SAS® Enterprise Miner™ 14.3
High-Performance Procedures
Contents

Chapter 1. Introduction .. 1
Chapter 2. Shared Concepts and Topics 5
Chapter 3. The HP4SCORE Procedure 35
Chapter 4. The HPBNET Procedure 55
Chapter 5. The HPCLUS Procedure 79
Chapter 6. The HPDECIDE Procedure 113
Chapter 7. The HPFOREST Procedure 127
Chapter 8. The HPNEURAL Procedure 191
Chapter 9. The HPREDUCE Procedure 211
Chapter 10. The HPSVM Procedure 239

Subject Index

Syntax Index
Credits and Acknowledgments

Credits

Documentation

Editing Anne Baxter, Ed Huddleston
Documentation Support Tim Arnold

Software

The procedures in this book were implemented by the following members of the development staff. Program development includes design, programming, debugging, support, and documentation. In the following list, the names of the developers who currently provide primary support are listed first; other developers and previous developers are also listed.

HP4SCORE Padraic Neville
HPBNET Ye Liu, Yongqiao Xiao
HPCLUS Ilknur Kaynar Kabul
HPDECIDE Kiran Bhole, Tao Wang, Ann Kuo, Scott Pope
HPFOREST Padraic Neville
HPNEURAL Larry Lewis
HPREDUCE Ruiwen Zhang, Alan (Zheng) Zhao
HPSVM Taiping He, Joshua Griffin
High-performance computing foundation Steve E. Krueger
High-Performance Analytics foundation Robert Cohen, Georges H. Guirguis, Trevor Kearney, Richard Knight, Gang Meng, Oliver Schabenberger, Charles Shorb, Tom P. Weber
Numerical routines Georges H. Guirguis

The following people contributed with their leadership and support: Udo Sglavo, Susan Haller, Tao Wang, Chris Bailey, David Pope, Oliver Schabenberger, Renee Sciortino, Jonathan Wexler.

Testing

Internationalization Testing

Jacky(Chen) Dong, Feng Gao, Alex(Wenqi) He, David Li, Frank(Jidong) Wang, Lina Xu, Catherine Yang.

Technical Support

Phil Gibbs, Doug Wielenga.

Acknowledgments

Many people make significant and continuing contributions to the development of SAS software products. The final responsibility for the SAS System lies with SAS alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.
Chapter 1
Introduction

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the SAS Enterprise Miner High-Performance Procedures</td>
<td>1</td>
</tr>
<tr>
<td>About This Book</td>
<td>1</td>
</tr>
<tr>
<td>Chapter Organization</td>
<td>2</td>
</tr>
<tr>
<td>Typographical Conventions</td>
<td>2</td>
</tr>
<tr>
<td>Options Used in Examples</td>
<td>3</td>
</tr>
<tr>
<td>SAS Technical Support Services</td>
<td>3</td>
</tr>
</tbody>
</table>

Overview of the SAS Enterprise Miner High-Performance Procedures

The high-performance data mining procedures provides tools that have been specially developed to take advantage of parallel processing in both multithreaded single-machine mode and distributed multiple-machine mode. Data Mining methods include neural networks and ensemble tree models as well as variables selection techniques and applying decision maricies to make optimal decisions. The software is constantly being updated to reflect new methodology and advances in high-performance analytics.

In addition to the high-performance data mining procedures described in this book, Enterprise Miner includes high-performance utility procedures, which are described in *Base SAS Procedures Guide: High-Performance Procedures*. You can run all these procedures in single-machine mode without licensing SAS High-Performance Data Mining. However, to run these procedures in distributed mode, you must license SAS High-Performance Data Mining.

About This Book

This book assumes that you are familiar with Base SAS software and with the books *SAS Language Reference: Concepts* and *Base SAS Procedures Guide*. It also assumes that you are familiar with basic SAS System concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as the PRINT and SORT procedures) to manipulate SAS data sets.
Chapter Organization

This book is organized as follows:

Chapter 1, this chapter, provides an overview of high-performance data mining procedures.

Chapter 2, “Shared Concepts and Topics,” describes the modes in which high-performance data mining procedures can execute.

Subsequent chapters describe the individual procedures. These chapters appear in alphabetical order by procedure name. Each chapter is organized as follows:

- The “Overview” section provides a brief description of the analysis provided by the procedure.
- The “Getting Started” section provides a quick introduction to the procedure through a simple example.
- The “Syntax” section describes the SAS statements and options that control the procedure.
- The “Details” section discusses methodology and other topics, such as ODS tables.
- The “Examples” section contains examples that use the procedure.
- The “References” section contains references for the methodology.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the typographical conventions used in this book:

- **roman** is the standard type style used for most text.
- **UPPERCASE ROMAN** is used for SAS statements, options, and other SAS language elements when they appear in the text. However, you can enter these elements in your own SAS programs in lowercase, uppercase, or a mixture of the two.
- **UPPERCASE BOLD** is used in the “Syntax” sections’ initial lists of SAS statements and options.
- **oblique** is used in the syntax definitions and in text to represent arguments for which you supply a value.
- **VariableName** is used for the names of variables and data sets when they appear in the text.
- **bold** is used for matrices and vectors.
- **italic** is used for terms that are defined in the text, for emphasis, and for references to publications.
- **monospace** is used for example code. In most cases, this book uses lowercase type for SAS code.
Options Used in Examples

The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documentation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template in an ODS destination statement as follows:

```sas
ods html style=HTMLBlue;
ods html close;
ods pdf style=PearlJ;
ods pdf close;
```

Most of the PDF tables are produced by using the following SAS System option:

```sas
options papersize=(6.5in 9in);
```

If you run the examples, you might get slightly different output. This is a function of the SAS System options that are used and the precision that your computer uses for floating-point calculations.

SAS Technical Support Services

The SAS Technical Support staff is available to respond to problems and answer technical questions regarding the use of high-performance procedures. Go to http://support.sas.com/techsup for more information.
Chapter 2
Shared Concepts and Topics

Contents

Overview .. 5
Processing Modes .. 6
 Single-Machine Mode 6
 Distributed Mode 6
 Controlling the Execution Mode with Environment Variables and Performance Statement Options .. 6
 Determining Single-Machine Mode or Distributed Mode 7
Data Access Modes 11
 Single-Machine Data Access Mode 11
 Distributed Data Access Mode 12
 Determining the Data Access Mode 13
Alongside-the-Database Execution 14
Alongside-LASR Distributed Execution 16
Running High-Performance Analytical Procedures Alongside a SAS LASR Analytic Server in Distributed Mode 17
Starting a SAS LASR Analytic Server Instance 17
Associating a SAS Libref with the SAS LASR Analytic Server Instance ... 18
Running a High-Performance Analytical Procedure Alongside the SAS LASR Analytic Server Instance 18
Terminating a SAS LASR Analytic Server Instance 19
Alongside-LASR Distributed Execution on a Subset of the Appliance Nodes 19
Running High-Performance Analytical Procedures in Asymmetric Mode 20
 Running in Asymmetric Mode on Distinct Appliances 20
Alongside-HDFS Execution 23
Alongside-HDFS Execution by Using the SASHDAT Engine 23
Alongside-HDFS Execution by Using the Hadoop Engine 25
Output Data Sets .. 29
Working with Formats 29
PERFORMANCE Statement 31

Overview

This chapter describes the modes of execution in which SAS high-performance analytical procedures can execute. If you have SAS Enterprise Miner installed, you can run any procedure in this book on a single
machine. However, to run procedures in this book in distributed mode, you must also have SAS High-Performance Data Mining software installed. For more information about these modes, see the next section.

This chapter provides details of how you can control the modes of execution and includes the syntax for the PERFORMANCE statement, which is common to all high-performance analytical procedures.

Processing Modes

Single-Machine Mode

Single-machine mode is a computing model in which multiple processors or multiple cores are controlled by a single operating system and can access shared resources, such as disks and memory. In this book, single-machine mode refers to an application running multiple concurrent threads on a multicore machine in order to take advantage of parallel execution on multiple processing units. More simply, single-machine mode for high-performance analytical procedures means multithreading on the client machine.

All high-performance analytical procedures are capable of running in single-machine mode, and this is the default mode when a procedure runs on the client machine. The procedure uses the number of CPUs (cores) on the machine to determine the number of concurrent threads. High-performance analytical procedures use different methods to map core count to the number of concurrent threads, depending on the analytic task. Using one thread per core is not uncommon for the procedures that implement data-parallel algorithms.

Distributed Mode

Distributed mode is a computing model in which several nodes in a distributed computing environment participate in the calculations. In this book, the distributed mode of a high-performance analytical procedure refers to the procedure performing the analytics on an appliance that consists of a cluster of nodes. This appliance can be one of the following:

- a database management system (DBMS) appliance on which the SAS High-Performance Analytics infrastructure is also installed
- a cluster of nodes that have the SAS High-Performance Analytics infrastructure installed but no DBMS software installed

Controlling the Execution Mode with Environment Variables and Performance Statement Options

You control the execution mode by using environment variables or by specifying options in the PERFORMANCE statement in high-performance analytical procedures, or by a combination of these methods.

The important environment variables follow:
• **grid host** identifies the domain name system (DNS) or IP address of the appliance node to which the SAS High-Performance Data Mining software connects to run in distributed mode.

• **installation location** identifies the directory where the SAS High-Performance Data Mining software is installed on the appliance.

You can set an environment variable directly from the SAS program by using the OPTION SET= command. For example, the following statements define the grid host and the location where the SAS High-Performance software is installed on the appliance:

```sas
option set=GRIDHOST ="hpa.sas.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";
```

Alternatively, you can set the parameters in the PERFORMANCE statement in high-performance analytical procedures. For example:

```sas
performance host   ="hpa.sas.com"
install           ="/opt/TKGrid";
```

A specification in the PERFORMANCE statement overrides a specification of an environment variable without resetting its value. An environment variable that you set in the SAS session by using an OPTION SET= command remains in effect until it is modified or until the SAS session terminates.

