Default: The size specified in the GraphDataText style element for the minimum response column value marker.

Interaction: The SIZERESPONSE= option must be specified for this option to have any effect.

Tip: Use the SIZEMAX= option to specify the maximum text size.

**SIZERESPONSE=**<numeric-variable>

specifies a response variable that is used to determine the font size for each text value.

Default: The size specified in the GraphDataText style element for all text values.

Notes: When the variable value for an observation is 0, the font size for the text value for that observation is set to the SIZEMIN= option value. When the variable value for an observation is negative or missing, the text value for that observation is not displayed in the text plot. However, that observation still contributes to the axis ranges, legend, and so on. When all the variable values are 0 or missing, this option is ignored. In that case, the default font size is used for all of the text values.

Tip: Use the SIZEMIN= and SIZEMAX= options to limit the minimum and maximum font size for the text values.

**SPLITCHAR=**“character-list”

splits the text at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.
“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\[\text{SPLITCHAR} = "abc"\]

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

**Default**

Values are not split.

**Interactions**

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

**Notes**

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

**See**

“Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**

specifies that the split characters are included in the displayed value.

**Interaction**

This option has no effect unless SPLITCHAR= is also specified.

**See**

“Overview of Collision Avoidance” on page 1265

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**

specifies the horizontal alignment of the value text that is being split.

**Default**

LEFT

**Interaction**

This option has no effect unless you specify the SPLITCHAR= option.

**See**

“Overview of Collision Avoidance” on page 1265

**SPLITPOLICY=NONE | SPLIT | SPLITALWAYS**

specifies a policy for avoiding collisions among the text markers.

NONE
does not split the text for text markers that collide.

SPLIT
splits the marker text at a split character only if a split is needed at that character in order to make the text fit the available space. No split occurs at split characters that occur where a split is not needed. If the text does not contain any of the specified split characters, then a split does not occur. In that case, if the text does not fit the available space, then it might collide with the adjoining text markers.
See the SPLITCHAR= option for information about specifying the split characters.

SPLITALWAYS
splits the marker text at every occurrence of a split character. If the text does not contain any of the specified split characters, then a split does not occur.

See the SPLITCHAR= option for information about specifying the split characters.

Default  NONE

SPLITWIDTH=width-in-characters
specifies the maximum width of each split line, expressed as a character count. When a width is specified, the marker text is split unconditionally after every width-in-characters characters.

Default  Uses the width of the longest inter-split-character substring.

Restriction  This option has an effect only when SPLITPOLICY=SPLIT.

STRIP
specifies that leading and trailing blanks should be stripped from the marker text before it is displayed.

Default  Blanks are not stripped

Tip  Stripping the blanks from numeric value strings helps center each string relative to its data point.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
specifies the color and font properties of the marker text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  For non-grouped data, the GraphDataText style element.

For grouped data, the Font attribute of the GraphDataText style element, and the ContrastColor attribute of a GraphDataN style element.

Interactions  When this option’s COLOR= suboption is used with the GROUP= option, the color of all of the text markers is specified by the COLOR= suboption.

This option’s COLOR= suboption overrides the COLORRESPONSE= option. In that case, if a continuous legend is requested for the plot, the legend is not drawn.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See `SAS Viya Formats and Informats: Reference`

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.
Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction
This option has no effect unless TIP= is also specified.

Tip
Use the TIPFORMAT option to assign formats to the list of variables.

Example
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*
specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**VCENTER=BBOX | BASELINE**
specifies whether the text is vertically centered with respect to the text bounding box or the text baseline.

*BBOX*
vertically centers the text with respect to its bounding box.

*BASELINE*
vertically centers the text with respect to the text baseline. If the text is split into multiple lines, the text is centered on the baseline of the last line of text.

Restriction This option is valid only when POSITION= is set to CENTER, LEFT, or RIGHT. If POSITION= is set to any other value, VCENTER=BBOX is used instead.

Default **BBOX**

Tip Use the POSITION= option to specify the text position with respect to the text bounding box or the text baseline.
X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

VBAR Statement
Creates a vertical bar chart that summarizes the values of a category variable.

Interaction: The VBAR statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1258.

Tip: Bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.

Examples: “About Bar Charts” on page 44
“Example 10: Creating a Bar-Line Chart” on page 1198

Syntax
VBAR category-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

NOZEROBARS
suppresses zero-length bars.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines.
OUTLINEATTRS=style-element \<(options)\> | \(options\)
  specifies the appearance of the bar outlines.

RATTRID=character-value
  specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
  specifies the degree of transparency for the plot.

Axis options
  BASELINE=numeric-value
    specifies the response axis intercept for the baseline.

X2AXIS
  assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
  assigns the response variable to the secondary (right) vertical axis.

Bar options
  RESPONSE=response-variable
    specifies a numeric response variable for the plot.

Data tip options
  TIP=\(\text{variable-list}\) | NONE
    specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=\(\text{format-list}\)
    applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=\(\text{label-list}\)
    applies labels to the list of data tip variables that you specify in the TIP= option.

Group options
  CLUSTERWIDTH=numeric-value
    specifies the cluster width as a ratio of the maximum width.

GROUP=variable
    specifies a variable that is used to group the data.

GROUPDISPLAY=STACK | CLUSTER
    specifies how to display grouped bars.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.

Label options
  DATALABEL \<variable\>
    displays a label for each bar.

DATALABELATTRS=style-element \<(options)\> | \(options\)
    specifies the appearance of the labels in the plot when you use the DATALABEL= option.

DATALABELFITPOLICY=\text{policy-value}
    specifies a policy for avoiding collisions among the bar labels, when displayed.

DATALABELPOS=\text{DATA} | \text{BOTTOM} | \text{TOP}
    specifies the location of the data label.
LEGENDLABEL="text-string"
specifies the label that identifies the bar chart in the legend.

SEGLABEL
displays a label inside each segment of a stacked bar.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

SPLITCHAR="character-list”
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and
legend labels.

Limit options

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
specifies which limit lines to display.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a bar for it.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the
calculations.

Plot reference options

NAME="text-string”
assigns a name to a plot statement.
Statistics options

COLORSTAT=FREQ | PCT | SUM | MEAN
specifies the statistic to use for computing the response colors.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.

Required Argument

category-variable
specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

Optional Arguments

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are
drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=numeric-value**
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

**Interactions**

If GROUPDISPLAY=STACKED is specified, this option is ignored.

When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

**Tips**
The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

**Notes**
The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**
To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```
Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

Interactions

When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

Notes

When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

CLUSTERWIDTH= numeric-value

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default

0.8

Interactions

This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

COLORMODEL= style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR

specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR

specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR

specifies the color for the highest data value of the COLORRESPONSE= column.
Example  
```
Example colormodel=TwoColorRamp
```

*(color-list)*

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**  
The list of colors must be enclosed in parentheses.

**Example**  
```
Example colormodel=(blue yellow green)
```

**Default**  
The ThreeColorAltRamp style element

**Interaction**  
For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=**  
*numeric-column*

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

**Interaction**  
If the GROUP= option is also specified, then the GROUP= option is ignored.

**Tip**  
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

**See**  
“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

**COLORSTAT=FREQ | PCT | SUM | MEAN**

specifies the statistic to use for computing the response colors.

When COLORRESPONSE= is not specified, the following values are valid:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>frequency count</td>
</tr>
<tr>
<td>PCT</td>
<td>percentages between 0 and 100</td>
</tr>
</tbody>
</table>

When the COLORRESPONSE= option is specified, the following values are valid:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>sum values for the color response</td>
</tr>
<tr>
<td>MEAN</td>
<td>mean values for the color response</td>
</tr>
</tbody>
</table>

**Defaults**  
SUM when you also specify the COLORRESPONSE= option.

**Note**  
This option is independent of the STAT= and RESPONSE= options.

**DATALABEL <=variable=>**

displays a label for each bar. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.
Interaction  This option has no effect if you also specify the GROUPDISPLAY=STACK option.

**DATALABELATR**S=**style-element** *(options)* | *(options)*
specifies the appearance of the labels in the plot when you use the DATLABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
- GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.
- Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData*n* style elements.

Interaction  This option has no effect unless the DATLABEL option is also specified.

**Examples**
```
DATALABELATR=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:
```
DATALABELATR=GraphDataText
```

**DATLABELFITPOLICY=** **policy-value**
specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

- **NONE**
  - does not rotate the bar labels. Labels that are too long overlap.

- **ROTATE**
  - rotates the text 90 degrees, but only if collisions occur.

- **SPLIT**
  - splits the labels at the character or characters specified in the SPLITCHAR= option.
  - No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

**Defaults**
The default split character is a space.

**Tips**
- Use the SPLITCHAR= option to specify a split character.
- The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**SPLITALWAYS**
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

**Defaults**
The default split character is a space.
Tips
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

Defaults
ROTATE if the column is numeric.

SPLIT if the column is character.

Interaction
This option has no effect unless DATALABEL= is also specified.

See
“Overview of Collision Avoidance” on page 1265

DATALABELPOS=DATA | BOTTOM | TOP
specifies the location of the data label. Specify one of the following values:

DATA
places the label on the data primitives (at the upper boundary of the bars).

BOTTOM
places the label below the bars.

TOP
places the label above the bars.

Default
DATA

Interactions
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

This option does not support the splitting or rotation of data labels.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 5.30  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image of NONE skin]</td>
<td>![Image of CRISP skin]</td>
<td>![Image of GLOSS skin]</td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

If you also specify NOFILL, then the data skin is applied to the outlines.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**FILL | NOFILL**

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

0.0 transparency

Interaction This option has no effect if you specify the NOFILL option.

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.
SOLID each bar is filled with the color that is assigned to the bar fill area.

GRADIENT a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default SOLID

Interaction This option has no effect if NOFILL is also specified.

FREQ=numeric-variable specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

Restrictions If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.

Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

GROUP=variable specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.
<table>
<thead>
<tr>
<th>Tip</th>
<th>ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.</th>
</tr>
</thead>
</table>

**GROUPDISPLAY=STACK | CLUSTER**
specifies how to display grouped bars.

**STACK**
groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...

**CLUSTER**
displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

*Note:* CLUSTER is supported only when the category axis is discrete.

**Default** STACK

<table>
<thead>
<tr>
<th>Interaction</th>
<th>This option is ignored unless GROUP= is specified.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tip</th>
<th>The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.</th>
</tr>
</thead>
</table>

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**
specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

*Note:* This value is not supported with SAS Cloud Analytic Services (CAS) data.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

*Note:* This value is not supported with CAS data.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

**Default** ASCENDING

<table>
<thead>
<tr>
<th>Interactions</th>
<th>The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.</th>
</tr>
</thead>
</table>

*This option is ignored unless GROUP= is specified.*

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.
The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

**Note**
The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=**\texttt{text-string}
specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.

**Interaction**
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**\texttt{style-element <(options)> | (options)}
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**
GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITS=**\texttt{BOTH | LOWER | UPPER}
specifies which limit lines to display. Limits are displayed as heavier line segments with a serif at the end extending from each bar. By default, no limits are displayed unless you specify either the LIMITS= or LIMITSTAT= option. If you specify the LIMITSTAT= option only, then LIMITS=BOTH is the default. Specify one of the following values:

- **BOTH**
  adds lower and upper limit lines to the plot.

- **LOWER**
  adds lower limit lines to the plot.

- **UPPER**
  adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

**Interactions**
Limit lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITS= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.
LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM
confidence limits

STDDEV
standard deviation

STDERR
standard error

Default CLM

Interactions
If you specify the LIMITSTAT= option only, then the default value for the LIMITS= option is BOTH.

Limits lines are displayed only when you specify STAT=MEAN.

If you use the GROUP= option in the plot statement, the LIMITSTAT= option has no effect unless you also specify GROUPDISPLAY=CLUSTER.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Graph" /></td>
<td><img src="image2.png" alt="Graph" /></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.
NUMSTD=$n$
specifies the number of standard units for the limit lines, when you specify
\texttt{LIMITSTAT=STDDEV} or \texttt{LIMITSTAT=STDERR}. You can specify any positive
number, including decimals.

Default \hfill 1

\textbf{OUTLINE | NOOUTLINE}

specifies whether the bars have outlines. The \texttt{OUTLINE} option shows the outlines.
The \texttt{NOOUTLINE} option hides the outlines.

Default \hfill OUTLINE

\begin{description}
\item[Interactions] Specifying \texttt{OUTLINE} also hides the fill color.
\item[Interaction] If \texttt{NOOUTLINE} and \texttt{NOFILL} are both specified, then both options
are ignored.
\end{description}

\textbf{OUTLINEATTRS=style-element | \texttt{(options)} | (options)}
specifies the appearance of the bar outlines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
\begin{itemize}
\item line color
\item line thickness
\end{itemize}

For a description of the line options, see “\textit{Line Attributes and Patterns}” on page
1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default \hfill GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphData\textit{n} style elements in the current style for
grouped data. The affected attributes are \texttt{ContrastColor} and
\texttt{LineThickness}

\begin{description}
\item[Interaction] This option has no effect if \texttt{NOOUTLINE} is also specified.
\end{description}

\textbf{RATTRID=character-value}
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“\textit{Overview of Attribute Maps}” on page 1315

\textbf{RESPONSE=\texttt{response-variable}}
specifies a numeric response variable for the plot. The summarized values of the
response variable are displayed on the vertical axis.

\textbf{SEGLABEL}
displays a label inside each segment of a stacked bar. For a grouped bar chart when
\texttt{GROUPDISPLAY=STACK}, this option displays a label inside each bar segment.
Each segment label displays the statistic for that bar segment, as shown in the
following fragment that summarizes miles-per-gallon for different makes of vehicles.
Tips
For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.

SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN
Interaction This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=** *format*
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

**SPLITCHAR=** "character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

**STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM**
specifies the statistic for the vertical axis. Specify one of the following:
FREQ
the frequencies, which are calculated as follows:
- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN
the mean of the response variable.

Interaction For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN
the median of the response variable.

Interaction For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT
the percentage, which is calculated as follows:
- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the response variable. This is the default value when you specify the RESPONSE= option.

Interaction For this value to take effect, you must also specify the RESPONSE= option.

Defaults SUM when you also specify the RESPONSE= option.
FREQ when do not specify the RESPONSE= option.
Restriction
If you do not also specify the RESPONSE= option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify RESPONSE=, then you can use any of the statistics.

Interaction
When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.

STATLABEL | NOSTATLABEL
specifies whether the response variable statistic is displayed in the axis and legend labels. STATLABEL forces the statistic to be displayed. NOSTATLABEL removes the statistic from the axis and legend labels.

Normally, the procedure displays the statistic along with the name of the response variable. However, when a custom label is assigned to the response variable, the procedure does not display the statistic. In each case, you can control whether the statistic is displayed.

Defaults
The statistic is displayed for the response variable.

When a custom label is assigned to the response variable, the statistic is not displayed.

Interactions
This option has no effect unless the RESPONSE= option is specified.

This option has no effect if you specify the axis label using the LABEL= option in an AXIS statement.

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.
A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPLABEL= option to assign labels to the list of variables.
See	SAS Viya Formats and Informats: Reference
Example	tipformat=(auto F5.2)

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
Example	tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

| Default | 0.0 |
| Range | 0 (completely opaque) to 1 (completely transparent) |

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

**character-variable**

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

Default

By default, no HTML links are created.

Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

**ODS GRAPHICS ON / IMAGEMAP=ON;**

**WEIGHT=numeric-variable**

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**

The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**Interaction**

If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

**X2AXIS**

assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the response variable to the secondary (right) vertical axis.

---

**VBARBASIC Statement**

Creates a vertical bar chart that is compatible with other categorization charts as well as basic plots, such as scatter and series plots, and box plots.

**Note:** When using the VBARBASIC statement with a procedure that uses the BY statement, axes are not guaranteed to be uniform across BY groups.

**See:** Basic plot types on page 1258

**Example:** “About Bar Charts” on page 44

**Syntax**

**VBARBASIC category-variable </option(s)>;**

**Summary of Optional Arguments**

**Appearance options**

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set.

**BARWIDTH=numeric-value**

specifies the width of the bars as a ratio of the maximum possible width.

**BASELINEATTRS=style-element </(options)> | (options)**

specifies the appearance of the baseline.
VBARBASIC Statement

**COLORMODEL=** *style-element | (color-list)*
specifies a color ramp that is to be used with the **COLORRESPONSE=** option.

**COLORRESPONSE=** *numeric-column*
specifies the numeric column that is used to map colors to a gradient legend.

**DATASKIN=** *NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN*
specifies a special effect to be used on the plot.

**DISCRETEOFFSET=** *numeric-value*
specifies an amount to offset all bars from the category midpoints.

**FILL | NOFILL**
specifies whether the bars are filled.

**FILLATTRS=** *style-element <(options)> | (options)*
specifies the fill color and transparency.

**FILLTYPE=** *SOLID | GRADIENT*
specifies the fill type that is applied to the chart.

**NOZEROBARS**
suppresses zero-length bars.

**OUTLINE | NOOUTLINE**
specifies whether the bars have outlines.

**OUTLINEATTRS=** *style-element <(options)> | (options)*
specifies the appearance of the bar outlines.

**RATTRID=** *character-value*
specifies the value of the ID variable in a range attribute map data set.

**TRANSPARENCY=** *value*
specifies the degree of transparency for the plot.

### Axis options

**BASELINE=** *numeric-value*
specifies the response axis intercept for the baseline.

**X2AXIS**
assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the response variable to the secondary (right) vertical axis.

### Data tip options

**TIP=** *(role-list) | NONE*
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=** *(format-list)*
applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=** *(label-list)*
applies labels to the list of data tip roles that you specify in the TIP= option.

### Group options

**CLUSTERWIDTH=** *numeric-value*
specifies the cluster width as a ratio of the maximum width.

**GROUP=** *variable*
specifies a variable that is used to group the data.

**GROUPDISPLAY=** *STACK | CLUSTER*
specifies how to display grouped bars.

**GROUPORDER=** *DATA | REVERSEDATA | ASCENDING | DESCENDING*
specifies the ordering of the groups within a category.

**Label options**

**DATALABEL**

- displays the bar statistic value for each bar.

**DATALABELATTRS=** style-element (options) | (options)

- specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELFITPOLICY=** NONE

- specifies that no fit policy is implemented for the bar labels.

**DATALABELFORMAT=** format

- specifies the text format used to display the bar label.

**LEGENDLABEL=** “text-string”

- specifies the label that identifies the bar chart in the legend.

**SEGLABEL**

- displays a label inside each segment of a stacked bar.

**SEGLABELATTRS=** style-element (options) | (options)

- specifies the text properties of the bar segment label text.

**SEGLABELFITPOLICY=** NONE | NOCLIP | THIN

- specifies a policy for fitting the bar segment labels within the bar segments.

**SEGLABELFORMAT=** format

- specifies the text format used to display the bar segment labels.

**Plot options**

**MISSING**

- for group data, processes missing values as a valid category value and creates a bar for it.

**RESPONSE=** response-variable

- specifies a numeric response variable for the plot.

**URL=** character-variable

- specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

**NAME=** “text-string”

- assigns a name to a plot statement.

**Statistics options**

**COLORSTAT=** FREQ | PCT | SUM | MEAN

- specifies the statistic to use for computing the response colors.

**STAT=** FREQ | PCT | SUM | MEAN | PROPORTION

- specifies the statistic for the vertical axis.

**Required Argument**

**category-variable**

- specifies the variable whose values determine the categories of data represented by the bars. The variable generates the midpoints to which each observation in the data set contributes.
Optional Arguments

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**BARWIDTH=numeric-value**
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults .8

1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=numeric-value**
specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**  
The GraphAxisLines style element in the current style.

**Notes**  
The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

**Tip**  
To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

**CLUSTERWIDTH=numeric-value**  
specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).

CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

**Default**  
0.8

**Interactions**  
This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=style-element | (color-list)**  
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**  
specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR**  
specifies the color for the smallest data value of the COLORRESPONSE= column.

- **NEUTRALCOLOR**  
specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

- **ENDCOLOR**  
specifies the color for the highest data value of the COLORRESPONSE= column.

**Example**  
colormapmodel=TwoColorRamp

**(color-list)**  
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

**Requirement**  
The list of colors must be enclosed in parentheses.
Example:  \texttt{colormodel=(blue yellow green)}

Default:  The ThreeColorAltRamp style element

Interaction:  For this option to take effect, the \texttt{COLORRESPONSE=} option must also be specified.

\textbf{COLORRESPONSE=numeric-column}

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction:  If the \texttt{GROUP=} option is also specified, then the \texttt{GROUP=} option is ignored.

This option is ignored if \texttt{COLORSTAT=FREQ} or \texttt{COLORSTAT=PCT}.

Tip:  The color ramp is specified by the \texttt{COLORMODEL=} option. The color ramp represents the range of unique response values.

See:  “GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

\textbf{COLORSTAT=FREQ | PCT | SUM | MEAN}

specifies the statistic to use for computing the response colors.

When \texttt{COLORRESPONSE=} is not specified, the following values are valid:

\begin{itemize}
\item \texttt{FREQ}  \hspace{1cm} frequency count
\item \texttt{PCT}  \hspace{1cm} percentages between 0 and 100
\end{itemize}

When the \texttt{COLORRESPONSE=} option is specified, the following values are valid:

\begin{itemize}
\item \texttt{SUM}  \hspace{1cm} sum values for the color response
\item \texttt{MEAN}  \hspace{1cm} mean values for the color response
\end{itemize}

Defaults:  \texttt{SUM} when you also specify the \texttt{COLORRESPONSE=} option.

\texttt{FREQ} when do not specify the \texttt{COLORRESPONSE=} option.

Note:  This option is independent of the \texttt{STAT=} and \texttt{RESPONSE=} options.

\textbf{DATALABEL}

displays the bar statistic value for each bar. For grouped clustered bars, each bar is labeled with the summarized value of the bar. For grouped stacked bars, the segmented bar is labeled with the accumulated, summarized value of all the bar segments.

Default:  No label is shown

Tip:  The font and color attributes for the label are specified by the \texttt{DATALABELATTRS=} option. The text format is specified by the \texttt{DATALABELFORMAT=} option.

\textbf{DATALABELATTRS=style-element \(<\texttt{(options)}\>\) | \(\texttt{(options)}\)}

specifies the appearance of the labels in the plot when you use the \texttt{DATALABEL=} option. You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsubscript{n} style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELFITPOLICY=NONE**

specifies that no fit policy is implemented for the bar labels. By default, the fit policy is to show the labels unless they collide. As a result, the labels might not be visible. To show the labels regardless of how they fit, specify DATALABELFITPOLICY=NONE.

Default

Show the labels unless they collide.

Interaction

This option has no effect unless DATALABEL= is also specified.

**DATALABELFORMAT=**\

specifies the text format used to display the bar label.

Default

The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction

This option has no effect unless DATALABEL= is also specified.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 5.31 DATASKIN Options for Filled Areas**

<table>
<thead>
<tr>
<th>DATASKIN</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE" /></td>
<td><img src="image" alt="CRISP" /></td>
<td><img src="image" alt="GLOSS" /></td>
<td></td>
</tr>
</tbody>
</table>
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all bars from the category midpoints.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

**FILL | NOFILL**

specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default FILL

Interactions Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

**FILLATTRS=style-element <(options)> | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataM style elements in the current style for grouped data.

0.0 transparency

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

SOLID each bar is filled with the color that is assigned to the bar fill area.
GRADIENT

A gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction

Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip

Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default

SOLID

Interaction

This option has no effect if NOFILL is also specified.

GROUP=variable

Specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions

If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Note

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

GROUPDISPLAY=STACK | CLUSTER

Specifies how to display grouped bars.

STACK

Groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...

GraphData1... style elements in the current style.

CLUSTER

Displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.
CLUSTER is supported only when the category axis is discrete.

**Default** STACK

**Interaction** This option is ignored unless GROUP= is specified.

**Tip** The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**
orders the groups within a category in data order of the group variable.

*Note:* This value is not supported with SAS Cloud Analytic Services (CAS) data.

**REVERSEDATA**
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

*Note:* This value is not supported with CAS data.

**ASCENDING**
orders the groups within a category in ascending order of the group variable.

**DESCENDING**
orders the groups within a category in descending order of the group variable.

**Default** ASCENDING

**Interactions** The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

*Note* The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=“text-string”**

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable and the computed statistic (SUM or MEAN) is used. If the RESPONSE= option is not used, the legend label is “Frequency”.
Interaction The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

MISSING for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME=“text-string” assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOZEROBARS suppresses zero-length bars. A zero-length bar has a bar length of 0. When this option is specified, zero-length bars are not drawn. The following figure shows a simple example. In the figure, the graph border, axis line, and bar-chart baseline are suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default Example" /></td>
<td><img src="image2.png" alt="NOZEROBARS Example" /></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options) specifies the appearance of the bar outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.

Default

GraphOutlines style element in the current style for ungrouped data. GraphData1 ... GraphData$n style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction

This option has no effect if NOOUTLINE is also specified.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

RESPONSE=response-variable

specifies a numeric response variable for the plot. The summarized values of the response variable are displayed for each value on the horizontal axis.

SEGLABEL

displays a label inside each segment of a stacked bar. For a grouped bar chart when GROUPDISPLAY=STACK, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

Tips

For a grouped bar chart when GROUPDISPLAY=STACK, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the SEGLABELATTRS= option to modify the appearance of the label text.

Use the SEGLABELFORMAT= option to modify the format of the segment labels.

Use the SEGLABELFITPOLICY= option to specify how the labels fit in the segments.
SEGLABELATTRS=style-element <(options)> | (options)
specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default The GraphDataText style element.

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFITPOLICY=NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

NONE
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

NOCLIP
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

THIN
drops any bar segment label that does not fit within its segment.

Default THIN

Interaction This option has no effect unless SEGLABEL is also specified.

SEGLABELFORMAT=format
specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

Interaction This option has no effect unless SEGLABEL is also specified.

STAT=FREQ | PCT | SUM | MEAN | PROPORTION
specifies the statistic for the vertical axis.

For bar charts with no RESPONSE= variable, the following values are valid:

FREQ frequency count
PCT or PERCENT percentages between 0 and 100
PROPORTION proportions between 0 and 1

For bar charts with a RESPONSE= variable, the following values are valid:

SUM sum values for the response
MEAN mean values for the response

Defaults SUM when you also specify the RESPONSE= option.

FREQ when do not specify the RESPONSE= option.
Interaction  When this option is used with the GROUP=group option, the specified statistic is computed for each segment that is created for the unique group values.

TIP=(role-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(role-list)
a space-separated list of unique chart roles enclosed in parentheses. The available roles for TIP are CATEGORY, GROUP, and RESPONSE. Data tips are displayed using the data obtained from the specified roles.

Note: You must specify the GROUP and RESPONSE roles for the chart in order to use those roles for data tips.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction This option replaces all of the information that is displayed by default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example tip=(category response)

TIPFORMAT=(format-list)
applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the format-list and the role-list that is specified for the TIP= option. A format must be provided for each role, using the same order as the role-list. If you do not want to apply a format to a role, use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL option to assign labels to the list of roles.

See SAS Viya Formats and Informats: Reference

Example tipformat=(auto F5.2)

TIPLABEL=(label-list)
applies labels to the list of data tip roles that you specify in the TIP= option.
Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the label-list and the role-list that is specified for the TIP= option. A label must be provided for each role, using the same order as the role-list. If you do not want to apply a custom label to a role, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of roles.

Example tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable* specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default By default, no HTML links are created.

Interaction This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

ODS GRAPHICS ON / IMAGEMAP=ON;

**X2AXIS**

assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the response variable to the secondary (right) vertical axis.

---

**VBARPARM Statement**

Creates a vertical bar chart based on a pre-summarized response value for each unique value of the category variable. You can also assign variables to the upper and lower limits.
Requirement: The data must contain only one response value per unique category variable. If more than one value is found, a warning is written to the SAS log, and the graph might produce unpredictable results.

Interaction: The HBARPARM statement can be combined only with other basic plot statements in the SGPANEL procedure. See “Plot Type Compatibility” on page 1258.

Note: An important distinction between VBARPARM and VBAR is that the response variable is required for VBARPARM. In addition, the response variable should contain pre-summarized computed values such as a sum or a mean.

Example: “About Bar Charts” on page 44

Syntax

VBARPARM CATEGORY=category-variable RESPONSE=numeric-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

FILL | NOFILL
specifies whether the bars are filled.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

FILLTYPE=SOLID | GRADIENT
specifies the fill type that is applied to the chart.

NOZEROBARS
suppresses zero-length bars.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
specifies the degree of transparency for the plot.
Axis options

**BASELINE=** numeric-value
specifies the response axis intercept for the baseline.

**X2AXIS**
assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**
assigns the response variable to the secondary (right) vertical axis.

Data tip options

**TIP=(** variable-list **) | NONE**
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

**TIPFORMAT=(** format-list **)**
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(** label-list **)**
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

**CLUSTERWIDTH=** numeric-value
specifies the cluster width as a ratio of the maximum width.

**GROUP=** variable
specifies a variable that is used to group the data.

**GROUPDISPLAY=** STACK | CLUSTER
specifies how to display grouped bars.

**GROUPORDER=** DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

Label options

**DATALABEL <=** variable >
displays a label for each data point.

**DATALABELATTRS=** style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**DATALABELFITPOLICY=** policy-value
specifies a policy for avoiding collisions among the bar labels, when displayed.

**DATALABELPOS=** DATA | BOTTOM | TOP
specifies the location of the data label.

**LEGENDLABEL=** "text-string"
specifies the label that identifies the bar chart in the legend.

**SEGLABEL**
displays a label inside each segment of a stacked bar.

**SEGLABELATTRS=** style-element <(options)> | (options)
specifies the text properties of the bar segment label text.

**SEGLABELFITPOLICY=** NONE | NOCLIP | THIN
specifies a policy for fitting the bar segment labels within the bar segments.

**SEGLABELFORMAT=** format
specifies the text format used to display the bar segment labels.

**SPLITCHAR=** "character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**Limit options**

- **LIMITATTRS=style-element <(options)> | (options)**
specifies the appearance of the limit lines in the plot.
- **LIMITLOWER=numeric-variable**
specifies values for the lower endpoints on the limit lines.
- **LIMITUPPER=numeric-variable**
specifies values for the upper endpoints on the limit lines.

**Plot options**

- **MISSING**
  for group data, processes missing values as a valid category value and creates a bar for it.
- **URL=character-variable**
specifies an HTML page to be displayed when parts of the plot are selected.

**Plot reference options**

- **NAME="text-string"**
  assigns a name to a plot statement.

**Required Arguments**

**CATEGORY=category-variable**
specifies the variable that categorizes the data. All values are treated as discrete values. The input data for this variable should contain unique values. When the category values are not unique, a warning is logged, and multiple bars are superimposed at the duplicated category values. The CATEGORY axis is always discrete.

Interval bar charts are supported when the category axis is set to TYPE=LINEAR.

**RESPONSE=numeric-variable**
specifies a numeric response variable. The input data is expected to be pre-summarized computed values (sum, mean, and so on).

**Optional Arguments**

**ATTRID=character-value**
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on 1315

**BARWIDTH=numeric-value**
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars.
For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

If this option is not specified, the bar width automatically adjusts based on the number of bars to be displayed and the wall width.

Defaults

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 when the GROUP option is specified and GROUPDISPLAY=CLUSTER</td>
<td></td>
</tr>
</tbody>
</table>

Range 0.0 (narrowest) to 1.0 (widest)

Interaction When the GROUP option is specified, the bar width is determined by the maximum number of bars in any one group cluster. All bars are drawn with the same width. The cluster is positioned symmetrically around the midpoint.

**BASELINE=numeric-value**

specifies the response axis intercept for the baseline. The baseline is always displayed in the chart, even when this option is not specified. In that case, the default value is used. When this option is specified, the axis range is adjusted to include the baseline, and the baseline is placed at the specified value on the response axis.

Default 0

Interaction When a logarithmic response axis is used and BASELINE= specifies 0 or a negative value, the response axis reverts to a linear axis. To restore the log axis in that case, set BASELINE= to a positive value.

Tips The appearance of the baseline is controlled by the BASELINEATTRS= option.

To suppress the baseline, use the BASELINEATTRS= option to set the line thickness to 0.

**BASELINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When style-element is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:

```
baselineattrs=(thickness=0)
```

**CLUSTERWIDTH=numeric-value**

specifies the cluster width as a ratio of the maximum width. Specify a value from 0.0 (narrowest) to 1.0 (widest).
CLUSTERWIDTH is the fraction of the midpoint spacing used by all bars that are clustered around a midpoint (category value). The bar width is applied to the maximum bar spacing divided by the maximum number of bars in any one cluster.

Default 0.8

Interactions This option is applicable only when the GROUP option is specified and when GROUPDISPLAY=CLUSTER.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**COLORMODEL=**\texttt{style-element} | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

\texttt{style-element}

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example \texttt{colormodel=TwoColorRamp}

\texttt{(color-list)}

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement The list of colors must be enclosed in parentheses.

Example \texttt{colormodel=(blue yellow green)}

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

**COLORRESPONSE=**\texttt{numeric-column}

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction If the GROUP= option is also specified, then the GROUP= option is ignored.
Tip  The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See  “GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

DATALABELATTRS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults  GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction  This option has no effect unless the DATALABEL option is also specified.

Examples  DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

DATALABELFITPOLICY=policy-value

specifies a policy for avoiding collisions among the bar labels, when displayed. Select one of the following values:

NONE

does not rotate the bar labels. Labels that are too long overlap.

ROTATE

rotates the text 90 degrees, but only if collisions occur.

SPLIT

splits the labels at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. If the value does not contain any of the specified split characters, a split does not occur.

Default  The default split character is a space.

Tips  Use the SPLITCHAR= option to specify a split character.
The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**SPLITALWAYS**
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

**Default**
The default split character is a space.

**Tips**
Use the SPLITCHAR= option to specify a split character.

The split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

**Defaults**
ROTATE if the column is numeric.

SPLIT if the column is character.

**Interaction**
This option has no effect unless DATALABEL= is also specified.

**See**
“Overview of Collision Avoidance” on page 1265

**DATALABELPOS=DATA | BOTTOM | TOP**
specifies the location of the data label. Specify one of the following values:

**DATA**
places the label on the data primitives (at the upper boundary of the bars).

**BOTTOM**
places the label below the bars.

**TOP**
places the label above the bars.

**Default**
DATA

**Interactions**
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

This option does not support the splitting or rotation of data labels.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:
Table 5.32  DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESS</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: If you also specify NOFILL, then the data skin is applied to the outlines.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all bars from the category midpoints.

Default: 0.0 (no offset)

Range: -0.5 (left offset) to +0.5 (right offset), where 0.5 represents half the distance between category ticks.

Interaction: If you specify the REVERSE option in the axis statement, then the offset direction is also reversed.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default: FILL

Interactions: Specifying FILL also hides the outlines.

If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.
Defaults | Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textit{n} style elements in the current style for grouped data.

| 0.0 transparency |

Interaction | This option has no effect if you specify the NOFILL option.

**FILLTYPE=SOLID | GRADIENT**

specifies the fill type that is applied to the chart.

**SOLID**

each bar is filled with the color that is assigned to the bar fill area.

**GRADIENT**

a gradient is used to determine the fill color. Each bar is filled with a color and transparency gradient. By default, the gradient transitions from the user-specified transparency at the end of the bar to fully transparent at the baseline.

Interaction | Data skin SHEEN cannot be used when FILLTYPE=GRADIENT is in effect. You can use one of the other data skins in that case.

Tip | Use the TRANSPARENCY= chart option, or the TRANSPARENCY= suboption in FILLATTRS=, to set the initial transparency in the gradients.

Default | SOLID

Interaction | This option has no effect if NOFILL is also specified.

**GROUP=**\textit{variable}

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction | When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note | For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip | ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=STACK | CLUSTER**

specifies how to display grouped bars.
STACK

groups are overlaid without any clustering. All data elements for a given group value are drawn at the exact coordinate, on top of one another. Each group is represented by unique visual attributes derived from the GraphData1...

CLUSTER

displays group values as separate adjacent bars that replace the single category bar. Each set of group values is centered at the midpoint tick mark for the category.

Note: CLUSTER is supported only when the category axis is discrete.

Default: STACK

Interaction

This option is ignored unless GROUP= is specified.

Tip

The distance between the group elements in a cluster is controlled by CLUSTERWIDTH=.

GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING

specifies the ordering of the groups within a category.

DATA

orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA

orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING

orders the groups within a category in ascending order of the group variable.

DESCENDING

orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions

The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note

The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric
data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

**LEGENDLABEL=**"text-string"

specifies the label that identifies the bar chart in the legend. By default, the label of the RESPONSE= variable is used. If there is no response variable label, the name of the response variable is used.

**Interaction** The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

**LIMITATTRS=**style-element <(options)> | (options)

specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default** GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**LIMITLOWER=**numeric-variable

specifies values for the lower endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

**Default** The lower segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

**Interactions** If LIMITUPPER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.

**LIMITUPPER=**numeric-variable

specifies values for the upper endpoints on the limit lines. Limit lines are displayed as line segments with a serif at the end.

**Default** The upper segments of the limit lines are not displayed. (Limit lines are displayed only if either LIMITLOWER= or LIMITUPPER= is specified.)

**Interactions** If LIMITLOWER= is also specified, then the plot displays the lower and upper segments of the limit lines.

This option is ignored if GROUP= is specified and GROUPDISPLAY=STACK.

The appearance of the limit lines can be controlled by the LIMITATTRS= option.
MISSING
for group data, processes missing values as a valid category value and creates a bar
for it. If more than one chart is specified in the procedure, the MISSING option
affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOZEROBARS
suppresses zero-length bars. A zero-length bar has a bar length of 0. When this
option is specified, zero-length bars are not drawn. The following figure shows a
simple example. In the figure, the graph border, axis line, and bar-chart baseline are
suppressed for clarity.

<table>
<thead>
<tr>
<th>Default</th>
<th>NOZEROBARS Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default" /></td>
<td><img src="image2" alt="NOZEROBARS" /></td>
</tr>
</tbody>
</table>

Note If BASELINE= is specified, a zero-length bar value equals the baseline.

Tip This option is useful when the bar chart baseline is suppressed.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines.
The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

OUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the bar outlines. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272. Note, however, that you cannot specify a line pattern for the bar outline.
Default

GraphOutlines style element in the current style for ungrouped data.
GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness.

Interaction
This option has no effect if NOOUTLINE is also specified.

\texttt{RATTRID=}\texttt{character-value}

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See

Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

\textbf{SEGLABEL}

displays a label inside each segment of a stacked bar. For a grouped bar chart when \texttt{GROUPDISPLAY=}\texttt{STACK}, this option displays a label inside each bar segment. Each segment label displays the statistic for that bar segment, as shown in the following fragment that summarizes miles-per-gallon for different makes of vehicles.

\begin{center}
\begin{verbatim}
SUV   Sedan   Sports
20.04 27.115 24.222
18.7  29.068 26.047
21.68
\end{verbatim}
\end{center}

Tips
For a grouped bar chart when \texttt{GROUPDISPLAY=}\texttt{STACK}, to display a label for each bar segment and a label for the entire bar, specify both SEGLABEL and DATALABEL.

Use the \texttt{SEGLABELATTRS=} option to modify the appearance of the label text.

Use the \texttt{SEGLABELFORMAT=} option to modify the format of the segment labels.

Use the \texttt{SEGLABELFITPOLICY=} option to specify how the labels fit in the segments.

\texttt{SEGLABELATTRS=}\texttt{style-element <(options)> | (options)}

specifies the text properties of the bar segment label text. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default
The GraphDataText style element.
interaction

This option has no effect unless SEGLABEL is also specified.

**SEGLABELFITPOLICY=NONE | NOCLIP | THIN**

specifies a policy for fitting the bar segment labels within the bar segments.

**NONE**
no attempt is made to fit each segment label within its bar. Long bar segment labels might overlap other graphical elements. The segment labels are not considered when the axis ranges are computed. As a result, segment labels that extend beyond the plot area are clipped.

**NOCLIP**
does not clip bar segment labels that extend beyond the plot area. Labels that do not fit within the plot area extend into the graph axis area and might overlap axis elements.

**THIN**
drops any bar segment label that does not fit within its segment.

The label width must not exceed the bar width, and the text height must not exceed the segment height.

Default THIN

interaction

This option has no effect unless SEGLABEL is also specified.

**SEGLABELFORMAT=**format

specifies the text format used to display the bar segment labels.

Default The column format assigned to the RESPONSE= column, or BEST6 if no format is assigned.

interaction

This option has no effect unless SEGLABEL is also specified.

**SPLITCHAR=**“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

interaction

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See
“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See
“Overview of Collision Avoidance” on page 1265

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

ODS GRAPHICS / IMAGEMAP=ON;

Interaction
This option replaces all of the information that is displayed by default.

Tip
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example
tip=(age weight)

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

Requirement
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
### TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the *label-list* and the *variable-list* that is specified for the TIP= option. A label must be provided for each variable, using the same order as the *variable-list*. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

#### Requirement
A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

#### Interaction
This option has no effect unless TIP= is also specified.

#### Tip
Use the TIPLABEL= option to assign labels to the list of variables.

#### Example
```
tipformat=(auto F5.2)
```

### TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

#### Default
0.0

#### Range
0 (completely opaque) to 1 (completely transparent)

### URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

#### character-variable

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.

#### Example
```
```

#### Default
By default, no HTML links are created.

#### Interactions
This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```
X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the response variable to the secondary (right) vertical axis.

VBOX Statement
Creates a vertical box plot that shows the distribution of your data.

Restriction:  This plot has plot compatibility restrictions. See Table 7.2 on page 1259.

Interaction:  Box plots can be overlaid with other box plots. However, overlaid box plots must have the same category variables.

See:  “Visual Description of Box Plot Percentile Boundaries” on page 1044

Example:  “About Box Plots” on page 39

Syntax
VBOX numeric-analysis-variable </option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

BOXWIDTH=numeric-value
specifies the width of the box.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value
specifies an amount to offset all boxes from the discrete tick marks.

EXTREME
specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified.

FILL | NOFILL
specifies whether the boxes are filled with color.

FILLATTRS=style-element <(options)> | (options)
specifies the fill color and transparency.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the box outlines.

MEANATTRS=style-element <(options)> | (options)
specifies the appearance of the marker that represents the mean in the box.

**MEDIANATTRS=**<style-element <(options)> | (options)>

specifies the appearance of the line that represents the median.

**NOCAPS**

hides the cap lines for the whiskers.

**NOMEAN**

hides the mean marker.

**NOMEDIAN**

hides the median line.

**NOOUTLIERS**

hides the outliers from the plot.

**NOTCHES**

specifies that the boxes be notched.

**OUTLIERATTRS=**<style-element <(options)> | (options)>

specifies the appearance of the marker that represents the outliers.

**TRANSPARENCY=**<value>

specifies the degree of transparency for the plot.

**WHISKERATTRS=**<style-element <(options)> | (options)>

specifies the appearance of the whisker and cap lines.

**WHISKERPCT=**<number>

specifies the whisker length, in percentile units.

**Axis options**

**X2AXIS**

assigns the category variable to the secondary (top) horizontal axis.

**Y2AXIS**

assigns the analysis variable to the secondary (right) vertical axis.

**Data tip options**

**TIP=(**<role-list> | NONE**)**

specifies the information to display when the cursor is positioned over a box or whisker in the box plot.

**TIPFORMAT=(**<format-list>**)**

applies formats to the list of data tip roles that you specify in the TIP= option.

**TIPLABEL=(**<label-list>**)**

applies labels to the list of data tip roles that you specify in the TIP= option.

**Group options**

**CLUSTERWIDTH=**<numeric-value>

specifies the cluster width as a ratio of the midpoint spacing.

**GROUP=**<variable>

specifies a variable that is used to group the data.

**GROUPDISPLAY=**<CLUSTER | OVERLAY>

 specifies how to display grouped boxes.

**GROUPORDER=**<DATA | REVERSEDATA | ASCENDING | DESCENDING>

specifies the ordering of the groups within a category.

**Label options**

**DATALABEL <=**<variable>**>

adds data labels for the outlier markers.

**DATALABELATTRS=**<style-element <(options)> | (options)>
specifies the appearance of the labels in the plot when you use the DATALABEL= option.

**LABELFAR**
specifies that only the far outliers have data labels.

**LEGENDLABEL=** "text-string"
specifies a label that identifies the box plot in the legend.

**SPLITCHAR=** "character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=** LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

**Plot options**

**CATEGORY=** category-variable
specifies the category variable for the plot.

**FREQ=** numeric-variable
specifies a variable for the frequency count for each observation in the input data.

**MISSING**
for group data, processes missing values as a valid category value and creates a box for it.

**PERCENTILE=** 1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

**SPREAD**
relocates outlier points that have identical values to prevent overlapping.

**WEIGHT=** numeric-variable
specifies a variable that contains values to be used as weights for the calculations.

**Plot reference options**

**NAME=** "text-string"
assigns a name to a plot statement.

**Required Argument**

**numeric-analysis-variable**
specifies the analysis variable for the plot. If you do not specify the CATEGORY= option, then one box is created for the analysis variable.

**Optional Arguments**

**ATTRID=** character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315
BOXWIDTH=numeric-value
specifies the width of the box. Specify a value between 0.0 (0% of the available width) and 1.0 (100% of the available width).

Defaults 0.4

When GROUP is specified, the default box width is 0.6.

CAPSHAPE=BRACKET | LINE | SERIF | NONE
specifies the shape of the whisker cap lines. Specify one of the following values:

BRACKET
displays a straight line with brackets.

LINE
displays a straight line.

SERIF
displays a short straight line.

NONE
does not display a cap.

Default SERIF

CATEGORY=category-variable
specifies the category variable for the plot. A box plot is created for each distinct value of the category variable.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete.

CLUSTERWIDTH=numeric-value
specifies the cluster width as a ratio of the midpoint spacing. Specify a value from 0.1 (narrowest) to 1.0 (widest).

Default 0.7

Interaction This option is applicable only when a GROUP is in effect and the category axis is discrete.

CONNECT=MEAN | MEDIAN | Q1 | Q3 | MIN | MAX
specifies that a connect line joins a statistic from box to box.

Interaction This option applies only when the CATEGORY option is used to generate multiple boxes.

Tip You can use the CONNECTATTRS option to specify attributes for the connect line.

CONNECTATTRS=style-element <(options)> | (options)
specifies the appearance of the lines that connect multiple boxes. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphConnectLine style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped
data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interactions**

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

**Examples**

CONNECTATTRS=(Color="light green" Pattern=MediumDash Thickness=4)

This example specifies a style element:

CONNECTATTRS=GraphData3

**DATALABEL** `<variable>`

adds data labels for the outlier markers. If you specified a variable, then the values for that variable are used for the data labels. If you did not specify a variable, then the values of the analysis variable are used.

**Note**  This option has no effect unless the plot contains outlier points.

**DATALABELATTRS=style-element <(options)> | (options)**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

**Interaction**

This option has no effect unless the DATALABEL option is also specified.

**Examples**

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**

specifies a special effect to be used on the plot. The data skin affects all filled boxes. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

**Table 5.33  DATASKIN Options for Box Plots**

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="NONE Skin" /></td>
<td><img src="image" alt="CRISP Skin" /></td>
<td><img src="image" alt="GLOSS Skin" /></td>
</tr>
</tbody>
</table>

VBOX Statement 1035
Though the figure shows horizontal boxes, the data skin for vertical boxes is identical.

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction: If you also specify NOFILL, then the data skin is applied to the outlines.

**DISCRETEOFFSET=numeric-value**

specifies an amount to offset all boxes from the discrete tick marks.

Specify a value from -0.5 (left offset) to +0.5 (right offset). If you specify a value outside of this range, an error message appears in the SAS log and the graph is not produced.

Default: 0.0 (no offset)

**EXTREME**

specifies that the whiskers can extend to the maximum and minimum values for the analysis variable, and that outliers are not identified. When you do not specify the EXTREME option, the whiskers cannot be longer than 1.5 times the length of the box.

**FILL | NOFILL**

specifies whether the boxes are filled with color. The FILL option shows the fill color. The NOFILL option hides the fill color.

Default: FILL

**FILLATRNS=style-element *(options)* | (options)**

specifies the fill color and transparency. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Defaults: Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

0.0 transparency

Interaction: This option has no effect if you specify the NOFILL option.
**FREQ=numeric-variable**
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated \( n \) times for computational purposes, where \( n \) is the value of the numeric variable.

**Restrictions**
- If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.
- If the value is not an integer, only the integer portion is used.

**Interaction**
- If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

**Interaction**
- When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**Note**
- For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**
- ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**
specifies how to display grouped boxes.

- **CLUSTER**
  - the boxes are drawn adjacent to each other.

- **OVERLAY**
  - all the boxes for a given group value are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1... GraphData\( n \) style elements in the current style.

**Defaults**
- CLUSTER for a discrete category axis
- OVERLAY for a linear axis

**Restriction**
- GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete.

**Interaction**
- This option is ignored unless GROUP= is specified.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the ordering of the groups within a category.

DATA
orders the groups within a category in data order of the group variable.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

Note: This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default DATA. If using CAS data, the default is ASCENDING.

Interactions The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

Note The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

INTBOXWIDTH=numeric-value
specifies the box width when an interval category (X) variable is specified.

Restriction The axis type for the category axis must be LINEAR, and the variable must be numeric.

Example proc sgplot data=sashelp.class;
  vbox weight / category=height intboxwidth=20 ;
  xaxis type=linear;
run;

LABELFAR
specifies that only the far outliers have data labels. Far outliers are points whose distance from the box is more than three times the length of the box.
Note This option has no effect if you do not specify the DATALABEL option, or if there are no far outliers.

**LEGENDLABEL=“text-string”**

specifies a label that identifies the box plot in the legend. By default, the label of the analysis variable is used.

**LINEATTRS=style-element <(options)> | (options)**

specifies the appearance of the box outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**

GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

**Interactions**

This option takes effect only if the CONNECT= option is also specified.

This option is ignored if the GROUP= option is also specified.

**MEANATTRS=style-element <(options)> | (options)**

specifies the appearance of the marker that represents the mean in the box. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

**Default**

GraphBoxMean style element in the current style for ungrouped data.

GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

**MEDIANATTRS=style-element <(options)> | (options)**

specifies the appearance of the line that represents the median. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

**Default**

GraphBoxMedian style element in the current style for ungrouped data.

GraphData1 ... GraphDataN style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.

**Interaction**

This option is ignored if the NOMEDIAN option is also specified.

**MISSING**

for group data, processes missing values as a valid category value and creates a box for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.
NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note: The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip: This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOCAPS
hides the cap lines for the whiskers.

Interaction: Using several options that hide box features can cause the NOCAPS option to be ignored. For example, if you use NOCAPS, NOFILL, NOMEAN, NOMEDIAN, and NOOOUTLIERS in the same statement, the NOCAPS option might be ignored.

NOMEAN
hides the mean marker.

NOMEDIAN
hides the median line.

NOOOUTLIERS
hides the outliers from the plot.

NOTCHES
specifies that the boxes be notched. The endpoints of the notches are at the following computed locations:

\[
\text{median} \pm 1.58 \left( \frac{\text{IQR}}{\sqrt{N}} \right)
\]

For a visual description of the parts of a box plot, see “Details” on page 1044.

OUTLIERATTRS=style-element<(options)> | (options)
specifies the appearance of the marker that represents the outliers. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default: GraphOutlier style element in the current style for ungrouped data.
GraphData1 ... GraphData\_n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

PERCENTILE=1 | 2 | 3 | 4 | 5
specifies a method for computing the percentiles for the plot.

Default: 5 (empirical distribution function with averaging)

See: “Calculating Percentiles” on page 1045

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.
“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See  “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP  

specifies that the split characters are included in the displayed value.

Interaction  This option has no effect unless SPLITCHAR= is also specified.

See  “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT  

specifies the horizontal alignment of the value text that is being split.

Default  LEFT

Interaction  This option has no effect unless you specify the SPLITCHAR= option.

See  “Overview of Collision Avoidance” on page 1265

SPREAD  

relocates outlier points that have identical values to prevent overlapping.

Note  This option has no effect if your data does not contain two or more outliers with identical values for the analysis variable.

TIP=(role-list) | NONE  

specifies the information to display when the cursor is positioned over a box or whisker in the box plot.
a space-separated list of unique box plot roles enclosed in parentheses. The box plot roles for TIP include X, N, STD, MIN, MAX, MEAN, MEDIAN, Q1, and Q3. Data tips are displayed using the data obtained from the specified roles.

**NONE**
suppresses the data tips from this plot.

**Requirement**
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS ON / IMAGEMAP=ON;
```

**Interaction**
This option replaces all of the information that is displayed by default.

**Tip**
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**
tip=(mean median)

### TIPFORMAT=(format-list)
Applies formats to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the data that appears in data tips.

A one-to-one correspondence exists between the `format-list` and the `role-list` that is specified for the TIP= option. A format must be provided for each role, using the same order as the `role-list`. If you do not want to apply a format to a role, use the AUTO keyword instead.

**Default**
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement**
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPLABEL option to assign labels to the list of roles.

**See**
*SAS Viya Formats and Informats: Reference*

**Example**
tipformat=(auto F5.2)

### TIPLABEL=(label-list)
Applies labels to the list of data tip roles that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the data that appears in data tips.

A one-to-one correspondence exists between the `label-list` and the `role-list` that is specified for the TIP= option. A label must be provided for each role, using the same order as the `role-list`. If you do not want to apply a custom label to a role, use the AUTO keyword instead.
VBOX Statement

**Requirement**
A label or the keyword AUTO must be provided for each role that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

**Interaction**
This option has no effect unless TIP= is also specified.

**Tip**
Use the TIPFORMAT option to assign formats to the list of roles.

**Example**
tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**
specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default** 0.0
- **Range** 0 (completely opaque) to 1 (completely transparent)

**WEIGHT=numeric-variable**
specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

**Requirement**
The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

**WHISKERATTRS=style-element <(options)> | (options)**
specifies the appearance of the whisker and cap lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

- **Default** GraphBoxWhisker style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor, LineStyle, and LineThickness.
- **Interaction** This option is ignored if the NOMEDIAN option is also specified.

**WHISKERPCT=number**
specifies the whisker length, in percentile units. When this option is specified, number is used as the low percentile, and 100-number is used as the high percentile.

Here are some examples of values and their effect:

- 0 specifies the high and low extremes
- 10 specifies the 10th percentile low and the 90th percentile high
- 25 specifies the 25th percentile low and the 75th percentile high

- **Default** The whiskers are drawn from the box to the most extreme point that is less than or equal to 1.5 times the IQR
- **Range** 0–25
Notes  When this option is specified, fences and far outliers are not drawn.

When this option is set to 25, no whiskers are drawn because the box extends from the 25th to the 75th percentile.

X2AXIS
assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the analysis variable to the secondary (right) vertical axis.

Details

Statement Summary
The plot displays a single box if only the analysis variable is provided. The plot displays multiple boxes if a category variable is also provided and that variable has more than one unique value.

The ANALYSIS variable is displayed on the vertical axis. The axis for the analysis column is always LINEAR.

By default for numeric or character columns, the CATEGORY= axis is TYPE=DISCRETE. You can override the default and set TYPE=LINEAR in the axis statement, provided that the category column is numeric.

If you explicitly set the category axis type to LINEAR and use a numeric category variable, the box plot becomes an interval plot. Otherwise, the box plot is discrete. For the interval case, you can use the INTBOXWIDTH= option to specify the box width.

Two basic box plot representations can be drawn: a schematic (Tukey) box plot and a skeletal box plot. See the EXTREME option for details.

Visual Description of Box Plot Percentile Boundaries
Box plots display the distribution of data by using a rectangular box and whiskers. Whiskers are lines that indicate a data range outside of the box.
In the previous figure, the bottom and top edges of the box indicate the intra-quartile range (IQR). That is the range of values between the first and third quartiles (the 25th and 75th percentiles). The marker inside the box indicates the mean value. The line inside the box indicates the median value.

The elements that are outside the box are dependent on your options. By default, the whiskers that extend from each box indicate the range of values that are outside of the intra-quartile range. However, they are close enough not to be considered outliers (a distance less than or equal to 1.5*IQR). If you specify the EXTREME option, then the whiskers indicate the entire range of values, including outliers.

Outliers are observations that are more extreme than the upper and lower fences ($\pm 1.5 \cdot \text{IQR}$). Outliers that are beyond upper and lower far fences ($\pm 3 \cdot \text{IQR}$) are called FAR OUTLIERS. By default, outliers are indicated by markers. If you specify the DATALABEL= option, then the outlier points have data labels. If you also specify the LABELFAR option, then only outliers that are $3\cdot\text{IQR}$ from the box have data labels.

**Calculating Percentiles**

You can specify one of five definitions for computing the percentiles with the PERCENTILE= option. Let $n$ be the number of nonmissing values for a variable, and let $X_1, X_2, ..., X_n$ represent the ordered values of the variable. $X_1$ is the smallest value, $X_2$ is the next smallest, and $X_n$ is the largest value. Let the $r$th percentile be $y$, set:

$$p = \frac{r}{100}$$

and let:

$$np = j + g$$

when PERCENTILE=1, 2, 3, or 5, or let:

$$(n + 1)p = j + g$$
when PERCENTILE=4, where \( j \) is the integer part of \( np \), and \( g \) is the fractional part of \( np \). Then the PERCENTILE= option defines the \( t \)th percentile, \( y \), as described in the following table:

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Description</th>
<th>Equation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weighted average at ( X_{np} )</td>
<td>( y = (1 - g)x_j + gx_{j + 1} ) ( x_0 ) is taken to be ( x_1 )</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Observation numbered closest to ( np )</td>
<td>( y = x_j )</td>
<td>Used when ( g &lt; \frac{1}{2} ) or when ( g = \frac{1}{2} ) and ( j ) is even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( y = x_{j + 1} )</td>
<td>Used when ( g = \frac{1}{2} ) and ( j ) is odd or when ( g &gt; \frac{1}{2} )</td>
</tr>
<tr>
<td>3</td>
<td>Empirical distribution function</td>
<td>( y = x_j )</td>
<td>Used when ( g = 0 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( y = x_{j + 1} )</td>
<td>Used when ( g &gt; 0 )</td>
</tr>
<tr>
<td>4</td>
<td>Weighted average aimed at ( x_{(n + 1)p} )</td>
<td>( y = (1 - g)x_j + gx_{j + 1} ) ( x_{n + 1} ) is taken to be ( x_n )</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Empirical distribution function with averaging</td>
<td>( y = \frac{1}{2}(x_j + x_{j + 1}) )</td>
<td>Used when ( g = 0 )</td>
</tr>
<tr>
<td></td>
<td></td>
<td>( y = x_{j + 1} )</td>
<td>Used when ( g &gt; 0 )</td>
</tr>
</tbody>
</table>

**VECTOR Statement**

Creates a vector plot that draws arrows from a point of origin to each data point.

**Example:**  “About Vector Plots” on page 34

**Syntax**

VECTOR \( X=\text{numeric-variable} \ Y=\text{numeric-variable} \ <\text{option(s)}>;\)

**Summary of Optional Arguments**

**Appearance options**

ARROWDIRECTION=IN | OUT | BOTH
specifies the location of the arrowheads for the vectors.

ARROWHEADSHAPE=shape
specifies the shape of the arrowheads for the vectors.

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot.

LINEATRERS=style-element <(options)> | (options)
specifies the appearance of the vector line.

NOARROWHEADS
removes the arrowheads from the vectors.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

THICKRESP=numeric-variable
specifies a response variable that is used to map a line thickness to each group value.

TRANSPARENCY=value
specifies the degree of transparency for the plot.

Axis options

X2AXIS
assigns the X variable to the secondary (top) horizontal axis.

Y2AXIS
assigns the Y variable to the secondary (right) vertical axis.

Data tip options

TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

GROUP=variable
specifies a variable that is used to group the data.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELATRERS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the
DATALABEL= option.

`DATALABELPOS=position`
specifies the location of the data label with respect to the plot.

`LEGENDLABEL="text-string"`
specifies a label that identifies the vector plot in the legend.

`SPLITCHAR="character-list"`
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

`SPLITCHARNODROP` specifies that the split characters are included in the displayed value.

`SPLITJUSTIFY=LEFT | CENTER | RIGHT` specifies the horizontal alignment of the value text that is being split.

**Plot options**

`XORIGIN=numeric-value | numeric-variable`
specifies the X coordinate of the origin for the vectors.

`YORIGIN=numeric-value | numeric-variable`
specifies the Y coordinate of the origin for the vectors.

**Plot reference options**

`NAME="text-string"`
assigns a name to a plot statement.

**Required Arguments**

`X=numeric-variable`
specifies a numeric variable for the x axis.

`Y=numeric-variable`
specifies numeric variable for the y axis.

**Optional Arguments**

`ARROWDIRECTION=IN | OUT | BOTH`
specifies the location of the arrowheads for the vectors. Specify one of the following:

- `IN`
  places the arrowheads at the origin of the vector.

- `OUT`
  places the arrowheads at the ending point of the vector.

- `BOTH`
  places arrowheads at both the origin and ending point of the vector.

Default: `OUT`

`ARROWHEADSHAPE=shape`
specifies the shape of the arrowheads for the vectors. Specify one of the following:

- `OPEN`
  resembles the letter "V".

- `CLOSED`
  an outline of a triangle.
FILLED
   a solid triangle.

BARBED
   a solid triangle with an indent at the base.

Default  OPEN

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See  Chapter 12, “Using Discrete Attribute Maps,” on page 1317
    “Overview of Attribute Maps” on page 1315

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element
specifies the name of a style element. The style element should contain these style attributes:

   STARTCOLOR  specifies the color for the smallest data value of the COLORRESPONSE= column.
   NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
   ENDCOLOR    specifies the color for the highest data value of the COLORRESPONSE= column.

Example  colormodel=TwoColorRamp

(color-list)
specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement  The list of colors must be enclosed in parentheses.

Example     colormodel=(blue yellow green)

Default  The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.
Interaction

If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

“GRADLEGEND Statement” on page 683

“Using Gradient Color Legends” on page 1262

**DATALABEL** <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, then the values of the Y variable are used for the data labels.

**DATALABELATTRS=style-element *(options)* | *(options)*

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Interaction

This option has no effect unless the DATALABEL option is also specified.

Examples

DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

DATALABELATTRS=GraphLabelText

**DATALABELPOS=position**

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interaction

This option has no effect unless you also specify the DATALABEL option.

This option displays group values for each category when GROUP= is also specified.
DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all plot lines.
Specify one of the following:

Table 5.34  DATASKIN Options for Lines

<table>
<thead>
<tr>
<th>Option</th>
<th>CRISP</th>
<th>GLOSS</th>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRISP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLOSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default: NONE

Restriction: The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

GROUP=variable
specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interaction: When the procedure contains both computed and non-computed plot statements, such as a box plot overlaid with a scatter plot, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

Note: For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

Tip: ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

LEGENDLABEL=“text-string”
specifies a label that identifies the vector plot in the legend. By default, the label of the Y variable or the group value for each plot element is used.

Interaction: The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the vector line. You can specify the appearance by using
a style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default
GraphDataDefault style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped
data. The effective attributes are: ContrastColor, LineStyle, and
LineThickness.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other
statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a
unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use
of colors and line patterns between the graph and the legend.

NOARROWHEADS
removes the arrowheads from the vectors.

NOMISSINGGROUP
specifies that missing values of the group variable are not included in the plot.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify
this option only if you are using a range attribute map to control visual attributes of
the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough
room to display the text normally. The text value is split at every occurrence of the
specified split character or characters.

“character-list” is one or more characters with no delimiter between each character
and enclosed in quotation marks. For example, to specify the split characters a, b,
and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a
separate split character unless the specified characters appear consecutively in the
value. In that case, all of the specified split characters together are treated as a single
split character.

If the value does not contain any of the specified split characters, a split does not
occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

THICKMAX=dimension
specifies the maximum line thickness when a response variable is used to determine the line thickness. By default, this option determines the thickness of the line that represents the maximum response column value.

Default Ten times the thickness that is specified by the GraphDataDefault style element LineThickness attribute.

Interactions
The THICKRESP= option must be specified for this option to have any effect.

The THICKMAXRESP= option specifies the response value at which this maximum line thickness is reached. The line thickness for response values that exceed the THICKMAXRESP= value are set to the value that is specified by this option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

THICKMAXRESP=numeric-value
specifies the response value that corresponds to the maximum line thickness.

Default The maximum value in the response column that is specified in the THICKRESP= option.
**Interactions**

The THICKRESP= option must be specified for this option to have any effect.

The thickness for all lines that exceed the maximum response value is set to the value specified in the THICKMAX= option.

If the line thickness that is calculated from the THICKMAX= and THICKMAXRESP= option values is less than 0.5 for a line, that line is not drawn.

**THICKRESP=** *numeric-variable*

specifies a response variable that is used to map a line thickness to each group value.

**Default**

The GraphDataDefault style element LineThickness attribute.

**Restriction**

The THICKRESP= values are assumed to be constant for each group value. If the THICKRESP column has multiple values for a single GROUP value, only one of the THICKRESP= values is used for that group.

**Requirement**

The GROUP= option must be specified with the THICKRESP= option. Otherwise, the THICKRESP= option is ignored.

**Interactions**

When the column values are all zero, all negative, or all missing, this option is ignored. In that case, the default line thickness is used for all of the lines.

The THICKNESS= suboption of the LINEATTRS= option overrides this option for the line thickness attribute.

**TIP=(variable-list) | NONE**

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

(variable-list)

a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

NONE

suppresses the data tips from this plot.

**Requirement**

You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**

This option replaces all of the information that is displayed by default.

**Tip**

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

tip=(age weight)

**TIPFORMAT=(format-list)**

applies formats to the list of data tip variables that you specify in the TIP= option.
Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the `TIP=` option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

Default	The column format of the tip variable, or BEST6 if no format is assigned to a numeric column
Requirement	A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
See	SAS Viya Formats and Informs: Reference
Example	`tipformat=(auto F5.2)`

**TIPLABEL=(label-list)**

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the `TIP=` option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

Requirement	A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.
Interaction	This option has no effect unless TIP= is also specified.
Tip	Use the TIPFORMAT option to assign formats to the list of variables.
Example	`tiplabel=(auto "Class Weight")`

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

| Default | 0.0 |
| Range | 0 (completely opaque) to 1 (completely transparent) |

**X2AXIS**

assigns the X variable to the secondary (top) horizontal axis.

**XORIGIN=numeric-value | numeric-variable**

specifies the X coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

| Default | 0 |
Y2AXIS assigns the Y variable to the secondary (right) vertical axis.

YORIGIN=numeric-value | numeric-variable specifies the Y coordinate of the origin for the vectors. You can specify either a numeric value or a numeric variable.

Default 0

VLINE Statement
Creates a vertical line chart (the line is horizontal). You can use the VLINE statement with the VBAR statement to create a bar-line chart.

Interaction: The VLINE statement can be combined only with other categorization plot statements in the SGPLOT procedure. See “Plot Type Compatibility” on page 1258.

Examples: “About Line Charts” on page 50
“Example 10: Creating a Bar-Line Chart” on page 1198

Syntax
VLINE category-variable <(option(s))>;

Summary of Optional Arguments

Appearance options
ATTRID=character-value specifies the value of the ID variable in a discrete attribute map data set.

BREAK breaks the line whenever the computed statistic for a category value is missing.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN specifies a special effect to be used on the plot.

DISCRETEOFFSET=numeric-value specifies an amount to offset all lines from discrete category values.

LINEATTRS=style-element <(options)> | (options) specifies the appearance of the lines in the line plot.

TRANSPARENCY=value specifies the degree of transparency for the plot.

Axis options
X2AXIS assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS assigns the response variable to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
    applies formats to the list of data tip variables that you specify in the TIP=
    option.
TIPLABEL=(label-list)
    applies labels to the list of data tip variables that you specify in the TIP=
    option.

Group options

CLUSTERWIDTH=numeric-value
    specifies the width of the group clusters as a fraction of the midpoint spacing.
GROUP=variable
    specifies a variable that is used to group the data.
GROUPDISPLAY=CLUSTER | OVERLAY
    specifies how to display grouped lines.
GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
    specifies the ordering of the groups within a category.
NOERRORCAPS
    suppresses the serif cap on error bars, if error bars are displayed.

Label options

CURVELABEL <=“text-string”>
    adds a label for the line plot.
CURVELABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    CURVELABEL= option.
CURVELABELLOC=OUTSIDE | INSIDE
    specifies whether the curve label is placed inside the plot axes (INSIDE) or
    outside of the plot axes (OUTSIDE).
CURVELABELPOS=AUTO | END | MAX | MIN | START
    specifies the location of the curve label.
DATALABEL <=variable>
    displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
    specifies the appearance of the labels in the plot when you use the
    DATALABEL= option.
DATALABELPOS=DATA | BOTTOM | TOP
    specifies the location of the data label.
LEGENDLABEL=“text-string”
    specifies the label that identifies the line plot in the legend.
SPLITCHAR=“character-list”
    specifies one or more characters used to split the text used for curve and data
    labels into multiple lines.
SPLITCHARNODROP
    specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
    specifies the horizontal alignment of the value text that is being split.
STATLABEL | NOSTATLABEL
    specifies whether the response variable statistic is displayed in the axis and
    legend labels.

Limit options
LIMITATTRS=style-element (options) | (options)
specifies the appearance of the limit lines in the plot.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines.

NUMSTD=n
specifies the number of standard units for the limit lines, when you specify
LIMITSTAT=STDDEV or LIMITSTAT=STDERR.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

MARKERATTRS=style-element (options) | (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element (COLOR=color) | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element (options) | (options)
specifies the appearance of the marker outlines.

MARKERS
adds markers to the plot.

Plot options

ALPHA=numeric-value
specifies the confidence level for the confidence limits.

CATEGORYORDER=RESPASC | RESPDESC
specifies the order in which the categories are arranged.

FREQ=numeric-variable
specifies a variable for the frequency count for each observation in the input
data.

MISSING
for group data, processes missing values as a valid category value and creates
a line for it.

RESPONSE=response-variable
specifies a numeric response variable for the plot.

URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.

WEIGHT=numeric-variable
specifies a variable that contains values to be used as weights for the
calculations.

Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Statistics options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the vertical axis.
**Required Argument**

category-variable

specifies the variable whose values determine the categories of data represented by the lines.

**Optional Arguments**

**ALPHA=numeric-value**

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interactions This option has no effect if you do not specify LIMITSTAT=CLM.

If your plot is overlaid with other categorization plots, then the first ALPHA value that you specify is used for all of the plots.

**ATTRID=character-value**

specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

**BREAK**

breaks the line whenever the computed statistic for a category value is missing. For example, if a response variable is used and it has all missing values for a certain category value, the SUM or MEAN for this category value will be missing. By default in such cases, the response value for the previous category is joined to the response value for the next category value by a line segment. If BREAK is specified, this segment is not drawn.

Note The observation is excluded from the graph when there is a missing value for the FREQ variable.

**CATEGORYORDER=RESPASC | RESPDESC**

specifies the order in which the categories are arranged. Specify one of the following values:

RESPASC

sorts by the response values in ascending order.

RESPDESC

sorts by the response values in descending order.

Default By default, the plot is sorted in ascending order based on the category values.

Restrictions This option takes effect only when the plot statement specifies a response variable and the axis for that variable is numeric. If the axis is not numeric, an error is generated and a message is written to the SAS log.

Uniform scaling and response sorting cannot occur on the same axis. If the UNIFORM= option is used in the SGPLOT statement, the
The UNIFORM option is ignored for the sorted response axis and a note is generated in the log. The UNIFORM= option is applied to the other axes and groups if requested. Note that the UNIFORM= option can selectively apply scaling to only the X or Y axis.

**Interactions**
When a group variable is used with the CATEGORYORDER= option, the category order is not affected by the value of the groups. The categories are always sorted by the response statistic at a category level.

When this option and the GROUPORDER= option are both specified, the GROUPORDER= option is ignored.

**Notes**
When two or more observations have the same response values, there is no guarantee that the tied values will be sub-sorted.

CATEGORYORDER= can be specified when a group variable is used.

If CATEGORYORDER= is specified in multiple statements, the procedure sorts by the last statement in which it is specified.

**CLUSTERWIDTH=numeric-value**
 specifies the width of the group clusters as a fraction of the midpoint spacing. Specify a value from 0.0 (narrowest) to 1.0 (widest).

Default 0.8

**Interactions**
This option is applicable only when the GROUP option is specified, when GROUPDISPLAY=CLUSTER, and when the category axis is discrete.

The default cluster widths can vary for different types of plots. If your graph contains plot overlays, the default cluster width for the primary plot statement is applied to all the other overlaid plots that use default values. If you specify the cluster width for a plot, then your specified value is honored.

**CURVELABEL <“text-string”>**
 adds a label for the line plot. You can also specify the label text. If you do not specify a label, the label from the response variable is used.

**Interaction**
If you specify VALUES=, MAX=, or MIN= in an axis statement, the points used to determine the position of the curve label might fall outside the graph area. In this case, the curve label might not be displayed, or its position might not be correct.

**CURVELABELATTRS=style-element <(options)> | (options)**
 specifies the appearance of the labels in the plot when you use the CURVELABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontWeight, and FontStyle.
Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\textsuperscript{n} style elements.

**Interaction**

This option has no effect unless the CURVELABEL option is also specified.

**Examples**

\[
\text{CURVELABELATTRS=\{Color=Green Family=Arial Size=8 Style=Italic Weight=Bold\}}
\]

Here is an example that specifies a style element:

\[
\text{CURVELABELATTRS=GraphTitleText}
\]

**CURVELABELLOC=OUTSIDE | INSIDE**

specifies whether the curve label is placed inside the plot axes (INSIDE) or outside of the plot axes (OUTSIDE).

**Default**

INSIDE

**CURVELABELPOS=\text{AUTO} | \text{END} | \text{MAX} | \text{MIN} | \text{START}**

specifies the location of the curve label. Specify one of the following values:

\* \text{AUTO} \\
places the curve label outside the plot area near the end of the curve along unused axes whenever possible (typically Y2 or X2).

**Interaction**

This value takes effect only when CURVELABELLOC=OUTSIDE.

\* \text{END} \\
places the curve label at the last point on the curve.

\* \text{MAX} \\
places the label at the part of the curve closest to the maximum X axis value.

\* \text{MIN} \\
places the label at the part of the curve closest to the minimum X axis value.

\* \text{START} \\
places the curve label at the first point on the curve.

**Default**

END

**Interactions**

This option has no effect unless the CURVELABEL option is also specified.

The START and END suboptions take effect only when CURVELABELLOC=INSIDE.

**DATALABEL \<=\text{variable}\>**

displays a label for each data point. If you specify a variable, then the values of that variable are used for the data labels. If you do not specify a variable, then the values of the calculated response are used for the data labels.

**DATALABELATTRS=\text{style-element \<\text{(options)}\> | (options)}**

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the text options, see “Text Attributes” on page 1276.

**Defaults**
GraphDataText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphDataText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

**Interaction**
This option has no effect unless the DATALABEL option is also specified.

**Examples**
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

**DATALABELPOS=DATA | BOTTOM | TOP**
specifies the location of the data label. Specify one of the following values:

- **DATA** places the label at the data points of the lines.
- **BOTTOM** places the label below the lines.
- **TOP** places the label above the lines.

**Default** DATA
**Interactions**
This option displays limit information when limits are specified. When limits are specified, the default data label position is BOTTOM.

This option displays group values for each category when GROUP= is also specified.

This option displays response values for each overlaid chart.

This option has no effect unless you also specify the DATALABEL option.

**DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN**
specifies a special effect to be used on the plot. The data skin affects all plot lines. Specify one of the following:

*Table 5.35  DATASKIN Options for Lines*

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td>PRESSED</td>
<td>SHEEN</td>
</tr>
</tbody>
</table>
If you specify markers with the plot, then the data skin affects the markers as well.

**Table 5.36  DATASKIN Options for Markers**

<table>
<thead>
<tr>
<th>Option</th>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEEN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Default**  NONE  

**Restriction**  The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

**DISCRETEOFFSET=numeric-value**  
specifies an amount to offset all lines from discrete category values. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default**  0.0 (no offset)  

**Requirement**  This option is applicable only when the category axis is discrete.

**FILLEDOUTLINEDMARKERS**  
specifies that markers have a fill and an outline.

**Requirement**  The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

**Interactions**  This option has no effect unless MARKERS is also specified.

Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

**See**  For usage information and an example, see “Marker Fills and Outlines” on page 1267.

**FREQ=numeric-variable**  
specifies a variable for the frequency count for each observation in the input data. Each observation is repeated n times for computational purposes, where n is the value of the numeric variable.