The key variable that determines whether a high-performance analytical procedure executes in single-machine or distributed mode is the **grid host**. The installation location is needed to ensure that a connection to the grid host can be made, given that a host is specified. This book assumes that the installation location has been set by your system administrator.

The following sets of SAS statements are functionally equivalent:

```sas
proc hpreduce;
  reduce unsupervised x;
  performance host="hpa.sas.com";
run;

option set=GRIDHOST="hpa.sas.com";
proc hpreduce;
  reduce unsupervised x;
run;
```

Determining Single-Machine Mode or Distributed Mode

High-performance analytical procedures use the following rules to determine whether they run in single-machine mode or distributed mode:

• If a grid host is not specified, the analysis is carried out in single-machine mode on the client machine that runs the SAS session.
Chapter 2: Shared Concepts and Topics

- If a grid host is specified, the behavior depends on whether the execution is alongside the database or alongside HDFS. If the data are local to the client (that is, not stored in the distributed database or HDFS on the appliance), you need to use the NODES= option in the PERFORMANCE statement to specify the number of nodes on the appliance or cluster that you want to engage in the analysis. If the procedure executes alongside the database or alongside HDFS, you do not need to specify the NODES= option.

The following example shows single-machine and client-data distributed configurations for a data set of 100,000 observations that are simulated from a logistic regression model. The following DATA step generates the data:

```plaintext
data simData;
array _a{8} _temporary_ (0,0,0,1,0,1,1,1);
array _b{8} _temporary_ (0,0,1,0,1,0,1,1);
array _c{8} _temporary_ (0,1,0,0,1,1,0,1);
do obsno=1 to 100000;
  x  = rantbl(1,0.28,0.18,0.14,0.14,0.03,0.09,0.08,0.06);
  a  = _a{x};
  b  = _b{x};
  c  = _c{x};
  x1 = int(ranuni(1)*400);
  x2 = 52 + ranuni(1)*38;
  x3 = ranuni(1)*12;
  lp = 6. -0.015*(1-a) + 0.7*(1-b) + 0.6*(1-c) + 0.02*x1 -0.05*x2 - 0.1*x3;
  y  = ranbin(1,1,(1/(1+exp(lp))));
  output;
end;
drop x lp;
run;
```

The following statements run PROC HPLOGISTIC to fit a logistic regression model:

```plaintext
proc hplogistic data=simData;
class a b c;
model y = a b c x1 x2 x3;
run;
```

Figure 2.1 shows the results from the analysis.

Figure 2.1 Results from Logistic Regression in Single-Machine Mode

<table>
<thead>
<tr>
<th>The HPLOGISTIC Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Information</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
<tr>
<td>Data Access Information</td>
</tr>
<tr>
<td>Data</td>
</tr>
<tr>
<td>WORK.SIMDATA</td>
</tr>
</tbody>
</table>
The entries in the “Performance Information” table show that the HPLOGISTIC procedure runs in single-machine mode and uses four threads, which are chosen according to the number of CPUs on the client machine. You can force a certain number of threads on any machine that is involved in the computations by specifying the NTHREADS option in the PERFORMANCE statement. Another indication of execution on the client is the following message, which is issued in the SAS log by all high-performance analytical procedures:

NOTE: The HPLOGISTIC procedure is executing in single-machine mode.

The following statements use 10 nodes (in distributed mode) to analyze the data on the appliance; results appear in Figure 2.2:

```sas
proc hplogistic data=simData;  
   class a b c;  
   model y = a b c x1 x2 x3;  
   performance host="hpa.sas.com" nodes=10;  
run;
```
Chapter 2: Shared Concepts and Topics

Figure 2.2 Results from Logistic Regression in Distributed Mode

The HPLOGISTIC Procedure

Performance Information
Host Node hpa.sas.com
Execution Mode Distributed
Number of Compute Nodes 10
Number of Threads per Node 24

Data Access Information
Data Engine Role Path
WORK.SIMDATA V9 Input From Client

Model Information
Data Source WORK.SIMDATA
Response Variable y
Class Parameterization GLM
Distribution Binary
Link Function Logit
Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

| Parameter | Estimate | Error | DF | t Value | Pr > |t| |
|-----------|----------|-------|-----|---------|------|---|
| Intercept | 5.7011 | 0.2539| Infty | 22.45 | <.0001|
| a 0 | -0.01020 | 0.06627| Infty | -0.15 | 0.8777|
| a 1 | 0 | | | | | |
| b 0 | 0.7124 | 0.06558| Infty | 10.86 | <.0001|
| b 1 | 0 | | | | | |
| c 0 | 0.8036 | 0.06456| Infty | 12.45 | <.0001|
| c 1 | 0 | | | | | |
| x1 | 0.01975 | 0.000614| Infty | 32.15 | <.0001|
| x2 | -0.04728 | 0.003098| Infty | -15.26 | <.0001|
| x3 | -0.1017 | 0.009470| Infty | -10.74 | <.0001|

The specification of a host causes the “Performance Information” table to display the name of the host node of the appliance. The “Performance Information” table also indicates that the calculations were performed in a distributed environment on the appliance. Twenty-four threads on each of 10 nodes were used to perform the calculations—for a total of 240 threads.

Another indication of distributed execution on the appliance is the following message, which is issued in the SAS log by all high-performance analytical procedures:

NOTE: The HPLOGISTIC procedure is executing in the distributed computing environment with 10 worker nodes.

You can override the presence of a grid host and force the computations into single-machine mode by specifying the NODES=0 option in the PERFORMANCE statement:
The “Performance Information” table indicates that the HPLOGISTIC procedure executes in single-machine mode on the client. This information is also reported in the following message, which is issued in the SAS log:

NOTE: The HPLOGISTIC procedure is executing in single-machine mode.

In the analysis shown previously in Figure 2.2, the data set Work.simData is local to the client, and the HPLOGISTIC procedure distributed the data to 10 nodes on the appliance. The High-Performance Analytics infrastructure does not keep these data on the appliance. When the procedure terminates, the in-memory representation of the input data on the appliance is freed.

When the input data set is large, the time that is spent sending client-side data to the appliance might dominate the execution time. In practice, transfer speeds are usually lower than the theoretical limits of the network connection or disk I/O rates. At a transfer rate of 40 megabytes per second, sending a 10-gigabyte data set to the appliance requires more than four minutes. If analytic execution time is in the range of seconds, the “performance” of the process is dominated by data movement.

The alongside-the-database execution model, unique to high-performance analytical procedures, enables you to read and write data in distributed form from the database that is installed on the appliance.

Data Access Modes

Single-Machine Data Access Mode

When high-performance analytical procedures run in single-machine mode, they access data in the same way as traditional SAS procedures. They use Base SAS to access input and output SAS data sets on the
client machine, and they use the relevant SAS/ACCESS interface to bring data from other sources, such as third-party databases, Hadoop, and SAS LASR servers, to the client.

Distributed Data Access Mode

When high-performance analytical procedures run in distributed mode, input data must be brought to the computation that is performed on the nodes of the grid, and output data must be sent from the computational nodes. This can be accomplished in several ways:

- **Client-data (local-data) mode:** The input and output data for the analytic task are stored on the client machine where the high-performance procedure is invoked. When the procedure runs, the SAS High-Performance Analytics infrastructure sends input data from the client to the distributed computing environment and sends output data from the distributed computing environment to the client.

- **Parallel symmetric mode:** Input and output data are stored on the same nodes that are used for the distributed computation, and the data move in parallel from the data store to the computational nodes without crossing node boundaries. Parallel symmetric mode is available with the following distributed data sources:
 - Data in Greenplum databases that are collocated with the computational nodes. This access mode is also called alongside-the-database mode. For more information, see the section “Alongside-the-Database Execution” on page 14.
 - Data in SAS/ACCESS format in the Hadoop Distributed File System (HDFS) that is collocated with the computational nodes. This access mode is also called alongside-HDFS mode. For more information, see the section “Alongside-HDFS Execution by Using the SASHDAT Engine” on page 23.
 - Data in a SAS LASR Analytic Server that is collocated with the computational nodes. This access mode is also called alongside-LASR mode. For more information, see the section “Running High-Performance Analytical Procedures Alongside a SAS LASR Analytic Server in Distributed Mode” on page 17.

- **Parallel asymmetric mode:** The primary reason for providing this mode is to enable you to manage and house data on appliances (the data appliances) and to run high-performance analytical procedures on a different appliance (the computing appliance). The high-performance analytical procedures run in a SAS process on the computing appliance. For each data source that is accessed in parallel asymmetric mode, a SAS Embedded Process must run on the associated data appliance. Data are requested by a SAS data feeder that runs on the computing appliance and communicates with the SAS Embedded Process on the data appliance. The SAS Embedded Process transfers the data in parallel to the SAS data feeder that runs on each of the nodes of the computing appliance. This mode is called asymmetric mode because the number of nodes on the data appliance does not need to match the number of nodes on the computing appliance. Parallel asymmetric mode is supported for data in Teradata, Greenplum, and Oracle databases and for data in HDFS and SAP HANA. In these cases, the parallel asymmetric access is somewhat loosely described as being asymmetric alongside access, even though the data storage and computation can occur on different appliances. For more information, see the section “Running High-Performance Analytical Procedures in Asymmetric Mode” on page 20.
Through-the-client mode: When data can be accessed through a SAS/ACCESS interface but the data reside in a file system or in a distributed data source on which a SAS Embedded Process is not running, those data cannot be accessed in parallel in either symmetric or asymmetric mode. The SAS/ACCESS interface is used to transfer input data from the data source to the client machine on which the high-performance procedure is invoked, and the data are then sent to the distributed computing environment by the SAS High-Performance Analytics infrastructure. The data path is reversed for output data. This mode of data access is referred to as through-the-client access.

Determining the Data Access Mode

High-performance analytical procedures determine the data access mode individually for each data set that is used in the analysis. When high-performance analytical procedures run in distributed mode, parallel symmetric or parallel asymmetric mode is used whenever possible. There are two reasons why parallel access might not be possible. The first reason is that for a particular data set, the required SAS Embedded Process is not installed on the appliance that houses the data. In such cases, access to those data reverts to through-the-client access, and a note like the following is reported in the SAS log:

NOTE: The data MYLIB.MYDATA are being routed through the client because a SAS Embedded Process is not running on the associated data server.

The second reason why parallel data access might not be possible for a particular data set is that the required driver software might not be installed on the compute nodes. In this case, the required data feeder that moves the data from the compute nodes to the data source cannot be successfully loaded, and a note like the following is reported in the SAS log:

NOTE: The data MYLIB.MYDATA are being routed through the client because the ORACLE data feeder could not be loaded on the specified grid host.

For distributed data in SASHDAT format in HDFS or data in a SAS LASR Analytic Server, parallel symmetric access is used when the data nodes and compute nodes are collocated on the same appliance. For data in a LASR Analytic Server that cannot be accessed in parallel symmetric mode, through-the-client mode is used. Through-the-client access is not supported for data in SASHDAT format in HDFS.

For data in Greenplum databases, parallel symmetric access is used if the compute nodes and the data nodes are collocated on the same appliance and you do not specify the NODES=n option in a PERFORMANCE statement. In this case, the number of nodes that are used is determined by the number of nodes across which the data are distributed. If you specify NODES=n, then parallel asymmetric access is used.

High-performance analytical procedures produce a “Data Access Information” table that shows you how each data set that is used in the analysis is accessed. The following statements provide an example in which PROC HPDS2 is used to copy a distributed data set named Neuralgia (which is stored in SASHDAT format in HDFS) to a SAS data set on the client machine:

```sas
libname hdatlib sashdat
  host='hpa.sas.com';
  hdfs_path="/user/hps";

proc hpds2 data=hdatlib.neuralgia out=neuralgia;
```
Alongside-the-Database Execution

High-performance analytical procedures interface with the distributed database management system (DBMS) on the appliance in a unique way. If the input data are stored in the DBMS and the grid host is the appliance that houses the data, high-performance analytical procedures create a distributed computing environment in which an analytic process is collocated with the nodes of the DBMS. Data then pass from the DBMS to the analytic process on each node. Instead of moving across the network and possibly back to the client machine, the data pass locally between the processes on each node of the appliance.

Because the analytic processes on the appliance are separate from the database processes, the technique is referred to as alongside-the-database execution in contrast to in-database execution, where the analytic code executes in the database process.

In general, when you have a large amount of input data, you can achieve the best performance from high-performance analytical procedures if execution is alongside the database.

Before you can run alongside the database, you must distribute the data to the appliance. The following statements use the HPDS2 procedure to distribute the data set Work.simData into the mydb database on the hpa.sas.com appliance. In this example, the appliance houses a Greenplum database.
option set=GRIDHOST="green.sas.com";
libname applianc greenplm
 server ="green.sas.com"
 user =XXXXXX
 password=YYYYY
 database=mydb;

option set=GRIDHOST="compute_appliance.sas.com";

proc datasets lib=applianc nolist; delete simData;
proc hpds2 data=simData
 out =applianc.simData(distributed_by='distributed randomly');
 performance commit=10000 nodes=8;
 data DS2GTF.out;
 method run();
 set DS2GTF.in;
 end;
 enddata;
run;

If the output table applianc.simData exists, the DATASETS procedure removes the table from the Greenplum database because a DBMS does not usually support replacement operations on tables.

Note that the libref for the output table points to the appliance. The data set option informs the HPDS2 procedure to distribute the records randomly among the data segments of the appliance. The statements that follow the PERFORMANCE statement are the DS2 program that copies the input data to the output data without further transformations.

Because you loaded the data into a database on the appliance, you can use the following HPLOGISTIC statements to perform the analysis on the appliance in the alongside-the-database mode. These statements are almost identical to the first PROC HPLOGISTIC example in a previous section, which executed in single-machine mode.

proc hplogistic data=applianc.simData;
 class a b c;
 model y = a b c x1 x2 x3;
run;

The subtle differences are as follows:

- The grid host environment variable that you specified in an OPTION SET= command is still in effect.
- The DATA= option in the high-performance analytical procedure uses a libref that identifies the data source as being housed on the appliance. This libref was specified in a prior LIBNAME statement.

Figure 2.5 shows the results from this analysis. The “Performance Information” table shows that the execution was in distributed mode, and the “Data Access Information” table shows that the data were accessed asymmetrically in parallel from the Greenplum database. The numeric results agree with the previous analyses, which are shown in Figure 2.1 and Figure 2.2.
Alongside-LASR Distributed Execution

You can execute high-performance analytical procedures in distributed mode alongside a SAS LASR Analytic Server. When high-performance analytical procedures run in this mode, the data are preloaded in distributed form in memory that is managed by a LASR Analytic Server. The data on the nodes of the appliance are accessed in parallel in the process that runs the LASR Analytic Server, and they are transferred to the process where the high-performance analytical procedure runs. In general, each high-performance analytical procedure copies the data to memory that persists only while that procedure executes. Hence, when a high-performance analytical procedure runs alongside a LASR Analytic Server, both the high-performance analytical procedure and the LASR Analytic Server have a copy of the subset of the data that is used by the high-performance analytical procedure. The advantage of running high-performance analytical procedures alongside a LASR Analytic Server (as opposed to running alongside a DBMS table or alongside HDFS) is...
that the initial transfer of data from the LASR Analytic Server to the high-performance analytical procedure is a memory-to-memory operation that is faster than the disk-to-memory operation when the procedure runs alongside a DBMS or HDFS. When the cost of preloading a table into a LASR Analytic Server is amortized by multiple uses of these data in separate runs of high-performance analytical procedures, using the LASR Analytic Server can result in improved performance.

Running High-Performance Analytical Procedures Alongside a SAS LASR Analytic Server in Distributed Mode

This section provides an example of steps that you can use to start and load data into a SAS LASR Analytic Server instance and then run high-performance analytical procedures alongside this LASR Analytic Server instance.

Starting a SAS LASR Analytic Server Instance

The following statements create a SAS LASR Analytic Server instance and load it with the simData data set that is used in the preceding examples. The data that are loaded into the LASR Analytic Server persist in memory across procedure boundaries until these data are explicitly deleted or until the server instance is terminated.

```
proc lasr port=54545
data=simData
path="/tmp/";
performance host="hpa.sas.com" nodes=ALL;
run;
```

The PORT= option specifies a network port number to use. The PATH= option specifies the directory in which the server and table signature files are to be stored. The specified directory must exist on each machine in the cluster. The DATA= option specifies the name of a data set that is loaded into this LASR Analytic Server instance. (You do not need to specify the DATA= option at this time because you can add tables to the LASR Analytic Server instance at any stage of its life.) For more information about starting and using a LASR Analytic Server, see the _SAS LASR Analytic Server: Administration Guide_.

The NODES=ALL option in the PERFORMANCE statement specifies that the LASR Analytic Server run on all the nodes on the appliance. You can start a LASR Analytic Server on a subset of the nodes on an appliance, but this might affect whether high-performance analytical procedures can run alongside the LASR Analytic Server. For more information, see the section “Alongside-LASR Distributed Execution on a Subset of the Appliance Nodes” on page 19.

Figure 2.6 shows the “Performance Information” and “Data Access Information” tables, which show that the LASR procedure ran in distributed mode on 13 nodes and that the data were sent from the client to the appliance.
Associating a SAS Libref with the SAS LASR Analytic Server Instance

The following statements use a LIBNAME statement that associates a SAS libref (named MyLasr) with tables on the server instance as follows:

```
libname MyLasr sasiola port=54545 host="hpa.sas.com";
```

The SASIOLA option requests that the MyLasr libref use the SASIOLA engine, and the PORT= value associates this libref with the appropriate server instance. For more information about creating a libref that uses the SASIOLA engine, see the *SAS LASR Analytic Server: Administration Guide*.

Running a High-Performance Analytical Procedure Alongside the SAS LASR Analytic Server Instance

You can use the MyLasr libref to specify the input data for high-performance analytical procedures. You can also create output data sets in the SAS LASR Analytic Server instance by using this libref to request that the output data set be held in memory by the server instance as follows:

```
proc hplogistic data=MyLasr.simData;
  class a b c;
  model y = a b c x1 x2 x3;
  output out=MyLasr.simulateScores pred=PredictedProbability;
run;
```

Because you previously specified the GRIDHOST= environment variable and the input data are held in distributed form in the associated server instance, this PROC HPLOGISTIC step runs in distributed mode alongside the LASR Analytic Server, as indicated in the “Performance Information” table shown in Figure 2.7.
The “Data Access Information” table shows that both the input and output data were read and written, respectively, in parallel symmetric mode.

The preceding OUTPUT statement creates an output table that is added to the LASR Analytic Server instance. Output data sets do not have to be created in the same server instance that holds the input data. You can use a different LASR Analytic Server instance to hold the output data set. However, in order for the output data to be created in parallel symmetric mode, all the nodes that are used by the server instance that holds the input data must also be used by the server instance that holds the output data.