**Restrictions**  If the value of FREQ= for a given observation is missing or is less than 1, that observation is not used in the analysis.

If the value is not an integer, only the integer portion is used.
Interaction If your plot is overlaid with other categorization plots, then the first FREQ variable that you specified is used for all of the plots.

**GROUP=variable**

specifies a variable that is used to group the data. The plot elements for each group value are automatically distinguished by different visual attributes.

Interactions If you specify a group variable in a categorization chart, and the procedure contains more than one categorization chart statement, all of the charts must specify the same GROUP variable. If you do not specify the same GROUP= option for all of the categorization plots, then an error is generated.

When the procedure contains both computed and non-computed plot statements, the assignment of group attributes does not always align between the plots. If you need to control the group attribute assignment for these types of plots, consider using an attribute map. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

**Note**

For SAS Cloud Analytic Services (CAS) data, the group values are mapped in ascending order of the group values. By default for non-CAS data, the group values are mapped in data order. Appearance attributes are assigned sequentially to group values after they have been ordered. This means that the visual attributes assigned to the group values might differ in the graphs that result from reading CAS and non-CAS data.

**Tip**

ODS Graphics limits the number of groups to 1000. Use the GROUPMAX= option in the ODS GRAPHICS statement to change the maximum number of groups that can be processed.

**GROUPDISPLAY=CLUSTER | OVERLAY**

specifies how to display grouped lines.

**CLUSTER**

grouped items are drawn adjacent to each other.

**OVERLAY**

grouped items are drawn at the exact coordinate and might overlap. Each group is represented by unique visual attributes derived from the GraphData1...GraphDataN style elements in the current style.

**Default** OVERLAY

**Restriction** GROUPDISPLAY=CLUSTER can take effect only when the category axis is discrete. If necessary, use a TYPE=DISCRETE option on the axis statement.

**Interaction** This option is ignored unless GROUP= is specified.

**GROUPORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING**

specifies the ordering of the groups within a category.

**DATA**

orders the groups within a category in data order of the group variable.

**Note:** This value is not supported with SAS Cloud Analytic Services (CAS) data.
REVERSEDATA
orders the groups within a category in the reverse data order of the group variable. This option is useful when you want to reverse the category axis.

*Note:* This value is not supported with CAS data.

ASCENDING
orders the groups within a category in ascending order of the group variable.

DESCENDING
orders the groups within a category in descending order of the group variable.

Default: ASCENDING

Interactions
The DATA and REVERSEDATA values have no effect when you are using SAS Cloud Analytic Services data.

This option is ignored unless GROUP= is specified.

By default, the groups in the legend are shown in the order that is specified in GROUPORDER=. The order in the legend can be changed using the SORTORDER= option in the KEYLEGEND statement.

The default group order can vary for different types of plots. If your graph contains plot overlays, the default group order for the first plot statement is applied to all the other overlaid plots that use default values. If you specify the group order for a plot, then your specified value is honored.

*Note:* The ASCENDING and DESCENDING settings sort the group values within each category for display position purposes only. For numeric data, the order is based on the unformatted values. For character data, the order is based on the formatted values. The data order of the observations and the visual attributes that are assigned to the group values remain unchanged.

LEGENDLABEL="text-string"
specifies the label that identifies the line plot in the legend. By default, the label of the response variable is used. If there is no response variable label, then the name of the response variable and the computed statistic (SUM or MEAN) are used. If you do not specify a response variable, then the legend label is “Frequency”.

Interaction
The LEGENDLABEL= option has no effect if you also specify the GROUP= option in the same plot statement.

LIMITATTRS=style-element <(options)> | (options)
specifies the appearance of the limit lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphError style element in the current style. The affected attributes are ContrastColor, LineStyle, and LineThickness.

LIMITS=BOTH | LOWER | UPPER
adds limit lines to the plot. Specify one of the following values:
BOTH
  adds lower and upper limit lines to the plot.
LOWER
  adds lower limit lines to the plot.
UPPER
  adds upper limit lines to the plot.

By default, no limit lines are displayed. However, if you specify the LIMITSTAT= option, then the default is BOTH.

Interaction  Limit lines are displayed only when you specify STAT= MEAN.

LIMITSTAT=CLM | STDDEV | STDERR
specifies the statistic for the limit lines. Specify one of the following statistics:

CLM  confidence limits
STDDEV  standard deviation
STDERR  standard error

Default  CLM

Interaction  If you specify the LIMITSTAT= option, then the default value for the LIMITS= option is BOTH.

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the lines in the line plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default  GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The affected attributes are ContrastColor and MarkerSymbol.

Interaction  This option has no effect unless you also specify the MARKERS option.
MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
Color attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
• line color
• line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data. The affected attributes are ContrastColor and LineThickness

Interaction
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip
You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKERS
adds markers to the plot.

MISSING
for group data, processes missing values as a valid category value and creates a line for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.
Note  The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip  This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

**NOERRORCAPS**  
suppresses the serif cap on error bars, if error bars are displayed.

Interaction  The appearance of the error bars is controlled by the ERRORBARATTRS= option.

**NUMSTD=n**  
specifies the number of standard units for the limit lines, when you specify LIMITSTAT=STDDEV or LIMITSTAT=STDERR. You can specify any positive number, including decimals.

Default  1

**RESPONSE=** response-variable  
specifies a numeric response variable for the plot. The summarized values of the response variable are displayed on the vertical axis.

**SPLITCHAR=** "character-list"  
specifies one or more characters used to split the text used for curve and data labels into multiple lines. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default  Values are not split.

Interactions  This option has no effect unless either CURVELABEL or DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes  When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.
Tip

If you specify data labels and curve labels, this option affects both types of labels. If you do not want to split both types with the same split character, consider using an overlaid plot in your graph. You can then split data labels in one plot and curve labels in the other.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM

specifies the statistic for the vertical axis. Specify one of the following:

FREQ

the frequencies, which are calculated as follows:

- If you specify the RESPONSE= option, FREQ calculates the frequency of the response variable.
- If you do not specify the RESPONSE= option, FREQ calculates the frequency of the category variable.

MEAN

the mean of the response variable.

Interaction

For STAT=MEAN to take effect, you must also specify the RESPONSE= option.

MEDIAN

the median of the response variable.

Interaction

For STAT=MEDIAN to take effect, you must also specify the RESPONSE= option.

PERCENT

the percentage, which is calculated as follows:

- If you specify the RESPONSE= option, PERCENT calculates the percentage of the sum of the response variable.
- If you do not specify the RESPONSE= option, PERCENT calculates the percentage of the frequency of the category variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.
<table>
<thead>
<tr>
<th>Alias</th>
<th>PCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactions</td>
<td>The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the <code>PCTLEVEL=</code> option in the PROC SGPLOT statement. You can use the <code>PCTNDEC=</code> option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values.</td>
</tr>
<tr>
<td>Note</td>
<td>If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.</td>
</tr>
<tr>
<td>SUM</td>
<td>the sum of the response variable. This is the default value when you specify the <code>RESPONSE=</code> option. For this value to take effect, you must also specify the <code>RESPONSE=</code> option.</td>
</tr>
<tr>
<td>Defaults</td>
<td>SUM when you also specify the <code>RESPONSE=</code> option. FREQ when do not specify the <code>RESPONSE=</code> option.</td>
</tr>
<tr>
<td>Restriction</td>
<td>If you do not also specify the <code>RESPONSE=</code> option, then only the FREQ or PERCENT statistic is calculated (FREQ is the default). If you specify <code>RESPONSE=</code>, then you can use any of the statistics.</td>
</tr>
<tr>
<td>Interaction</td>
<td>When the graph is generated, the statistic is appended to the variable name in the axis label and the legend (if it is created). However, if a label has been assigned to the variable, then the label appears in the axis label and legend instead of the statistic.</td>
</tr>
<tr>
<td>STATLABEL</td>
<td>NOSTATLABEL</td>
</tr>
<tr>
<td>Defaults</td>
<td>The statistic is displayed for the response variable. When a custom label is assigned to the response variable, the statistic is not displayed.</td>
</tr>
<tr>
<td>Interaction</td>
<td>This option has no effect unless the <code>RESPONSE=</code> option is specified. This option has no effect if you specify the axis label using the <code>LABEL=</code> option in an AXIS statement.</td>
</tr>
<tr>
<td>TIP=(variable-list)</td>
<td>NONE</td>
</tr>
</tbody>
</table>
(variable-list)
a space-separated list of variables enclosed in parentheses. Data tips are
displayed using the data obtained from the specified variables.

NONE
suppresses the data tips from this plot.

Requirement You must specify the IMAGEMAP=ON option in the ODS
GRAPHICS statement in order to generate data tips. For example,
add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

Interaction This option replaces all of the information that is displayed by
default.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and
labels to the list of variables.

Example `tip=(age weight)`

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option
provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the format-list and the variable-list that
is specified for the TIP= option. A format must be provided for each variable, using
the same order as the variable-list. If you do not want to apply a format to a variable,
use the AUTO keyword instead.

Default The column format of the tip variable, or BEST6 if no format is
assigned to a numeric column

Requirement A format or the keyword AUTO must be provided for each variable
that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPLABEL= option to assign labels to the list of variables.

See *SAS Viya Formats and Informats: Reference*

Example `tipformat=(auto F5.2)`

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This
option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is
specified for the TIP= option. A label must be provided for each variable, using the
same order as the variable-list. If you do not want to apply a custom label to a
variable, use the AUTO keyword instead.
Requirement: A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

Interaction: This option has no effect unless TIP= is also specified.

Tip: Use the TIPFORMAT option to assign formats to the list of variables.

Example: tiplabel=(auto "Class Weight")

**TRANSPARENCY=value**

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

**URL=character-variable**

specifies an HTML page to be displayed when parts of the plot are selected.

*character-variable*

specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.


Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

```ods graphics on / imagemap=on;```

WEIGHT=numeric-variable

specifies a variable that contains values to be used as weights for the calculations. Each observation is weighted by the value of the specified numeric variable.

Requirement: The values of the weight variable must be greater than zero. If an observation’s weight is zero, negative, or missing, the observation is deleted from the analysis.

Interaction: If your plot is overlaid with other categorization plots that also specify WEIGHT=, then the first WEIGHT variable that you specified is used for all of the plots.

X2AXIS

assigns the category variable to the secondary (top) horizontal axis.

Y2AXIS

assigns the response variable to the secondary (right) vertical axis.
WATERFALL Statement

Creates a waterfall chart computed from input data. In the chart, bars represent an initial value of Y and a series of intermediate values identified by X leading to a final value of Y.

Note: A waterfall chart accumulates response values in the data order of the observations. Based on the response values, the chart generates a final bar value. If the waterfall chart is used with other overlay plots or with SAS Cloud Analytic Services (CAS) data, the order of the X axis values might change, and the change might adversely affect the waterfall chart.

Example: “About Waterfall Charts” on page 52

Syntax

WATERFALL CATEGORY=variable RESPONSE=numeric-variable <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
 specifies the value of the ID variable in a discrete attribute map data set.

BARWIDTH=numeric-value
 specifies the width of the bars as a ratio of the maximum possible width.

BASELINEATTRS=style-element <(options)> | (options)
 specifies the appearance of the baseline.

COLORGROUP=variable
 specifies a variable that is used to discretely color the bars.

COLORMODEL=style-element | (color-list)
 specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
 specifies the numeric column that is used to map colors to a gradient legend.

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
 specifies a special effect to be used on the plot.

FILL | NOFILL
 specifies whether the bars are filled.

FILLATTRS=style-element | (COLOR=color)
 specifies the color of the fill for the bars.

OUTLINE | NOOUTLINE
 specifies whether the bars have outlines.

RATTRID=character-value
 specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=value
 specifies the degree of transparency for the plot.

Axis options

X2AXIS
 assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.
Y2AXIS
assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

Data tip options
TIP=(variable-list) | NONE
specifies the data tip information to be displayed when the cursor is positioned over the graphics element.
TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.
TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

Final bar options
FINALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the final bar.
FINALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the final bar, if displayed.

Initial bar options
INITIALBARATTRS=style-element | (COLOR=color)
specifies the appearance of the initial bar, if displayed.
INITIALBARTICKVALUE="text-string"
specifies the tick value used on the X axis for the initial bar, if displayed.
INITIALBARVALUE=number
specifies the value of the initial bar.

Label options
DATALABEL
displays a label for each data point.
DATALABELATTRS=style-element <(options)> | (options)
specifies the appearance of the labels in the plot when you use the DATALABEL= option.
SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.
SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Plot options
MISSING
for group data, processes missing values as a valid category value and creates a bar for it.
STAT=MEAN | SUM
specifies the statistic for the response axis.
URL=character-variable
specifies an HTML page to be displayed when parts of the plot are selected.
Plot reference options

NAME="text-string"
assigns a name to a plot statement.

Required Arguments

CATEGORY=variable
specifies the variable for the category values. Duplicated category values are summarized into a unique value. All values are treated as discrete.

RESPONSE=numeric-variable
specifies the variable for the response values.

Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317 “Overview of Attribute Maps” on page 1315

BARWIDTH=numeric-value
specifies the width of the bars as a ratio of the maximum possible width. The maximum width is equal to the distance between the center of each bar and the centers of the adjacent bars. Specify a value from 0.0 (narrowest) to 1.0 (widest).

For example, if you specify a width of 1, then there is no space between the bars. If you specify a width of .5, then the width of the bars is equal to the space between the bars.

Default .8

BASELINEATTRS=style-element <(options)> | (options)
specifies the appearance of the baseline. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default The GraphAxisLines style element in the current style.

Notes The baseline is always drawn by default.

When *style-element* is specified, only the style element’s COLOR, LINESTYLE, and LINETHICKNESS attributes are used.

Tip To suppress the baseline, set the line thickness to 0 as follows:
baselineattrs=(thickness=0)

COLORGROUP=variable
specifies a variable that is used to discretely color the bars. Once the variable values are found, the transaction bar colors are taken from the GraphData1 ... GraphData{n} style elements in the current style. If the transaction bars are filled, then the COLOR
attribute is used for the fill. The CONTRASTCOLOR attribute is used for the transaction bar outlines.

COLORMODELMODEL=style-element | (color-list)

specifies a color ramp that is to be used with the COLORRESPONSE= option.

style-element

specifies the name of a style element. The style element should contain these style attributes:

- **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
- **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
- **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

color-list

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278. The list can contain a mix of style attribute references, color names, and color codes.

Requirement
The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a gradient legend. The fill colors are assigned according to the legend gradient.

Interaction
If the GROUP= option is also specified, then the GROUP= option is ignored.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“GRADLEGEND Statement” on page 683
“Using Gradient Color Legends” on page 1262

DATALABEL

displays a label for each data point. The values of the calculated response are used for the data labels.

DATALABELATTS=style-element <(options)> | (options)

specifies the appearance of the labels in the plot when you use the DATALABEL= option. You can specify the appearance by using a style element or by specifying
specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Default
GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

Interaction
This option has no effect unless the DATALABEL option is also specified.

Examples
DATALABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
DATALABELATTRS=GraphLabelText

DATASKIN=NONE | CRISP | GLOSS | MATTE | PRESSED | SHEEN
specifies a special effect to be used on the plot. The data skin affects all filled bars. The effect that a data skin has on a filled area depends on the skin type, the graph style, and the color of the skinned element. Most of the skins work best with lighter colors over a medium to large filled area. Specify one of the following:

Table 5.37 DATASKIN Options for Filled Areas

<table>
<thead>
<tr>
<th>NONE</th>
<th>CRISP</th>
<th>GLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATTE</th>
<th>PRESSED</th>
<th>SHEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default
NONE

Restriction
The ODS GRAPHICS option DATASKINMAX= controls the maximum number of graphics elements that are skinned in a plot statement. The maximum number is 200 by default. When this limit is exceeded for a plot, the specified data skin is not applied. Use the DATASKINMAX= option to increase or decrease the maximum limit.

Interaction
If you also specify NOFILL, then the data skin is applied to the outlines.

FILL | NOFILL
specifies whether the bars are filled. The FILL option shows the fill color for the bars. The NOFILL option hides the fill color for the bars.

Default
FILL

Interactions
Specifying FILL also hides the outlines.
If NOFILL and NOOUTLINE are both specified, then both options are ignored.

FILLATTRS=

`style-element | (COLOR=color)`

specifies the color of the fill for the bars.

You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Here is an example that specifies a style element: `FILLATTRS=GraphData3`

Here is an example that specifies a color name: `FILLATTRS= (COLOR= "Very light red")`

Default

For ungrouped data, the default color is specified by the Color attribute of the GraphDataDefault style element in the current style. For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction

This option has no effect if you also specify the NOFILL option.

FINALBARATTRS=

`style-element | (COLOR=color)`

specifies the appearance of the final bar. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default

The default color is specified by the Color attribute of the GraphFinal style element in the current style.

Interaction

This option has no effect if you specify the NOFILL option.

FINALBARTICKVALUE=

`text-string`

specifies the tick value used on the X axis for the final bar, if displayed.

Default

"Final"

INITIALBARATTRS=

`style-element | (COLOR=color)`

specifies the appearance of the initial bar, if displayed. You can specify the color of the fill by using a style element or by using the COLOR= suboption. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default

The default color is specified by the Color attribute of the GraphInitial style element in the current style.

Interaction

This option has no effect unless INITIALBARVALUE is also specified.

This option has no effect if you specify the NOFILL option.

INITIALBARTICKVALUE=

`text-string`

specifies the tick value used on the X axis for the initial bar, if displayed.

Default

"Initial"
Interaction This option has no effect unless INITIALBARVALUE is also specified.

INITIALBARVALUE=number
specifies the value of the initial bar. When specified, the first transaction bar to be drawn starts at that initial value instead of zero.

Default If the INITIALBARVALUE option is not specified, the initial bar is not included in the chart and the first transaction bar is drawn from zero.

MISSING
for group data, processes missing values as a valid category value and creates a bar for it. If more than one chart is specified in the procedure, the MISSING option affects the group calculations for all of the charts.

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

OUTLINE | NOOUTLINE
specifies whether the bars have outlines. The OUTLINE option shows the outlines. The NOOUTLINE option hides the outlines.

Default OUTLINE

Interactions Specifying OUTLINE also hides the fill color.

If NOOUTLINE and NOFILL are both specified, then both options are ignored.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

*SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.
If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

Interactions

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See

“Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See

“Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT

specifies the horizontal alignment of the value text that is being split.

Default

LEFT

Interaction

This option has no effect unless you specify the SPLITCHAR= option.

See

“Overview of Collision Avoidance” on page 1265

STAT=MEAN | SUM

specifies the statistic for the response axis. Specify one of the following statistics:

- **MEAN**
 - the mean of the response variable.

- **SUM**
 - the sum of the response variable.

Default

SUM

TIP=(variable-list) | NONE

specifies the data tip information to be displayed when the cursor is positioned over the graphics element.

- **(variable-list)**
 - a space-separated list of variables enclosed in parentheses. Data tips are displayed using the data obtained from the specified variables.

- **NONE**
 - suppresses the data tips from this plot.
You must specify the `IMAGEMAP=ON` option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

This option replaces all of the information that is displayed by default.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

**Example**

```tip=(age weight)
tipformat=(auto F5.2)
tiplabel=(label-list)```

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPLABEL= option to assign labels to the list of variables.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

The one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a custom label to a variable, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option. When AUTO is used, the label is obtained from the variable.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of variables.
Example tiplabel=(auto "Class Weight")

TRANSPARENCY=value

specifies the degree of transparency for the plot. The transparency that you specify applies to all aspects of the plot statement.

- **Default** 0.0
- **Range** 0 (completely opaque) to 1 (completely transparent)

URL=character-variable

specifies an HTML page to be displayed when parts of the plot are selected.

- **character-variable** specifies a variable that contains a valid HTML page reference (HREF) for each plot element that is to have an active link.
- **Example** http://www.sas.com/en_us/home.html

- **Default** By default, no HTML links are created.
- **Interactions** This option affects graphics output that is created through the ODS HTML destination only.

 This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement. For example, add the following statement before your procedure:

  ```
  ODS GRAPHICS ON / IMAGEMAP=ON;
  ```

X2AXIS

assigns the variables that are assigned to the primary (bottom) horizontal axis to the secondary (top) horizontal axis.

Y2AXIS

assigns the variables that are assigned to the primary (left) vertical axis to the secondary (right) vertical axis.

XAXIS Statement

Specifies the axis options for the X axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
XAXIS option(s);
```

Summary of Optional Arguments

Appearance options

- **COLORBANDATTRS=style-element <(options)> | (options)**
 specifies the fill appearance of the color band.
COLORBANDS=NONE | EVEN | ODD
 specifies the display of alternating wall-color bands corresponding to the
discrete axis bins.

DISPLAY=ALL | NONE | (options)
 specifies which features of the axis are displayed.

GRID
 creates grid lines at each tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
 specifies the appearance of the grid lines.

MINORGRID
 creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
 specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
 specifies the placement of tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
 specifies the order in which discrete tick values are placed on the axis. This
option affects any plot with a discrete axis.

INTEGER
 specifies that only integers are used for tick mark values.

INTERVAL=time-interval
 specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
 specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
 specifies how to scale and format the values for the major tick marks for
logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
 specifies the scale that is used when interpreting the values in the VALUES
option and the MIN and MAX options.

MAX=numeric-value
 specifies the maximum data value to include in the display (the value might
be adjusted by the threshold calculation).

MIN=numeric-value
 specifies the minimum data value to include in the display (the value might
be adjusted by the threshold calculation).

MINOR
 adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
 specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
 specifies the time interval between minor ticks.

NOTIMESPLIT
 prevents a time axis from splitting the time, date, or datetime values into two
rows.

OFFSETMAX=numeric-value
 specifies an offset that follows the highest data value on the axis.

OFFSETMIN=numeric-value
 specifies an offset that precedes the lowest data value on the axis.
RANGES=(start–end <start2–end2 startN–endN …>)
specifies the ranges for a broken axis.

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

LABEL="text-string"
specifies a label for the axis.

LABELATTRS=style-element <=(options)><(options)
specifies the appearance of the axis labels.

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=style-element <=(options)><(options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) | ("string-list")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.
Optional Arguments

COLORBANDS=NONE | EVEN | ODD

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas</td>
<td>Thomas</td>
</tr>
<tr>
<td>Alice</td>
<td>Alice</td>
</tr>
<tr>
<td>James</td>
<td>James</td>
</tr>
<tr>
<td>Joyce</td>
<td>Joyce</td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

This option applies to discrete axes only.

Interaction

Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note

The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip

Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=

style-element <(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction

This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA

places the values in the order in which they appear in the data.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

FORMATTED

sorts the formatted values in ascending character order.
UNFORMATTED
sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of
the axis. NONE specifies that none of the features of the axis are displayed. You can
also hide specific features. options can be one or more of the following:

NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips
This value hides the axis line, but has no effect on the graph border. To
hide the border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline,
such as bar charts and needle plots, you might need to suppress the
baseline. In the plot statement, use the BASELINEATTRS= option to set
the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when
there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

ROTATE
rotates the value text 45 degrees.

Tips Use VALUESROTATE= to specify how the tick values are rotated on the
axis.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have
any effect.

ROTATETHIN
attempts to use ROTATE, and then THIN to fit the values.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have
any effect.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.
No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Restriction
This option has no effect unless the axis is discrete.

Tip
You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Restriction
This option has no effect unless the axis is discrete.

Tip
You can specify the split character using the SPLITCHAR= option.

SPLITROTATE
Attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

STAGGER
shifts the values up and down.

STAGGERROTATE
Attempts to use STAGGER, and then ROTATE to fit the values.

Interaction
When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
Attempts to use STAGGER, and then THIN to fit the values.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults
SPLITROTATE for discrete axes.

THIN for linear and time axes.

Restriction
This option does not affect logarithmic axes.

See
“Fit Policies for Axes” on page 1266

GRID
creates grid lines at each tick on the axis.

Interaction
Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.
GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default
GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for
grouped data.

Interaction
This option has no effect unless GRID is also specified.

Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only
linear axes.

INTERVAL=time-interval
specifies the tick interval for a time axis. The interval that you select must be
consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select AUTO, SECOND,
MINUTE, or HOUR.

Specify one of the following values:

Table 5.38 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

LABEL=“text-string”
specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

CENTER

centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

DATACENTER

centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.
LEFT
positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT
positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

CENTER | DATACENTER

The next figure shows the LEFT and RIGHT positions for the same axis labels.

LEFT | RIGHT

Default CENTER

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.
LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND

places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 5.8 on page 1091.

Figure 5.8 Graph Axes with LOGEXPAND

![Graph Axes with LOGEXPAND](image)

LOGEXPONENT

places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 5.9 on page 1091.

Figure 5.9 An Axis with LOGEXPONENT

![An Axis with LOGEXPONENT](image)

LINEAR

places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 5.10 on page 1091.

Figure 5.10 An Axis with LINEAR

![An Axis with LINEAR](image)

Default LOGEXPAND

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED

the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT

the values are interpreted as integer exponents of the base.
MAX=numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT= numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction
This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS= style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data.

Interaction
This option has no effect unless MINORGRID is also specified.

Tip
You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL= time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 5.38 on page 1088.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

OFFSETMIN=numeric-value

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

RANGES=(start-end start2-end2 startN-endN …)>

specifies the ranges for a broken axis.

- **start** specifies the start of a range. start can be one of the following:
 - a number (linear axis only).
 - the keyword MIN specifies the minimum data value.
 - a SAS time, date, or date-time constant (time axis only).

- **end** specifies the end of a range. end can be one of the following:
 - a number (linear axis only).
 - the keyword MAX specifies the maximum data value.
 - a SAS time, date, or date-time constant (time axis only).
The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

Restrictions

This option is valid for linear and time axes only.

- Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.
- If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.
- When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

Requirements

All of the ranges must be enclosed in parenthesis.

- You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

- When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. When a range is specified, the data label font size is not scaled during label placement.

Notes

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots,
reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip
To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

Note
This option has no effect if the target axis already contains data.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Restriction
This option has no effect unless the axis is discrete.

Interactions
This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.
The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

See “Overview of Collision Avoidance” on page 1265

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMAX=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMAX=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.
Tips
If the threshold is set to 0, the potential tick mark is never displayed. If
the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents
the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures
that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and
the THRESHOLDMAX= option to 0.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of tick marks in relation to the axis line. The figure shows
the tick display for each value.

<table>
<thead>
<tr>
<th>OUTSIDE</th>
<th>INSIDE</th>
<th>ACROSS</th>
<th>INBETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTSIDE
displays tick marks outside of the axis frame.

INSIDE
displays tick marks inside the axis frame.

ACROSS
displays tick marks across the axis line.

INBETWEEN
displays tick marks between the discrete data values and outside of the axis
frame.

Interaction This value is available only with discrete axes. The option is
ignored if specified with other axis types.

Default OUTSIDE

Interaction This option has effect only if the DISPLAY= option setting includes
tick marks, which it does by default.

Supports Major and minor tick marks

Note This option has no effect on the placement of the tick values, which are
always outside the axis frame.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:
DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an
axis, then the default type for that axis is discrete. In addition, all categorization
plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric
variables, except when the data is discrete, or when the numeric variable has a
date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots
(REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for
the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are
provided in the VALUES= option and the MIN= and MAX=
options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time,
date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style
(ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the
GraphData1...GraphData n style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies
depending on the type of axis.

• VALUES=(values-list) specifies tick values for linear, time, and logarithmic
 axes.

• VALUES=(“string-list”) specifies tick values for discrete axes. The values can
 be character or numeric.
VALUES=(values-list)

specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:

* value <...value-n>
 creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

* value-1 TO value-2 BY increment-value
 creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

 Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

* <value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>
 creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.

 For example, VALUES=(-5 10 to 50 by 20 75) creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple n values can be separated by blanks or commas. Here are some examples:

- values=(2 4 6)
- values=(6,4,2)
- values=(2 to 10 by 2)
- values=(50 to 10 by -5)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

VALUES=(0 to 10 by 3)

For values on a time axis, the values list can be one of the following:

* value <...value-n>
 creates ticks for specific values. For example, VALUES=("25May08"d "04Jul08"d "23Aug08"d) places tick marks at 25May08, 04Jul08, and 23Aug08.

* value-1 TO value-2 BY increment-value
 creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example,
 VALUES=("01Jan08"d to "01May08"d by month) creates tick marks at 01Jan08, 01Feb08, 01Mar08, 01Apr08, and 01May08.
For a list of the interval values that you can specify, see the INTERVAL= option.

Restrictions This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions For logarithmic axes, use the LOGVTYPE option to control whether the values in the VALUES option are treated as expanded values or as exponents. A typical case for using exponents is when plotting your data using log base e.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

VALUES=(*string-list*)

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

Table 5.39 Axis with Specified Character Values

<table>
<thead>
<tr>
<th>proc sgplot data=sashelp.cars;</th>
</tr>
</thead>
<tbody>
<tr>
<td>xaxis values=('GMC' 'Honda' 'Hyundai')</td>
</tr>
<tr>
<td>offsetmin=0.2 offsetmax=0.2;</td>
</tr>
<tr>
<td>scatter x=make y=mpg_city;</td>
</tr>
<tr>
<td>run;</td>
</tr>
</tbody>
</table>

Restrictions This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
values=('Sedan' 'Sports' 'Wagon' 'SUV')

The following example specifies the axis tick values 10, 20, 30, and 40:
values=('10' '20' '30' '40')

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

This option applies only to discrete axes. Linear, date, and time axes are not supported.

This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=('14' '15') valuesdisplay=('fourteen' 'fifteen')

VALUESFORMAT=DATA | SAS-format

specifies how to format the values for major tick marks.

Note: This option supports discrete and logarithmic axes.

DATA

uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format

specifies a format to apply to the major tick values.
Restriction This option currently honors most, but not every, SAS format.

Note If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Restriction For discrete axes, only character formats are supported.

Interactions This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE =LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE =LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction This option has no effect unless you also specify the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

DIAGONAL rotates the tick values to a 45-degree diagonal position.

VERTICAL rotates the tick values to a 90-degree vertical position. The values are always drawn from bottom to top.

Default DIAGONAL

Interactions This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

X2AXIS Statement

Specifies the axis options for the X2 axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

X2AXIS option(s);
Summary of Optional Arguments

Appearance options

COLORBANDATTRS=<style-element <(options)> | (options)
specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=<style-element <(options)> | (options)
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=<style-element <(options)> | (options)
specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=time-interval
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis.

MINORINTERVAL=time-interval
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX= numeric-value
specifies an offset that follows the highest data value on the axis.

OFFSETMIN= numeric-value
specifies an offset that precedes the lowest data value on the axis.

RANGES=(start–end <start2–end2 startN–endN …>)
specifies the ranges for a broken axis.

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX= numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN= numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis.

Text options

FITPOLICY= policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally.

LABEL= "text-string"
specifies a label for the axis.

LABELATTRS= style-element (options) | (options)
specifies the appearance of the axis labels.

LABELPOS= CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

SPLITCHAR= "character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY= LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS= style-element (options) | (options)
specifies the appearance of the axis tick value labels.

VALUES=(values-list) | ("string-list ")
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT= DATA | SAS-format
specifies how to format the values for major tick marks.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

VALUESROTATE= DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

Optional Arguments

COLORBANDS=NONE | EVEN | ODD

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

COLORBANDS=ODD

COLORBANDS=EVEN

Default

NONE

Restriction

This option applies to discrete axes only.

Interaction

Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note

The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip

Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction

This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA

places the values in the order in which they appear in the data.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

FORMATTED

sorts the formatted values in ascending character order.
UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:

NOLABEL
hides the axis label

NOLINE
hides the axis line

Tips
This value hides the axis line, but has no effect on the graph border. To hide the border, specify NOBORDER in the PROC SGPLOT statement.

This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
hides the tick marks on the axis

NOVALUES
hides the tick mark values on the axis

Default: ALL

Example
DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=policy-value
specifies the method that is used to fit tick mark values on a horizontal axis when there is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

ROTATE
rotates the value text 45 degrees.

Tip
Use VALUESROTATE= to specify how the tick values are rotated on the axis.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

ROTATETHIN
attempts to use ROTATE, and then THIN to fit the values.

Note: With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.
No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Restriction
This option has no effect unless the axis is discrete.

Tip
You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

Default
The default split character is a space.

Restriction
This option has no effect unless the axis is discrete.

Tip
You can specify the split character using the SPLITCHAR= option.

SPLITROTATE
Attempts to use SPLIT, and then ROTATE to fit the values. This is the default for discrete axes.

Note: This option has no effect on time axes.

STAGGER
shifts the values up and down.

STAGGERROTATE
Attempts to use STAGGER, and then ROTATE to fit the values.

Interaction
When used with a time axis, this option has no effect unless you also specify NOTIMESPLIT in the axis statement.

STAGGERTHIN
Attempts to use STAGGER, and then THIN to fit the values.

THIN
removes some of the values from the axis. This is the default for linear and time axes.

Defaults
SPLITROTATE for discrete axes.

**THIN for linear and time axes.

Restriction
This option does not affect logarithmic axes.

See
“Fit Policies for Axes” on page 1266

GRID
creates grid lines at each tick on the axis.

Interaction
Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip
You can specify the MINORGRID option to create grid lines at each minor tick on the axis.
GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default

GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphData\(n\) style elements in the current style for
grouped data.

Interaction

This option has no effect unless GRID is also specified.

Examples

GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER

specifies that only integers are used for tick mark values. This option affects only
linear axes.

INTERVAL=\textit{time-interval}

specifies the tick interval for a time axis. The interval that you select must be
consistent with the axis data duration units such as \textit{TIME}, \textit{DATE}, or \textit{DATETIME}.
For example, if the axis data is in \textit{TIME} units, you must select \textit{AUTO}, \textit{SECOND},
\textit{MINUTE}, or \textit{HOUR}.

Specify one of the following values:

\textit{Table 5.40 \hspace{1em} Time Intervals}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{INTERVAL} & \textbf{Unit} & \textbf{Tick interval} & \textbf{Default tick value format} \\
\hline
AUTO & DATE, TIME, or DATETIME & automatically chosen & automatically chosen \\
\hline
SECOND & TIME or DATETIME & second & TIME8. \\
\hline
MINUTE & TIME or DATETIME & minute & TIME8. \\
\hline
HOUR & TIME or DATETIME & hour & TIME8. \\
\hline
DAY & DATE or DATETIME & day & DATE9. \\
\hline
TENDAY & DATE or DATETIME & 10 days & DATE9. \\
\hline
WEEK & DATE or DATETIME & 7 days & DATE9. \\
\hline
\end{tabular}
\end{center}
INTERVAL | Unit | Tick interval | Default tick value format
---|-------------|---------------------|---------------------------
SEMIMONTH | DATE or DATETIME | 1st and 16th of each month | DATE9.
MONTH | DATE or DATETIME | month | MONYY7.
QUARTER | DATE or DATETIME | 3 months | YYQC6.
SEMIYEAR | DATE or DATETIME | 6 months | MONYY7.
YEAR | DATE or DATETIME | year | YEAR4.

Default AUTO

LABEL=“text-string”
specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)
specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData n style elements.

Examples LABELATTRS={(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS=CENTER | DATACENTER | LEFT | RIGHT
specifies the position of the axis label.

CENTER
centers the axis label in the axis area (including any offsets). The label is positioned below the tick values for the X axis or above axis values for the X2 axis.

DATACENTER
centers the axis label in the axis tick display area (excluding any offsets). The label is positioned below the tick values for the X axis or above the axis values for the X2 axis.
LEFT positions the label to the left of the axis area. The label is centered vertically in the axis area.

RIGHT positions the label to the right of the axis area. The label is centered vertically in the axis area.

The following figure shows the CENTER and DATACENTER positions for the red X axis label “Weight (Mean).” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

<table>
<thead>
<tr>
<th>CENTER</th>
<th>DATACENTER</th>
</tr>
</thead>
</table>

The next figure shows the LEFT and RIGHT positions for the same axis labels.

<table>
<thead>
<tr>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
</table>

Default CENTER

LOGBASE=2 | 10 | e

specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.
LOGSTYLE=LINEAR | LOGEXPAND | LOGEXponent

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND

places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 5.11 on page 1112.

Figure 5.11 Graph Axes with LOGEXPAND

LOGEXponent

places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 5.12 on page 1112.

Figure 5.12 An Axis with LOGEXponent

LINEAR

places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify LOGBASE=10, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 5.13 on page 1112.

Figure 5.13 An Axis with LINEAR

Default LOGEXPAND

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGVType=EXPANDED | EXPONENT

specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED

the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT

the values are interpreted as integer exponents of the base.
Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```
yaxis type=log logbase=10 logstyle=logexpand
   logvtype=exponent
   min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```
xaxis type=log logbase=10 logstyle=logexponent
   logvtype=expanded
   values=(10 100 1000 10000 100000);
```

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction This option affects linear, log, and time axes only.

Interactions This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.
For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT= **numeric-value**
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction
This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS= **style-element** *(options)*
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData*n* style elements in the current style for grouped data.

Interaction
This option has no effect unless MINORGRID is also specified.

Tip
You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples
MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL= **time-interval**
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 5.40 on page 1109.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

OFFSETMIN=numeric-value

specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

RANGES=(start–end <start2–end2 startN–endN …>)

specifies the ranges for a broken axis.

start

specifies the start of a range. start can be one of the following:

• a number (linear axis only).
• the keyword MIN specifies the minimum data value.
• a SAS time, date, or date-time constant (time axis only).

end

specifies the end of a range. end can be one of the following:

• a number (linear axis only).
• the keyword MAX specifies the maximum data value.
• a SAS time, date, or date-time constant (time axis only).
The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

Restrictions: This option is valid for linear and time axes only.

- Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.
- If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.
- When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

Requirements: All of the ranges must be enclosed in parenthesis.

- You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions: When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

- When this option is specified, the plot statement TIP= and URL= options are ignored.
- When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. When a range is specified, the data label font size is not scaled during label placement.

Notes: When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots,
reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip
To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples
```
ranges=(10-500 1000-5000 10000-50000)
```
```
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)
```

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis. You can also specify **options**:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

Note
This option has no effect if the target axis already contains data.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR=“character-list”
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

```
SPLITCHAR="abc"
```

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Restriction
This option has no effect unless the axis is discrete.

Interactions
This option has no effect unless FITPOLICY= is specified as either SPLIT, SPLITALWAYS, or SPLITROTATE. SPLITROTATE is the default for discrete X axes.
When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction

This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

See “Overview of Collision Avoidance” on page 1265

THRESHOLDMAX=numeric-value

Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.

Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value

Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30

Range 0 to 1

Restriction This option applies to linear axes only.
Tips
If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of tick marks in relation to the axis line. The figure shows the tick display for each value.

Note: Although the figure shows tick displays for the primary axes, the same placement in relation to the axis applies when secondary axes are used.

OUTSIDE
- displays tick marks outside of the axis frame.

INSIDE
- displays tick marks inside the axis frame.

ACROSS
- displays tick marks across the axis line.

INBETWEEN
- displays tick marks between the discrete data values and outside of the axis frame.

Interaction
This value is available only with discrete axes. The option is ignored if specified with other axis types.

Default OUTSIDE

Interaction
This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

Supports
Major and minor tick marks

Note
This option has no effect on the placement of the tick values, which are always outside the axis frame.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:
DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an
axis, then the default type for that axis is discrete. In addition, all categorization
plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric
variables, except when the data is discrete, or when the numeric variable has a
date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots
(REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for
the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are
provided in the VALUES= option and the MIN= and MAX=
options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time,
date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance
by using a style element or by specifying specific options. If you specify a style
element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected
attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style
(ungrouped data). For grouped data, the color changes to match the
group color derived from the ContrastColor attribute of the
GraphData1...GraphData n style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies
depending on the type of axis.

- VALUES=(values-list) specifies tick values for linear, time, and logarithmic
 axes.
- VALUES=(“string-list”) specifies tick values for discrete axes. The values can
 be character or numeric.
VALUES=(values-list) specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:

\[
\text{value <...value-n>}
\]
creates ticks for specific values. For example, \(\text{VALUES=(0 50 100)}\) places tick marks at 0, 50, and 100.

\[
\text{value-1 TO value-2 BY increment-value}
\]
creates ticks for a range of values. The start of the value range is specified by \(\text{value-1}\) and the end of the range is specified by \(\text{value-2}\). The \(\text{increment-value}\) specifies the interval between the ticks. For example, \(\text{VALUES=(0 to 100 by 50)}\) creates tick marks at 0, 50, and 100.

\[\text{Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.}\]

\[
<value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>
\]
creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \(\text{value-1}\) and the end of the range is specified by \(\text{value-2}\). The \(\text{increment-value}\) specifies the interval between the ticks.

For example, \(\text{VALUES=(-5 10 to 50 by 20 75)}\) creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple \(n\) values can be separated by blanks or commas. Here are some examples:

- \(\text{values=(2 4 6)}\)
- \(\text{values=(6,4,2)}\)
- \(\text{values=(2 to 10 by 2)}\)
- \(\text{values=(50 to 10 by -5)}\)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

\(\text{values=(0 to 10 by 3)}\)

For values on a time axis, the values list can be one of the following:

\[
\text{value <...value-n>}
\]
creates ticks for specific values. For example, \(\text{VALUES=("25MAY08"d} \hspace{1em} \text{"04JUL08"d} \hspace{1em} \text{"23AUG08"d)}\) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\[
\text{value-1 TO value-2 BY increment-value}
\]
creates ticks for a range of values. The start of the value range is specified by \(\text{value-1}\) and the end of the range is specified by \(\text{value-2}\). The \(\text{increment-value}\) specifies the interval between the ticks. For example,

\(\text{VALUES=("01JAN08"d to "01MAY08"d by month)}\) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.
For a list of the interval values that you can specify, see the `INTERVAL=` option.

Restrictions

- This option has no effect on discrete axes.
- If your `VALUES=` option creates more than 1000 values, then the option has no effect.

Interactions

- For logarithmic axes, use the `LOGVTYPE` option to control whether the values in the `VALUES` option are treated as expanded values or as exponents. A typical case for using exponents is when plotting your data using log base e.
- If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.

VALUES=(“string-list”)

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

Table 5.41 Axis with Specified Character Values

```sas
data=sashelp.cars;
proc sgplot data=sashelp.cars;
xaxis values=("GMC" "Honda" "Hyundai")
    offsetmin=0.2 offsetmax=0.2;
scatter x=make y=mpg_city;
run;
```

Restrictions

- This option has no effect on linear, time, or logarithmic axes.
- Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.
Notes
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip
Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
values=(*Sedan" "Sports" "Wagon" "SUV")

The following example specifies the axis tick values 10, 20, 30, and 40:
values=(*"10" "20" "30" "40")

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=(*"14" "15") valuesdisplay=(*fourteen" "fifteen")

Tip
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction
This option applies only to discrete axes. Linear, date, and time axes are not supported.

Interaction
This option should be used with the VALUES= option. The number of items in the list for this option should equal the number of items in the list for the VALUES= option.

Example
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
values=(*"14" "15") valuesdisplay=(*fourteen" "fifteen")

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note: This option supports discrete and logarithmic axes.

DATA
uses the format that has been assigned to the column that is contributing to the axis (or BEST6 if no format is assigned) in order to control the formatting of the major tick values.

SAS-format
specifies a format to apply to the major tick values.
Restriction: This option currently honors most, but not every, SAS format.

Note: If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Restriction: For discrete axes, only character formats are supported.

Interactions: This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE = LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction: This option has no effect unless you also specify the VALUES= option.

VALUESROTATE=DIAGONAL | VERTICAL
specifies how the tick values are rotated on the axis.

DIAGONAL
rotates the tick values to a 45-degree diagonal position.

VERTICAL
rotates the tick values to a 90-degree vertical position. The values are always drawn from bottom to top.

Default: DIAGONAL

Interactions: This option works through the axis fit policy. If there are no tick collisions, no rotation occurs.

With a time axis, you must specify NOTIMESPLIT for this option to have any effect.

XAXISTABLE Statement

Creates an event plot of input data along the axis, placing data values at specific locations inside or outside of the axis. The SGPLOT procedure can contain multiple XAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with the category axis of the chart. If a statement uses the wrong orientation, the statement is rejected with a message in the SAS log. For example, if your procedure has an HBAR statement along with an XAXISTABLE statement, the XAXISTABLE statement is rejected with a message.
Axis tables are separate plots and are unaware of the options specified in the accompanying plots. Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE, REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an error is written to the log.

Syntax

```
XAXISTABLE variable <…variable-n> </option(s)>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=**character-value
 - specifies the value of the ID variable in a discrete attribute map data set.

- **COLORGROUP=**variable
 - specifies a variable that is used to determine the color of the table values.

- **DROPONMISSING**
 - specifies that the entire axis table is dropped when all of the values are missing.

- **INDENT=**dimension <unit>
 - specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value.

- **INDENTWEIGHT=**numeric-variable
 - specifies the indentation weight (multiplier) for each observation.

- **LOCATION=**OUTSIDE | INSIDE
 - specifies whether the axis table is placed outside or inside the axis area.

- **NOMISSINGCHAR**
 - suppresses the display of the MISSING character (.) for missing numeric values.

- **PAD=**dimension | (pad-options)
 - specifies the amount of extra space that is added inside the table border.

- **POSITION=**BOTTOM | TOP
 - specifies the position of the axis table at the bottom or top of the graph.

- **SEPARATOR**
 - creates a separating line between the axis table or axis tables and the plot.

- **TEXTGROUP=**attribute-map-group-variable
 - specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation.

- **TEXTGROUPID=**attribute-map-id
 - specifies an attribute ID for the TEXTGROUP= option.

- **VALUEATTRS=**style-element <(options)> | (options)
 - specifies the appearance of the axis table values.

Axis options

- **X2AXIS**
 - assigns the table to the secondary (top) horizontal axis.

Class options

- **CLASS=**variable
 - creates a separate axis table for each unique value of the specified variable.
CLASSDISPLAY=STACK | CLUSTER
 specifies how the class values are displayed.
CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the order in which the class values are displayed.
NOMISSINGCLASS
 specifies that missing values of the class variable are not included in the table.

Label options

LABEL | NOLABEL | LABEL="text-string"
 specifies whether the table label is shown or hidden.
LABELATTRS=style-element<(options)> | (options)
 specifies the color and font attributes of the axis table label.
LABELPOS=LEFT | RIGHT
 specifies the position of the labels at the left or right side of the axis table.
STATLABEL | NOSTATLABEL
 specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
 specifies the statistic for the axis table.
X=variable
 Specifies the X variable to use to align the table values to the X or X2 axis.

Plot reference options

NAME="text-string"
 assigns a name to a plot statement.

Title options

TITLE="text-string"
 specifies a title for the axis table.
TITLEATTRS=style-element<(options)> | (options)
 specifies the appearance of the title for the axis table.

Required Argument

variable <…variable-n>
 specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are stacked one on the other.
Any options that you add to the statement apply to all the variables that are specified in that statement.

Note
 When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the STAT= option.
Optional Arguments

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

See Chapter 12, “Using Discrete Attribute Maps,” on page 1317
“Overview of Attribute Maps” on page 1315

CLASS=variable
creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

Restriction The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

Interaction If NOLABEL is also specified, then the class labels are removed.

Tips Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.
Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

STACK
displays the class values vertically at each midpoint value on the X axis.

CLUSTER
displays the class values horizontally at each midpoint value on the X axis.

Default STACK

Interaction For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default DATA
Restriction This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

Interaction For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note This option is used only to color the table values. If you want to set additional text attributes, used the TEXTGROUP= option instead.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

INDENT=dimension <unit>
specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value. The default units for dimension are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default 1/8 inch

Restriction Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARGRAPH, HBARPARM, VBARPARM, SERIES, or SCATTER.

Interaction The INDENTWEIGHT= option must be specified for this option to have any effect.

INDENTWEIGHT=numeric-variable
specifies the indentation weight (multiplier) for each observation.

Restriction Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARGRAPH, HBARPARM, VBARPARM, SERIES, or SCATTER.

Interaction For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indentation for that observation's value.
LABEL | NOLABEL | LABEL="text-string"

specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Defaults LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

Tip Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

LABELATTRS=style-element <(options)> | (options)

specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Restriction Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELPOS=LEFT | RIGHT

specifies the position of the labels at the left or right side of the axis table.

Default LEFT

LOCATION=OUTSIDE | INSIDE

specifies whether the axis table is placed outside or inside the axis area.

Default OUTSIDE

NAME="text-string"

assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.
NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values.
Missing numeric values are displayed as blanks.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Interaction For this option to have any effect, the CLASS= option must be specified.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.

dimension
specifies a dimension to use for the extra space at the table border.

(pad-options)
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

TOP=dimension
specifies the amount of extra space added to the top.

Default 0 px

BOTTOM=dimension
specifies the amount of extra space added to the bottom.

Default 0 px

Note Sides that are not assigned padding are padded with the default amount of space.

Tip Use pad-options to create non-uniform padding.

Note The default units for dimension are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

POSITION=BOTTOM | TOP
specifies the position of the axis table at the bottom or top of the graph.

Defaults BOTTOM when the primary horizontal axis is used for the plot.

TOP when the secondary (X2AXIS) horizontal axis is specified for the plot.

SEPARATOR
creates a separating line between the axis table or axis tables and the plot.

Interaction This option has no effect unless LOCATION=INSIDE is also specified.

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the SUM and MEAN statistics are available.

Specify one of the following:
FREQ
the frequency of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

MEAN
the mean of the axis table variable.

MEDIAN
the median of the axis table variable.

Interaction For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

STATLABEL
forces the statistic to be displayed in the label.

NOSTATLABEL
removes the statistic from the label.
Defaults

The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction

This option has no effect unless the STAT= option is also specified in the axis table statement.

TEXTGROUP=attribute-map-group-variable

specifies the group variable that is used in a discrete attribute map data set to map text attributes to values for each observation. You specify this option only if you are using an attribute map to control visual attributes of the graph. The variable’s values must correspond to the values in the VALUE variable in the attribute map data set. For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page 1317.

Interactions

The TEXTGROUPID= option specifies the attribute ID to use for the attribute mapping. If TEXTGROUPID= is not specified, then the ATTRID= option is used. If the ATTRID= option is also not specified, then the TEXTGROUP= option is ignored.

When this option is specified, the COLORGROUP= option is ignored.

See

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TEXTGROUPID=attribute-map-id

specifies an attribute ID for the TEXTGROUP= option.

Default

If neither TEXTGROUPID= nor ATTRID= is specified, the TEXTGROUP= option is ignored.

See

“Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TITLE="text-string"

specifies a title for the axis table. It the axis table statement specifies more than one variable, the title is displayed for each variable.

Tip

Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element <(options)> | (options)

specifies the appearance of the title for the axis table. You can specify the appearance by using a style element or by specifying text options. If you specify a style element, you can also specify text options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interactions

This option has no effect unless TITLE= is also specified.
If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples

```
TITLEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
TITLEATTRS=GraphTitleText
```

VALUEATTRS=style-element <(options)> | (options)

specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData\n style elements.

Interaction

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples

```
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)
```

Here is an example that specifies a style element:

```
VALUEATTRS=GraphTitleText
```

X=variable

Specifies the X variable to use to align the table values to the X or X2 axis.

Default

X variable of the primary plot

Interaction

This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

X2AXIS

assigns the table to the secondary (top) horizontal axis.

Example: XAXISTABLE Statements

This example shows a table of values along the X axis of a scatter plot that plots student weight.
Here are the noteworthy features:

- The first axis table statement displays the age (in red) of each student above the X axis. The LOCATION=INSIDE option locates the axis table within the plot axes. The ages appear on different rows because the CLASS=AGE option is used.

- The second axis table statement specifies two variables, height and weight, and is located below the X axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;
proc sgplot data=sashelp.class (where=(age < 13));
scatter x=name y=height;
xaxistable age / class=age title="Student Age" location=inside
valueattrs=(color=red)
labelattrs=(color=red)
titleattrs=(color=red);
xaxistable weight height / valueattrs=(color=blue);
run;
```

For an example that shows vertical axis tables, see “Example: YAXISTABLE Statements” on page 1186.

YAXIS Statement

Specifies the axis options for the Y axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
YAXIS option(s);
```
Summary of Optional Arguments

Appearance options

COLORBANDATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle
specifies the fill appearance of the color band.

COLORBANDS=NONE | EVEN | ODD
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

DISPLAY=ALL | NONE | \langle options\rangle
specifies which features of the axis are displayed.

GRID
creates grid lines at each tick on the axis.

GRIDATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=\texttt{style-element \langle options\rangle} | \langle options\rangle
specifies the appearance of the minor grid lines.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of tick marks in relation to the axis line.

Axis options

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=\texttt{time-interval}
specifies the tick interval for a time axis.

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=\texttt{numeric-value}
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=\texttt{numeric-value}
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=\texttt{numeric-value}
specifies the number of minor tick marks for the axis.

MINORINTERVAL=\texttt{time-interval}
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=`numeric-value`

specifies an offset that follows the highest data value on the axis.

OFFSETMIN=`numeric-value`

specifies an offset that precedes the lowest data value on the axis.

RANGES=(`start–end <start2–end2 startN–endN …>`

specifies the ranges for a broken axis.

REFTICKS <=(options)`>`

adds tick marks to the axis that is opposite from the specified axis.

REVERSE

specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=`numeric-value`

Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=`numeric-value`

Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=`DISCRETE | LINEAR | LOG | TIME`

specifies the type of axis.

Text options

FITPOLICY=`NONE | SPLIT | SPLITALWAYS | THIN`

specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

LABEL=“`text-string”`

specifies a label for the axis.

LABELATTRS=`style-element <(options)> | (options)`

specifies the appearance of the axis labels.

LABELPOS=`BOTTOM | CENTER | DATACENTER | TOP`

specifies the position of the axis label.

SPLITCHAR=“`character-list’’”

splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP

specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=`LEFT | CENTER | RIGHT`

specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=`style-element <(options)> | (options)`

specifies the appearance of the axis tick value labels.

VALUES=`(values-list) | (“string-list”)`

specifies the values for the ticks on an axis.

VALUESDISPLAY=

specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=`DATA | SAS-format`

specifies how to format the values for major tick marks.

VALUESHALIGN=`LEFT | CENTER | RIGHT`

specifies the horizontal alignment for all of the tick values that are displayed on the axis.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

Optional Arguments

COLORBANDS=NONE | EVEN | ODD

specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:

<table>
<thead>
<tr>
<th>COLORBANDS=ODD</th>
<th>COLORBANDS=EVEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default

NONE

Restriction

This option applies to discrete axes only.

Interaction

Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note

The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip

Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)

specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction

This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED

specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA

places the values in the order in which they appear in the data.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.
FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of
the axis. NONE specifies that none of the features of the axis are displayed. You can
also hide specific features. options can be one or more of the following:

NOLABEL
 hides the axis label

NOLINE
 hides the axis line

Tips This value hides the axis line, but has no effect on the graph border. To
 hide the border, specify NOBORDER in the PROC SGPLOT statement.

 This value has no effect on baselines. For plots that support a baseline,
 such as bar charts and needle plots, you might need to suppress the
 baseline. In the plot statement, use the BASELINEATTRS= option to set
 the line thickness to 0.

NOTICKS
 hides the tick marks on the axis

NOVALUES
 hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
specifies the method that is used to fit tick mark values on a vertical axis when there
is not enough room to draw them normally. Select one of the following values:

NONE
does not split the values.

SPLIT
splits the values at the character or characters specified in the SPLITCHAR= option.

No split occurs at split characters that occur where a split is not needed. In that
case, the split character is displayed with the text value. If the value does not
contain any of the specified split characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.
SPLIT ALWAYS
always splits the values at the character or characters specified in the
SPLITCHAR= option. If the value does not contain any of the specified split
characters, a split does not occur.

Default The default split character is a space.

Restriction This option has no effect unless the axis is discrete.

Tip You can specify the split character using the SPLITCHAR= option.

THIN
removes some of the values from the axis.

Default THIN

See “Fit Policies for Axes” on page 1266

GRID
creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS=
option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each
minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a
style element or by specifying specific options. If you specify a style element, you
can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page
1272.

Default GraphGridLines style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for
grouped data.

Interaction This option has no effect unless GRID is also specified.

Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER
specifies that only integers are used for tick mark values. This option affects only
linear axes.

INTERVAL=time-interval
specifies the tick interval for a time axis. The interval that you select must be
consistent with the axis data duration units such as TIME, DATE, or DATETIME.
For example, if the axis data is in TIME units, you must select AUTO, SECOND,
MINUTE, or HOUR.

Specify one of the following values:
Table 5.42 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default AUTO

LABEL= "text-string"

specifies a label for the axis.

LABELATTRS= style-element <(options)> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.
Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:

LABELATTRS=GraphTitleText

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.

BOTTOM

positions the label at the bottom of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

CENTER

centers the axis label in the axis area (including any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

DATACENTER

centers the axis label in the axis tick display area (excluding any offsets). The label is oriented vertically (rotated).

The label is positioned to the left of the tick values for the Y axis or to the right of the axis values for the Y2 axis.

TOP

positions the label at the top of the axis area. The label is oriented horizontally (unrotated).

The label is right-justified in the axis area for the Y axis and left-justified for the Y2 axis. If there is not sufficient room in the axis area to display the label, the label grows to the right for the Y axis and to the left for the Y2 axis.

The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.
The next figure shows the TOP and BOTTOM positions for the same axis labels.

Default CENTER

LOGBASE=2 | 10 | e

specifies the base value for the logarithmic scale.

Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT

specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND

places the tick marks at integer powers of the base. For example, if you specified **LOGBASE=2**, the tick marks might be at 1, 2, 4, 8, 16. See Figure 5.14 on page 1143.
LOGEXPONENT places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified `LOGBASE=10`, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 5.15 on page 1143.

LINEAR places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.

For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 5.16 on page 1143.

LOGVTYPE=EXPANDED | EXPONENT specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

EXPANDED
the values are interpreted as integer powers of the base (decimal numbers).

EXPONENT
the values are interpreted as integer exponents of the base.

Default EXPANDED

Interaction This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.
Tip

This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples

The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
   logvtype=exponent
   min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
   logvtype=expanded
   values=(10 100 1000 10000 100000);
```

MAX= numeric-value

specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction

This option affects linear, log, and time axes only.

Interactions

This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.

This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip

The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN= numeric-value

specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction

This option affects linear, log, and time axes only.

Interactions

This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip

The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds
and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction This option has no effect on discrete axes.

Interaction This option has no effect if you specify the VALUES= option.

Tip Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction This option applies to linear and log axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:

MINORGRIDATTRS=GraphAxisLines

MINORINTERVAL=time-interval
specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME.

For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 5.42 on page 1140.

Default AUTO
Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=numeric-value specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

OFFSETMIN=numeric-value specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

RANGES=(start–end <start2–end2 startN–endN ...>) specifies the ranges for a broken axis.

start specifies the start of a range. start can be one of the following:

- a number (linear axis only).
- the keyword MIN specifies the minimum data value.
- a SAS time, date, or date-time constant (time axis only).

end specifies the end of a range. end can be one of the following:

- a number (linear axis only).
- the keyword MAX specifies the maximum data value.
- a SAS time, date, or date-time constant (time axis only).
The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.

Restrictions

This option is valid for linear and time axes only.

- Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

- If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

- When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

Requirements

- All of the ranges must be enclosed in parenthesis.

- You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions

- When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

- When this option is specified, the plot statement TIP= and URL= options are ignored.

- When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. When a range is specified, the data label font size is not scaled during label placement.

Notes

- When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots,
reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip
To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples
ranges=(10-500 1000-5000 10000-50000)
ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

REFTICKS <=(options)>
adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

Note This option has no effect if the target axis already contains data.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.

Interactions This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.
You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.
The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

See “Overview of Collision Avoidance” on page 1265

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.

Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.

Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.

Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.

For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN

specifies the placement of tick marks in relation to the axis line. The figure shows the tick display for each value.

<table>
<thead>
<tr>
<th>OUTSIDE</th>
<th>INSIDE</th>
<th>ACROSS</th>
<th>INBETWEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTSIDE

- displays tick marks outside of the axis frame.

INSIDE

- displays tick marks inside the axis frame.

ACROSS

- displays tick marks across the axis line.

INBETWEEN

- displays tick marks between the discrete data values and outside of the axis frame.

Interaction

- This value is available only with discrete axes. The option is ignored if specified with other axis types.

Default

OUTSIDE

Interaction

- This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

Supports

Major and minor tick marks

Note

- This option has no effect on the placement of the tick values, which are always outside the axis frame.

TYPE=DISCRETE | LINEAR | LOG | TIME

specifies the type of axis. Specify one of the following values:

DISCRETE

- specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.
LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction
A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions
Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Examples
VALUEATTRS=(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)
specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

• VALUES=(values-list) specifies tick values for linear, time, and logarithmic axes.

• VALUES=(“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)
specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only
the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:

\[value \ldots value-n \]

creates ticks for specific values. For example, \(VALUES=(0\ 50\ 100) \) places tick marks at 0, 50, and 100.

\[value-1 \ TO \ value-2 \ BY \ increment-value \]

creates ticks for a range of values. The start of the value range is specified by \(value-1 \) and the end of the range is specified by \(value-2 \). The \(increment-value \) specifies the interval between the ticks. For example, \(VALUES=(0\ to\ 100\ by\ 50) \) creates tick marks at 0, 50, and 100.

Note: If you omit the \(increment-value \), the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

\(<value \ldots value-n> \ value-1 \ TO \ value-2 \ BY \ increment-value \ <value \ldots value-n>\)

creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by \(value-1 \) and the end of the range is specified by \(value-2 \). The \(increment-value \) specifies the interval between the ticks.

For example, \(VALUES=(-5\ 10\ to\ 50\ by\ 20\ 75) \) creates tick marks at –5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple \(n \) values can be separated by blanks or commas. Here are some examples:

- \(values=(2\ 4\ 6) \)
- \(values=(6,4,2) \)
- \(values=(2\ to\ 10\ by\ 2) \)
- \(values=(50\ to\ 10\ by\ -5) \)

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

\(values=(0\ to\ 10\ by\ 3) \)

For values on a time axis, the values list can be one of the following:

\[value \ldots value-n \]

creates ticks for specific values. For example, \(VALUES=("25\ MAY\ 2008.d\ " 04\ JUL\ 2008.d\ "23\ AUG\ 2008.d) \) places tick marks at 25MAY08, 04JUL08, and 23AUG08.

\[value-1 \ TO \ value-2 \ BY \ increment-value \]

creates ticks for a range of values. The start of the value range is specified by \(value-1 \) and the end of the range is specified by \(value-2 \). The \(increment-value \) specifies the interval between the ticks. For example, \(VALUES=("01\ JAN\ 2008.d\ to\ "01\ MAY\ 2008.d\ by\ month) \) creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the INTERVAL= option.
Restrictions

This option has no effect on discrete axes.

If your VALUES= option creates more than 1000 values, then the option has no effect.

Interactions

For logarithmic axes, use the LOGVTYPE option to control whether the values in the VALUES option are treated as expanded values or as exponents. A typical case for using exponents is when plotting your data using log base e.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip

Use the VALUESDISPLAY= option to specify string replacement text for the specified values.

VALUES="string-list"

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.

Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

Table 5.43 Axis with Specified Character Values

Restrictions

This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes

If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.
The axis data can be character or numeric.

Tip
Use the **VALUESDISPLAY=** option to specify string replacement text for the specified values.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:
```
values=("Sedan" "Sports" "Wagon" "SUV")
```
The following example specifies the axis tick values 10, 20, 30, and 40:
```
values=("10" "20" "30" "40")
```
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

TIP
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the **VALUES=** option. The list of values must be enclosed in parentheses. Each value must be enclosed in quotation marks and separated from adjacent values by a blank space. Numeric values must also be enclosed in quotation marks.

Restriction
This option applies only to discrete axes. Linear, date, and time axes are not supported.

Interaction
This option should be used with the **VALUES=** option. The number of items in the list for this option should equal the number of items in the list for the **VALUES=** option.

Example
The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:
```
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

VALUESFORMAT=DATA | .SAS-format
specifies how to format the values for major tick marks.

Note:
This option supports discrete and logarithmic axes.

DATA
uses the format that has been assigned to the column that is contributing to the axis (or **BEST6** if no format is assigned) in order to control the formatting of the major tick values.

SAS-format
specifies a format to apply to the major tick values.

Restriction
This option currently honors most, but not every, SAS format.

Note
If you specify a format that significantly reduces precision, then, because of tick-value rounding, the plot data elements might not
align properly with the axis tick values. In that case, specify a tick-value format with a higher precision.

Restriction
For discrete axes, only character formats are supported.

Interactions
This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE=LOGEXPAND, this option is honored for the base 10 and base 2 logarithmic scales, and is ignored for the base E scale.

When LOGSTYLE=LINEAR, this option is honored for the base 10, base 2, and base E logarithmic scales.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

Default
RIGHT

Interaction
This option is ignored when FITPOLICY= is specified as either SPLIT or SPLITALWAYS. To align split tick mark values, use the SPLITJUSTIFY= option.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option. The values from the VALUES= option are displayed only if they are located between the minimum and maximum values.

Interaction
This option has no effect unless you also specify the VALUES= option.

Y2AXIS Statement

Specifies the axis options for the Y2 axis. You can control the features of the axis (for example, the axis label, grid lines, and minor tick marks). You can also control the structure of the axis (for example, the data range, data type, and tick mark values).

Syntax

```
Y2AXIS option(s);
```

Summary of Optional Arguments

Appearance options

- **COLORBANDATTRS=**

  ```
  style-element <(options)> | (options)
  ```

 specifies the fill appearance of the color band.

- **COLORBANDS=**

  ```
  NONE | EVEN | ODD
  ```

 specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

- **DISPLAY=**

  ```
  ALL | NONE | (options)
  ```

 specifies which features of the axis are displayed.
GRID
creates grid lines at each tick on the axis.

GRIDATTRS=\text{style-element \textlangle options\textrangle} | (\text{options})
specifies the appearance of the grid lines.

MINORGRID
creates grid lines at each minor tick on the axis.

MINORGRIDATTRS=\text{style-element \textlangle options\textrangle} | (\text{options})
specifies the appearance of the minor grid lines.

TICKSTYLE=\text{OUTSIDE} | \text{INSIDE} | \text{ACROSS} | \text{INBETWEEN}
specifies the placement of tick marks in relation to the axis line.

Axis options

DISCRETEORDER=\text{DATA} | \text{FORMATTED} | \text{UNFORMATTED}
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis.

INTEGER
specifies that only integers are used for tick mark values.

INTERVAL=\text{time-interval}
specifies the tick interval for a time axis.

LOGBASE=\text{2} | \text{10} | \text{e}
specifies the base value for the logarithmic scale.

LOGSTYLE=\text{LINEAR} | \text{LOGEXPAND} | \text{LOGEXPONENT}
specifies how to scale and format the values for the major tick marks for logarithmic axes.

LOGVTYPE=\text{EXPANDED} | \text{EXPONENT}
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options.

MAX=\text{numeric-value}
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

MIN=\text{numeric-value}
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

MINOR
adds minor tick marks to a linear, log, or time axis.

MINORCOUNT=\text{numeric-value}
specifies the number of minor tick marks for the axis.

MINORINTERVAL=\text{time-interval}
specifies the time interval between minor ticks.

NOTIMESPLIT
prevents a time axis from splitting the time, date, or datetime values into two rows.

OFFSETMAX=\text{numeric-value}
specifies an offset that follows the highest data value on the axis.

OFFSETMIN=\text{numeric-value}
specifies an offset that precedes the lowest data value on the axis.

RANGES=\text{(start–end <start2–end2 startN–endN \ldots)}
specifies the ranges for a broken axis.

REFTICKS \textlangle options\textrangle
adds tick marks to the axis that is opposite from the specified axis.

REVERSE
specifies that the tick values are displayed in reverse (descending) order.

THRESHOLDMAX=<numeric-value>
Specifies a threshold for displaying one more tick mark at the high end of the axis.

THRESHOLDMIN=<numeric-value>
Specifies a threshold for displaying one more tick mark at the low end of the axis.

TYPE=<DISCRETE | LINEAR | LOG | TIME>
specifies the type of axis.

Text options

FITPOLICY=<NONE | SPLIT | SPLITALWAYS | THIN>
specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally.

LABEL="<text-string>
specifies a label for the axis.

LABELATTRS=<style-element <(options)> | (options)>
specifies the appearance of the axis labels.

LABELPOS=<BOTTOM | CENTER | DATACENTER | TOP>
specifies the position of the axis label.

SPLITCHAR="<character-list>
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=<LEFT | CENTER | RIGHT>
specifies the horizontal alignment of the value text that is being split.

VALUEATTRS=<style-element <(options)> | (options)>
specifies the appearance of the axis tick value labels.

VALUES=<(values-list) | ("string-list")>
specifies the values for the ticks on an axis.

VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the VALUES= option.

VALUESFORMAT=<DATA | SAS-format>
specifies how to format the values for major tick marks.

VALUESALIGN=<LEFT | CENTER | RIGHT>
specifies the horizontal alignment for all of the tick values that are displayed on the axis.

VALUESHINT
specifies that the minimum and maximum axis values are determined independently of the values that you specify in the VALUES= option.

Optional Arguments

COLORBANDS=<NONE | EVEN | ODD>
specifies the display of alternating wall-color bands corresponding to the discrete axis bins.

The following images show the results of ODD and EVEN settings:
Default: NONE

Restriction: This option applies to discrete axes only.

Interaction: Specifying this option for more than one axis in the graph might have unexpected results. The order in which color bands are drawn might not match the order in which the axis options are specified.

Note: The full width of a color band is the distance between midpoints. When no axis offsets are specified, the first band begins at one-half of the midpoint distance, and the last band ends at one-half of the midpoint distance. When axis offsets are specified, the first and last color bands on the axis might extend into their adjacent offsets by as much as half the color-band width.

Tip: Use the COLORBANDATTRS= option to customize the color bands.

COLORBANDATTRS=style-element <(options)> | (options)
specifies the fill appearance of the color band. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of fill attributes, see “Fill Attributes” on page 1274.

Interaction: This option has no effect unless COLORBANDS= is also specified.

DISCRETEORDER=DATA | FORMATTED | UNFORMATTED
specifies the order in which discrete tick values are placed on the axis. This option affects any plot with a discrete axis. Specify one of the following values:

DATA
places the values in the order in which they appear in the data.

Note: This value is not supported with SAS Cloud Analytic Services (CAS) data.

FORMATTED
sorts the formatted values in ascending character order.

UNFORMATTED
sorts the unformatted values in ascending character order.

Default: UNFORMATTED

DISPLAY=ALL | NONE | (options)
specifies which features of the axis are displayed. ALL displays all of the features of the axis. NONE specifies that none of the features of the axis are displayed. You can also hide specific features. options can be one or more of the following:
NOLABEL
 hides the axis label

NOLINE
 hides the axis line

 Tips This value hides the axis line, but has no effect on the graph border. To hide the border, specify NOBORDER in the PROC SGPlot statement.

 This value has no effect on baselines. For plots that support a baseline, such as bar charts and needle plots, you might need to suppress the baseline. In the plot statement, use the BASELINEATTRS= option to set the line thickness to 0.

NOTICKS
 hides the tick marks on the axis

NOVALUES
 hides the tick mark values on the axis

Default ALL

Example DISPLAY=(NOTICKS NOVALUES)

FITPOLICY=NONE | SPLIT | SPLITALWAYS | THIN
 specifies the method that is used to fit tick mark values on a vertical axis when there is not enough room to draw them normally. Select one of the following values:

NONE
 does not split the values.

SPLIT
 splits the values at the character or characters specified in the SPLITCHAR= option.

 No split occurs at split characters that occur where a split is not needed. In that case, the split character is displayed with the text value. If the value does not contain any of the specified split characters, a split does not occur.

 Default The default split character is a space.

 Restriction This option has no effect unless the axis is discrete.

 Tip You can specify the split character using the SPLITCHAR= option.

SPLITALWAYS
 always splits the values at the character or characters specified in the SPLITCHAR= option. If the value does not contain any of the specified split characters, a split does not occur.

 Default The default split character is a space.

 Restriction This option has no effect unless the axis is discrete.

 Tip You can specify the split character using the SPLITCHAR= option.

THIN
 removes some of the values from the axis.

Default THIN
GRID

creates grid lines at each tick on the axis.

Interaction Grid lines are not displayed when you specify the COLORBANDS= option. The color bands take the place of grid lines.

Tip You can specify the MINORGRID option to create grid lines at each minor tick on the axis.

GRIDATTRS=style-element <(options)> | (options)

specifies the appearance of the grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphGridLines style element in the current style for ungrouped data. GraphData1 … GraphDataN style elements in the current style for grouped data.

Interaction This option has no effect unless GRID is also specified.

Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

INTEGER

specifies that only integers are used for tick mark values. This option affects only linear axes.

INTERVAL=time-interval

specifies the tick interval for a time axis. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

Specify one of the following values:

Table 5.44 Time Intervals

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>Unit</th>
<th>Tick interval</th>
<th>Default tick value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>DATE, TIME, or DATETIME</td>
<td>automatically chosen</td>
<td>automatically chosen</td>
</tr>
<tr>
<td>SECOND</td>
<td>TIME or DATETIME</td>
<td>second</td>
<td>TIME8.</td>
</tr>
<tr>
<td>MINUTE</td>
<td>TIME or DATETIME</td>
<td>minute</td>
<td>TIME8.</td>
</tr>
<tr>
<td>HOUR</td>
<td>TIME or DATETIME</td>
<td>hour</td>
<td>TIME8.</td>
</tr>
<tr>
<td>INTERVAL</td>
<td>Unit</td>
<td>Tick interval</td>
<td>Default tick value format</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>DAY</td>
<td>DATE or DATETIME</td>
<td>day</td>
<td>DATE9.</td>
</tr>
<tr>
<td>TENDAY</td>
<td>DATE or DATETIME</td>
<td>10 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>WEEK</td>
<td>DATE or DATETIME</td>
<td>7 days</td>
<td>DATE9.</td>
</tr>
<tr>
<td>SEMIMONTH</td>
<td>DATE or DATETIME</td>
<td>1st and 16th of each month</td>
<td>DATE9.</td>
</tr>
<tr>
<td>MONTH</td>
<td>DATE or DATETIME</td>
<td>month</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>QUARTER</td>
<td>DATE or DATETIME</td>
<td>3 months</td>
<td>YYQC6.</td>
</tr>
<tr>
<td>SEMIYEAR</td>
<td>DATE or DATETIME</td>
<td>6 months</td>
<td>MONYY7.</td>
</tr>
<tr>
<td>YEAR</td>
<td>DATE or DATETIME</td>
<td>year</td>
<td>YEAR4.</td>
</tr>
</tbody>
</table>

Default
AUTO

LABEL="text-string"

specifies a label for the axis.

LABELATTRS=style-element <(options)> | (options)

specifies the appearance of the axis labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphLabelText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphLabelText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData style elements.

Examples

LABELATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
LABELATTRS=GraphTitleText

LABELPOS=BOTTOM | CENTER | DATACENTER | TOP

specifies the position of the axis label.
The following figure shows the CENTER and DATACENTER positions for the red Y axis label “Age Group.” An axis offset is applied to the maximum end of the axis in order to demonstrate the difference between CENTER and DATACENTER. (For HBAR plot statements, the Y axis is reversed by default. The offset is created at the bottom end of the Y axis.)

In the example, CENTER centers the labels on the entire axis area, including the offset. DATACENTER centers the labels on the tick display areas, which does not include the offset.

The next figure shows the TOP and BOTTOM positions for the same axis labels.
Default CENTER

LOGBASE=2 | 10 | e
specifies the base value for the logarithmic scale.
Default 10

Interaction This option has no effect unless you also specify TYPE=LOG.

LOGSTYLE=LINEAR | LOGEXPAND | LOGEXPONENT
specifies how to scale and format the values for the major tick marks for logarithmic axes. Specify one of the following values:

LOGEXPAND
places the tick marks at integer powers of the base. For example, if you specified LOGBASE=2, the tick marks might be at 1, 2, 4, 8, 16. See Figure 5.17 on page 1163.

Figure 5.17 Graph Axes with LOGEXPAND

LOGEXPONENT
places the tick marks at integer powers of the base, but identifies the values by the exponent. For example, if you specified LOGBASE=10, the tick marks might be at 1, 10, 100, 1000, but the tick values would read 0, 1, 2, 3. See Figure 5.18 on page 1163.

Figure 5.18 An Axis with LOGEXPONENT

LINEAR
places the tick marks at uniform linear intervals, but spaces them logarithmically. In some cases an intermediate tick mark is placed between the first and second marks.
For example, if the data on this axis range from 14 to 1154, and you specify `LOGBASE=10`, then the tick marks might be at 10, 40, 200, 400, 600, 800, 1000, 1200. See Figure 5.19 on page 1164.

Figure 5.19 An Axis with LINEAR

Default: LOGEXPAND
Interaction: This option has no effect unless you also specify TYPE=LOG.

LOGVTYPE=EXPANDED | EXPONENT
specifies the scale that is used when interpreting the values in the VALUES option and the MIN and MAX options. This option enables you to choose your preferred way of specifying log-axis values regardless of the LOGSTYLE= option value.

Specify one of the following values:

- **EXPANDED**
 - the values are interpreted as integer powers of the base (decimal numbers).

- **EXPONENT**
 - the values are interpreted as integer exponents of the base.

Default: EXPANDED
Interaction: This option has no effect unless you also specify TYPE=LOG. You must also specify values for the VALUES= option or the MIN= and MAX= options or all of them.

Tip: This option is particularly useful when the log axis is an odd base (such as base E) or the axis log style is EXPONENT.

Examples:
The following example specifies MIN= and MAX= as exponent values instead of expanded values on an expanded Base 10 log axis. This results in Y-axis tick values of 10, 100, 1000, 10000, and 100000.