Terminating a SAS LASR Analytic Server Instance

You can continue to run high-performance analytical procedures and add and delete tables from the SAS LASR Analytic Server instance until you terminate the server instance as follows:

```sas
proc lasr term port=54545;
run;
```

Alongside-LASR Distributed Execution on a Subset of the Appliance Nodes

When you run PROC LASR to start a SAS LASR Analytic Server, you can specify the NODES= option in a PERFORMANCE statement to control how many nodes the LASR Analytic Server executes on. Similarly, a high-performance analytical procedure can execute on a subset of the nodes either because you specify the NODES= option in a PERFORMANCE statement or because you run alongside a DBMS or HDFS with an input data set that is distributed on a subset of the nodes on an appliance. In such situations, if a high-performance analytical procedure uses nodes on which the LASR Analytic Server is not running, then running alongside LASR is not supported. You can avoid this issue by specifying the NODES=ALL in the PERFORMANCE statement when you use PROC LASR to start the LASR Analytic Server.
Running High-Performance Analytical Procedures in Asymmetric Mode

This section provides examples of how you can run high-performance analytical procedures in asymmetric mode.

Asymmetric mode is commonly used when the data appliance and the computing appliance are distinct appliances. In order to be able to use an appliance as a data provider for high-performance analytical procedures that run in asymmetric mode on another appliance, it is not necessary that SAS High-Performance Data Mining be installed on the data appliance. However, it is essential that a SAS Embedded Process be installed on the data appliance and that SAS High-Performance Data Mining be installed on the computing appliance.

The following examples use a 24-node data appliance named “data_appliance.sas.com,” which houses a Teradata DBMS and has a SAS Embedded Process installed.

The following statements load the simData data set of the preceding sections onto the data appliance:

```sas
libname dataLib teradata
   server = "tera2650"
   user = XXXXXX
   password=YYYYY
   database=mydb;

data dataLib.simData;
   set simData;
run;
```

NOTE: You can provision the appliance with data even if SAS High-Performance Data Mining software is not installed on the appliance.

The following subsections show how you can run the HPLOGISTIC procedure asymmetrically on distinct data and computing appliances.

Running in Asymmetric Mode on Distinct Appliances

Usually, there is no advantage to executing high-performance analytical procedures in asymmetric mode on one appliance, because data might have to be unnecessarily moved between nodes. The following example demonstrates the more typical use of asymmetric mode. In this example, the specified grid host “compute_appliance.sas.com” is a 142-node computing appliance that is different from the 24-node data appliance “data_appliance.sas.com,” which houses the Teradata DBMS where the data reside.

The advantage of using different computing and data appliances is that the data appliance is not affected by the execution of high-performance analytical procedures except during the initial parallel data transfer. A potential disadvantage of this asymmetric mode of execution is that the performance can be limited by the bandwidth with which data can be moved between the appliances. However, because this data movement takes place in parallel from the nodes of the data appliance to the nodes of the computing appliance, this
potential performance bottleneck can be overcome with appropriately provisioned hardware. The following statements show how this is done:

```sas
proc hplogistic data=dataLib.simData;
   class a b c;
   model y = a b c x1 x2 x3;
   performance host = "compute_appliance.sas.com" nodes=30;
run;
```

Figure 2.8 shows the “Performance Information” and “Data Access Information” tables.

Figure 2.8 Asymmetric Mode with Distinct Data and Computing Appliances

<table>
<thead>
<tr>
<th>The HPLOGISTIC Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Information</td>
</tr>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
</tr>
<tr>
<td>TERADATA</td>
</tr>
</tbody>
</table>

PROC HPLOGISTIC ran on 30 nodes of the computing appliance, even though the data were partitioned across the 24 nodes of the data appliance. The numeric results are not reproduced here, but they agree with the previous analyses shown in Figure 2.1 and Figure 2.2.

Every time you run a high-performance analytical procedure in asymmetric mode that uses different computing and data appliances, data are transferred between these appliances. If you plan to make repeated use of the same data, then it might be advantageous to temporarily persist the data that you need on the computing appliance. One way to persist the data is to store them as a table in a SAS LASR Analytic Server that runs on the computing appliance. By running PROC LASR in asymmetric mode, you can load the data in parallel from the data appliance nodes to the nodes on which the LASR Analytic Server runs on the computing appliance. You can then use a LIBNAME statement that associates a SAS libref with tables on the LASR Analytic Server. The following statements show how you do this:

```sas
proc lasr port=54345
   data=dataLib.simData
   path="/tmp/"
   performance host ="compute_appliance.sas.com" nodes=30;
run;

libname MyLasr sasiola tag="dataLib" port=54345 host="compute_appliance.sas.com" ;
```

Figure 2.9 show the “Performance Information” and “Data Access Information” tables.
By default, all the nodes on the computing appliance would be used. However, because NODES=30 was specified in the PERFORMANCE statement, PROC LASR ran on only 30 nodes of the computing appliance. The data were loaded asymmetrically in parallel from the 24 data appliance nodes to the 30 compute nodes on which PROC LASR ran.

After the data are loaded into a LASR Analytic Server that runs on the computing appliance, you can run high-performance analytical procedures alongside this LASR Analytic Server as shown by the following statements:

```sas
proc hplogistic data=MyLasr.simData;
   class a b c;
   model y = a b c x1 x2 x3;
   output out=MyLasr.myOutputData pred=myPred;
   performance host = "compute_appliance.sas.com";
run;
```

The following note, which appears in the SAS log, confirms that the output data set is created successfully:

```
NOTE: The table DATALIB.MYOUTPUTDATA has been added to the LASR Analytic Server with port 54345. The Libname is MYLASR.
```

You can use the dataLib libref that you used to load the data onto the data appliance to create an output data set on the data appliance.

```sas
proc hplogistic data=MyLasr.simData;
   class a b c;
   model y = a b c x1 x2 x3;
   output out=dataLib.myOutputData pred=myPred;
   performance host = "compute_appliance.sas.com";
run;
```

The following note, which appears in the SAS log, confirms that the output data set is created successfully on the data appliance:

```
NOTE: The data set DATALIB.myOutputData has 100000 observations and 1 variables.
```
When you run a high-performance analytical procedure on a computing appliance and either read data from or write data to a different data appliance on which a SAS Embedded Process is running, the Read and Write operations take place in parallel without any movement of data to and from the SAS client.

When you no longer need the data in the SAS LASR Analytic Server, you should terminate the server instance as follows:

```
proc lasr term port=54345;
   performance host="compute_appliance.sas.com";
run;
```

If you configured Hadoop on the computing appliance, then you can create output data tables that are stored in the HDFS on the computing appliance. You can do this by using the SASHDAT engine as described in the section “Alongside-HDFS Execution” on page 23.

Alongside-HDFS Execution

Running high-performance analytical procedures alongside HDFS shares many features with running alongside the database. You can execute high-performance analytical procedures alongside HDFS by using either the SASHDAT engine or the Hadoop engine.

You use the SASHDAT engine to read and write data that are stored in HDFS in a proprietary SASHDAT format. In SASHDAT format, metadata that describe the data in the Hadoop files are included with the data. This enables you to access files in SASHDAT format without supplying any additional metadata. Additionally, you can also use the SASHDAT engine to read data in CSV (comma-separated value) format, but you need supply metadata that describe the contents of the CSV data. The SASHDAT engine provides highly optimized access to data in HDFS that are stored in SASHDAT format.

The Hadoop engine reads data that are stored in various formats from HDFS and writes data to HDFS in CSV format. This engine can use metadata that are stored in Hive, which is a data warehouse that supplies metadata about data that are stored in Hadoop files. In addition, this engine can use metadata that you create by using the HDMD procedure.

The following subsections provide details about using the SASHDAT and Hadoop engines to execute high-performance analytical procedures alongside HDFS.

Alongside-HDFS Execution by Using the SASHDAT Engine

If the grid host is a cluster that houses data that have been distributed by using the SASHDAT engine, then high-performance analytical procedures can analyze those data in the alongside-HDFS mode. The procedures use the distributed computing environment in which an analytic process is collocated with the nodes of the cluster. Data then pass from HDFS to the analytic process on each node of the cluster.

Before you can run a procedure alongside HDFS, you must distribute the data to the cluster. The following statements use the SASHDAT engine to distribute to HDFS the `simData` data set that was used in the previous two sections:
In this example, the GRIDHOST is a cluster where the SAS Data in HDFS Engine is installed. If a data set that is named simData already exists in the hps directory in HDFS, it is overwritten because the REPLACE=YES data set option is specified. For more information about using this LIBNAME statement, see the section “LIBNAME Statement for the SAS Data in HDFS Engine” in the SAS LASR Analytic Server: Administration Guide.

The following HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These statements are almost identical to the PROC HPLOGISTIC example in the previous two sections, which executed in single-machine mode and alongside-the-database distributed mode, respectively.

Figure 2.10 shows the “Performance Information” and “Data Access Information” tables. You see that the procedure ran in distributed mode and that the input data were read in parallel symmetric mode. The numeric results shown in Figure 2.11 agree with the previous analyses shown in Figure 2.1, Figure 2.2, and Figure 2.5.

Figure 2.10 Alongside-HDFS Execution Performance Information

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

Figure 2.11 Alongside-HDFS Execution Model Information

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Response Variable</td>
</tr>
<tr>
<td>Class Parameterization</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Link Function</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
</tbody>
</table>
Alongside-HDFS Execution by Using the Hadoop Engine

The following LIBNAME statement sets up a libref that you can use to access data that are stored in HDFS and have metadata in Hive:

```
libname hdoopLib hadoop
    server = "hpa.sas.com"
    user = XXXXX
    password = YYYYY
    database = myDB
    config = "demo.xml";
```

For more information about LIBNAME options available for the Hadoop engine, see the LIBNAME topic in the Hadoop section of SAS/ACCESS for Relational Databases: Reference. The configuration file that you specify in the CONFIG= option contains information that is needed to access the Hive server. It also contains information that enables this configuration file to be used to access data in HDFS without using the Hive server. This information can also be used to specify replication factors and block sizes that are used when the engine writes data to HDFS.

The following DATA step uses the Hadoop engine to distribute to HDFS the simData data set that was used in the previous sections. The engine creates metadata for the data set in Hive:

```
data hdoopLib.simData;
    set simData;
run;
```

After you have loaded data or if you are accessing preexisting data in HDFS that have metadata in Hive, you can access this data alongside HDFS by using high-performance analytical procedures. The following HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These statements are similar to the PROC HPLOGISTIC example in the previous sections.
proc hplogistic data=hdoopLib.simData;
 class a b c;
 model y = a b c x1 x2 x3;
 performance host = "compute_appliance.sas.com" nodes=8;
run;

Figure 2.12 shows the “Performance Information” and “Data Access Information” tables. You see that the procedure ran in distributed mode and that the input data were read in parallel asymmetric mode. The numeric results shown in Figure 2.13 agree with the previous analyses.

Figure 2.12 Alongside-HDFS Execution by Using the Hadoop Engine

The HPLOGISTIC Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>GRIDLIB.SIMDATA</td>
</tr>
</tbody>
</table>

Figure 2.13 Alongside-HDFS Execution by Using the Hadoop Engine

Model Information

<table>
<thead>
<tr>
<th>Data Source</th>
<th>GRIDLIB.SIMDATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Variable</td>
<td>y</td>
</tr>
<tr>
<td>Class Parameterization</td>
<td>GLM</td>
</tr>
<tr>
<td>Distribution</td>
<td>Binary</td>
</tr>
<tr>
<td>Link Function</td>
<td>Logit</td>
</tr>
<tr>
<td>Optimization Technique</td>
<td>Newton-Raphson with Ridging</td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>DF</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.7011</td>
<td>0.2539</td>
<td>Infy</td>
<td>22.45</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a 0</td>
<td>-0.01020</td>
<td>0.06627</td>
<td>Infy</td>
<td>-0.15</td>
<td>0.8777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b 0</td>
<td>0.7124</td>
<td>0.06558</td>
<td>Infy</td>
<td>10.86</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c 0</td>
<td>0.8036</td>
<td>0.06456</td>
<td>Infy</td>
<td>12.45</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c 1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x1</td>
<td>0.01975</td>
<td>0.000614</td>
<td>Infy</td>
<td>32.15</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td>-0.04728</td>
<td>0.003098</td>
<td>Infy</td>
<td>-15.26</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x3</td>
<td>-0.1017</td>
<td>0.009470</td>
<td>Infy</td>
<td>-10.74</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Hadoop engine also enables you to access tables in HDFS that are stored in various formats and that are not registered in Hive. You can use the HDMD procedure to generate metadata for tables that are stored in the following file formats:

- delimited text
- fixed-record length binary
- sequence files
- XML text

To read any other kind of file in Hadoop, you can write a custom file reader plug-in in Java for use with PROC HDMD. For more information about LIBNAME options available for the Hadoop engine, see the LIBNAME topic in the Hadoop section of SAS/ACCESS for Relational Databases: Reference.

The following example shows how you can use PROC HDMD to register metadata for CSV data independently from Hive and then analyze these data by using high-performance analytical procedures. The CSV data in the table csvExample.csv is stored in HDFS in the directory /user/demo/data. Each record in this table consists of the following fields, in the order shown and separated by commas.

1. a string of at most six characters
2. a numeric field with values of 0 or 1
3. a numeric field with real numbers

Suppose you want to fit a logistic regression model to these data, where the second field represents a target variable named Success, the third field represents a regressor named Dose, and the first field represents a classification variable named Group.

The first step is to use PROC HDMD to create metadata that are needed to interpret the table, as in the following statements:

```sas
libname hdoopLib hadoop
server = "hpa.sas.com"
user = XXXXX
password = YYYYY
HDFS_PERMDIR = "/user/demo/data"
HDFS_METADIR = "/user/demo/meta"
config = "demo.xml"
DBCREATE_TABLE_EXTERNAL=YES;

proc hdmd name=hdoopLib.csvExample data_file='csvExample.csv'
format=delimited encoding=utf8 sep = ',';

column Group char(6);
column Success double;
column Dose double;
run;
```
The metadata that are created by PROC HDMD for this table are stored in the directory /user/demo/meta that you specified in the HDFS_METADIR = option in the preceding LIBNAME statement. After you create the metadata, you can execute high-performance analytical procedures with these data by using the hdoopLib libref. For example, the following statements fit a logistic regression model to the CSV data that are stored in the csvExample.csv table:

```sas
proc hplogistic data=hdoopLib.csvExample;
  class Group;
  model Success = Dose;
  performance host = "compute_appliance.sas.com"
    gridmode = asym
    nodes = 8;
run;
```

Figure 2.14 shows the results of this analysis. You see that the procedure ran in distributed mode and that the input data were read in parallel asymmetric mode. The metadata that you created by using the HDMD procedure have been used successfully in executing this analysis.

Figure 2.14 Alongside-HDFS Execution with CSV Data

The HPLOGISTIC Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>compute_appliance.sas.com</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Distributed</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>GRIDLIB.CSVEXAMPLE</td>
</tr>
<tr>
<td>Engine</td>
</tr>
<tr>
<td>HADOOP</td>
</tr>
<tr>
<td>Role</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Path</td>
</tr>
<tr>
<td>Parallel, Asymmetric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>GRIDLIB.CSVEXAMPLE</td>
</tr>
<tr>
<td>Response Variable</td>
</tr>
<tr>
<td>Success</td>
</tr>
<tr>
<td>Class Parameterization</td>
</tr>
<tr>
<td>GLM</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Binary</td>
</tr>
<tr>
<td>Link Function</td>
</tr>
<tr>
<td>Logit</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
<tr>
<td>Newton-Raphson with Ridging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>Values</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>group1</td>
</tr>
<tr>
<td>group2</td>
</tr>
<tr>
<td>group3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Estimate</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>t Value</td>
</tr>
<tr>
<td>Pr ></td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>0.1243</td>
</tr>
<tr>
<td>0.1295</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.96</td>
</tr>
<tr>
<td>0.3371</td>
</tr>
<tr>
<td>Dose</td>
</tr>
<tr>
<td>-0.2674</td>
</tr>
<tr>
<td>0.2216</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>-1.21</td>
</tr>
<tr>
<td>0.2277</td>
</tr>
</tbody>
</table>
Output Data Sets

In the alongside-the-database mode, the data are read in distributed form, minimizing data movement for best performance. Similarly, when you write output data sets and a high-performance analytical procedure executes in distributed mode, the data can be written in parallel into the database.

For example, in the following statements, the HPLOGISTIC procedure executes in distributed mode by using eight nodes on the appliance to perform the logistic regression on `work.simData`:

```sas
proc hplogistic data=simData;
   class a b c;
   model y = a b c x1 x2 x3;
   id a;
   output out=applianc.simData_out pred=p;
   performance host="hpa.sas.com" nodes=8;
run;
```

The output data set `applianc.simData_out` is written in parallel into the database. Although the data are fed on eight nodes, the database might distribute the data on more nodes.

When a high-performance analytical procedure executes in single-machine mode, all output objects are created on the client. If the libref of the output data sets points to the appliance, the data are transferred to the database on the appliance. This can lead to considerable performance degradation compared to execution in distributed mode.

Many procedures in SAS software add the variables from the input data set when an observationwise output data set is created. The assumption of high-performance analytical procedures is that the input data sets can be large and contain many variables. For performance reasons, the output data set contains the following:

- variables that are explicitly created by the statement
- variables that are listed in the ID statement, as described in Chapter 3, “Shared Statistical Concepts” (SAS/STAT User’s Guide: High-Performance Procedures)
- distribution keys or hash keys that are transferred from the input data set

Including this information enables you to add to the output data set information necessary for subsequent SQL joins without copying the entire input data set to the output data set.

Working with Formats

You can use SAS formats and user-defined formats with high-performance analytical procedures as you can with other procedures in the SAS System. However, because the analytic work is carried out in a distributed environment and might depend on the formatted values of variables, some special handling can improve the efficiency of work with formats.
High-performance analytical procedures examine the variables that are used in an analysis for association with user-defined formats. Any user-defined formats that are found by a procedure are transmitted automatically to the appliance. If you are running multiple high-performance analytical procedures in a SAS session and the analysis variables depend on user-defined formats, you can preprocess the formats. This step involves generating an XML stream (a file) of the formats and passing the stream to the high-performance analytical procedures.

Suppose that the following formats are defined in your SAS program:

```sas
proc format;
  value YesNo 1='Yes' 0='No';
  value checkThis 1='ThisisOne' 2='ThisisTwo';
  value $cityChar 1='Portage' 2='Kinston';
run;
```

The next group of SAS statements create the XML stream for the formats in the file `Myfmt.xml`, associate that file with the file reference `myxml`, and pass the file reference with the `FMTLIBXML=` option in the `PROC HPLOGISTIC` statement:

```sas
filename myxml 'Myfmt.xml';
libname myxml XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=myxml.allfmts;
run;

proc hplogistic data=six fmtlibxml=myxml;
  class wheeze cit age;
  format wheeze best4. cit $cityChar.;
  model wheeze = cit age;
run;
```

Generation and destruction of the stream can be wrapped in convenience macros:

```sas
%macro Make_XMLStream(name=tempxml);
  filename &name 'fmt.xml';
  libname &name XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
  proc format cntlout=&name..allfmts;
  run;
%mend;

%macro Delete_XMLStream(fref);
  %let rc=%sysfunc(fdelete(&fref));
%mend;
```

If you do not pass an XML stream to a high-performance analytical procedure that supports the `FMTLIBXML=` option, the procedure generates an XML stream as needed when it is invoked.
PERFORMANCE Statement

PERFORMANCE <performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of a high-performance analytical procedure.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure executes in single-machine or distributed mode.