```plaintext
yaxis type=log logbase=10 logstyle=logexpand
  logvtype=exponent
  min=1 max=5;
```

The following example specifies VALUES= as a list of expanded values instead of exponent values on an exponent Base 10 log axis. This results in X-axis tick values of 1, 2, 3, 4, and 5.

```plaintext
xaxis type=log logbase=10 logstyle=logexponent
  logvtype=expanded
  values=(10 100 1000 10000 100000);
```

MAX=numeric-value
specifies the maximum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction: This option affects linear, log, and time axes only.

Interactions: This option has no effect if you specify the VALUES=option and you do not also specify the VALUESHINT option.
This option does not determine the maximum axis tick value displayed. The THRESHOLDMAX= value is used to determine the maximum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the maximum value is expanded or interpreted as an exponent.

Tip
The maximum axis tick value might differ from the MAX= value. The MAX= and MIN= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MAX= value as the maximum tick value, use the VALUES= option.

MIN=numeric-value
specifies the minimum data value to include in the display (the value might be adjusted by the threshold calculation).

Restriction
This option affects linear, log, and time axes only.

Interactions
This option has no effect if you specify the VALUES= option and you do not also specify the VALUESHINT option.

This option does not determine the minimum axis tick value displayed. The THRESHOLDMIN= value is used to determine the minimum tick value.

For logarithmic axes, use the LOGVTYPE option to control whether the minimum value is expanded or interpreted as an exponent.

Tip
The minimum axis tick value might differ from the MIN= value. The MIN= and MAX= values, and additional factors such as thresholds and the tick values computed by the plot statement, are used to determine the axis tick values. To display the MIN= value as the minimum tick value, use the VALUES= option.

MINOR
adds minor tick marks to a linear, log, or time axis.

Restriction
This option has no effect on discrete axes.

Interaction
This option has no effect if you specify the VALUES= option.

Tip
Use MINORCOUNT= to specify the number of tick marks.

MINORCOUNT=numeric-value
specifies the number of minor tick marks for the axis. This value determines the number of minor tick marks for each interval on the axis.

Restriction
This option applies to linear and log axes only.

Note
This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

MINORGRID
creates grid lines at each minor tick on the axis.

Interaction
This option has no effect unless GRID is also specified for the axis.
MINORGRIDATTRS=\texttt{style-element (options)} \mid (options)

specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default \begin{tabular}{l}
GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\textsubscript{n} style elements in the current style for grouped data.
\end{tabular}

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

MINORINTERVAL=\texttt{time-interval}

specifies the time interval between minor ticks. The interval that you select must be consistent with the axis data duration units such as TIME, DATE, or DATETIME. For example, if the axis data is in TIME units, you must select AUTO, SECOND, MINUTE, or HOUR.

For information about the intervals that you can select, see Table 5.44 on page 1160.

Default AUTO

Restriction This option applies to time axes only.

Note This option does not automatically add minor tick marks to the axis. Use the MINOR option to add tick marks.

NOTIMESPLIT

prevents a time axis from splitting the time, date, or datetime values into two rows.

Restriction This option applies to time axes only.

OFFSETMAX=\texttt{numeric-value}

specifies an offset that follows the highest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset follows the highest data value or highest tick value, whichever is greater. For a discrete axis, the offset is applied to the end of the axis farther from the axis origin.

Default The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.
OFFSETMIN=numeric-value
specifies an offset that precedes the lowest data value on the axis. Specify a value between 0 and 1.

The value represents the offset as a proportion to the total length of the axis. For a continuous axis, the offset precedes the lowest data value or lowest tick value, whichever is less. For a discrete axis, the offset is applied to the end of the axis nearer to the axis origin.

Default
The offset space is determined automatically based on the data values, tick mark values, markers, and labels that are inside of the plot area.

Interaction
For HBOX, HBAR, HLINE, and DOT plot statements, the Y axis is reversed by default, so the axis origin is at the top.

RANGES=(start–end <start2–end2 startN–endN ...>)
specifies the ranges for a broken axis.

start
specifies the start of a range. start can be one of the following:
• a number (linear axis only).
• the keyword MIN specifies the minimum data value.
• a SAS time, date, or date-time constant (time axis only).

dend
specifies the end of a range. end can be one of the following:
• a number (linear axis only).
• the keyword MAX specifies the maximum data value.
• a SAS time, date, or date-time constant (time axis only).

The following figure shows a linear axis, broken into ranges 0–30 and 195–220. Although the figure shows the split range on a vertical axis, the same concept applies to a horizontal axis.

<table>
<thead>
<tr>
<th>RANGES Not Specified</th>
<th>RANGES Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As shown in the figure, break lines are drawn to indicate the break in the axis.
Restrictions

This option is valid for linear and time axes only.

Only one axis can be broken. If this option is specified for both axes, then it is honored for the vertical axis and ignored for the horizontal axis.

If this option is specified for both axes in the same direction (X and X2 or Y and Y2), then only the primary axis is broken.

When plots are associated with both the X and X2 axes or with both the Y and Y2 axes, neither axis can be broken.

Requirements

All of the ranges must be enclosed in parenthesis.

You must specify each range as a starting value, a hyphen, and an ending value. You must separate adjacent ranges with a space.

Interactions

When this option is specified, axis options THRESHOLDMIN=, THRESHOLDMAX=, MIN=, and MAX= are ignored.

When this option is specified, the plot statement TIP= and URL= options are ignored.

When data labels are used in the graph, the data label font size might be reduced in order to avoid overlapping labels and markers. When a range is specified, the data label font size is not scaled during label placement.

Notes

When this option is specified, data-clipping might occur for the following graphics elements: plot markers and marker characters, box plot outlier markers, fixed-position data labels, needle fringe plots, reference lines and drop lines on the broken axis, axis tables, and relative bubble plots.

Curve label positions are based on the non-broken axis data range. When curve labels are specified with a broken axis, the curve label positions might not be ideal.

Tip

To control the axis break symbol, use the AXISBREAK= option in the STYLEATTR statement.

Examples

ranges=(10-500 1000-5000 10000-50000)

ranges=('01Jan2001'd-'01May2003'd '01Jan2005'd-'01Oct2005'd)

REFTICKS <=(options)**>

adds tick marks to the axis that is opposite from the specified axis. You can also specify options:

LABEL

in addition to the tick marks, displays the axis label.

VALUES

in addition to the tick marks, displays the values that are represented by the tick marks.

Note

This option has no effect if the target axis already contains data.
REVERSE
specifies that the tick values are displayed in reverse (descending) order.

SPLITCHAR="character-list"
splits the text for tick mark values at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters, but only if necessary in order to fit the tick marks.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:
SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Restriction This option has no effect unless the axis is discrete.

Interactions This option has no effect unless FITPOLICY= is specified as either SPLIT or SPLITALWAYS.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default LEFT

See “Overview of Collision Avoidance” on page 1265

THRESHOLDMAX=numeric-value
Specifies a threshold for displaying one more tick mark at the high end of the axis.
THRESHOLDMIN=numeric-value
Specifies a threshold for displaying one more tick mark at the low end of the axis.

Default 0.30
Range 0 to 1
Restriction This option applies to linear axes only.
Tips If the threshold is set to 0, the potential tick mark is never displayed. If the threshold is set to 1, then the tick mark is always displayed.
Specifying THRESHOLDMIN=0 and THRESHOLDMAX=0 prevents the tick marks from extending beyond the data range.
Specifying THRESHOLDMIN=1 and THRESHOLDMAX=1 ensures that the data range is bounded by tick marks.
For the minimum axis length, set the THRESHOLDMIN= option and the THRESHOLDMAX= option to 0.

TICKSTYLE=OUTSIDE | INSIDE | ACROSS | INBETWEEN
specifies the placement of tick marks in relation to the axis line. The figure shows the tick display for each value.

Note: Although the figure shows tick displays for the primary axes, the same placement in relation to the axis applies when secondary axes are used.
OUTSIDE
displays tick marks outside of the axis frame.

INSIDE
displays tick marks inside the axis frame.

ACROSS
displays tick marks across the axis line.

INBETWEEN
displays tick marks between the discrete data values and outside of the axis frame.

Interaction This value is available only with discrete axes. The option is ignored if specified with other axis types.

Default OUTSIDE

Interaction This option has effect only if the DISPLAY= option setting includes tick marks, which it does by default.

Supports Major and minor tick marks

Note This option has no effect on the placement of the tick values, which are always outside the axis frame.

TYPE=DISCRETE | LINEAR | LOG | TIME
specifies the type of axis. Specify one of the following values:

DISCRETE
specifies an axis with discrete values. If a character variable is assigned to an axis, then the default type for that axis is discrete. In addition, all categorization plots use a discrete axis for the category variable.

Note: Bar charts support a linear category axis.

LINEAR
specifies a linear scale for the axis. This is the default axis type for numeric variables, except when the data is discrete, or when the numeric variable has a date or time format.

LOG
specifies a logarithmic scale for the axis. This axis type is never a default.

Restriction A logarithmic scale cannot be used with linear regression plots (REG statement where DEGREE=1).

Interactions Use the LOGSTYLE= option to specify the scale and format for the tick values.

Use the LOGBASE= option to specify the base value.

Use the LOGVTYPE= option to specify how the values that are provided in the VALUES= option and the MIN= and MAX= options are interpreted.

TIME
specifies a time scale for the axis. If the variable assigned to an axis has a time, date, or datetime format associated with it, then time is the default axis type.
VALUEATTRS=style-element <(options)> | (options)

specifies the appearance of the axis tick value labels. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

GraphValueText style element in the current style. The affected attributes are FontFamily, FontSize, FontStyle, and FontWeight.

Color attribute of the GraphValueText style element in the current style (ungrouped data). For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphData \(n \) style elements.

Examples

VALUEATTRS=\{Color=Green Family=Arial Size=8 Style=Italic Weight=Bold\}

Here is an example that specifies a style element:

VALUEATTRS=GraphTitleText

VALUES=(values-list) | (“string-list”)

specifies the values for the ticks on an axis. The syntax for this option varies depending on the type of axis.

- VALUES=(values-list) specifies tick values for linear, time, and logarithmic axes.
- VALUES=(“string-list”) specifies tick values for discrete axes. The values can be character or numeric.

VALUES=(values-list)

specifies a list or sequence of tick values for linear or time axes. Using this option to restrict the values displayed on the axis can result in clipping. For example, if the data range is 1 to 10 and you specify VALUES=(3 TO 5), only the data values from 3 to 5 appear on the plot or chart. For charts, the omitted values are still included in the statistic calculation.

For values on a linear axis, the values list can be one of the following:

- value <...value-n>
 creates ticks for specific values. For example, VALUES=(0 50 100) places tick marks at 0, 50, and 100.

- value-1 TO value-2 BY increment-value
 creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks. For example, VALUES=(0 to 100 by 50) creates tick marks at 0, 50, and 100.

 Note: If you omit the increment-value, the procedure generates the first tick value, but does not increment beyond that value. The result can be unpredictable output.

- <value ... value-n> value-1 TO value-2 BY increment-value <value ... value-n>
 creates ticks for specific values, and also creates ticks for a range of values. The start of the value range is specified by value-1 and the end of the range is specified by value-2. The increment-value specifies the interval between the ticks.
For example, `VALUES= (-5 10 to 50 by 20 75)` creates tick marks at -5, 10, 30, 50, and 75.

Values must be listed in either ascending or descending order. By default, the increment value is 1. You can use a negative integer for increment to specify a value list in descending order. In all forms, multiple `n` values can be separated by blanks or commas. Here are some examples:

- `values=(2 4 6)`
- `values=(6,4,2)`
- `values=(2 to 10 by 2)`
- `values=(50 to 10 by -5)`

If the specified range is not evenly divisible by the increment value, the highest value displayed on the axis is the last incremental value below the ending value for the range. For example, this value list produces a maximum axis value of 9:

`values=(0 to 10 by 3)`

For values on a time axis, the values list can be one of the following:

`value <...value-n>`

creates ticks for specific values. For example, `VALUES= ("25MAY08"d "04JUL08"d "23AUG08"d)` places tick marks at 25MAY08, 04JUL08, and 23AUG08.

`value-1 TO value-2 BY increment-value`

creates ticks for a range of values. The start of the value range is specified by `value-1` and the end of the range is specified by `value-2`. The `increment-value` specifies the interval between the ticks. For example, `VALUES= ("01JAN08"d to "01MAY08"d by month)` creates tick marks at 01JAN08, 01FEB08, 01MAR08, 01APR08, and 01MAY08.

For a list of the interval values that you can specify, see the `INTERVAL=` option.

Restrictions This option has no effect on discrete axes.

If your `VALUES=` option creates more than 1000 values, then the option has no effect.

Interactions For logarithmic axes, use the `LOGVTYPE` option to control whether the values in the `VALUES` option are treated as expanded values or as exponents. A typical case for using exponents is when plotting your data using log base e.

If a custom format is applied to the value, the raw value is plotted first and then formatted.

Tip Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.

`VALUES=("string-list")`

For values on a discrete axis, provide a space-separated list of string values enclosed in parentheses. Each value in the list must be enclosed in quotation marks. Numeric values must also be enclosed in quotation marks.

If a numeric variable has an associated format, the specified values must use the same format.
Only the tick values that are included in the string list are displayed on the axis. The values are displayed in the order in which they are listed. The data values that are not in the list are dropped. The list can be a subset of the data values. It can also contain values that are not included in the actual data. A tick value that is not included in the data appears on the axis, but no data is represented at its tick mark.

The following example specifies the values for an X axis. Similar values can be provided for the Y axis.

Table 5.45 Axis with Specified Character Values

```plaintext
proc sgplot data=sashelp.cars;
xaxis values=("GMC" "Honda" "Hyundai") offsetmin=0.2 offsetmax=0.2;
scatter x=make y=mpg_city;
run;
```

Restrictions
This option has no effect on linear, time, or logarithmic axes.

Each value must be enclosed in quotation marks and separated from adjacent values by a blank space.

Notes
If the string list contains duplicate values, the first occurrence of the duplicated value in the list is honored while the remaining instances are ignored.

The axis data can be character or numeric.

Tip
Use the `VALUESDISPLAY=` option to specify string replacement text for the specified values.

Examples
The following example specifies the axis tick values Sedan, Sports, Wagon, and SUV:

```plaintext
values=("Sedan" "Sports" "Wagon" "SUV")
```

The following example specifies the axis tick values 10, 20, 30, and 40:

```plaintext
values=("10" "20" "30" "40")
```

The following example specifies numeric values of 14 and 15, and then displays them as fourteen and fifteen:

```plaintext
values=("14" "15") valuesdisplay=("fourteen" "fifteen")
```

T I P
Along the axis, numeric tick values are arranged in ascending order while character values are arranged in the order in which they are used in the graph. In some cases, the resulting tick-value order might not be desirable, especially if the graph consists of multiple plots or if the data contains missing values. This option is useful in that case. You can use this option to set the order of the axis tick values.
VALUESDISPLAY=
specifies the text that is to be displayed for the tick values that are defined in the
VALUES= option. The list of values must be enclosed in parentheses. Each value
must be enclosed in quotation marks and separated from adjacent values by a blank
space. Numeric values must also be enclosed in quotation marks.

Restriction This option applies only to discrete axes. Linear, date, and time axes
are not supported.

Interaction This option should be used with the VALUES= option. The number of
items in the list for this option should equal the number of items in the
list for the VALUES= option.

Example The following example specifies numeric values of 14 and 15, and then
displays them as fourteen and fifteen:
values=("14" "15") valuesdisplay=("fourteen" "fifteen")

VALUESFORMAT=DATA | SAS-format
specifies how to format the values for major tick marks.

Note: This option supports discrete and logarithmic axes.

DATA uses the format that has been assigned to the column that is contributing to the
axis (or BEST6 if no format is assigned) in order to control the formatting of the
major tick values.

SAS-format specifies a format to apply to the major tick values.

Restriction This option currently honors most, but not every, SAS format.

Note If you specify a format that significantly reduces precision, then,
because of tick-value rounding, the plot data elements might not
align properly with the axis tick values. In that case, specify a tick-
value format with a higher precision.

Restriction For discrete axes, only character formats are supported.

Interaction This option is ignored when LOGSTYLE=LOGEXPONENT.

When LOGSTYLE = LOGEXPAND, this option is honored for the
base 10 and base 2 logarithmic scales, and is ignored for the base E
scale.

When LOGSTYLE = LINEAR, this option is honored for the base 10,
base 2, and base E logarithmic scales.

VALUESHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment for all of the tick values that are displayed on the
axis.

Default LEFT

Interaction This option is ignored when FITPOLICY= is specified as either SPLIT
or SPLITALWAYS. To align split tick mark values, use the
SPLITJUSTIFY= option.
VALUESHINT
specifies that the minimum and maximum axis values are determined independently
of the values that you specify in the VALUES= option. The values from the
VALUES= option are displayed only if they are located between the minimum and
maximum values.

Interaction This option has no effect unless you also specify the VALUES= option.

YAXISTABLE Statement
Creates an event plot of input data along the axis, placing data values at specific locations inside or outside
of the axis. The SGPLOT procedure can contain multiple YAXISTABLE statements.

Interactions: When used with bar charts, line charts, and dot plots, all axis tables must align with
the category axis of the chart. If a statement uses the wrong orientation, the
statement is rejected with a message in the SAS log. For example, if your procedure
has a VBAR statement along with a YAXISTABLE statement, the YAXISTABLE
statement is rejected with a message.
Axis tables are separate plots and are unaware of the options specified in the
accompanying plots.
Axis tables cannot be used with the following plot types: BAND, BLOCK, FRINGE,
REG, LOESS, and PBSPLINE. In these cases, the axis table is not created and an
error is written to the log.

Syntax
YAXISTABLE variable <…variable-n> <option(s)>;

Summary of Optional Arguments

Appearance options

ATTRID=character-value
specifies the value of the ID variable in a discrete attribute map data set.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values.

DROPONMISSING
specifies that the entire axis table is dropped when all of the values are
missing.

INDENT=dimension <unit>
specifies a value to be used with the INDENTWEIGHT= option to determine
the indentation for each text value.

INDENTWEIGHT=numeric-variable
specifies the indention weight (multiplier) for each observation.

LOCATION=OUTSIDE | INSIDE
specifies whether the axis table is placed outside or inside the axis area.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric
values.

PAD=dimension | (pad-options)
specifies the amount of extra space that is added inside the table border.
POSITION=LEFT | RIGHT
 specifies the position of the axis table at the left or right side of the graph.

SEPARATOR
 creates a separating line between the axis table or axis tables and the plot.

TEXTGROUP=attribute-map-group-variable
 specifies the group variable that is used in a discrete attribute map data set to
 map text attributes to values for each observation.

TEXTGROUPID=attribute-map-id
 specifies an attribute ID for the TEXTGROUP= option.

VALUEATTRS=style-element <(options)> | (options)
 specifies the appearance of the axis table values.

VALUEHALIGN=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the axis table values relative to the
 column width in the table.

VALUEJUSTIFY=LEFT | CENTER | RIGHT
 specifies the justification of the axis table values relative to the column width
 in the table.

Axis options

Y2AXIS
 assigns the table to the secondary vertical axis.

Class options

CLASS=variable
 creates a separate axis table for each unique value of the specified variable.

CLASSDISPLAY=STACK | CLUSTER
 specifies how the class values are displayed.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
 specifies the order in which the class values are displayed.

NOMISSINGCLASS
 specifies that missing values of the class variable are not included in the
 table.

Label options

LABEL | NOLABEL | LABEL="text-string"
 specifies whether the table label is shown or hidden.

LABELATTRS=style-element <(options)> | (options)
 specifies the color and font attributes of the axis table label.

LABELHALIGN=LEFT | CENTER | RIGHT
 specifies the horizontal alignment of the column labels, when displayed.

LABELJUSTIFY=LEFT | CENTER | RIGHT
 specifies the justification of the labels.

LABELPOS=BOTTOM | TOP
 specifies the position of the labels at the bottom or top of the axis table.

STATLABEL | NOSTATLABEL
 specifies whether the variable statistic is displayed in the table’s label.

Plot options

STAT=FREQ | MEAN | MEDIAN | PERCENT | SUM
 specifies the statistic for the axis table.

Y=variable
Specifies the variable to use to align the table values to the Y or Y2 axis.

Plot reference options

- `NAME="text-string"`
 assigns a name to a plot statement.

Title options

- `TITLE="text-string"`
 specifies a title for the axis table.
- `TITLEATTRS=style-element (options)`
 specifies the appearance of the title for the axis table.
- `TITLEHALIGN=LEFT | CENTER | RIGHT`
 specifies the horizontal alignment of the column title, when displayed.
- `TITLEJUSTIFY=LEFT | CENTER | RIGHT`
 specifies the justification of the column title, when displayed.

Required Argument

`variable <…variable-n>`

specifies one or more variables for the axis table.

When multiple variables are specified, the axis tables are placed in columns. Any options that you add to the statement apply to all the variables that are specified in that statement.

Note

When the variable specified is a character variable, the first value of each category is displayed in the axis table. When the variable is numeric, the axis table displays the sum statistic. You can modify the statistic using the `STAT=` option.

Optional Arguments

- `ATTRID=character-value`
 specifies the value of the ID variable in a discrete attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.

 See Chapter 12, “Using Discrete Attribute Maps,” on page 1317

 “Overview of Attribute Maps” on page 1315

- `CLASS=variable`
 creates a separate axis table for each unique value of the specified variable. This option acts as a classification variable for the axis table. Each axis table is labeled by the class value.

 Restriction
 The CLASS option is ignored when the axis table is used with bar, line, or dot charts. If the GROUP= option is specified in the chart, that group variable is used as the CLASS variable for all axis tables.

 Interaction
 If NOLABEL is also specified, then the class labels are removed.

 Tips
 Use the CLASSDISPLAY= option to control whether the class values are clustered or stacked.
Use the CLASSORDER= option to control the order in which the class values are displayed.

CLASSDISPLAY=STACK | CLUSTER
specifies how the class values are displayed.

STACK
displays the class values horizontally at each midpoint value on the Y axis.

CLUSTER
displays the class values vertically at each midpoint value on the Y axis.

Default: STACK

Interaction: For this option to have any effect, the CLASS= option must be specified.

CLASSORDER=DATA | REVERSEDATA | ASCENDING | DESCENDING
specifies the order in which the class values are displayed.

DATA
displays the class values in the order in which they occur in the data.

REVERSEDATA
displays the class values in the reverse order from which they occur in the data.

Tip: This option is useful when the plot axis is reversed.

ASCENDING
displays the class values in ascending order.

DESCENDING
displays the class values in descending order.

Default: DATA

Restriction: This option is ignored when the axis table is used with DOT, HBAR, VBAR, HLINE, and VLINE statements. If the GROUPORDER= option is specified in the chart, then that group order variable is used as the class order variable for all axis tables.

Interaction: For this option to have any effect, the CLASS= option must be specified.

COLORGROUP=variable
specifies a variable that is used to determine the color of the table values. Once the variable values are found, the value colors are taken from the GraphData1 ... GraphData$n style elements in the current style. The CONTRASTCOLOR attribute is used for the value text.

Interaction: When used with DOT, HBAR, VBAR, HLINE, and VLINE statements, this option has no effect unless the accompanying chart specifies the same GROUP variable.

Note: This option is used only to color the table values. If you want to set additional text attributes, use the TEXTGROUP= option instead.
DROPONMISSING

specifies that the entire axis table is dropped when all of the values are missing. Consider using this option if the SAS log indicates that the specified data column used for the axis table is missing all values.

INDENT=dimension <unit>

specifies a value to be used with the INDENTWEIGHT= option to determine the indentation for each text value. The default units for *dimension* are inches. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Default

1/8 inch

Restriction

Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, VBARPARM, VBARFAR, SERIES, or SCATTER.

Interaction

The INDENTWEIGHT= option must be specified for this option to have any effect.

INDENTWEIGHT=numeric-variable

specifies the indentation weight (multiplier) for each observation.

Restriction

Axis table indention is not supported when DOT, HBAR, VBAR, HLINE, or VLINE statements are used. As an alternative, you can use one of the following: HBARBASIC, VBARBASIC, VBARPARM, VBARFAR, SERIES, or SCATTER.

Interaction

For each observation, the INDENT= option value is multiplied by the value of the column specified by this option to determine the indention for that observation’s value.

LABEL | NOLABEL | LABEL="text-string"

specifies whether the table label is shown or hidden. If you specify LABEL=, then you can also specify a text string for the label.

Defaults

LABEL

If you do not specify a text string, then the variable name is used for the label. Or, if CLASS= is also specified, then the unique values of the specified class variable are used for the table labels.

Tip

Use the LABELATTRS= option to modify the label text attributes. Use the LABELPOS= option to move the label.

**LABELATTRS=style-element <(options)>

specifies the color and font attributes of the axis table label. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults

For non-grouped data, the GraphValueText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.
For grouped data, the label color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Restriction
Group behavior occurs only when the CLASS= and COLORGROUP= option values are the same.

Interactions
This option has no effect if NOLABEL is also specified.

If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphValueText style element.

LABELHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column labels, when displayed.

Default
Uses the effective value of the LABELJUSTIFY= option.

Interaction
This option has no effect if NOLABEL is also specified.

LABELJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the labels.

Default
Uses LEFT for text values or RIGHT for numeric values.

Interaction
This option has no effect if NOLABEL is also specified.

LABELPOS=BOTTOM | TOP
specifies the position of the labels at the bottom or top of the axis table.

Default
TOP

LOCATION=OUTSIDE | INSIDE
specifies whether the axis table is placed outside or inside the axis area.

Default
OUTSIDE

NAME="text-string"
assigns a name to a plot statement. You can use the name to refer to this plot in other statements.

Note
The text-string is case-sensitive, cannot contain spaces, and must define a unique name within the procedure.

Tip
This option is often used with legend statements in order to coordinate the use of colors and line patterns between the graph and the legend.

NOMISSINGCHAR
suppresses the display of the MISSING character (.) for missing numeric values. Missing numeric values are displayed as blanks.

NOMISSINGCLASS
specifies that missing values of the class variable are not included in the table.

Interaction
For this option to have any effect, the CLASS= option must be specified.
PAD=\textit{dimension} \mid \textit{(pad-options)}
specifies the amount of extra space that is added inside the table border.

\textit{dimension}
specifies a dimension to use for the extra space at the table border.

\textit{(pad-options)}
a space-separated list of one or more of the following name-value-pair options, enclosed in parentheses:

\texttt{LEFT=\textit{dimension}}
specifies the amount of extra space added to the left side.

\hspace{1cm}\text{Default} \quad 4 \text{ px}

\texttt{RIGHT=\textit{dimension}}
specifies the amount of extra space added to the right side.

\hspace{1cm}\text{Default} \quad 4 \text{ px}

\underline{Note} \quad Sides that are not assigned padding are padded with the default amount of space.

\underline{Tip} \quad Use \textit{pad-options} to create non-uniform padding.

\underline{Note} \quad The default units for \textit{dimension} are pixels. If you want to specify values in other units, then you must specify the desired units with the value. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

\texttt{POSITION=LEFT} \mid \texttt{RIGHT}
specifies the position of the axis table at the left or right side of the graph.

\underline{Defaults} \quad \texttt{RIGHT} when the primary vertical axis is used for the plot.

\hspace{1cm}\texttt{LEFT} when the secondary (Y2AXIS) vertical axis is specified for the plot.

\texttt{SEPARATOR}
creates a separating line between the axis table or axis tables and the plot.

\underline{Interaction} \quad This option has no effect unless \texttt{LOCATION=INSIDE} is also specified.

\texttt{STAT=FREQ} \mid \texttt{MEAN} \mid \texttt{MEDIAN} \mid \texttt{PERCENT} \mid \texttt{SUM}
specifies the statistic for the axis table. The statistic is applied only to numeric variables. For non-categorical plots, only the \texttt{SUM} and \texttt{MEAN} statistics are available.

Specify one of the following:

\texttt{FREQ}
the frequency of the axis table variable.

\underline{Interaction} \quad For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

\texttt{MEAN}
the mean of the axis table variable.
MEDIAN
the median of the axis table variable.

Interaction
For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

PERCENT
the percentage of the sum of the axis table variable.

When calculating the percentage of the sum, it is possible to have negative percentage values. However, the procedure calculates the absolute value of these percentages. Therefore, the percentages add up to 100% at the requested level.

Alias PCT

Interactions
For this value to take effect, the graph must use a categorical plot (bar chart, line chart, or dot plot).

The PERCENT calculation can be performed at different levels in the graph. The level can be specified with the PCTLEVEL= option in the PROC SGPLOT statement.

You can use the PCTNDEC= option in the SGPLOT procedure statement to control the number of decimals to be used when calculating the percent values. The default value is 1.

Note
If all of the frequencies or sums for a specified level are zero, all of the percentages for that level will be zero.

SUM
the sum of the axis table variable.

Default SUM

Restrictions Only SUM and MEAN are supported for non-categorical plots.

The STAT= option is applied only to numeric variables.

Interaction Any STAT= value specified in the chart has no effect on the axis table statistic.

STATLABEL | NOSTATLABEL
specifies whether the variable statistic is displayed in the table’s label.

STATLABEL
forces the statistic to be displayed in the label.

NOSTATLABEL
removes the statistic from the label.

Defaults The statistic is displayed for the variable.

When a custom label is assigned to the variable, the statistic is not displayed.

Interaction This option has no effect unless the STAT= option is also specified in the axis table statement.
TEXTGROUP=attribute-map-group-variable
specifies the group variable that is used in a discrete attribute map data set to map
text attributes to values for each observation. You specify this option only if you are
using an attribute map to control visual attributes of the graph. The variable’s values
must correspond to the values in the VALUE variable in the attribute map data set.
For more information, see Chapter 12, “Using Discrete Attribute Maps,” on page
1317.

Interactions
The TEXTGROUPID= option specifies the attribute ID to use for the
attribute mapping. If TEXTGROUPID= is not specified, then the
ATTRID= option is used. If the ATTRID= option is also not specified,
then the TEXTGROUP= option is ignored.

When this option is specified, the COLORGROUP= option is ignored.

See
“Example: Use a Discrete Attribute Map with an Axis Table” on page
1329

TEXTGROUPID=attribute-map-id
specifies an attribute ID for the TEXTGROUP= option.

Default
If neither TEXTGROUPID= nor ATTRID= is specified, the
TEXTGROUP= option is ignored.

See
“Example: Use a Discrete Attribute Map with an Axis Table” on page
1329

TITLE="text-string"
specifies a title for the axis table. If the axis table statement specifies more than one
variable, the title is displayed for each variable.

Tip
Use the TITLEATTRS= option to modify the title text attributes.

TITLEATTRS=style-element <(options)> | (options)
specifies the appearance of the title for the axis table. You can specify the appearance
by using a style element or by specifying text options. If you specify a style element,
you can also specify text options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults
GraphDataText style element in the current style. The affected
attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived
from the ContrastColor attribute of the GraphData1...GraphDataN style
elements.

Interactions
This option has no effect unless TITLE= is also specified.

If one or more text options are specified and they do not include all the
font properties such as color, family, size, weight, and style, then the
properties that are not specified are derived from the GraphDataText
style element.

Examples
TITLEATTRS=(Color=Green Family=Arial Size=8
Style=Italic Weight=Bold)

Here is an example that specifies a style element:
TITLEATTRS=GraphTitleText

TITLEALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEALIGN= option specifies the alignment and also helps avoid clipping.

Default LEFT
Interaction This option takes effect only when TITLE= is also specified.
Tip Use the TITLEJUSTIFY= option to specify justification for the title.

TITLEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the column title, when displayed. By default, the title can be clipped if the width of the title exceeds the width of the axis table. The TITLEJUSTIFY= option specifies the justification and also helps avoid clipping.

Default LEFT
Interaction This option takes effect only when TITLE= is also specified.
Tip Use the TITLEHALIGN= option to specify title alignment.

VALUEATTRS=style-element <(options)> | (options)
specifies the appearance of the axis table values. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the text options, see “Text Attributes” on page 1276.

Defaults GraphDataText style element in the current style. The affected attributes are Color, FontFamily, FontSize, FontStyle, and FontWeight.

For grouped data, the color changes to match the group color derived from the ContrastColor attribute of the GraphData1...GraphDataN style elements.

Interaction If one or more text options are specified and they do not include all the font properties such as color, family, size, weight, and style, then the properties that are not specified are derived from the GraphDataText style element.

Examples VALUEATTRS={(Color=Green Family=Arial Size=8 Style=Italic Weight=Bold)}

Here is an example that specifies a style element:
VALUEATTRS=GraphTitleText

VALUEHALIGN=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the axis table values relative to the column width in the table. This option aligns the text within the column based on the longest string.

Default Uses the effective value of the VALUEJUSTIFY= option.
VALUEJUSTIFY=LEFT | CENTER | RIGHT
specifies the justification of the axis table values relative to the column width in the table. This option horizontally aligns the table values center, left, or right relative to the column width.

Default LEFT for text values or RIGHT for numeric values.

Y=variable
Specifies the variable to use to align the table values to the Y or Y2 axis.

Default Y variable of the primary plot

Interaction This option is ignored when the axis table is used with a categorical chart (bar, line, or dot). The category variable from the chart is used instead.

Y2AXIS
assigns the table to the secondary vertical axis.

Example: YAXISTABLE Statements
This example shows a table of values along the Y axis of a scatter plot that plots student weight.

Here are the noteworthy features:
• The first axis table statement displays the age (in red) of each student. The LOCATION=INSIDE option locates the axis table within the plot axes.
• The second axis table statement specifies two variables, height and weight, and is located to the right of the Y axis.

Here is the SAS code for this example.

```sas
ods graphics / reset=all;
ods graphics / width=4.5in;
proc sgplot data=sashelp.class (where=(age > 13));
```
scatter y=name x=height;
yaxistable age / location=inside position=right
 valueattrs=(color=red)
 labelattrs=(color=red);
yaxistable weight height / valueattrs=(color=blue)
 labelattrs=(color=blue);
run;

For an example that shows horizontal axis tables, see “Example: XAXISTABLE Statements” on page 1133.

Examples: SG PLOT Procedure

Example 1: Grouping a Scatter Plot

Features: SCATTER statement
Sample library member: SGPLSCT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a simple scatter plot with grouped data.

Output

Program

```sas
proc sgplot data=sashelp.class;
   scatter x=height y=weight / group=sex;
```
Program Description

Create the scatter plot. In the SCATTER statement, the GROUP= option groups the data by the SEX variable.

```sas
proc sgplot data=sashelp.class;
scatter x=height y=weight / group=sex;
run;
```

Example 2: Clustering a Grouped Scatter Plot

Features: SCATTER statement
GROUPDISPLAY option
CLUSTERWIDTH option

Sample library member: SGPLCLU

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a simple scatter plot with grouped data that is clustered.

Output

![Scatter plot with grouped data clustered](image)

Program

```sas
proc sgplot data=sashelp.revhub2;
scatter x=hub y=revenue / group=type groupdisplay=cluster clusterwidth=0.5;
xaxis type=discrete;
```
run;

Program Description

Create the scatter plot. In the SCATTER statement, the GROUP= option groups the data by the TYPE variable. The GROUPDISPLAY option specifies that the grouped markers are clustered. The CLUSTERWIDTH option specifies the width of the group clusters.

```sas
proc sgplot data=sashelp.revhub2;
    scatter x=hub y=revenue /
        group=type groupdisplay=cluster clusterwidth=0.5;
    xaxis type=discrete;
run;
```

Example 3: Plotting Three Series

Features: SERIES statement
Sample library member: SGPLSER

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a series plot with three series on the Y axis.

Output

![Stock Trend](image)

Program

```sas
proc sgplot data=sashelp.stocks
    (where=(date >= "01jan2000"d and stock = "IBM"));
```
title "Stock Trend";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;

Program Description

Specify the data set and the title.

proc sgplot data=sashelp.stocks
(where=(date >= "01jan2000"d and stock = "IBM"));
title "Stock Trend";

Create the series plots.

series x=date y=close;
series x=date y=low;
series x=date y=high;
run;

Cancel the title.

title;

Example 4: Adding Prediction and Confidence Bands to a Regression Plot

Features:
- REG statement

Sample library member:
- SGPLREG

Note:
For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.

This example shows a regression plot with prediction and confidence limits.
Output

```
proc sgplot data=sashelp.class;
  reg x=height y=weight / CLM CLI;
run;
```

Program Description

Create the regression plot. The CLM option adds confidence limits for the mean predicted values. The CLI option adds confidence limits for the individual predicted values.

```
proc sgplot data=sashelp.class;
  reg x=height y=weight / CLM CLI;
run;
```

Example 5: Adding a Prediction Ellipse to a Scatter Plot

Features:
- SCATTER statement
- ELLIPSE statement
- KEYLEGEND statement

Sample library member:
- SGPLELI

Note:
For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a scatter plot with a prediction ellipse.
Program

proc sgplot data=sashelp.iris;
 title "Iris Petal Dimensions";
 scatter x=petallength y=petalwidth;
 ellipse x=petallength y=petalwidth;
 keylegend / location=inside position=bottomright;
run;
title;

Program Description

Set the title and create the scatter plot.

proc sgplot data=sashelp.iris;
 title "Iris Petal Dimensions";
 scatter x=petallength y=petalwidth;

Create the ellipse.

 ellipse x=petallength y=petalwidth;

Position the Legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend at the bottom right.

 keylegend / location=inside position=bottomright;
run;

cancel the title.

title;
Example 6: Creating Lines and Bands from Pre-Computed Data

Features: BAND statement
 KEYLEGEND statement
 SCATTER statement
 SERIES statement

Sample library member: SGPLBND

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows how to use pre-computed data to create a scatter plot, fit line, and confidence bands. The data set was created by the REG procedure. This technique is useful for more complex fit models.

Output

![Graph showing fit and confidence band from precomputed data]

Program

```sas
proc sgplot data=sashelp.classfit;
  title "Fit and Confidence Band from Precomputed Data";
  band x=height lower=lower upper=upper / legendlabel="95% CLI" name="band1";

  band x=height lower=lowermean upper=uppermean / fillattrs=GraphConfidence2
    legendlabel="95% CLM" name="band2";
  scatter x=height y=weight;
  series x=height y=predict / lineattrs=GraphPrediction
    legendlabel="Predicted Fit" name="series";
```
Program Description

Set the title and create the first band plot. The LEGENDLABEL= option in the BAND statement specifies the label for the band plot in the legend.

```sas
proc sgplot data=sashelp.classfit;
   title "Fit and Confidence Band from Precomputed Data";
   band x=height lower=lower upper=upper /
      legendlabel="95% CLI" name="band1";
```

Create the second band plot. The LEGENDLABEL= option specifies the label for the band plot in the legend. The FILLATTRS= option specifies the style element for the fill.

```sas
band x=height lower=lowermean upper=uppermean /
   fillattrs=GraphConfidence2
   legendlabel="95% CLM" name="band2";
scatter x=height y=weight;
series x=height y=predict / lineattrs=GraphPrediction
   legendlabel="Predicted Fit" name="series";
```

Create the scatter and series plots. The LINEATTRS= option in the SERIES statement specifies the style attribute for the series plot. The LEGENDLABEL= option in the SERIES statement specifies the legend label for the series plot.

Create a legend for the graph. The quoted strings specify the names of the plots that you want to include in the legend. The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend in the bottom right corner of the graph.

```sas
keylegend "series" "band1" "band2" / location=inside
   position=bottomright;
run;
```

Cancel the title.

```sas
title;
```

Example 7: Adding Statistical Limits to a Dot Plot

Features: DOT statement

Sample library member: SGPLDOT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.
This example shows a dot plot with a response variable and statistical limits. Each dot represents the mean for each value of the category variable, and bands represent the standard deviation.

Output

```
proc sgplot data=sashelp.class(where=(age<16));
  dot age / response=height stat=mean limitstat=stddev numstd=1;
run;
```

Program Description

Create the dot plot. The RESPONSE= option specifies the response variable. The STAT= option specifies that the mean statistic is used to analyze the graph. The LIMITSTAT= option specifies that the limit statistic is the standard deviation. The NUMSTD= option specifies that one standard deviation is used.

```
proc sgplot data=sashelp.class(where=(age<16));
  dot age / response=height stat=mean limitstat=stddev numstd=1;
run;
```

Example 8: Combining Histograms with Density Plots

Features:
- HISTOGRAM statement
- DENSITY statement
- KEYLEGEND statement

Sample library member:
- SGPLHST
For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.

This example shows a histogram combined with two density plots. One density plot uses a normal density estimate and the other density plot uses a kernel density estimate.

Output

```
proc sgplot data=sashelp.heart;
  title "Cholesterol Distribution";
  histogram cholesterol;
  density cholesterol;
  density cholesterol / type=kernel;
  keylegend / location=inside position=topright;
run;
```

Program Description

Set the title, set a label for the X axis, and create the histogram.

```
proc sgplot data=sashelp.heart;
  title "Cholesterol Distribution";
  histogram cholesterol;
```

Create the density plots. The TYPE= option specifies which density equation is used.

```
density cholesterol;
density cholesterol / type=kernel;
```

Position the Legend The LOCATION= option places the legend inside the plot area. The POSITION= option places the legend at the top right.
Example 9: Creating a Horizontal Box Plot

Features: HBOX statement
Sample library member: SGPLBOX

Note: For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.

This example shows a horizontal box plot.

Output

Program

```sas
proc sgplot data=sashelp.heart;
title "Cholesterol Distribution by Weight Class";
hbox cholesterol / category=weight_status;
run;
title;
```

Program Description

Create the box plot. The CATEGORY= option specifies the category variable.

```sas
proc sgplot data=sashelp.heart;
title "Cholesterol Distribution by Weight Class";
```
Example 10: Creating a Bar-Line Chart

Features:
- VBAR statement
- VLINE statement

Sample library member:
- SGPLBAR

Notes:
- For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.
- You can also combine the HBAR and HLINE statements to create a horizontal bar-line chart.

This example creates a bar-line chart.

Output

Program

```sas
proc sgplot data=sashelp.stocks (where=(date >= "01jan2000"d and date <= "01jan2001"d and stock = "IBM"));
    title "Stock Volume vs. Close";
    vbar date / response=volume;
    vline date / response=close y2axis;
run;
```

Program Description

Create the Bar-line Chart. The Y2AXIS option assigns the line plot to the Y2 axis.

```sas
proc sgplot data=sashelp.stocks (where=(date >= "01jan2000"d
and date <= "01jan2001"d
and stock = "IBM"));
title "Stock Volume vs. Close";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
```

Example 11: Creating a High-Low Chart

Features:
- HIGHLOW statement

Sample library member: SGPLHILO

Note: For information about the SAS Sample Library, see "About the SASHELP and the SAS Sample Library" on page 11.

This example shows the high, low, and closing stock prices for a company during the year 2005.

Output

![Stock High, Low, and Close Chart]

Program

```sas
title "Stock High, Low, and Close";
```
proc sgplot data=sashelp.stocks;
 where Date >= '01JAN2005'd and stock='IBM';
 highlow x=date high=high low=low
 / close=close;
run;
title;

Program Description

Create the high-low chart. The HIGH, LOW, and CLOSE variables are used in the HIGHLOW statement. In addition, the plot subsets the data by year and by company.

title "Stock High, Low, and Close";
proc sgplot data=sashelp.stocks;
 where Date >= '01JAN2005'd and stock='IBM';
 highlow x=date high=high low=low
 / close=close;
run;
title;
Overview: SGSCATTER Procedure

The SGSCATTER procedure creates a paneled graph of scatter plots for multiple combinations of variables, depending on the plot statement that you use. You can use options to overlay fit plots and ellipses on your scatter plots.
Here are examples of some types of graphs that the SGSCATTER procedure can create.

Table 6.1 Examples of Graphs That Can Be Generated by the SGSCATTER Procedure

<table>
<thead>
<tr>
<th>Type</th>
<th>SUV</th>
<th>Sedan</th>
<th>Sporty</th>
<th>Wagon</th>
<th>Truck</th>
<th>Hybrid</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>mpg_highway</th>
<th>weight</th>
<th>msrp</th>
<th>horsepower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height: 10</td>
<td>Width: 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code Examples

Panel of scatter plots:

```sas
proc sgscatter data=sashelp.cars;
plot mpg_highway*weight msrp*horsepower / group=type;
run;
```

Panel of scatter plots with shared axes:

```sas
proc sgscatter data=sashelp.cars;
compare y=mpg_highway x=(weight enginesize horsepower) / group=type;
run;
```

Scatter plot matrix with prediction ellipses and a diagonal containing histograms and density plots:

```sas
proc sgscatter data=sashelp.iris (where=(species eq "Virginica"));
matrix petallength petalwidth sepallength / ellipse=(type=mean)
diagonal=(histogram kernel);
run;
```

Note: The graphs that you create with the SGSCATTER procedure can have many individual graph cells. As the number of cells increases, the overall graph size does not automatically increase. To increase the graph size, use the HEIGHT= and WIDTH= options of the ODS GRAPHICS statement.
Concepts: SGSCATTER Procedure

Statements for Creating Panels

About Creating Panels
The SGSCATTER procedure contains three statements that you can use to create a paneled graph of scatter plots:

- PLOT
- COMPARE
- MATRIX

Each of the statements is specialized for creating a different type of paneled graph.

PLOT Statement
The PLOT statement is used to create a paneled graph of scatter plots where each graph cell has its own independent set of axes. Each variable pair that you specify in the PLOT statement creates an independent graph cell. You can also overlay fit plots and ellipses on each cell by using options.

For example, Figure 6.1 on page 1203 shows a graph that contains two independent cells. Each cell contains a scatter plot and a loess curve.

Figure 6.1 Example Graph from the PLOT Statement

By default, the axis ranges of each cell are independent from the other cells. However, you can use the UNISCALE= option to specify that all of the cells use the same axis ranges for the X axis, the Y axis, or both axes.
Note: It is possible to create a single scatter cell with the PLOT statement, but the SGPLOT procedure is better suited to creating a single-celled graph.

COMPARE Statement

The COMPARE statement is used to create a shared axis panel, also called an MxN matrix. The list of X and Y variables are crossed to create each cell in the graph. All cells in a row share the same row axis range. All cells in a column share the same column axis range.

When using the COMPARE statement, you can add fit plots and confidence ellipses to each cell in the panel by using options.

The COMPARE statement can also be used to do simple X or Y axis sharing by specifying only one X or Y variable, as in the following example:

Figure 6.2 Example Graph from the COMPARE Statement

![Example Graph from the COMPARE Statement](image)

MATRIX Statement

The MATRIX statement is used to create a scatter plot matrix. Each of the variables that you specify are graphed against each other to create the graph. You can use the ELLIPSE option to overlay a confidence ellipse on each cell in the panel.

The MATRIX statement also has an option called DIAGONAL= that enables you to display the distribution of your variables in the diagonal cells of the matrix. You can place histograms in the diagonal cells, and overlay those histograms with normal density curves or kernel density estimates.
For example, the following example shows a graph with histograms and normal density curves in the diagonal cells.

Figure 6.3 Example Graph from the MATRIX Statement

Legends in the SGSCATTER Procedure

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend.

For all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

You can also generate a continuous color legend, which maps the data range of a response variable to a range of colors. For more information, see “Using Gradient Color Legends” on page 1262.

Syntax: SGSCATTER Procedure

Restriction: This procedure is not supported by the CAS engine. However, the procedure can use data that has been processed in CAS. For more information, see “Using Data That Is Processed In CAS” on page 5.

Requirement: One COMPARE, MATRIX, or PLOT statement is required.

Global statements: BY, FORMAT, LABEL, ODS GRAPHICS, TITLE and FOOTNOTE, WHERE
PROC SGSCATTER <options>;
 COMPARE X=variable | (variable-1 … variable-n)
 Y=variable | (variable-1 … variable-n) <options>;
 MATRIX variable-1 variable-2 < …variable-n > <options>;
 PLOT plot-request(s) <options>;

PROC SGSCATTER Statement

Identifies the data set that contains the plot variables. The statement also gives you the option to specify a description and write template code to a file.

Requirement: An input data set is required.

Syntax

PROC SGSCATTER <options>;

Summary of Optional Arguments

BACKCOLOR=color
 specifies the background color of the graph area.

DATA=input-data-set
 specifies the SAS data set that contains the variables to process.

DATACOLORS=(color-list)
 specifies the fill colors for the graphics elements, such as CLM bands and filled markers.

DATACONTRASTCOLORS=(color-list)
 specifies the contrast colors for the graphics elements, such as lines and markers.

DATALINEPATTERNS=(line-pattern-list)
 specifies the list of line patterns for the graph data lines.

DATASYMBOLS=(marker-symbol-list)
 specifies the list of marker symbol for the graph data.

DATATTRMAP=discrete-attribute-map-data-set
 specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure.

DESCRIPTION="text-string"
 specifies a description for the output image.

NOSUBPIXEL | SUBPIXEL
 specifies whether subpixel rendering should be used for rendering curved lines.

OPAQUE | NOOPAQUE
 specifies whether the graph background is opaque or transparent.

PAD=dimension <units> | (pad-options)
 specifies the amount of extra space that is reserved inside the border of an annotated graph.

RATTRMAP=range-attribute-map-data-set
 specifies the range attribute map data set that you want to use with the procedure.
SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use.

TMPLOUT="filename"
specifies a file destination for the template code that is generated by the SGSCATTER procedure.

WALLCOLOR=color
specifies the color of the plot wall area.

Optional Arguments

BACKCOLOR=color
specifies the background color of the graph area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

<table>
<thead>
<tr>
<th>Default</th>
<th>The Color attribute of the GraphBackground style element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>backcolor=CXFF0000</td>
</tr>
<tr>
<td></td>
<td>backcolor=light_blue</td>
</tr>
</tbody>
</table>

DATA=input-data-set
specifies the SAS data set that contains the variables to process. By default, the procedure uses the most recently created SAS data set.

DATACOLORS=(color-list)
specifies the fill colors for the graphics elements, such as CLM bands and filled markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

<table>
<thead>
<tr>
<th>Default</th>
<th>The colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.</td>
</tr>
<tr>
<td></td>
<td>The plot statement that is used in the procedure must specify the GROUP= option.</td>
</tr>
<tr>
<td>Note</td>
<td>When this option is specified, the colors cycle through color-list rather than the line patterns that are defined in the GraphData1 ... GraphData n style elements. When the colors in color-list are exhausted, the colors repeat.</td>
</tr>
<tr>
<td>Example</td>
<td>datacolors=(CXFF0000 green blue)</td>
</tr>
</tbody>
</table>

DATACONTRASTCOLORS=(color-list)
specifies the contrast colors for the graphics elements, such as lines and markers. Provide a space-separated list of colors enclosed in parentheses. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

<table>
<thead>
<tr>
<th>Default</th>
<th>The colors that are defined in the GraphData1 ... GraphData n style elements in the current style are used.</th>
</tr>
</thead>
</table>
Requirements

The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the `GROUP=` option.

Interaction

Where applicable, the `COLOR=` suboption of any plot option related to a marker or line color overrides the `DATACONTRASTCOLORS=` option.

Note

When this option is specified, the colors cycle through `color-list` rather than the colors that are defined in the GraphData1...GraphData\text{ }n style elements. When the colors in `color-list` are exhausted, the colors repeat.

Example

```plaintext
datacontrastcolors=(orange cyan #FF0000)
```

DATALINEPATTERNS=(`line-pattern-list`)

specifies the list of line patterns for the graph data lines. Provide a space-separated list of line patterns enclosed in parentheses. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default

The line patterns that are defined in the GraphData1...GraphData\text{ }n style elements in the current style are used.

Requirements

The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the `GROUP=` option.

Interaction

Where applicable, the `PATTERN=` suboption of any plot option related to line attributes overrides the `DATALINEPATTERNS=` option.

Note

When this option is specified, the line patterns cycle through `line-pattern-list` rather than the line patterns that are defined in the GraphData1...GraphData\text{ }n style elements. When the patterns in `line-pattern-list` are exhausted, the patterns repeat.

Example

```plaintext
datalinepatterns=(dot solid longdash 26)
```

DATASYMBOLS=(`marker-symbol-list`)

specifies the list of marker symbol for the graph data. Provide a space-separated list of symbols enclosed in parentheses. See the list of marker symbols on page 1275.

Default

The line patterns that are defined in the GraphData1...GraphData\text{ }n style elements in the current style are used.

Requirements

The input data must be ordered by the group variable for this option to take effect. If otherwise, the results are unpredictable.

The plot statement that is used in the procedure must specify the `GROUP=` option.

Interaction

Where applicable, the `SYMBOL=` suboption of the `MARKERATTRS=` option overrides the `DATASYMBOLS=` option.
Note When this option is specified, the symbols cycle through marker-symbol-list rather than the line patterns that are defined in the GraphData1 ... GraphDataN style elements. When the patterns in marker-symbol-list are exhausted, the patterns repeat.

Example datasyncs=(circle square triangle star)

DATTRMAP=discrete-attribute-map-data-set

specifies the discrete attribute map data set that you want to use with the SGSCATTER procedure. You specify this option only if you are using a discrete attribute map to control visual attributes of the graph.

Requirement The values in the DATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See

Chapter 12, “Using Discrete Attribute Maps,” on page 1317

“Overview of Attribute Maps” on page 1315

DESCRIPTION=“text-string”

specifies a description for the output image. The description identifies the image in the following locations:

- the Results window
- the alternate text for the image in HTML output
- the table of contents that is created by the CONTENTS option in an ODS statement

The default description is “The SGSCATTER Procedure”.

Alias DES

Notes You can disable the alternate text in HTML output by specifying an empty string. That is, DESCRIPTION="".

The name of the output image is specified by the IMAGENAME= option in the ODS GRAPHICS statement.

NOSUBPIXEL | SUBPIXEL

specifies whether subpixel rendering should be used for rendering curved lines. Subpixel rendering produces smoother curves.

NOSUBPIXEL

never uses subpixel rendering for rendering curved lines.

SUBPIXEL

always uses subpixel rendering, when applicable, for rendering curved lines.

Defaults

When this option is not specified, the system applies SUBPIXEL when it makes sense for the graph.

Subpixel rendering is always enabled for vector-graphics output.

Restriction

When this option is in effect, only the line-based plots use subpixel rendering. The affected plots are ELLIPSE, LOESS, REG, and PBSPLINE.
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used.

For a large amount of data, antialiasing is disabled when the number of observations exceeds the default maximum of 4000 observations. In that case, subpixel rendering is also disabled. To increase the maximum, use the ANTIALIASMAX= option in the ODS GRAPHICS statement.

When NOOPAQUE is specified, the background color is not used.

specifies whether the graph background is opaque or transparent.

The following output formats support transparent background (NOOPAQUE): EMF, PDF, PNG, PS, and SVG, with the following exception. The PS format does not support transparent background when your output format is not vector graphics (that is, your output renders as an image due to some graph feature or you used an OUTPUTFMT= override to an image format, including PNG).

When NOOPAQUE is specified, the background color is not used.

specifies the amount of extra space that is reserved inside the border of an annotated graph.

You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. The default unit is pixels. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

pad-options can be one or more of the following:

specifies the amount of extra space to add to the left edge.

specifies the amount of extra space to add to the right edge.

specifies the amount of extra space to add to the top edge.

specifies the amount of extra space to add to the bottom edge.
RATTRMAP=range-attribute-map-data-set
specifies the range attribute map data set that you want to use with the procedure. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

Requirement
The values in the RATTRMAP data set must be sorted by ID. If they are not, only the first value is found.

See
Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

SGANNO=annotation-data-set
specifies the SG annotation data set that you want to use. You specify this option only if you are using the SG annotation feature to annotate your graph. For more information, see Chapter 14, “Annotating ODS Graphics,” on page 1343.

TMPLOUT="filename"
specifies a file destination for the template code that is generated by the SGSCATTER procedure.

WALLCOLOR=color
specifies the color of the plot wall area. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
The Color attribute of the GraphWalls style element

Examples
- wallcolor=CXFF0000
- wallcolor=light_blue

COMPARE Statement
Creates a comparative panel of scatter plots with shared axes.

Examples:
- “Example 3: Creating a Simple Comparative Panel” on page 1253
- “Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses” on page 1254

Syntax

```
COMPARE X=variable | (variable-1 … variable-n) 
Y=variable | (variable-1 …variable-n) </options>;
```

Summary of Optional Arguments

Appearance options

- **ATTRID=variable**
specifies the value of the ID variable in an attribute map data set.
- **GRID**
creates grid lines for each tick on both axes.
- **GRIDATTRS=style-element <(options)> | (options)**
specifies the appearance of the grid lines.
MINORGRID
creates grid lines at each minor tick on both axes.

MINORGRIDATTRS=style-element<(options)> | (options)
specifies the appearance of the minor grid lines.

NOWALL
turns off the display of the graph wall’s fill and outline.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

SPACING =n
specifies the amount of spacing (in pixels) that is placed between the cells in
the graph.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components.

Axis options

REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of the
graph.

Data tip options

TIP=(variable-list)
displays data tips using the data obtained from the specified variables.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP=
option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP=
option.

Group options

GROUP= variable
specifies a classification variable to divide the values into groups.

Label options

DATALABEL <=variable>
displays a label for each data point.

DATALABELPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list”
splits the text for data labels at the specified character(s) when there is not
enough room to display the text normally.

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options

COLORMODEL=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE=
option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a continuous color legend.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used.

NOLEGEND
removes the legend from the plot.

Marker options

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

JITTER
specifies that data markers are offset when multiple observations have the same response value.

MARKERATTRS=style-element <(options)| (options)
specifies the appearance of the markers in the plot.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines.

Plot options

ELLIPSE <=(options)>
Adds a confidence or prediction ellipse to the scatter plot.

JOIN <=(options)>
specifies that line segments join all of the scatter points.

LOESS <=(options)>
Adds a loess fit to the scatter plot.

PBSPLINE <=(options)>
adds a fitted, penalized B-spline curve to the scatter plot.

REG <=(options)>
adds a regression fit to the scatter plot.

Required Arguments

X=variable | (variable-1) ... (variable-n)
specifies one or more variables for the X axis. To specify more than one variable, enclose the list of variables in parentheses.

Y=variable | (variable-1) ... (variable-n)
specifies the one or more variables for the Y axis. To specify more than one variable, enclose the list of variables in parentheses.

Optional Arguments

ATTRID=variable
specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph.
For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

COLORMODEL= style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

- **style-element** specifies the name of a style element. The style element should contain these style attributes:
 - **STARTCOLOR** specifies the color for the smallest data value of the COLORRESPONSE= column.
 - **NEUTRALCOLOR** specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.
 - **ENDCOLOR** specifies the color for the highest data value of the COLORRESPONSE= column.

Example
```
colormodel=TwoColorRamp
```

- **(color-list)** specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Requirement
The list of colors must be enclosed in parentheses.

Example
```
colormodel=(blue yellow green)
```

Default
The ThreeColorAltRamp style element

Interaction
For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE= numeric-column
specifies the numeric column that is used to map colors to a continuous color legend.

Interactions
If the GROUP= option is also specified, then the GROUP= option is ignored.

The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

Note
This option is ignored when the JOIN option is also specified.

Tip
The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See
“Using Gradient Color Legends” on page 1262
DATALABEL <=variable>
 displays a label for each data point. If you specify a variable, the values of that
 variable are used for the data labels. If you do not specify a variable, the value of the
 Y variable is used for the data label.

DATALABELPOS=position
 specifies the location of the data label with respect to the plot. position can be one of
 the following values:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOTTOMLEFT</td>
<td>BOTTOMRIGHT</td>
</tr>
<tr>
<td>CENTER</td>
<td>LEFT</td>
<td>RIGHT</td>
</tr>
<tr>
<td>TOP</td>
<td>TOPLEFT</td>
<td>TOPRIGHT</td>
</tr>
</tbody>
</table>

Interactions This option has no effect unless you also specify the DATALABEL
 option.

This option displays group values for each category when GROUP= is
 also specified.

This option does not support the splitting or rotation of data labels.

ELLIPSE <=(options)>
 Adds a confidence or prediction ellipse to the scatter plot. options can be one or
 more of the following:

ALPHA=numeric-value
 specifies the confidence level for the ellipse. Specify a number between 0.00
 (100% confidence) and 1.00 (0% confidence).

Default .05

CLIP
 specifies that X and Y values for the ellipse are ignored when determining the
 data ranges for the axes.

Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

Default The X and Y values for the ellipse contribute to the data ranges for the
 axes. If necessary, each axis is extended in order to display the entire
 ellipse.

TYPE=MEAN | PREDICTED
 specifies the type of ellipse. MEAN specifies a confidence ellipse for the
 population mean. PREDICTED specifies a prediction ellipse for a new
 observation. Both ellipse types assume bivariate normal distribution.

Default PREDICTED

Restriction To use this option, all of the X and Y variables must be numeric.

Interaction The GROUP option does not affect the creation of ellipses. The
 SGSCATTER procedure always uses all of the data points to calculate
 the confidence or prediction ellipse.
Tip If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the COMPARE statement to make the markers more transparent.

FILLEDOUTLINEDMARKERS
specifies that markers have a fill and an outline.

Requirement The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the "Filled" suffix in its name. Otherwise, this option is ignored.

Interaction Use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options to specify attributes for the fill and outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

options can be one or more of the following:

BORDER
adds a border around the legend.

INTEGER
specifies that integers are used for the gradient legend.

NOTITLE
removes the default title. The default title is the name of the response variable.

POSITION=TOP | BOTTOM | LEFT | RIGHT
specifies the position of the legend within the graph.

Default RIGHT

TITLE="text-string"
specifies the label for the legend.

Default If you do not specify this option, the name of the response variable is displayed as the title.

Interaction This option has no effect unless the COLORRESPONSE= option is also specified.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

GRID
creates grid lines for each tick on both axes.

GRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
Default GraphGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data.

Interaction This option has no effect unless GRID is also specified.

Examples GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

GROUP= variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JOIN <=\((options)\)>
specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.

You can specify the following options:
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

SMOOTHCONNECT
specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using SMOOTHCONNECT.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot. options can be one or more of the following:

ACROSS=n
specifies the number of columns in the legend.

AUTOITEMSIZE
specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

DOWN=n
specifies the number of rows in the legend.

Interaction If you specify both the ACROSS= and DOWN= suboptions, then the DOWN= suboption has no effect.

NOBORDER
removes the border from the legend.
NOTITLE
removes the label from the legend.

POSITION=position-value
specifies the position of the legend within the graph. The positions are as follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default BOTTOM

Note If you specify more than one legend with the same position, then all of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is used.

LOESS <=(options)>
Adds a loess fit to the scatter plot. You can specify the following options:

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interaction This option has no effect if you do not specify the CLM option.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=1 | 2
specifies the degree of the local polynomials to use for each local regression. 1 specifies a linear fit and 2 specifies a quadratic fit.

Default 1

INTERPOLATION=CUBIC | LINEAR
specifies the degree of the interpolating polynomials that are used for blending local polynomial fits at the kd tree vertices.

Default CUBIC

LINEATTRS=style-element (options) | (options)
specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NOGROUP
specifies that the fit does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify a value, the value is determined automatically.

Restriction
To use this option, all of the X and Y variables must be numeric.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
ContrastColor attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interactions
This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip
You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See
For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:
- line color
- line thickness
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default
GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data. The effective attributes are ContrastColor and LineThickness

Interaction This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MINORGRID
creates grid lines at each minor tick on both axes.

Interaction This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData_n style elements in the current style for grouped data.

Interaction This option has no effect unless MINORGRID is also specified.

Tip You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND
removes the legend from the plot.

NOWALL
turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background.
However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

PBSPLINE <=(options)>

adds a fitted, penalized B-spline curve to the scatter plot. *options* can be one or more of the following:

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05
Interaction This option has no effect if you do not specify either the CLI option or the CLM option.

CLI

creates confidence limits for individual predicted values for each observation.

CLM

creates confidence limits for a mean predicted value for each observation.

DEGREE=n

specifies the degree of the spline transformation.

Default 3

LINEATTRS=style-element <(options)> | (options)

specifies the appearance of the curve line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData* style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NKNOTS=n

specifies the number of evenly spaced internal knots.

Default 100

NOGROUP

specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=numeric-value

specifies a smoothing parameter value. If you do not specify this option, then a smoothing value is determined automatically.

Restriction To use this option, all of the X and Y variables must be numeric.

RATTRID=character-value

specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of the graph. You can also specify options:

- **LABEL**
 in addition to the tick marks, displays the axis label.

- **VALUES**
 in addition to the tick marks, displays the values that are represented by the tick marks.

REG <=(options)>
adds a regression fit to the scatter plot. options can be one or more of the following:

- **ALPHA=numeric-value**
 specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

 Default .05

 Interaction This option has no effect if you do not specify either the CLI option or the CLM option.

- **CLI**
 creates confidence limits for individual predicted values for each observation.

- **CLM**
 creates confidence limits for a mean predicted value for each observation.

- **DEGREE=n**
 specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

 Default 1

- **LINEATTRS=style-element (options) | (options)**
 specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

 For a description of the line options, see “Line Attributes and Patterns” on page 1272.

 Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

- **NOGROUP**
 specifies that the fit does not use the group variable from the scatter plot.

 Restriction To use this option, all of the X and Y variables must be numeric.

- **SPACING =n**
 specifies the amount of spacing (in pixels) that is placed between the cells in the graph.

 Default 0
SPLITCHAR=“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

“character-list” is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

`SPLITCHAR="abc"`

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default
Values are not split.

Interactions
This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes
When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

Interaction
This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Default
LEFT

Interaction
This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

TIP=(variable-list)
displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.
Requirement You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```ods graphics / imagemap=on;```

Interaction This option replaces all of the information that is displayed by default.

Note The option affects only the scatter plot in this statement.

Tip Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

Example `tip=(age weight)`

### TIPFORMAT=(format-list)

applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

**Default** The column format of the tip variable, or BEST6 if no format is assigned to a numeric column

**Requirement** A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPLABEL option to assign labels to the list of variables.

**See** *SAS Viya Formats and Informats: Reference*

**Example** `tipformat=(auto F5.2)`

### TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a label to a variable, use the AUTO keyword instead.

**Requirement** A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

**Interaction** This option has no effect unless TIP= is also specified.

**Tip** Use the TIPFORMAT option to assign formats to the list of variables.
Example: tiplabel=(auto "Class Weight")

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

**MATRIX Statement**

Creates a scatter plot matrix.

Example: “Example 1: Creating a Scatter Plot Matrix” on page 1250

**Syntax**

MATRIX numeric-variable-1 numeric-variable-2 < … numeric-variable-n> </options>;

**Summary of Optional Arguments**

**Appearance options**

ATTRID=variable
specifies the value of the ID variable in an attribute map data set.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the plot components.

**Data tip options**

TIP=(variable-list)
displays data tips using the data obtained from the specified variables.

TIPFORMAT=(format-list)
applies formats to the list of data tip variables that you specify in the TIP= option.

TIPLABEL=(label-list)
applies labels to the list of data tip variables that you specify in the TIP= option.

**Group options**

GROUP=variable
specifies a classification variable to divide the values into groups.

**Label options**

DATALABEL=variable
specifies a variable that is used to create data labels for each point in the plot.

DATALABELEPOS=position
specifies the location of the data label with respect to the plot.

SPLITCHAR="character-list"
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.
SPLITCHARNODROP
specifies that the split characters are included in the displayed value.

SPLITJUSTIFY=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the value text that is being split.

Legend options
COLORMODELM=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.

COLORRESPONSE=numeric-column
specifies the numeric column that is used to map colors to a continuous color legend.

GRADLEGEND=(options)
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

LEGEND=(options)
specifies the appearance of the legend for the scatter plot.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used.

NOLEGEND
removes the legend from the graph.

Marker options
MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot.

Plot options
DIAGONAL=(graph-list)
adds graphs to the diagonal cells of the plot matrix.

ELLIPSE <=(options)>
Adds a confidence or prediction ellipse to each cell that contains a scatter plot.

START=BOTTOMLEFT | TOPLEFT
specifies whether the diagonal starts in the top left corner or the bottom left corner.

Required Argument
numeric-variable-1 numeric-variable-2 < ... numeric-variable-n >
specifies two or more numeric variables for the matrix.

Optional Arguments
ATTRID=variable
specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

COLORMODELM=style-element | (color-list)
specifies a color ramp that is to be used with the COLORRESPONSE= option.
style-element

specifies the name of a style element. The style element should contain these style attributes:

STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example

```
colormodel=TwoColorRamp
```

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see "Color-Naming Schemes" on page 1278.

Requirement

The list of colors must be enclosed in parentheses.

Example

```
colormodel=(blue yellow green)
```

Default

The ThreeColorAltRamp style element

Interaction

For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a continuous color legend.

Interactions

If the GROUP= option is also specified, then the GROUP= option is ignored.

The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

Tip

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.

See

"Using Gradient Color Legends" on page 1262

DATALABEL=variable

specifies a variable that is used to create data labels for each point in the plot.

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:

<table>
<thead>
<tr>
<th>BOTTOM</th>
<th>BOTTOMLEFT</th>
<th>BOTTOMRIGHT</th>
</tr>
</thead>
</table>
This option has no effect unless you also specify the DATALABEL= option.

This option displays group values for each category when GROUP= is also specified.

**DIAGONAL=(graph-list)**

adds graphs to the diagonal cells of the plot matrix. If you do not specify the DIAGONAL option, the diagonal cells contain the variable names.

graph-list can be one or more of the following:

- **HISTOGRAM**
  
specifies a histogram.

- **KERNEL**
  
specifies a kernel density estimate.

- **NORMAL**
  
specifies a normal density curve.

**ELLIPSE <=(options)>**

Adds a confidence or prediction ellipse to each cell that contains a scatter plot.

options can be one or more of the following:

- **ALPHA=numeric-value**
  
specifies the confidence level for the ellipse. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

  **Default** .05

- **CLIP**
  
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.

  Clipping occurs if the X or Y value for an ellipse exceeds the axis range.

  **Default** The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

- **TYPE=MEAN | PREDICTED**
  
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.

  **Default** PREDICTED

The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.
Tip If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the MATRIX statement to make the markers more transparent.

**GRADLEGEND=(options)**
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

*options* can be one or more of the following:

- **BORDER**
  adds a border around the legend.

- **INTEGER**
  specifies that integers are used for the gradient legend.

- **NOTITLE**
  removes the default title. The default title is the name of the response variable.

- **POSITION=TOP | BOTTOM | LEFT | RIGHT**
  specifies the position of the legend within the graph.

  Default **RIGHT**

- **TITLE="text-string"**
  specifies the label for the legend.

  Default If you do not specify this option, the name of the response variable is displayed as the title.

  Interaction This option has no effect unless the COLORRESPONSE= option is also specified.

**GROUP=variable**
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

**LEGEND=(options)**
specifies the appearance of the legend for the scatter plot.

*options* can be one or more of the following:

- **ACROSS=n**
  specifies the number of columns in the legend.

- **DOWN=n**
  specifies the number of rows in the legend.

  Interaction If you specify both the ACROSS= and DOWN= suboptions, then the DOWN= suboption has no effect.

- **NOBORDER**
  removes the border from the legend.

- **NOTITLE**
  removes the label from the legend.

The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values.
POSITION=position-value
specifies the position of the legend within the graph. The values are as follows:

BOTTOM
places the legend at the bottom of the graph.

LEFT
places the legend at the left side of the graph.

RIGHT
places the legend at the right side of the graph.

TOP
places the legend at the top of the graph.

Default BOTTOM

Note If you specify more than one legend with the same position, then all of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
specifies the sort order to use for the legend entry labels.

TITLE="text-string"
specifies the label for the legend. By default, the label of the group variable is used.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are ContrastColor and MarkerSymbol.

NOGRADLEGEND
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND
removes the legend from the graph.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331

“Overview of Attribute Maps” on page 1315

SPLITCHAR=“character-list”
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.
"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

SPLITCHAR="abc"

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default Values are not split.

Interactions This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

Notes When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

See “Overview of Collision Avoidance” on page 1265

SPLITCHARNODROP specifies that the split characters are included in the displayed value.

Interaction This option has no effect unless SPLITCHAR= is also specified.

See “Overview of Collision Avoidance” on page 1265

SPLITJUSTIFY= LEFT | CENTER | RIGHT specifies the horizontal alignment of the value text that is being split.

Default LEFT

Interaction This option has no effect unless you specify the SPLITCHAR= option.

See “Overview of Collision Avoidance” on page 1265

START= BOTTOMLEFT | TOPLEFT specifies whether the diagonal starts in the top left corner or the bottom left corner.

Default TOPLEFT

TIP=(variable-list) displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:

```
ODS GRAPHICS / IMAGEMAP=ON;
```

This option replaces all of the information that is displayed by default.

The option affects only the scatter plot in this statement.

Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.

```
tip=(age weight)
```

Applies formats to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.

A one-to-one correspondence exists between the `format-list` and the `variable-list` that is specified for the TIP= option. A format must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a format to a variable, use the AUTO keyword instead.

The column format of the tip variable, or BEST6 if no format is assigned to a numeric column.

A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPLABEL option to assign labels to the list of variables.

Applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the `label-list` and the `variable-list` that is specified for the TIP= option. A label must be provided for each variable, using the same order as the `variable-list`. If you do not want to apply a label to a variable, use the AUTO keyword instead.

A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

This option has no effect unless TIP= is also specified.

Use the TIPFORMAT option to assign formats to the list of variables.
Example: tiplabel=(auto "Class Weight")

**TRANSPARENCY=** `numeric-value`

specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

---

**PLOT Statement**

Creates a paneled graph that contains multiple independent scatter plots.

Example: “Example 2: Creating a Graph with Multiple Independent Scatter Plots and Spline Curves” on page 1251

---

**Syntax**

```
PLOT plot-request(s) /<options>;
```

---

**Summary of Optional Arguments**

**Appearance options**

- **ASPECT=** `positive-number`
  
specifies the aspect ratio of the plot’s wall area.

- **ATTRID=** `variable`
  
specifies the value of the ID variable in an attribute map data set.

- **COLUMNS=** `n`
  
specifies the number of columns in the graph.

- **GRID**
  
creates grid lines for each tick on both axes.

- **GRIDATTRS=** `style-element (options)` | `(options)`
  
specifies the appearance of the grid lines.

- **MINORGRID**
  
creates grid lines at each minor tick on both axes.

- **MINORGRIDATTRS=** `style-element (options)` | `(options)`
  
specifies the appearance of the minor grid lines.

- **NOBORDER**
  
removes the border from each plot in the panel.

- **NOWALL**
  
turns off the display of the graph wall’s fill and outline.

- **RATTRID=** `character-value`
  
specifies the value of the ID variable in a range attribute map data set.

- **ROWS=** `n`
  
specifies the number of rows in the graph.

- **SPACING =** `n`
  
specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.

- **TRANSPARENCY=** `numeric-value`
  
specifies the degree of transparency for the plot components.
Axis options

**AXISEXTENT=FULL | DATA**
specifies the extent of the axis line for the axes.

**REFTICKS <=(options)>**
duplicates the tick marks from the X and Y axes on the opposite sides of each cell.

**UNISCALE=X | Y | ALL**
specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph.

Data tip options

**TIP=(variable-list)**
displays data tips using the data obtained from the specified variables.

**TIPFORMAT=(format-list)**
applies formats to the list of data tip variables that you specify in the TIP= option.

**TIPLABEL=(label-list)**
applies labels to the list of data tip variables that you specify in the TIP= option.

Group options

**GROUP=variable**
specifies a classification variable to divide the values into groups.

Label options

**DATALABEL <=variable>**
displays a label for each data point.

**DATALABELPOS=position**
specifies the location of the data label with respect to the plot.

**SPLITCHAR="character-list"**
splits the text for data labels at the specified character(s) when there is not enough room to display the text normally.

**SPLITCHARNODROP**
specifies that the split characters are included in the displayed value.

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**
specifies the horizontal alignment of the value text that is being split.

Legend options

**COLORMODEL=style-element | (color-list)**
specifies a color ramp that is to be used with the COLORRESPONSE= option.

**COLORRESPONSE=numeric-column**
specifies the numeric column that is used to map colors to a continuous color legend.

**GRADLEGEND=(options)**
specifies the appearance of a continuous color legend when the COLORRESPONSE= option is used.

**LEGEND=(options)**
specifies the appearance of the legend for the scatter plot.

**NOGRADLEGEND**
turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used.
NOLEGEND
removes the legend from the graph.

**Marker options**

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.

**JITTER**
specifies that data markers are offset when multiple observations have the same response value.

**MARKERATTRS=** *style-element <(options)> | (options)*
specifies the appearance of the markers in the plot.

**MARKERFILLATTRS=** *style-element <(COLOR=color)> | (COLOR=color)*
specifies the color of the marker fill.

**MARKEROUTLINEATTRS=** *style-element <(options)> | (options)*
specifies the appearance of the marker outlines.

**Plot options**

**ELLIPSE <=(options)>**
adds a confidence or prediction ellipse to the scatter plot.

**JOIN <=(options)>**
specifies that line segments join all of the scatter points.

**LOESS <=(options)>**
adds a loess fit to the scatter plot.

**PBSPLINE <=(options)>**
adds a fitted, penalized B-spline curve to the scatter plot.

**REG <=(options)>**
adds a regression fit to the scatter plot.

**Required Argument**

*plot-request-1 <= ... plot-request-n>*
specifies one or more plot requests. Each plot request specifies the variables to plot and produces a separate cell. All variables must be in the input data set. Multiple plot requests are separated with blanks. You can plot character or numeric variables. A plot request can be either of these:

*variable(s) **x-variable***
plots the values of two variables.

*variable
variable plotted on the left vertical axis.

*x-variable
variable plotted on the horizontal axis.

*(variable(s)) **x-variable(s))*
plots the values of two or more variables and produces a separate cell for each combination of Y and X variables. That is, each Y*X pair is plotted on a separate set of axes.

*y-variable(s)*
variables plotted on the left vertical axes.

*x-variable(s)*
variables plotted on the horizontal axes.
If you use only one $y$-variable or only one $x$-variable, omit the parentheses for that variable, for example,

```
plot (temp rain)*month;
```

This plot request produces two cells, one for TEMP and MONTH and one for RAIN and MONTH.

**Optional Arguments**

**ASPECT=positive-number**

Specifies the aspect ratio of the plot’s wall area. The ratio is expressed as a positive decimal fraction representing wall-height divided by wall-width. For example, 0.75 is a 3/4 aspect ratio, and 1.0 is a square aspect ratio.

Small numbers, such as 0.01, produce a short, wide rectangular area. Larger numbers yield a taller, narrower rectangular area.

Default: The wall area is sized to the maximum area that can fill the available space.

**ATTRID=variable**

Specifies the value of the ID variable in an attribute map data set. You specify this option only if you are using an attribute map to control visual attributes of the graph. For more information, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

**AXISEXTENT=FULL | DATA**

Specifies the extent of the axis line for the axes. This option turns off the wall border so that the axis lines can be clearly seen.

**FULL**

the axis lines extend along the entire length of the axis.

**DATA**

the axis lines extend through the data range from the minimum data point to the maximum data point.

The following figure shows a simple example of each value for the X and Y axis lines.

![FULL and DATA axis lines](image)

**COLORMODEL=style-element | (color-list)**

Specifies a color ramp that is to be used with the COLORRESPONSE= option.

**style-element**

Specifies the name of a style element. The style element should contain these style attributes:
STARTCOLOR specifies the color for the smallest data value of the COLORRESPONSE= column.

NEUTRALCOLOR specifies the color for the midpoint of the range of the COLORRESPONSE= column. This attribute is not required when you specify a two-color ramp model.

ENDCOLOR specifies the color for the highest data value of the COLORRESPONSE= column.

Example

colormodel=TwoColorRamp

(color-list)

specifies a space-separated list of colors to use in the color ramp. You can use style attribute references such as GraphData3:Color, color names, or RGB, CMYK, HLS, and HSV (HSB) color codes to specify a color. The list can contain a mix of style attribute references, color names, and color codes.

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Requirement The list of colors must be enclosed in parentheses.

Example

colormodel=(blue yellow green)

Default The ThreeColorAltRamp style element

Interaction For this option to take effect, the COLORRESPONSE= option must also be specified.

COLORRESPONSE=numeric-column

specifies the numeric column that is used to map colors to a continuous color legend.

Interactions If the GROUP= option is also specified, then the GROUP= option is ignored.

The GRADLEGEND= option controls the title, position, and border of the legend. If you want only the colors and not the legend, then you can specify NOGRADLEGEND.

Note This option is ignored when the JOIN option is also specified.

Tip The color ramp is specified by the COLORMODEL= option. The color ramp represents the range of unique response values

See “Using Gradient Color Legends” on page 1262

COLUMNS=n

specifies the number of columns in the graph.

DATALABEL <=variable>

displays a label for each data point. If you specify a variable, the values of that variable are used for the data labels. If you do not specify a variable, the value of the Y variable is used for the data label.

DATALABELPOS=position

specifies the location of the data label with respect to the plot. position can be one of the following values:
ELLIPSE \((options)\)  
adds a confidence or prediction ellipse to the scatter plot. \(options\) can be one or more of the following:

**ALPHA=*/n
specifies the confidence level for the ellipse. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).  
Default .05

**CLIP**
specifies that X and Y values for the ellipse are ignored when determining the data ranges for the axes.  
Clipping occurs if the X or Y value for an ellipse exceeds the axis range.  
Default The X and Y values for the ellipse contribute to the data ranges for the axes. If necessary, each axis is extended in order to display the entire ellipse.

**TYPE=MEAN | PREDICTED**
specifies the type of ellipse. MEAN specifies a confidence ellipse for the population mean. PREDICTED specifies a prediction ellipse for a new observation. Both ellipse types assume bivariate normal distribution.  
Default PREDICTED

**Restriction**  
To use this option, all of the X and Y variables must be numeric.

**Interaction**  
The GROUP option does not affect the creation of ellipses. The SGSCATTER procedure always uses all of the data points to calculate the confidence or prediction ellipse.

**Tip**  
If your graph has a large number of data points, the data markers might obscure the ellipse. You can use the TRANSPARENCY= option in the PLOT statement to make the markers more transparent.

**FILLEDOUTLINEDMARKERS**
specifies that markers have a fill and an outline.
The marker symbol, derived either from the applied style or specified with the `MARKERATTRS=` option, must have the “Filled” suffix in its name. Otherwise, this option is ignored.

Use the `MARKERFILLATTRS=` and `MARKEROUTLINEATTRS=` options to specify attributes for the fill and outline.

For usage information and an example, see “Marker Fills and Outlines” on page 1267.

`GRADLEGEND=(options)`

specifies the appearance of a continuous color legend when the `COLORRESPONSE=` option is used.

`options` can be one or more of the following:

- **BORDER**
  adds a border around the legend.

- **INTEGER**
  specifies that integers are used for the gradient legend.

- **NOTITLE**
  removes the default title. The default title is the name of the response variable.

- **POSITION=TOP | BOTTOM | LEFT | RIGHT**
  specifies the position of the legend within the graph.

  Default: **RIGHT**

- **TITLE="text-string"**
  specifies the label for the legend.

  Default: If you do not specify this option, the name of the response variable is displayed as the title.

This option has no effect unless the `COLORRESPONSE=` option is also specified.

The color ramp is specified by the `COLOREMODEL=` option. The color ramp represents the range of unique response values.

`GRID` creates grid lines for each tick on both axes.

`GRIDATTRS=style-element <(options)> | (options)`

specifies the appearance of the grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: `GraphGridLines` style element in the current style for ungrouped data. `GraphData1 ... GraphData n` style elements in the current style for grouped data.

This option has no effect unless `GRID` is also specified.
Examples
GRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
GRIDATTRS=GraphAxisLines

GROUP=variable
specifies a classification variable to divide the values into groups. If a fit line is requested, then the GROUP= variable is also applied to the fit plot unless you specify the NOGROUP suboption in the option for the fit plot.

JITTER
specifies that data markers are offset when multiple observations have the same response value. When the JITTER option is enabled, markers that represent the same response value are offset slightly in order to make all of the markers visible.

The following partial images show the effect of the JITTER option.

<table>
<thead>
<tr>
<th>Default</th>
<th>JITTER Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Default" /></td>
<td><img src="image2.png" alt="JITTER Specified" /></td>
</tr>
</tbody>
</table>

Default
Markers that represent the same response value are overlaid, which results in some markers being obscured.

Notes
This option affects only how the scatter plot is drawn. It has no effect on other graphics elements, such as a loess, spline, or regression curve.

By default, the width of the jitter space is 40% of the minimal interval width of the axis. When the minimum data interval is very small, the jitter offset might not be noticeable.

JOIN <=(options)>
specifies that line segments join all of the scatter points. The line segments connect the scatter points in increasing order along the X axis. The data order of the input data set has no effect on the order of the lines.

You can specify the following options:

LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the join lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.
For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphData\(n\) style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

SMOOTHCONNECT specifies that a smoothed line passes through all vertices.

The following graphics fragments show the effect of using SMOOTHCONNECT.

<table>
<thead>
<tr>
<th>Default Series</th>
<th>SMOOTHCONNECT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Default Series Graphics" /></td>
<td><img src="image2" alt="SMOOTHCONNECT Specified Graphics" /></td>
</tr>
</tbody>
</table>

LEGEND=(options) specifies the appearance of the legend for the scatter plot. options can be one or more of the following:

ACROSS=\(n\) specifies the number of columns in the legend.

AUTOITEMSIZE specifies that all markers in the legend are sized in proportion to the font size used for the legend labels.

The following figures show a legend with fairly large labels. In the first figure, the markers are small compared to the labels. The second figure uses AUTOITEMSIZE to size the markers in proportion to the labels.

<table>
<thead>
<tr>
<th>Default Marker Size</th>
<th>AUTOITEMSIZE Used in the Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3" alt="Default Marker Size" /></td>
<td><img src="image4" alt="AUTOITEMSIZE Used" /></td>
</tr>
</tbody>
</table>

DOWN=\(n\) specifies the number of rows in the legend.

LOCATION=CELL | OUTSIDE specifies whether the legend is placed inside an empty cell (CELL) in the plot area or outside of the plot area (OUTSIDE). The LOCATION=CELL suboption should be specified only when the graph contains an empty cell.

NOBORDER removes the border from the legend.
NOTITLE
  removes the label from the legend.

POSITION=position-value
  specifies the position of the legend within the graph. The positions are as
  follows:

  BOTTOM
  places the legend at the bottom of the graph.

  LEFT
  places the legend at the left side of the graph.

  RIGHT
  places the legend at the right side of the graph.

  TOP
  places the legend at the top of the graph.

  Default BOTTOM

  Interaction This suboption has no effect if you also specify LOCATION=CELL.

  Note If you specify more than one legend with the same position, then all
       of your legends are placed at that position.

SORTORDER=ASCENDING | DESCENDING
  specifies the sort order to use for the legend entry labels.

TITLE="text-string"
  specifies the label for the legend. By default, the label of the group variable is
  used.

LOESS <=(options)>
  adds a loess fit to the scatter plot. You can specify the following options:

  ALPHA=numeric-value
  specifies the confidence level for the confidence limits. Specify a number
  between 0.00 (100% confidence) and 1.00 (0% confidence).

  Default .05

  Interaction This option has no effect if you do not specify the CLM option.

CLM
  creates confidence limits for a mean predicted value for each observation.

DEGREE=1 | 2
  specifies the degree of the local polynomials to use for each local regression. 1
  specifies a linear fit and 2 specifies a quadratic fit.

  Default 1

INTERPOLATION=CUBIC | LINEAR
  specifies the degree of the interpolating polynomials that are used for blending
  local polynomial fits at the kd tree vertices.

  Default CUBIC
LINEATTRS=style-element <(options)> | (options)
specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Defaults GraphFit style element in the current style. The effective attributes are ContrastColor, LineStyle, and LineThickness.

GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NOGROUP
specifies that the fit does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify a value, then a smoothing value is determined automatically.

Restriction To use this option, all of the X and Y variables must be numeric.

MARKERATTRS=style-element <(options)> | (options)
specifies the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of marker attributes, see “Marker Attributes and Symbols” on page 1274.

Default GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data. The effective attributes are ContrastColor and MarkerSymbol.

MARKERFILLATTRS=style-element <(COLOR=color)> | (COLOR=color)
specifies the color of the marker fill. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default ContrastColor attribute of the GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData n style elements in the current style for grouped data.

Interactions This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

This option overrides any color that is specified with the MARKERATTRS= option.

Tip You can also use the MARKEROUTLINEATTRS= option to specify attributes for the marker outline.

See For usage information and an example, see “Marker Fills and Outlines” on page 1267.
MARKEROUTLINEATTRS=style-element <(options)> | (options)
specifies the appearance of the marker outlines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For the options, you can specify either or both of the following:

- line color
- line thickness

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphDataDefault style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data. The effective attributes are ContrastColor and LineThickness.

Interaction: This option has no effect unless FILLEDOUTLINEDMARKERS is also specified.

Tip: You can also use the MARKERFILLATTRS= option to specify attributes for the fill.

See: For usage information and an example, see “Marker Fills and Outlines” on page 1267.

MINORGRID:
creates grid lines at each minor tick on both axes.

Interaction: This option has no effect unless GRID is also specified for the axis.

MINORGRIDATTRS=style-element <(options)> | (options)
specifies the appearance of the minor grid lines. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default: GraphMinorGridLines style element in the current style for ungrouped data. GraphData1 ... GraphData\n style elements in the current style for grouped data.

Interaction: This option has no effect unless MINORGRID is also specified.

Tip: You can use GRIDATTRS= to change the appearance of the major grid lines.

Examples: MINORGRIDATTRS=(color=green pattern=longdash thickness=2)

Here is an example that specifies a style element:
MINORGRIDATTRS=GraphAxisLines

NOBORDER:
removes the border from each plot in the panel.
NOGRADLEGEND

turns off the display of the continuous color legend that appears when the COLORRESPONSE= option is used. This option might be useful when you map plot colors using a numeric column but do not want a continuous color legend.

NOLEGEND

removes the legend from the graph.

NOWALL

turns off the display of the graph wall’s fill and outline. This option might be useful when your graph contains an annotation, and the wall color interferes with that annotation.

For most styles, the wall outline is the same as the axis lines, and it is impossible to see the difference. Also, the wall fill color is often the same as the graph background. However, if this is not the case with the style that you use for a graph, then you might want to suppress the wall fill and outline.

PBSPLINE <-(options)>

adds a fitted, penalized B-spline curve to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value

specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interaction This option has no effect if you do not specify either the CLI option or the CLM option.

CLI

creates confidence limits for individual predicted values for each observation.

CLM

creates confidence limits for a mean predicted value for each observation.

DEGREE=n

specifies the degree of the spline transformation.

Default 3

LINEATTRS=style-element <(options)>

specifies the appearance of the curve line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.

Default GraphFit style element in the current style for ungrouped data. GraphData1 ... GraphDataN style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

NKNOTS=n

specifies the number of evenly spaced internal knots.

Default 100
NOGROUP
specifies that the curve does not use the group variable from the scatter plot.

SMOOTH=numeric-value
specifies a smoothing parameter value. If you do not specify this option, then a smoothing value is determined automatically.

Restriction To use this option, all of the X and Y variables must be numeric.

RATTRID=character-value
specifies the value of the ID variable in a range attribute map data set. You specify this option only if you are using a range attribute map to control visual attributes of the graph.

See Chapter 13, “Using Range Attribute Maps,” on page 1331
“Overview of Attribute Maps” on page 1315

REFTICKS <=(options)>
duplicates the tick marks from the X and Y axes on the opposite sides of each cell. You can also specify options:

LABEL
in addition to the tick marks, displays the axis label.

VALUES
in addition to the tick marks, displays the values that are represented by the tick marks.

REG <=(options)>
adds a regression fit to the scatter plot. options can be one or more of the following:

ALPHA=numeric-value
specifies the confidence level for the confidence limits. Specify a number between 0.00 (100% confidence) and 1.00 (0% confidence).

Default .05

Interaction This option has no effect if you do not specify either the CLI option or the CLM option.

CLI
creates confidence limits for individual predicted values for each observation.

CLM
creates confidence limits for a mean predicted value for each observation.

DEGREE=n
specifies the degree of the polynomial fit. For example, 1 specifies a linear fit, 2 specifies a quadratic fit, and 3 specifies a cubic fit.

Default 1

LINEATTRS=style-element <=(options) | (options)
specifies the appearance of the fit line. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

For a description of the line options, see “Line Attributes and Patterns” on page 1272.
Default

GraphFit style element in the current style for ungrouped data.
GraphData1 ... GraphData\text{n} style elements in the current style for grouped data. The effective attributes are: ContrastColor, LineStyle, and LineThickness.

\textbf{NOGROUP}

specifies that the fit does not use the group variable from the scatter plot.

\textbf{Restriction}

To use this option, all of the X and Y variables must be numeric.

\textbf{ROWS} = \text{n}

specifies the number of rows in the graph.

\textbf{Interaction}

This option has no effect if you specify the COLUMNS= option.

\textbf{SPACING} = \text{n}

specifies the amount of spacing (in pixels) that is placed between the cells in the graph, if the PLOT statement creates multiple cells.

Default

10

\textbf{SPLITCHAR} = \text{"character-list"}

splits the text for data labels at the specified character(s) when there is not enough room to display the text normally. The text value is split at every occurrence of the specified split character or characters.

"character-list" is one or more characters with no delimiter between each character and enclosed in quotation marks. For example, to specify the split characters a, b, and c, use the following option:

\texttt{SPLITCHAR = "abc"}

When multiple split characters are specified, each character in the list is treated as a separate split character unless the specified characters appear consecutively in the value. In that case, all of the specified split characters together are treated as a single split character.

If the value does not contain any of the specified split characters, a split does not occur.

Default

Values are not split.

\textbf{Interactions}

This option has no effect unless DATALABEL is specified.

When the text is split, the split characters are not included in the displayed value by default. If you want the split characters to appear in the values, then also specify SPLITCHARNODROP.

You can specify the justification of the text by using the SPLITJUSTIFY= option.

\textbf{Notes}

When multiple characters are specified, the order of the characters in the list is not significant.

The split characters are case sensitive.

\textbf{See}

“Overview of Collision Avoidance” on page 1265
**SPLITCHARNODROP**  
specifies that the split characters are included in the displayed value.  

**Interaction**  
This option has no effect unless SPLITCHAR= is also specified.  

**See**  
“Overview of Collision Avoidance” on page 1265

**SPLITJUSTIFY=LEFT | CENTER | RIGHT**  
specifies the horizontal alignment of the value text that is being split.  

**Default**  
LEFT  

**Interaction**  
This option has no effect unless you specify the SPLITCHAR= option.  

**See**  
“Overview of Collision Avoidance” on page 1265

**TIP=(variable-list)**  
displays data tips using the data obtained from the specified variables. Data tips display information when the cursor is positioned over the graphics element. Provide a space-separated list of variables enclosed in parentheses.  

**Requirement**  
You must specify the IMAGEMAP=ON option in the ODS GRAPHICS statement in order to generate data tips. For example, add the following statement before your procedure:  

```  
ODS GRAPHICS / IMAGEMAP=ON;
```

**Interaction**  
This option replaces all of the information that is displayed by default.  

**Note**  
The option affects only the scatter plot in this statement.  

**Tip**  
Use the TIPFORMAT and TIPLABEL options to assign formats and labels to the list of variables.  

**Example**  
tip=(age weight)

**TIPFORMAT=(format-list)**  
applies formats to the list of data tip variables that you specify in the TIP= option.  

Provide a space-separated list of formats enclosed in parentheses. This option provides a way to control the format of the variable data that appears in the data tips.  

A one-to-one correspondence exists between the format-list and the variable-list that is specified for the TIP= option. A format must be provided for each variable, using the same order as the variable-list. If you do not want to apply a format to a variable, use the AUTO keyword instead.  

**Default**  
The column format of the tip variable, or BEST6 if no format is assigned to a numeric column  

**Requirement**  
A format or the keyword AUTO must be provided for each variable that is listed in the TIP= option.  

**Interaction**  
This option has no effect unless TIP= is also specified.  

**Tip**  
Use the TIPLABEL option to assign labels to the list of variables.  

**See**  
*SAS Viya Formats and Informats: Reference*
TIPLABEL=(label-list)

applies labels to the list of data tip variables that you specify in the TIP= option.

Provide a space-separated list of quoted “text strings” enclosed in parentheses. This option provides a way to specify labels for the variable data that appears in the data tips.

A one-to-one correspondence exists between the label-list and the variable-list that is specified for the TIP= option. A label must be provided for each variable, using the same order as the variable-list. If you do not want to apply a label to a variable, use the AUTO keyword instead.

Requirement A label or the keyword AUTO must be provided for each variable that is listed in the TIP= option.

Interaction This option has no effect unless TIP= is also specified.

Tip Use the TIPFORMAT option to assign formats to the list of variables.

Example tiplabel=(auto "Class Weight")

TRANSPARENCY=numeric-value

specifies the degree of transparency for the plot components. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

UNISCALE=X | Y | ALL

specifies that the X axis, Y axis, or both axes are scaled uniformly for all of the cells in the graph. By default, no scaling is performed. If this option is used, then all variables on the specified axis must be of the same type (all numeric or all character). In addition, mixing character and numeric variables with this option can cause blank plots to occur.

Examples: SGSCATTER Procedure

Example 1: Creating a Scatter Plot Matrix

Features: MATRIX statement
GROUP option

Sample library member: SGSCMAT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a scatter plot matrix with grouped data.
Program

```plaintext
proc sgscatter data=sashelp.iris;
 title "Scatterplot Matrix for Iris Data";
 matrix sepallength petallength sepalwidth petalwidth
 / group=species;
run;
title;
```

Program Description

Set the title and footnote and create the scatter plot matrix. In the MATRIX statement, the GROUP = option groups the data by the SPECIES variable.

```
proc sgscatter data=sashelp.iris;
 title "Scatterplot Matrix for Iris Data";
 matrix sepallength petallength sepalwidth petalwidth
 / group=species;
run;
title;
```
PBSPLINE option

Sample library member: SGSCPLT

Note: For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a graph with multiple independent scatter plots with fitted splines.

Output

![Multi-Celled Spline Curve for Species Virginica](image)

Program

```sas
proc sgscatter data=sashelp.iris(where=(species="Virginica"));
 title "Multi-Celled Spline Curve for Species Virginica";
 plot (sepallength sepalwidth)*(petallength petalwidth)
 / pbspline;
run;
title;
```

Program Description

Create the scatter plots. In the PLOT statement, the PBSPLINE option fits the spline curves to the scatter points.

```sas
proc sgscatter data=sashelp.iris(where=(species="Virginica"));
 title "Multi-Celled Spline Curve for Species Virginica";
 plot (sepallength sepalwidth)*(petallength petalwidth)
```
Example 3: Creating a Simple Comparative Panel

**Features:**
- COMPARE statement
- GROUP option

**Sample library member:** SGSCCMP

**Note:** For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a comparative scatter plot with grouped data.

**Output**

![Iris Data: Length and Width](image)

**Program**

```sas
proc sgscatter data=sashelp.iris;
 title "Iris Data: Length and Width";
 compare x=(sepallength petallength)
 y=(sepalwidth petalwidth)
 / group=species;
run;
title;
```
Program Description

Create the scatter plot. In the COMPARE statement, the GROUP= option groups the data by the SPECIES variable.

```sas
proc sgscatter data=sashelp.iris;
 title "Iris Data: Length and Width";
 compare x=(sepallength petallength)
 y=(sepalwidth petalwidth)
 / group=species;
run;
run;
title;
```

Example 4: Creating a Comparative Panel with Regression Fits and Confidence Ellipses

- **Features:**
  - COMPARE statement
  - REG option
  - ELLIPSE option
  - SPACING option

- **Sample library member:** SGSCCM1

- **Note:** For information about the SAS Sample Library, see “About the SASHELP and the SAS Sample Library” on page 11.

This example shows a comparative panel of scatter plots with regression fits and confidence ellipses.
Program

proc sgscatter data=sashelp.iris(where=(species="Versicolor"));
  title "Versicolor Length and Width";
  compare y=(sepalwidth petalwidth)
    x=(sepallength petallength)
    / reg ellipse=(type=mean) spacing=4;
run;
title;

Program Description

Create the scatter plot. In the COMPARE statement, the REG option fits the regression lines and the ELLIPSE option creates the confidence ellipses and sets the ellipse type to MEAN. The SPACING= option adds spacing between plots.

proc sgscatter data=sashelp.iris(where=(species="Versicolor"));
  title "Versicolor Length and Width";
  compare y=(sepalwidth petalwidth)
    x=(sepallength petallength)
    / reg ellipse=(type=mean) spacing=4;
run;
title;
Chapter 7
Common Concepts

Overview of the Common Concepts

These topics describe concepts that are similar among the SGPANEL, SGPLOT, and SGSCATTER procedures.

Table 7.1 Common Concepts

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Plot Type Compatibility” (p. 1258)</td>
<td>explains which types of plots can be used together in a graph</td>
</tr>
<tr>
<td>“Plot Axes” (p. 1259)</td>
<td>describes the axis types that are supported by the procedure</td>
</tr>
<tr>
<td>“Legends” (p. 1260)</td>
<td>explains how legends are created automatically, and how to create customized legends</td>
</tr>
</tbody>
</table>
“Automatic Differentiation of Visual Attributes” (p. 1264) explains when different style attributes are automatically assigned to plots, and how to force the procedure to use different style attributes if they are not automatically assigned.

“Fit Policies for Axis Tick Values, Curve Labels, and Data Labels” (p. 1265) describes how to split the text for data labels, curve labels, and axis tick mark values when there is not enough room to display the text normally.

“Marker Fills and Outlines” (p. 1267) describes how you can change the appearance of both the marker fill and its outline for graphs that contain markers.

Plot Type Compatibility

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
<td></td>
</tr>
<tr>
<td>SGPLOT</td>
<td></td>
</tr>
</tbody>
</table>

There are four basic types of plots that you can create with the SGPLOT and SGPANEL procedures.

**Basic plots:**

- BAND
- HBARPARM
- NEEDLE
- SPLINE
- BUBBLE
- HEATMAP
- POLYGON
- STEP
- BLOCK
- HEATMAPPARM
- REFLINE
- TEXT
- DROPLINE
- HIGHLOW
- SCATTER
- VBARPARM
- FRINGE
- LINEPARM
- SERIES
- VECTOR

**Fit and confidence plots:**

- ELLIPSE*
- LOESS
- PBSPLINE
- REG

**Distribution plots:**

- DENSITY
- HBOX
- HISTOGRAM
- VBOX

**Categorization plots:**

- DOT
- HLINE
- VLINE
- HBAR
- VBAR
- WATERFALL*

- HBARBASIC
- VBARBASIC

* The plot or chart is available only in the SGPLOT procedure.
Not all of the plot types can be used together in the same PROC SGPLOT or PROC SGPANEL step. The following table shows which of the plot types can be used together:

**Table 7.2  Plot Type Compatibility**

<table>
<thead>
<tr>
<th></th>
<th>Basic</th>
<th>Fit and Confidence</th>
<th>Distribution</th>
<th>Categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit and Confidence</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Categorization</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

All overlays must have the same orientation. For example, you cannot specify an HBAR statement with a VLINE statement. However, you can specify HBAR with an HLINE statement.

Here are exceptions to plot type compatibility:

- FRINGE plots can be combined with all plots except for box plots and categorical plots.
- HBARPARAM and VBARPARAM charts cannot be combined with fit and confidence plots.
- REFLINE statements can be combined with all the plot types.
- Box plots can be combined with basic plot types, reference lines, and other box plots.
- Bar charts can be combined with basic plot types using the HBARBASIC and VBARBASIC statements.
- Waterfall charts can be combined with basic plot types.

If you submit a PROC SGPLOT or PROC SGPANEL step that combines two incompatible plot statements, then an error appears in the log.

The procedure draws the plots in your graph in the same order that you specify the plot statements. Because of this, it is important to consider the order of your plot statements so that your plots do not obscure one another. For example, if you specify a BAND statement after a SCATTER statement, then the band plot might obscure the markers in your scatter plot. To correct this, you can reverse the order of the plot statements in your program. (You can also avoid obscuring your data by using the TRANSPARENCY= option to make your plots partially transparent.)

---

**Plot Axes**

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th>SGPANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGPLOT</td>
</tr>
</tbody>
</table>

The SGPANEL and SGPLOT procedures contain the following statements that enable you to change the type and appearance for the axes of the graph.
By default, the type of each axis is determined by the types of plots that use the axis and the data that is applied to the axis.

The procedures support the following axis types:

Discrete
The axis contains independent data values rather than a range of numeric values. Each distinct value is represented by a tick mark. Discrete is the default axis type for character data.

Linear
The axis contains a linear range of numeric values. Linear is the default axis type for numeric data.

Logarithmic
The axis contains a logarithmic range of values. The logarithmic axis type is not used as a default.

Time
The axis contains a range of time values. Time is the default axis type for data that uses a SAS time, date, or datetime format.

Some types of plot do not support all of the axis types. For example, needle plots cannot use a discrete vertical axis. See the documentation for each plot statement to determine whether any axis type restrictions apply.

### Legends

#### Some of the Uses for a Legend

A graphical legend provides a key to the marker symbols, lines, and other data elements that are displayed in a graph. Here are some of the situations where legends are useful:

- when a plot contains grouped markers (scatter plots, for example).
- when a plot contains lines that differ by color, marker symbol, or line pattern (series plots or step plots, for example).
- when a plot contains one or more lines or bands that require identification or explanation.
- when series plots with different data are overlaid in the graph, or fit lines are displayed with confidence bands, or density plots with different distributions are generated.
- when markers vary in color to show the values of a response variable. For this case, you would generate a continuous color legend.
The procedures do not automatically generate legends for all of the above situations. However, the mechanism for creating legends is simple and flexible.

**Using Discrete Legends**

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

The SGPANEL and SGPLOT procedures create a legend automatically based on the plot statements and options that you specify. The automatic legend functionality determines which information is likely to be useful in the legend. For example, in non-group situations, if there are two or more plot overlays, a legend is generated automatically and the plots are added to the legend.

You can create customized legends by using one or more KEYLEGEND statements. You can use the KEYLEGEND statement to control the contents, title, position, and border of the legend.

You can specify the labels that represent your plots in the legend by using the LEGENDLABEL= option in the corresponding plot statements.

You can override the automatic legend functionality in several ways. In the SGPANEL and SGPLOT procedures, legends are not generated automatically when you specify any of the following:

- KEYLEGEND statement
- NOAUTOLEGEND option in the procedure statement
- CURVELABEL= option for a plot
- a single plot or chart with no overlay and no group variable

In the SGSCATTER procedure, you can prevent legends by using the NOLEGEND option in the PLOT, COMPARE, and MATRIX statements.

The following rules apply to the content of an auto-generated legend:

- If a group variable is used, the first statement using a group variable is added to the legend. All other statements are ignored.
- You can suppress features of a legend that is generated for a fit plot (LOESS, REG, PBSPLINE) using options such as NOLEGCL1, NOLEGCLM, and NOLEGFIT.

The SGSCATTER procedure creates a legend automatically when you specify a GROUP= variable. You can use the NOLEGEND option to disable the legend. For all of the graph creation statements, you can use the LEGEND= option to specify the attributes of the legend.

**See Also**

- “KEYLEGEND Statement” on page 288 (SGPANEL procedure)
- “KEYLEGEND Statement” on page 807 (SGPLOT procedure)
Using Gradient Color Legends

A gradient color legend maps the data range of a response variable to a range of colors. Gradient legends can be used with the following plot statements in the SGPLOT and SGPANEL procedures.

- BUBBLE
- DOT
- HBAR
- HBARBASIC
- HBARPARM
- HEATMAP
- HEATMAPPARM
- TEXT
- HIGHLOW
- POLYGON
- SCATTER
- SERIES
- SPLINE
- VECTOR
- VBAR
- VBARBASIC
- VBARPARM
- WATERFALL

* The plot or chart is available only in the SGPLOT procedure.

Note: For heat maps, the gradient legend appears automatically.

In addition, gradient legends can be used with the PLOT, COMPARE, and MATRIX statements in the SGSCATTER procedure.

To generate the gradient legend, specify the COLORRESPONSE= option in any of those statements. The COLORRESPONSE= option indicates the numeric variable that is used to map colors to a continuous gradient. The COLORRESPONSE= option is used in conjunction with the GRADLEGEND feature.

The GRADLEGEND feature operates in different ways, depending on the procedure.

### Table 7.3 GRADLEGEND Feature

<table>
<thead>
<tr>
<th>Procedure</th>
<th>GRADLEGEND Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL and SGPLOT</td>
<td>The procedures support one or more GRADLEGEND statements. The GRADLEGEND statement can associate the gradient legend with a plot statement and can specify options for the legend. For example, you can use the GRADLEGEND statement to control the title, position, tick values, and border of the legend.</td>
</tr>
<tr>
<td>SGSCATTER</td>
<td>The PLOT, COMPARE, and MATRIX statements support a GRADLEGEND= option that controls the title, position, and border of the legend.</td>
</tr>
</tbody>
</table>

The following rules apply to a continuous color legend:

- The COLORRESPONSE= option must be specified in order for the legend to appear.
- The GRADLEGEND feature is responsible for creating the legend.
The GRADLEGEND feature has auto-legend capabilities. If you specify a COLORRESPONSE= option, a gradient legend automatically appears even if you do not specify the GRADLEGEND feature.

*Note:* When the auto-legend feature is in effect, only one legend is displayed. This is true even if you specify the COLORRESPONSE= option in multiple plot statements. To have more than one gradient legend, specify the desired GRADLEGEND statements, and specify the correct plot name for each GRADLEGEND statement.

For heat maps, the gradient legend appears automatically without specifying the COLORRESPONSE= option.

You can override the automatic legend functionality in two ways. Legends are not generated automatically when you specify either of the following:

- **KEYLEGEND** statement in the SGPLOT and SGPANEL procedures
- **NOGRADLEGEND** option in the PLOT, COMPARE, or MATRIX statements in the SGSCATTER procedure

The following examples create an automatic legend in the SGPLOT, SGPANEL, and SGSCATTER procedures:

```plaintext
proc sgplot data=sashelp.class;
 scatter x=weight y=height / colorresponse=age;
run;

proc sgpanel data=sashelp.class;
 panelby sex;
 bubble x=weight y=height size= age /
 colorresponse=age;
run;

proc sgscatter data=sashelp.class;
 plot (weight height) * age / colorresponse=age
 loess reg;
run;
```
The COLORMODEL= option, available in the plot statements, enables you to control the appearance of the color ramp that is used.

**See Also**

- “GRADLEGEND Statement” on page 170 (SGPANEL procedure)
- “GRADLEGEND Statement” on page 683 (SGPLOT procedure)

### Automatic Differentiation of Visual Attributes

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
<th>SGPANEL</th>
<th>SGPLOT</th>
<th>SGSCATTER</th>
</tr>
</thead>
</table>

Depending on the plots and options that you specify, the SGPLOT and SGPANEL procedures can automatically assign different style attributes to the plots in your graph. For example, if you specify two series plots, then each series plot automatically uses a different line color by default.

If different attributes are not assigned by default, then you can force the procedure to use different style attributes. You can accomplish this by using the CYCLEATTRS option in the PROC SGPLOT or PROC SGPANEL statement. For example, you can use the CYCLEATTRS option to assign different colors to a series plot and a scatter plot. You can also disable automatic attribute differentiation by using the NOCYCLEATTRS option in the PROC SGPLOT statement.

For all three procedures, grouped data values by default use the GraphData style elements for the presentation of each unique group value. You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified. For more information, see “Grouped Data” on page 1298.

**See Also**

- “CYCLEATTRS | NOCYCLEATTRS” on page 97 (SGPANEL procedure)
- “CYCLEATTRS | NOCYCLEATTRS” on page 608 (SGPLOT procedure)
Overview of Collision Avoidance

<table>
<thead>
<tr>
<th>Task</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>split the text at one or more characters that you specify</td>
<td>SPLITCHAR=</td>
</tr>
<tr>
<td>specify that the split characters are included in the displayed value</td>
<td>SPLITCHARNODROP</td>
</tr>
<tr>
<td>align the text horizontally (center, left, or right)</td>
<td>SPLITJUSTIFY=</td>
</tr>
</tbody>
</table>

These options are available for most of the plot statements in the SGPANEL and SGPLOT procedures. In the SGSCATTER procedure, the COMPARE, MATRIX, and PLOT statements support the options.

In the following example, the DATA step creates a column named SPEC with two values: *Teen* and *Pre-Teen*.

```ris
data class;
 set sashelp.class;
 where sex="F";
 length label $10;
 if age > 12 then label='Teen';
 else label='Pre-Teen';
run;
```

In this bar chart example, the procedure splits *Pre-Teen* at the hyphen (-) whenever the text does not fit within the bar width.
ods graphics / width=4.5in;
proc sgplot data=class;
    vbar name / response=weight
datalabel=label splitchar="-";
run;

Notice that the split character does not appear in the labels. To force the split character to appear, specify the SPLITCHARNODROP option.

**Fit Policies for Axes**

For axes in the SGPANEL and SGPlot procedures, you can specify split options for the fit policy. The FITPOLICY= option specifies the method that is used to fit tick mark values on the axis when there is not enough room to draw them normally.

The FITPOLICY= option supports a number of values that split, stagger, and rotate the values. FITPOLICY= also combines these options. For example, FITPOLICY=SPLITROTATE first attempts to use SPLIT and then ROTATE to fit the values.

The following examples use the fit policy to split axis values. The default split character is a space. You can override the default and specify the split character using the SPLITCHAR= option (not shown in the example). All three of these examples use the SPLITALWAYS fit policy. You might instead specify FITPOLICY=SPLIT if you want splitting to occur only on collision.

ods graphics / width=4in;
proc sgplot data=sashelp.heart;
    hbar deathcause;
yaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;

ods graphics / width=4in;
proc sgplot data=sashelp.heart;
    vbar deathcause;
xaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;

ods graphics / width=4in;
proc sgplot data=sashelp.heart;
    vbar deathcause;
xaxis fitpolicy=splitalways;
run;
ods graphics / reset=width;
Fit Policies for Bar Charts

In vertical bar charts, fit policies are available for data labels that appear above the bars. The DATALABELFITPOLICY= option specifies the method that is used to fit the data labels when the bars are not wide enough to display the labels normally.

The DATALABELFITPOLICY= option specifies whether the labels are rotated or split, or whether they are allowed to collide.

Marker Fills and Outlines

<table>
<thead>
<tr>
<th>Applicable Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPANEL</td>
</tr>
<tr>
<td>SGPLOT</td>
</tr>
<tr>
<td>SGSCATTER</td>
</tr>
</tbody>
</table>

When your graph contains markers, such as those found in scatter plots, the MARKERATTRS= option enables you to specify the marker color, size, and symbol. However, you might want to change the appearance of both the marker fill and its outline.

There are additional options that enable you to specify attributes for the fill and outlines of your markers.

- FILLEDOUTLINEDMARKERS specifies that markers have a fill and an outline.
- MARKERFILLATTRS= specifies the color of the marker fill.
- MARKEROUTLINEATTRS= specifies the color and thickness of the marker outline.

These options are available for the dot and scatter plots, series and step plots, line and needle plots, and fit plots in the SGPANEL and SGPLOT procedures. They are also available for the PLOT and COMPARE statements in the SGSCATTER procedure.

The options are typically used along with the MARKERATTRS= option and enable markers to be more customized. The options have a cumulative, overriding effect when used with MARKERATTRS=.

To specify attributes for marker fills and outlines, do the following:

1. Specify FILLEDOUTLINEDMARKERS in the plot statement.
For PROC SGSCATTER, specify FILLEDOUTLINEDMARKERS in the PLOT or COMPARE statement.

2. Make sure the marker uses a filled symbol. The marker symbol, derived either from the applied style or specified with the MARKERATTRS= option, must have the “Filled” suffix in its name. For example, the marker might be CircleFilled, DiamondFilled, TriangleFilled, and so on.

See the list of marker symbols on page 1275.

If the above two conditions are met, then you can use the MARKERFILLATTRS= and MARKEROUTLINEATTRS= options.

The marker attributes are obtained as follows:

- **MARKERATTRS=** provides the marker size and symbol. This option does not provide the marker fill color.
- **MARKERFILLATTRS=** provides the marker fill color.
- **MARKEROUTLINEATTRS=** provides the color and thickness of the marker outline.

The following table shows this information at a glance:

<table>
<thead>
<tr>
<th>Option</th>
<th>Color</th>
<th>Size</th>
<th>Symbol</th>
<th>Outline Color</th>
<th>Outline Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKERATTRS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKERFILLATTRS</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKEROUTLINEATTRS</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The following example shows how the three options work together to produce a scatter plot with yellow markers and red outlines.

```bash
ods graphics on / reset=all;
ods graphics on / width=4in;
Table 7.4 Yellow Markers with Red Outlines
proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
 markerfillattrs=(color=yellow)
 markeroutlineattrs=(color=red thickness=2)
 markerattrs=(symbol=circlefilled size=25);
run;
```

In the following example, the MARKERFILLATTRS= option is not specified. Because this option determines marker color when FILLEDOUTLINEDMARKERS is used, the marker color becomes the default color for the style (HTMLBlue). (The COLOR attribute in the MARKERATTRS= option is ignored.)
Table 7.5  Marker Color Uses the Default Value

In the following example, the markers are specified as CIRCLE, which is not filled. As a result, the options used to specify the fill and outline attributes are ignored.

Table 7.6  Markers Not Filled, Defaults Used

Note: The following code produces the same result as the previous example. In the following code, the SYMBOL= option is not specified, and the default marker symbol is used. Because the graph uses the HTMLBlue ODS style, the default marker symbol is CIRCLE.

proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markerlineattrs=(color=red thickness=2)
markerattrs=(symbol=circlefilled size=25
color=yellow);
run;

proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markerlineattrs=(color=red thickness=2)
markerattrs=(symbol=circle size=25);
run;

proc sgplot data=sashelp.class;
scatter x=age y=weight / filledoutlinedmarkers
markerfillattrs=(color=yellow)
markerlineattrs=(color=red thickness=2)
markerattrs=(size=25);
run;
Most statements provide options that enable you to specify attributes for the lines, fills, data markers, or text that is used in the display. For example, many plots provide a DATALABELATTRS= option that specifies the attributes of the data labels. This section discusses the general syntax for those options and the valid values that they accept.

A statement’s attribute options use the following general syntax:

\[ \text{OPTION-NAME} = \text{style-element | style-element (options) | (options)} \]

\textit{style-element}

name of a style element.

A style element is a named collection of style attributes that affects specific parts of your output. For example, a style element might specify the color and font properties of title text or the fill properties of a bar chart. An ODS style is a collection of style elements that provides specific visual attributes for your SAS output.

Only style attributes relevant for rendering the fill, line, data marker, or text are used.
Line Attributes and Patterns

Line options and patterns specify the appearance of particular lines in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

\[(\text{pattern=dashdashdot color=red});\]

options can be one or more of the following attributes.

**COLOR= color**

specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**PATTERN= line-pattern**

specifies the line pattern for the line. Line patterns can be specified as a pattern name or pattern number. The following list shows the line patterns.
Table 8.1  Commonly Used Line Patterns

<table>
<thead>
<tr>
<th>Pattern Number</th>
<th>Pattern Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ShortDash</td>
<td>··</td>
</tr>
<tr>
<td>4</td>
<td>MediumDash</td>
<td>·</td>
</tr>
<tr>
<td>5</td>
<td>LongDash</td>
<td>··</td>
</tr>
<tr>
<td>8</td>
<td>MediumDashShortDash</td>
<td>·· ·</td>
</tr>
<tr>
<td>14</td>
<td>DashDashDot</td>
<td>···</td>
</tr>
<tr>
<td>15</td>
<td>DashDotDot</td>
<td>··· ·</td>
</tr>
<tr>
<td>20</td>
<td>Dash</td>
<td>··</td>
</tr>
<tr>
<td>26</td>
<td>LongDashShortDash</td>
<td>·· ·</td>
</tr>
<tr>
<td>34</td>
<td>Dot</td>
<td>·································</td>
</tr>
<tr>
<td>35</td>
<td>ThinDot</td>
<td>·· ·</td>
</tr>
<tr>
<td>41</td>
<td>ShortDashDot</td>
<td>·· · · · · · · · · · · · · · · ·</td>
</tr>
<tr>
<td>42</td>
<td>MediumDashDotDot</td>
<td>·· · · · · · · · · · · · · · · ·</td>
</tr>
</tbody>
</table>

THICKNESS= $n <$units$>

specifies the thickness of the line. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

Table 8.2  Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
Fill Attributes

Fill options specify the appearance of an area fill in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

```
(color=red transparency=.5);
```

_options_ can be one or more of the following attributes.

- **COLOR=** _style-reference | color_
  
  Specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

- **TRANSPARENCY=** _number_
  
  Specifies the degree of the transparency of the filled area.

<table>
<thead>
<tr>
<th>Default</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 (completely opaque) to 1 (completely transparent)</td>
</tr>
<tr>
<td>Note</td>
<td>Not all fill options enable you to specify the transparency attribute. For example, the FILLATTRS= option in the BAND statement does not support transparency. The reason is that the BAND plot statement includes its own TRANSPARENCY= option.</td>
</tr>
<tr>
<td>Example</td>
<td>fillattrs=(transparency=0.5)</td>
</tr>
</tbody>
</table>

See Also

- “General Syntax for Attribute Options” on page 1271
- “Style Elements for Use with ODS Graphics” on page 1300

Marker Attributes and Symbols

Marker options specify the appearance of the markers in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

```
(symbol=diamond color=red);
```
options can be one or more of the following attributes.

**COLOR= color**
specifies the color of the markers. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**SIZE= n <units >**
specifies the size of the markers. You can also specify the unit of measurement. The default unit is pixels.

The following table contains the units that are available:

*Table 8.3 Measurement Units*

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

**SYMBOL= symbol-name**
specifies the symbol for the markers. The following list shows the marker symbols that you can use:

*Table 8.4 Supported Marker Symbols*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArrowDown</td>
<td></td>
</tr>
<tr>
<td>Asterisk</td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td></td>
</tr>
<tr>
<td>CircleFilled</td>
<td></td>
</tr>
<tr>
<td>Diamond</td>
<td></td>
</tr>
<tr>
<td>DiamondFilled</td>
<td></td>
</tr>
<tr>
<td>GreaterThan</td>
<td></td>
</tr>
<tr>
<td>Hash</td>
<td></td>
</tr>
<tr>
<td>StarFilled</td>
<td></td>
</tr>
<tr>
<td>Tack</td>
<td></td>
</tr>
<tr>
<td>Tilde</td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td></td>
</tr>
<tr>
<td>TriangleFilled</td>
<td></td>
</tr>
<tr>
<td>TriangleDown</td>
<td></td>
</tr>
<tr>
<td>TriangleDownFilled</td>
<td></td>
</tr>
<tr>
<td>TriangleLeft</td>
<td></td>
</tr>
</tbody>
</table>
Text Attributes

Text options specify the appearance of particular text elements in the plot. You can specify the appearance by using a style element or by specifying specific options. If you specify a style element, you can also specify options to override specific appearance attributes.

When specifying the options, use a name=value pair format enclosed in parentheses. If you specify more than one name=value pair, separate them by a space. For example:

(family="Arial" size=10pt color=red);

options can be one or more of the following attributes.

- **COLOR=style-reference | color**
  Specifies the color of the text. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

- **FAMILY=“font-family”**
  Specifies the font family for the text. The SAS ODS styles use TrueType system fonts.

- **SIZE= n <units>**
  Specifies the font size of the text. You can also specify the unit of measurement. The default unit is pixels.
The following table contains the units that are available:

Table 8.5  Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

Note For some data and curve labels, font sizes might be automatically reduced in order to achieve less overlapping. This behavior affects all data labels with non-fixed positions, and curve labels for which you have specified a curve label position of MIN or MAX.

**STYLE=** **ITALIC | NORMAL**
specifies the font style of the text.

**WEIGHT=** **BOLD | NORMAL**
specifies the font weight of the text.

System fonts can be used by the SAS ODS Graphics procedures. These fonts include TrueType, Type1, and Opentype fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial. System fonts must be installed on the operating system, and then registered with SAS using the FONTREG procedure.

**See Also**

- “General Syntax for Attribute Options” on page 1271
- “Style Elements for Use with ODS Graphics” on page 1300

**Units of Measurement**

Some options enable you to specify the unit of measurement as part of the value.

For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.
The following table contains the units that are available:

**Table 8.6 Measurement Units**

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>

---

**Color-Naming Schemes**

**Introduction to Color-Naming Schemes**

The valid color-naming schemes are as follows:

- RGB (red green blue)
- CMYK (cyan magenta yellow black)
- HLS (hue lightness saturation)
- HSV (hue saturation brightness), also called HSB
- Gray scale
- SAS color names (from the SAS Registry)
- SAS Color Naming System (CNS)

**RGB Color Codes**

An RGB color code defines a color by combining red, green, and blue colors in different ratios. All the colors combined together create white. The absence of all color creates black.

Color names are in the form CXrrggbb, where the following is true:

- CX indicates to SAS that this is an RGB color specification.
- rr is the red component.
- gg is the green component.
- bb is the blue component.
The components are given as hexadecimal numbers in the range 00 through FF (0% to 100%). Each hexadecimal number indicates how much of the red, green, or blue is included in the color. Lower percentage values are darker and higher values are lighter. This scheme allows for up to 256 levels of each color component (more than 16 million different colors).

**Table 8.7 Examples of RGB Color Values**

<table>
<thead>
<tr>
<th>Color</th>
<th>RGB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>CXFF0000</td>
</tr>
<tr>
<td>Green</td>
<td>CX00FF00</td>
</tr>
<tr>
<td>Blue</td>
<td>CX0000FF</td>
</tr>
<tr>
<td>White</td>
<td>CXFFFFFF</td>
</tr>
<tr>
<td>Black</td>
<td>CX000000</td>
</tr>
</tbody>
</table>

**CMYK Color Codes**

CMYK is a color-naming scheme used in four-color printing. CMYK is based on the principles of objects reflecting light. Combining equal values of cyan, magenta, and yellow produces process black, which might not appear as pure black. The black component (K) of CMYK can be used to specify the level of blackness in the output. A lack of all colors produces white, when the output is printed on white paper.

Color names are of the form *ccmmyykk*, where the following is true:

- *cc* is the cyan component.
- *mm* is the magenta component.
- *yy* is the yellow component.
- *kk* is the black component.

The components are given as hexadecimal numbers in the range 00 through FF, where higher values are darker and lower values are brighter. This scheme allows for up to 256 levels of each color component. Quotation marks are required when the color value starts with a number instead of a letter.

**Table 8.8 Examples of CMYK Color Values**

<table>
<thead>
<tr>
<th>Color</th>
<th>CMYK Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>00FFFF00</td>
</tr>
<tr>
<td>Green</td>
<td>FF00FF00</td>
</tr>
<tr>
<td>Blue</td>
<td>FFFF0000</td>
</tr>
<tr>
<td>White</td>
<td>00000000</td>
</tr>
</tbody>
</table>
Note: You can specify a CMY value by making the \( kk \), the color's black component, zero (00).

CMYK color specifications are for devices that support four colors. If a CMYK color is used on a three-color device, the device processes the color specification. The resulting colors might not be as expected. Different CMYK colors might map to the same device color because a four-color space supports more colors than a three-color space.

**HLS Color Codes**

With the HLS color naming-scheme, you specify colors in terms of hue, lightness, and saturation levels.

HLS color names are of the form \( Hhhhlss \), where the following is true:

- \( H \) indicates that this is an HLS color specification.
- \( hhh \) is the hue component.
- \( ll \) is the lightness component.
- \( ss \) is the saturation component.

The components are given as hexadecimal numbers. The hue component has the range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal). Both the lightness and saturation components are hexadecimal and scaled to a range of 0 to 255 expressed with values of 00 through FF (0% to 100%). Thus, they provide 256 levels for each component.

**Table 8.9 Examples of HLS Color Codes**

<table>
<thead>
<tr>
<th>Color</th>
<th>HLS Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>H07880FF</td>
</tr>
<tr>
<td>Green</td>
<td>H0F080FF</td>
</tr>
<tr>
<td>Blue</td>
<td>H00080FF</td>
</tr>
<tr>
<td>Light gray</td>
<td>H000BB00</td>
</tr>
<tr>
<td>White*</td>
<td>HxxxxFF00, such as H000FF00</td>
</tr>
<tr>
<td>Black*</td>
<td>Hxxxx0000 such as H0000000</td>
</tr>
</tbody>
</table>

* When the saturation is set to 00, the color is a shade of gray that is determined by the lightness value. Therefore, white is defined as HxxxxFF00 and black as Hxxxx0000, where xxxx can be any hue.
HSV (or HSB) Color Codes

Specify the HSV color-naming scheme in terms of hue, saturation, and value (or brightness) components.

HSV color names are of the form Vhhhssvv, where the following is true:

- V indicates that this is an HSV color specification.
- hhh is the hue component.
- ss is the saturation component.
- vv is value or brightness component.

The components are given as hexadecimal numbers. The hue component has the range of 000 through 168 hexadecimal (168 hexadecimal is equivalent to 360 decimal). Both the saturation and value (brightness) components are hexadecimal, scaled to a range of 0 to 255, and expressed with values of 00 through FF. Thus, they provide 256 levels for each component.

### Table 8.10  Examples of HSV (or HSB) Color Codes

<table>
<thead>
<tr>
<th>Color</th>
<th>HSV Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>V000FFFF</td>
</tr>
<tr>
<td>Green</td>
<td>V078FFFF</td>
</tr>
<tr>
<td>Blue</td>
<td>V0F0FFFF</td>
</tr>
<tr>
<td>Light gray</td>
<td>V.xxx00BB such as V07900BB</td>
</tr>
<tr>
<td>White</td>
<td>V.xxx0FF such as V07900FF</td>
</tr>
<tr>
<td>Black*</td>
<td>V.xxx0000 such as V0790000</td>
</tr>
</tbody>
</table>

* When the saturation is set to 00, the color is a shade of gray. The value component determines the intensity of gray level. The xxx can be any hue.

Gray-Scale Color Codes

Specify the lightness or darkness of gray using the word GRAY and a lightness value. Gray-scale color codes are of the form GRAYll. The value ll is the lightness of the gray and is given as a hexadecimal number in the range 00 through FF. This scheme allows for 256 levels on the gray scale.

**Note:** GRAY, without a lightness value, is a SAS color name defined in the SAS registry. (See “SAS Color Names and RGB Values in the SAS Registry” on page 1282.) Its value is CX808080. Invalid color specifications are mapped to GRAY.
Table 8.11  Examples of Gray-Scale Color Codes

<table>
<thead>
<tr>
<th>Color</th>
<th>Gray-Scale Color Codes</th>
<th>RGB Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>white</td>
<td>GRAYFF</td>
<td>CXFFFFFF</td>
</tr>
<tr>
<td>light gray</td>
<td>GRAYC0</td>
<td>CXC0C0C0</td>
</tr>
<tr>
<td>dark gray</td>
<td>GRAY40</td>
<td>CX404040</td>
</tr>
<tr>
<td>Black</td>
<td>GRAY00</td>
<td>CX000000</td>
</tr>
</tbody>
</table>

SAS Color Names and RGB Values in the SAS Registry

In the SAS Registry, SAS provides a set of color names and RGB values that you can use to specify colors. These color names and RGB values are common to most web browsers. You can specify the name itself or the RGB value associated with that color name. To view the color names as associated RGB values that are defined in the registry, submit the following code;

```sas
proc registry list
 startat="COLORNAMES";
run;
```

SAS prints the output in the SAS log.

Color Naming System (CNS) Values

With CNS, you specify a color value by specifying lightness, saturation, and hue, in that order, using the terms shown in the following table.

Table 8.12  Color Naming System Values

<table>
<thead>
<tr>
<th>Lightness</th>
<th>Saturation</th>
<th>Hue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Gray</td>
<td>Blue</td>
</tr>
<tr>
<td>Very Dark</td>
<td>Grayish</td>
<td>Purple</td>
</tr>
<tr>
<td>Dark</td>
<td>Moderate</td>
<td>Red</td>
</tr>
<tr>
<td>Medium</td>
<td>Strong</td>
<td>Orange/Brown</td>
</tr>
<tr>
<td>Light</td>
<td>Vivid</td>
<td>Yellow</td>
</tr>
<tr>
<td>Very Light</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Follow these rules when you are determining the CNS color name:

- The lightness values black and white should not be used with saturation or hue values.
- If not specified, medium is the default lightness value and vivid is the default saturation value.
- Gray is the only saturation value that can be used without a hue.
- Unless the color that you want is black, white, or some form of gray, you must specify at least one hue.

One or two hue values can be used in the CNS color name. When using two hue values, the hues must be adjacent to each other in the following list: blue, purple, red, orange/brown, yellow, green, and then returning to blue. When two hues are used, the resulting color is a combination of both colors. Use the suffix *ish* to reduce the effect of a hue when two hues are combined. Reddish purple is less red than red purple. If you are using a color with an *ish* suffix, this color must precede the color without the *ish* suffix.

Color names can be written in the following ways:

- without space separators between words
- with an underscore to separate words
- with a space to separate words, enclosed in quotation marks

For example, the following are all valid color specifications:

- verylightmoderatepurplishblue
- very_light_moderate_purplish_blue
- “very light moderate purplish blue”

**Note:** If a CNS color name is also a color name in the SAS Registry, the SAS Registry color value takes precedence. Some CNS color names and color names in the SAS Registry have different color values. To use a CNS color value when the color name is also in the SAS Registry, do the following:

- Include a space to separate the words.
- Enclose the entire color name in quotation marks.
Part 3

Controlling the Procedure Output

Chapter 9
Controlling the Appearance of Your Graphs .......................... 1287

Chapter 10
Managing Your Graphics with ODS ................................. 1309
Chapter 9
Controlling the Appearance of Your Graphs

Using Plot Options to Control Graph Appearance

Overview of the Appearance Options
Specifying a Style Element
Specifying Hardcoded Values
Specifying a Style Element with Hardcoded Values

Using Data Skins
Subpixel Rendering

Output for Grouped versus Non-Grouped Data
Non-Grouped Data
Grouped Data

Style Elements for Use with ODS Graphics

Using Plot Options to Control Graph Appearance

Overview of the Appearance Options

ODS styles enable you to control the overall appearance of the graphs. The ODS Graphics procedures also enable you to control the appearance of particular graphics elements in a graph. Graphics elements include lines, bars, markers, text, and so on.

Many ODS Graphics procedure statements have options and suboptions that control the appearance of different parts of a plot or graph. Default visual attributes of various graphics elements are derived from the specific style elements of the active style. By using appearance options in your procedure statements, you can change the appearance of one or more aspects of your graph without changing the overall style.

For example, the following statement specifies that the mean value confidence limits (for a regression plot) using the GraphConfidence2 style element instead of the default GraphConfidence style element:

reg x=height y=weight / clmattrs=GraphConfidence2;

You can specify values for appearance options by using three different methods:

• specify a style element.

density height / lineattrs=graphfit2;

Note: This is the preferred method.
See “Specifying a Style Element” on page 1288.

- specify hardcoded values.

  \texttt{density height / lineattrs=\{pattern=dashdashdot color=red\};}

  This method overrides one or more attributes of the style element. See “Specifying Hardcoded Values” on page 1289.

- specify a style element, but override one or more attributes with hardcoded values. This method combines the first two methods.

  \texttt{density height / lineattrs=graphfit2 \{pattern=dashdashdot\};}

  See “Specifying a Style Element with Hardcoded Values” on page 1290.

The appearance options and their values are specific to each statement. For complete documentation about the statements and their options, see the syntax section for the appropriate procedure and statement.

**Specifying a Style Element**

You can change the visual attributes that are used for a graphics element by specifying a particular style element for any appearance option. Graphics elements include lines, bars, markers, text, and so on.

For example, the graph shown here is a histogram with a normal density curve. By default, the visual attributes of the density curve are specified by the style attributes within the style element GraphFit.

Table 9.1  **Histogram with Density Curve That Uses the Default Style Element**

<table>
<thead>
<tr>
<th>Height</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>61</td>
<td>30</td>
</tr>
<tr>
<td>62</td>
<td>40</td>
</tr>
<tr>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>66</td>
<td>80</td>
</tr>
<tr>
<td>67</td>
<td>90</td>
</tr>
</tbody>
</table>

You can use the LINEATTRS= option in the DENSITY statement to change the style element that is used for the line attributes. For example, when you are using the HTMLBlue style, specifying the GraphFit2 style element changes the density curve line to an orange color.

\texttt{density height / lineattrs=graphfit2;}

\texttt{proc sgplot data=sashelp.class}
\texttt{   noautolegend;}
\texttt{   histogram height;}
\texttt{   density height;}
\texttt{   run;}

1288  Chapter 9  •  Controlling the Appearance of Your Graphs
The full code is below.

**Table 9.2  Histogram with Density Curve That Specifies a Style Element**

```r
proc sgplot data=sashelp.class
 noautolegend;
 histogram height;
 density height / lineattrs=graphfit2;
run;
```

Specifying a style element is the preferred way to change the appearance of a graphics element. Visual attributes that are referenced by the style element are chosen to provide consistency and appropriate emphasis based on display principles for statistical graphics. If you later change the style for the graph, the graphics element is compatible with the new style.

**See Also**

“Style Elements for Use with ODS Graphics” on page 1300

**Specifying Hardcoded Values**

In some cases it is important to have a specific visual effect, but it is not necessary for the plot to be reused with different styles. In such a case, you can specify hardcoded values for the visual attributes in the appearance option.

For example, you could use the following statement to set the density curve attributes:

```r
density height / lineattrs=(pattern=dashdashdot color=red);
```

**Table 9.3  Using Hardcoded Values**

```r
proc sgplot data=sashelp.class
 noautolegend;
 histogram height;
 density height / lineattrs=(pattern=dashdashdot color=red);
run;
```

The result is a red density curve with a DashDashDot pattern.

In general, it is recommended that you specify the style element rather than hardcoded values. Style elements are designed to derive all of the relevant visual attributes from the applied style. When you specify a hardcoded value for the line color, as in this example, the color is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new...
style. Also, a hardcoded color could be exactly the same color as the wall color of another style, and become indistinguishable from the wall.

For example, if you change the overall style to Journal, which uses only gray-scale colors, the color for the curve is still red. This result might not be desirable.

You use a standard syntax to hardcode colors, line thickness, line patterns, and marker symbols.

For more information about this syntax, see the following topics:

- “Color-Naming Schemes” on page 1278
- “Units of Measurement” on page 1277
- List of Line Patterns on page 1272
- List of Marker Symbols on page 1275

**Specifying a Style Element with Hardcoded Values**

You can specify a style element, but override one or more attributes of that style element with hardcoded values.

This example modifies a density curve. The example specifies the GraphFit2 style element for line attributes, but also specifies a particular line pattern with a hardcoded value.

```
density height / lineattrs=graphfit2(pattern=dashdashdot);
```

**Table 9.4 Using a Hardcoded Value with a Style Element, Default Style**

If you change the overall style to Journal, the color for this curve changes as well. However, the pattern remains DashDashDot because it was hardcoded.

Always be careful when you hardcode a value. When you specify a hardcoded value for the line pattern, as in this example, the pattern is no longer derived from the specified style element. If you later change the style that is applied to the graph, the hardcoded attribute might conflict with the new style.
Using Data Skins

Data skins add a heightened visual effect to two-dimensional plots. Each skin uses shading, highlighting, and shadowing to give the appearance of contour and depth to certain elements of a graph, including the legend. For plots, the effect is generated by filters and is applied to filled areas, markers, and lines. When a data skin is applied to a filled area, it does not change the underlying fill color and pattern of the area. Typically, a data skin sets the area fill outline color to black. The outline color is controlled by the filters that generate the skin and is not controlled by the ODS style attributes or any custom outline attributes that are specified. For very small or very narrow filled areas, the data skin might not draw an outline around the filled area. For filled outlined markers, the outline color is determined by the ODS style attributes or by any custom marker attributes that are specified.

The effect that a data skin has on a filled area depends on the skin type, and on the size and color of the filled area. Because the ODS style determines the fill color by default, the effect can depend on the ODS style. Some skins have a greater effect than others. Most of the skins work best with lighter colors over a medium to large filled area. Over small filled areas and with some fill colors, the effect can be significantly reduced.

Note: Some ODS styles such as JOURNAL2 and MONOCHROMPRINTER use pattern fill for certain areas rather than color fill. For these styles, data skins have no effect on the pattern-filled areas.

You can apply data skins to filled areas, markers, and lines in a plot. The data skins include CRISP, GLOSS, MATTE, PRESSED, and SHEEN. The following figure shows the effect of each data skin on filled bars and bubbles with the default HTMLBlue ODS style. A display with no data skin applied is included for comparison.

![Figure 9.1 Data Skins Applied to Filled Bars and Bubbles](image)

The next figure shows each of the data skins applied to large HOMEDOWNFILLED markers.
The effect of a data skin on filled markers is more apparent when the markers are enlarged.

Except for the GLOSS data skin, the data skins also affect the appearance of plot lines and the outlines for unfilled markers and bubbles. They do not affect the outlines of unfilled bars, boxes, and so on. As with filled areas, the effect of data skins on lines varies with skin type and line color. It is also more apparent when the thickness of the lines is increased. The skins do not change the color of the lines. They add subtle effects such as drop shadows that enhance their appearance. The following figures show each of the data skins applied to plot lines, unfilled bubbles, and unfilled markers.
For all plots that support data skins, the GraphSkin:DataSkin style element in the active style specifies by default the data skin that is applied. For an individual plot, you can use the DATASKIN= option in the plot statement to override the data skin that is specified by the current style. You can set the following values for the style GraphSkin:DataSkin element and the DATASKIN= options: NONE, SHEEN, GLOSS, PRESSED, CRISP, or MATTE.

In many cases, the maximum number of skinned graphical elements is limited to 200 per plot for performance reasons. For graphs that contain multiple plots, this limit applies to each plot and not to the entire graph. A skinned graphical element can be a bar, bubble, marker, series line, and so on. It does not necessarily correlate with the number of observations in the plot data. If this limit is exceeded for a plot, the specified data skin is not applied to that plot, and the following warning appears in the SAS log:

**NOTE:** Data skin has been disabled because the threshold has been reached. You can set DATASKINMAX=nnn in the ODS GRAPHICS statement to restore data skin.
In that case, you can use the DATASKINMAX= option in your ODS GRAPHICS statement to increase the threshold to the value specified in the note (nnn) or to a higher value.

Note: A plot that contains a large number of skinned graphical elements might take several minutes to render.

Subpixel Rendering

You can specify subpixel rendering in order to generate smooth curves and more precise bar spacing.

Subpixel rendering is available for all plots and charts.

If the SUBPIXEL option is explicitly set in the ODS GRAPHICS statement, that setting is used. Otherwise, the system applies subpixel rendering when the option makes sense for the graph.

The ODS Graphics procedures can override the default setting by using their own SUBPIXEL option.

• To enable subpixel rendering, include the SUBPIXEL option in your PROC SGPANEL, PROC SGPLOT, or PROC SGSCATTER statement.

• To disable subpixel rendering, include the NOSUBPIXEL option in those statements.

In the following example, the curved lines can appear slightly jagged. The partial graph images show the effect of applying SUBPIXEL on curved lines.

Table 9.5 Effect of Subpixel Rendering on Curves

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="NOSUBPIXEL" /></td>
<td><img src="image2.png" alt="SUBPIXEL" /></td>
</tr>
</tbody>
</table>

In the previous example, the subpixel rendering produces smoother lines.

Subpixel rendering also has an effect on bar charts. When charts have a large number of bars that are very close together, slight variations in spacing between the bars that occur due to integer rounding can become more obvious. For more precise bar spacing, enable subpixel rendering.

Table 9.6 Effect of Subpixel Rendering on Spaces between Bars

<table>
<thead>
<tr>
<th>NOSUBPIXEL</th>
<th>SUBPIXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image3.png" alt="NOSUBPIXEL" /></td>
<td><img src="image4.png" alt="SUBPIXEL" /></td>
</tr>
</tbody>
</table>
Antialiasing must be enabled for this option to have any effect. Antialiasing is enabled by default. To re-enable antialiasing, use the ANTIALIAS=ON option in the ODS GRAPHICS statement.

### Output for Grouped versus Non-Grouped Data

#### Non-Grouped Data

**The Default Appearance of Non-Grouped Output**

For the SGPLOT and SGPANEL procedures, many plots use the same style element, GraphDataDefault, for graphics elements such as lines, bars, and markers. These plots have the same default appearance.

In the graph that is produced by the following code, the bar chart and line chart use visual attributes from the GraphDataDefault element. The visual attributes for the line (and markers if specified) are designed to coordinate with the bar fill areas.

**Table 9.7 Default Appearance of Non-Grouped Bars and Lines**

```
ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
(where=(date >= "01jun2005"d
and stock = "IBM"));
title "Stock Volume vs. Close";
vbar date / response=volume;
vline date / response=close y2axis;
run;
title;
ods graphics / reset=all;
```

However, when identical plot types are overlaid, the procedures instead use style elements named GraphData1 to GraphData12 (where n=12 for most styles).
In the following graph, the series lines have different colors and are easy to distinguish. The plots use the GraphData1, GraphData2, and GraphData3 style elements.

Table 9.8  Default Appearance When Three Series Plots Are Overlaid

```ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks
 (where=(date >= "01jan2004"d
 and stock = "IBM");
title "Stock Trend";
series x=date y=close;
series x=date y=low;
series x=date y=high;
run;
title;
ods graphics / reset=all;
```

The GraphData style elements use different marker symbols and fill colors to ensure that the plots differ in appearance. All line and marker colors are of different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another. Fill colors are based on the same hue but have less saturation, making them similar but more muted than the corresponding contrast colors.

Line patterns can also vary depending on the style that is used for the graph. Some styles vary line patterns so that elements in color plots can be distinguished even when the plot is sent to a black-and-white printer. Line patterns do not vary for the HTMLBlue style or any style that is defined with the ATTRPRIORITY="Color" option.

Note: If you have a bar-line overlay with multiple lines, the lines cycle through GraphData, whereas the bar remains GraphDataDefault.

Other plots use more specialized style elements for their appearance. For example, the line attributes for density, loess, PBSpline, and regression curves are determined by the GraphFit style element.

Here are some interactions for plots with specialized style elements:

- If you have a histogram with multiple density curves, the curve style pattern changes with the number of curves. For one curve, GraphFit is used. For two curves, GraphFit and GraphFit2 are used. For three or more, all curves switch over to GraphData. The histogram uses GraphDataDefault.

- If you have multiple fit plots (loess, regression, or PBSpline), the behavior is like the density curves. For one fit, GraphFit is used. For two fits, GraphFit and GraphFit2 are used. For three or more, all fits switch to GraphData. (This behavior also applies to the SGSCATTER procedure when multiple fits are specified.)

- If multiple ellipses are overlaid on another plot (such as a scatter), the ellipses cycle through GraphData, whereas the plot uses GraphDataDefault.

In general, if all of the plots have the same statement name (all scatter, all series, and so on), then the plots automatically cycle.

The CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SGPANEL procedure statements can be used to manually control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. The NOCYCLEATTRS option forces cycling to be off. These options are described in the next section.
Changing the Appearance of Non-Grouped Output

You can use plot options to specify particular GraphData style elements for your plots in order to achieve a different appearance.

In the following graph, the style elements GraphData3, GraphData4, and GraphData5 are used to change the default appearance of the series lines in the graph.

Table 9.9  Overlaid Series Plots with Particular GraphData Elements Specified

Note: To achieve a different appearance for the series lines, you can use any style element that has line properties. However, the GraphData style elements are very suitable for this purpose. The GraphData style elements have been carefully constructed with different hues but with the same brightness, which means that all 12 colors can be distinguished but none stands out more than another.

For more information, see “Specifying a Style Element” on page 1288.

You can also use the CYCLEATTRS | NOCYCLEATTRS options in the SGPLOT and SGPANEL procedure statements to control whether the plots have unique attributes. CYCLEATTRS forces cycling in situations where cycling is not automatic. If the plots do not have unique attributes by default, then you can specify the CYCLEATTRS option to force unique attributes for each plot in the graph. The NOCYCLEATTRS option prevents the procedure from assigning unique attributes.

The following two graphs show the same plots before and after the CYCLEATTRS option is used.

Table 9.10  The Effect of Specifying the CYCLEATTRS Option
In the second graph, the procedure retrieves the attributes from GraphData1 and GraphData2. The first graph retrieves all of its data attributes from GraphDataDefault.

Note: Depending on the size of your graph, the output might not look identical to what is shown here. See “About the Examples in This Book” on page 10.

**Grouped Data**

**The Appearance of Grouped Output**

The GROUP= option is used to plot data when a classification or grouping variable is available. By default, this option automatically uses the GraphData style elements for the presentation of each unique group value.

You can specify the color, line, and marker properties for group values directly. Appearance options override the corresponding defaults from the current style. These appearance options affect only the procedure in which they are specified.

To specify appearance options for a procedure, do the following:

1. In the SGPLOT and SGPANEL procedures, use the STYLEATTRS statement. Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options.
2. Specify the DATACOLORS=, DATACONTRASTCOLORS=, DATALINEPATTERNS=, and DATASYMBOLS= options in the PROC SGSCATTER statement.

You can also use attribute maps to specify particular visual attributes for group values of the data. Attribute mapping does not require the input data set to be ordered by the group variable. Attribute mapping is explained in the following section.

**Making the Appearance of Grouped Data Independent of Data Order**

When unique group values are gathered, they are internally recorded in the order in which they appear in the data. They are not subsequently sorted. This means that if an input data source is modified, sorted, or filtered, the order of the group values and their associations with GraphData might change.
The following two graphs show the same plots before and after the data is sorted.

**Table 9.11  The Effect That Sorting Has on Grouped Plot Attributes**

![Default Graph](image)

```ods graphics on / width=4.5in;
proc sgplot data=sashelp.stocks;
 where date >= "01jun2004"d;
 title "Default Graph";
 series x=date y=close / group= stock;
run;
title;
```

![Sorted Graph](image)