You can specify the following performance-options in the PERFORMANCE statement:

BPC=n
specifies the number of bytes per character that is used in processing character strings in multibyte encodings. The default is the bytes per character of the encoding. The number of characters in a string is calculated as the byte length of the string divided by the bytes per character of the encoding. This will be incorrect when the strings in the multibyte encoding contain one or more single byte characters. In such cases, setting BPC=1 enables appropriate byte lengths to be used in processing such strings.

COMMIT=n
requests that the high-performance analytical procedure write periodic updates to the SAS log when observations are sent from the client to the appliance for distributed processing.

High-performance analytical procedures do not have to use input data that are stored on the appliance. You can perform distributed computations regardless of the origin or format of the input data, provided that the data are in a format that can be read by the SAS System (for example, because a SAS/ACCESS engine is available).

In the following example, the HPREG procedure performs LASSO variable selection where the input data set is stored on the client:

```
proc hpreg data=work.one;
   model y = x1-x500;
   selection method=lasso;
   performance nodes=10 host='mydca' commit=10000;
run;
```

In order to perform the work as requested using 10 nodes on the appliance, the data set Work.One needs to be distributed to the appliance.

High-performance analytical procedures send the data in blocks to the appliance. Whenever the number of observations sent exceeds an integer multiple of the COMMIT= size, a SAS log message is produced. The message indicates the actual number of observations distributed, and not an integer multiple of the COMMIT= size.

DETAILS
requests a table that shows a timing breakdown of the procedure steps.
GRIDHOST="name"

HOST="name"

specifies the name of the appliance host in single or double quotation marks. If this option is specified, it overrides the value of the GRIDHOST environment variable.

GRIDMODE=SYM | ASYM
MODE=SYM | ASYM

is a deprecated option that specifies whether to run the high-performance analytical procedure in symmetric (SYM) mode or asymmetric (ASYM) mode. This option overrides the GRIDMODE environment variable.

GRIDTIMEOUT=s
TIMEOUT=s

specifies the time-out in seconds for a high-performance analytical procedure to wait for a connection to the appliance and establish a connection back to the client. The default is 120 seconds. If jobs are submitted to the appliance through workload management tools that might suspend access to the appliance for a longer period, you might want to increase the time-out value.

INSTALL="name"
INSTALLLOC="name"

specifies the directory in which the shared libraries for the high-performance analytical procedure are installed on the appliance. Specifying the INSTALL= option overrides the GRIDINSTALLLOC environment variable.

LASRSERVER="path"
LASR="path"

specifies the fully qualified path to the description file of a SAS LASR Analytic Server instance. If the input data set is held in memory by this LASR Analytic Server instance, then the procedure runs alongside LASR. This option is not needed to run alongside LASR if the DATA= specification of the input data uses a libref that is associated with a LASR Analytic Server instance. For more information, see the section “Alongside-LASR Distributed Execution” on page 16 and the SAS LASR Analytic Server: Administration Guide.

NODES=ALL | n
NNODES=ALL | n

specifies the number of nodes in the distributed computing environment, provided that the data are not processed alongside the database.

Specifying NODES=0 indicates that you want to process the data in single-machine mode on the client machine. If the input data are not alongside the database, this is the default. The high-performance analytical procedures then perform the analysis on the client. For example, the following sets of statements are equivalent:

```plaintext
proc hplogistic data=one;
   model y = x;
run;
```
proc hplogistic data=one;
 model y = x;
 performance nodes=0;
run;

If the data are not read alongside the database, the NODES= option specifies the number of nodes on the appliance that are involved in the analysis. For example, the following statements perform the analysis in distributed mode by using 10 units of work on the appliance that is identified in the HOST= option:

proc hplogistic data=one;
 model y = x;
 performance nodes=10 host="hpa.sas.com";
run;

If the number of nodes can be modified by the application, you can specify a NODES=n option, where n exceeds the number of physical nodes on the appliance. The SAS High-Performance Data Mining software then oversubscribes the nodes and associates nodes with multiple units of work. For example, on a system that has 16 appliance nodes, the following statements oversubscribe the system by a factor of 3:

proc hplogistic data=one;
 model y = x;
 performance nodes=48 host="hpa.sas.com";
run;

Usually, it is not advisable to oversubscribe the system because the analytic code is optimized for a certain level of multithreading on the nodes that depends on the CPU count. You can specify NODES=ALL if you want to use all available nodes on the appliance without oversubscribing the system.

If the data are read alongside the distributed database on the appliance, specifying a nonzero value for the NODES= option has no effect. The number of units of work in the distributed computing environment is then determined by the distribution of the data and cannot be altered. For example, if you are running alongside an appliance with 24 nodes, the NODES= option in the following statements is ignored:

libname GPLib greenplm server=gpdca user=XXX password=YYY
database=ZZZ;
proc hplogistic data=gplib.one;
 model y = x;
 performance nodes=10 host="hpa.sas.com";
run;
NTHREADS=n

THREADS=n

specifies the number of threads for analytic computations and overrides the SAS system option THREADS | NOTHREADS. If you do not specify the NTHREADS= option, the number of threads is determined based on the number of CPUs on the host on which the analytic computations execute. The algorithm by which a CPU count is converted to a thread count is specific to the high-performance analytical procedure. Most procedures create one thread per CPU for the analytic computations.

By default, high-performance analytical procedures run in multiple concurrent threads unless multithreading has been turned off by the NOTHREADS system option or you force single-threaded execution by specifying NTHREADS=1. The largest number that can be specified for \(n \) is 256. Individual high-performance analytical procedures can impose more stringent limits if called for by algorithmic considerations.

NOTE: The SAS system options THREADS | NOTHREADS apply to the client machine on which the SAS high-performance analytical procedures execute. They do not apply to the compute nodes in a distributed environment.
Chapter 3
The HP4SCORE Procedure

Contents

Overview: HP4SCORE Procedure ... 35
PROC HP4SCORE Features ... 36
PROC HP4SCORE Contrasted with Other SAS Procedures 36
Getting Started: HP4SCORE Procedure ... 36
Syntax: HP4SCORE Procedure ... 38
 PROC HP4SCORE Statement .. 38
 ID Statement ... 39
 IMPORTANCE Statement ... 39
 PERFORMANCE Statement ... 40
 SCORE Statement .. 40
Details: HP4SCORE Procedure ... 41
 Variable Attributes ... 41
 Random Branch Assignments Variable Importance 41
 Displayed Output ... 41
 Performance Information .. 42
 Number of Observations ... 42
 Timings ... 42
 Variable Importance .. 42
 ODS Table Names .. 42
 Output Data Sets ... 42
Examples: HP4SCORE Procedure ... 43
 Example 3.1: Fit Statistics ... 43
 Example 3.2: Variable Importance .. 46
 Example 3.3: Importance of Variable Values 49
References ... 54

Overview: HP4SCORE Procedure

The HP4SCORE procedure is a high-performance procedure that can either score a data set or estimate the
importance of variables by using a forest predictive model that was previously trained by the HPFOREST
procedure, which is described in Chapter 7, “The HPFOREST Procedure.”

The forest predictive model is an ensemble of hundreds of decision trees that are used to predict a target. The
target can have either an interval, nominal, or ordinal measurement level. Each decision tree consists of a
sequence of rules that are applied to the observation to arrive at the prediction.
The final prediction is either of the following:

- For a target that has an interval measurement level, the final prediction is an average of the individual predictions.
- For a target that has a nominal or ordinal measurement level, the final prediction is derived from the average of the individual posterior probabilities.

The HP4SCORE procedure is designed to be used after the HPFOREST procedure creates a model and saves it in a binary model file. PROC HP4SCORE applies the binary model file to score or evaluate the importance of the variables in a specified data set. The variables in the input data set for PROC HP4SCORE must have the same attributes as the variables in the input data set that PROC HPFOREST used to create the model. If the attributes do not match, the HP4SCORE procedure stops and returns an error.

The HP4SCORE procedure can score the data in concurrent threads that run in parallel when it executes in single-machine or distributed mode. For information about how to configure the execution mode, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

PROC HP4SCORE Features

The SCORE statement applies the forest model to observations in the input data set and outputs a data set of predicted values.

The IMPORTANCE statement accepts a list of variables to evaluate and outputs both a table of variable importance and an output data set from which other variable importance measures can be computed.

PROC HP4SCORE Contrasted with Other SAS Procedures

No other SAS procedure scores a forest model. SAS high-performance procedures create DATA step programs that incorporate the scoring logic in the model. The decision tree procedures in SAS Enterprise Miner (the ARBOR and HPSPLIT procedures) also output the score code directly. Because the forest model is an ensemble of hundreds of decision trees and because each decision tree can contain hundreds or thousands of decision rules for scoring, the DATA step program can become extremely large. In addition to slow scoring performance, a very large DATA step program also poses other challenges. PROC HP4SCORE overcomes these difficulties by reading the binary model file and scoring the observations directly.

The HP4SCORE procedure takes full advantage of concurrent threads and distributed data. For general contrasts between SAS high-performance analytical procedures and other SAS procedures, see the section “Output Data Sets” on page 29.