```proc sort data=sashelp.stocks out=stocks;
 by descending stock;
run;
proc sgplot data=stocks;
 where date >= "01jun2004"d;
 title "Sorted Graph";
 series x=date y=close / group= stock;
run;
title;
```

Because the position of the data in the sorted data set has changed, the sorted graph uses different GraphData style elements for the group values.

In many cases, this might not be a problem if you do not care which line pattern, marker symbols, or colors are associated with particular group values. However, in some cases you might care. For example, if you create many plots grouped by gender, you might want a consistent set of visual properties for females and males across plots, regardless of the input data order.

SG attribute maps enable you to ensure that particular visual attributes are applied to the data independent of data order.

The following output shows a bar chart that uses the MYATTRMAP discrete attribute map data set for its pink and blue bar colors. The FILLCOLOR= values determine the
For complete information about attribute maps, see Chapter 11, “Using Attribute Maps to Control Visual Attributes,” on page 1315.

### Style Elements for Use with ODS Graphics

In the ODS Graphics procedures, you can specify style elements to override the default appearance of particular graphics elements, such as data labels. Certain style elements were created to be used with specific plots. For example, the style element GraphFit2 is best used to modify secondary fit lines. The style element GraphConfidence2 was created to modify secondary confidence bands. However, many plots provide the option to override the style element with a different style element, or to specify particular attributes for a style element.

Here are examples that specify a style element and an attribute of a style element:

- **GraphData2** is an example of a style element.
- **GraphData2:Color** is an example of a style attribute.

The tables below list each style element, the portion of the graph that it affects, and the applicable attributes.

#### Table 9.12  Graph Style Elements: General Graph Appearance

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>Graph size and outer border appearance</td>
<td>OutputWidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OutputHeight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BorderColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BorderWidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CellPadding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CellSpacing</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>GraphAnnoLine</td>
<td>Annotation lines</td>
<td>ContrastColor LineStyle LineThickness</td>
</tr>
<tr>
<td>GraphAnnoShape</td>
<td>Annotation closed shapes such as circles, and squares</td>
<td>Color ContrastColor LineThickness LineStyle Transparency</td>
</tr>
<tr>
<td>GraphAnnoText</td>
<td>Annotation text</td>
<td>Font or font-attributes Color MarkerSize MarkerSymbol</td>
</tr>
<tr>
<td>GraphAxisLines</td>
<td>X, Y and Z axis lines</td>
<td>ContrastColor LineStyle LineThickness TickDisplay</td>
</tr>
<tr>
<td>GraphBackground</td>
<td>Background of the graph</td>
<td>Color Transparency</td>
</tr>
<tr>
<td>GraphBorderLines</td>
<td>Border around graph wall, legend border, borders to complete axis frame</td>
<td>ContrastColor LineThickness LineStyle</td>
</tr>
<tr>
<td>GraphDataText</td>
<td>Text font and color for point and line labels</td>
<td>Font or font-attributes Color</td>
</tr>
<tr>
<td>GraphFootnoteText</td>
<td>Text font and color for footnote(s)</td>
<td>Font or font-attributes Color</td>
</tr>
<tr>
<td>GraphGridLines</td>
<td>Horizontal and vertical grid lines drawn at major tick marks</td>
<td>Color ContrastColor DisplayOpts LineStyle LineThickness</td>
</tr>
<tr>
<td>GraphHeaderBackground</td>
<td>Background color of the legend title</td>
<td>Color</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>GraphLabelText</td>
<td>Text font and color for axis labels and legend titles</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphLegendBackground</td>
<td>Background color of the legend</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td>GraphMinorGridLines</td>
<td>Appearance of the grid lines.</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayOpts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphOutlines</td>
<td>Outline properties for fill areas such as bars, pie slices,</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td>box plots, ellipses, and histograms</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphReference</td>
<td>Horizontal and vertical reference lines and drop lines</td>
<td>ContrastColor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td>GraphTitleText</td>
<td>Text font and color for title(s)</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphUnicodeText</td>
<td>Text font for Unicode values</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphValueText</td>
<td>Text font and color for axis tick values and legend values</td>
<td>Font or font-attributes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Color</td>
</tr>
<tr>
<td>GraphWalls</td>
<td>Vertical wall(s) bounded by axes</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FrameBorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineThickness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ContrastColor</td>
</tr>
</tbody>
</table>

* Font-attributes can be one of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.
<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphBoxMean</td>
<td>Marker for mean</td>
<td>ContrastColor, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphBoxMedian</td>
<td>Line for median</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphBoxWhisker</td>
<td>Box whiskers and serifs</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConfidence</td>
<td>Primary confidence lines and bands, colors for bands and lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConfidence2</td>
<td>Secondary confidence lines and bands, color for bands, and contrast color for lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphConnectLine</td>
<td>Line for connecting boxes or bars</td>
<td>ContrastColor, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items, colors for filled areas, markers, and lines</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness, StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>GraphCutLine</td>
<td>Cutline attributes for a dendogram</td>
<td>Color, LineStyle</td>
</tr>
<tr>
<td>GraphDataDefault</td>
<td>Primitives related to non-grouped data items, colors for filled areas, markers, and lines</td>
<td>Color, ContrastColor, MarkerSymbol, MarkerSize, LineStyle, LineThickness, StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>GraphError</td>
<td>Error line or error bar fill, ContrastColor for lines, Color for bar fill</td>
<td>CapStyle, ContrastColor, Color, LineStyle, Transparency</td>
</tr>
<tr>
<td>GraphFit</td>
<td>Primary fit lines such as a normal density curve</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphFit2</td>
<td>Secondary fit lines such as a kernel density curve</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphFinal</td>
<td>Final data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>GraphInitial</td>
<td>Initial data for the waterfall chart. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphMissing</td>
<td>Properties for graph items representing missing values</td>
<td>ContrastColor, Color, MarkerSymbol, MarkerSize, LineStyle, LineThickness, Transparency</td>
</tr>
<tr>
<td>GraphOther</td>
<td>Other data for the graph. Color applies to filled areas.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphOverflow</td>
<td>Overflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphOutlier</td>
<td>Outlier data for the graph</td>
<td>ContrastColor, Color, MarkerSymbol, MarkerSize, LineStyle, LineThickness</td>
</tr>
<tr>
<td>GraphPrediction</td>
<td>Prediction lines</td>
<td>ContrastColor, Color, LineStyle, LineThickness, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>GraphPredictionLimits</td>
<td>Fills for prediction limits</td>
<td>ContrastColor, Color, MarkerSize, MarkerSymbol</td>
</tr>
<tr>
<td>GraphUnderflow</td>
<td>Underflow data for the graph. Color applies to filled areas. ContrastColor applies to markers and lines.</td>
<td>Color, ContrastColor, LineStyle, LineThickness, MarkerSize, MarkerSymbol, TextColor</td>
</tr>
<tr>
<td>GraphSelection</td>
<td>For interactive graphs, visual properties of selected item. Color for selected fill area, ContrastColor for selected marker or line.</td>
<td>ContrastColor, Color, MarkerSymbol, MarkerSize, LineStyle, LineThickness</td>
</tr>
<tr>
<td>ThreeColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>ThreeColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, NeutralColor, EndColor</td>
</tr>
<tr>
<td>TwoColorAltRamp</td>
<td>Line contours, markers, and data labels with segmented range color response</td>
<td>StartColor, EndColor</td>
</tr>
<tr>
<td>TwoColorRamp</td>
<td>Gradient contours, surfaces, markers, and data labels with continuous color response</td>
<td>StartColor, EndColor</td>
</tr>
</tbody>
</table>
### Table 9.14  Graphical Style Elements: Data Related (Grouped)

<table>
<thead>
<tr>
<th>Style Elements</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphData1</td>
<td>Primitives related to the first 7 grouped data items. Color applies to filled areas.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData2</td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td>GraphData3</td>
<td></td>
<td>FillPattern</td>
</tr>
<tr>
<td>GraphData4</td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphData5</td>
<td></td>
<td>MarkerSymbol</td>
</tr>
<tr>
<td>GraphData6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData8</td>
<td>Primitives related to the 8th through 11th grouped data items.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData9</td>
<td></td>
<td>ContrastColor</td>
</tr>
<tr>
<td>GraphData10</td>
<td></td>
<td>FillPattern</td>
</tr>
<tr>
<td>GraphData11</td>
<td></td>
<td>LineStyle</td>
</tr>
<tr>
<td>GraphData12</td>
<td>Primitives related to the 12th grouped data item.</td>
<td>Color</td>
</tr>
<tr>
<td>GraphData13*</td>
<td>Primitives related to the 13th through 15th grouped data items.</td>
<td>FillPattern</td>
</tr>
<tr>
<td>GraphData14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphData15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Style attribute FillPattern and style elements GraphData13–GraphData15 are available only with the JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER styles.

### Table 9.15  Display Style Elements

<table>
<thead>
<tr>
<th>Style Element</th>
<th>Portion of Graph Affected</th>
<th>Recognized Attributes</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphAltBlock</td>
<td>Alternate fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gablock&quot;)</td>
</tr>
<tr>
<td>GraphBand</td>
<td>Display options for confidence bands</td>
<td>DisplayOpts</td>
<td>&quot;Fill&quot;</td>
</tr>
<tr>
<td>GraphBar</td>
<td>Display options for bar charts</td>
<td>DisplayOpts</td>
<td>&quot;Fill outline&quot;</td>
</tr>
<tr>
<td>GraphBox</td>
<td>Display options for box plots</td>
<td>DisplayOpts</td>
<td>&quot;Fill caps mean&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CapStyle</td>
<td>&quot;Median outliers&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connect</td>
<td>&quot;Serif&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&quot;Mean&quot;</td>
</tr>
<tr>
<td>GraphBlock</td>
<td>Fill color for block plots</td>
<td>Color</td>
<td>GraphColors(&quot;gblock&quot;)</td>
</tr>
<tr>
<td>Style Element</td>
<td>Portion of Graph Affected</td>
<td>Recognized Attributes</td>
<td>Possible Values</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>GraphEllipse</td>
<td>Display options for confidence ellipses</td>
<td>DisplayOpts</td>
<td>&quot;Outline&quot;</td>
</tr>
<tr>
<td>GraphHistogram</td>
<td>Display options for histograms</td>
<td>DisplayOpts</td>
<td>&quot;Fill outline&quot;</td>
</tr>
<tr>
<td>GraphSkins</td>
<td>One or more display features</td>
<td>DataSkin</td>
<td>CRISP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GLOSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MATTE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRESSED</td>
</tr>
<tr>
<td>KpiSkin</td>
<td></td>
<td></td>
<td>BASIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MODERN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ONYX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SATIN</td>
</tr>
</tbody>
</table>
Chapter 10
Managing Your Graphics with ODS

Using the ODS GRAPHICS Statement

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. The settings that you specify remain in effect for all graphics in the current session until you change or reset these settings with another ODS GRAPHICS statement.

In SAS Studio, ODS GRAPHICS is ON by default.

You can use the ODS GRAPHICS statement to control many features, including the following:

- the size of the image
- the type and name of the image created
- whether features such as data tips, scaling, and anti-aliasing are used

The basic syntax for the ODS GRAPHICS statement is as follows:

```
ODS GRAPHICS < OFF | ON> </ option(s)>;
```

*Note:* For the complete statement syntax, see “ODS GRAPHICS Statement” on page 61.

See Also

“ODS GRAPHICS Statement” on page 61
Controlling the Size of Your Graph

Overview of Controlling the Size of Your Graph

The output size of a graph is determined by the following:

- For SGPLOT, SGPANEL, or SGSCATTER output, the preceding default sizes are used from the SAS Registry.
- DPI settings for the output destinations can be specified by the IMAGE_DPI= or DPI= options.
- Settings for width and height can be specified by the WIDTH= option and the HEIGHT= option for the ODS GRAPHICS statement. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 61.

Specifying Output Size with the ODS GRAPHICS Statement

You can control the output size of a graph by specifying the WIDTH= or HEIGHT= options in the ODS GRAPHICS statement, as shown in the following examples:

```ods graphics on / width=6in;
ods graphics on / height=4in;
```

The dimensions of the graph can be specified in pixels (for example, 200PX), inches (for example, 3IN), centimeters (for example, 8CM), or other units. The default dimensions of ODS Graphics are 640 pixels wide and 480 pixels high, and these values determine the default aspect ratio. The actual size of the graph in inches depends on your printer or display device. For example, if the resolution of your printer is 100 dots per inch and you want a graph that is 4 inches wide, you should set the width to 4in or 400px.

In the ODS GRAPHICS statement below, the WIDTH= option changes the width of the graph to 3.25 inches:

```ods graphics on /
 width=3.25in
 outputfmt=gif
 imagemap=on
 imagename="MyBoxplot"
 border=off;
```

Retaining the Aspect Ratio

It is possible to specify both the width and height in the ODS GRAPHICS statement, as shown in the following example:

```ods graphics on / width=4.5in height=3.5in;
```

However, it is highly recommended that only one of these options be specified at a time. Using one option at a time ensures that the design aspect ratio of the graph is maintained. For the aspect ratio, height=0.75 x width.

For example, when only width is specified, SAS uses the design aspect ratio of the graph to compute the appropriate height. Retaining the design aspect ratio of the graph is important in many cases as the graph might have a specific layout. For example, a plot
that has multiple columns, or that has a statistics table on the side needs a wide aspect ratio. Changing the aspect ratio for this plot by specifying both width and height might produce unpredictable results.

**Graph Scaling for User-Specified Image Size**

When the size or resolution (DPI) of a graph is changed due to a change in output destination or user specification, the graph is scaled accordingly. For example, when you use the WIDTH= option in the ODS GRAPHICS statement, the output size of the graph is computed based on the new size and the active DPI. All graphical elements such as marker size, line thickness, and font sizes are also scaled accordingly. This is done to prevent rapid shrinking or growth of the fonts and markers.

You can suppress this scaling with the ODS GRAPHICS statement options NOSCALE or SCALE=OFF.

For example:

```ods graphics on / scale=off;```

If you want to shrink your graph and keep the default sizes for fonts, use the NOSCALE or SCALE=OFF option in the ODS GRAPHICS statement.

Adding Data Tips and Other Features

With ODS GRAPHICS statement options, you can control borders and data tips. In the ODS GRAPHICS statement below, the BORDER=OFF option hides the border around the graph. The IMAGEMAP=ON option enables the generation of data tips and drill downs:

```ods graphics on /
   width=3.25in
   outputfmt=gif
   imagemap=on
   imagename="MyBoxplot"
   border=off;```

When viewing HTML output, data tips appear when you move a mouse over certain features of the graph. Data tips and URL drill down functionality are available only for the HTML destination. You can also specify the maximum number of distinct mouse over areas allowed before data tips are disabled by using the TOOLTIPMAX= option. There are many other ODS GRAPHICS options that you can use to control other aspects of your graphics. For the complete statement syntax, see “ODS GRAPHICS Statement” on page 61.

**TIP** Many plot statements include a TIP= option to specify the data tip information to be displayed when you specify IMAGEMAP=ON. In addition, the labels and formats for the TIP variables can be controlled with the TIPLABEL= and TIPFORMAT= options. You can also specify TIP=NONE to suppress the data tip for a particular plot in a graph overlay.
Resetting ODS GRAPHICS Options

You can specify the RESET option to change the values for these options back to their defaults. The ODS GRAPHICS statement uses the RESET=ALL option to set options back to their defaults:

   ods graphics on / reset=all;

You can also reset some of the ODS GRAPHICS options individually.

For example:

   ods graphics on / reset=width;

For the complete statement syntax, see “ODS GRAPHICS Statement” on page 61.
Part 4

SG Attribute Maps

Chapter 11
Using Attribute Maps to Control Visual Attributes .......................... 1315

Chapter 12
Using Discrete Attribute Maps .................................................. 1317

Chapter 13
Using Range Attribute Maps .................................................. 1331
Chapter 11
Using Attribute Maps to Control Visual Attributes

Overview of Attribute Maps

The attribute map feature provides a mechanism for controlling the visual attributes that are applied to specific data values in your graphs.

By default, many of the graphical attributes of a plot vary with the plot data. For example, when plots display grouped values, by default, the graphical attributes for each group value are selected from the GraphData1–GraphDataN style elements in data order. Changes in the data order can significantly change the appearance of the plot.

Attribute maps enable you to assign the same graphical properties to specific values or ranges of values regardless of data order or the data range. Attribute maps enable you to ensure that particular visual attributes are applied based on the value of the data instead of the position of the data in the data set. For more information, see “Making the Appearance of Grouped Data Independent of Data Order” on page 1298.

The ODS Graphics procedures support two types of attribute maps:

- discrete attribute map
  - maps discrete data values to graphical properties.
- range attribute map
  - maps ranges of continuous numeric values to graphical properties.

About Discrete Attribute Maps

A discrete attribute map maps discrete values to graphical properties. For example, consider the following plot of student height grouped by sex. You can use a discrete attribute map to assign pink bars to females and blue bars to males, as shown in the following figure.
Regardless of data order, the same plot colors are applied to the group values.

**See Also**

Chapter 12, “Using Discrete Attribute Maps,” on page 1317

---

**About Range Attribute Maps**

A range attribute map maps numeric values or ranges of numeric values to graphical properties.

For example, consider the following plot of height and weight distribution. You can use a range attribute map to assign colors to the markers based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green.

**See Also**

Chapter 13, “Using Range Attribute Maps,” on page 1331
Chapter 12
Using Discrete Attribute Maps

Main Tasks for Discrete Attribute Mapping

A discrete attribute map maps discrete values to graphical properties. For example, if you create a graph that plots items sold in different countries, you can specify the display attributes for the sales data of each country by name. Discrete attribute maps apply only to group data.

Two main tasks are required for discrete attribute mapping:

1. Create a discrete attribute map data set, which associates data values with particular visual attributes. Each observation defines the attributes for a group value. For more information, see “Discrete Attribute Map Data Sets” on page 1318.

2. Modify the procedure and its plot statements to use the data in the discrete attribute map. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures (not all plot statements support attribute maps). For more information, see “Modify the Procedure to Use the Discrete Attribute Map Data Set” on page 1324.

See Also

“About Discrete Attribute Maps” on page 1315
About the Discrete Attribute Map Data Set

Attribute map data sets are used in the procedures to associate data values with visual attributes.

When you have determined which attributes you want to apply to the group data in a graph, you can create a discrete attribute map data set. Each observation defines the attributes for a particular data group.

Each observation uses reserved variable names for the attribute map identifier (ID), the group value (VALUE), and the attributes:

- The ID variable identifies the attribute map that you want to use. A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.
- The VALUE variable associates a group value in your graph data with visual attributes in the attribute map.

For example, suppose that you are graphing fruit sales. The variable in your graph data set that you want to use for grouping is FRUIT. Your plot statement specifies the GROUP=FRUIT option. Then in your attribute map, specify a VALUE column. The first observation might have VALUE=APPLE, the second observation might have VALUE=BANANA, and so on.
- The attribute variables associate visual attributes with an observation in the discrete attribute map data set. Some reserved variables are FILLCOLOR=, LINECOLOR=, LINEPATTERN=, and so on. In the example, you apply attributes to each observation to make sure that all apples in the graph are red, all bananas are yellow, and so on.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the discrete attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data group. The most commonly used method for creating data sets is with a DATA step.

Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

Here is an example of a discrete attribute map data set called MYATTRMAP. The observations in this data set contain the attribute map identifier (ID), the group value (VALUE), and the attributes (LINECOLOR, FILLCOLOR).

**Figure 12.1 Listing of the Discrete Attribute Map Data Set MYATTRMAP**

<table>
<thead>
<tr>
<th>Obs</th>
<th>linecolor</th>
<th>fillcolor</th>
<th>ID</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pink</td>
<td>pink</td>
<td>myid</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>lightblue</td>
<td>lightblue</td>
<td>myid</td>
<td>M</td>
</tr>
</tbody>
</table>
The data set has these characteristics:

- All variables listed are CHAR variables.
- The value of the ID variable, MYID in this case, is referenced in one or more plot statements within the procedure. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.
- The values of the VALUE variable are valid data group values. These values are case sensitive. The data group is assigned in the plot statement with the GROUP= option.
- The values for LINECOLOR= and FILLCOLOR= are valid SAS colors. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

The following output shows a bar chart that uses the MYATTRMAP data set for its pink and blue bar colors. The FILLCOLOR= values determine the color of the bars, and the LINECOLOR= values determine the color of the border edges around the bars.

The chart was produced with the SGPLOT procedure. The name of the data set is referenced in the procedure statement.

*Figure 12.2  Example Output That Uses a Discrete Attribute Map*

This DATA step creates the discrete attribute map data set MYATTRMAP. The ID values for the attribute map are MYID.

```
data myattrmap;
 length linecolor $ 9 fillcolor $ 9;
 input ID $ value $ linecolor $ fillcolor $;
datalines;
myid F pink pink
 M lightblue lightblue
; run;
```
This procedure generates the graph. The SGPLOT statement references the SASHELP.CLASS data set and the MYATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class dattrmap=myattrmap;
 vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

For more information about the highlighted options that are used in the procedure, see “Modify the Procedure to Use the Discrete Attribute Map Data Set” on page 1324.

You use a standard syntax to specify colors, line thickness, line patterns, and marker symbols. For more information about this syntax, see the following topics:

- “Color-Naming Schemes” on page 1278
- “Units of Measurement” on page 1277
- List of Line Patterns on page 1272
- List of Marker Symbols on page 1275

### Data Sets That Contain Multiple Discrete Attribute Maps

A discrete attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a discrete attribute map data set contains multiple attribute maps:

- The ID variable has more than one value.
- The VALUE variable has different values that correspond to different data groups.
- The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

**Note:** Plots that specify different ID values must also specify different groups. A group variable can be associated with only one attribute map ID. If a group is associated with more than one attribute map ID value, the graph produces incorrect attribute mapping and a warning is written to the SAS log.

For an example, see “Example: Combine Multiple Discrete Attribute Maps in a Graph” on page 1326.

### Reserved Discrete Attribute Map Variables

#### About the Reserved Discrete Attribute Map Variables

When a discrete attribute map data set is processed, the procedure looks at the values of specific variables in the discrete attribute map data set. The procedure uses these values to associate visual attributes with group data. Variables in the discrete attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.
**Variables That Have Style Values**
For some variables, you can specify a style element or a style attribute as the value.

Here are examples:
- GraphData2 is an example of a style element.
- GraphData2:Color is an example of a style attribute.

For more information about style elements, see “Style Elements for Use with ODS Graphics” on page 1300.

**Required Reserved Variables**
The ID and VALUE variables are required for every discrete attribute map data set. If they are not found, a warning is written to the SAS log, and the data set is ignored. The remaining attribute variables are used as applicable to the plot type.

**Descriptions of the Reserved Variables**
The following list describes each reserved variable.

- **FILLCOLOR= “color”**
  specifies the fill color. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

- **FILLSTYLE= “style-element”**
  specifies the style element for fill attributes. If you specify the style element, you can also specify the FILLCOLOR variable to override the color.

- **FILLTRANSPARENCY=value**
  specifies the degree of transparency for the fill.
  
  Default 0.0
  
  Range 0 (completely opaque) to 1 (completely transparent)

- **ID= “text-string”**
  (required) specifies the ID of the attribute map. This value is referenced from the ATTRID option on one or more plot statements.

  Though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes.

- **LINECOLOR= “color”**
  specifies the color of the line. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

  The color that you specify here also applies to the line labels, if displayed.

- **LINEPATTERN= “line-pattern”**
  specifies a line pattern for lines and outlines. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

  Note This variable has no effect on bar chart outlines.

- **LINESTYLE= “style-element”**
  specifies the style element for line attributes. If you specify the style element, you can also specify the LINEPATTERN and LINECOLOR variables to override specific appearance attributes.
LINETHICKNESS=numeric-value
  specifies the line thickness in pixels.

MARKERCOLOR= “color”
  specifies the color for the markers. You can specify colors using a number of
different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

The color that you specify here also applies to the marker labels, if displayed.

MARKERSIZE=numeric-value
  specifies the size of the marker in pixels.

MARKERSTYLE= “style-element”
  specifies the style element for marker attributes. If you specify the style element, you
can also specify the MARKERSYMBOL, MARKERCOLOR, and MARKERSIZE
variables to override specific appearance attributes.

MARKERSYMBOL= “symbol-name”
  specifies the symbol for the markers. See the list of marker symbols on page 1275.

MARKERTRANSPARENCY=value
  specifies the degree of transparency for the markers.

Default  0.0

Range  0 (completely opaque) to 1 (completely transparent)

NOCASE=“TRUE” | “FALSE”
  specifies whether value comparisons in the attribute map are case sensitive.

“TRUE”
  The value comparisons are not case sensitive.

“FALSE”
  The value comparisons are case sensitive. Each instance of a value must have the
  exact same capitalization.

Default  “FALSE”

SHOW=“ATTRMAP” | “DATA”
  specifies whether values in the attribute map are displayed in the legend.

“ATTRMAP”
  displays all attribute map values in the legend.

“DATA”
  displays only the map values for which there is data.

Default  “DATA”

TEXTCOLOR= “color”
  specifies the color of the text in an axis table. You can specify colors using a number
of different color-naming schemes. For more information, see “Color-Naming
Schemes” on page 1278.

Restriction  This attribute can be applied only to axis tables.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329
TEXTFAMILY= "font-family"
  specifies the font family for the text. The SAS ODS styles use TrueType system fonts.

Restriction  This attribute can be applied only to axis tables.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TEXTSTYLE= "NORMAL" | “ITALIC”
  specifies the style of the text in an axis table.

Restriction  This attribute can be applied only to axis tables.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

TEXTSTYLEELEMENT= "style-element"
  specifies the style element for the text in an axis table. If you specify the style element, you can also specify the TEXTCOLOR, TEXTFAMILY, TEXTSTYLE, and TEXTWEIGHT variables to override specific appearance attributes.

Restriction  This attribute can be applied only to axis tables.

TEXTWEIGHT= "NORMAL" | “BOLD”
  specifies the weight of the text in an axis table.

Restriction  This attribute can be applied only to axis tables.

See  “Example: Use a Discrete Attribute Map with an Axis Table” on page 1329

VALUE= "text-string"
  (required) specifies the group data value that is assigned to the attributes. The value must be valid for the data group that is assigned in the plot statement with the GROUP= option. You can provide different values in the data set if your plots specify different group variables.

Notes  By default, the group values are case sensitive. Each instance of a value must have the exact same capitalization. To make the values case insensitive, specify NOCASE="TRUE".

If the group value is formatted, then the text-string in the attribute map data set must contain the formatted value.

VALUE= also accepts the _MISSING_ and _OTHER_ keywords. The keyword _OTHER_ in the column can be used to define the attributes of any values that are not explicitly defined in the map. The _MISSING_ keyword is used to define attributes when the data contains missing values. These keywords are not case sensitive.
Modify the Procedure to Use the Discrete Attribute Map Data Set

After you have created a discrete attribute map data set, you can modify the discrete procedure and its plot statements to reference the discrete attribute map data. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To reference attribute map data in a procedure:

1. Add the DATTRMAP= option to the procedure statement and specify the name of the discrete attribute map data set.
2. For each plot statement that maps attributes, perform these steps:
   - Specify the GROUP= option. The group’s values must correspond to the values in the VALUE variable in the attribute map data set.
   - Specify the ATTRID= option. This option specifies the value of the ID variable in the discrete attribute map data set.

   If the discrete attribute map data set contains more than one ID value, then the plot statements can specify different ATTRID values. However, plots that specify different ATTRID values must also specify different groups. A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1320.

   If the ATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the ATTRID is ignored.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.

In the SGPLOT and SGPANEL procedures, any plot statement that supports GROUP variables supports discrete attribute mapping. The following plot statements support discrete attribute mapping:

- BAND
- HISTOGRAM
- TEXT
- BLOCK
- HLINE
- VBAR
- BUBBLE
- LINEPARAM
- VBARBASIC
- DENSITY
- LOESS
- VBARPARAM
- DOT
- NEEDLE
- VBOX
- FRINGE
- PBSPLINE
- VECTOR
- HBAR
- POLYGON
- VLINE
- HBARBASIC
- REG
- WATERFALL *
- HBARPARAM
- SCATTER
- XAXISTABLE *
- HBOX
- SERIES
- YAXISTABLE *
- HEATMAPPARM
- SPLINE
- COLAXISTABLE **
- HIGHLOW
- STEP
- ROWAXISTABLE **

*applies to the SGPLOT procedure only

**applies to the SGPANEL procedure only
Here is an example of an SGPLOT procedure that references the discrete attribute map data set shown in the example Figure 12.1 on page 1318. The options that reference the attribute map (data set and ID) are highlighted.

```
proc sgplot data=sashelp.class dattrmap=myattrmap;
 vbar age / response=height group=sex groupdisplay=cluster attrid=myid;
run;
```

---

**Example: Create a Plot That Uses a Single Discrete Attribute Map**

This example creates a simple bar chart that uses a discrete attribute map.

*Figure 12.3  Bar Chart That Uses a Discrete Attribute Map*

Here is the SAS code that creates the input data set, the attribute map data set, and the SGPLOT procedure output.

This DATA step creates the data that is used for the graph. The FRUIT variable is used in the procedure to group the data.

```
data fruit_sales;
 input Fruit $ Sales;
datalines;
 Apples 40
 Pears 25
 Oranges 50
 Grapes 30
 Bananas 60
run;
```
This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are FRUIT.

```plaintext
data attrmapfruit;
retain linecolor "black";
input id $ value $ fillcolor $;
datalines;
fruit Apples red
fruit Pears green
fruit Oranges orange
fruit Grapes purple
fruit Bananas yellow
;
run;
```

This PROC step generates the graph. The SGPLOT statement references the FRUIT_SALES data set and the ATTRMAPFRUIT attribute map data set. The plot statement references the attribute map ID (FRUIT).

```plaintext
title "Fruit Sales";
proc sgplot data=fruit_sales dattrmap=attrmapfruit;
vbar Fruit / response=Sales group=Fruit attrid=fruit;
run;
title;
```

**Example: Combine Multiple Discrete Attribute Maps in a Graph**

This example uses a discrete attribute map data set that contains two attribute maps. Here are the noteworthy characteristics of the attribute map data set and the procedure:

- The attribute map data set has these features:
  - The ID variable has two values.
  - The VALUE variable has different values that correspond to two different data groups.
  - The ID values in the attribute map data set are continuous (in a sorted order). If they were not, the example would use the SORT procedure to sort the data set by ID (in ascending or descending order).
  - In the procedure, the plot statements specify different ATTRID= values in order to use the different attribute maps. The plot statements also specify different GROUP= values. (A group variable can be associated with only one attribute map ID. For more information, see “Data Sets That Contain Multiple Discrete Attribute Maps” on page 1320.)
Here is the SAS code that creates the attribute map data set and uses the SGPLOT procedure to generate the graph.

This DATA step creates the data that is used for the graph. The STATE and TYPE variables are used in the procedure to group the data.

```sas
data finances;
 format income dollar8. expense dollar8.;
 length expensetype $ 9;
 input Year incometype $ income expensetype $ expense;
 datalines;
 2000 Salary 20000 Utilities 4000
 2000 Bonus 2000 Rent 7000
 2000 Gifts 500 Food 8000
 2001 Salary 25000 Utilities 5000
 2001 Bonus 1000 Rent 8000
 2001 Gifts 200 Food 6000
 2002 Salary 23000 Utilities 4500
 2002 Bonus 500 Rent 9000
 2002 Gifts 500 Food 7000
; run;
```

This DATA step creates the discrete attribute map data set. The data set contains two attribute maps. Each attribute map is specified by an ID value: INCOME or EXPENSE.

```sas
data attrmap;
 length value $ 9 fillcolor $ 9;
 retain linecolor "black";
 input id $ value $ fillcolor $;
 datalines;
 income Salary blue
 income Bonus gray
```

---

*Figure 12.4  Output That Uses Two Discrete Attribute Maps*
Example: Create a Panel That Uses an Attribute Map

This example uses the SGPANEL procedure to generate discrete attribute map output.

Figure 12.5  Panel That Uses a Discrete Attribute Map
Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable. All ID values for the attribute map are MYID.

```sas
data attrmap;
 retain ID "myid";
 retain markersymbol "circlefilled";
 input value $ markercolor $ linecolor $ linepattern $;
 datalines;
 F orange orange solid
 M blue blue solid
;
 run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the ATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
title "Height and Weight by Age";
proc sgpanel data=sashelp.class dattrmap=attrmap;
 panelby age;
 reg x=weight y=height / group=sex attrid=myid;
 run;
 title;
```

---

**Example: Use a Discrete Attribute Map with an Axis Table**

This example creates a simple bar chart along with an axis table. Both the chart and the axis table use a discrete attribute map.
Here is the SAS code that creates the attribute map data set and the SGPLOT procedure output.

This DATA step creates the discrete attribute map data set. The data set contains one attribute map, which is specified by the ID variable.

```sas
data myattrmap;
 id='myid'; value='M';
 linecolor='blue'; fillcolor='blue';
 textcolor='blue'; textstyle='normal';
 textweight='normal';
 output;

 id='myid'; value='F';
 linecolor='red'; fillcolor='pink';
 textcolor='red'; textstyle='italic';
 textweight='bold';
 output;
run;
```

This PROC step generates the graph. The plot statement references the attribute map ID (MYID).

```sas
proc sgplot data=sashelp.class dattrmap=myattrmap;
 vbar age / response=height group=sex stat=mean
groupdisplay=cluster attrid='myid';
xaxistable weight / textgroup=sex
textgroupid='myid';
run;
```
Main Tasks for Range Attribute Mapping

A range attribute map maps numeric values or ranges of numeric values to graphical properties.

Two main tasks are required for range attribute mapping:

1. Create a range attribute map data set, which associates data values with particular visual attributes. For more information, see “Range Attribute Map Data Sets” on page 1332.

2. Modify the procedure and its plot statements to use the data in the range attribute map. You can use attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures (not all plot statements support attribute maps). For more information, see “Modify the Procedure to Use the Range Attribute Map Data Set” on page 1337.

See Also

“About Range Attribute Maps” on page 1316
Range Attribute Map Data Sets

About the Range Attribute Map Data Set

When you have determined which attributes you want to apply to the data in a graph, you can create a range attribute map data set. Each observation defines the color attributes for a particular range.

Each observation uses reserved variable names for the attribute map identifier (ID), one or two variables that define the range (MIN and MAX), and the color attributes:

- The ID variable identifies the attribute map that you want to use. A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different plots in a graph.

- The MIN and MAX variables define the ranges in the attribute map. The MIN variable is always required. The MAX variable is sometimes required depending on the value that you provide for the MIN variable.

  In addition, two variables (EXCLUDEMIN, EXCLUDEMAX) enable you to exclude the first or last end points in a range, respectively. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.

- The attribute variables associate color attributes with an observation in the range attribute map data set.

  There are three ways to assign colors to a range:

  - assign a single color to a range.
  - specify a reference to an ODS style element that contains color ramp start and end colors (with an optional neutral color).
  - use variable names COLORMODEL1 – COLORMODELn to specify several consecutive colors for the range. This list of colors creates a gradient across the range. See “Example: Create a Panel That Uses COLORMODELn Variables” on page 1338.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that a range attribute map data set uses reserved keywords for its variable names, and each observation represents the attributes for a particular data range. The most commonly used method for creating data sets is with a DATA step.

Note: Incorrect data in the attribute map data set can cause the graph to fail. For example, truncated variable values caused by the incorrect variable length being specified results in incorrect data.

The following output shows a scatter plot that uses a range attribute map to assign marker colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as green. The chart was produced with the SGPLOT procedure.
Here is the code for the example.

The DATA step creates the range attribute map data set MYRATTRMAP. The ID values for the attribute map are MYID. Three ranges are defined.

```
data myrattrmap;
retain id "myID";
length min $ 5 max $ 5;
input min $ max $ color $ altcolor $;
datalines;
min 80 purple purple
80 100 gold gold
100 _max_ green green
;
run;
```

The following procedure generates the graph. The SGPLOT statement references the SASHELP.CLASS data set and the MYRATTRMAP attribute map data set. The plot statement references the attribute map ID (MYID). The options that reference the attribute map (data set and ID) are highlighted.

```
proc sgplot data=sashelp.class rattrmap=myrattrmap;
scatter x=height y=weight /
 colorresponse=weight rattrid=myID;
run;
```

**Note:** The COLORRESPONSE= option must be specified in order for the attribute map to be applied to the plot.

**Data Sets That Contain Multiple Range Attribute Maps**

A range attribute map data set can contain more than one attribute map. This capability enables you to apply different attribute maps to different group variables in a graph.

When a range attribute map data set contains multiple attribute maps:

- The ID variable has more than one value.
The ID values in the attribute map data set must be continuous (in a sorted order). If they are not, use the SORT procedure to sort the data set by ID, in ascending or descending order.

In the procedure that generates the graph, the plot statements can specify different attribute map ID values.

Reserved Range Attribute Map Variables

About the Reserved Range Attribute Map Variables
When a range attribute map data set is processed, the procedure looks at the values of specific variables in the attribute map data set. The procedure uses these values to associate visual attributes with the range data. Variables in the attribute map data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

Required Reserved Variables
Each observation in the data set requires the ID variable and one or two variables that define the range (MIN and MAX). If the required variables are not found, a warning is written to the SAS log, and the data set is ignored.

Note: For helpful information about defining ranges, see “Tips for Defining Ranges” on page 1337.

The following list describes the required variables.

ID= “text-string”
specifies the ID of the attribute map. This value is referenced from the RATTRID option in one or more plot statements.

Even though every observation must have an ID value, different observations can have different values. You might use different values in the data set if you want plots to have different attributes. See “Data Sets That Contain Multiple Range Attribute Maps” on page 1333.

MIN=numeric-value | “keyword”
defines the minimum value of the range specification. You can specify a numeric value, or you can specify one of several accepted keywords. The keywords are character values.

You can specify one of the following keywords as the minimum value:

_MIN_ indicates the minimum data value for the response variable.
_NEGMAX_ indicates –MAX
_NEGMAXABS_ indicates –max(abs(MIN) , abs(MAX))

Rather than specifying a low value, you can use one of the following keywords for the range specification.

Note: When you specify one of the following four keywords, the value in the MAX column is not required.

_MISSING_ indicates a mapping for missing values. The visual attributes for this setting are obtained from the GraphMissing style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include missing values.
_OTHER_ creates a category for all other column values not explicitly assigned to a range. The _OTHER_ values can be composed of several non-contiguous ranges. The visual attributes for this setting are obtained from the GraphOther style element.

_OVER_ creates a range for all data between the highest mapped value and the highest actual data value. The visual attributes for this setting are obtained from the GraphOverflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include overflow values.

_UNDER_ creates a range for all data values between the lowest mapped value and the lowest actual data value. The visual attributes for this setting are obtained from the GraphUnderflow style element. If one observation in the data set specifies this value and another observation specifies the keyword _OTHER_, then the _OTHER_ range does not include underflow values.

Tip Use the EXCLUDEMIN optional variable to exclude the lowest end point in the range. For example, you might define the first range as 0–100, and use EXCLUDEMIN to exclude the 0 values.

MAX=numeric-value | “keyword”
defines the maximum value of the range specification. You can specify a numeric value, or you can specify one of two accepted keywords. The keywords are character values.

This variable is required unless one of the special four keywords is specified for the MIN variable (_MISSING_, _OTHER_, _OVER_, _UNDER_).

You can specify one of the following keywords as the maximum value:

_MAX_ indicates the maximum data value for the response variable.
_MAXABS_ indicates max(abs(MIN), abs(MAX))

Tip Use the EXCLUDEMAX optional variable to exclude the highest end point in the range.

Optional Reserved Variables
The following list describes each optional reserved variable.

ALTCOLOR= “color”
assigns a single color to the lines, markers, or both in a range. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

ALTCOLORMODEL1–N
specifies several consecutive line and marker colors for the range. This list of colors creates a gradient across the range.

Requirement The columns must be contiguous (ALTCOLORMODEL1, ALTCOLORMODEL2, and so on). Any gaps prevent the remaining colors from being used.

ALTCOLORMODELSTYLE=“style-element”
specifies a style reference to a gradient style element.
style-element
specifies the name of a gradient style element. The style element should contain these style attributes:

STARTCOLOR  specifies the color for the smallest data value.
NEUTRALCOLOR  specifies the color for the midpoint of the data range. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR  specifies the color for the highest data value.

Interaction This option is ignored if the ALTCOLOR= option is specified.

Tip To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp.

See “Style Elements for Use with ODS Graphics” on page 1300

Example altcolormodelstyle=TwoColorRamp

Default The ThreeColorAltRamp style element

COLOR= “color”
specifies the fill color for the range. You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

COLORMODEL1–N
specifies several consecutive fill colors for the range. This list of colors creates a gradient across the range.

Requirement The columns must be contiguous (COLORMODEL1, COLORMODEL2, and so on). Any gaps prevent the remaining colors from being used.

See “Example: Create a Panel That Uses COLORMODEL\n Variables” on page 1338

COLORMODELSTYLE=“style-element”
specifies a style reference to a gradient style element.

style-element
specifies the name of a gradient style element. The style element should contain these style attributes:

STARTCOLOR  specifies the color for the smallest data value.
NEUTRALCOLOR  specifies the color for the midpoint of the data range. This attribute is not required when you specify a two-color ramp model.
ENDCOLOR  specifies the color for the highest data value.

Interaction This option is ignored if the COLOR= option is specified.
Tip
To display the range as a gradient ramp, choose a style element such as TwoColorRamp, TwoColorAltRamp, ThreeColorRamp, or ThreeColorAltRamp.

See
“Style Elements for Use with ODS Graphics” on page 1300

Example
colormodelstyle=TwoColorRamp

Default
The ThreeColorAltRamp style element

EXCLUDEMAX=“TRUE” | “FALSE” | 1 | 0
Specifies whether to exclude the maximum value from the range specification. This column can be character or numeric. If the column is character, you must use the values “TRUE” or “FALSE”. If the column is numeric, the values must be 1 or 0.

EXCLUDEMIN=“TRUE” | “FALSE” | 1 | 0
Specifies whether to exclude the minimum value from the range specification. This column can be character or numeric. If the column is character, you must use the values “TRUE” or “FALSE”. If the column is numeric, the values must be 1 or 0.

Tips for Defining Ranges
Here are some helpful notes and tips for specifying ranges in the attribute map data set:

• If two ranges share a common endpoint (for example, 10–20 and 20–30) and you do not use EXCLUDEMIN or EXCLUDEMAX, then the common endpoint belongs to the lower encountered range (10–20 in this case). The order of the specification does not matter.

• If two or more ranges define colors to associate with the same numeric values or ranges, then the first range’s settings are used.

• If any range overlaps another range (for example, 10–20 and 15–25), then the entire attribute map is ignored and default coloring is used.

• To set a single numeric value, specify the same value for both the low value and the high value.

• If the low value is not less than or equal to the high value, then the range specification is invalid, and the range is ignored in the attribute map.

• If a range is not defined for keyword MIN="_OTHER_", then gaps within the attribute map ranges are assigned the default color that is defined by the GraphOther:ContrastColor style reference.

Modify the Procedure to Use the Range Attribute Map Data Set

After you have created a range attribute map data set, you can modify the procedure and its plot statements to reference the attribute map data. You can use range attribute maps in the SGPLOT, SGPANEL, and SGSCATTER procedures.
To reference attribute map data in a procedure:

1. Add the RATTRMAP= option to the procedure statement and specify the name of the range attribute map data set.

2. For each plot statement that maps attributes, perform these steps:
   - Specify the RATTRID= option. This option specifies the value of the ID variable in the range attribute map data set.
     
     If the range attribute map data set contains more than one ID value, then the plot statements can specify different RATTRID values. For more information, see “Data Sets That Contain Multiple Range Attribute Maps” on page 1333.
     
     If the RATTRID value that you specify does not match a value for the ID variable in the attribute map data set, a warning is written to the SAS log and the RATTRID option is ignored.
   - Specify the COLORRESPONSE= option.

Attribute mapping is supported in the PLOT statement of the SGSCATTER procedure.

In the SGPLOT and SGPANEL procedures, the following plot statements support range attribute mapping:

- BUBBLE
- HEATMAP
- TEXT
- DOT
- HIGHLOW
- VBAR
- HBAR
- POLYGON
- VBARBASIC
- HBARBASIC
- SCATTER
- VBAR Parm
- HBARPARM
- SERIES
- VECTOR
- HEATMAP
- SPLINE
- WATERFALL*

*applies to the SGPLOT procedure only

Here is an example of an SGPLOT procedure that references the range attribute map data set shown in Figure 13.1 on page 1333. The options that reference the attribute map (data set and ID) are highlighted.

```sas
proc sgplot data=sashelp.class rattrmap=myrattrmap;
 scatter x=height y=weight /
 colorresponse=weight rattrid=myID;
run;
```

---

**Example: Create a Panel That Uses COLORMODELn Variables**

This example uses the SGPANEL procedure to generate range attribute map output. The graph uses a range attribute map to assign fill colors based on specific ranges. The first range appears as purple. The middle range appears as gold, and the last range appears as a gradient of red, orange, and yellow.
Here is the SAS code that creates the attribute map data set and runs the SGPANEL procedure.

A DATA step creates the range attribute map data set. The data set contains one attribute map, which is specified by the ID variable. The data set defines three ranges. The third range uses the COLORMODEL1 – COLORMODEL3 variables to specify a custom gradient of three colors.

```sas
data clrresp;
 retain id "myid";
 length min $ 5 max $ 5;
 input min $ max $ color $ altcolor $ colormodel1 $ colormodel2 $ colormodel3 $;
 datalines;
 min 90 purple purple . . .
 90 100 gold gold . . .
 100 _max_ . red orange yellow
;
 run;
```

This PROC step generates the graph. The SGPANEL statement references the SASHELP.CLASS data set and the CLRRESP attribute map data set. The plot statement references the attribute map ID (MYID).

```sas
proc sgpanel data=sashelp.class rattrmap=clrresp;
 panelby sex;
 vbar age / colorresponse=weight rattrid=myid
 response=weight stat=mean colorstat=mean;
 run;
```
Part 5

SG Annotation

Chapter 14
  Annotating ODS Graphics ........................................ 1343

Chapter 15
  SG Annotation Function Dictionary ................................. 1351

Chapter 16
  SG Annotation Macro Dictionary ................................. 1403
Chapter 14
Annotating ODS Graphics

Overview of SG Annotation

The ODS Statistical Graphics (SG) procedures provide a mechanism for adding shapes, images, and other annotations to graph output.

You can add the following annotation elements to a graph:

- text labels
- lines and arrows
- ovals (including circles)
- rectangles (including squares)
- polygons
- images

There are two main tasks required to add annotation elements to a graph:

1. Create an SG annotation data set, which contains the commands for creating the annotation elements. For more information, see “About the SG Annotation Data Set ” on page 1344.

2. Modify the SG procedure to use the SG annotation data set. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures. For more information, see “Modifying an SG Procedure to Use the SG Annotation Data Set” on page 1347.
SG Annotation Data Sets

About the SG Annotation Data Set

Once you have determined which annotation you want and how you want it to appear in the output, you can create the SG annotation data set. This data set contains the commands for creating one or more annotation elements. The annotations drawn by these commands can be added to SG procedure output.

Each observation represents a command to draw an annotation element or to continue an element. Reserved keywords are used for functions that specify the drawing operation.

You create the data set using the same methods that you use to create any SAS data set. The main distinctions are that the SG annotation data set uses reserved keywords for its variable names, and each observation represents a command to draw an annotation element.

Note: The most commonly used method for creating data sets is with a DATA step.

Here is an example of an SG annotation data set named LINE. The observations in this data set contain the commands that create a blue text label and a blue line.

Figure 14.1  LINE SG Annotation Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>function</th>
<th>x1</th>
<th>y1</th>
<th>label</th>
<th>x2</th>
<th>y2</th>
<th>textcolor</th>
<th>linecolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>text</td>
<td>20</td>
<td>70</td>
<td>Average Height 62 Inches</td>
<td>.</td>
<td>.</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>line</td>
<td>10</td>
<td>60</td>
<td></td>
<td>99</td>
<td>60</td>
<td>blue</td>
<td></td>
</tr>
</tbody>
</table>

A blank denotes a missing value for a character variable. A '.' denotes a missing value for a numeric variable.

Each observation in this data set contains complete instructions for drawing an annotation. The value of the FUNCTION variable determines what the observation does. Other variables control how the function is performed.

This list describes each observation in LINE and the task that it performs:

1. This instruction writes a blue text inset at position (20,70). The value of the FUNCTION variable (TEXT) tells the program what to do. The values of the coordinate variables X1 and Y1 tell where to do it. The value of the attribute variable TEXTCOLOR specifies the color of the text inset.

   Note: The default drawing space for both observations is the graph area. For more information about drawing spaces, see “Controlling the Drawing Space” on page 1348.

2. This instruction draws a blue line that begins at position (10,60) and ends at (99,60). The value of the FUNCTION variable (LINE) tells the program what to do. The values of the coordinate variables X1, Y1, X2, and Y2 tell where to do it. The value of the attribute variable LINECOLOR specifies the color of the line.
The following figure shows the blue text and line annotations created by the LINE data set displayed with an SGPLOT procedure that specifies a scatter plot.

Figure 14.2 LINE SG Annotation Output

Here is the SAS code step that creates the LINE data set and generates the graph.

```sas
data Line;
 infile datalines dlm='#';
 length label $ 27
 textcolor $ 9
 linecolor $ 9;
 input function $ x1 y1 label x2 y2 textcolor linecolor;
 datalines;
 text # 20 # 70 # Average Height 62 Inches # . # . # blue #
 line # 10 # 60 # # 99 # 60 # # blue
; run;
proc sgplot data=sashelp.class sganno=Line;
 scatter x=weight y=height;
run;
```

SG Annotation Variables

When an SG annotation data set is processed, the SG procedure looks at the values of specific variables in order to draw annotation elements. Variables in the SG annotation data set have predefined names. In each observation, the procedure looks only for variables with those names. Other variables can be present, but they are ignored.

The variables can be categorized into the following main types:

- A FUNCTION variable specifies which annotation element to draw. For more information, see “SG Annotation Functions” on page 1346.
• Position variables specify the point or points at which to draw the graphics element.
• Coordinate system variables specify the drawing space to use for the annotation. For more information, see “Controlling the Drawing Space” on page 1348.
• Attribute variables specify the characteristics of the graphics element (for example, color, size, line style, text font).

All variables are described in the context of the functions that support the variables. For more information about the functions, see Chapter 15, “SG Annotation Function Dictionary,” on page 1351.

**SG Annotation Functions**

In an SG annotation data set, the FUNCTION variable accepts a set of predefined values (functions) that insert annotation elements into the graph. The value of the FUNCTION variable specifies what drawing action the observation performs. These functions act in conjunction with other variables that determine where and how to perform the action.

The following table summarizes the functions:

*Table 14.1  Summary of SG Annotation Functions*

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARROW</td>
<td>Draws an arrow annotation. For more information, see “ARROW Function” on page 1351.</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Specifies a graphic file to use for an image annotation. For more information, see “IMAGE Function” on page 1357.</td>
</tr>
<tr>
<td>LINE</td>
<td>Draws a line annotation. For more information, see “LINE Function” on page 1362.</td>
</tr>
<tr>
<td>OVAL</td>
<td>Draws an oval or circle annotation. For more information, see “OVAL Function” on page 1368.</td>
</tr>
<tr>
<td>POLYCONT</td>
<td>Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. For more information, see “POLYCONT Function” on page 1373.</td>
</tr>
<tr>
<td>POLYGON</td>
<td>Specifies the beginning point of a polygon. For more information, see “POLYGON Function” on page 1375.</td>
</tr>
<tr>
<td>POLYLINE</td>
<td>Specifies the beginning point of a polyline, which is a connected series of line segments. For more information, see “POLYLINE Function” on page 1379.</td>
</tr>
<tr>
<td>RECTANGLE</td>
<td>Draws a rectangle or square annotation. For more information, see “RECTANGLE Function” on page 1383.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Places text in the graph output. For more information, see “TEXT Function” on page 1388.</td>
</tr>
</tbody>
</table>
Using Variables as Arguments

The function parameters are either numeric or character. Numeric parameters can be numeric constants or numeric column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable column names for parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the data. See “Example 3: Create Custom Labels” on page 1400.

Modifying an SG Procedure to Use the SG Annotation Data Set

After you have created an SG annotation data set, you can modify the SG procedure to reference the annotation data. You can use annotation in the SGPLOT, SGPANEL, and SGSCATTER procedures.

To modify the procedure to use the SG annotation data set, add the following option to the procedure statement.

`SGANNO= annotation-data-set` specifies the SG annotation data set that you want to use. For more information about SG annotation data sets, see “SG Annotation Data Sets” on page 1344.

You can also create margins around the graph by using the PAD= option.

`PAD= dimension <units> | (pad-options)` specifies the amount of extra space that is reserved along the edges of the graph. This option creates margins around the graph for company logos, annotated notes, and so on. You can also specify the unit of measurement. For a list of measurement units that are supported, see “Units of Measurement” on page 1277.

Use pad options to create non-uniform padding. Edges that are not assigned padding are padded with the default amount.

`pad-options` can be one or more of the following:

- `LEFT= dimension <units>` specifies the amount of extra space to add to the left edge.
- `RIGHT= dimension <units>` specifies the amount of extra space to add to the right edge.
- `TOP= dimension <units>` specifies the amount of extra space to add to the top edge.
- `BOTTOM= dimension <units>` specifies the amount of extra space to add to the bottom edge.
Controlling the Drawing Space

About the Drawing Space

You can control the position and scaling of your annotations by specifying the drawing space and units in the SG annotation data set. You have the option to specify the drawing space for the X or Y axes individually, or for both axes.

All annotations are rendered in one of four drawing areas:

- **graph area**
  - the entire region of the graph image. The graph area contains the axes, titles, footnotes, legends, and one or more cells.

- **layout area**
  - the area of the layout, not including any titles and footnotes.

- **wall area**
  - the area within the axes, including offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)

- **data area**
  - the area within the axes, not including offsets. (This area is not available when using the SGPANEL and SGSCATTER procedures.)

Annotations can be rendered in the drawing areas using one of three units:

- percentage
- pixels
- data value (data area only)

Drawing Space Variables

You can specify the drawing space values for the following variables in the SG annotation data set:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Supported Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWSPACE</td>
<td>specifies the drawing space for the annotation</td>
<td>all except POLYCONT and TEXTCONT</td>
</tr>
<tr>
<td>X1SPACE</td>
<td>specifies the drawing space of the annotation’s X coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>X2SPACE</td>
<td>specifies the drawing space of the annotation’s second X coordinate.</td>
<td>ARROW, LINE</td>
</tr>
<tr>
<td>Y1SPACE</td>
<td>specifies the drawing space of the annotation’s Y coordinate.</td>
<td>all except TEXTCONT</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Supported Functions</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Y2SPACE</td>
<td>specifies the drawing space of the annotation’s second Y coordinate.</td>
<td>ARROW, LINE</td>
</tr>
</tbody>
</table>

**Drawing Space Values**

Here are the values that are used in the SG annotation data set to control the drawing space.

*Note:* For more information about the data, graph, layout, or wall areas, see “About the Drawing Space” on page 1348.

**DATAPERCENT**
positioned and scaled as a percentage with respect to the data area.

**DATAPIXEL**
positioned and scaled as pixels with respect to the data area.

**DATAVALUE**
positioned and scaled with respect to the data values.

**GRAPHPERCENT**
positioned and scaled as a percentage of the graph area.

*Note:* GRAPHPERCENT is the default value.

**GRAPHPIXEL**
positioned and scaled as pixels with respect to the graph area.

**LAYOUTPERCENT**
positioned and scaled as a percentage of the layout area.

**LAYOUTPIXEL**
positioned and scaled as pixels with respect to the layout area.

**WALLPERCENT**
positioned and scaled as a percentage of the wall area.

**WALLPIXEL**
positioned and scaled as pixels with respect to the wall area.

*Note:* For the SG PANEL and SG SCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
Chapter 15
SG Annotation Function
Dictionary

Dictionary

ARROW Function
Draws an arrow annotation from the specified (X1, Y1) coordinates to the specified (X2,Y2) coordinates.

Syntax
FUNCTION= “ARROW”;

Required Variables
X1= numeric-value | XC1= “text-string”
specifies the first X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
    specifies the X coordinate for numeric data.
XC1 = “text-string”  
    specifies the X coordinate for character data.

Default none

X2 = numeric-value | XC2 = “text-string”  
    specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2 = numeric-value  
    specifies the X coordinate for numeric data.

XC2 = “text-string”  
    specifies the X coordinate for character data.

Default none

Y1 = numeric-value | YC1 = “text-string”  
    specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1 = numeric-value  
    specifies the Y coordinate for numeric data.

YC1 = “text-string”  
    specifies the Y coordinate for character data.

Default none

Y2 = numeric-value | YC2 = “text-string”  
    specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2 = numeric-value  
    specifies the Y coordinate for numeric data.

YC2 = “text-string”  
    specifies the Y coordinate for character data.

Default none

Optional Variables

DIRECTION = “BOTH” | “IN” | “OUT”  
    specifies the direction for arrows.

“BOTH”  
    Places the arrowhead at both ends of the line.

“IN”  
    Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

“OUT”  
    Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default OUT
DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

LAYER= “BACK” | “FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**  
COLOR attribute in the graph’s current style

**LINEPATTERN=** “line-pattern”  
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

**Default**  
LineStyle attribute in the graph’s current style

**LINESTYLEELEMENT=** “style-element”  
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

**LINETHICKNESS=** n  
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

**Default**  
LineThickness attribute in the graph’s current style

**SCALE=** numeric-value  
specifies a scale factor for the arrowheads. Specify a positive number.

**Default**  
determined by the procedure

**SHAPE=** “BARBED” | “CLOSED” | “FILLED” | “OPEN”  
specifies the shape of the arrowheads. Specify one of the following:

- “BARBED”  
a solid triangle with an indent at the base.

- “CLOSED”  
an outline of a triangle.

- “FILLED”  
a solid triangle.

- “OPEN”  
a triangle that resembles the letter "V".

**Default**  
OPEN

**TRANSPARENCY=** numeric-value  
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

**Default**  
0.0

**URL=** character-variable  
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

**Default**  
By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

**X1SPACE=** "draw-space-value"

specifies the drawing space of the annotation’s first X coordinate.

*draw-space-value* can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

**Default**

**GRAPHPERCENT**

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**Note**

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

**See**

For more information about these values, see “Drawing Space Values” on page 1349.

**X2SPACE=** "draw-space-value"

specifies the drawing space of the annotation’s second X coordinate.

*draw-space-value* can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note:
If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

See:
For more information about these values, see “Drawing Space Values” on page 1349.

XAXIS= “X” | “X2” specifies which X axis to use for data space annotations.

Y1SPACE= “draw-space-value” specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

Y2SPACE= “draw-space-value” specifies the drawing space of the annotation’s second Y coordinate.
**draw-space-value** can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

  *Note:* When a **DATAVALUE** annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

**Default**  
**GRAPHPERCENT**

**Restriction**  
For the SGPANEL and SGSCATTER procedures, only **GRAPHPERCENT**, **GRAPHPIXEL**, **LAYOUTPERCENT**, and **LAYOUTPIXEL** values are valid.

**Note**  
If you do not also specify the **Y1SPACE=** value, then the first Y coordinate uses the default drawing space.

**See**  
For more information about these values, see “**Drawing Space Values**” on page 1349.

**YAXIS=** “**Y**” | “**Y2**”  
specifies which Y axis to use for data space annotations.

**Default**  
**Y**

---

**IMAGE Function**

Specifies a graphic file to use for an image annotation. If no (**X1**, **Y1**) coordinates are provided, the image appears in the center of the graph.

**Syntax**

FUNCTION= “**IMAGE**”;  

**Required Variable**

IMAGE= “**file-name**”

specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.
The path that you specify must be accessible to your SAS Studio server. For information about accessing files in SAS Studio, see “Using SAS Studio” in SAS Studio: User’s Guide.

Optional Variables

ANCHOR= "TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER= "TRUE" | "FALSE"
turns the border on and off.

Default FALSE

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.
**HEIGHT= numeric-value**
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default Determined by the system

**HEIGHTUNIT= “DATA” | “PERCENT” | “PIXEL”**
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

**IMAGESCALE= “FIT” | “FITHEIGHT” | “FITWIDTH” | “TILE”**
specifies how the image is scaled within the width and height. You can specify the WIDTH and HEIGHT variables.

Defaults FITWIDTH or FITHEIGHT if no size or if one size (either the width or the height) is specified (to preserve aspect)

FIT if width and height are both specified

**LAYER= “BACK” | “FRONT”**
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

**LINECOLOR= “color” | “style-attribute”**
specifies a color of the border around the image, if displayed. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

**LINEPATTERN= “line-pattern”**
specifies a line pattern of the border around the image, if displayed. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

**LINESTYLEELEMENT= “style-element”**
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300
LINETHICKNESS = n
specifies the thickness of the border around the image, if displayed. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

ROTATE = degrees
rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.

Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default: 0

Note: When this option is used with a vector graph, the graph is rendered as an image.

TRANSPARENCY = numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

URL = character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

WIDTH = numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default: Determined by the system
WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"
  specifies the dimension unit to use for the WIDTH value.
  Default  PERCENT

X1= numeric-value | XC1= "text-string"
  specifies the X coordinate of the annotation.
  Use one of the following arguments:
  X1= numeric-value
    specifies the X coordinate for numeric data.
  XC1= "text-string"
    specifies the X coordinate for character data.
  Default  none

X1SPACE= "draw-space-value"
  specifies the drawing space of the annotation’s X coordinate.
  draw-space-value can be one of the following:
  • DATAPERCENT
  • DATAPIXEL
  • DATAVALUE

  Note: When a DATAVALUE annotation is associated with a discrete axis, the
  annotation value must be a formatted value on the axis. Use the XC1 or YC1
  columns for those values.
  • GRAPHPERCENT
  • GRAPHPixel
  • LAYOUTPERCENT
  • LAYOUTPIXEL
  • WALLPERCENT
  • WALLPIXEL
  Default  GRAPHPERCENT

Restriction  For the SGPANEL and SGSCATTER procedures, only
  GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and
  LAYOUTPIXEL values are valid.

See  For more information about these values, see “Drawing Space Values”
  on page 1349.

XAXIS= "X" | "X2"
  specifies which X axis to use for data space annotations.
  Default  X

Y1= numeric-value | YC1= "text-string"
  specifies the Y coordinate of the annotation. Use one of the following arguments:
  Y1= numeric-value
    specifies the Y coordinate for numeric data.
Default 50

\[ YC1 = "\text{text-string}" \]

specifies the Y coordinate for character data.

Default none

\[ Y1SPACE = "\text{draw-space-value}" \]

specifies the drawing space of the annotation’s Y coordinate.

\textit{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

\textit{Note}: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

\[ YAXIS = "Y" | "Y2" \]

specifies which Y axis to use for data space annotations.

Default Y

---

**LINE Function**

Draws a line annotation from the specified (X1, Y1) coordinates to the specified (X2,Y2) coordinates.

**Syntax**

\[
\text{FUNCTION} = \text{"LINE"};
\]
**Required Variable**

X1= numeric-value | XC1= "text-string"

specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= "text-string"

specifies the X coordinate for character data.

Default none

X2= numeric-value | XC2= "text-string"

specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2= numeric-value

specifies the X coordinate for numeric data.

XC2= "text-string"

specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= "text-string"

specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value

specifies the Y coordinate for numeric data.

YC1= "text-string"

specifies the Y coordinate for character data.

Default none

Y2= numeric-value | YC2= "text-string"

specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2= numeric-value

specifies the Y coordinate for numeric data.

YC2= "text-string"

specifies the Y coordinate for character data.

Default none

**Optional Variables**

DISCRETEOFFSET= numeric-value

specifies an amount to offset the annotation from a discrete value in data space.

Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)
DRAWSPACE= “draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default**

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See**

For more information about these values, see “Drawing Space Values” on page 1349.

**LAYER= “BACK” | “FRONT”**
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

**Default**

FRONT

**Interaction**

For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

**LINECOLOR= “color” | “style-attribute”**
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**

COLOR attribute in the graph’s current style
LINEPATTERN= "line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= "style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS= n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL
<table>
<thead>
<tr>
<th>Default</th>
<th>GRAPHPERCENT</th>
</tr>
</thead>
</table>

**Restriction**
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**Note**
If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

**See**
For more information about these values, see “Drawing Space Values” on page 1349.

**X2SPACE=** “draw-space-value”
specifies the drawing space of the annotation’s second X coordinate.

*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPXEL
- DATAVALUE
  
  **Note:** When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default** GRAPHPERCENT

**Restriction**
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**Note**
If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

**See**
For more information about these values, see “Drawing Space Values” on page 1349.

**XAXIS=** “X” | “X2”
specifies which X axis to use for data space annotations.

**Default** X

**Y1SPACE=** “draw-space-value”
specifies the drawing space of the annotation’s second Y coordinate.

*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1349.

Y2SPACE= “draw-space-value”

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPixel
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.
See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS= “Y” | “Y2”
specifies which Y axis to use for data space annotations.

Default Y

---

**OVAL Function**

Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

**Tip:** An easy way to draw a circle is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

---

**Syntax**

FUNCTION= “OVAL”;

**Required Variables**

**HEIGHT= numeric-value**
specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

**WIDTH= numeric-value**
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

**X1= numeric-value | XC1= “text-string”**
specifies the X coordinate of the annotation. Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

**Y1= numeric-value | YC1= “text-string”**
specifies the Y coordinate of the annotation. Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.
Optional Variables

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= “ALL” | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= “draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR= “color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style
This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

**FILLSTYLEELEMENT=** "style-element"

specifies a style element for the fill. Here is an example of a style element:

GraphData2

**Note** Only the COLOR attribute of the style element applies to the fill.

**See** “Style Elements for Use with ODS Graphics” on page 1300

**FILLTRANSPARENCY= numeric-value**

specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

**HEIGHTUNIT=** “DATA” | “PERCENT” | “PIXEL”

specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

**LAYER=** “BACK” | “FRONT”

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

**LINECOLOR=** “color” | “style-attribute”

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

**LINEPATTERN=** “line-pattern”

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

**LINESTYLEELEMENT=** “style-element”

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300
LINETHICKNESS= \( n \)
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td><img src="image" alt="No Rotation" /></td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td><img src="image" alt="ROTATE=90" /></td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td><img src="image" alt="ROTATE=180" /></td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
<tr>
<td><img src="image" alt="ROTATE=270" /></td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default: 0 (no rotation)

TRANSPARENCY= numeric-value
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

URL=character-variable
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only.

... This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement...

WIDTHUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

X1SPACE= “draw-space-value”
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
• DATAPIXEL
• DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

**Default**

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See**

For more information about these values, see “Drawing Space Values” on page 1349.

**XAXIS= “X” | “X2”**

specifies which X axis to use for data space annotations.

**Default**

**Y1SPACE= “draw-space-value”**

specifies the drawing space of the annotation’s Y coordinate.

*draw-space-value* can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

**Default**

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS= “Y” | “Y2”  
specifies which Y axis to use for data space annotations.

Default Y

POLYCONT Function
Continues drawing a polygon that was begun with the POLYGON function, or a line that was begun with the POLYLINE function. POLYCONT specifies each successive point in the polygon or polyline.

Syntax
FUNCTION= “POLYCONT”;

Required Variables
X1= numeric-value | XC1= “text-string”  
specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value  
specifies the X coordinate for numeric data.

XC1= “text-string”  
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”  
specifies the Y coordinate of the annotation.

Use one of the following arguments:
Y1= numeric-value  
specifies the Y coordinate for numeric data.

YC1= “text-string”  
specifies the Y coordinate for character data.

Default none

Optional Variables
X1SPACE= “draw-space-value”  
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
**Note:** When a DATA VALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

**Default:** GRAPHPERCENT

**Restriction:** For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See:** For more information about these values, see “Drawing Space Values” on page 1349.

**Y1SPACE= “draw-space-value”**

specifies the drawing space of the annotation’s Y coordinate.

`draw-space-value` can be one of the following:

- **DATAPERCENT**
- **DATAPIXEL**
- **DATAVALUE**

**Note:** When a DATA VALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- **GRAPHPERCENT**
- **GRAPHPIXEL**
- **LAYOUTPERCENT**
- **LAYOUTPIXEL**
- **WALLPERCENT**
- **WALLPIXEL**

**Default:** GRAPHPERCENT

**Restriction:** For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See:** For more information about these values, see “Drawing Space Values” on page 1349.
POLYGON Function

Specifies the beginning point of a polygon. A polygon is a connected series of lines that form a closed shape. This function is used in conjunction with two or more POLYCONT functions to define vertex points for the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines the polygon.

**Requirement:** The SG annotation data set must also specify at least two instances of the POLYCONT function immediately after the POLYGON function.

**Syntax**

FUNCTION= “POLYGON”;

**Required Variable**

\[ X1= \text{numeric-value} \text{ | } XC1= \text{"text-string"} \]

specifies the X coordinate of the annotation.

Use one of the following arguments:

\[ X1= \text{numeric-value} \]

specifies the X coordinate for numeric data.

\[ XC1= \text{“text-string”} \]

specifies the X coordinate for character data.

**Default** none

\[ Y1= \text{numeric-value} \text{ | } YC1= \text{"text-string"} \]

specifies the Y coordinate of the annotation.

Use one of the following arguments:

\[ Y1= \text{numeric-value} \]

specifies the Y coordinate for numeric data.

\[ YC1= \text{“text-string”} \]

specifies the Y coordinate for character data.

**Default** none

**Optional Variables**

**DISCRETEOFFSET= numeric-value**

specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

**Default** 0.0 (no offset)

**DISPLAY= “ALL” | “FILL” | “OUTLINE”**

specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

**Default** OUTLINE
DRAWSPACE= "draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used
rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space,
such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values”
on page 1349.

FILLCOLOR= “color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element
attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as
FILLED or ALL.

FILLSTYLEELEMENT= “style-element”
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1300

FILLTRANSPARENCY= numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from
0.0 (completely opaque) to 1.0 (completely transparent).
Layer= "BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction

For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= "color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

LINEPATTERN= "line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= "style-element"

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS= n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.
Interactions

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default  GRAPHPERCENT

Restriction  For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See  For more information about these values, see “Drawing Space Values” on page 1349.

XAXIS= “X” | “X2”

specifies which X axis to use for data space annotations.

Default  X

Y1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS= “Y” | “Y2” specifies which Y axis to use for data space annotations.

Default Y

POLYLINE Function
Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more POLYCONT functions to draw a series of connected straight lines.

Requirement: The SG annotation data set must also specify at least one instance of the POLYCONT function immediately after the POLYLINE function.

Note: The POLYLINE object is similar to a POLYGON, except that the POLYLINE object does not need to be a closed shape.

Syntax
FUNCTION= “POLYLINE”; 

Required Variables

X1= numeric-value | XC1= “text-string” specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value specifies the X coordinate for numeric data.

XC1= “text-string” specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string” specifies the Y coordinate of the annotation.

Use one of the following arguments:
Y1= numeric-value
    specifies the Y coordinate for numeric data.

YC1= “text-string”
    specifies the Y coordinate for character data.

Default none

Optional Variables

DISCRETEOFFSET= numeric-value
    specifies an amount to offset the annotation from a discrete value in data space.
    Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DRAWSPACE= “draw-space-value”
    specifies the drawing space and units for the annotation. DRAWSPACE can be used
    rather than specify X1SPACE and Y1SPACE individually.

    draw-space-value can be one of the following:
    • DATAPERCENT
    • DATAPIXEL
    • DATAVALUE

    Note: When a DATAVALUE annotation is associated with a discrete axis, the
    annotation value must be a formatted value on the axis. Use the XC1 or YC1
    columns for those values.
    • GRAPHPERCENT
    • GRAPHPIXEL
    • LAYOUTPERCENT
    • LAYOUTPIXEL
    • WALLPERCENT
    • WALLPIXEL

    Default GRAPHPERCENT (unless overridden by a coordinate draw space,
    such as X1SPACE)

    Restriction For the SGPANEL and SGSCATTER procedures, only
    GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
    LAYOUTPIXEL values are valid.

    See For more information about these values, see “Drawing Space Values”
    on page 1349.

LAYER= “BACK” | “FRONT”
    specifies whether the annotation is drawn in front of (FRONT) or behind (BACK)
    the graph.

    Default FRONT

    Interaction For the annotation to appear behind the graph, you might need to
    disable the wall display. You can use the NOWALL option in the PROC
    SGPLOT statement (SGPLOT procedure) or in the PANELBY
LINECOLOR= “color” | “style-attribute”

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

```r
GraphData2:Color
```

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default  COLOR attribute in the graph’s current style

LINEPATTERN= “line-pattern”

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default  LineStyle attribute in the graph’s current style

LINESTYLEELEMENT= “style-element”

specifies a style element for the line. Here is an example of a style element:

```r
GraphData2
```

See  “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS= n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default  LineThickness attribute in the graph’s current style

TRANSPARENCY= numeric-value

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default  0.0

URL=character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE= “draw-space-value”

specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
  
  *Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default**  
GRAPHPERCENT

**Restriction**  
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See**  
For more information about these values, see “Drawing Space Values” on page 1349.

**XAXIS= “X” | “X2”**

specifies which X axis to use for data space annotations.

**Default**  
X

**Y1SPACE= “draw-space-value”**

specifies the drawing space of the annotation’s Y coordinate.

*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
  
  *Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default**  
GRAPHPERCENT

**Restriction**  
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS= “Y” | “Y2”  
specifies which Y axis to use for data space annotations.

Default Y

RECTANGLE Function

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

Tip: An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

Syntax

FUNCTION= “RECTANGLE”;

Required Variables

HEIGHT= numeric-value

specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH= numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= “text-string”

specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value

specifies the X coordinate for numeric data.

XC1= “text-string”

specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”

specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value

specifies the Y coordinate for numeric data.
YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Optional Variables

ANCHOR= “TOPLEFT” | “TOP” | “TOPRIGHT” | “RIGHT” |
“BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified
X1 and Y1 positions.

Default CENTER

CORNERRADIUS= numeric-value
specifies the roundness of the corners of rectangles. Specify a value from 0.0
(completely rectangular) to 1.0 (oval).

Default 0.0

DISCRETEOFFSET= numeric-value
specifies an amount to offset the annotation from a discrete value in data space.
Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

DISPLAY= “ALL” | “FILL” | “OUTLINE”
specifies the fill and outline properties. You can specify that the annotation be filled
(FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE= “draw-space-value”
specifies the drawing space and units for the annotation. DRAWSPACE can be used
rather than specify X1SPACE and Y1SPACE individually.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the
annotation value must be a formatted value on the axis. Use the XC1 or YC1
columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space,
such as X1SPACE)
Restriction For the SGPANEL and SGSCATTER procedures, only 
GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and 
LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR= “color” | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT= “style-element”
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1300

FILLTRANSPARENCY= numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

HEIGHTUNIT= “DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

LAYER= “BACK” | “FRONT”
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**  
COLOR attribute in the graph’s current style

**LINEPATTERN=** “line-pattern”  
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

**Default**  
LineStyle attribute in the graph’s current style

**LINESTYLEELEMENT=** “style-element”  
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

**LINETHICKNESS=** *n*  
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

**Default**  
LineThickness attribute in the graph’s current style

**ROTATE=** *degrees*  
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

**Default**  
0 (no rotation)

**TRANSPARENCY=** numeric-value  
specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

**Default**  
0.0

**URL=** character-variable  
specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.
By default, no HTML links are created.

This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

WIDTHUNIT= "DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

XAXIS= "X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE= "draw-space-value"
specifies the drawing space of the annotation’s Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS= “Y” | “Y2”
specifies which Y axis to use for data space annotations.

Default: Y

TEXT Function
Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the (X1, Y1) coordinates, the text is placed in the center of the graph.

Syntax
FUNCTION= “TEXT”;  

Required Variable
LABEL= “text-string”
specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. Here is a simple example:

data anno;
  function="text";
  label="This label is rich(*ESC*)\{sup '2'}";
run;
proc sgplot data=sashelp.class sganno=anno;
  scatter x=weight y=height;
run;

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.
Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, `label="95&Conf Interval"` and `label="95%Conf Interval"` both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example: `label="95%Conf Interval"`
- use the %NRQUOTE macro function. For example: `label="95%nrquote(&)Conf Interval"

Default none

Optional Variables

**ANCHOR** = “TOPLEFT” | “TOP” | “TOPRIGHT” | “RIGHT” | “BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

**BORDER** = “TRUE” | “FALSE”
turns the border on and off.

Default FALSE

**DISCRETEOFFSET= numeric-value**
specifies an amount to offset the annotation from a discrete value in data space. Specify a value from -0.5 (left offset) to +0.5 (right offset).

Default 0.0 (no offset)

**DRAWSPACE= “draw-space-value”**
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify X1SPACE and Y1SPACE individually.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL
Default  
GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction  
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See  
For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR= "color" | “style-attribute”  
specifies the background color for the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default  
COLOR attribute in the graph’s current style

FILLTRANSPARENCY= numeric-value  
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default  
0.0

JUSTIFY= “CENTER” | “LEFT” | “RIGHT”  
specifies the text justification.

Default  
LEFT

LAYER= “BACK” | “FRONT”  
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default  
FRONT

Interaction  
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR= “color” | “style-attribute”  
specifies a line color for the border of the text annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default  
COLOR attribute in the graph’s current style

Interaction  
This option takes effect only if BORDER= “TRUE”.

LINEPATTERN= “line-pattern”  
specifies a line pattern for the border of the text annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.
**Default**  LineStyle attribute in the graph’s current style

**Interaction**  This option takes effect only if BORDER= “TRUE”.

**LINESTYLEELEMENT=** “style-element”  
specifies a style element for the line. Here is an example of a style element:

```
GraphData2
```

See  “Style Elements for Use with ODS Graphics” on page 1300

**LINETHICKNESS=** \(n\)  
specifies the line thickness of the border of the text annotation. You cannot specify the unit of measure. The default unit of pixels is always used.

**Default**  LineThickness attribute in the graph’s current style

**Interaction**  This option takes effect only if BORDER= “TRUE”.

**ROTATE=** degrees  
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td>ROTATE=90</td>
</tr>
<tr>
<td>ROTATE=180</td>
</tr>
<tr>
<td>ROTATE=270</td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

**Default**  0 (no rotation)

**TEXTCOLOR=** “color” | “style-attribute”  
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

**Default**  COLOR attribute of the GraphAnnoText style element in the current style

**TEXTFONT=** “font-family”  
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts.

**Default**  FontFamily attribute of the GraphAnnoText style element in the current style.
**TEXTSIZE=** *n*

specifies the font size of the annotation.

Default: FontSize attribute of the GraphAnnoText style element in the current style.

**TEXTSTYLE=** "ITALIC" | "NORMAL"

specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default: FontStyle attribute of the GraphAnnoText style element in the current style.

**TEXTSTYLEELEMENT=** "style-element"

specifies a style element for the text. Here is an example of a style element:

GraphData2

See: “Style Elements for Use with ODS Graphics” on page 1300

**TEXTWEIGHT=** "BOLD" | "NORMAL"

specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default: FontWeight attribute of the GraphAnnoText style element in the current style.

**TRANSPARENCY=** numeric-value

specifies the degree of transparency for the annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default: 0.0

**URL=** character-variable

specifies a character variable that contains URLs for web pages to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

**WIDTH=** numeric-value

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default: Determined by the system

**WIDTHUNIT=** "DATA" | "PERCENT" | "PIXEL"

specifies the dimension unit to use for the WIDTH value.

Default: PERCENT

**X1=** numeric-value | **XC1=** "text-string"

specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
    specifies the X coordinate for numeric data.

XC1= “text-string”
    specifies the X coordinate for character data.

Default  none

X1SPACE= “draw-space-value”
    specifies the drawing space of the annotation’s X coordinate.

   draw-space-value can be one of the following:
   • DATAPERCENT
   • DATAPIXEL
   • DATAVALUE

   Note: When a DATAVALUE annotation is associated with a discrete axis, the
   annotation value must be a formatted value on the axis. Use the XC1 or YC1
   columns for those values.

   • GRAPHPERCENT
   • GRAPHPIXEL
   • LAYOUTPERCENT
   • LAYOUTPIXEL
   • WALLPERCENT
   • WALLPIXEL

Default  GRAPHPERCENT

Restriction  For the SGPANEL and SGSCATTER procedures, only
            GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
            LAYOUTPIXEL values are valid.

See  For more information about these values, see “Drawing Space Values”
     on page 1349.

XAXIS= “X” | “X2”
    specifies which X axis to use for data space annotations.

Default  X

Y1= numeric-value | YC1= “text-string”
    specifies the Y coordinate of the annotation. Use one of the following arguments:

   Y1= numeric-value
       specifies the Y coordinate for numeric data.

       Default  50

   YC1= “text-string”
       specifies the Y coordinate for character data.

       Default  none

Y1SPACE= “draw-space-value”
    specifies the drawing space of the annotation’s Y coordinate.
*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default**  
GRAPHPERCENT

**Restriction**  
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See**  
For more information about these values, see “Drawing Space Values” on page 1349.

**YAXIS= “Y” | “Y2”**  
specifies which Y axis to use for data space annotations.

**Default**  
Y

---

**TEXTCONT Function**

Continues a text string that was started using the TEXT function. You can set the continued text apart from the main text by specifying different text attributes.

**Syntax**

FUNCTION= “TEXTCONT”;

**Required Variable**

**LABEL= “text-string”**  
specifies the text label. The *text-string* can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. Here is a simple example:

```plaintext
data anno;
infile datalines dlm='#';
length function $8 label $35;
input function $ label $ textcolor $;
datalines;
text # This label is rich{*ESC*}{sup '2'} # black
```
textcont \# rich\{*ESC*\}{sup '2'} green \# green
;
run;

proc sgplot data=sashelp.class sganno=anno;
scatter x=weight y=height;
run;

You can invoke a macro that returns a string. For example: label="%mylabel",
where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to
the log. The actual warning varies with the types of characters. For example,
label="95%Conf Interval" and label="95%Conf Interval" both
produce a warning, although the annotation is drawn in both cases. There are
several ways to avoid the warning message:

- add a space after the % or & character.
- escape the % character with a second % character. For example:
  label="95%%Conf Interval"
- use the %NRQUOTE macro function. For example:
  label="95%nrquote(&)Conf Interval"

Default none

Optional Variables

TEXTCOLOR= “color” | “style-attribute”
specifies the text color for the annotation. You can specify a color or a style element
attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT= “font-family”
specifies the font family for the annotation. The SAS ODS styles use TrueType
system fonts.

Default FontFamily attribute of the GraphAnnoText style element in the current
style.

TEXTSIZE= n
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE= “ITALIC” | “NORMAL”
specifies whether the annotation characters are italic (ITALIC) or normal
(NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.

TEXTSTYLEELEMENT= “style-element”
specifies a style element for the text. Here is an example of a style element:

GraphData2
TEXTWEIGHT= “BOLD” | “NORMAL”
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default
FontWeight attribute of the GraphAnnoText style element in the current style.

Examples

Example 1: Create an Arrow in a Paneled Graph
Features: ARROW

This example uses the SGPANEL procedure to create an arrow near the middle data point for the height variable in each panel.

Output

```
Program
data annoArrow;
retain drawspace "layoutpercent* linecolor "blue";
input function $ x1 y1 x2 y2 shape $ direction $;
datalines;
```

Program Description

Create an SG annotation data set.