Getting Started: HP4SCORE Procedure

This example shows the usage of the HP4SCORE procedure in conjunction with the HPFOREST procedure. The HPFOREST procedure first trains a model on the training data and saves the model as a binary file. The HP4SCORE procedure then uses the trained model to score a different data set.
The following hypothetical data set contains the ratings by three different volunteers on six different proportions of fruits in a fruit punch. The following DATA step creates the SAS data set PunchTrain with the proportions of watermelon, pineapple, orange, and the numerical ratings for each combination of fruit mix and the volunteer:

```sas
data PunchTrain;
  input watermelon pineapple orange rating;
  datalines;
  1.0 0.0 0.0 4.3
  1.0 0.0 0.0 4.7
  1.0 0.0 0.0 4.8
  0.0 1.0 0.0 6.2
  0.0 1.0 0.0 6.5
  0.0 1.0 0.0 6.3
  0.5 0.5 0.0 6.3
  0.5 0.5 0.0 6.1
  0.5 0.5 0.0 5.8
  0.0 0.0 1.0 7.0
  0.0 0.0 1.0 6.9
  0.0 0.0 1.0 7.4
  0.5 0.0 0.5 6.1
  0.5 0.0 0.5 6.5
  0.5 0.0 0.5 5.9
  0.0 0.5 0.5 6.2
  0.0 0.5 0.5 6.1
  0.0 0.5 0.5 6.2
; run;
```

The following statements train the forest model on the data set by using the rating as the target and different fruit mix proportions as the independent variables. The SAVE statement saves the model to a binary file `punchModel.sav` in the current directory. For more information about the HPFOREST procedure options, see Chapter 7, “The HPFOREST Procedure.”

```sas
proc hpforest data=PunchTrain maxtrees=10;
  input watermelon pineapple orange;
  target rating;
  save file="punchModel.sav";
run;
```

The following DATA step creates the SAS data set PunchScore, which contains only the proportions of watermelon, pineapple, and orange fruit:

```sas
data PunchScore;
  input watermelon pineapple orange;
  datalines;
  0.6 0.4 0.0
  0.9 0.1 0.0
  0.8 0.0 0.2
  0.5 0.3 0.2
  0.3 0.1 0.6
; run;
```
The following statements invoke HP4SCORE to score this data set:

```sas
proc hp4score data=PunchScore;
  score file="punchModel.sav" out=Scoreout;
run;
proc print data=Scoreout;
run;
```

The SAS data set Scoreout contains the ratings for each input observation as predicted by the model. Output 3.1 shows the scoring results.

<table>
<thead>
<tr>
<th>Obs</th>
<th>P_rating</th>
<th>WARN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.91333</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.45500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.45500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.91333</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.19333</td>
<td></td>
</tr>
</tbody>
</table>

Syntax: HP4SCORE Procedure

The following statements are available in the HP4SCORE procedure:

```
PROC HP4SCORE DATA=<libref.>SAS-data-set < data-options > ;
  ID variables ;
  SCORE FILE=model-file-name OUT=<libref.SAS-data-set < score-options >> ;
  IMPORTANCE FILE=model-file-name VARS=(variables) < importance-options > ;
  PERFORMANCE < performance-options > ;
```

The PROC HP4SCORE statement is required, and either the SCORE statement or the IMPORTANCE statement must be specified. They cannot both be specified because in some scenarios PROC HP4SCORE has already processed in input data set and cannot restore it.

PROC HP4SCORE Statement

```
PROC HP4SCORE DATA=<libref.>SAS-data-set < data-options > ;
```

The PROC HP4SCORE statement invokes the procedure.

- **DATA=<libref.>SAS-data-set**
 names the SAS data set to be used for scoring by PROC HP4SCORE. This argument is required.

- **SEED=n**
 specifies the seed for generating random numbers, where n is a nonnegative integer. The IMPORTANCE statement uses random numbers to randomly assign branches during the calculation of variable importance. Set n to 0 to use the internal default, which is 8,976,153.
If the data are already distributed, PROC HP4SCORE reads the data alongside the distributed database. The different nodes then independently read the data rows, score them, and write them back. For information about the various execution modes, see the section “Processing Modes” on page 6; for information about the alongside-the-database model, see the section “Alongside-the-Database Execution” on page 14.

ID Statement

```
ID variables ;
```

The ID statement lists one or more `variables` from the input data set to be transferred to the output data set that is specified in the SCORE statement. The ID statement accepts numeric and character variables. By default, high-performance analytical procedures do not include all variables from the input data set in output data sets.

The ID statement is optional. However, when PROC HP4SCORE runs in distributed mode or with concurrent threads, the SCORE statement rearranges the observations. An ID variable is needed to correctly merge the output data with other variables from the input data set.

IMPORTANCE Statement

```
IMPORTANCE FILE=model-file-name VARS=(variables) <importance-options> ;
```

The IMPORTANCE statement computes variable importance based on the random branch assignments (RBA) method. The output data set contains modified predictions of the input observations from which the importance of an individual observation can be calculated. The average importance is output in the variable importance table. For more information about RBA, see the section “Random Branch Assignments Variable Importance” on page 41.

You must specify the following arguments:

- `FILE=model-file-name`
 - specifies either the file reference or the full path and member name of the valid model file that was created by PROC HPFOREST.

- `VARS=(variables)`
 - species one or more variables for which to calculate the variable importance. Dashes and colons that represent ranges of variables are not recognized in this context.

You can also specify the following `importance-options`:

- `MAXDEPTH=<n>`
 - produces predictions from trees that are pruned to a depth of `n`. (The trees are not pruned by default.)

- `NTREES=<n>`
 - produces predictions from the first `n` trees only. If this option is omitted, then PROC HP4SCORE uses all the trees in the model for predictions. Scoring with fewer trees can sometimes increase the speed without significantly reducing the accuracy.
OUT=<libref.>SAS-data-set
names the output SAS data set to contain the scored results. If this option is omitted, then no output
data set is created.

PERFORMANCE Statement

PERFORMANCE <performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables about the distributed computing environment, and requests detailed results about the
performance characteristics of the HP4SCORE procedure. You can also use the PERFORMANCE statement
to control whether the HPFOREST procedure executes in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 31 of Chapter 2, “Shared Concepts and Topics.”

SCORE Statement

SCORE FILE=model-file-name OUT=libref.SAS-data-set < score-options> ;

The SCORE statement specifies the name of the model file and the name of the output data set. The
IMPORTANCE statement cannot also be specified.

When running in distributed mode or with concurrent threads, the SCORE statement rearranges the observa-
tions. You need to include an ID statement to specify variables such as the target to include in the output data
set if those variables will be needed in a subsequent analysis.

You must specify the following arguments:

FILE=model-file-name
specifies either the file reference or the full path and member name of the valid model file that was
created by PROC HPFOREST.

OUT=libref.SAS-data-set
names the output SAS data set to contain the scored results.

You can also specify the following score-options:

MAXDEPTH=<n>
produces predictions from trees that are pruned to a depth of n. (The trees are not pruned by default.)

NTREES=<n>
produces predictions from the first n trees only. If this option is omitted, then PROC HP4SCORE uses
all the trees in the model for predictions. Scoring with fewer trees can sometimes increase the speed
without significantly reducing the accuracy.
Details: HP4SCORE Procedure

Variable Attributes

When PROC HPFOREST saves a model, it saves only the input variables that were used in the model. These might be all the input variables or a subset of those variables. The data set to be scored must contain the input variables that are in the model, and these variables must have same attributes as the training data. The attributes include variable names (differences in character case are ignored), the data type, and the length.

If a variable that has a nominal measurement level has a level that was not present in the training data set, that level is treated as an unseen value. The HP4SCORE procedure does not ignore observations that have missing values or unseen values during scoring. The full model is applied on all the observations, and the prediction is computed.

Random Branch Assignments Variable Importance

The random branch assignments (RBA) method for computing the importance of an input variable \(v \) compares how the data fit the predictions with how the data fit the modified predictions. To modify the predictions, PROC HP4SCORE replaces all splitting rules that use variable \(v \) by a rule that randomly assigns an observation to a branch. The probability of assigning an observation to a branch, \(P(\text{branch}) \), is proportional to the number of training observations that were assigned to the branch during construction of the model.

The RBA importance can be expressed mathematically as

\[
I_{\text{RBA}}(v) \propto \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y}_i) - \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y}_i)
\]

where \(\hat{y}_i \) is the modified prediction for observation \(i \) and \(\hat{y}_i \) is the standard prediction. For an interval target, PROC HP4SCORE computes the RBA importance of square error loss and absolute error loss. For a categorical target, PROC HP4SCORE uses square error loss and negative margin loss.

When PROC HP4SCORE runs with concurrent threads, the observations that are assigned to a particular thread generally differ when the run is repeated. The RBA variable importance values will also differ when the run is repeated unless the THREADS=1 option is specified in the PERFORMANCE statement.

Neville and Tan (2014) motivate and introduce the RBA method of variable importance. For an expanded discussion of variable importance measures in decision tree forests, see Chapter 7, “The HPFOREST Procedure.”

Displayed Output

The HP4SCORE procedure displays the following information tables:
Performance Information

The “Performance Information” table is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the number of compute nodes, and the number of threads per node.

Number of Observations

The “Number of Observations” table displays the total number of observations that are read from the data set and the total number of observations scored.

Timings

If you specify the DETAILS option in the PERFORMANCE statement, PROC HP4SCORE also produces a “Timing” table in which elapsed times for the main tasks of the procedure are displayed.

Variable Importance

If you specify the IMPORTANCE statement, then a table of variable importance based on random branch assignments (RBA) is displayed. When RBA is used, an observation is randomly assigned to a branch when the splitting rule uses the variable whose importance is being evaluated. The importance of a variable equals the difference between the fit with RBA and the fit without RBA. The value depends on the measure of fit.