```sas
data annoArrow;
retain drawspace "layoutpercent" linecolor "blue";
input function $ x1 y1 x2 y2 shape $ direction $;
datalines;
 arrow 30 50 40 50 barbed in
 arrow 65 63 75 63 barbed out
;run;
```

Create the panel with the annotation.

```sas
proc sgpanel data=sashelp.class sganno=annoArrow;
 panelby sex;
 scatter x=weight y=height;
run;
```

Example 2: Create a Tabular Text Annotation

**Features:**
- TEXT annotation
- PAD option

This example uses the SGPlot procedure to create an axis-aligned table to the right of a horizontal bar chart.
Program

data anno;
length y1space $12 label $6;
set sashelp.class (keep=name weight);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
textcolor "black" textweight "normal" y1 . anchor "right";
label=put(weight, F5.1); 
run;

data temp;
length y1space $12 label $6;
set sashelp.class (keep=name age);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
textcolor "black" textweight "normal";
label=put(age, F2.0);
run;

data headers;
length textweight $6;
retain y1space "graphpercent" x1space "graphpercent" function "text" y1 90
textcolor "black" textweight "bold";
x1=87;
label="WEIGHT";
output;
x1=95;
label="AGE";
output;
run;

proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;
proc append base=anno (drop=weight) data=headers force nowarn;
run;
title1 "Class Statistics";
title2 = " ";
proc sgplot data=sashelp.class sganno=anno pad=(right=25%);
hbar name / response=height datalabel nostatlabel
categoryorder=respdesc;
run;
title1;

Program Description

Create a data set with the Weight column. Use annotation variables to define attributes for the weight text.

data anno;
length y1space $ 12 label $ 6;
set sashelp.class (keep=name weight);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 90 function "text"
   textcolor "black" textweight "normal" y1 . anchor "right";
label=put(weight, F5.1);
run;

Create a data set with the Age column. Use annotation variables to define attributes for the age text.

data temp;
length y1space $ 12 label $ 6;
set sashelp.class (keep=name age);
rename name=yc1;
retain y1space "datavalue" x1space "graphpercent" x1 95 function "text"
   textcolor "black" textweight "normal";
label=put(age, F2.0);
run;

Create the positions for the two columns of the table in the graph area.

data headers;
length textweight $ 6;
retain y1space "graphpercent" x1space "graphpercent" function "text" y1 90
   textcolor "black" textweight "bold";
x1=87;
label="WEIGHT";
output;
x1=95;
label="AGE";
output;
runcopy

Append the observations of TEMP to ANNO, and then append the observations of HEADERS.

proc append base=anno (drop=weight) data=temp (drop=age) force nowarn;
run;
Example 3: Create Custom Labels

Overview

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.

The following figure shows the final graph.

Program

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
   class type;
   var mpg_highway;
   output out=mileage mean(mpg_highway) = mpg_highway;
run;
/* Create the annotation data set. */
data anno;
  retain function "text" drawspace "datavalue"
    textfont "Arial" textweight "bold"
    textcolor "GraphData1:contrastColor"
    width 100 widthunit "pixel"
    anchor "left" x1 2
    discreteoffset 0.1;
  set mileage(keep=type);
  rename type=yc1;
  length label $12;
  label=type;
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
  hbarparm category=type response=mpg_highway /
    dataskin=sheen;
  xaxis label="Average Highway MPG";
  yaxis display=none;
run;
title;

Program Description

**Summarize the highway mileage data in SASHELP.CARS.** Because a label is needed for each unique value of vehicle type, the data in SASHELP.CARS is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type. See “Listing of the Mileage Data Set” on page 1402.

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
  class type;
  var mpg_highway;
  output out=mileage mean(mpg_highway) = mpg_highway;
run;

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column and is then renamed to YC1. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

/* Create the annotation data set. */
data anno;
  retain function "text" drawspace "datavalue"
    textfont "Arial" textweight "bold"
    textcolor "GraphData1:contrastColor"
    width 100 widthunit "pixel"
    anchor "left" x1 2
    discreteoffset 0.1;
%C0%AB\text{Create the plot.} The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

```sas
/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
 hbarparm category=type response=mpg_highway /
 dataskin=sheen;
 xaxis label="Average Highway MPG";
 yaxis display=none;
run;
title;
```

**Listing of the Mileage Data Set**

Here is a listing of the Mileage data set.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th><em>TYPE</em></th>
<th><em>FREQ</em></th>
<th>mpg_city</th>
<th><em>FREQ</em></th>
<th>mpg_highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>24</td>
<td>16.5000</td>
<td>21.0000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 16
SG Annotation Macro Dictionary

About the SG Annotation Macros

You can use SG annotation macros within a SAS DATA step to simplify the process of creating annotation observations. With a macro, you specify a function and assign variable values in one step without having to write explicit variable assignment statements. You can mix assignment statements and macro calls in the same DATA step.

The following sections describe all of the annotation macros and include information about accessing and using macros.
Using the SG Annotation Macros

Macro Structure

The general form of an SG annotation macro is

\%MACRO \{parameters\};

In general, the macro name represents a function and the parameters contain the values for the variables that can be used with the function.

The parameters can be specified in any order.

Each of the parameters in the SGANNO macros corresponds to a variable in the SG annotation data set.

The parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable names that have been initialized to the appropriate value. Character parameters must be enclosed in quotation marks or specified as character variable names. For more information about specifying variable names, see “Data-Driven Macro Parameters” on page 1407.

The SG annotation facility assigns the parameter values to the corresponding annotation variables. Therefore, the observations in an annotation data set that is created with macros look the same as the ones that you create with assignment statements. For example, the following two statements are equivalent:

\%sgtext \{x1=10, y1=15, label="My Text", justify="center"\};

function="text"; x1=10; y1=15; label="My Text"; justify="center"; output;

Making the Macros Available

To use the SG annotation macros, you must compile the macros by issuing the \%SGANNO macro:

\%SGANNO

The \%SGANNO macro must be run before any other SG annotation macros are used in a SAS session. A message appears in the SAS log indicating that the SG annotation macros are available.

Example

The following sample program identifies the basic elements of an annotation program.
The %SGANNO macro compiles all of the SG annotation macros and makes them available.

The DATA step creates the annotation data.

The %SGRECTANGLE macro draws a 30-by-40 rectangle, starting from point (50,50). By default, the rectangle is positioned and scaled as a percentage of the graph area.

The %SGARROW macro draws a red arrow from point (51, 50) to point (30, 35). The X1 value overrides the X1 value that was specified in the call to %SGRECTANGLE. The Y1 parameter is not specified, so the arrow uses the Y1 value that was specified in the call to %SGRECTANGLE.

By default, the rectangle and the arrow are positioned and scaled as a percentage of the graph area.

The SGPLOT procedure statement uses the SGANNO= option to reference the annotation data set.

Here is the graphics output:

Here is the SGANNODATA data set:

<table>
<thead>
<tr>
<th>Obs</th>
<th>FUNCTION</th>
<th>LINECOLOR</th>
<th>X1</th>
<th>Y1</th>
<th>HEIGHT</th>
<th>WIDTH</th>
<th>X2</th>
<th>Y2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RECTANGLE</td>
<td></td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ARROW</td>
<td>red</td>
<td>51</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>
**Resetting Parameter Values**

By default, a macro call retains all variable values that were set in previous macro calls. You have two options for resetting the values:

- To reset individual variable values on a subsequent macro call, set new values for the corresponding parameters in that macro call.
- To re-initialize all variable values on any macro call, specify `RESET=“ALL”` among the macro's parameters.

For example, the `%SGARROW` macro draws an arrow between two points and requires values for both points: `(x1,y1)` and `(x2,y2)`. To draw two arrows from the same starting point but to different end points, you can omit the `X1` and `Y1` parameters in the second macro call.

```plaintext
%sgarrow(x1=34, y1=30, x2=62, y2=64, linecolor="red");
%sgarrow(x2=45, y2=40, linecolor="green");
%sgarrow(reset="all", x1=60, y1=83, x2=79, y2=83);
```

In the previous example:

- The first macro call draws a red arrow from point (34, 30) to point (62, 64).
- The second macro call draws a green arrow from point (34, 30) to point (45, 40).
- The third macro call resets all macro-variable values and draws a default-colored arrow from point (60, 83) to point (79, 83).

**SG Annotation Macro Summary**

The following table summarizes the tasks performed by the Annotate macros.

<table>
<thead>
<tr>
<th>Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>%SGANNO_HELP</code></td>
<td>displays help for using the SG annotation macros</td>
</tr>
<tr>
<td><code>%SGARROW</code></td>
<td>draws an arrow</td>
</tr>
<tr>
<td><code>%SGIMAGE</code></td>
<td>draws an image</td>
</tr>
<tr>
<td><code>%SGLINE</code></td>
<td>draws a line from one point to another</td>
</tr>
<tr>
<td><code>%SGOVAL</code></td>
<td>draws an oval or a circle</td>
</tr>
<tr>
<td><code>%SGPOLYCONT</code></td>
<td>continues drawing a polygon or a polyline</td>
</tr>
<tr>
<td><code>%SGPOLYGON</code></td>
<td>draws a polygon</td>
</tr>
<tr>
<td><code>%SGPOLYLNE</code></td>
<td>draws a polyline</td>
</tr>
<tr>
<td><code>%SGRECTANGLE</code></td>
<td>draws a rectangle or a square</td>
</tr>
<tr>
<td><code>%SGTEXT</code></td>
<td>begins drawing text</td>
</tr>
</tbody>
</table>
Data-Driven Macro Parameters

The macro parameters are either numeric or character. Numeric parameters can be numeric constants or numeric variable column names associated with your data. Similarly, character parameters can be character column names.

When you specify variable names for macro parameters, the DATA step for the annotation data set must read the observations from your data. This enables you to plot a series of labels, arrows, or other annotation based on the values in the second data set. For an example of using variable names, see “Example: Create Custom Labels” on page 1455.

Dictionary

%SGANNO_HELP Macro
displays help for using the SG annotation macros.

Syntax

%SGANNO_HELP(macro-name) | (ALL)

Required Argument

(macro-name) | (ALL)
  • To request help for a specific macro, use the form %SGANNO_HELP(macro-name), where macro-name is the name of the desired macro. For example:

  %sganno_help(sgrectangle);

  • To request help for all of the SG annotation macros, use the form %SGANNO_HELP(ALL).

%SGARROW Macro

Draws an arrow from (X1, Y1) to (X2,Y2).

Requirement:  You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

Syntax

%SGARROW (X1=numeric-value | XC1=“text-string”);
Y1=numeric-value | YC1="text-string",
X2=numeric-value | XC2="text-string",
Y2=numeric-value | YC2="text-string",
<options>

Required Arguments

X1= numeric-value | XC1= “text-string”
specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

X2= numeric-value | XC2= “text-string”
specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2= numeric-value
specifies the X coordinate for numeric data.

XC2= “text-string”
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1= “text-string”
specifies the Y coordinate for character data.

Default none

Y2= numeric-value | YC2= “text-string”
specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2= numeric-value
specifies the Y coordinate for numeric data.

YC2= “text-string”
specifies the Y coordinate for character data.

Default none
**Optional Arguments**

**DIRECTION=**“BOTH” | “IN” | “OUT”  
specifies the direction for arrows.

- **“BOTH”**  
  Places the arrowhead at both ends of the line.

- **“IN”**  
  Places the arrowhead at the source (X1 or Y1 coordinate) of the line.

- **“OUT”**  
  Places the arrowhead at the tail end (X2 or Y2 coordinate) of the line.

Default  OUT

**DISCRETEOFFSET=**numeric-value  
specifies an amount to offset the annotation from a discrete value in data space.

Default  0.0 (no offset)

Range  -0.5 (left offset) to +0.5 (right offset)

**DRAWSPACE=**“draw-space-value”  
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

*draw-space-value* can be one of the following:
- DATAPERCENT
- DATAPIXEL
- DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default  GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

**Restriction**  
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**See**  
For more information about these values, see “Drawing Space Values” on page 1349.
ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

SCALE=numeric-value
specifies a scale factor for the arrowheads. Specify a positive number.

Default determined by the procedure
SHAPE="BARBED" | "CLOSED" | "FILLED" | "OPEN"
specifies the shape of the arrowheads. Specify one of the following:

"BARBED"
    a solid triangle with an indent at the base.

"CLOSED"
    an outline of a triangle.

"FILLED"
    a solid triangle.

"OPEN"
    a triangle that resembles the letter "\"V\". 

Default   OPEN

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default   0.0

Range  0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default   By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

**Note:** When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.

For more information about these values, see “Drawing Space Values” on page 1349.

\texttt{XAXIS=“X” | “X2”}

specifies which X axis to use for data space annotations.

\texttt{Y1SPACE=“draw-space-value”}

specifies the drawing space of the annotation’s second Y coordinate.

\texttt{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPixel
- DATAVALUE

\textit{Note:} When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

\texttt{X2SPACE=“draw-space-value”}

specifies the drawing space of the annotation’s second X coordinate.

\texttt{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPixel
- DATAVALUE

\textit{Note:} When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

\texttt{Y1SPACE=“draw-space-value”}

specifies the drawing space of the annotation’s second Y coordinate.

\texttt{draw-space-value} can be one of the following:

- DATAPERCENT
- DATAPixel
• DATAVALUE
  
  Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1349.

Y2SPACE="draw-space-value"

specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPixel
• DATAVALUE
  
  Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.
YAXIS="Y" | “Y2”
specifies which Y axis to use for data space annotations.

Default Y

---

**%SGIMAGE Macro**
displays an image.

**Requirement:** You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

**Syntax**

%SGIMAGE (IMAGE="file-specification" <x1, y1, options>)

**Required Argument**

IMAGE="file-specification"
specifies the image file to be displayed in the graphics output. Include the complete path and filename. The syntax of external file specifications varies across operating environments.

The path that you specify must be accessible to your SAS Studio server. For information about accessing files in SAS Studio, see “Using SAS Studio” in SAS Studio: User’s Guide.

**Optional Arguments**

ANCHOR="TOPLEFT" | “TOP” | “TOPRIGHT” | “RIGHT” |
“BOTTOMRIGHT” | “BOTTOM” | “BOTTOMLEFT” | “LEFT” | “CENTER”
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER="TRUE" | “FALSE”
turns the border on and off.

Default FALSE

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)
DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See: For more information about these values, see “Drawing Space Values” on page 1349.

HEIGHT=numeric-value
specifies the height of the annotation. Specify a positive number greater than zero.

You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default: Determined by the system

HEIGHTUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the HEIGHT value.

Default: PERCENT

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

IMAGESCALE="FIT" | "FITHEIGHT" | "FITWIDTH" | "TILE"
specifies how the image is scaled within the width and height. You can specify the WIDTH and HEIGHT variables.
Defaults  FITWIDTH or FITHEIGHT if no size or if one size (either the width or the height) is specified (to preserve aspect)

FIT if width and height are both specified

<table>
<thead>
<tr>
<th>LAYER=“BACK”</th>
<th>“FRONT”</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.</td>
<td></td>
</tr>
<tr>
<td>Default  FRONT</td>
<td></td>
</tr>
</tbody>
</table>

Interaction  For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

<table>
<thead>
<tr>
<th>LINECOLOR= “color”</th>
<th>“style-attribute”</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a color of the border around the image, if displayed. You can specify a color or a style element attribute. Here is an example of a style attribute:</td>
<td></td>
</tr>
<tr>
<td>GraphData2:Color</td>
<td></td>
</tr>
</tbody>
</table>

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default  COLOR attribute in the graph’s current style

<table>
<thead>
<tr>
<th>LINEPATTERN= “line-pattern”</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.</td>
</tr>
</tbody>
</table>

Default  LineStyle attribute in the graph’s current style

<table>
<thead>
<tr>
<th>LINEDSTYLEELEMENT= “style-element”</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies a style element for the line. Here is an example of a style element:</td>
</tr>
<tr>
<td>GraphData2</td>
</tr>
</tbody>
</table>

See  “Style Elements for Use with ODS Graphics” on page 1300

<table>
<thead>
<tr>
<th>LINETHICKNESS= n</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.</td>
</tr>
</tbody>
</table>

Default  LineThickness attribute in the graph’s current style

<table>
<thead>
<tr>
<th>RESET= “ALL”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-initializes all variables.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROTATE= degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotates the image, measured in degrees. The angle is measured as if a horizontal line extended to the right through the image anchor point as shown in the following figure.</td>
</tr>
</tbody>
</table>
Positive angles rotate the image counter clockwise, and negative angles rotate the image clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0

Note When this option is used with a vector graph, the graph is rendered as an image.

**TRANSPARENCY=numeric-value**
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=“text-string”**
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

**WIDTH=numeric-value**
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

**WIDTHUNIT=“DATA” | “PERCENT” | “PIXEL”**
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

**X1= numeric-value | XC1= “text-string”**
specifies the X coordinate of the annotation. Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.
XC1="text-string"
specifies the X coordinate for character data.

Default none

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1= numeric-value | YC1="text-string"
specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
specifies the Y coordinate for numeric data.

YC1="text-string"
specifies the Y coordinate for character data.

Default none

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.
draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS=“Y” | “Y2” specifies which Y axis to use for data space annotations.

Default: Y

%SGLINE Macro

Draws a line from (X1, Y1) to (X2, Y2).

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

Syntax:

%SGLINE (X1=numeric-value | XC1=“text-string”,
Y1=numeric-value | YC1=“text-string”,
X2=numeric-value | XC2=“text-string”,
Y2=numeric-value | YC2=“text-string”,
<options>)
**Required Arguments**

X1= numeric-value | XC1= “text-string”  
specifies the first X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value  
specifies the X coordinate for numeric data.

XC1= “text-string”  
specifies the X coordinate for character data.

Default none

X2= numeric-value | XC2= “text-string”  
specifies the second X coordinate of the annotation.

Use one of the following arguments:

X2= numeric-value  
specifies the X coordinate for numeric data.

XC2= “text-string”  
specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”  
specifies the first Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value  
specifies the Y coordinate for numeric data.

YC1= “text-string”  
specifies the Y coordinate for character data.

Default none

Y2= numeric-value | YC2= “text-string”  
specifies the second Y coordinate of the annotation.

Use one of the following arguments:

Y2= numeric-value  
specifies the Y coordinate for numeric data.

YC2= “text-string”  
specifies the Y coordinate for character data.

Default none

**Optional Arguments**

**DISCRETEOFFSET=numeric-value**  
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)
DRAWSPACE="draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1349.

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default

All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default

FRONT

Interaction

For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.
LINECOLOR="color" | “style-attribute”  
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"  
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT="style-element"  
specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS=n  
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET="ALL"  
Re-initializes all variables.

TRANSPARENCY=numeric-value  
specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"  
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE="draw-space-value"  
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE
Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See: For more information about these values, see “Drawing Space Values” on page 1349.

**X2SPACE=**<em>draw-space-value</em>

Specifies the drawing space of the annotation’s second X coordinate.

<em>draw-space-value</em> can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default: GRAPHPERCENT

Restriction: For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note: If you do not also specify the X1SPACE= value, then the first X coordinate uses the default drawing space.
XAXIS="X" | "X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note
If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See
For more information about these values, see “Drawing Space Values” on page 1349.

Y2SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y1SPACE= value, then the first Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS=“Y” | “Y2” specifies which Y axis to use for data space annotations.

Default Y

%SGOVAL Macro

Draws an oval annotation around the specified (X1, Y1) coordinates using the specified height and width.

Syntax

%SGOVAL ( HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

HEIGHT=numeric-value specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

WIDTH=numeric-value specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

X1= numeric-value | XC1= “text-string” specifies the X coordinate of the annotation.

Use one of the following arguments:
X1= numeric-value
    specifies the X coordinate for numeric data.

XC1= “text-string”
    specifies the X coordinate for character data.

Default none

Y1= numeric-value | YC1= “text-string”
    specifies the Y coordinate of the annotation.

Use one of the following arguments:

Y1= numeric-value
    specifies the Y coordinate for numeric data.

YC1= “text-string”
    specifies the Y coordinate for character data.

Default none

Optional Arguments

DISCRETEOFFSET=numeric-value
    specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | “FILL” | “OUTLINE”
    specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value”
    specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL
Default

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction

For the SGPANEL and SGSCATTER procedures, only
GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and
LAYOUTPIXEL values are valid.

See

For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR="color" | “style-attribute”

specifies a fill color for the annotation. You can specify a color or a style element
attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more
information, see “Color-Naming Schemes” on page 1278.

Default

COLOR attribute in the graph’s current style

Interaction

This option takes effect only if the DISPLAY option is specified as
FILLED or ALL.

FILLSTYLEELEMENT="style-element"

specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note

Only the COLOR attribute of the style element applies to the fill.

See

“Style Elements for Use with ODS Graphics” on page 1300

FILLTRANSPARENCY=numeric-value

specifies the transparency for the fill portion of an annotation. Specify a value from
0.0 (completely opaque) to 1.0 (completely transparent).

Default

0.0

HEIGHTUNIT="DATA" | “PERCENT” | “PIXEL”

specifies the dimension unit to use for the HEIGHT value.

Default

PERCENT

ID="annotation-identifier"

Defines an ID for the annotation. The ID contains a unique character value that
identifies the subset to which each annotation belongs. All annotations in the
annotation data set with an ID variable value that matches the specified annotation
identifier are drawn. If the annotation data set does not contain an ID variable or if
no ID variable value matches the specified identifier, no annotations are drawn.

Default

All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | “FRONT”

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK)
the graph.

Default

FRONT

Interaction

For the annotation to appear behind the graph, you might need to
disable the wall display. You can use the NOWALL option in the PROC
SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR=“color” | “style-attribute”
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

```plaintext
GraphData2:Color
```
You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

LINEPATTERN=“line-pattern”
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESYLETEXTELEMENT=“style-element”
specifies a style element for the line. Here is an example of a style element:

```plaintext
GraphData2
```
See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

RESET=“ALL”
Re-initializes all variables.

ROTATE= degrees
rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the oval anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
<th>No Rotation</th>
<th>ROTATE=90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
</tr>
<tr>
<td>ROTATE=180</td>
<td><img src="image3.png" alt="Image" /></td>
<td><img src="image4.png" alt="Image" /></td>
</tr>
<tr>
<td>ROTATE=270</td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.
TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.
Interactions This option affects graphics output that is created through the ODS HTML destination only.
This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

WIDTHUNIT="DATA" | "PERCENT" | "PIXEL"
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE
  Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.
• GRAPHPERCENT
• GRAPHPXIEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPXIEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.
XAXIS="X" | “X2"
specifies which X axis to use for data space annotations.

Default X

Y1SPACE="draw-space-value"
specifies the drawing space of the annotation’s second Y coordinate.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS="Y" | “Y2"
specifies which Y axis to use for data space annotations.

Default Y

%SGPOLYCONT Macro

Continues drawing a polygon that was begun with the %SGPOLYGON macro, or a line that was begun with the %SGPOLYLINE macro. %SGPOLYCONT specifies each successive point in the polygon or polyline.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.
Syntax

%SGPOLYCONT (X1=numeric-value | XC1="text-string", Y1=numeric-value | YC1="text-string", <options>)

Required Arguments

X1= numeric-value | XC1="text-string"
   specifies the X coordinate of the annotation.
   Use one of the following arguments:
   X1= numeric-value
      specifies the X coordinate for numeric data.
   XC1="text-string"
      specifies the X coordinate for character data.

   Default none

Y1= numeric-value | YC1="text-string"
   specifies the Y coordinate of the annotation.
   Use one of the following arguments:
   Y1= numeric-value
      specifies the Y coordinate for numeric data.
   YC1="text-string"
      specifies the Y coordinate for character data.

   Default none

Optional Arguments

ID="annotation-identifier"
   Defines an ID for the annotation. The ID contains a unique character value that
   identifies the subset to which each annotation belongs. All annotations in the
   annotation data set with an ID variable value that matches the specified annotation
   identifier are drawn. If the annotation data set does not contain an ID variable or if
   no ID variable value matches the specified identifier, no annotations are drawn.

   Default All of the annotations in the SGANNO data set are drawn.

RESET="ALL"
   Re-initializes all variables.

X1SPACE="draw-space-value"
   specifies the drawing space of the annotation’s first X coordinate.
   draw-space-value can be one of the following:
   • DATAPERCENT
   • DATAPIXEL
   • DATAVALUE
**Note:** When a `DATAVALUE` annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- `GRAPHPERCENT`
- `GRAPHPIXEL`
- `LAYOUTPERCENT`
- `LAYOUTPIXEL`
- `WALLPERCENT`
- `WALLPIXEL`

**Default:** `GRAPHPERCENT`

**Restriction:** For the `SGPANEL` and `SGSCATTER` procedures, only `GRAPHPERCENT`, `GRAPHPIXEL`, `LAYOUTPERCENT`, and `LAYOUTPIXEL` values are valid.

**Note:** If you do not also specify the `X2SPACE=` value, then the second X coordinate uses the default drawing space.

**See:** For more information about these values, see “Drawing Space Values” on page 1349.

---

**Y1SPACE="draw-space-value"**

specifies the drawing space of the annotation’s second Y coordinate.

`draw-space-value` can be one of the following:

- `DATAPERCENT`
- `DATAPIXEL`
- `DATAVALUE`

**Note:** When a `DATAVALUE` annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- `GRAPHPERCENT`
- `GRAPHPIXEL`
- `LAYOUTPERCENT`
- `LAYOUTPIXEL`
- `WALLPERCENT`
- `WALLPIXEL`

**Default:** `GRAPHPERCENT`

**Restriction:** For the `SGPANEL` and `SGSCATTER` procedures, only `GRAPHPERCENT`, `GRAPHPIXEL`, `LAYOUTPERCENT`, and `LAYOUTPIXEL` values are valid.

**Note:** If you do not also specify the `Y2SPACE=` value, then the second Y coordinate uses the default drawing space.
%SGPOLYGON Macro

Specifies the beginning point of a polygon. A polygon is a connected series of lines that form a closed shape. This function is used in conjunction with two or more %SGPOLYCONT functions to define vertex points for the polygon. Associated variables can define the fill pattern and color, as well as the line type that outlines the polygon.

**Requirement:** You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

**Syntax**

```
%SGPOLYGON (X1=numeric-value | XC1=“text-string”,
 Y1=numeric-value | YC1=“text-string”, <options>)
```

**Required Arguments**

- **X1= numeric-value | XC1= “text-string”**
  - Specifies the X coordinate of the annotation.
  - Use one of the following arguments:
    - **X1= numeric-value**
      - Specifies the X coordinate for numeric data.
    - **XC1= “text-string”**
      - Specifies the X coordinate for character data.
  - Default: none

- **Y1= numeric-value | YC1= “text-string”**
  - Specifies the Y coordinate of the annotation.
  - Use one of the following arguments:
    - **Y1= numeric-value**
      - Specifies the Y coordinate for numeric data.
    - **YC1= “text-string”**
      - Specifies the Y coordinate for character data.
  - Default: none

**Optional Arguments**

- **DISCRETEOFFSET=numeric-value**
  - Specifies an amount to offset the annotation from a discrete value in data space.
  - Default: 0.0 (no offset)
  - Range: -0.5 (left offset) to +0.5 (right offset)
DISPLAY="ALL" | “FILL” | “OUTLINE"
 specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"
 specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:
• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR="color" | “style-attribute"
 specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT="style-element"
 specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.
FILLTRANSPARENCY=\textit{numeric-value}

specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

ID=\textit{“annotation-identifier”}

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SG PLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR=\textit{“color”} | \textit{“style-attribute”}

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

LINEPATTERN=\textit{“line-pattern”}

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

LINESTYLEELEMENT=\textit{“style-element”}

specifies a style element for the line. Here is an example of a style element:

GraphData2

LINETHICKNESS=\textit{n}

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.
Default  LineThickness attribute in the graph’s current style

RESET=“ALL”
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default  0.0
Range    0 (completely opaque) to 1 (completely transparent)

URL=“text-string”
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default  By default, no HTML links are created.

Interactions  This option affects graphics output that is created through the ODS HTML destination only.

Note:  This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

\textit{draw-space-value} can be one of the following:

•  DATAPERCENT
•  DATAPIXEL
•  DATAVALUE

\textit{Note:}  When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

•  GRAPHPERCENT
•  GRAPHPixel
•  LAYOUTPERCENT
•  LAYOUTPIXEL
•  WALLPERCENT
•  WALLPIXEL

Default  GRAPHPERCENT

Restriction  For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPETAL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

\textit{Note:}  If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

\textit{See:}  For more information about these values, see “Drawing Space Values” on page 1349.
**XAXIS=**“X” | “X2”  
specifies which X axis to use for data space annotations.  

Default  

**Y1SPACE=**“draw-space-value”  
specifies the drawing space of the annotation’s second Y coordinate.  

draw-space-value can be one of the following:  

- DATAPERCENT  
- DATAPIXEL  
- DATAVALUE  

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.  

- GRAPHPERCENT  
- GRAPHPIXEL  
- LAYOUTPERCENT  
- LAYOUTPIXEL  
- WALLPERCENT  
- WALLPIXEL  

Default  

**YAXIS=**“Y” | “Y2”  
specifies which Y axis to use for data space annotations.  

Default  

---

### %SGPOLYLINE Macro

Specifies the beginning point of a polyline, which is a connected series of line segments. This function is used in conjunction with one or more %SGPOLYCONT functions to draw a series of connected straight lines.

**Requirement:** You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.
Syntax

\verb|\%SGPOLYLINE (X1=numeric-value \mid XC1="text-string", \ Y1=numeric-value \mid YC1="text-string",<options>)|  

Required Arguments

\(X1=\text{numeric-value} \mid XC1="\text{text-string}"\)  
specifies the X coordinate of the annotation.  
Use one of the following arguments:  
\(X1=\text{numeric-value}\)  
specifies the X coordinate for numeric data.  
\(XC1="\text{text-string}"\)  
specifies the X coordinate for character data.  
Default none

\(Y1=\text{numeric-value} \mid YC1="\text{text-string}"\)  
specifies the Y coordinate of the annotation.  
Use one of the following arguments:  
\(Y1=\text{numeric-value}\)  
specifies the Y coordinate for numeric data.  
\(YC1="\text{text-string}"\)  
specifies the Y coordinate for character data.  
Default none

Optional Arguments

\(\text{DISCRETEOFFSET=numeric-value}\)  
specifies an amount to offset the annotation from a discrete value in data space.  
Default 0.0 (no offset)  
Range -0.5 (left offset) to +0.5 (right offset)

\(\text{DRAWSPACE=draw-space-value}\)  
specifies the drawing space and units for the annotation. \(\text{DRAWSPACE}\) can be used rather than specify individual values for \(X1SPACE, X2SPACE, Y1SPACE, \text{and } Y2SPACE\).  
\(\text{draw-space-value}\) can be one of the following:  
• \(\text{DATAPERCENT}\)  
• \(\text{DATAPIXEL}\)  
• \(\text{DATAVALUE}\)  
\(\text{Note:}\) When a \(\text{DATAVALUE}\) annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the \(XC1\) or \(YC1\) columns for those values.  
• \(\text{GRAPHPERCENT}\)  
• \(\text{GRAPHPIXEL}\)
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default

GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPHIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See
For more information about these values, see “Drawing Space Values” on page 1349.

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default
All of the annotations in the SGANNO data set are drawn.

LAYER="BACK" | "FRONT"
specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default
FRONT

Interaction
For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR="color" | "style-attribute"
specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
COLOR attribute in the graph’s current style

LINEPATTERN="line-pattern"
specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default
LineStyle attribute in the graph’s current style

LINESTYLEELEMENT="style-element"
specifies a style element for the line. Here is an example of a style element:
LINETHICKNESS=n
specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

RESET="ALL"
Re-initializes all variables.

TRANSPARENCY=numeric-value
specifies the degree of transparency for the annotation.

Default: 0.0

Range: 0 (completely opaque) to 1 (completely transparent)

URL="text-string"
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default: By default, no HTML links are created.

Interactions: This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

X1SPACE="draw-space-value"
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPixel
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default: GRAPHPERCENT
Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

**XAXIS=**“X” | “X2” specifies which X axis to use for data space annotations.

Default X

**Y1SPACE=**“draw-space-value” specifies the drawing space of the annotation’s second Y coordinate.

*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

Restriction For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPixel, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

**YAXIS=**“Y” | “Y2” specifies which Y axis to use for data space annotations.

Default Y
%SGRECTANGLE Macro

Draws a rectangle annotation around the specified (X1, Y1) coordinates using the specified height and width. By default, the (X1, Y1) coordinates constitute the center of the rectangle, though you can change this behavior using the ANCHOR option.

**Requirement:** You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

**Tip:** An easy way to draw a square is to specify PIXEL for the HEIGHTUNIT and WIDTHUNIT variables and then provide the same value for the HEIGHT and WIDTH.

**Syntax**

%SGRECTANGLE (HEIGHT=numeric-value, WIDTH=numeric-value, X1=numeric-value | XC1=“text-string”, Y1=numeric-value | YC1=“text-string”, <options>)

**Required Arguments**

**HEIGHT=numeric-value**

specifies the height of the annotation. Specify a positive number greater than zero. You can use the HEIGHTUNIT variable to specify the unit of measurement.

Default none

**WIDTH=numeric-value**

specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default none

**X1= numeric-value | XC1= “text-string”**

specifies the X coordinate of the annotation.

Use one of the following arguments:

- **X1= numeric-value**
  specifies the X coordinate for numeric data.

- **XC1= “text-string”**
  specifies the X coordinate for character data.

Default none

**Y1= numeric-value | YC1= “text-string”**

specifies the Y coordinate of the annotation.

Use one of the following arguments:

- **Y1= numeric-value**
  specifies the Y coordinate for numeric data.

- **YC1= “text-string”**
  specifies the Y coordinate for character data.
Optional Arguments

ANCHOR="TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"
specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

CORNERRADIUS=numeric-value
specifies the roundness of the corners of rectangles. Specify a value from 0.0 (completely rectangular) to 1.0 (oval).

Default 0.0

DISCRETEOFFSET=numeric-value
specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DISPLAY="ALL" | "FILL" | "OUTLINE"
specifies the fill and outline properties. You can specify that the annotation be filled (FILL), have an outline (OUTLINE), or both (ALL).

Default OUTLINE

DRAWSPACE="draw-space-value"
specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPixel
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)
Restriction For the SGPANEL and SGSCATTER procedures, only GRAHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See For more information about these values, see “Drawing Space Values” on page 1349.

**FILLCOLOR=“color” | “style-attribute”**

specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

Interaction This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

**FILLSTYLEELEMENT=“style-element”**

specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note Only the COLOR attribute of the style element applies to the fill.

See “Style Elements for Use with ODS Graphics” on page 1300

**FILLTRANSPARENCY=numeric-value**

specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default 0.0

**HEIGHTUNIT=“DATA” | “PERCENT” | “PIXEL”**

specifies the dimension unit to use for the HEIGHT value.

Default PERCENT

**ID=“annotation-identifier”**

Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

**LAYER=“BACK” | “FRONT”**

specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default FRONT

Interaction For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also
available in the PLOT and COMPARE statements of the SGSCATTER procedure.

**LINECOLOR=**"color" | "style-attribute"

specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute in the graph’s current style

**LINEPATTERN=**"line-pattern"

specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default LineStyle attribute in the graph’s current style

**LINESTYLEELEMENT=**"style-element"

specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

**LINETHICKNESS=**n

specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default LineThickness attribute in the graph’s current style

**RESET=**"ALL"

Re-initializes all variables.

**ROTATE=** degrees

rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the rectangle anchor point as shown in the following figure.

<table>
<thead>
<tr>
<th>Rotation With ANCHOR=TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Rotation</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)
**TRANSPARENCY=numeric-value**

specifies the degree of transparency for the annotation.

Default 0.0

Range 0 (completely opaque) to 1 (completely transparent)

**URL=“text-string”**

specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

**WIDTHUNIT=“DATA” | “PERCENT” | “PIXEL”**

specifies the dimension unit to use for the WIDTH value.

Default PERCENT

**X1SPACE=“draw-space-value”**

specifies the drawing space of the annotation’s first X coordinate.

`draw-space-value` can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

`Note:` When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

Default GRAPHPERCENT

**Restriction** For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**Note** If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

**See** For more information about these values, see “Drawing Space Values” on page 1349.
XAXIS="X" | “X2”  
specifies which X axis to use for data space annotations.  

Default X  

Y1SPACE="draw-space-value"  
specifies the drawing space of the annotation’s second Y coordinate.  

*draw-space-value* can be one of the following:  

- DATAPERCENT  
- DATAPIXEL  
- DATAVALUE  

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.  

- GRAPHPERCENT  
- GRAPHPIXEL  
- LAYOUTPERCENT  
- LAYOUTPIXEL  
- WALLPERCENT  
- WALLPIXEL  

Default GRAPHPERCENT  

*Restriction:* For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.  

*Note:* If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.  

*See:* For more information about these values, see “Drawing Space Values” on page 1349.  

YAXIS="Y" | “Y2”  
specifies which Y axis to use for data space annotations.  

Default Y  

---  

**%SGTEXT Macro**

Places text in the graph output. Associated variables can control the color, size, font, base angle, and rotation of the characters displayed. If you do not supply the (X1, Y1) coordinates, the text is placed in the center of the graph.  

**Requirement:** You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.
Syntax

%SGTEXT (LABEL="text-string", <options>)

Required Argument

LABEL="text-string"

specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*) {sup '2'}

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, label="95&Conf Interval" and label="95%Conf Interval" both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

• add a space after the % or & character.
• escape the % character with a second % character. For example: label="95%Conf Interval"
• use the %NRQUOTE macro function. For example: label="95%nrquote(&)Conf Interval"

Default none

Optional Arguments

ANCHOR="TOPLEFT" | "TOP" | "TOPRIGHT" | "RIGHT" | "BOTTOMRIGHT" | "BOTTOM" | "BOTTOMLEFT" | "LEFT" | "CENTER"

specifies the anchor position of the annotation. This point is placed on the specified X1 and Y1 positions.

Default CENTER

BORDER="TRUE" | "FALSE"

turns the border on and off.

Default FALSE

DISCRETEOFFSET=numeric-value

specifies an amount to offset the annotation from a discrete value in data space.

Default 0.0 (no offset)

Range -0.5 (left offset) to +0.5 (right offset)

DRAWSPACE="draw-space-value"

specifies the drawing space and units for the annotation. DRAWSPACE can be used rather than specify individual values for X1SPACE, X2SPACE, Y1SPACE, and Y2SPACE.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALUE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL

Default
GRAPHPERCENT (unless overridden by a coordinate draw space, such as X1SPACE)

Restriction
For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

See
For more information about these values, see “Drawing Space Values” on page 1349.

FILLCOLOR="color" | “style-attribute”
specifies a fill color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default
COLOR attribute in the graph’s current style

Interaction
This option takes effect only if the DISPLAY option is specified as FILLED or ALL.

FILLSTYLEELEMENT="style-element"
specifies a style element for the fill. Here is an example of a style element:

GraphData2

Note
Only the COLOR attribute of the style element applies to the fill.

See
“Style Elements for Use with ODS Graphics” on page 1300

FILLTRANSPARENCY=numeric-value
specifies the transparency for the fill portion of an annotation. Specify a value from 0.0 (completely opaque) to 1.0 (completely transparent).

Default
0.0

ID="annotation-identifier"
Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation
identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default: All of the annotations in the SGANNO data set are drawn.

JUSTIFY= “CENTER” | “LEFT” | “RIGHT” specifies the text justification.

Default: LEFT

LAYER=“BACK” | “FRONT” specifies whether the annotation is drawn in front of (FRONT) or behind (BACK) the graph.

Default: FRONT

Interaction: For the annotation to appear behind the graph, you might need to disable the wall display. You can use the NOWALL option in the PROC SGPLOT statement (SGPLOT procedure) or in the PANELBY statement (SGPANEL procedure). The NOWALL option is also available in the PLOT and COMPARE statements of the SGSCATTER procedure.

LINECOLOR=“color” | “style-attribute” specifies a line color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute:

GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default: COLOR attribute in the graph’s current style

LINEPATTERN=“line-pattern” specifies a line pattern for the annotation. You can reference SAS patterns by number or by name. See the list of line patterns on page 1272.

Default: LineStyle attribute in the graph’s current style

LINESTYLEELEMENT=“style-element” specifies a style element for the line. Here is an example of a style element:

GraphData2

See “Style Elements for Use with ODS Graphics” on page 1300

LINETHICKNESS=\n specifies the thickness of the line. You cannot specify the unit of measure. The default unit of pixels is always used.

Default: LineThickness attribute in the graph’s current style

RESET=“ALL” Re-initializes all variables.

ROTATE= degrees rotates the annotation, measured in degrees. The angle is measured as if a horizontal line extended to the right through the text box anchor point as shown in the following figure.
Positive angles rotate the annotation counter clockwise, and negative angles rotate the annotation clockwise. The angle specification can exceed 360 degrees in absolute value.

Default 0 (no rotation)

**TEXTCOLOR=“color” | “style-attribute”**

specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute of the GraphAnnoText style element in the current style

**TEXTFONT=“font-family”**

specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts.

Default FontFamily attribute of the GraphAnnoText style element in the current style

**TEXTSIZE=\(n\)**

specifies the font size of the annotation.

DefaultFontSize attribute of the GraphAnnoText style element in the current style.

**TEXTSTYLE=“ITALIC” | “NORMAL”**

specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.

**TEXTWEIGHT=“BOLD” | “NORMAL”**

specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default FontWeight attribute of the GraphAnnoText style element in the current style.

**TRANSPARENCY=numeric-value**

specifies the degree of transparency for the annotation.

Default 0.0
Range 0 (completely opaque) to 1 (completely transparent)

URL=“text-string”
specifies a URL for a web page to be displayed when parts of the plot are selected within an HTML page.

Default By default, no HTML links are created.

Interactions This option affects graphics output that is created through the ODS HTML destination only.

This option has no effect unless you also specify IMAGEMAP in the ODS GRAPHICS statement.

WIDTH=numeric-value
specifies the width of the annotation. Specify a positive number greater than zero. You can use the WIDTHUNIT variable to specify the unit of measurement.

Default Determined by the system

WIDTHUNIT=“DATA” | “PERCENT” | “PIXEL”
specifies the dimension unit to use for the WIDTH value.

Default PERCENT

X1= numeric-value | XC1= “text-string”
specifies the X coordinate of the annotation.

Use one of the following arguments:

X1= numeric-value
specifies the X coordinate for numeric data.

XC1= “text-string”
specifies the X coordinate for character data.

Default none

X1SPACE=“draw-space-value”
specifies the drawing space of the annotation’s first X coordinate.

draw-space-value can be one of the following:

• DATAPERCENT
• DATAPIXEL
• DATAVALE

Note: When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

• GRAPHPERCENT
• GRAPHPIXEL
• LAYOUTPERCENT
• LAYOUTPIXEL
• WALLPERCENT
• WALLPIXEL
**Default**

GRAPHPERCENT

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.

**Note**

If you do not also specify the X2SPACE= value, then the second X coordinate uses the default drawing space.

**See**

For more information about these values, see “Drawing Space Values” on page 1349.

**XAXIS=** “X” | “X2”  
specifies which X axis to use for data space annotations.

**Default**  
X

**Y1=** numeric-value | **YC1=** “text-string”  
specifies the Y coordinate of the annotation.  
Use one of the following arguments:

**Y1=** numeric-value  
specifies the Y coordinate for numeric data.

**YC1=** “text-string”  
specifies the Y coordinate for character data.

**Default**  
none

**Y1SPACE=** “draw-space-value”  
specifies the drawing space of the annotation’s second Y coordinate.

*draw-space-value* can be one of the following:

- DATAPERCENT
- DATAPIXEL
- DATAVALUE

*Note:* When a DATAVALUE annotation is associated with a discrete axis, the annotation value must be a formatted value on the axis. Use the XC1 or YC1 columns for those values.

- GRAPHPERCENT
- GRAPHPIXEL
- LAYOUTPERCENT
- LAYOUTPIXEL
- WALLPERCENT
- WALLPIXEL

**Default**  
GRAPHPERCENT

**Restriction**

For the SGPANEL and SGSCATTER procedures, only GRAPHPERCENT, GRAPHPIXEL, LAYOUTPERCENT, and LAYOUTPIXEL values are valid.
Note If you do not also specify the Y2SPACE= value, then the second Y coordinate uses the default drawing space.

See For more information about these values, see “Drawing Space Values” on page 1349.

YAXIS=“Y” | “Y2” specifies which Y axis to use for data space annotations.

Default Y

%SGTEXTCONT Macro

Continues a text string that was begun with the TEXT macro. You can set the continued text apart from the main text by specifying different text attributes.

Requirement: You must run the %SGANNO macro before using any other SG annotation macros. For more information, see “Making the Macros Available” on page 1404.

Syntax

%SGTEXTCONT (LABEL="text-string", <options>)

Required Argument

LABEL=“text-string” specifies the text label. The text-string can contain superscripts, subscripts, and Unicode characters by using ODS escapement notation. For example: (*ESC*){sup '2'}

You can invoke a macro that returns a string. For example: label="%mylabel", where mylabel is the name of the macro.

Note: Some combinations of characters can result in warning messages written to the log. The actual warning varies with the types of characters. For example, label="95&Conf Interval" and label="95%Conf Interval" both produce a warning, although the annotation is drawn in both cases. There are several ways to avoid the warning message:

• add a space after the % or & character.
• escape the % character with a second % character. For example: label="95%%Conf Interval"
• use the %NRQUOTE macro function. For example: label="95%nrquote(&)Conf Interval"

Default none

Optional Arguments

ID="annotation-identifier" Defines an ID for the annotation. The ID contains a unique character value that identifies the subset to which each annotation belongs. All annotations in the annotation data set with an ID variable value that matches the specified annotation
identifier are drawn. If the annotation data set does not contain an ID variable or if no ID variable value matches the specified identifier, no annotations are drawn.

Default All of the annotations in the SGANNO data set are drawn.

RESET="ALL"
Re-initializes all variables.

TEXTCOLOR=“color” | “style-attribute”
specifies the text color for the annotation. You can specify a color or a style element attribute. Here is an example of a style attribute: GraphData2:Color

You can specify colors using a number of different color-naming schemes. For more information, see “Color-Naming Schemes” on page 1278.

Default COLOR attribute of the GraphAnnoText style element in the current style

TEXTFONT=“font-family”
specifies the font family for the annotation. The SAS ODS styles use TrueType system fonts.

Default FontFamily attribute of the GraphAnnoText style element in the current style.

TEXTSIZE=n
specifies the font size of the annotation.

Default FontSize attribute of the GraphAnnoText style element in the current style.

TEXTSTYLE=“ITALIC” | “NORMAL”
specifies whether the annotation characters are italic (ITALIC) or normal (NORMAL).

Default FontStyle attribute of the GraphAnnoText style element in the current style.

TEXTWEIGHT=“BOLD” | “NORMAL”
specifies whether the annotation characters are bold (BOLD) or normal (NORMAL).

Default FontWeight attribute of the GraphAnnoText style element in the current style.

---

Example: Create Custom Labels

**Overview**

This example demonstrates how to create custom category labels for a horizontal bar chart. The bar chart plots the average highway mileage (response) by vehicle type (category). Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the left of each bar. This example demonstrates how to print the labels on the left end of each bar instead. This example also uses the sheen data skin on the bars. Because of the reflection on the sheen data skin, the labels are raised slightly to center the label in the reflection on each bar. Finally, the label text color uses the contrast color.
The following figure shows the final graph.

Program

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
  class type;
  var mpg_highway;
  output out=mileage mean(mpg_highway) = mpg_highway;
run;

%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
  set mileage;
  %sgText(label=type,
         x1=2,ycl=type,drawspace="datavalue",
         textfont="Arial",textweight="bold",
         textcolor="GraphData1:contrastColor",width=100,
         widthunit="pixel",anchor="left",discreteoffset=0.1);
run;

/* Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
  hbarparm category=type response=mpg_highway /
     dataskin=sheen;
  xaxis label="Average Highway MPG";
  yaxis display=none;
run;
title;
Program Description

Summarize the highway mileage data in Sashelp.Cars. Because a label is needed for each unique value of vehicle type, the data in Sashelp.Cars is first summarized for the Mpg_Highway column using the Type column as the class variable. This step generates a data set that contains one observation for each unique value of Type. See “Listing of the Mileage Data Set” on page 1458.

/ * Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
  class type;
  var mpg_highway;
  output out=mileage mean(mpg_highway) = mpg_highway;
run;

Create the annotation data set. The Mileage data set is used to create the annotation data set Anno. The DATA step in the Anno data set reads the observations from the Mileage data set. The Type column is used to set the Label column. The remaining columns from the Mileage data set are then dropped. The X1 column is added and set to 2 in order to position the labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1 in order to center the labels in the sheen data skin reflection on each bar. Additional columns are added to specify other attributes of the labels.

%sganno; /* Compile the annotation macros */
/* Create the annotation data set. */
data anno;
  set mileage;
  %sgText(label=type,
    x1=2, ycl=type, drawspace="datavalue",
    textfont="Arial", textweight="bold",
    textcolor="GraphData1:contrastColor", width=100,
    widthunit="pixel", anchor="left", discreteoffset=0.1);
run;

Create the plot. The HBARPARM statement is used to generate the horizontal bar chart from the summarized mileage data.

/ * Create the plot. */
title "Average Highway Mileage by Vehicle Type";
proc sgplot data=mileage sganno=anno;
  hbarparm category=type response=mpg_highway /
    dataskin=sheen;
  xaxis label="Average Highway MPG";
  yaxis display=none;
run;
title;
Listing of the Mileage Data Set

Here is a listing of the Mileage data set.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Type</th>
<th><em>TYPE</em></th>
<th><em>FREQ</em></th>
<th>mpg_city</th>
<th>highway</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hybrid</td>
<td>1</td>
<td>3</td>
<td>55.0000</td>
<td>56.0000</td>
</tr>
<tr>
<td>2</td>
<td>SUV</td>
<td>1</td>
<td>60</td>
<td>16.1000</td>
<td>20.5000</td>
</tr>
<tr>
<td>3</td>
<td>Sedan</td>
<td>1</td>
<td>262</td>
<td>21.0840</td>
<td>28.6298</td>
</tr>
<tr>
<td>4</td>
<td>Sports</td>
<td>1</td>
<td>49</td>
<td>18.4082</td>
<td>25.4898</td>
</tr>
<tr>
<td>5</td>
<td>Truck</td>
<td>1</td>
<td>24</td>
<td>16.5000</td>
<td>21.0000</td>
</tr>
<tr>
<td>6</td>
<td>Wagon</td>
<td>1</td>
<td>30</td>
<td>21.1000</td>
<td>27.9000</td>
</tr>
</tbody>
</table>
Part 6

Appendix

Appendix 1
Units of Measurement ............................................. 1461

Appendix 2
Reserved Keywords and Unicode Values ......................... 1463

Appendix 3
ODS Graphics Software ............................................. 1467
Appendix 1
Units of Measurement

Some options enable you to specify the unit of measurement as part of the value.

For example, when using the LINEATTRS= option, you can specify the measurement unit for line thickness. When using the DATALABELATTRS= option, you can specify the font size unit for your data labels.

The following table contains the units that are available:

Table A1.1  Measurement Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>centimeters</td>
</tr>
<tr>
<td>IN</td>
<td>inches</td>
</tr>
<tr>
<td>MM</td>
<td>millimeters</td>
</tr>
<tr>
<td>PCT or %</td>
<td>percentage</td>
</tr>
<tr>
<td>PT</td>
<td>point size, calculated at 72 dots per inch</td>
</tr>
<tr>
<td>PX</td>
<td>pixels</td>
</tr>
</tbody>
</table>
## Appendix 2

**Reserved Keywords and Unicode Values**

### Overview

The tables in this section show some of the reserved keywords and Unicode values that can be used with the UNICODE text command.

Note the following:

- Keywords and Unicode values are not case-sensitive: "03B1"x is the same code point as "03b1"x.
- The word `blank` is the keyword for a blank space.

### Lowercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>α</td>
<td>03B1</td>
<td>lowercase alpha</td>
</tr>
<tr>
<td>beta</td>
<td>β</td>
<td>03B2</td>
<td>lowercase beta</td>
</tr>
<tr>
<td>gamma</td>
<td>γ</td>
<td>03B3</td>
<td>lowercase gamma</td>
</tr>
<tr>
<td>delta</td>
<td>δ</td>
<td>03B4</td>
<td>lowercase delta</td>
</tr>
<tr>
<td>epsilon</td>
<td>ε</td>
<td>03B5</td>
<td>lowercase epsilon</td>
</tr>
<tr>
<td>zeta</td>
<td>ζ</td>
<td>03B6</td>
<td>lowercase zeta</td>
</tr>
<tr>
<td>eta</td>
<td>η</td>
<td>03B7</td>
<td>lowercase eta</td>
</tr>
<tr>
<td>theta</td>
<td>θ</td>
<td>03B8</td>
<td>lowercase theta</td>
</tr>
<tr>
<td>iota</td>
<td>ι</td>
<td>03B9</td>
<td>lowercase iota</td>
</tr>
<tr>
<td>kappa</td>
<td>κ</td>
<td>03BA</td>
<td>lowercase kappa</td>
</tr>
<tr>
<td>lambda</td>
<td>λ</td>
<td>03BB</td>
<td>lowercase lambda</td>
</tr>
<tr>
<td>mu</td>
<td>μ</td>
<td>03BC</td>
<td>lowercase mu</td>
</tr>
</tbody>
</table>
### Reserved Keywords and Unicode Values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nu</td>
<td>ν</td>
<td>03BD</td>
<td>lowercase nu</td>
</tr>
<tr>
<td>xi</td>
<td>ζ</td>
<td>03BE</td>
<td>lowercase xi</td>
</tr>
<tr>
<td>omicron</td>
<td>ο</td>
<td>03BF</td>
<td>lowercase omicron</td>
</tr>
<tr>
<td>pi</td>
<td>π</td>
<td>03C0</td>
<td>lowercase pi</td>
</tr>
<tr>
<td>rho</td>
<td>ρ</td>
<td>03C1</td>
<td>lowercase rho</td>
</tr>
<tr>
<td>sigma</td>
<td>σ</td>
<td>03C3</td>
<td>lowercase sigma</td>
</tr>
<tr>
<td>tau</td>
<td>τ</td>
<td>03C4</td>
<td>lowercase tau</td>
</tr>
<tr>
<td>upsilon</td>
<td>υ</td>
<td>03C5</td>
<td>lowercase upsilon</td>
</tr>
<tr>
<td>phi</td>
<td>φ</td>
<td>03C6</td>
<td>lowercase phi</td>
</tr>
<tr>
<td>chi</td>
<td>χ</td>
<td>03C7</td>
<td>lowercase chi</td>
</tr>
<tr>
<td>psi</td>
<td>ψ</td>
<td>03C8</td>
<td>lowercase psi</td>
</tr>
<tr>
<td>omega</td>
<td>ω</td>
<td>03C9</td>
<td>lowercase omega</td>
</tr>
</tbody>
</table>

### Uppercase Greek Letters

#### Table A2.1  Uppercase Greek Letters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha_u</td>
<td>Α</td>
<td>0391</td>
<td>uppercase alpha</td>
</tr>
<tr>
<td>beta_u</td>
<td>Β</td>
<td>0392</td>
<td>uppercase beta</td>
</tr>
<tr>
<td>gamma_u</td>
<td>Γ</td>
<td>0393</td>
<td>uppercase gamma</td>
</tr>
<tr>
<td>delta_u</td>
<td>Δ</td>
<td>0394</td>
<td>uppercase delta</td>
</tr>
<tr>
<td>epsilon_u</td>
<td>Ε</td>
<td>0395</td>
<td>uppercase epsilon</td>
</tr>
<tr>
<td>zeta_u</td>
<td>Ζ</td>
<td>0396</td>
<td>uppercase zeta</td>
</tr>
<tr>
<td>eta_u</td>
<td>Η</td>
<td>0397</td>
<td>uppercase eta</td>
</tr>
<tr>
<td>theta_u</td>
<td>Θ</td>
<td>0398</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>iota_u</td>
<td>Ι</td>
<td>0399</td>
<td>uppercase iota</td>
</tr>
<tr>
<td>Keyword</td>
<td>Glyph</td>
<td>Unicode</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>kappa_u</td>
<td>Κ</td>
<td>039A</td>
<td>uppercase kappa</td>
</tr>
<tr>
<td>lambda_u</td>
<td>Λ</td>
<td>039B</td>
<td>uppercase lambda</td>
</tr>
<tr>
<td>mu_u</td>
<td>M</td>
<td>039C</td>
<td>uppercase mu</td>
</tr>
<tr>
<td>nu_u</td>
<td>N</td>
<td>039D</td>
<td>uppercase nu</td>
</tr>
<tr>
<td>xi_u</td>
<td>Ξ</td>
<td>039E</td>
<td>uppercase xi</td>
</tr>
<tr>
<td>omicron_u</td>
<td>Ο</td>
<td>039F</td>
<td>uppercase omicron</td>
</tr>
<tr>
<td>pi_u</td>
<td>Π</td>
<td>03A0</td>
<td>uppercase pi</td>
</tr>
<tr>
<td>rho_u</td>
<td>Ρ</td>
<td>03A1</td>
<td>uppercase rho</td>
</tr>
<tr>
<td>sigma_u</td>
<td>Σ</td>
<td>03A3</td>
<td>uppercase sigma</td>
</tr>
<tr>
<td>tau_u</td>
<td>Τ</td>
<td>03A4</td>
<td>uppercase theta</td>
</tr>
<tr>
<td>upsilon_u</td>
<td>Υ</td>
<td>03A5</td>
<td>uppercase upsilon</td>
</tr>
<tr>
<td>phi_u</td>
<td>Φ</td>
<td>03A6</td>
<td>uppercase phi</td>
</tr>
<tr>
<td>chi_u</td>
<td>Χ</td>
<td>03A7</td>
<td>uppercase chi</td>
</tr>
<tr>
<td>psi_u</td>
<td>Ψ</td>
<td>03A8</td>
<td>uppercase psi</td>
</tr>
<tr>
<td>omega_u</td>
<td>Ω</td>
<td>03A9</td>
<td>uppercase omega</td>
</tr>
</tbody>
</table>

**Special Characters**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Glyph</th>
<th>Unicode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime</td>
<td>′</td>
<td>00B4</td>
<td>single prime sign</td>
</tr>
<tr>
<td>bar</td>
<td>–</td>
<td>0305</td>
<td>combining overline²</td>
</tr>
<tr>
<td>bar2</td>
<td>–</td>
<td>033F</td>
<td>combining double overline²</td>
</tr>
<tr>
<td>tilde</td>
<td>~</td>
<td>0303</td>
<td>combining tilde²</td>
</tr>
<tr>
<td>hat</td>
<td>*</td>
<td>0302</td>
<td>combining circumflex accent²</td>
</tr>
</tbody>
</table>

* This is an overstriking character that requires a Unicode font to render properly.
Appendix 3

ODS Graphics Software

SAS ODS Graphics is an extension of the SAS Output Delivery System (ODS). ODS manages all output created by procedures and enables you to display the output in a variety of forms, such as HTML, PDF, and others.

The ODS Graphics system contains the following software:

SAS ODS Graphics procedures provide a concise syntax for creating effective statistical graphs. The procedures provide a traditional SAS procedure interface for the most commonly used features of the SAS Graph Template Language.

ODS GRAPHICS statement adds graphics capabilities to many SAS procedures. The statement enables or disables ODS graphics processing and sets graphics environment options.

You can use the ODS GRAPHICS statement options to control many aspects of your graphics. For example, you can use options to specify the size and format of your output images. The settings that you specify remain in effect for all graphics until you change or reset these settings with another ODS GRAPHICS statement.

See Also

“ODS GRAPHICS Statement” on page 61
Recommended Reading

Here is the recommended reading list for this title:

- *ODS Graphics Tip Sheet*
- *Clinical Graphs Using SAS*
- *Statistical Graphics in SAS: An Introduction to the Graph Template Language and the Statistical Graphics Procedures*
- *Statistical Graphics Procedures by Example: Effective Graphs Using SAS*
- SAS offers instructor-led training and self-paced e-learning courses to help you get started with SAS ODS Graphics. For more information about the courses available, see [sas.com/training](http://sas.com/training).

For a complete list of SAS publications, go to [sas.com/store/books](http://sas.com/store/books). If you have questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: [sas.com/store/books](http://sas.com/store/books)
axis
a line that represents the midpoints (for a discrete axis) or the scale (for a continuous or interval axis) for graphing variable or data values. An axis typically consists of an axis line with tick marks, tick values (or midpoint values), and a label.

cell
in ODS graphics, a distinct rectangular subregion of a graph that can contain plots, text, or legends. For example, a graph created with the SGPLOT procedure contains only one cell, whereas a graph created with the SGPANEL procedure contains more than one cell.

classification panel
a multi-cell graph in which the cell data is driven by the values of one or more classification variables. The number of the cells is determined by the unique values of the classification variables. Each cell of the panel has the same types of plots.

classification variable
a variable whose values are used to group (or classify) the observations in a data set into different groups that are meaningful for analysis.

dynamic variable
a variable defined in a template with the DYNAMIC statement that can be initialized at template run time.

global statement
a SAS statement that you can specify anywhere in a SAS program.

ODS
See Output Delivery System.

ODS Graphics
an extension to ODS that is used to create analytical graphs using the Graph Template Language.

Output Delivery System
a component of SAS software that can produce output in a variety of formats such as markup languages (HTML, XML), PDF, RTF, PostScript, other formats, and SAS data sets. Short form: ODS.
panel
   a graph with multiple cells.

plot
   a visual representation of data such as a scatter plot, a series line, or a histogram. Multiple plots can be overlaid in a cell to create a graph.

style attribute
   a visual property such as a color, line pattern, or font property that has a reserved name. For example, COLOR, FONTFAMILY, FONTSIZE, FONTWEIGHT, and FONTSTYLE are all attributes of style elements such as GraphTitleText, GraphLabelText, and so on. Style attributes are collectively referenced by a style element within a style template.

style element
   a named collection of style attributes that affects specific parts of ODS output. For example, a style element might specify the color and font properties of title text or other text in a table or graph.

system font
   a font that can be used by any SAS procedure and by other software such as Microsoft Word. These fonts include TrueType and Type1 fonts. Examples of system fonts include Albany AMT, Monotype Sorts, and Arial.
Index

Special Characters
#BYLINE option
  TITLE and FOOTNOTE statements 80
#BYVAL option
  TITLE and FOOTNOTE statements 80
#BYVAR option
  TITLE and FOOTNOTE statements 80
%SGANNO_HELP annotation macro 1407
%SGARROW annotation macro 1407
%SGIMAGE annotation macro 1414
%SGLINE annotation macro 1419
%SGOVAL annotation macro 1425
%SGPOLYCONT annotation macro 1430
%SGPOLYGON annotation macro 1433
%SGPOLYLINE annotation macro 1437
%SGRECTANGLE annotation macro 1442
%SGTEXT annotation macro 1447
%SGTEXTCONT annotation macro 1454
REG statement (SGPANEL) 354
REG statement (SGPLOT) 881
VBAR statement (SGPANEL) 452
VBAR statement (SGPLOT) 983
VLINE statement (SGPANEL) 525
VLINE statement (SGPLOT) 1059
ALTCOLOR=
  range attribute map 1335
ALTCOLORMODEL1–N=
  range attribute map 1335
ALTCOLORMODELSTYLE=
  range attribute map 1335
ALTERNATE option
  COLAXIS statement (SGPANEL) 540
  ROWAXIS statement (SGPANEL) 568
ALTFILLATTRS= option
  BLOCK statement (SGPANEL) 124
  BLOCK statement (SGPLOT) 630
annotation
  about 1343
  ARROW function 1351
controlling the drawing space 1348
data sets 1344
drawing space variables 1348
  examples 1396, 1397
  functions 1346
  IMAGE function 1357
  LINE function 1362
  macro example 1404
  macros for 1403, 1404, 1406
  macros, how to use 1404, 1406
  OVAL function 1368
  PAD= option 1347
POLYCONT function 1373
POLYGON function 1375
POLYLINE function 1379
RECTANGLE function 1383
SGANNO= option 1347
specifying in a procedure 1347
TEXT function 1388
textCONT function 1394
variables 1345
annotation macros
%SGANNO_HELP 1407

A
ABSSCALE option
  BUBBLE statement (SGPANEL) 132
  BUBBLE statement (SGPLOT) 640
ACROSS= option
  KEYLEGEND statement (SGPANEL) 289
  KEYLEGEND statement (SGPLOT) 809
ALPHA= option
  DOT statement (SGPANEL) 148
  DOT statement (SGPLOT) 657
  ELLIPSE statement (SGPLOT) 676
  HBAR statement (SGPANEL) 177
  HBAR statement (SGPLOT) 690
  HLINE statement (SGPANEL) 271
  HLINE statement (SGPLOT) 790
  LOESS statement (SGPANEL) 301
  LOESS statement (SGPLOT) 825
  PBSPLINE statement (SGPANEL) 323
  PBSPLINE statement (SGPLOT) 847

1473
ANTIALIAS option
  ODS GRAPHICS statement 63
ANTIALIAS= option
  ODS GRAPHICS statement 63
ANTIALIASMAX= option
  ODS GRAPHICS statement 64
appearance of graphs
  procedure options 1287
  subpixel rendering 1294
ARROW function
  SG annotation 1351
ARROWDIRECTION= option
  VECTOR statement (SGPANEL) 515
  VECTOR statement (SGPLOT) 1048
ARROWHEADPOS= option
  SERIES statement (SGPANEL) 381
  SERIES statement (SGPLOT) 909
  SPLINE statement (SGPANEL) 399
  SPLINE statement (SGPLOT) 930
  STEP statement (SGPANEL) 412
  STEP statement (SGPLOT) 943
ARROWHEADSCALE= option
  SERIES statement (SGPANEL) 381
  SERIES statement (SGPLOT) 909
  SPLINE statement (SGPANEL) 399
  SPLINE statement (SGPLOT) 930
  STEP statement (SGPANEL) 413
  STEP statement (SGPLOT) 944
ARROWHEADSHAPE= option
  SERIES statement (SGPANEL) 381
  SERIES statement (SGPLOT) 909
  SPLINE statement (SGPANEL) 399
  SPLINE statement (SGPLOT) 930
  STEP statement (SGPANEL) 413
  STEP statement (SGPLOT) 944
AXIS= option
  REFLINE statement (SGPANEL) 348
  REFLINE statement (SGPLOT) 875
AXISBREAK= option
  STYLEATTRS statement (SGPLOT) 614
AXISEXTENT= option
  PLOT statement (SGSCATTER) 1237
  STYLEATTRS statement (SGPLOT) 614
aspect ratio 1310
ASPECT= option
  PLOT statement (SGSCATTER) 1237
  PROC SGPANEL statement 97
  PROC SGPLOT statement 608
attribute maps
  about 1315
  attribute maps, discrete
    See discrete attribute maps
attribute, style element 1300
attributes
  See options
ATTRID= option 1324
  COMPARE statement (SGSCATTER) 1213
  MATRIX statement (SGSCATTER) 1227
  PLOT statement (SGSCATTER) 1237
ATTRPRiorIty= option
  ODS GRAPHICS statement 64
AUTOITEMSIZE option
  KEYLEGEND statement (SGPANEL) 289
  KEYLEGEND statement (SGPLOT) 809
AUTOOUTLINE= option
  KEYLEGEND statement (SGPANEL) 289
  KEYLEGEND statement (SGPLOT) 809
axes
  discrete 1260
  fit policy 1265
  inset inside plot axes 284
  linear 1260
  logarithmic 1260
  paneled scatter plot with shared axes 1201, 1211
  SGPANEL and SGPLOT procedures 1259
  text box inside plot axes 804
  time axes 1260
axis options 538, 566
BACKCOLOR= option
  INSET statement (SGPANEL) 285
PROC SGPANEL statement 285
PROC SGSCATTER statement 1207

B
B-spline curves
  See also penalized B-spline plots
  fitted penalized (SGPANEL) 320
  fitted penalized (SGPLOT) 844
BACKCOLOR= option
  INSET statement (SGPANEL) 285
PROC SGPANEL statement 285
PROC SGSCATTER statement 1207
STYLEATTRS statement (SGPANEL) 110
STYLEATTRS statement (SGPLOT) 615
BACKFILL option
TEXT statement (SGPANEL) 436
TEXT statement (SGPLOT) 967
BACKLIGHT= option
POLYGON statement (SGPANEL) 335
POLYGON statement (SGPLOT) 860
TEXT statement (SGPANEL) 437
TEXT statement (SGPLOT) 968
BAND statement
about band plots 15
example 15, 1193
SGPANEL procedure 114
SGPLOT procedure 619
bands
about band plots 15
example 15, 1193
highlighting plots (SGPANEL) 114
highlighting plots (SGPLOT) 619
bar charts
about 44
example 44, 90, 597, 602, 1198
horizontal (SGPANEL) 174, 193
horizontal (SGPLOT) 687, 706
parameterized horizontal (SGPANEL) 207
parameterized horizontal (SGPLOT) 720
parameterized vertical (SGPANEL) 483
parameterized vertical (SGPLOT) 1014
vertical (SGPANEL) 449, 468
vertical (SGPLOT) 980, 1000
bar-line charts 1056
example 1198
BARWIDTH= option
HBAR statement (SGPANEL) 178
HBAR statement (SGPLOT) 691
HBARBASIC statement (SGPANEL) 195
HBARBASIC statement (SGPLOT) 709
HBARPARM statement (SGPANEL) 486
HBARPARM statement (SGPLOT) 1017
WATERFALL statement (SGPLOT) 1075
BASELINE= option
HBAR statement (SGPANEL) 178
HBAR statement (SGPLOT) 691
HBARBASIC statement (SGPANEL) 195
HBARBASIC statement (SGPLOT) 709
HBARPARM statement (SGPANEL) 210
HBARPARM statement (SGPLOT) 724
NEEDLE statement (SGPANEL) 312
NEEDLE statement (SGPLOT) 836
VBAR statement (SGPANEL) 452
VBAR statement (SGPLOT) 984
VBARBASIC statement (SGPANEL) 471
VBARBASIC statement (SGPLOT) 1003
VBARPARM statement (SGPANEL) 486
VBARPARM statement (SGPLOT) 1018
BASELINEATTRS= option
HBAR statement (SGPANEL) 178
HBAR statement (SGPLOT) 691
HBARBASIC statement (SGPANEL) 195
HBARBASIC statement (SGPLOT) 709
HBARPARM statement (SGPANEL) 210
HBARPARM statement (SGPLOT) 724
NEEDLE statement (SGPANEL) 313
NEEDLE statement (SGPLOT) 837
VBAR statement (SGPANEL) 453
VBAR statement (SGPLOT) 984
VBARBASIC statement (SGPANEL) 472
VBARBASIC statement (SGPLOT) 1003
VBARPARM statement (SGPANEL) 486
VBARPARM statement (SGPLOT) 1018
WATERFALL statement (SGPLOT) 1075
basic plots
about 14
compatible plot types 1258
BCOLOR= option
**Index**

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE and FOOTNOTE statements</td>
<td>80</td>
</tr>
<tr>
<td>BINSTART= option</td>
<td></td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPANEL)</td>
<td>264</td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPLOT)</td>
<td>784</td>
</tr>
<tr>
<td>BINWIDTH= option</td>
<td></td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPANEL)</td>
<td>264</td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPLOT)</td>
<td>784</td>
</tr>
<tr>
<td>block plots</td>
<td></td>
</tr>
<tr>
<td>about</td>
<td>16</td>
</tr>
<tr>
<td>example</td>
<td>16</td>
</tr>
<tr>
<td>BLOCK statement</td>
<td></td>
</tr>
<tr>
<td>about block plots</td>
<td>16</td>
</tr>
<tr>
<td>example</td>
<td>16</td>
</tr>
<tr>
<td>SGPANEL procedure</td>
<td>122</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>628</td>
</tr>
<tr>
<td>BLOCKLABEL= option</td>
<td></td>
</tr>
<tr>
<td>BLOCK statement (SGPANEL)</td>
<td>124</td>
</tr>
<tr>
<td>BLOCK statement (SGPLOT)</td>
<td>630</td>
</tr>
<tr>
<td>BOLD option</td>
<td></td>
</tr>
<tr>
<td>TITLE and FOOTNOTE statements</td>
<td>80</td>
</tr>
<tr>
<td>BORDER option</td>
<td></td>
</tr>
<tr>
<td>GRADLEGEND statement (SGPANEL)</td>
<td>171</td>
</tr>
<tr>
<td>GRADLEGEND statement (SGPLOT)</td>
<td>684</td>
</tr>
<tr>
<td>INSET statement (SGPANEL)</td>
<td>285</td>
</tr>
<tr>
<td>INSET statement (SGPLOT)</td>
<td>806</td>
</tr>
<tr>
<td>KEYLEGEND statement (SGPANEL)</td>
<td>290</td>
</tr>
<tr>
<td>KEYLEGEND statement (SGPLOT)</td>
<td>810</td>
</tr>
<tr>
<td>ODS GRAPHICS statement</td>
<td>65</td>
</tr>
<tr>
<td>PANELBY statement (SGPANEL)</td>
<td>102</td>
</tr>
<tr>
<td>BORDER= option</td>
<td></td>
</tr>
<tr>
<td>ODS GRAPHICS statement</td>
<td>65</td>
</tr>
<tr>
<td>borders</td>
<td></td>
</tr>
<tr>
<td>controlling with ODS GRAPHICS</td>
<td></td>
</tr>
<tr>
<td>statement</td>
<td>1311</td>
</tr>
<tr>
<td>BOUNDARY= option</td>
<td></td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPANEL)</td>
<td>265</td>
</tr>
<tr>
<td>HISTOGRAM statement (SGPLOT)</td>
<td>784</td>
</tr>
<tr>
<td>box plots</td>
<td></td>
</tr>
<tr>
<td>about</td>
<td>39</td>
</tr>
<tr>
<td>example</td>
<td>39, 90, 602, 1197</td>
</tr>
<tr>
<td>horizontal (SGPANEL)</td>
<td>221</td>
</tr>
<tr>
<td>horizontal (SGPLOT)</td>
<td>735</td>
</tr>
<tr>
<td>percentiles</td>
<td>234, 512, 748, 1044</td>
</tr>
<tr>
<td>statement summary</td>
<td>234, 511, 748, 1044</td>
</tr>
<tr>
<td>vertical (SGPANEL)</td>
<td>499</td>
</tr>
<tr>
<td>vertical (SGPLOT)</td>
<td>1031</td>
</tr>
<tr>
<td>BOX= option</td>
<td></td>
</tr>
<tr>
<td>TITLE and FOOTNOTE statements</td>
<td>80</td>
</tr>
<tr>
<td>BOXWIDTH= option</td>
<td></td>
</tr>
<tr>
<td>HBOX statement (SGPANEL)</td>
<td>224</td>
</tr>
<tr>
<td>HBOX statement (SGPLOT)</td>
<td>738</td>
</tr>
<tr>
<td>VBOX statement (SGPANEL)</td>
<td>501</td>
</tr>
<tr>
<td>VBOX statement (SGPLOT)</td>
<td>1034</td>
</tr>
<tr>
<td>BRADIUSMAX= option</td>
<td></td>
</tr>
<tr>
<td>BUBBLE statement (SGPANEL)</td>
<td>132</td>
</tr>
<tr>
<td>BUBBLE statement (SGPLOT)</td>
<td>641</td>
</tr>
<tr>
<td>BRADIUSMIN= option</td>
<td></td>
</tr>
<tr>
<td>BUBBLE statement (SGPANEL)</td>
<td>132</td>
</tr>
<tr>
<td>BUBBLE statement (SGPLOT)</td>
<td>641</td>
</tr>
<tr>
<td>BREAK option</td>
<td></td>
</tr>
<tr>
<td>HLINE statement (SGPANEL)</td>
<td>271</td>
</tr>
<tr>
<td>HLINE statement (SGPLOT)</td>
<td>791</td>
</tr>
<tr>
<td>SERIES statement (SGPANEL)</td>
<td>381</td>
</tr>
<tr>
<td>SERIES statement (SGPLOT)</td>
<td>909</td>
</tr>
<tr>
<td>SPLINE statement (SGPANEL)</td>
<td>400</td>
</tr>
<tr>
<td>SPLINE statement (SGPLOT)</td>
<td>930</td>
</tr>
<tr>
<td>STEP statement (SGPANEL)</td>
<td>413</td>
</tr>
<tr>
<td>STEP statement (SGPLOT)</td>
<td>944</td>
</tr>
<tr>
<td>VLINE statement (SGPANEL)</td>
<td>525</td>
</tr>
<tr>
<td>VLINE statement (SGPLOT)</td>
<td>1059</td>
</tr>
<tr>
<td>BSPACE= option</td>
<td></td>
</tr>
<tr>
<td>TITLE and FOOTNOTE statements</td>
<td>80</td>
</tr>
<tr>
<td>bubble plots</td>
<td></td>
</tr>
<tr>
<td>about bubble plots</td>
<td>17</td>
</tr>
<tr>
<td>example</td>
<td>17</td>
</tr>
<tr>
<td>SGPANEL procedure</td>
<td>129</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>638</td>
</tr>
<tr>
<td>BUBBLE statement</td>
<td></td>
</tr>
<tr>
<td>about bubble plots</td>
<td>17</td>
</tr>
<tr>
<td>example</td>
<td>17</td>
</tr>
<tr>
<td>SGPANEL procedure</td>
<td>129</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>638</td>
</tr>
<tr>
<td>BY groups</td>
<td></td>
</tr>
<tr>
<td>creating graphs for each BY group</td>
<td>56</td>
</tr>
<tr>
<td>BY lines</td>
<td>57</td>
</tr>
<tr>
<td>substituting values in a text string</td>
<td>85</td>
</tr>
<tr>
<td>BY statement</td>
<td>56</td>
</tr>
<tr>
<td>with SGPLOT procedure</td>
<td></td>
</tr>
<tr>
<td>with TITLE and FOOTNOTE statements</td>
<td>57</td>
</tr>
<tr>
<td>BY-group processing</td>
<td></td>
</tr>
<tr>
<td>data preparation for</td>
<td>57</td>
</tr>
<tr>
<td>BYLINE= option</td>
<td></td>
</tr>
<tr>
<td>ODS GRAPHICS statement</td>
<td>65</td>
</tr>
</tbody>
</table>

**C**

<table>
<thead>
<tr>
<th>Category</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPSHAPE= option</td>
<td></td>
</tr>
<tr>
<td>HBOX statement (SGPANEL)</td>
<td>224</td>
</tr>
<tr>
<td>HBOX statement (SGPLOT)</td>
<td>738</td>
</tr>
<tr>
<td>VBOX statement (SGPANEL)</td>
<td>501</td>
</tr>
<tr>
<td>VBOX statement (SGPLOT)</td>
<td>1034</td>
</tr>
</tbody>
</table>
CAS
using CAS data 5
categorization plots
about 44
compatible plot types 1258

CATEGORY= option
HBOX statement (SGPANEL) 224
HBOX statement (SGPLOT) 738
VBOX statement (SGPANEL) 502
VBOX statement (SGPLOT) 1034

CATEGORYORDER option
DOT statement (SGPLOT) 658

CATEGORYORDER= option
DOT statement (SGPANEL) 148
HBAR statement (SGPANEL) 179
HBAR statement (SGPLOT) 692
HLINE statement (SGPANEL) 272
HLINE statement (SGPLOT) 791
VBAR statement (SGPANEL) 453
VBAR statement (SGPLOT) 984
VLINE statement (SGPANEL) 525
VLINE statement (SGPLOT) 1059

classification variables
for panels 101

CLASSORDER= option
COLAXISTABLE statement
(SGPANEL) 559
ROWAXISTABLE statement
(SGPANEL) 587
XAXISTABLE statement (SGPLOT)
1127
YAXISTABLE statement (SGPLOT)
1179

cell 6
creating multi-cell graphs 8
creating paneled scatter plots 9
creating single-cell graphs 7, 604
classification variables
for panels 101

CLI option
PBSPLINE statement (SGPANEL) 323
PBSPLINE statement (SGPLOT) 847
REG statement (SGPANEL) 354
REG statement (SGPLOT) 881

CLIATTRS= option
PBSPLINE statement (SGPANEL) 323
PBSPLINE statement (SGPLOT) 847
REG statement (SGPANEL) 354
REG statement (SGPLOT) 881

CLIP option
ELLIPSE statement (SGPLOT) 677

CLIP= option
LINEPARM statement (SGPANEL) 296
LINEPARM statement (SGPLOT) 819

CLIPCAP option
HIGHLOW statement (SGPANEL) 252, 771

CLIPCAPSHAPE= option
HIGHLOW statement (SGPANEL) 253, 772

CLM option
LOESS statement (SGPANEL) 302
LOESS statement (SGPLOT) 825
PBSPLINE statement (SGPANEL) 324
PBSPLINE statement (SGPLOT) 848
REG statement (SGPANEL) 354
REG statement (SGPLOT) 882

CLMATTRS= option
Index

LOESS statement (SGPANEL) 302
LOESS statement (SGPLOT) 826
PBSPLINE statement (SGPANEL) 324
PBSPLINE statement (SGPLOT) 848
REG statement (SGPANEL) 354
REG statement (SGPLOT) 882
CLMTRANSPARENCY= option
LOESS statement (SGPANEL) 302
LOESS statement (SGPLOT) 826
PBSPLINE statement (SGPANEL) 324
PBSPLINE statement (SGPLOT) 848
REG statement (SGPANEL) 355
REG statement (SGPLOT) 882
CLOSE= option
HIGHLow statement (SGPANEL) 253
HIGHLow statement (SGPLOT) 772
Cloud Analytic Services
See CAS
CLUSTERAXIS= option
TEXT statement (SGPANEL) 437
TEXT statement (SGPLOT) 968
Clustering example 1188
CLUSTERWIDTH= option
DOT statement (SGPANEL) 149
DOT statement (SGPLOT) 658
HBAR statement (SGPANEL) 179
HBAR statement (SGPLOT) 692
HBARBASIC statement (SGPANEL) 196
HBARBASIC statement (SGPLOT) 710
HBARPARM statement (SGPANEL) 211
HBARPARM statement (SGPLOT) 724
HBOX statement (SGPANEL) 224
HBOX statement (SGPLOT) 738
HIGHLow statement (SGPANEL) 253
HIGHLow statement (SGPLOT) 772
HLINE statement (SGPANEL) 272, 792
NEEDLE statement (SGPANEL) 313
NEEDLE statement (SGPLOT) 837
SCATTER statement (SGPANEL) 366
SCATTER statement (SGPLOT) 894
SERIES statement (SGPANEL) 381
SERIES statement (SGPLOT) 909
SPLINE statement (SGPANEL) 400
SPLINE statement (SGPLOT) 930
STEP statement (SGPANEL) 413
STEP statement (SGPLOT) 944
TEXT statement (SGPANEL) 437
TEXT statement (SGPLOT) 968
VBAR statement (SGPANEL) 454
VBAR statement (SGPLOT) 985
VBARBASIC statement (SGPANEL) 472
VBARBASIC statement (SGPLOT) 1004
VBARPARM statement (SGPANEL) 487
VBARPARM statement (SGPLOT) 1018
VBOX statement (SGPANEL) 502
VBOX statement (SGPLOT) 1034
VLINE statement (SGPANEL) 526
VLINE statement (SGPLOT) 1060
CMYK color codes 1279
CNS (SAS Color Naming Scheme) 1282
COLAXIS statement
SGPANEL procedure 538
COLAXISTABLE statement
SGPANEL procedure 557
COLHEADERPOS= option
PANELBY statement (SGPANEL) 102
Color gradient legends
See gradient legends
COLOR=
range attribute map 1336
COLOR= attribute
for fills 1274
for lines 1272
for markers 1275
for text 1276
COLOR= option
TITLE and FOOTNOTE statements 80
COLOR= suboption
BLOCK statement (SGPANEL) 125
BLOCK statement (SGPLOT) 631
COLORBAND= option
COLAXIS statement (SGPANEL) 540
ROWAXIS statement (SGPANEL) 568
X2AXIS statement (SGPLOT) 1106
Y2AXIS statement (SGPLOT) 1157
YAXIS statement (SGPLOT) 1137
COLORBANDATTRS= option
COLAXIS statement (SGPANEL) 541
ROWAXIS statement (SGPANEL) 569
X2AXIS statement (SGPLOT) 1106
XAXIS statement (SGPLOT) 1085
YAXIS statement (SGPLOT) 1158
YAXIS statement (SGPLOT) 1137
COLORBANDS= option
XAXIS statement (SGPLOT) 1085
COLORGROUP= option
COLAXISTABLE statement (SGPANEL) 560
HEATMAPPARM statement (SGPLOT) 244, 762
ROWAXISTABLE statement (SGPANEL) 587
WATERFALL statement (SGPLOT)
1076
colors
CMYK codes 1279
Color Naming System values (CNS) 1282
gray-scale codes 1281
HLS codes 1280
HSB codes 1281
HSV codes 1281
naming schemes 1278
RGB codes 1278
SAS color names and RGB values 1282
COLORSTAT= option
DOT statement (SGPANEL) 150
DOT statement (SGPLOT) 659
HBAR statement (SGPANEL) 181
HBAR statement (SGPLOT) 694
HBARBASIC statement (SGPANEL) 197
HBARBASIC statement (SGPLOT) 711
HEATMAP statement (SGPANEL) 238
HEATMAP statement (SGPLOT) 753
VBAR statement (SGPANEL) 455
VBAR statement (SGPLOT) 986
VBARBASIC statement (SGPANEL) 473
VBARBASIC statement (SGPLOT) 1005
COLUMNS= option
PANELBY statement (SGPANEL) 102
PLOT statement (SGSCATTER) 1238
combining plots
example 1189
comparative scatter plots
with grouped data 1253
with regression fits and confidence
ellipses 1254
with shared axes 1211
COMPARE statement
SGSCATTER procedure 1204, 1211
compatible plot types
SGPANEL and SGPLOT procedures 1258
components of a graph 6
confidence bands
example, adding to regression plots 1190
confidence ellipse 675, 1254
about ellipse plots 35
CONNECT= option
HBOX statement (SGPANEL) 224
HBOX statement (SGPLOT) 739
VBOX statement (SGPANEL) 502
VBOX statement (SGPLOT) 1034
CONNECTATTRS= option
HBOX statement (SGPANEL) 225
HBOX statement (SGPLOT) 739
VBOX statement (SGPANEL) 502
VBOX statement (SGPLOT) 1034
CONNECTORDER= option
SERIES statement (SGPANEL) 383
SERIES statement (SGPLOT) 911
continuous color legends
See gradient legends
CONTRIBUTEOFFSETS= option
TEXT statement (SGPANEL) 439
TEXT statement (SGPLOT) 969
CURVELABEL= option
DENSITY statement (SGPANEL) 141
DENSITY statement (SGPLOT) 650
HLINE statement (SGPANEL) 273
HLINE statement (SGPLOT) 792
LINEPARM statement (SGPANEL) 296
LINEPARM statement (SGPLOT) 819
LOESS statement (SGPANEL) 303
LOESS statement (SGPLOT) 826
PBSPLINE statement (SGPANEL) 325
PBSPLINE statement (SGPLOT) 849
REG statement (SGPANEL) 355
REG statement (SGPLOT) 882
SERIES statement (SGPANEL) 383
SERIES statement (SGPLOT) 911
SPLINE statement (SGPANEL) 401
SPLINE statement (SGPLOT) 932
STEP statement (SGPANEL) 414
STEP statement (SGPLOT) 945
VLINE statement (SGPANEL) 526
VLINE statement (SGPLOT) 1060
CURVELABELATTRS= option
BAND statement (SGPANEL) 116
BAND statement (SGPLOT) 622
DENSITY statement (SGPANEL) 141
DENSITY statement (SGPLOT) 650
HLINE statement (SGPANEL) 273
HLINE statement (SGPLOT) 792
LINEPARM statement (SGPANEL) 297
LINEPARM statement (SGPLOT) 820
LOESS statement (SGPANEL) 303
LOESS statement (SGPLOT) 826
PBSPLINE statement (SGPANEL) 325
PBSPLINE statement (SGPLOT) 849
REG statement (SGPANEL) 355
REG statement (SGPLOT) 883
SERIES statement (SGPANEL) 383
SERIES statement (SGPLOT) 911
SPLINE statement (SGPANEL) 401
SPLINE statement (SGPLOT) 932
STEP statement (SGPANEL) 414
STEP statement (SGPLOT) 945
VLINE statement (SGPLOT) 526
VLINE statement (SGPLOT) 1060
CURVELABELLOC= option
BAND statement (SGPLOT) 622
DENSITY statement (SGPLOT) 650
HLINE statement (SGPLOT) 793
LINEPARM statement (SGPLOT) 820
LOESS statement (SGPLOT) 827
PBSPLINE statement (SGPLOT) 849
REG statement (SGPLOT) 883
SERIES statement (SGPLOT) 912
SPLINE statement (SGPLOT) 932
STEP statement (SGPLOT) 945
VLINE statement (SGPLOT) 1061
CURVELABELLOWER= option
BAND statement (SGPANEL) 117
BAND statement (SGPLOT) 622
CURVELABELPOS= option
BAND statement (SGPANEL) 117
BAND statement (SGPLOT) 622
DENSITY statement (SGPANEL) 141
DENSITY statement (SGPLOT) 650
HLINE statement (SGPANEL) 273
HLINE statement (SGPLOT) 793
LINEPARM statement (SGPANEL) 297
LINEPARM statement (SGPLOT) 820
LOESS statement (SGPANEL) 303
LOESS statement (SGPLOT) 827
PBSPLINE statement (SGPANEL) 325
PBSPLINE statement (SGPLOT) 849
REG statement (SGPANEL) 356
REG statement (SGPLOT) 883
SERIES statement (SGPANEL) 384
SERIES statement (SGPLOT) 912
SPLINE statement (SGPANEL) 402
SPLINE statement (SGPLOT) 932
STEP statement (SGPANEL) 414
STEP statement (SGPLOT) 945
VLINE statement (SGPANEL) 527
VLINE statement (SGPLOT) 1061
CURVELABELUPPER= option
BAND statement (SGPANEL) 117
BAND statement (SGPLOT) 622
CYCLEATTRS option
PROC SGPANEL statement 97
PROC SGPLOT statement 608
data tips 1311
DATA= option
PROC SGPANEL statement 97
PROC SGPLOT statement 608
PROC SGSCATTER statement 1207
DATACOLORS= option
PROC SGSCATTER statement 1207
STYLEATTRS statement (SGPLOT) 111, 615
DATACONTRASTCOLORS= option
PROC SGSCATTER statement 1207
STYLEATTRS statement (SGPLOT) 111, 616
DATALABEL option
HISTOGRAM statement (SGPANEL) 265
HISTOGRAM statement (SGPLOT) 784
SCATTER statement (SGPANEL) 367
DATALABEL= option
BUBBLE statement (SGPANEL) 133
BUBBLE statement (SGPLOT) 642
COMPARE statement (SGSCATTER) 1215
DOT statement (SGPANEL) 151
DOT statement (SGPLOT) 660
HBAR statement (SGPANEL) 181
HBAR statement (SGPLOT) 694
HBAR BASIC statement (SGPANEL) 198
HBAR BASIC statement (SGPLOT) 711
HBAR PARM statement (SGPANEL) 212
HBAR PARM statement (SGPLOT) 726
HBOX statement (SGPANEL) 225
HBOX statement (SGPLOT) 739
HLINE statement (SGPANEL) 273
HLINE statement (SGPLOT) 793
LOESS statement (SGPANEL) 304
LOESS statement (SGPLOT) 827
MATRIX statement (SGSCATTER) 1228
NEEDLE statement (SGPANEL) 313
NEEDLE statement (SGPLOT) 837
PBSPLINE statement (SGPANEL) 326
PBSPLINE statement (SGPLOT) 850
PLOT statement (SGSCATTER) 1238
REG statement (SGPANEL) 356
REG statement (SGPLOT) 884
SCATTER statement (SGPLOT) 895
SERIES statement (SGPANEL) 384
SERIES statement (SGPLOT) 912
STEP statement (SGPANEL) 415
STEP statement (SGPLOT) 946
VBAR statement (SGPANEL) 455

D
data preparation
  for BY-group processing 57
data skins 1291
  appearance in bar and pie charts 1291
  appearance in scatter plots 1291
VBAR statement (SGPLOT) 986
VBARBASIC statement (SGPANEL) 473
VBARBASIC statement (SGPLOT) 1005
VBARPARM statement (SGPANEL) 488
VBARPARM statement (SGPLOT) 1020
VBOX statement (SGPANEL) 503
VBOX statement (SGPLOT) 1035
VECTOR statement (SGPANEL) 516
VECTOR statement (SGPLOT) 1050
VLINE statement (SGPANEL) 527
VLINE statement (SGPLOT) 1061
WATERFALL statement (SGPLOT) 1076

DATALABELATTRS= option
BBUBBLE statement (SGPANEL) 133
BBUBBLE statement (SGPLOT) 642
DOT statement (SGPANEL) 151
DOT statement (SGPLOT) 660
HBAR statement (SGPANEL) 181
HBAR statement (SGPLOT) 694
HBARBASIC statement (SGPANEL) 198
HBARBASIC statement (SGPLOT) 712
HBARPARM statement (SGPANEL) 212
HBARPARM statement (SGPLOT) 726
HBBOX statement (SGPANEL) 225
HBBOX statement (SGPLOT) 739
HLINE statement (SGPANEL) 274
HLINE statement (SGPLOT) 793
LOESS statement (SGPANEL) 304
LOESS statement (SGPLOT) 828
NEEDLE statement (SGPANEL) 313
NEEDLE statement (SGPLOT) 838
PBSPLINE statement (SGPANEL) 326
PBSPLINE statement (SGPLOT) 850
REG statement (SGPANEL) 356
REG statement (SGPLOT) 884
SCATTER statement (SGPANEL) 367
SCATTER statement (SGPLOT) 895
SERIES statement (SGPANEL) 384
SERIES statement (SGPLOT) 912
STEP statement (SGPANEL) 415
STEP statement (SGPLOT) 946
VBAR statement (SGPANEL) 455
VBAR statement (SGPLOT) 987
VBARBASIC statement (SGPANEL) 474
VBARBASIC statement (SGPLOT) 1005

VBARPARM statement (SGPANEL) 488
VBARPARM statement (SGPLOT) 1020
VBOX statement (SGPLOT) 1035
VECTOR statement (SGPANEL) 516
VECTOR statement (SGPLOT) 1050
VLINE statement (SGPANEL) 527
VLINE statement (SGPLOT) 1061
WATERFALL statement (SGPLOT) 1076

DATALABELFITPOLICY= option
HBAR statement (SGPANEL) 182, 212
HBAR statement (SGPLOT) 695
HBARBASIC statement (SGPANEL) 199
HBARBASIC statement (SGPLOT) 712
HBARPARM statement (SGPLOT) 726
VBAR statement (SGPANEL) 456
VBAR statement (SGPLOT) 987
VBARBASIC statement (SGPANEL) 474
VBARBASIC statement (SGPLOT) 1006
VBARPARM statement (SGPANEL) 488
VBARPARM statement (SGPLOT) 1020

DATALABELFORMAT= option
HBARBASIC statement (SGPANEL) 199
HBARBASIC statement (SGPLOT) 712
VBARBASIC statement (SGPANEL) 474
VBARBASIC statement (SGPLOT) 1006

DATALABELPOS= option
BBUBBLE statement (SGPANEL) 134
BBUBBLE statement (SGPLOT) 642
COMPARE statement (SGSCATTER) 1215
DOT statement (SGPANEL) 151
DOT statement (SGPLOT) 660
HBAR statement (SGPLOT) 695
HBARPARM statement (SGPLOT) 726
HLINE statement (SGPANEL) 274
HLINE statement (SGPLOT) 794
LOESS statement (SGPANEL) 304
LOESS statement (SGPLOT) 828
MATRIX statement (SGSCATTER) 1228
NEEDLE statement (SGPANEL) 314
NEEDLE statement (SGPLOT) 838
PBSPLINE statement (SGPANEL) 326
<table>
<thead>
<tr>
<th>Y2AXIS statement (SGPLOT)</th>
<th>1158</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAXIS statement (SGPLOT)</td>
<td>1138</td>
</tr>
<tr>
<td>distribution plots</td>
<td>about 39</td>
</tr>
<tr>
<td>compatible plot types</td>
<td>1258</td>
</tr>
<tr>
<td>dot plots</td>
<td>about 49</td>
</tr>
<tr>
<td>example</td>
<td>49, 1194</td>
</tr>
<tr>
<td>SGPANEL procedure</td>
<td>146</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>655</td>
</tr>
<tr>
<td>DOT statement</td>
<td>about dot plots 49</td>
</tr>
<tr>
<td>example</td>
<td>49, 1194</td>
</tr>
<tr>
<td>SGPANEL procedure</td>
<td>146</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>655</td>
</tr>
<tr>
<td>DOWN= option</td>
<td>KEYLEGEND statement (SGPANEL) 290</td>
</tr>
<tr>
<td></td>
<td>KEYLEGEND statement (SGPLOT)  810</td>
</tr>
<tr>
<td>DPI scaling</td>
<td>1311</td>
</tr>
<tr>
<td>DRAWORDER= option</td>
<td>BUBBLE statement (SGPANEL) 135</td>
</tr>
<tr>
<td></td>
<td>BUBBLE statement (SGPLOT)  643</td>
</tr>
<tr>
<td></td>
<td>drill down 1311</td>
</tr>
<tr>
<td>DRILLTARGET= option</td>
<td>ODS GRAPHICS statement  66</td>
</tr>
<tr>
<td></td>
<td>drop lines</td>
</tr>
<tr>
<td></td>
<td>about lines 22</td>
</tr>
<tr>
<td></td>
<td>example  22</td>
</tr>
<tr>
<td></td>
<td>SGPANEL procedure 161</td>
</tr>
<tr>
<td></td>
<td>SGPLOT procedure 670</td>
</tr>
<tr>
<td>DROPLINE statement</td>
<td>about drop lines 22</td>
</tr>
<tr>
<td></td>
<td>example  22</td>
</tr>
<tr>
<td></td>
<td>SGPANEL procedure 161</td>
</tr>
<tr>
<td></td>
<td>SGPLOT procedure 670</td>
</tr>
<tr>
<td>DROPNONMISSING option</td>
<td>COLAXISTABLE statement (SGPANEL) 560</td>
</tr>
<tr>
<td></td>
<td>ROWAXISTABLE statement (SGPANEL) 587</td>
</tr>
<tr>
<td></td>
<td>XAXISTABLE statement (SGPLOT) 1128</td>
</tr>
<tr>
<td></td>
<td>YAXISTABLE statement (SGPLOT) 1180</td>
</tr>
<tr>
<td>DROPTO= option</td>
<td>DROPLINE statement (SGPANEL) 163</td>
</tr>
<tr>
<td></td>
<td>DROPLINE statement (SGPLOT) 672</td>
</tr>
<tr>
<td>MATRIX statement (SGSCATTER)</td>
<td>1229</td>
</tr>
<tr>
<td>PLOT statement (SGSCATTER)</td>
<td>1239</td>
</tr>
<tr>
<td>ellipse plots</td>
<td>about 35</td>
</tr>
<tr>
<td>example</td>
<td>35, 602</td>
</tr>
<tr>
<td>example, adding to scatter plots</td>
<td>1191</td>
</tr>
<tr>
<td>ELLIPSE statement</td>
<td>about ellipse plots 35</td>
</tr>
<tr>
<td>example</td>
<td>35, 602, 1191</td>
</tr>
<tr>
<td></td>
<td>SGPLOT procedure 675</td>
</tr>
<tr>
<td>ERRORBARATTRS= option</td>
<td>SCATTER statement (SGPANEL) 368</td>
</tr>
<tr>
<td></td>
<td>SCATTER statement (SGPLOT) 896</td>
</tr>
<tr>
<td></td>
<td>STEP statement (SGPANEL) 416</td>
</tr>
<tr>
<td></td>
<td>STEP statement (SGPLOT) 947</td>
</tr>
<tr>
<td></td>
<td>example SASHELP library 11</td>
</tr>
<tr>
<td>EXCLUDE= option</td>
<td>KEYLEGEND statement (SGPANEL) 290</td>
</tr>
<tr>
<td></td>
<td>KEYLEGEND statement (SGPLOT)  810</td>
</tr>
<tr>
<td>EXCLUDEMAX= range attribute map</td>
<td>1337</td>
</tr>
<tr>
<td>EXCLUDEMIN= range attribute map</td>
<td>1337</td>
</tr>
<tr>
<td>EXTENDMISSING option</td>
<td>BLOCK statement (SGPANEL) 125</td>
</tr>
<tr>
<td></td>
<td>BLOCK statement (SGPLOT) 631</td>
</tr>
<tr>
<td>EXTRACTSCALE= option</td>
<td>GRADLEGEND statement (SGPANEL) 171</td>
</tr>
<tr>
<td></td>
<td>GRADLEGEND statement (SGPLOT) 684</td>
</tr>
<tr>
<td>EXTRACTSCALE= option</td>
<td>HBOX statement (SGPANEL) 226</td>
</tr>
<tr>
<td></td>
<td>HBOX statement (SGPLOT) 740</td>
</tr>
<tr>
<td></td>
<td>VBOX statement (SGPANEL) 504</td>
</tr>
<tr>
<td></td>
<td>VBOX statement (SGPLOT) 1036</td>
</tr>
</tbody>
</table>

**F**

FAMILY= attribute for text 1276

Fill attributes

See fill options

FILL option

BAND statement (SGPANEL) 117

BAND statement (SGPLOT) 623

BLOCK statement (SGPANEL) 125

BLOCK statement (SGPLOT) 631

BUBBLE statement (SGPANEL) 135

BUBBLE statement (SGPLOT) 644

ELLIPSE statement (SGPLOT) 677

HBAR statement (SGPANEL) 183

HBAR statement (SGPLOT) 696
HBARBASIC statement (SGPANEL) 200
HBARBASIC statement (SGPLOT) 713
HBARPARM statement (SGPANEL) 213
HBARPARM statement (SGPLOT) 727
HBOX statement (SGPANEL) 226
HBOX statement (SGPLOT) 741
HISTOGRAM statement (SGPANEL) 266
HISTOGRAM statement (SGPLOT) 785
POLYGON statement (SGPANEL) 337
POLYGON statement (SGPLOT) 862
VBAR statement (SGPANEL) 457
VBAR statement (SGPLOT) 989
VBARBASIC statement (SGPANEL) 475
VBARBASIC statement (SGPLOT) 1007
VBARPARM statement (SGPANEL) 490
VBARPARM statement (SGPLOT) 1022
VBOX statement (SGPANEL) 504
VBOX statement (SGPLOT) 1036
WATERFALL statement (SGPLOT) 1077
fill options 1274
color 1274
transparency 1274
FILL= option
HIGHLOW statement (SGPANEL) 255
HIGHLOW statement (SGPLOT) 774
FILLASPECT= option
KEYLEGEND statement (SGPANEL) 290
KEYLEGEND statement (SGPLOT) 810
FILLATTRS= option
BAND statement (SGPANEL) 118
BAND statement (SGPLOT) 623
BLOCK statement (SGPANEL) 125
BLOCK statement (SGPLOT) 631
BUBBLE statement (SGPANEL) 135
BUBBLE statement (SGPLOT) 644
ELLIPSE statement (SGPLOT) 677
HBAR statement (SGPANEL) 183
HBAR statement (SGPLOT) 696
HBARBASIC statement (SGPANEL) 200
HBARBASIC statement (SGPLOT) 713
HBARPARM statement (SGPANEL) 214
HBARPARM statement (SGPLOT) 728
HBOX statement (SGPANEL) 227
HBOX statement (SGPLOT) 741
HEATMAP statement (SGPANEL) 238
HEATMAP statement (SGPLOT) 753
HEATMAPPARM statement (SGPANEL) 246
HEATMAPPARM statement (SGPLOT) 764
HIGHLOW statement (SGPANEL) 256
HIGHLOW statement (SGPLOT) 774
HISTOGRAM statement (SGPANEL) 266
HISTOGRAM statement (SGPLOT) 785
POLYGON statement (SGPANEL) 337
POLYGON statement (SGPLOT) 862
TEXT statement (SGPANEL) 439
TEXT statement (SGPLOT) 970
VBAR statement (SGPANEL) 458
VBAR statement (SGPLOT) 989
VBARBASIC statement (SGPANEL) 475
VBARBASIC statement (SGPLOT) 1007
VBARPARM statement (SGPANEL) 490
VBARPARM statement (SGPLOT) 1022
VBOX statement (SGPANEL) 504
VBOX statement (SGPLOT) 1036
WATERFALL statement (SGPLOT) 1078
FILLCOLOR= discrete attribute map 1321
FILLEDOUTLINEDMARKERS option
COMPARE statement (SGSCATTER) 1216
DOT statement (SGPANEL) 152
DOT statement (SGPLOT) 661
HLINE statement (SGPANEL) 275
HLINE statement (SGPLOT) 795
LOESS statement (SGPANEL) 305
LOESS statement (SGPLOT) 828
PBSPLINE statement (SGPANEL) 327
PBSPLINE statement (SGPLOT) 851
PLOT statement (SGSCATTER) 1239
REG statement (SGPANEL) 357
REG statement (SGPLOT) 885
SCATTER statement (SGPANEL) 369
SCATTER statement (SGPLOT) 897
SERIES statement (SGPANEL) 386
SERIES statement (SGPLOT) 914
STEP statement (SGPANEL) 417
STEP statement (SGPLOT) 948
VLINE statement (SGPANEL) 529
VLINE statement (SGPLOT) 1063
FILLHEIGHT= option
KEYLEGEND statement (SGPANEL) 290
KEYLEGEND statement (SGPLOT) 810
FILLSTYLE= discrete attribute map 1321
FILLTRANSPARENCY= discrete attribute map 1321
FILLTYPE= option
BLOCK statement (SGPANEL) 125
BLOCK statement (SGPLOT) 631
HBAR statement (SGPANEL) 183
HBAR statement (SGPLOT) 696
HBARBASIC statement (SGPANEL) 200
HBARBASIC statement (SGPLOT) 714
HBARPARAM statement (SGPANEL) 214
HBARPARAM statement (SGPLOT) 728
HISTOGRAM statement (SGPANEL) 266
HISTOGRAM statement (SGPLOT) 785
VBAR statement (SGPANEL) 458
VBAR statement (SGPLOT) 989
VBARBASIC statement (SGPANEL) 476
VBARBASIC statement (SGPLOT) 1007
VBARPARAM statement (SGPANEL) 490
VBARPARAM statement (SGPLOT) 1023
FINALBARATRTRS= option
WATERFALL statement (SGPLOT) 1078
FINALBARTICKVALUE= option
WATERFALL statement (SGPLOT) 1078
fit and confidence plots about 36
compatible plot types 1258
fit policies
axes values, curve labels, data labels 1265
FITPOLICY= option
COLAXIS statement (SGPANEL) 542
ROWAXIS statement (SGPANEL) 570
X2AXIS statement (SGPLOT) 1107
XAXIS statement (SGPLOT) 1086
Y2AXIS statement (SGPLOT) 1159
YAXIS statement (SGPLOT) 1138
fitted loess plots
fitted penalized B-spline curves
See also penalized B-spline plots
SGPANEL procedure 320
SGPLOT procedure 844
fitted regression curves
See also regression plots
SGPANEL procedure 351
SGPLOT procedure 878
FONT= option
TITLE and FOOTNOTE statements 80
FOOTNOTE statement 80, 83
BY statement with 57
measurement units 86
substituting BY line values in a text string 85
footnotes 83
FORMAT statement 58
formats associating with variables 58
FREQ= option
DENSITY statement (SGPANEL) 142
DENSITY statement (SGPLOT) 651
DOT statement (SGPANEL) 152
DOT statement (SGPLOT) 662
ELLIPSE statement (SGPLOT) 677
HBAR statement (SGPANEL) 183
HBAR statement (SGPLOT) 697
HBOX statement (SGPANEL) 227
HBOX statement (SGPLOT) 741
HEATMAP statement (SGPANEL) 239
HEATMAP statement (SGPLOT) 754
HISTOGRAM statement (SGPANEL) 267
HISTOGRAM statement (SGPLOT) 786
HLINE statement (SGPANEL) 275
HLINE statement (SGPLOT) 795
PBSPLINE statement (SGPANEL) 327
PBSPLINE statement (SGPLOT) 851
REG statement (SGPANEL) 357
REG statement (SGPLOT) 885
SCATTER statement (SGPANEL) 369
SCATTER statement (SGPLOT) 897
VBAR statement (SGPANEL) 458
VBAR statement (SGPLOT) 990
VBOX statement (SGPANEL) 504
VBOX statement (SGPLOT) 1037
VLINE statement (SGPANEL) 529
VLINE statement (SGPLOT) 1063
fringe plots about fringe plots 18
example 18
SGPANEL procedure 166
STEP statement (SGPLOT)  949
VBAR statement (SGPLOT)  459
VBAR statement (SGPANEL)  991
VBARBASIC statement (SGPLOT)  477
VBARBASIC statement (SGPANEL)  1009
VBARPARM statement (SGPLOT)  492
VBARPARM statement (SGPANEL)  1024
VBOX statement (SGPLOT)  505
VBOX statement (SGPANEL)  1038
VLINE statement (SGPLOT)  530
VLINE statement (SGPANEL)  1064

H
hardcoded values  1289
HBAR statement  44
about bar charts  44
example  44, 597
SGPANEL procedure  174
SGPLOT procedure  687
HBARBASIC statement  44
example  44
SGPANEL procedure  193
SGPLOT procedure  706
HBARPARM statement  44
about bar charts  44
example  44
SGPANEL procedure  207
SGPLOT procedure  720
HBOX statement  39
about box plots  39
example  39, 90, 602, 1197
SGPANEL procedure  221
SGPLOT procedure  735
HEADERATTRS= option  103
PANELBY statement (SGPANEL)  103
HEADERBACKCOLOR= option  103
PANELBY statement (SGPANEL)  103
heat maps  18
HEATMAP statement  18
about heat maps  18
example  18
SGPANEL procedure  235
SGPLOT procedure  750
HEATMAPPARM statement  242
SGPANEL procedure  760
SGPLOT procedure  760
HEIGHT= option  167
FRINGE statement (SGPANEL)  680
FRINGE statement (SGPLOT)  680
ODS GRAPHICS statement  67
TITLE and FOOTNOTE statements  80
high-low charts  1199
example  1199
high-low plots  20
about high-low plots  20
example  20
SGPANEL procedure  249
SGPLOT procedure  768
HIGHCAP= option  103
HIGHOW statement (SGPANEL)  257
HIGHOW statement (SGPLOT)  776
HIGHLABEL= option  103
HIGHOW statement (SGPANEL)  258
HIGHOW statement (SGPLOT)  777
highlighting plots  114, 619
example  1193
HIGHW statement  20
about high-low plots  20
example  20, 1199
SGPANEL procedure  249
SGPLOT procedure  768
HISTOGRAM statement  42
about histograms  42
example  42, 90, 594, 602, 1195
SGPANEL procedure  263
SGPLOT procedure  782
histograms  42
example  42, 90, 594, 602, 1195
scatter plot matrix  1201
SGPANEL procedure  263
SGPLOT procedure  782
HLINE statement  50
about line charts  50
example  50
SGPANEL procedure  268
SGPLOT procedure  788
HLS color codes  1280
HOFFSET= option  1280
SYMBOLCHAR statement  425
(SGPANEL)  425
SYMBOLCHAR statement (SGPLOT)  957
SYMBOLIMAGE statement  430
(SGPANEL)  961
SYMBOLIMAGE statement (SGPLOT)  430
horizontal bar charts  1198
about bar charts  44
example  44, 597
parameterized (SGPANEL)  207
parameterized (SGPLOT)  720
SGPANEL procedure  174, 193
SGPLOT procedure  687, 706
horizontal bar-line charts  1198
example  1198
horizontal box plots
about 39
text 39, 90, 602, 1197
percentiles 234, 748
SGPANEL procedure 221
SGPLOT procedure 735
statement summary 234, 748
horizontal line
SGPANEL procedure 294
SGPLOT procedure 817
horizontal line charts
about 50
text 50
SGPANEL procedure 268
SGPLOT procedure 788
HSB color codes 1281
HSV color codes 1281

I
ID=
discrete attribute map 1321
range attribute map 1334
image filenames 68
image files
resetting index counter 71
image format 70
IMAGE function
SG annotation 1357
IMAGEMAP option
ODS GRAPHICS statement 68
IMAGEMAP= option
ODS GRAPHICS statement 68
IMAGENAME= option
ODS GRAPHICS statement 68
INDENT= option
XAXISTABLE statement (SGPLOT) 1128
YAXISTABLE statement (SGPLOT) 1180
INDENTWEIGHT= option
XAXISTABLE statement (SGPLOT) 1128
YAXISTABLE statement (SGPLOT) 1180
INSET statement
text insets 32
text 32
SGPANEL procedure 284
SGPLOT procedure 804
INTBOXWIDTH= option
HBOX statement (SGPANEL) 229
HBOX statement (SGPLOT) 743
VBOX statement (SGPANEL) 506
VBOX statement (SGPLOT) 1038
INTEGER option
COLAXIS statement (SGPANEL) 544
GRADLEGEND statement (SGPANEL) 172
GRADLEGEND statement (SGPLOT) 685
ROWAXIS statement (SGPANEL) 571
X2AXIS statement (SGPLOT) 1109
XAXIS statement (SGPLOT) 1088
Y2AXIS statement (SGPLOT) 1160
YAXIS statement (SGPLOT) 1139
INTERPOLATION= option
LOESS statement (SGPANEL) 305
LOESS statement (SGPLOT) 829
INTERVAL= option
COLAXIS statement (SGPANEL) 544
ROWAXIS statement (SGPANEL) 571
X2AXIS statement (SGPLOT) 1109
XAXIS statement (SGPLOT) 1088
Y2AXIS statement (SGPLOT) 1160
YAXIS statement (SGPLOT) 1139
INTERVALBARWIDTH= option
HIGHLOW statement (SGPANEL) 258
HIGHLOW statement (SGPLOT) 777
intra-quartile range (IQR)
horizontal box plots 235, 512, 749, 1045
ITALIC option
TITLE and FOOTNOTE statements 80

J
JITTER option
COMPARE statement (SGSCATTER) 1217
LOESS statement (SGPANEL) 305
LOESS statement (SGPLOT) 829
PBSPLINE statement (SGPANEL) 327
PBSPLINE statement (SGPLOT) 851
PLOT statement (SGSCATTER) 1241
REG statement (SGPANEL) 358
REG statement (SGPLOT) 885
SCATTER statement (SGPANEL) 371
SCATTER statement (SGPLOT) 899
JITTERWIDTH= option
SCATTER statement (SGPANEL) 372
SCATTER statement (SGPLOT) 900
JOIN option
COMPARE statement (SGSCATTER) 1217
PLOT statement (SGSCATTER) 1241
JUSTIFY= option
STEP statement (SGPANEL) 418
STEP statement (SGPLOT) 950
TITLE and FOOTNOTE statements 80

K
kernel density curves
See also density plots
example 8, 604
kernel density function 145
kernel density weight functions 145
KEYLEGEND statement
example 1191, 1193, 1195
SGPANEL procedure 288
SGPLOT procedure 807

L
LABEL option
BLOCK statement (SGPANEL) 125
BLOCK statement (SGPLOT) 631
COLAXISTABLE statement
(SGPANEL) 560
DROPLINE statement (SGPANEL) 163
DROPLINE statement (SGPLOT) 673
POLYGON statement (SGPLOT) 863
REFLINE statement (SGPANEL) 349
REFLINE statement (SGPLOT) 876
ROWAXIS statement (SGPANEL) 572
ROWAXISTABLE statement
(SGPANEL) 588
VALUEATTRS statement (SGPLOT) 1172
X2AXIS statement (SGPLOT) 1110
XAXIS statement (SGPLOT) 1089
XAXISTABLE statement (SGPLOT) 1129
Y2AXIS statement (SGPLOT) 1161
YAXIS statement (SGPLOT) 1140
YAXISTABLE statement (SGPLOT) 1180

LABELFAR option
HBOX statement (SGPANEL) 229
HBOX statement (SGPLOT) 743
VBOX statement (SGPANEL) 506
VBOX statement (SGPLOT) 1038
LABELHALIGN= option
ROWAXISTABLE statement
(SGPANEL) 588
YAXISTABLE statement (SGPLOT) 1181

LABELJUSTIFY option
ROWAXISTABLE statement
(SGPANEL) 588
YAXISTABLE statement (SGPLOT) 1181

LABELLOC= option
POLYGON statement (SGPANEL) 338
POLYGON statement (SGPLOT) 863
REFLINE statement (SGPLOT) 876
LABELMAX= option
ODS GRAPHICS statement 69
LABELPLACEMENT= option
ODS GRAPHICS statement 69
LABELPOS= option
BLOCK statement (SGPANEL) 126
BLOCK statement (SGPLOT) 632
COLAXIS statement (SGPANEL) 545
COLAXISTABLE statement
(SGPANEL) 561
POLYGON statement (SGPANEL) 339
POLYGON statement (SGPLOT) 863
REFLINE statement (SGPANEL) 349
<table>
<thead>
<tr>
<th>Statement</th>
<th>SGPROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFLINE</td>
<td>SGPLOT 877</td>
</tr>
<tr>
<td>ROWAXIS</td>
<td>SGPANEL 572</td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>SGPANEL 588</td>
</tr>
<tr>
<td>X2AXIS</td>
<td>SGPLOT 1110</td>
</tr>
<tr>
<td>XAXIS</td>
<td>SGPLOT 1089</td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>SGPLOT 1129</td>
</tr>
<tr>
<td>Y2AXIS</td>
<td>SGPLOT 1161</td>
</tr>
<tr>
<td>YAXIS</td>
<td>SGPLOT 1141</td>
</tr>
<tr>
<td>YAXISTABLE</td>
<td>SGPLOT 1181</td>
</tr>
</tbody>
</table>

**Labels associating with variables:** 61

**LABELSTRIP option**

<table>
<thead>
<tr>
<th>SCATTER statement</th>
<th>SGPANEL 372</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCATTER statement</td>
<td>SGPLOT 900</td>
</tr>
</tbody>
</table>

**Lattice layout style example:** 90

**Layout types, panels:** 92, 101

<table>
<thead>
<tr>
<th>LAYOUT= option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANELBY statement</td>
</tr>
<tr>
<td>LAYOUTPERCENT (annotation space)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LAYOUTPIXEL (annotation space)</th>
<th>1349</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCATTRID= option</td>
<td></td>
</tr>
<tr>
<td>SERIES statement</td>
<td>SGPANEL 389</td>
</tr>
<tr>
<td>SERIES statement</td>
<td>SGPLOT 917</td>
</tr>
</tbody>
</table>

**Legend statements**

<table>
<thead>
<tr>
<th>SGPANEL procedure</th>
<th>170, 288</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGPLOT procedure</td>
<td>683, 807</td>
</tr>
<tr>
<td>LEGEND= option</td>
<td></td>
</tr>
<tr>
<td>COMPARE statement</td>
<td>SGSCATTER 1218</td>
</tr>
<tr>
<td>MATRIX statement</td>
<td>SGSCATTER 1230</td>
</tr>
<tr>
<td>PLOT statement</td>
<td>SGSCATTER 1242</td>
</tr>
<tr>
<td>LEGENDAREAMAX= option</td>
<td></td>
</tr>
<tr>
<td>ODS GRAPHICS statement</td>
<td>69</td>
</tr>
<tr>
<td>LEGENDLABEL= option</td>
<td></td>
</tr>
<tr>
<td>BAND statement</td>
<td>SGPANEL 118</td>
</tr>
<tr>
<td>BAND statement</td>
<td>SGPLOT 623</td>
</tr>
<tr>
<td>BUBBLE statement</td>
<td>SGPANEL 136</td>
</tr>
<tr>
<td>BUBBLE statement</td>
<td>SGPLOT 644</td>
</tr>
<tr>
<td>DENSITY statement</td>
<td>SGPANEL 142</td>
</tr>
<tr>
<td>DENSITY statement</td>
<td>SGPLOT 651</td>
</tr>
<tr>
<td>DOT statement</td>
<td>SGPANEL 154</td>
</tr>
<tr>
<td>DOT statement</td>
<td>SGPLOT 663</td>
</tr>
<tr>
<td>DROPLINE statement</td>
<td>SGPANEL 164</td>
</tr>
<tr>
<td>DROPLINE statement</td>
<td>SGPLOT 673</td>
</tr>
<tr>
<td>ELLIPSE statement</td>
<td>SGPLOT 677</td>
</tr>
<tr>
<td>FRINGE statement</td>
<td>SGPANEL 168</td>
</tr>
<tr>
<td>FRINGE statement</td>
<td>SGPLOT 681</td>
</tr>
<tr>
<td>HBAR statement</td>
<td>SGPANEL 185</td>
</tr>
<tr>
<td>HBAR statement</td>
<td>SGPLOT 699</td>
</tr>
</tbody>
</table>

HBARBASIC statement	SGPANEL 202
HBARBASIC statement	SGPLOT 716
HBARPARM statement	SGPANEL 216
HBARPARM statement	SGPLOT 730
HBOX statement	SGPANEL 229
HBOX statement	SGPLOT 743
HIGHLOW statement	SGPANEL 259
HIGHLOW statement	SGPLOT 778
HISTOGRAM statement	SGPANEL 267
HISTOGRAM statement	SGPLOT 786
HLINE statement	SGPANEL 277
HLINE statement	SGPLOT 797
LINEPARM statement	SGPANEL 297
LINEPARM statement	SGPLOT 821
LOESS statement	SGPANEL 306
LOESS statement	SGPLOT 829
NEEDLE statement	SGPANEL 317
NEEDLE statement	SGPLOT 841
PBSPLINE statement	SGPANEL 328
PBSPLINE statement	SGPLOT 852
POLYGON statement	SGPANEL 339
POLYGON statement	SGPLOT 864
REFLINE statement	SGPANEL 349
REFLINE statement	SGPLOT 877
REG statement	SGPANEL 358
REG statement	SGPLOT 886
SCATTER statement	SGPANEL 373
SCATTER statement	SGPLOT 900
SERIES statement	SGPANEL 390
SERIES statement	SGPLOT 918
SPLINE statement	SGPANEL 405
SPLINE statement	SGPLOT 935
STEP statement	SGPANEL 419
STEP statement	SGPLOT 950
TEXT statement	SGPANEL 440
TEXT statement	SGPLOT 971
VBAR statement	SGPANEL 460
VBAR statement	SGPLOT 992
VBARBASIC statement	SGPANEL 478
VBARBASIC statement	SGPLOT 1009
VBARPARM statement	SGPANEL 492
VBARPARM statement	SGPLOT 1025
VBOX statement	SGPANEL 506
VBOX statement	SGPLOT 1039
VECTOR statement	SGPANEL 518
VECTOR statement	SGPLOT 1051
PBSPLINE statement (SGPANEL) 328
PBSPLINE statement (SGPLOT) 852
POLYGON statement (SGPANEL) 339
POLYGON statement (SGPLOT) 864
REFLINE statement (SGPANEL) 350
REFLINE statement (SGPLOT) 877
REG statement (SGPANEL) 358
REG statement (SGPLOT) 886
SERIES statement (SGPANEL) 390
SERIES statement (SGPLOT) 918
SPLINE statement (SGPANEL) 405
SPLINE statement (SGPLOT) 936
STEP statement (SGPANEL) 419
STEP statement (SGPLOT) 950
VBOX statement (SGPANEL) 507
VBOX statement (SGPLOT) 1039
VECTOR statement (SGPANEL) 518
VECTOR statement (SGPLOT) 1052
VLINE statement (SGPANEL) 532
VLINE statement (SGPLOT) 1066

See loess plots

LOESS option

COMPARE statement (SGSCATTER) 1219

PLOT statement (SGSCATTER) 1243

loess plots

about 36

eexample 36, 90

SGPANEL procedure 299

SGPLOT procedure 823

LOESS statement

about loess plots 36

eexample 36, 90

SGPANEL procedure 299

SGPLOT procedure 823

LOESSMAXOBS= option

ODS GRAPHICS statement 70

LOESSOBMAX= option

ODS GRAPHICS statement 70

logarithmic axes 1260

LOGBASE= option

COLAXIS statement (SGPANEL) 546

ROWAXIS statement (SGPANEL) 573

X2AXIS statement (SGPLOT) 1111

XAXIS statement (SGPLOT) 1090

Y2AXIS statement (SGPLOT) 1163

YAXIS statement (SGPLOT) 1142

LOGSTYLE= option

COLAXIS statement (SGPANEL) 547

ROWAXIS statement (SGPANEL) 573

X2AXIS statement (SGPLOT) 1112

XAXIS statement (SGPLOT) 1091

Y2AXIS statement (SGPLOT) 1164

YAXIS statement (SGPLOT) 1143

LOGVTYPE = option

HIGHLOW statement (SGPANEL) 259

HIGHLOW statement (SGPLOT) 778

LOWER= argument

BAND statement (SGPANEL) 116

BAND statement (SGPLOT) 621

LOWCAP= option

HIGHLOW statement (SGPANEL) 260

HIGHLOW statement (SGPLOT) 779

LPATTRID= option

SERIES statement (SGPANEL) 390

SERIES statement (SGPLOT) 918

LSPACE= option

TITLE and FOOTNOTE statements 80
marker attributes

See marker options

marker fills and outlines 1267

marker options 1274

color 1275

size 1275

specifying fills and outlines 1267

symbol 1275

marker symbols 1274, 1275

MARKERATTRS= option

COMPARE statement (SGSCATTER) 1220

DOT statement (SGPANEL) 155

DOT statement (SGPLOT) 664

HLINE statement (SGPANEL) 278

HLINE statement (SGPLOT) 798

LOESS statement (SGPANEL) 306

LOESS statement (SGPLOT) 830

MATRIX statement (SGSCATTER) 1231

NEEDLE statement (SGPANEL) 317

NEEDLE statement (SGPLOT) 841

PBSPLINE statement (SGPANEL) 328

PBSPLINE statement (SGPLOT) 853

PLOT statement (SGSCATTER) 1244

REG statement (SGPANEL) 359

REG statement (SGPLOT) 887

SCATTER statement (SGPANEL) 373

SCATTER statement (SGPLOT) 901

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 919

STEP statement (SGPANEL) 419

STEP statement (SGPLOT) 950

VLINE statement (SGPANEL) 532

VLINE statement (SGPLOT) 1067

MARKEROUTLINEATTRS= option

COMPARE statement (SGSCATTER) 1220

DOT statement (SGPANEL) 156

DOT statement (SGPLOT) 665

HLINE statement (SGPANEL) 279

HLINE statement (SGPLOT) 799

LOESS statement (SGPANEL) 307

LOESS statement (SGPLOT) 831

PBSPLINE statement (SGPANEL) 329

PBSPLINE statement (SGPLOT) 853

PLOT statement (SGSCATTER) 1245

REG statement (SGPANEL) 359

REG statement (SGPLOT) 887

SCATTER statement (SGPANEL) 374

SCATTER statement (SGPLOT) 902

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 919

STEP statement (SGPANEL) 420

STEP statement (SGPLOT) 951

VLINE statement (SGPANEL) 533

VLINE statement (SGPLOT) 1067

MARKERS option

HLINE statement (SGPANEL) 279

HLINE statement (SGPLOT) 799

NEEDLE statement (SGPANEL) 317

NEEDLE statement (SGPLOT) 841

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 920

STEP statement (SGPANEL) 420

STEP statement (SGPLOT) 951

VLINE statement (SGPANEL) 533

VLINE statement (SGPLOT) 1067

MARKERSIZE=

discrete attribute map 1322

MARKERFILLATTRS= option

COMPARE statement (SGSCATTER) 1220

DOT statement (SGPANEL) 155

DOT statement (SGPLOT) 665

HLINE statement (SGPANEL) 278

HLINE statement (SGPLOT) 798

LOESS statement (SGPANEL) 306

LOESS statement (SGPLOT) 830

PBSPLINE statement (SGPANEL) 328

PBSPLINE statement (SGPLOT) 853

PLOT statement (SGSCATTER) 1244

REG statement (SGPANEL) 359

REG statement (SGPLOT) 887

SCATTER statement (SGPANEL) 373

SCATTER statement (SGPLOT) 901

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 919

STEP statement (SGPANEL) 419

STEP statement (SGPLOT) 950

VLINE statement (SGPANEL) 532

VLINE statement (SGPLOT) 1067

MARKERCOLOR=

discrete attribute map 1322

MARKERFILLATTRS= option

COMPARE statement (SGSCATTER) 1220

DOT statement (SGPANEL) 155

DOT statement (SGPLOT) 665

HLINE statement (SGPANEL) 278

HLINE statement (SGPLOT) 798

LOESS statement (SGPANEL) 306

LOESS statement (SGPLOT) 830

PBSPLINE statement (SGPANEL) 328

PBSPLINE statement (SGPLOT) 853

PLOT statement (SGSCATTER) 1244

REG statement (SGPANEL) 359

REG statement (SGPLOT) 887

SCATTER statement (SGPANEL) 373

SCATTER statement (SGPLOT) 901

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 919

STEP statement (SGPANEL) 419

STEP statement (SGPLOT) 950

VLINE statement (SGPANEL) 532

VLINE statement (SGPLOT) 1067

MARKERS option

HLINE statement (SGPANEL) 279

HLINE statement (SGPLOT) 799

NEEDLE statement (SGPANEL) 317

NEEDLE statement (SGPLOT) 841

SERIES statement (SGPANEL) 391

SERIES statement (SGPLOT) 920

STEP statement (SGPANEL) 420

STEP statement (SGPLOT) 951

VLINE statement (SGPANEL) 533

VLINE statement (SGPLOT) 1067

MARKERSIZE=

discrete attribute map 1322

MARKERSTYLE=

discrete attribute map 1322

MARKERSYMBOL=

discrete attribute map 1322

MARKERTRANSPARENCY=

discrete attribute map 1322

MATRIX statement

SGSCATTER procedure 1204, 1226

MAX=

range attribute map 1335

MAX= option
COLAXIS statement (SGPANEL)  548
ROWAXIS statement (SGPANEL)  575
X2AXIS statement (SGPLOT)  1113
XAXIS statement (SGPLOT)  1092
Y2AXIS statement (SGPLOT)  1164
YAXIS statement (SGPLOT)  1144
MAXLEGENDAREA= option
ODS GRAPHICS statement 69
MAXPOINTS= option
LOESS statement (SGPANEL)  307
LOESS statement (SGPLOT)  831
PBSPLINE statement (SGPANEL)  329
PBSPLINE statement (SGPLOT)  854
REG statement (SGPANEL)  360
REG statement (SGPLOT)  888
MCATTRID= option
SERIES statement (SGPANEL)  391
SERIES statement (SGPLOT)  920
MEANATTRS= option
HBOX statement (SGPANEL)  229
HBOX statement (SGPLOT)  743
VBOX statement (SGPANEL)  507
VBOX statement (SGPLOT)  1039
measurement units  1277, 1461
TITLE and FOOTNOTE statements  86
MEDIANATTRS= option
HBOX statement (SGPANEL)  230
HBOX statement (SGPLOT)  744
VBOX statement (SGPANEL)  507
VBOX statement (SGPLOT)  1039
MIN= range attribute map 1334
MIN= option
COLAXIS statement (SGPANEL)  548
ROWAXIS statement (SGPANEL)  575
X2AXIS statement (SGPLOT)  1113
XAXIS statement (SGPLOT)  1092
Y2AXIS statement (SGPLOT)  1165
YAXIS statement (SGPLOT)  1144
MINOR option
COLAXIS statement (SGPANEL)  549
ROWAXIS statement (SGPANEL)  576
X2AXIS statement (SGPLOT)  1114
XAXIS statement (SGPLOT)  1093
Y2AXIS statement (SGPLOT)  1165
YAXIS statement (SGPLOT)  1145
MINORCOUNT= option
COLAXIS statement (SGPANEL)  549
ROWAXIS statement (SGPANEL)  576
X2AXIS statement (SGPLOT)  1114
XAXIS statement (SGPLOT)  1093
Y2AXIS statement (SGPLOT)  1165
YAXIS statement (SGPLOT)  1145
MINORGRID option
COLAXIS statement (SGPLOT)  549
COMPARE statement (SGSCATTER)  1221
PLOT statement (SGSCATTER)  1245
ROWAXIS statement (SGPLOT)  576
X2AXIS statement (SGPLOT)  1114
XAXIS statement (SGPLOT)  1093
Y2AXIS statement (SGPLOT)  1165
YAXIS statement (SGPLOT)  1145
MINORGRIDATTRS= option
COLAXIS statement (SGPLOT)  549
COMPARE statement (SGSCATTER)  1221
PLOT statement (SGSCATTER)  1245
ROWAXIS statement (SGPLOT)  576
X2AXIS statement (SGPLOT)  1114
XAXIS statement (SGPLOT)  1093
Y2AXIS statement (SGPLOT)  1165
YAXIS statement (SGPLOT)  1145
MINORINTERVAL= option
COLAXIS statement (SGPANEL)  549
ROWAXIS statement (SGPANEL)  576
X2AXIS statement (SGPLOT)  1114
XAXIS statement (SGPLOT)  1093
Y2AXIS statement (SGPLOT)  1166
YAXIS statement (SGPLOT)  1145
MISSING option
DOT statement (SGPANEL)  156
DOT statement (SGPLOT)  665
HBAR statement (SGPANEL)  187
HBAR statement (SGPLOT)  700
HBARBASIC statement (SGPANEL)  202
HBARBASIC statement (SGPLOT)  716
HBARPARM statement (SGPANEL)  217
HBARPARM statement (SGPLOT)  731
HBOX statement (SGPANEL)  230
HBOX statement (SGPLOT)  744
HLINE statement (SGPANEL)  279
HLINE statement (SGPLOT)  799
PANELBY statement (SGPANEL)  104
VBAR statement (SGPANEL)  461
VBAR statement (SGPLOT)  993
VBARBASIC statement (SGPANEL)  478
VBARBASIC statement (SGPLOT)  1010
VBARPARM statement (SGPANEL)  493
VBARPARM statement (SGPLOT)  1026
VBOX statement (SGPANEL)  507
VBOX statement (SGPLOT)  1039
VLINE statement (SGPANEL)  533
VLINE statement (SGPLOT)  1067
NAMES option
BAND statement (SGPANEL) 119
BAND statement (SGPLOT) 624
BLOCK statement (SGPANEL) 126
BLOCK statement (SGPLOT) 632
BUBBLE statement (SGPANEL) 136
BUBBLE statement (SGPLOT) 645
COLAXISTABLE statement (SGPANEL) 561
DENSITY statement (SGPANEL) 142
DENSITY statement (SGPLOT) 651
DOT statement (SGPANEL) 156
DOT statement (SGPLOT) 666
DROPLINE statement (SGPANEL) 164
DROPLINE statement (SGPLOT) 674
ELLIPSE statement (SGPLOT) 678
FRINGE statement (SGPANEL) 168
FRINGE statement (SGPLOT) 681
HBAR statement (SGPANEL) 187
HBAR statement (SGPLOT) 700
HBARPARM statement (SGPANEL) 202
HBARPARM statement (SGPLOT) 716
HBARPARM statement (SGPANEL) 217
HBARPARM statement (SGPLOT) 731
HBOX statement (SGPANEL) 230
HBOX statement (SGPLOT) 744
HEATMAP statement (SGPANEL) 239
HEATMAP statement (SGPLOT) 754
HEATMAPPARM statement (SGPANEL) 246
HEATMAPPARM statement (SGPLOT) 764
HIGHLOW statement (SGPANEL) 260
HIGHLOW statement (SGPLOT) 779
HISTOGRAM statement (SGPANEL) 267
HISTOGRAM statement (SGPLOT) 786
HLINE statement (SGPANEL) 279
HLINE statement (SGPLOT) 799
LINEPARM statement (SGPANEL) 298
LINEPARM statement (SGPLOT) 821
LOESS statement (SGPANEL) 307
LOESS statement (SGPLOT) 831
NEEDLE statement (SGPANEL) 318
NEEDLE statement (SGPLOT) 841
PBSPLINE statement (SGPANEL) 329
PBSPLINE statement (SGPLOT) 854
POLYGON statement (SGPANEL) 340
POLYGON statement (SGPLOT) 865
REFLINE statement (SGPANEL) 350
REFLINE statement (SGPLOT) 877
REG statement (SGPANEL) 360
REG statement (SGPLOT) 888
ROWAXISTABLE statement (SGPANEL) 588
SCATTER statement (SGPANEL) 374
SCATTER statement (SGPLOT) 902
SERIES statement (SGPANEL) 392
SERIES statement (SGPLOT) 921
SPLINE statement (SGPANEL) 405
SPLINE statement (SGPLOT) 936
STEP statement (SGPANEL) 420
STEP statement (SGPLOT) 951
TEXT statement (SGPANEL) 440
TEXT statement (SGPLOT) 971
VBAR statement (SGPANEL) 461
VBAR statement (SGPLOT) 993
VBARBASIC statement (SGPANEL) 478
VBARBASIC statement (SGPLOT) 1010
VBARPARM statement (SGPANEL) 493
VBARPARM statement (SGPLOT) 1026
VBOX statement (SGPANEL) 507
VBOX statement (SGPLOT) 1040
VECTOR statement (SGPANEL) 518
VECTOR statement (SGPLOT) 1052
VLINE statement (SGPANEL) 533
VLINE statement (SGPLOT) 1067
WATERFALL statement (SGPLOT) 1079
XAXISTABLE statement (SGPLOT) 1129
YAXISTABLE statement (SGPLOT) 1181
names
color-naming schemes 1278
colors 1282
NBINS= option
HISTOGRAM statement (SGPANEL) 267
HISTOGRAM statement (SGPLOT) 786

needle plots
about needle plots 25
example 25
SGPANEL procedure 310
SGPLOT procedure 834

NEEDLE statement
about needle plots 25
example 25
SGPANEL procedure 310
SGPLOT procedure 834

NKNOTS= option
PBSPLINE statement (SGPANEL) 329
PBSPLINE statement (SGPLOT) 854

NOANTIALIAS option
ODS GRAPHICS statement 63

NOARROWHEADS option
VECTOR statement (SGPANEL) 518
VECTOR statement (SGPLOT) 1052

NOAUTOLEGEND option
PROC SGPANEL statement 98
PROC SGPLOT statement 609

NOBORDER option
GRADLEGEND statement (SGPANEL) 171
GRADLEGEND statement (SGPLOT) 684
INSET statement (SGPANEL) 285
INSET statement (SGPLOT) 806
KEYLEGEND statement (SGPANEL) 290
KEYLEGEND statement (SGPLOT) 810

ODS GRAPHICS statement 65
PANELBY statement (SGPANEL) 102
PROC SGPLOT statement 609, 1245

NOCAPS option
HBOX statement (SGPANEL) 230
HBOX statement (SGPLOT) 744
VBOX statement (SGPANEL) 508
VBOX statement (SGPLOT) 1040

NOCASE= discrete attribute map 1322

NOCLIP option
DROPLINE statement (SGPANEL) 164
DROPLINE statement (SGPLOT) 674
REFLINE statement (SGPANEL) 350
REFLINE statement (SGPLOT) 877

NOCYCLEATTRS option
PROC SGPANEL statement 97
PROC SGPLOT statement 608
NOERRORCAPS option
SCATTER statement (SGPANEL) 374
STEP statement (SGPANEL) 420
NOERRORCAPS= option
SCATTER statement (SGPLOT) 902
STEP statement (SGPLOT) 951
VLINE statement (SGPLOT) 1068

NOEXTEND option
BAND statement (SGPANEL) 119
BAND statement (SGPLOT) 624
LINEPARM statement (SGPLOT) 821

NOEXTEND= option
LINEPARM statement (SGPANEL) 298

NOFILL option
BAND statement (SGPANEL) 117
BAND statement (SGPLOT) 623
BLOCK statement (SGPANEL) 125
BLOCK statement (SGPLOT) 631
BUBBLE statement (SGPANEL) 135
BUBBLE statement (SGPLOT) 644
ELLIPSE statement (SGPLOT) 677
HBAR statement (SGPANEL) 183
HBAR statement (SGPLOT) 696
HBARBASIC statement (SGPANEL) 200
HBARBASIC statement (SGPLOT) 713

HBARPARM statement (SGPANEL) 213
HBARPARM statement (SGPLOT) 727
HBOX statement (SGPANEL) 226
HBOX statement (SGPLOT) 741

HISTOGRAM statement (SGPANEL) 266
HISTOGRAM statement (SGPLOT) 785

POLYGON statement (SGPANEL) 337
POLYGON statement (SGPLOT) 862
VBAR statement (SGPANEL) 457
VBAR statement (SGPLOT) 989
VBARBASIC statement (SGPANEL) 475
VBARBASIC statement (SGPLOT) 1007

VBARPARM statement (SGPANEL) 490
VBARPARM statement (SGPLOT) 1022
VBOX statement (SGPANEL) 504
VBOX statement (SGPLOT) 1036
WATERFALL statement (SGPLOT) 1077

NOFILL= option
HIGHLOW statement (SGPANEL) 255
HIGHLOW statement (SGPLOT) 774

NOGRADLEGEND option
COMPARE statement (SGSCATTER) 1221
<table>
<thead>
<tr>
<th>Statement</th>
<th>SGSCATTER</th>
<th>SGPLOT</th>
<th>SGPANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX</td>
<td>1231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOT</td>
<td>1246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOHEADER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANELBY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOIMAGEMAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODS GRAPHICS</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOLABEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>125</td>
<td>631</td>
<td>104</td>
</tr>
<tr>
<td>COLAXISTABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSET</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td>1040</td>
<td></td>
</tr>
<tr>
<td>NOMARKERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBOX</td>
<td>230</td>
<td>230</td>
<td>104</td>
</tr>
<tr>
<td>HBOX</td>
<td>744</td>
<td>744</td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEDIAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCHAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAXISTABLE</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND</td>
<td>127</td>
<td>624</td>
<td>119</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRINGE</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPARM</td>
<td>298</td>
<td>375</td>
<td>351</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>POLYGON</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>393</td>
<td>393</td>
<td>393</td>
</tr>
<tr>
<td>SCATTER</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEDIAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCHAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAXISTABLE</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND</td>
<td>127</td>
<td>624</td>
<td>119</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRINGE</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPARM</td>
<td>298</td>
<td>375</td>
<td>351</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>POLYGON</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>393</td>
<td>393</td>
<td>393</td>
</tr>
<tr>
<td>SCATTER</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEDIAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCHAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAXISTABLE</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND</td>
<td>127</td>
<td>624</td>
<td>119</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRINGE</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPARM</td>
<td>298</td>
<td>375</td>
<td>351</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>POLYGON</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>393</td>
<td>393</td>
<td>393</td>
</tr>
<tr>
<td>SCATTER</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEDIAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCHAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROWAXISTABLE</td>
<td>589</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XAXISTABLE</td>
<td>1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YAXISTABLE</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMISSINGCLASS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND</td>
<td>127</td>
<td>624</td>
<td>119</td>
</tr>
<tr>
<td>BUBBLE</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRINGE</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINEPARM</td>
<td>298</td>
<td>375</td>
<td>351</td>
</tr>
<tr>
<td>NEEDLE</td>
<td>318</td>
<td>318</td>
<td>318</td>
</tr>
<tr>
<td>POLYGON</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIES</td>
<td>393</td>
<td>393</td>
<td>393</td>
</tr>
<tr>
<td>SCATTER</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOX</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMEDIAN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VECTOR statement (SGPANEL) 518
VECTOR statement (SGPLOT) 1052
NOMISSINGGROUP= option
HIGHLOW statement (SGPANEL) 260
HIGHLOW statement (SGPLOT) 779
NOOPAQUE option
PROC SGPANEL statement 98
PROC SGPLOT statement 610
PROC SGSCATTER statement 1210
NOOUTLIERS option
HBOX statement (SGPANEL) 230
HBOX statement (SGPLOT) 744
VBOX statement (SGPANEL) 508
VBOX statement (SGPLOT) 1040
NOOUTLINE option
BAND statement (SGPANEL) 119
BAND statement (SGPLOT) 624
BLOCK statement (SGPANEL) 127
BLOCK statement (SGPLOT) 633
BUBBLE statement (SGPLOT) 645
ELLIPSE statement (SGPLOT) 678
HBAR statement (SGPANEL) 187
HBAR statement (SGPLOT) 701
HBARBASIC statement (SGPANEL) 203
HBARBASIC statement (SGPLOT) 716
HISTOGRAM statement (SGPANEL) 267
HISTOGRAM statement (SGPLOT) 787
POLYGON statement (SGPANEL) 340
POLYGON statement (SGPLOT) 865
VBAR statement (SGPANEL) 462
VBAR statement (SGPLOT) 994
VBARBASIC statement (SGPANEL) 479
VBARBASIC statement (SGPLOT) 1010
WATERFALL statement (SGPLOT) 1079
NOOOUTLINE= option
BUBBLE statement (SGPANEL) 136
HBARPARM statement (SGPANEL) 217
HBARPARM statement (SGPLOT) 731
HIGHLOW statement (SGPANEL) 260
HIGHLOW statement (SGPLOT) 779
VBARPARM statement (SGPANEL) 494
VBARPARM statement (SGPLOT) 1026
normal density curves 90
normal density function 145
NOSCALE option
ODS GRAPHICS statement 74
NOSCALEMARKERS option
ODS GRAPHICS statement 74
NOSTATLABEL option
COLAXISTABLE statement
(SGPANEL) 563
DOT statement (SGPANEL) 159
DOT statement (SGPLOT) 668
HBAR statement (SGPANEL) 190
HBAR statement (SGPLOT) 704
HLINE statement (SGPANEL) 282
HLINE statement (SGPLOT) 802
ROWAXISTABLE statement
(SGPANEL) 590
VBAR statement (SGPANEL) 466
VBAR statement (SGPLOT) 998
VLINE statement (SGPANEL) 536
VLINE statement (SGPLOT) 1070
XAXISTABLE statement (SGPLOT)
1131
YAXISTABLE statement (SGPLOT)
1183
NOSUBPIXEL 1294
SUGS axis options
ODS GRAPHICS statement 76
PROC SGPANEL statement 98
PROC SGPLOT statement 609
PROC SGSCATTER statement 1209
NOTICES option
HBOX statement (SGPANEL) 230
HBOX statement (SGPLOT) 744
VBOX statement (SGPANEL) 508
VBOX statement (SGPLOT) 1040
NOTIMESPLIT option
COLAXIS statement (SGPANEL) 550
ROWAXIS statement (SGPANEL) 577
X2AXIS statement (SGPLOT) 1115
XAXIS statement (SGPLOT) 1094
YAXIS statement (SGPLOT) 1166
YAXIS statement (SGPLOT) 1146
NOTITLE= option
GRADLEGEND statement (SGPANEL) 172
GRADLEGEND statement (SGPLOT) 685
NOTSORTED option
BY statement 56
NOVALUES option
BLOCK statement (SGPANEL) 127
BLOCK statement (SGPLOT) 633
NOVARNAME option
PANELBY statement (SGPANEL) 104
NOWALL option
COMPARE statement (SGSCATTER) 1221
PANELBY statement (SGPANEL) 104
PLOT statement (SGSCATTER) 1246
PROC SGPLOT statement 609
NOZEROBARS option
HBAR statement (SGPANEL) 187
HBAR statement (SGPLOT) 700
HBARBASIC statement (SGPANEL) 203
HBARBASIC statement (SGPLOT) 716
HBARPARM statement (SGPANEL) 217
HBARPARM statement (SGPLOT) 731
VBAR statement (SGPANEL) 462
VBAR statement (SGPLOT) 993
VBARBASIC statement (SGPANEL) 478
VBARBASIC statement (SGPLOT) 1010
VBARPARM statement (SGPANEL) 494
VBARPARM statement (SGPLOT) 1026
numeric variables
distribution of values (SGPANEL) 139
distribution of values (SGPLOT) 648
NUMSTD= option
DOT statement (SGPANEL) 156
DOT statement (SGPLOT) 666
HBAR statement (SGPANEL) 187
HBAR statement (SGPLOT) 700
HLINE statement (SGPANEL) 280
HLINE statement (SGPLOT) 799
VBAR statement (SGPLOT) 994
VLINE statement (SGPANEL) 533
VLINE statement (SGPLOT) 1068
NXBINS= option
HEATMAP statement (SGPLOT) 754
NYBINS= option
HEATMAP statement (SGPLOT) 754

O

OBSMAX= option
ODS GRAPHICS statement 70
ODS (Output Delivery System)
ODS graphics procedures and 1467
ODS graphics procedures 3, 1467
controlling graph appearance 1287
global statements 55
hardcoded values for graph appearance 1289
ODS and 1467
style element references 1288
subpixel rendering 1294
ODS GRAPHICS statement 61, 1309, 1467
adding data tips or borders 1311
graph size 1310
resetting options 1312
syntax 1309
ODS styles
appearance option values 1287
hardcoded values 1289
ODS graphics procedures options 1287
style element references 1288
style elements for ODS statistical
graphics 1300
STYLEATTRS statement (SGPANEL) 110
STYLEATTRS statement (SGPLOT) 613
OFFSETMAX= option
COLAXIS statement (SGPANEL) 550
ROWAXIS statement (SGPANEL) 577
X2AXIS statement (SGPLOT) 1115
XAXIS statement (SGPLOT) 1094
Y2AXIS statement (SGPLOT) 1166
YAXIS statement (SGPLOT) 1146
OFFSETMIN= option
COLAXIS statement (SGPANEL) 550
ROWAXIS statement (SGPANEL) 577
X2AXIS statement (SGPLOT) 1115
XAXIS statement (SGPLOT) 1094
Y2AXIS statement (SGPLOT) 1167
YAXIS statement (SGPLOT) 1146
ONEPANEL option
PANELBY statement (SGPANEL) 104
OPAQUE
INSET statement (SGPANEL) 285
OPAQUE option
KEYLEGEND statement (SGPLOT) 811
PROC SGPANEL statement 98
PROC SGPLOT statement 610
PROC SGSCATTER statement 1210
OPEN= option
HIGHLOW statement (SGPANEL) 260
HIGHLOW statement (SGPLOT) 779
options
fill attributes 1274
general syntax 1274
line attributes 1272
marker attributes 1274
text attributes 1276
OUTERPAD= option
GRADLEGEND statement (SGPANEL) 172
GRADLEGEND statement (SGPLOT) 685
KEYLEGEND statement (SGPANEL) 291
KEYLEGEND statement (SGPLOT) \hfill 811
OUTLIERATTRS= option
HBOX statement (SGPANEL) \hfill 230
HBOX statement (SGPLOT) \hfill 744
VBOX statement (SGPANEL) \hfill 508
VBOX statement (SGPLOT) \hfill 1040
OUTLINE option
BAND statement (SGPANEL) \hfill 119
BAND statement (SGPLOT) \hfill 624
BLOCK statement (SGPANEL) \hfill 127
BLOCK statement (SGPLOT) \hfill 633
BUBBLE statement (SGPLOT) \hfill 645
ELLIPSE statement (SGPLOT) \hfill 678
HBAR statement (SGPANEL) \hfill 187
HBAR statement (SGPLOT) \hfill 701
HBARBASIC statement (SGPANEL) \hfill 203
HBARBASIC statement (SGPLOT) \hfill 716
HEATMAP statement (SGPANEL) \hfill 239
HEATMAP statement (SGPLOT) \hfill 754
HEATMAPPARM statement (SGPANEL) \hfill 246
HEATMAPPARM statement (SGPLOT) \hfill 765
HISTOGRAM statement (SGPANEL) \hfill 267
HISTOGRAM statement (SGPLOT) \hfill 787
POLYGON statement (SGPANEL) \hfill 340
POLYGON statement (SGPLOT) \hfill 865
VBAR statement (SGPANEL) \hfill 462
VBAR statement (SGPLOT) \hfill 994
VBARBASIC statement (SGPANEL) \hfill 479
VBARBASIC statement (SGPLOT) \hfill 1010
WATERFALL statement (SGPLOT) \hfill 1079
OUTLINE= option
BUBBLE statement (SGPANEL) \hfill 136
HBARPARM statement (SGPANEL) \hfill 217
HBARPARM statement (SGPLOT) \hfill 731
HIGHLOW statement (SGPANEL) \hfill 260
HIGHLOW statement (SGPLOT) \hfill 779
TEXT statement (SGPANEL) \hfill 441
TEXT statement (SGPLOT) \hfill 972
VBARPARM statement (SGPANEL) \hfill 494
VBARPARM statement (SGPLOT) \hfill 1026
OUTLINEATTRS= option
HBAR statement (SGPANEL) \hfill 188
HBAR statement (SGPLOT) \hfill 701
HBARBASIC statement (SGPANEL) \hfill 203
HBARBASIC statement (SGPLOT) \hfill 717
HBARPARM statement (SGPANEL) \hfill 218
HBARPARM statement (SGPLOT) \hfill 732
HEATMAP statement (SGPLOT) \hfill 755
HEATMAPPARM statement (SGPANEL) \hfill 246
HEATMAPPARM statement (SGPLOT) \hfill 765
TEXT statement (SGPANEL) \hfill 441
TEXT statement (SGPLOT) \hfill 972
VBAR statement (SGPANEL) \hfill 462
VBAR statement (SGPLOT) \hfill 994
VBARBASIC statement (SGPANEL) \hfill 479
VBARBASIC statement (SGPLOT) \hfill 1010
VBARPARM statement (SGPANEL) \hfill 494
VBARPARM statement (SGPLOT) \hfill 1026
output size of \hfill 1310
OUTPUTFMT= option
ODS GRAPHICS statement \hfill 70
OVAL function
SG annotation \hfill 1368

**P**

PAD option
PROC SGPLOT statement \hfill 610
PAD= option \hfill 1347
COLAXISTABLE statement (SGPANEL) \hfill 561
ROWAXISTABLE statement (SGPANEL) \hfill 589
TEXT statement (SGPANEL) \hfill 441
TEXT statement (SGPLOT) \hfill 972
XAXISTABLE statement (SGPLOT) \hfill 1130
YAXISTABLE statement (SGPLOT) \hfill 1182
panel layout style \hfill 92
PANELBY statement
SGPANEL procedure \hfill 101
PANELCELLMAX= option
ODS GRAPHICS statement \hfill 70
panels \hfill 90
See also SGPANEL procedure
classification variables for \hfill 101
creating \hfill 8, 91
creating paneled scatter plots 9
dot plots 146
example 90
example, bar charts 597
example, density plots 594
example, histograms 594
example, line charts 598
example, regression curves 595
histograms 263
layout styles 92, 101
layouts 90
legends 170, 1260
line charts, horizontal 268
line charts, vertical 522
parameterized vertical bar charts 483
scatter plots 1201
SGSCATTER procedure 1203
vertical bar charts 449
vertical box plots 499
parameterized lines
about parameterized lines 23
example 23
SGPANEL procedure 294
SGPLOT procedure 817
PATTERN= attribute
for lines 1272
patterns
line patterns 1272
PBSPLINE option
COMPARE statement (SGSCATTER)
1222
PLOT statement (SGSCATTER) 1246
PBSPLINE statement
about penalized B-spline plots 37
example 37
SGPANEL procedure 320
SGPLOT procedure 844
PCTLLEVEL= option
PROC SGPANEL statement 99
PROC SGPLOT statement 610
PCTNDEC= option
PROC SGPANEL statement 100
PROC SGPLOT statement 611
penalized B-spline curves
See penalized B-spline plots
penalized B-spline plots
about 37
example 37
SGPANEL procedure 320
SGPLOT procedure 844
PERCENTILE= option
HBOX statement (SGPANEL) 231
HBOX statement (SGPLOT) 745
VBOX statement (SGPANEL) 508
VBOX statement (SGPLOT) 1040
percentiles
box plots 234, 512, 748, 1044
calculating 749
empirical distribution function 749
weighted average 749
plot area 6
plot axes 538, 566
adding inset inside of 284
adding text box inside of 804
SGPANEL and SGPLOT procedures 1259
PLOT statement
SGSCATTER procedure 1203, 1234,
1251
plot statements
SGSCATTER procedure 1203, 1234,
1251
plot type compatibility
SGPANEL and SGPLOT procedures
1258
plots
See also scatter plots
See also scatter plots (text markers)
See also SGPANEL procedure
See also SGPLOT procedure
adding confidence or prediction ellipse
to 675
block plots (SGPANEL) 122
block plots (SGPLOT) 628
bubble 129, 638
compatible plot types 1258
dot plots (SGPANEL) 146
dot plots (SGPLOT) 655
drop lines (SGPANEL) 161
drop lines (SGPLOT) 670
example, adding statistical limits to a
dot plot 1194
example, bar-line charts 1198
example, combining histograms with
density plots 1195
example, ellipse and scatter plots 1191
example, histograms and density plot
594
example, horizontal box plots 1197
example, line charts 598
example, plotting three series 1189
example, regression plots 1190
example, scatter plot with fit and
confidence 1193
examples (SGPANEL) 90
examples (SGPLOT) 602
fit and confidence plots 1258
fringe plots 166, 678
heat maps (SGPANEL) 242
heat maps (SGPLOT) 235, 750, 760
high-low plots 249, 768
highlighting with bands 114, 619
horizontal box plots (SGPANEL) 221
horizontal box plots (SGPLOT) 735
horizontal line (SGPANEL) 268
horizontal line (SGPLOT) 788
legends on 288, 683, 807
line patterns 1272
marker symbols 1275
needle plots 310, 834
parameterized lines (SGPANEL) 294
parameterized lines (SGPLOT) 817
reference lines (SGPANEL) 347
reference lines (SGPLOT) 874
series plots 378, 905
step plots 410, 941
style attributes 1264
symbol characters 424, 955
symbol images 429, 960
vector plots 513, 1046
vertical box plots (SGPANEL) 499
vertical box plots (SGPLOT) 1031
vertical line (SGPANEL) 522
vertical line (SGPLOT) 1056
POLYCONT function
SG annotation 1373
POLYGON function
SG annotation 1375
polygon plots
SGPLOT procedure 333, 857
POLYGON statement
SGPLOT procedure 333, 857
POLYLINE function
SG annotation 1379
POP option
about 79
ODS GRAPHICS statement 71
POSITION= option
BLOCK statement (SGPLOT) 633
COLAXISTABLE statement
(SGPANEL) 562
GRADLEGEND statement (SGPANEL) 173
GRADLEGEND statement (SGPLOT) 685
INSET statement (SGPANEL) 286
INSET statement (SGPLOT) 806
KEYLEGEND statement (SGPANEL) 291
KEYLEGEND statement (SGPLOT) 812
ROWAXISTABLE statement
(SGPANEL) 589
TEXT statement (SGPANEL) 442
TEXT statement (SGPLOT) 973
XAXISTABLE statement (SGPLOT) 1130
YAXISTABLE statement (SGPLOT) 1182
prediction
equation, adding to regression plots 1190
prediction ellipse 675
about ellipse plots 35
equation, adding to scatter plots 1191
scatter plot matrix with 1201
PROC SGPANEL statement 96
PROC SGPLOT statement 607
PROC SGSCATTER statement 1206
PROPORTIONAL option
PANELBY statement (SGPANEL) 105
PUSH option
about 79
ODS GRAPHICS statement 71

Q
quantiles
empirical distribution function 749
weighted average 749

R
range attribute maps
about 1316
data sets 1332
examples 1338
main tasks 1331
RATTRID= option 1337
RATTRMAP= option 1337
reserved variables 1334
specifying in a procedure 1337
RANGES= option
X2AXIS statement (SGPLOT) 1115
XAXIS statement (SGPLOT) 1094
Y2AXIS statement (SGPLOT) 1167
YAXIS statement (SGPLOT) 1146
RATTRID= option 1337
RATTRMAP= option 1337
PROC SGPANEL statement 101
PROC SGPLOT statement 612
PROC SGSCATTER statement 1211
RECTANGLE function
SG annotation 1383
reference lines
about reference lines 22
equation 22
SGPANEL procedure 347
SGPLOT procedure 874
REFLINE statement
about reference lines 22
equation 22
SGPANEL procedure 347
SGPLOT procedure 874  
REFTICKS= option  
COLAXIS statement (SGPANEL) 550  
COMPARE statement (SGSCATTER) 1223  
PLOT statement (SGSCATTER) 1247  
ROWAXIS statement (SGPANEL) 577  
X2AXIS statement (SGPLOT) 1117  
XAXIS statement (SGPLOT) 1096  
Y2AXIS statement (SGPLOT) 1168  
YAXIS statement (SGPLOT) 1148  
REG option  
COMPARE statement (SGSCATTER) 1223  
PLOT statement (SGSCATTER) 1247  
REG statement  
about regression plots 38  
example 38, 595, 1190  
SGPANEL procedure 351  
SGPLOT procedure 878  
regression curves  
See regression plots  
regression fits  
comparative scatter plots with 1254  
regression plots  
about 38  
example 38  
example, adding prediction and confidence bands 1190  
example, panel 595  
SGPANEL procedure 351  
SGPLOT procedure 878  
RESET option  
ODS GRAPHICS statement 71  
RESET= option  
ODS GRAPHICS statement 71  
RESPONSE= option  
DOT statement (SGPANEL) 157  
DOT statement (SGPLOT) 666  
HBAR statement (SGPANEL) 188  
HBAR statement (SGPLOT) 701  
HBARBASIC statement (SGPANEL) 204  
HBARBASIC statement (SGPLOT) 717  
HLINE statement (SGPANEL) 280  
HLINE statement (SGPLOT) 800  
VBAR statement (SGPANEL) 463  
VBAR statement (SGPLOT) 994  
VBARBASIC statement (SGPANEL) 479  
VBARBASIC statement (SGPLOT) 1011  
VLINE statement (SGPANEL) 534  
VLINE statement (SGPLOT) 1068  
REVERSE option  
COLAXIS statement (SGPANEL) 550  
ROWAXIS statement (SGPANEL) 578  
X2AXIS statement (SGPLOT) 1117  
XAXIS statement (SGPLOT) 1096  
Y2AXIS statement (SGPLOT) 1169  
YAXIS statement (SGPLOT) 1148  
REWIGHT= option  
LOESS statement (SGPANEL) 307  
LOESS statement (SGPLOT) 831  
RGB color codes 1278  
SAS color names 1282  
ROTATE= option  
POLYGON statement (SGPANEL) 340  
POLYGON statement (SGPLOT) 865  
SYMBOLCHAR statement (SGPANEL) 426  
SYMBOLCHAR statement (SGPLOT) 957  
SYMBOLIMAGE statement (SGPANEL) 430  
SYMBOLIMAGE statement (SGPLOT) 962  
TEXT statement (SGPANEL) 442  
TEXT statement (SGPLOT) 973  
ROTATELABEL= option  
POLYGON statement (SGPANEL) 341  
POLYGON statement (SGPLOT) 865  
ROWAXIS statement  
SGPANEL procedure 566  
ROWAXISTABLE statement  
SGPANEL procedure 584  
ROWHEADERPOS= option  
PANELBY statement (SGPANEL) 105  
ROWS= option  
PLOT statement (SGSCATTER) 1248  
ROWS=option  
PANELBY statement (SGPANEL) 106  

S  
sample library 11  
SAS Cloud Analytic Services  
See CAS  
SAS Color Naming Scheme (CNS) 1282  
SAS Studio  
about 4  
SASHELP library 11  
SCALE option  
ODS GRAPHICS statement 74  
SCALE= option  
DENSITY statement (SGPANEL) 143  
DENSITY statement (SGPLOT) 652  
HISTOGRAM statement (SGPANEL) 268  
HISTOGRAM statement (SGPLOT) 787
KEYLEGEND statement (SGPANEL) 292
KEYLEGEND statement (SGPLOT) 812
ODS GRAPHICS statement 74
SYMBOLCHAR statement (SGPANEL) 426
SYMBOLCHAR statement (SGPLOT) 957
SYMBOLIMAGE statement (SGPANEL) 430
SYMBOLIMAGE statement (SGPLOT) 962
SCALEMARKERS= option ODS GRAPHICS statement 74
scaling for DPI 1311
scatter plot matrix 1226
diagonal with histograms and density plots 1201
with grouped data 1250
with prediction ellipse 1201
scatter plots
See also SGSCATTER procedure about scatter plots 26
comparative, with grouped data 1253
comparative, with regression fits and confidence ellipse 1254
comparative, with shared axes 1211
example 26, 1187, 1188, 1191, 1193
paneled 1201
paneled, with multiple independent plots 1234
paneled, with shared axes 1201
SGPANEL procedure 363
SGPLOT procedure 891
with fitted splines 1251
scatter plots (text markers) about text scatter plots 31
example 31
SGPANEL procedure 434
SGPLOT procedure 964
SCATTER statement about scatter plots 26
example 26, 1187, 1188, 1191, 1193
SGPANEL procedure 363
SGPLOT procedure 891
SEGLABEL option HBAR statement (SGPANEL) 188
HBAR statement (SGPLOT) 701
HBARBASIC statement (SGPANEL) 204
HBARBASIC statement (SGPLOT) 717
HBARPARAM statement (SGPANEL) 218
HBARPARAM statement (SGPLOT) 732
VBAR statement (SGPANEL) 463
VBAR statement (SGPLOT) 994
VBARBASIC statement (SGPANEL) 479
VBARBASIC statement (SGPLOT) 1011
HBARPARAM statement (SGPANEL) 495
HBARPARAM statement (SGPLOT) 1027
SEGLABELATTRS= option HBAR statement (SGPANEL) 189
HBAR statement (SGPLOT) 702
HBARBASIC statement (SGPANEL) 204
HBARBASIC statement (SGPLOT) 718
HBARPARAM statement (SGPANEL) 219
HBARPARAM statement (SGPLOT) 733
VBAR statement (SGPANEL) 463
VBAR statement (SGPLOT) 995
VBARBASIC statement (SGPANEL) 480
VBARBASIC statement (SGPLOT) 1012
HBARPARAM statement (SGPANEL) 495
HBARPARAM statement (SGPLOT) 1027
SEGLABELFITPOLICY= option HBAR statement (SGPANEL) 189
HBAR statement (SGPLOT) 702
HBARBASIC statement (SGPANEL) 204
HBARBASIC statement (SGPLOT) 718
HBARPARAM statement (SGPANEL) 219
HBARPARAM statement (SGPLOT) 733
VBAR statement (SGPANEL) 464
VBAR statement (SGPLOT) 995
VBARBASIC statement (SGPANEL) 480
VBARBASIC statement (SGPLOT) 1012
HBARPARAM statement (SGPANEL) 495
HBARPARAM statement (SGPLOT) 1028
SEGLABELFORMAT= option HBAR statement (SGPANEL) 189
HBAR statement (SGPLOT) 702
HBARBASIC statement (SGPANEL) 205
HBAR BASIC statement (SGPLOT) 718
HBAR PARM statement (SGPANEL) 219
HBAR PARM statement (SGPLOT) 733
VBAR statement (SGPANEL) 464
VBAR statement (SGPLOT) 996
VBAR BASIC statement (SGPANEL) 481
VBAR BASIC statement (SGPLOT) 1012
VBAR PARM statement (SGPANEL) 496
VBAR PARM statement (SGPLOT) 1028
SEGPOINTS= option
SPLINE statement (SGPANEL) 406
SPLINE statement (SGPLOT) 936
SEPARATOR option
COLAXISTABLE statement (SGPANEL) 562
ROWAXISTABLE statement (SGPANEL) 589
XAXISTABLE statement (SGPLOT) 1130
YAXISTABLE statement (SGPLOT) 1182
SEPARATOR= option
INSET statement (SGPANEL) 286
series plots
about series plots 28
example 28, 602, 1189, 1193
SGPANEL procedure 378
SGPLOT procedure 905
SERIES statement
about series plots 28
example 28, 602, 1189, 1193
SGPANEL procedure 378
SGPLOT procedure 905
SG annotation
See annotation
SG attribute maps
See attribute maps
SGANNO= option 1347
SGPANEL procedure 90
about 8
automatic differentiation of visual attributes 1264
BAND statement 114
BLOCK statement 122
BUBBLE statement 129
COLAXIS statement 538
compatible plot types 1258
concepts 91
DENSITY statement 139
DOT statement 146
DROPLINE statement 161
example, bar charts 597
example, histograms and density plot 594
example, line charts 598
example, regression curves 595
fill options 1274
FRINGE statement 166
genral syntax for attribute options 1271
GRADLEGEND statement 170
HBAR statement 174
HBAR BASIC statement 193
HBAR PARM statement 207
HBOX statement 221
HEATMAP statement 235
HEATMAPPARM statement 242
HIGHLOW statement 249
HISTOGRAM statement 263
HLINE statement 268
INSET statement 284
KEYLEGEND statement 288
layout styles 92
layouts 90
line options and patterns 1272
LINE PARM statement 294
LOESS statement 299
marker options and symbols 1274
marker symbols 1275
measurement units 1277, 1461
NEEDLE statement 310
panel creation 91
panel legends 1260
PANELBY statement 101
PBSPLINE statement 320
plot axes 1259
PROC SGPANEL statement 96
REFLINE statement 347
REG statement 351
ROWAXIS statement 566
SCATTER statement 363
SERIES statement 378
SPLINE statement 397
STEP statement 410
STYLEATTRS statement 110
SYMBOLCHAR statement 424
SYMBOLIMAGE statement 429
syntax 94
text options 1276
TEXT statement 434
VBAR statement 449
VBAR BASIC statement 468
VBAR PARM statement 483
VBOX statement 499
VECTOR statement 513
VLINE statement 522
SGPLOT procedure
  about 7, 604
  automatic differentiation of visual attributes 1264
BAND statement 619
BLOCK statement 628
BUBBLE statement 638
BY statement with 57
COLAXISTABLE statement 557
compatible plot types 1258
concepts 604
DENSITY statement 648
DOT statement 655
DROPLINE statement 670
ELLIPSE statement 675
example, adding statistical limits to a dot plot 1194
example, bar-line charts 1198
example, clustering scatter plots 1188
example, combining histograms with density plots 1195
example, ellipse and scatter plots 1191
example, grouping scatter plots 1187
example, high-low charts 1199
example, horizontal box plots 1197
example, plotting three series 1189
example, regression plots 1190
example, scatter plot with fit and confidence 1193
examples 602
fill options 1274
FRINGE statement 678
general syntax for attribute options 1271
GRADLEGEND statement 683
HBAR statement 687
HBARPARM statement 720
HBOX statement 234, 511, 735, 748, 1044
HEATMAP statement 750
HEATMAPPARM statement 760
HIGHLOW statement 768
HISTOGRAM statement 782
HLINE statement 788
INSET statement 804
KEYLEGEND statement 807
legends 1260
line options and patterns 1272
LINEPARM statement 817
LOESS statement 823
marker options and symbols 1274
marker symbols 1275
measurement units 1277, 1461
NEEDLE statement 834
PBSPLINE statement 844
plot axes 1259
POLYGON statement 333, 857
PROC SGPLOT statement 607
REFLINE statement 874
REG statement 878
ROWAXISTABLE statement 584
SCATTER statement 891
SERIES statement 905
SPLINE statement 927
STEP statement 941
STYLEATTRS statement 613
SYMBOLCHAR statement 955
SYMBOLIMAGE statement 960
syntax 605
text options 1276
TEXT statement 964
VBAR statement 980
VBARBASIC statement 1000
VBARPARM statement 1014
VBOX statement 1031
VECTOR statement 1046
VLINE statement 1056
WATERFALL statement 1073
X2AXIS statement 1103
XAXIS statement 1082
XAXISTABLE statement 1124
Y2AXIS statement 1155
YAXIS statement 1134
YAXISTABLE statement 1176
SGSCATTER procedure 1201
  about 9
  COMPARE statement 1204, 1211
  concepts 1203
  examples 1250
  fill options 1274
  general syntax for attribute options 1271
  legends 1205, 1260
  line options and patterns 1272
  marker options and symbols 1274
  marker symbols 1275
  MATRIX statement 1204, 1226
  measurement units 1277, 1461
  PLOT statement 1203, 1234
  PROC SGSCATTER statement 1206
  statements for creating panels 1203
  syntax 1205
  text options 1276
SHOW option
  ODS GRAPHICS statement 75
  SHOW= discrete attribute map 1322
  SHOWBINS option
  HISTOGRAM statement (SGPLOT) 787
  SHOWXBINS option
HEATMAP statement (SGPANEL) 239
HEATMAP statement (SGPLOT) 755
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 765
SHOWYBINS option
HEATMAP statement (SGPANEL) 240
HEATMAP statement (SGPLOT) 755
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 765
single-cell graphs 7, 604
size of graphs 1310
SIZE= attribute
for markers 1275
for text 1276
SIZEMAX= option
TEXT statement (SGPANEL) 443
TEXT statement (SGPLOT) 974
SIZEMAXRESPONSE= option
TEXT statement (SGPANEL) 443
TEXT statement (SGPLOT) 974
SIZEMIN= option
TEXT statement (SGPANEL) 444
TEXT statement (SGPLOT) 975
SIZERESPONSE= option
TEXT statement (SGPANEL) 444
TEXT statement (SGPLOT) 975
skins
See data skins
SKIPEMPTYCELLS option
PANELBY statement (SGPANEL) 106
SMOOTH= option
LOESS statement (SGPANEL) 308
LOESS statement (SGPLOT) 832
PBSPLINE statement (SGPANEL) 330
PBSPLINE statement (SGPLOT) 854
SMOOTHCONNECT option
SERIES statement (SGPANEL) 393
SERIES statement (SGPLOT) 921
smoothing graphics 63
SORT= option
PANELBY statement (SGPANEL) 107
SORTORDER= option
KEYLEGEND statement (SGPANEL) 292
KEYLEGEND statement (SGPLOT) 813
SPACING= option
COMPARE statement (SGSCATTER) 1223
PANELBY statement (SGPANEL) 109
PLOT statement (SGSCATTER) 1248
SPARSE option
PANELBY statement (SGPANEL) 109
spline plots
about series plots 29
example 29
SPLINE statement
about spline plots 29
example 29
SGPANEL procedure 397
SGPLOT procedure 927
splines
scatter plots with fitted splines 1251
SPLITCHAR= option
BAND statement (SGPANEL) 119
BAND statement (SGPLOT) 625
BLOCK statement (SGPANEL) 127
BLOCK statement (SGPLOT) 633
BUBBLE statement (SGPANEL) 137
BUBBLE statement (SGPLOT) 645
COLAXIS statement (SGPANEL) 550
COMPARE statement (SGSCATTER) 1224
DENSITY statement (SGPANEL) 143
DENSITY statement (SGPLOT) 652
DOT statement (SGPANEL) 157
DOT statement (SGPLOT) 666
HBOX statement (SGPANEL) 231
HBOX statement (SGPLOT) 745
HLINE statement (SGPANEL) 280
HLINE statement (SGPLOT) 800
LINEPARM statement (SGPANEL) 298
LINEPARM statement (SGPLOT) 821
LOESS statement (SGPANEL) 308
LOESS statement (SGPLOT) 832
MATRIX statement (SGSCATTER) 1231
NEEDLE statement (SGPANEL) 318
NEEDLE statement (SGPLOT) 842
PBSPLINE statement (SGPANEL) 330
PBSPLINE statement (SGPLOT) 854
PLOT statement (SGSCATTER) 1248
POLYGON statement (SGPANEL) 341
POLYGON statement (SGPLOT) 866
REFLINE statement (SGPANEL) 350
REFLINE statement (SGPLOT) 877
REG statement (SGPANEL) 360
REG statement (SGPLOT) 888
ROWAXIS statement (SGPANEL) 578
SCATTER statement (SGPANEL) 375
SCATTER statement (SGPLOT) 903
SERIES statement (SGPANEL) 393
SERIES statement (SGPLOT) 921
SPLINE statement (SGPANEL) 406
SPLINE statement (SGPLOT) 936
STEP statement (SGPANEL) 420
STEP statement (SGPLOT) 952
<table>
<thead>
<tr>
<th>Statement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT statement (SGPANEL)</td>
<td>445</td>
</tr>
<tr>
<td>TEXT statement (SGPLOT)</td>
<td>975</td>
</tr>
<tr>
<td>VBAR statement (SGPANEL)</td>
<td>464</td>
</tr>
<tr>
<td>VBAR statement (SGPLOT)</td>
<td>996</td>
</tr>
<tr>
<td>VBARPARM statement (SGPANEL)</td>
<td>496</td>
</tr>
<tr>
<td>VBARPARM statement (SGPLOT)</td>
<td>1028</td>
</tr>
<tr>
<td>VBOX statement (SGPANEL)</td>
<td>508</td>
</tr>
<tr>
<td>VBOX statement (SGPLOT)</td>
<td>1040</td>
</tr>
<tr>
<td>VBOXPARM statement (SGPANEL)</td>
<td>534</td>
</tr>
<tr>
<td>VBOXPARM statement (SGPLOT)</td>
<td>1069</td>
</tr>
<tr>
<td>VLINE statement (SGPANEL)</td>
<td>518</td>
</tr>
<tr>
<td>VLINE statement (SGPLOT)</td>
<td>1053</td>
</tr>
<tr>
<td>VECTOR statement (SGPANEL)</td>
<td>519</td>
</tr>
<tr>
<td>VECTOR statement (SGPLOT)</td>
<td>1054</td>
</tr>
<tr>
<td>VLINE statement (SGPLOT)</td>
<td>1069</td>
</tr>
<tr>
<td>WATERFALL statement (SGPLOT)</td>
<td>1080</td>
</tr>
<tr>
<td>X2AXIS statement (SGPLOT)</td>
<td>1117</td>
</tr>
<tr>
<td>XAXIS statement (SGPLOT)</td>
<td>1096</td>
</tr>
<tr>
<td>Y2AXIS statement (SGPANEL)</td>
<td>1169</td>
</tr>
<tr>
<td>YAXIS statement (SGPLOT)</td>
<td>1148</td>
</tr>
<tr>
<td>SPLITCHARNODROP option</td>
<td>120</td>
</tr>
<tr>
<td>BAND statement (SGPANEL)</td>
<td>625</td>
</tr>
<tr>
<td>BAND statement (SGPLOT)</td>
<td>127</td>
</tr>
<tr>
<td>BLOCK statement (SGPANEL)</td>
<td>634</td>
</tr>
<tr>
<td>BLOCK statement (SGPLOT)</td>
<td>137</td>
</tr>
<tr>
<td>BUBBLE statement (SGPANEL)</td>
<td>646</td>
</tr>
<tr>
<td>BUBBLE statement (SGPLOT)</td>
<td>551</td>
</tr>
<tr>
<td>COLAXIS statement (SGPANEL)</td>
<td>552</td>
</tr>
<tr>
<td>COMPARE statement (SGSCATTER)</td>
<td>1224</td>
</tr>
<tr>
<td>DENSITY statement (SGPANEL)</td>
<td>143</td>
</tr>
<tr>
<td>DENSITY statement (SGPLOT)</td>
<td>653</td>
</tr>
<tr>
<td>DOT statement (SGPANEL)</td>
<td>157</td>
</tr>
<tr>
<td>DOT statement (SGPLOT)</td>
<td>667</td>
</tr>
<tr>
<td>HBOX statement (SGPANEL)</td>
<td>231</td>
</tr>
<tr>
<td>HBOX statement (SGPLOT)</td>
<td>745</td>
</tr>
<tr>
<td>HLINE statement (SGPANEL)</td>
<td>280</td>
</tr>
<tr>
<td>HLINE statement (SGPLOT)</td>
<td>800</td>
</tr>
<tr>
<td>LINEPARM statement (SGPANEL)</td>
<td>299</td>
</tr>
<tr>
<td>LINEPARM statement (SGPLOT)</td>
<td>822</td>
</tr>
<tr>
<td>LOESS statement (SGPANEL)</td>
<td>308</td>
</tr>
<tr>
<td>LOESS statement (SGPLOT)</td>
<td>832</td>
</tr>
<tr>
<td>MATRIX statement (SGSCATTER)</td>
<td>1232</td>
</tr>
<tr>
<td>NEEDLE statement (SGPANEL)</td>
<td>318</td>
</tr>
<tr>
<td>NEEDLE statement (SGPLOT)</td>
<td>842</td>
</tr>
<tr>
<td>PBSPLINE statement (SGPANEL)</td>
<td>331</td>
</tr>
<tr>
<td>PBSPLINE statement (SGPLOT)</td>
<td>855</td>
</tr>
<tr>
<td>PLOT statement (SGSCATTER)</td>
<td>1249</td>
</tr>
<tr>
<td>POLYGON statement (SGPANEL)</td>
<td>341</td>
</tr>
<tr>
<td>POLYGON statement (SGPLOT)</td>
<td>866</td>
</tr>
<tr>
<td>REFLINE statement (SGPANEL)</td>
<td>351</td>
</tr>
<tr>
<td>REFLINE statement (SGPLOT)</td>
<td>878</td>
</tr>
<tr>
<td>REG statement (SGPANEL)</td>
<td>361</td>
</tr>
<tr>
<td>REG statement (SGPLOT)</td>
<td>889</td>
</tr>
<tr>
<td>ROWAXIS statement (SGPANEL)</td>
<td>578</td>
</tr>
<tr>
<td>SCATTER statement (SGPANEL)</td>
<td>375</td>
</tr>
<tr>
<td>SCATTER statement (SGPLOT)</td>
<td>903</td>
</tr>
<tr>
<td>SERIES statement (SGPANEL)</td>
<td>394</td>
</tr>
<tr>
<td>SERIES statement (SGPLOT)</td>
<td>922</td>
</tr>
<tr>
<td>SPLINE statement (SGPANEL)</td>
<td>406</td>
</tr>
<tr>
<td>SPLINE statement (SGPLOT)</td>
<td>937</td>
</tr>
<tr>
<td>STEP statement (SGPANEL)</td>
<td>421</td>
</tr>
<tr>
<td>STEP statement (SGPLOT)</td>
<td>952</td>
</tr>
<tr>
<td>TEXT statement (SGPANEL)</td>
<td>445</td>
</tr>
<tr>
<td>TEXT statement (SGPLOT)</td>
<td>976</td>
</tr>
<tr>
<td>VBAR statement (SGPANEL)</td>
<td>465</td>
</tr>
<tr>
<td>VBAR statement (SGPLOT)</td>
<td>996</td>
</tr>
<tr>
<td>VBARPARM statement (SGPANEL)</td>
<td>497</td>
</tr>
<tr>
<td>VBARPARM statement (SGPLOT)</td>
<td>1029</td>
</tr>
<tr>
<td>VBOX statement (SGPANEL)</td>
<td>509</td>
</tr>
<tr>
<td>VBOX statement (SGPLOT)</td>
<td>1041</td>
</tr>
<tr>
<td>VECTOR statement (SGPANEL)</td>
<td>519</td>
</tr>
<tr>
<td>VECTOR statement (SGPLOT)</td>
<td>1053</td>
</tr>
<tr>
<td>VLINE statement (SGPANEL)</td>
<td>534</td>
</tr>
<tr>
<td>VLINE statement (SGPLOT)</td>
<td>1069</td>
</tr>
<tr>
<td>WATERFALL statement (SGPLOT)</td>
<td>1080</td>
</tr>
<tr>
<td>X2AXIS statement (SGPLOT)</td>
<td>1118</td>
</tr>
<tr>
<td>XAXIS statement (SGPLOT)</td>
<td>1097</td>
</tr>
<tr>
<td>Y2AXIS statement (SGPLOT)</td>
<td>1118</td>
</tr>
<tr>
<td>YAXIS statement (SGPLOT)</td>
<td>1149</td>
</tr>
<tr>
<td>SPLITJUSTIFY= option</td>
<td>120</td>
</tr>
<tr>
<td>BAND statement (SGPANEL)</td>
<td>625</td>
</tr>
<tr>
<td>BUBBLE statement (SGPANEL)</td>
<td>138</td>
</tr>
<tr>
<td>BUBBLE statement (SGPLOT)</td>
<td>646</td>
</tr>
<tr>
<td>COLAXIS statement (SGPANEL)</td>
<td>551</td>
</tr>
<tr>
<td>COMPARE statement (SGSCATTER)</td>
<td>1224</td>
</tr>
<tr>
<td>DENSITY statement (SGPANEL)</td>
<td>144</td>
</tr>
<tr>
<td>DENSITY statement (SGPLOT)</td>
<td>653</td>
</tr>
<tr>
<td>DOT statement (SGPANEL)</td>
<td>158</td>
</tr>
<tr>
<td>DOT statement (SGPLOT)</td>
<td>667</td>
</tr>
<tr>
<td>HBOX statement (SGPANEL)</td>
<td>231</td>
</tr>
<tr>
<td>HBOX statement (SGPLOT)</td>
<td>746</td>
</tr>
<tr>
<td>HLINE statement (SGPANEL)</td>
<td>281</td>
</tr>
<tr>
<td>HLINE statement (SGPLOT)</td>
<td>800</td>
</tr>
<tr>
<td>LINEPARM statement (SGPANEL)</td>
<td>299</td>
</tr>
<tr>
<td>LINEPARM statement (SGPLOT)</td>
<td>822</td>
</tr>
<tr>
<td>LOESS statement (SGPANEL)</td>
<td>309</td>
</tr>
<tr>
<td>LOESS statement (SGPLOT)</td>
<td>832</td>
</tr>
<tr>
<td>MATRIX statement (SGSCATTER)</td>
<td>1232</td>
</tr>
<tr>
<td>NEEDLE statement (SGPANEL)</td>
<td>319</td>
</tr>
<tr>
<td>NEEDLE statement (SGPLOT)</td>
<td>842</td>
</tr>
<tr>
<td>PBSPLINE statement (SGPANEL)</td>
<td>331</td>
</tr>
<tr>
<td>PBSPLINE statement (SGPLOT)</td>
<td>855</td>
</tr>
</tbody>
</table>
PLOT statement (SGSCATTER) 1249
POLYGON statement (SGPANEL) 342
POLYGON statement (SGPLOT) 866
REFLINE statement (SGPANEL) 351
REFLINE statement (SGPLOT) 878
REG statement (SGPANEL) 361
REG statement (SGPLOT) 889
ROWAXIS statement (SGPANEL) 578
SCATTER statement (SGPANEL) 375
SCATTER statement (SGPLOT) 903
SERIES statement (SGPANEL) 394
SERIES statement (SGPLOT) 922
SPLINE statement (SGPANEL) 407
SPLINE statement (SGPLOT) 937
STEP statement (SGPANEL) 421
STEP statement (SGPLOT) 952
TEXT statement (SGPANEL) 445
TEXT statement (SGPLOT) 976
VBOX statement (SGPANEL) 509
VBOX statement (SGPLOT) 1041
VECTOR statement (SGPANEL) 519
VECTOR statement (SGPLOT) 1053
VLINE statement (SGPANEL) 534
VLINE statement (SGPLOT) 1069
WATERFALL statement (SGPLOT) 1080
X2AXIS statement (SGPLOT) 1118
XAXIS statement (SGPLOT) 1149
Y2AXIS statement (SGPLOT) 1169
YAXIS statement (SGPLOT) 1194
SPLITPOLICY= option
TEXT statement (SGPANEL) 445
TEXT statement (SGPLOT) 976
SPLITWIDTH= option
TEXT statement (SGPANEL) 446
TEXT statement (SGPLOT) 977
SPREAD option
HBOX statement (SGPANEL) 232
HBOX statement (SGPLOT) 746
VBOX statement (SGPANEL) 509
VBOX statement (SGPLOT) 1041
STACKDEPTHMAX= option
ODS GRAPHICS statement 76
START= option
MATRIX statement (SGSCATTER) 1232
PANELBY statement (SGSCATTER) 109
STAT= option
COLAXISTABLE statement (SGPANEL) 562
DOT statement (SGPANEL) 158
DOT statement (SGPLOT) 668
HBAR statement (SGPANEL) 189
HBAR statement (SGPLOT) 702
HBARBASIC statement (SGPANEL) 205
HBARBASIC statement (SGPLOT) 718
HLINE statement (SGPANEL) 281
HLINE statement (SGPLOT) 801
ROWAXISTABLE statement (SGPANEL) 589
VBAR statement (SGPANEL) 465
VBAR statement (SGPLOT) 996
VBARBASIC statement (SGPANEL) 481
VBARBASIC statement (SGPLOT) 1012
VLINE statement (SGPANEL) 535
VLINE statement (SGPLOT) 1069
WATERFALL statement (SGPLOT) 1080
XAXISTABLE statement (SGPLOT) 1130, 1182
STATIC option
ODS GRAPHICS statement 70
statistical limits
example, adding to dot plots 1194
STATLABEL option
COLAXISTABLE statement (SGPANEL) 563
DOT statement (SGPANEL) 159
DOT statement (SGPLOT) 668
HBAR statement (SGPANEL) 190
HBAR statement (SGPLOT) 704
HLINE statement (SGPANEL) 282
HLINE statement (SGPLOT) 802
ROWAXISTABLE statement (SGPANEL) 590
VBAR statement (SGPANEL) 466
VBAR statement (SGPLOT) 998
VLINE statement (SGPANEL) 536
VLINE statement (SGPLOT) 1070
XAXISTABLE statement (SGPLOT) 1131
YAXISTABLE statement (SGPLOT) 1183
step plots
about step plots 30
example 30
SGPANEL procedure 410
SGPLOT procedure 941
STEP statement
about step plots 30
example 30
SGPANEL procedure 410
SGPLOT procedure 941
STRIP= option
TEXT statement (SGPANEL) 446
TEXT statement (SGPLOT) 977
style attributes
automatic differentiation of 1264
SGPANEL and SGPLOT procedures
1264
style element 1300
style element attribute 1300
style reference
fill options 1274
line options and patterns 1272
marker options 1274
specifying a style element 1288, 1300
specifying a style element attribute 1300
text options 1276
STYLE= attribute
for text 1277
STYLEATTRS statement
SGPANEL procedure 110
SGPLOT procedure 613
SUBPIXEL 1294
SUBPIXEL option
ODS GRAPHICS statement 76
PROC SGPANEL statement 98
PROC SGPLOT statement 609
PROC SGSCATTER statement 1209
symbol characters
SGPANEL procedure 424
SGPLOT procedure 955
symbol images
SGPANEL procedure 429
SGPLOT procedure 960
SYMBOL= attribute
for markers 1275
SYMBOLCHAR statement
SGPANEL procedure 424
SGPLOT procedure 955
SYMBOLIMAGE statement
SGPANEL procedure 429
SGPLOT procedure 960
symbols, marker 1274

T
text
special characters 1465
text attributes
See text options
text box
about text insets 32
adding, inside panels 284
adding, inside plot axes 804
example 32
TEXT function
SG annotation 1388
text options 1276
color 1276
font family 1276
size 1276
style 1277
weight 1277
TEXT statement
about text scatter plots 31
example 31
SGPANEL procedure 434
SGPLOT procedure 964
text strings
substituting BY line values in 85
TEXT= argument
TEXT statement (SGPANEL) 436
TEXT statement (SGPLOT) 967
TEXTATTRS= option
INSET statement (SGPANEL) 286
INSET statement (SGPLOT) 806
SYMBOLCHAR statement
(SGPANEL) 426
SYMBOLCHAR statement (SGPLOT) 957
TEXT statement (SGPANEL) 446
TEXT statement (SGPLOT) 977
TEXTCOLOR=
discrete attribute map 1322
TEXTCONT function
SG annotation 1394
TEXTFAMILY=
discrete attribute map 1323
TEXTGROUP= option
COLAXISTABLE statement
(SGPANEL) 563
ROWAXISTABLE statement
(SGPANEL) 591
XAXISTABLE statement (SGPLOT) 1132
YAXISTABLE statement (SGPLOT) 1184
TEXTGROUPID= option
COLAXISTABLE statement
(SGPANEL) 563
ROWAXISTABLE statement
(SGPANEL) 591
XAXISTABLE statement (SGPLOT) 1132
YAXISTABLE statement (SGPLOT) 1184
TEXTSTYLE=
discrete attribute map 1323
TEXTSTYLEELEMENT=
discrete attribute map 1323
TEXTWEIGHT=
discrete attribute map 1323
THICKMAX= option
SERIES statement (SGPANEL) 394
SERIES statement (SGPLOT) 922
SPLINE statement (SGPANEL) 407
SPLINE statement (SGPLOT) 937
STEP statement (SGPANEL) 421
STEP statement (SGPLOT) 953
VECTOR statement (SGPANEL) 519
VECTOR statement (SGPLOT) 1053
THICKMAXRESP= option
SERIES statement (SGPANEL) 394
SERIES statement (SGPLOT) 923
SPLINE statement (SGPANEL) 407
SPLINE statement (SGPLOT) 938
STEP statement (SGPANEL) 422
STEP statement (SGPLOT) 953
VECTOR statement (SGPANEL) 520
VECTOR statement (SGPLOT) 1053
THICKNESS= attribute
for lines 1273
THICKRESP= option
SERIES statement (SGPANEL) 395
SERIES statement (SGPLOT) 923
SPLINE statement (SGPANEL) 407
SPLINE statement (SGPLOT) 938
STEP statement (SGPANEL) 422
STEP statement (SGPLOT) 953
VECTOR statement (SGPANEL) 520
VECTOR statement (SGPLOT) 1054
THRESHOLDMAX= option
COLAXIS statement (SGPANEL) 551
ROWAXIS statement (SGPANEL) 579
X2AXIS statement (SGPLOT) 1118
XAXIS statement (SGPLOT) 1097
Y2AXIS statement (SGPLOT) 1169
YAXIS statement (SGPLOT) 1149
THRESHOLDMIN= option
COLAXIS statement (SGPANEL) 552
ROWAXIS statement (SGPANEL) 579
X2AXIS statement (SGPLOT) 1118
XAXIS statement (SGPLOT) 1097
Y2AXIS statement (SGPLOT) 1170
YAXIS statement (SGPLOT) 1149
TICKSTYLE= option
X2AXIS statement (SGPLOT) 1119
XAXIS statement (SGPLOT) 1098
Y2AXIS statement (SGPLOT) 1170
YAXIS statement (SGPLOT) 1149
TICKVALUEFORMAT= option
See VALUESFORMAT= option
time axes 1260
TIP= option
BAND statement (SGPANEL) 120
BAND statement (SGPLOT) 625
BUBBLE statement (SGPANEL) 138
BUBBLE statement (SGPLOT) 646
COMPARE statement (SGSCATTER) 1224
DOT statement (SGPANEL) 159
DOT statement (SGPLOT) 668
FRINGE statement (SGPANEL) 169
FRINGE statement (SGPLOT) 681
HBAR statement (SGPANEL) 191
HBAR statement (SGPLOT) 704
HBARBASIC statement (SGPANEL) 205
HBARBASIC statement (SGPLOT) 719
HBARPARM statement (SGPANEL) 219
HBARPARM statement (SGPLOT) 733
HBOX statement (SGPANEL) 232
HBOX statement (SGPLOT) 746
HEATMAP statement (SGPANEL) 240
HEATMAP statement (SGPLOT) 755
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 766
HIGHLIGHT statement (SGPANEL) 261
HIGHLIGHT statement (SGPLOT) 780
HLINE statement (SGPANEL) 282
HLINE statement (SGPLOT) 802
LOESS statement (SGPANEL) 309
LOESS statement (SGPLOT) 833
MATRIX statement (SGSCATTER) 1232
NEEDLE statement (SGPANEL) 319
NEEDLE statement (SGPLOT) 843
PBSPLINE statement (SGPANEL) 331
PBSPLINE statement (SGPLOT) 855
PLOT statement (SGSCATTER) 1249
POLYGON statement (SGPANEL) 342
POLYGON statement (SGPLOT) 867
REG statement (SGPANEL) 361
REG statement (SGPLOT) 889
SCATTER statement (SGPANEL) 376
SCATTER statement (SGPLOT) 903
SERIES statement (SGPANEL) 395
SERIES statement (SGPLOT) 923
SPLINE statement (SGPANEL) 408
SPLINE statement (SGPLOT) 938
STEP statement (SGPANEL) 422
STEP statement (SGPLOT) 954
TEXT statement (SGPANEL) 446
TEXT statement (SGPLOT) 977
VBAR statement (SGPANEL) 466
VBAR statement (SGPLOT) 998
VBARBASIC statement (SGPANEL) 481
VBARBASIC statement (SGPLOT) 1013
VBARPARM statement (SGPANEL) 497
VBARPARM statement (SGPLOT) 1029
VBOX statement (SGPANEL) 509
VBOX statement (SGPLOT) 1041
VECTOR statement (SGPLOT) 520
VECTOR statement (SGPANEL) 1054
VLINE statement (SGPANEL) 536
VLINE statement (SGPLOT) 1070
WATERFALL statement (SGPLOT) 1080
TIPFORMAT= option
BAND statement (SGPANEL) 120
BAND statement (SGPLOT) 626
BUBBLE statement (SGPANEL) 138
BUBBLE statement (SGPLOT) 647
COMPARE statement (SGSCATTER) 1225
DOT statement (SGPANEL) 160
DOT statement (SGPLOT) 669
FRINGE statement (SGPANEL) 169
FRINGE statement (SGPLOT) 682
HBAR statement (SGPANEL) 191
HBAR statement (SGPLOT) 704
HBARBASIC statement (SGPANEL) 206
HBARBASIC statement (SGPLOT) 719
HBARPARM statement (SGPANEL) 220
HBARPARM statement (SGPLOT) 734
HBOX statement (SGPANEL) 232
HBOX statement (SGPLOT) 746
HEATMAP statement (SGPANEL) 240
HEATMAP statement (SGPLOT) 756
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 766
HIGHLOW statement (SGPANEL) 261
HIGHLOW statement (SGPLOT) 780
HLINE statement (SGPANEL) 283
HLINE statement (SGPLOT) 803
LOESS statement (SGPANEL) 309
LOESS statement (SGPLOT) 833
MATRIX statement (SGSCATTER) 1233
NEEDLE statement (SGPANEL) 319
NEEDLE statement (SGPLOT) 843
PBSPLINE statement (SGPANEL) 331
PBSPLINE statement (SGPLOT) 856
PLOT statement (SGSCATTER) 1249
POLYGON statement (SGPANEL) 342
POLYGON statement (SGPLOT) 867
REG statement (SGPANEL) 362
REG statement (SGPLOT) 889
SCATTER statement (SGPANEL) 376
SCATTER statement (SGPLOT) 904
SERIES statement (SGPANEL) 395
SERIES statement (SGPLOT) 924
SPLINE statement (SGPANEL) 408
SPLINE statement (SGPLOT) 939
STEP statement (SGPANEL) 423
STEP statement (SGPLOT) 954
TEXT statement (SGPANEL) 447
TEXT statement (SGPLOT) 978
VBAR statement (SGPANEL) 467
VBAR statement (SGPLOT) 998
VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1013
VBARPARM statement (SGPANEL) 497
VBARPARM statement (SGPLOT) 1029
VBOX statement (SGPANEL) 510
VBOX statement (SGPLOT) 1042
VECTOR statement (SGPANEL) 521
VECTOR statement (SGPLOT) 1054
VLINE statement (SGPANEL) 537
VLINE statement (SGPLOT) 1071
WATERFALL statement (SGPLOT) 1081
TIPLABEL= option
BAND statement (SGPANEL) 121
BAND statement (SGPLOT) 626
BUBBLE statement (SGPANEL) 139
BUBBLE statement (SGPLOT) 647
COMPARE statement (SGSCATTER) 1225
DOT statement (SGPANEL) 160
DOT statement (SGPLOT) 669
FRINGE statement (SGPANEL) 169
FRINGE statement (SGPLOT) 682
HBAR statement (SGPANEL) 192
HBAR statement (SGPLOT) 705
HBARBASIC statement (SGPANEL) 206
HBARBASIC statement (SGPLOT) 719
HBARPARM statement (SGPANEL) 220
HBARPARM statement (SGPLOT) 734
HBOX statement (SGPANEL) 232
HBOX statement (SGPLOT) 746
HEATMAP statement (SGPANEL) 240
HEATMAP statement (SGPLOT) 756
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 766
HIGHLOW statement (SGPANEL) 261
HIGHLOW statement (SGPLOT) 780
HLINE statement (SGPANEL) 283
HLINE statement (SGPLOT) 803
LOESS statement (SGPANEL) 309
LOESS statement (SGPLOT) 833
MATRIX statement (SGSCATTER) 1233
NEEDLE statement (SGPANEL) 319
NEEDLE statement (SGPLOT) 843
PBSPLINE statement (SGPANEL) 331
PBSPLINE statement (SGPLOT) 856
PLOT statement (SGSCATTER) 1249
POLYGON statement (SGPANEL) 342
POLYGON statement (SGPLOT) 867
REG statement (SGPANEL) 362
REG statement (SGPLOT) 889
SCATTER statement (SGPANEL) 376
SCATTER statement (SGPLOT) 904
SERIES statement (SGPANEL) 395
SERIES statement (SGPLOT) 924
SPLINE statement (SGPANEL) 408
SPLINE statement (SGPLOT) 939
STEP statement (SGPANEL) 423
STEP statement (SGPLOT) 954
TEXT statement (SGPANEL) 447
TEXT statement (SGPLOT) 978
VBAR statement (SGPANEL) 467
VBAR statement (SGPLOT) 998
VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1013
VBARPARM statement (SGPANEL) 497
VBARPARM statement (SGPLOT) 1029
VBOX statement (SGPANEL) 510
VBOX statement (SGPLOT) 1042
VECTOR statement (SGPANEL) 521
VECTOR statement (SGPLOT) 1054
VLINE statement (SGPANEL) 537
VLINE statement (SGPLOT) 1071
WATERFALL statement (SGPLOT) 1081
TIPLABEL= option
BAND statement (SGPANEL) 121
BAND statement (SGPLOT) 626
BUBBLE statement (SGPANEL) 139
BUBBLE statement (SGPLOT) 647
COMPARE statement (SGSCATTER) 1225
DOT statement (SGPANEL) 160
DOT statement (SGPLOT) 669
FRINGE statement (SGPANEL) 169
FRINGE statement (SGPLOT) 682
HBAR statement (SGPANEL) 191
HBAR statement (SGPLOT) 704
HBARBASIC statement (SGPANEL) 206
HBARBASIC statement (SGPLOT) 719
HBARPARM statement (SGPANEL) 220
HBARPARM statement (SGPLOT) 734
HBOX statement (SGPANEL) 232
HBOX statement (SGPLOT) 746
HEATMAP statement (SGPANEL) 240
HEATMAP statement (SGPLOT) 756
HEATMAPPARM statement (SGPANEL) 247
HEATMAPPARM statement (SGPLOT) 766
HIGHLOW statement (SGPANEL) 261
HIGHLOW statement (SGPLOT) 780
HLINE statement (SGPANEL) 283
HLINE statement (SGPLOT) 803
LOESS statement (SGPANEL) 309
LOESS statement (SGPLOT) 833
MATRIX statement (SGSCATTER) 1233
NEEDLE statement (SGPANEL) 319
NEEDLE statement (SGPLOT) 843
PBSPLINE statement (SGPANEL) 331
PBSPLINE statement (SGPLOT) 856
PLOT statement (SGSCATTER) 1249
POLYGON statement (SGPANEL) 342
POLYGON statement (SGPLOT) 867
REG statement (SGPANEL) 362
REG statement (SGPLOT) 889
SCATTER statement (SGPANEL) 376
SCATTER statement (SGPLOT) 904
SERIES statement (SGPANEL) 395
SERIES statement (SGPLOT) 924
SPLINE statement (SGPANEL) 408
SPLINE statement (SGPLOT) 939
STEP statement (SGPANEL) 423
STEP statement (SGPLOT) 954
TEXT statement (SGPANEL) 447
TEXT statement (SGPLOT) 978
VBAR statement (SGPANEL) 467
VBAR statement (SGPLOT) 998
VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1013
VBARPARM statement (SGPANEL) 497
VBARPARM statement (SGPLOT) 1029
VBOX statement (SGPANEL) 510
VBOX statement (SGPLOT) 1042
VECTOR statement (SGPANEL) 521
VECTOR statement (SGPLOT) 1054
VLINE statement (SGPANEL) 537
VLINE statement (SGPLOT) 1071
WATERFALL statement (SGPLOT) 1081
Index 1515
LOESS statement (SGPANEL) 310
LOESS statement (SGPLOT) 833
MATRIX statement (SGSCATTER) 1233
NEEDLE statement (SGPANEL) 320
NEEDLE statement (SGPLOT) 843
PBSPLINE statement (SGPANEL) 332
PBSPLINE statement (SGPLOT) 856
PLOT statement (SGSCATTER) 1250
POLYGON statement (SGPANEL) 343
POLYGON statement (SGPLOT) 867
REG statement (SGPANEL) 362
REG statement (SGPLOT) 890
SCATTER statement (SGPANEL) 376
SCATTER statement (SGPLOT) 904
SERIES statement (SGPANEL) 396
SERIES statement (SGPLOT) 924
SPLINE statement (SGPANEL) 408
SPLINE statement (SGPLOT) 939
STEP statement (SGPANEL) 423
STEP statement (SGPLOT) 954
TEXT statement (SGPANEL) 447
TEXT statement (SGPLOT) 978
VBAR statement (SGPANEL) 467
VBAR statement (SGPLOT) 999
VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1013
VBARPARM statement (SGPANEL) 498
VBARPARM statement (SGPLOT) 1030
VBOX statement (SGPANEL) 510
VBOX statement (SGPLOT) 1042
VECTOR statement (SGPANEL) 521
VECTOR statement (SGPLOT) 1055
VLINE statement (SGPANEL) 537
VLINE statement (SGPLOT) 1071
WATERFALL statement (SGPLOT) 1081

TIPMAX= option
ODS GRAPHICS statement 77
TITLE statement 80, 83
BY statement with 57
measurement units 86
substituting BY line values in a text string 85

TITLE= option
COLAXISTABLE statement (SGPANEL) 563
GRADLEGEND statement (SGPANEL) 173
GRADLEGEND statement (SGPLOT) 686
INSET statement (SGPANEL) 286
INSET statement (SGPLOT) 807
KEYLEGEND statement (SGPANEL) 292
KEYLEGEND statement (SGPLOT) 813
ROWAXISTABLE statement (SGPANEL) 591
XAXISTABLE statement (SGPLOT) 1132
YAXISTABLE statement (SGPLOT) 1184
TITLEATTRS= option
COLAXISTABLE statement (SGPANEL) 564
GRADLEGEND statement (SGPANEL) 173
GRADLEGEND statement (SGPLOT) 686
INSET statement (SGPANEL) 286
INSET statement (SGPLOT) 807
KEYLEGEND statement (SGPANEL) 292
KEYLEGEND statement (SGPLOT) 813
ROWAXISTABLE statement (SGPANEL) 591
XAXISTABLE statement (SGPLOT) 1132
YAXISTABLE statement (SGPLOT) 1184
TITLEALIGN= option
ROWAXISTABLE statement (SGPANEL) 592
YAXISTABLE statement (SGPLOT) 1185
TITLEJUSTIFY= option
ROWAXISTABLE statement (SGPANEL) 592
YAXISTABLE statement (SGPLOT) 1185
titles 83
TMPLOUT= option
PROC SGPLOT statement 612
PROC SGSCATTER statement 1211
TRANSPARENCY= attribute for fills 1274
TRANSPARENCY= option
BAND statement (SGPANEL) 121
BAND statement (SGPLOT) 627
BUBBLE statement (SGPANEL) 139
BUBBLE statement (SGPLOT) 647
COMPARE statement (SGSCATTER) 1226
DENSITY statement (SGPANEL) 144
DENSITY statement (SGPLOT) 653
DOT statement (SGPANEL) 160
DOT statement (SGPLOT) 670
DROPLINE statement (SGPANEL) 164
DROPLINE statement (SGPLOT) 674
ELLIPSE statement (SGPLOT) 678
FRINGE statement (SGPANEL) 170
FRINGE statement (SGPLOT) 682
HBAR statement (SGPANEL) 128, 192
HBAR statement (SGPLOT) 634, 705
HBARBASIC statement (SGPANEL) 206
HBARBASIC statement (SGPLOT) 720
HBARPARM statement (SGPANEL) 221
HBARPARM statement (SGPLOT) 734
HBOX statement (SGPANEL) 233
HBOX statement (SGPLOT) 747
HEATMAP statement (SGPANEL) 241
HEATMAP statement (SGPLOT) 757
HEATMAPPARM statement (SGPANEL) 248
HEATMAPPARM statement (SGPLOT) 767
HIGHLOW statement (SGPANEL) 262
HIGHLOW statement (SGPLOT) 781
HISTOGRAM statement (SGPANEL) 268
HISTOGRAM statement (SGPLOT) 787
HLINE statement (SGPANEL) 283
HLINE statement (SGPLOT) 803
LINEPARM statement (SGPANEL) 299
LINEPARM statement (SGPLOT) 822
LOESS statement (SGPANEL) 310
LOESS statement (SGPLOT) 834
MATRIX statement (SGSCATTER) 1234
NEEDLE statement (SGPANEL) 320
NEEDLE statement (SGPLOT) 844
PBSPLINE statement (SGPANEL) 332
PBSPLINE statement (SGPLOT) 857
PLOT statement (SGSCATTER) 1250
POLYGON statement (SGPANEL) 343
POLYGON statement (SGPLOT) 868
REFLINE statement (SGPANEL) 351
REFLINE statement (SGPLOT) 878
REG statement (SGPANEL) 362
REG statement (SGPLOT) 890
SCATTER statement (SGPANEL) 377
SCATTER statement (SGPLOT) 905
SERIES statement (SGPANEL) 396
SERIES statement (SGPLOT) 924
SPLINE statement (SGPANEL) 409
SPLINE statement (SGPLOT) 939
STEP statement (SGPANEL) 424
STEP statement (SGPLOT) 955
TEXT statement (SGPANEL) 448
TEXT statement (SGPLOT) 979
VBAR statement (SGPANEL) 468
VBAR statement (SGPLOT) 999
VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1014
VBARPARM statement (SGPANEL) 498
VBARPARM statement (SGPLOT) 1030
VBOX statement (SGPANEL) 511
VBOX statement (SGPLOT) 1043
VECTOR statement (SGPANEL) 521
VECTOR statement (SGPLOT) 1055
VLINE statement (SGPANEL) 537
VLINE statement (SGPLOT) 1072
WATERFALL statement (SGPLOT) 1082
TYPE= option
BAND statement (SGPANEL) 121
BAND statement (SGPLOT) 627
COLAXIS statement (SGPANEL) 552
DENSITY statement (SGPANEL) 144
DENSITY statement (SGPLOT) 653
ELLIPSE statement (SGPLOT) 678
HIGHLOW statement (SGPANEL) 262
HIGHLOW statement (SGPLOT) 781
KEYLEGEND statement (SGPANEL) 293
KEYLEGEND statement (SGPLOT) 814
ROWAXIS statement (SGPANEL) 579
X2AXIS statement (SGPLOT) 1119
XAXIS statement (SGPLOT) 1098
Y2AXIS statement (SGPLOT) 1171
YAXIS statement (SGPLOT) 1150

U
Unicode values
greek letters, lower case 1463
greek letters, upper case 1464
hexadecimal values 1463
keywords 1463
special characters 1465
UNIFORM= option
PROC SGPLOT statement 612
UNISCALE= option
PANELBY statement (SGPANEL) 109
PLOT statement (SGSCATTER) 1250
UPPER= argument
BAND statement (SGSCATTER) 116
BAND statement (SGPLOT) 621
URL drill down 1311
URL= option

BBUBBLE statement (SGPANEL) 139
BBUBBLE statement (SGPLOT) 648

DOT statement (SGPANEL) 161
HBAR statement (SGPANEL) 192
HBAR statement (SGPLOT) 705
HBARBASIC statement (SGPANEL) 207
HBARBASIC statement (SGPLOT) 720
HBARPARM statement (SGPANEL) 221
HBARPARM statement (SGPLOT) 735

HEATMAP statement (SGPANEL) 248
HEATMAP statement (SGPLOT) 767

HIGHLOW statement (SGPANEL) 262
HIGHLOW statement (SGPLOT) 781

NEEDLE statement (SGPANEL) 320
NEEDLE statement (SGPLOT) 844

POLYGON statement (SGPLOT) 343, 868

SCATTER statement (SGPANEL) 377
SCATTER statement (SGPLOT) 284, 537, 670, 803, 905, 1072

SERIES statement (SGPANEL) 396
SERIES statement (SGPLOT) 924

SPLINE statement (SGPANEL) 409
SPLINE statement (SGPLOT) 940

STEP statement (SGPANEL) 424
STEP statement (SGPLOT) 955

TEXT statement (SGPANEL) 448
TEXT statement (SGPLOT) 979

VBAR statement (SGPANEL) 468
VBAR statement (SGPLOT) 999

VBARBASIC statement (SGPANEL) 482
VBARBASIC statement (SGPLOT) 1014

VBARPARM statement (SGPANEL) 498
VBARPARM statement (SGPLOT) 1030

WATERFALL statement (SGPLOT) 1082

user-defined formats
   associating with variables 58

V

VALUE=
   discrete attribute map 1323

VALUEALIGN= option
VALUEATTRS= option
BLOCK statement (SGPANEL) 128
BLOCK statement (SGPLOT) 634
COLAXIS statement (SGPANEL) 553
COLAXISTABLE statement (SGPANEL) 564

GRADLEGEND statement (SGPANEL) 173
GRADLEGEND statement (SGPLOT) 686

KEYLEGEND statement (SGPANEL) 293
KEYLEGEND statement (SGPLOT) 814

ROWAXIS statement (SGPANEL) 580
ROWAXISTABLE statement (SGPANEL) 592

X2AXIS statement (SGPLOT) 1120
XAXIS statement (SGPLOT) 1099
XAXISTABLE statement (SGPLOT) 1133

YAXIS statement (SGPLOT) 1151
YAXISTABLE statement (SGPLOT) 1185

VALUEFITPOLICY= option
BLOCK statement (SGPANEL) 128
BLOCK statement (SGPLOT) 634

VALUEHALIGN= option
BLOCK statement (SGPANEL) 129
BLOCK statement (SGPLOT) 635

XAXISTABLE statement (SGPLOT) 1186

VALUES option
BLOCK statement (SGPANEL) 127
BLOCK statement (SGPLOT) 633
VALUES= option
COLAXIS statement (SGPANEL) 553
ROWAXIS statement (SGPANEL) 580

X2AXIS statement (SGPLOT) 1120
XAXIS statement (SGPLOT) 1099

Y2AXIS statement (SGPLOT) 1172
YAXIS statement (SGPLOT) 1151

VALUESDISPLAY= option
COLAXIS statement (SGPANEL) 555
ROWAXIS statement (SGPANEL) 583

X2AXIS statement (SGPLOT) 1123
XAXIS statement (SGPLOT) 1102

Y2AXIS statement (SGPLOT) 1175
YAXIS statement (SGPLOT) 1154
VALUESFORMAT= option
COLAXIS statement (SGPANEL) 556
ROWAXIS statement (SGPANEL) 583
X2AXIS statement (SGPLOT) 1123
XAXIS statement (SGPLOT) 1102
Y2AXIS statement (SGPLOT) 1175
YAXIS statement (SGPLOT) 1154
VALUESHALIGN= option
ROWAXIS statement (SGPANEL) 583
Y2AXIS statement (SGPLOT) 1175
YAXIS statement (SGPLOT) 1155
VALUESHINT option
COLAXIS statement (SGPANEL) 556
ROWAXIS statement (SGPANEL) 584
X2AXIS statement (SGPLOT) 1124
XAXIS statement (SGPLOT) 1103
Y2AXIS statement (SGPLOT) 1176
YAXIS statement (SGPLOT) 1155
VALUESROTATE= option
COLAXIS statement (SGPANEL) 556
X2AXIS statement (SGPLOT) 1124
XAXIS statement (SGPLOT) 1103
VALUEALIGN= option
BLOCK statement (SGPANEL) 129
BLOCK statement (SGPLOT) 635
variables
associating descriptive labels with 61
associating formats with 58
VBAR statement
about bar charts 44
example 44, 90, 602, 1198
SGPANEL procedure 449
SGPLOT procedure 980
VBARBBASIC statement
example 44
SGPANEL procedure 468
SGPLOT procedure 1000
VBARPARM statement
about bar charts 44
example 44
SGPANEL procedure 483
SGPLOT procedure 1014
VBOX statement
about box plots 39
example 39
percentiles 512, 1044
SGPANEL procedure 499
SGPLOT procedure 1031
statement summary 511, 1044
vertical line
SGPANEL procedure 294
SGPLOT procedure 817
vertical line charts
about 50
example 50, 598
SGPANEL procedure 522
SGPLOT procedure 1056
visual attributes
automatic differentiation of 1264
VLINE statement
about line charts 50
example 50, 1198
SGPANEL procedure 522
SGPLOT procedure 1056
OFFSET= option
SYMBOLCHAR statement
(SGPANEL) 426
SYMBOLCHAR statement (SGPLOT) 957
SYMBOLIMAGE statement
(SGPANEL) 430
SYMBOLIMAGE statement (SGPLOT) 962

W
WALLCOLOR= option
PROC SGSCATTER statement 1211
STYLEATTRS statement (SGPANEL) 112
STYLEATTRS statement (SGPLOT) 617
WALLPERCENT (annotation space) 1349
Index

WALLPIXEL (annotation space) 1349
waterfall charts
  about waterfall charts 52
  example 52
  WATERFALL statement 1073
WATERFALL statement
  about waterfall charts 52
  example 52
  SG PLOT procedure 1073
WEIGHT= attribute
  for text 1277
WEIGHT= option
  DENSITY statement (SGPANEL) 145
  DENSITY statement (SGPLOT) 654
  DOT statement (SGPANEL) 161
  DOT statement (SGPLOT) 670
  HBAR statement (SGPANEL) 192
  HBAR statement (SGPLOT) 706
  HBOX statement (SGPANEL) 233
  HBOX statement (SGPLOT) 747
  HEATMAP statement (SGPANEL) 241
  HEATMAP statement (SGPLOT) 757
  HISTOGRAM statement (SGPANEL) 268
  HISTOGRAM statement (SGPLOT) 787
  HLINE statement (SGPANEL) 284
  HLINE statement (SGPLOT) 804
  LOESS statement (SGPANEL) 310
  LOESS statement (SGPLOT) 834
  PBSPLINE statement (SGPANEL) 332
  PBSPLINE statement (SGPLOT) 857
  REG statement (SGPANEL) 363
  REG statement (SGPLOT) 890
  VBAR statement (SGPANEL) 468
  VBAR statement (SGPLOT) 1000
  VBOX statement (SGPANEL) 511
  VBOX statement (SGPLOT) 1043
  VLINE statement (SGPANEL) 538
  VLINE statement (SGPLOT) 1072
WHERE statement 86
WHISKERATTRS= option
  HBOX statement (SGPANEL) 233
  HBOX statement (SGPLOT) 747
  VBOX statement (SGPANEL) 511
  VBOX statement (SGPLOT) 1043
WHISKERPCT= option
  HBOX statement (SGPANEL) 234
  HBOX statement (SGPLOT) 748
  VBOX statement (SGPANEL) 511
  VBOX statement (SGPLOT) 1043
whiskers
  box plots 234, 512, 748, 1044
WIDTH= option
  ODS GRAPHICS statement 77

X
X= argument
  BAND statement (SGPANEL) 116
  BAND statement (SGPLOT) 621
  ELLIPSE statement (SGPLOT) 676
  LOESS statement (SGPANEL) 301
  LOESS statement (SGPLOT) 825
  NEEDLE statement (SGPANEL) 312
  PBSPLINE statement (SGPLOT) 847
  REG statement (SGPANEL) 353
  REG statement (SGPLOT) 881
  SCATTER statement (SGPANEL) 365
  SCATTER statement (SGPLOT) 893
  SERIES statement (SGPANEL) 380, 399
  SERIES statement (SGPLOT) 908
  STEP statement (SGPANEL) 412
  STEP statement (SGPLOT) 943
  TEXT statement (SGPANEL) 436
  TEXT statement (SGPLOT) 967
  VECTOR statement (SGPANEL) 514
  VECTOR statement (SGPLOT) 1048
X= option
  COLAXISTABLE statement (SGPANEL) 564
  COMPARE statement (SGSCATTER) 1213
  XAXISTABLE statement (SGPLOT) 1133
X=argument
  NEEDLE statement (SGPLOT) 836
  PBSPLINE statement (SGPANEL) 323
X2AXIS option
  BAND statement (SGPLOT) 627
  BUBBLE statement (SGPLOT) 648
  DENSITY statement (SGPLOT) 654
  DROPLINE statement (SGPLOT) 674
  ELLIPSE statement (SGPLOT) 678
  FRINGE statement (SGPLOT) 683
  HBAR statement (SGPLOT) 706
  HBARBASIC statement (SGPLOT) 720
  HBARPARM statement (SGPLOT) 735
  HBOX statement (SGPLOT) 748
  HEATMAP statement (SGPLOT) 757
  HEATMAPPARM statement (SGPLOT) 767
  HIGHLOW statement (SGPLOT) 782
  HISTOGRAM statement (SGPLOT) 787
  HLINE statement (SGPLOT) 804
  LOESS statement (SGPLOT) 834
  NEEDLE statement (SGPLOT) 844
  PBSPLINE statement (SGPLOT) 857
  POLYGON statement (SGPLOT) 868
  REG statement (SGPLOT) 891
VBAR statement (SGPLOT) 1000
VBARBASIC statement (SGPLOT) 1014
VBARPARM statement (SGPLOT) 1031
VBOX statement (SGPLOT) 1044
VECTOR statement (SGPLOT) 1056
VLINE statement (SGPLOT) 1072
VAXISTABLE statement (SGPLOT) 1186
Y2AXIS statement
SGPLOT procedure 1155
Y2AXIS= option
BUBBLE statement (SGPLOT) 648
LINEPARM statement (SGPLOT) 822
WATERFALL statement (SGPLOT) 1082
YAXIS statement
SGPLOT procedure 1134
YAXISTABLE statement
SGPLOT procedure 1176
YBINSIZE= option
HEATMAP statement (SGPANEL) 242
HEATMAP statement (SGPLOT) 757
YBINSTART= option
HEATMAP statement (SGPANEL) 242
HEATMAP statement (SGPLOT) 758
YENDLABELS option
HEATMAPPARM statement (SGPANEL) 249
HEATMAPPARM statement (SGPLOT) 768
YERRORLOWER= option
SCATTER statement (SGPANEL) 377
SCATTER statement (SGPLOT) 905
STEP statement (SGPANEL) 424
STEP statement (SGPLOT) 955
YERRORUPPER= option
SCATTER statement (SGPANEL) 377
SCATTER statement (SGPLOT) 905
STEP statement (SGPANEL) 424
STEP statement (SGPLOT) 955
YOFFSET= option
POLYGON statement (SGPANEL) 344
POLYGON statement (SGPLOT) 869
YORIGIN= option
VECTOR statement (SGPANEL) 522
VECTOR statement (SGPLOT) 1056
YVALUES= option
HEATMAPPARM statement (SGPANEL) 249
HEATMAPPARM statement (SGPLOT) 768