ODS Table Names

Table 3.1 lists the names of the data tables that the HP4SCORE procedure creates. Use these names in ODS statements.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement and Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformanceInfo</td>
<td>Performance information</td>
<td>Default output</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>Default output</td>
</tr>
<tr>
<td>Baseline</td>
<td>Fit statistics without a model</td>
<td>Default output</td>
</tr>
<tr>
<td>VariableImportance</td>
<td>Random branch assignments method</td>
<td>IMPORTANCE VARS=</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times for tasks</td>
<td>PERFORMANCE DETAILS</td>
</tr>
</tbody>
</table>

Output Data Sets

Both the IMPORTANCE statement and the SCORE statement produce an output data set that contains the prediction for each observation in the input data set.
The prediction variables depend on the measurement type of the target variable in the model:

- For a target that has an interval measurement level, a single prediction variable is generated.
- For each level of the target that has a nominal or ordinal measurement level, a posterior probability variable is generated in addition to the final predicted level.

The IMPORTANCE statement outputs the same columns as the SCORE statement plus an additional column, Variable, which contains the name of an input variable.

The output data set that is generated by the SCORE statement contains one observation for each input observation.

The output data set that is generated by the IMPORTANCE statement contains $K + 1$ observations for each input observation, where K is the number of variables listed in the VARS= option. The first observation in a group of $K + 1$ contains the same predictions as the SCORE statement would output, and the value of Variable is blank. The next K observations contain predictions that are computed by a modified scoring procedure: splitting rules that use the variable named in the Variable column are replaced by a rule that randomly assigns observations to a branch instead.

If the input data set is read in alongside-the-database mode from the SAS appliance, the output data set is written back in parallel. In this case, the output records are distributed across the processing nodes such that the input row and the corresponding output row are collocated.

Examples: HP4SCORE Procedure

Example 3.1: Fit Statistics

The following statements run PROC HP4SCORE and compute the misclassification rate of the scored output. Before SAS Enterprise Miner 14.1, the target values from the input data set had to be merged with the predictions in the scored output before fit statistics were computed. This is not necessary with SAS Enterprise Miner 14.1 and later.

```sas
filename outmodel "C:\Temp\HPForestModel";
proc HPFOREST data=sampsio.hmeq;
   input CLAge CLNo Loan MortDue Value YoJ DebtInc/level=interval;
   input Bad Delinq Derog nInq Reason/level=nominal;
   target Job/level=nominal;
   ods output FitStatistics=fitstats;
   save file=outmodel;
quit;
```

Output 3.1.1 shows that the program ran locally and that four threads were used. The default number of threads is the number of processor cores in the computer. The listing also shows the values of the training parameters, the number of observations read (5,960), and the number of observations used in training (5,681). A total of 279 observations are missing the target value and are excluded from training.
Output 3.1.1 Output from PROC HPFOREST

The HPFOREST Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>SAMPSIO.HMEQ</td>
</tr>
</tbody>
</table>

Model Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables to Try</td>
<td>3 (Default)</td>
</tr>
<tr>
<td>Maximum Trees</td>
<td>100 (Default)</td>
</tr>
<tr>
<td>Inbag Fraction</td>
<td>0.6 (Default)</td>
</tr>
<tr>
<td>Prune Fraction</td>
<td>0 (Default)</td>
</tr>
<tr>
<td>Prune Threshold</td>
<td>0.1 (Default)</td>
</tr>
<tr>
<td>Leaf Fraction</td>
<td>0.00001 (Default)</td>
</tr>
<tr>
<td>Leaf Size Setting</td>
<td>1 (Default)</td>
</tr>
<tr>
<td>Leaf Size Used</td>
<td>1</td>
</tr>
<tr>
<td>Category Bins</td>
<td>30 (Default)</td>
</tr>
<tr>
<td>Interval Bins</td>
<td>100</td>
</tr>
<tr>
<td>Minimum Category Size</td>
<td>5 (Default)</td>
</tr>
<tr>
<td>Node Size</td>
<td>100000 (Default)</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>20 (Default)</td>
</tr>
<tr>
<td>Alpha</td>
<td>1 (Default)</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>5000 (Default)</td>
</tr>
<tr>
<td>Rows of Sequence to Skip</td>
<td>5 (Default)</td>
</tr>
<tr>
<td>Split Criterion</td>
<td>. Gini</td>
</tr>
<tr>
<td>Preselection Method</td>
<td>. Loh</td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td>. Valid value</td>
</tr>
</tbody>
</table>

Number of Observations

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
<td>5960</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>5681</td>
</tr>
</tbody>
</table>

Output 3.1.2 shows the baseline fit statistics.

Output 3.1.2 Baseline Fit Statistics Output

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Square Error</td>
<td>0.121</td>
</tr>
<tr>
<td>Misclassification Rate</td>
<td>0.580</td>
</tr>
<tr>
<td>Log Loss</td>
<td>1.460</td>
</tr>
</tbody>
</table>
The following statements print the first 10 observations of the table of fit statistics, which are shown in Output 3.1.3. The misclassification rate drops from 0.19539 to 0.01989 as the number of trees in the forest grows from 1 to 10.

```latex
proc print data=fitstats(obs=10);
run;
```

Output 3.1.3 First 10 Observations Fit Statistics Output

<table>
<thead>
<tr>
<th>Obs</th>
<th>NTrees</th>
<th>NLeaves</th>
<th>PredAll</th>
<th>PredOob</th>
<th>MiscAll</th>
<th>MiscOob</th>
<th>LogLossAll</th>
<th>LogLossOob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>762</td>
<td>0.0518</td>
<td>0.0957</td>
<td>0.19539</td>
<td>0.332</td>
<td>2.370</td>
<td>5.519</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1490</td>
<td>0.0334</td>
<td>0.0892</td>
<td>0.12727</td>
<td>0.321</td>
<td>0.695</td>
<td>4.755</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2192</td>
<td>0.0279</td>
<td>0.0827</td>
<td>0.08009</td>
<td>0.311</td>
<td>0.404</td>
<td>4.056</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2844</td>
<td>0.0245</td>
<td>0.0742</td>
<td>0.05967</td>
<td>0.285</td>
<td>0.321</td>
<td>3.211</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3516</td>
<td>0.0225</td>
<td>0.0695</td>
<td>0.04805</td>
<td>0.273</td>
<td>0.302</td>
<td>2.771</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4212</td>
<td>0.0211</td>
<td>0.0648</td>
<td>0.03925</td>
<td>0.252</td>
<td>0.293</td>
<td>2.320</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4954</td>
<td>0.0200</td>
<td>0.0613</td>
<td>0.03168</td>
<td>0.238</td>
<td>0.286</td>
<td>2.054</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5670</td>
<td>0.0195</td>
<td>0.0589</td>
<td>0.02412</td>
<td>0.227</td>
<td>0.285</td>
<td>1.811</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6364</td>
<td>0.0187</td>
<td>0.0557</td>
<td>0.02077</td>
<td>0.213</td>
<td>0.280</td>
<td>1.589</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>7078</td>
<td>0.0182</td>
<td>0.0540</td>
<td>0.01989</td>
<td>0.204</td>
<td>0.277</td>
<td>1.405</td>
</tr>
</tbody>
</table>

The following statements print the final row of the table of fit statistics, which are shown in Output 3.1.4. The misclassification rate is 0.00546 in the final model.

```latex
proc print data=fitstats(firstobs=100);
run;
```

Output 3.1.4 Last Observation Fit Statistics Output

<table>
<thead>
<tr>
<th>Obs</th>
<th>NTrees</th>
<th>NLeaves</th>
<th>PredAll</th>
<th>PredOob</th>
<th>MiscAll</th>
<th>MiscOob</th>
<th>LogLossAll</th>
<th>LogLossOob</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>68389</td>
<td>0.0159</td>
<td>0.0390</td>
<td>0.00546</td>
<td>0.112</td>
<td>0.276</td>
<td>0.526</td>
</tr>
</tbody>
</table>

The following code inputs the model that PROC HPFOREST created and outputs predictions for each observation in the input data set:

```latex
proc hp4score data=sampsio.hmeq;
   score file=outmodel out=scoreout3;
run;
```

Output 3.1.5 shows that PROC HP4SCORE was run on a single machine with four threads; 5,960 observations were read and output even though 279 of them have a missing target value.

Output 3.1.5 Performance Information

The HP4SCORE Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>
Output 3.1.5 continued

The following code computes the misclassification rate. Note that PROC MEANS excludes the observations that have missing target values.

```latex
\begin{verbatim}
data score;
  set scoreout3;
  if upcase(JOB) ne upcase(I JOB) then misclass=1;
  else misclass=0;
run;

proc means data=score(where=(JOB ne ''));
  var misclass;
run;
\end{verbatim}
```

Output 3.1.6 shows the output from PROC MEANS with a misclassification rate of 0.00546, the same as in the fit statistics table from PROC HPFOREST.

Output 3.1.6 Output from PROC MEANS with Misclassification Rate

The MEANS Procedure

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>5681</td>
<td>0.0054568</td>
<td>0.0736747</td>
<td>0</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Example 3.2: Variable Importance

This example compares loss reduction variable importance with random branch assignments (RBA). Measures of importance often inflate the importance of correlated variables at the expense of independent variables. RBA importance mitigates this effect more than other measures (Neville and Tan 2014).

The input variables $X_i, i = 1, 2, \ldots 12$, are generated as $X_i \sim \text{normal}(0,1)$, with correlation of 0.9 between pairs of X_1 to X_6 and all other pairs independent. The target variable Y is generated as

\[
W = 4X_1 + 4X_2 + 2X_3 + 2X_4 - 4X_7 - 4X_8 - 2X_9 - 2X_{10}
\]
\[
Y = W + \epsilon
\]
\[
\epsilon \sim \text{normal}(0, 1)
\]
The following code generates 10,000 observations for training and 10,000 observations for validation:

```sas
data cov;
  input x1-x6;
  datalines;
  1 0.9 0.9 0.9 0.9 0.9
  0.9 1 0.9 0.9 0.9 0.9
  0.9 0.9 1 0.9 0.9 0.9
  0.9 0.9 0.9 1 0.9 0.9
  0.9 0.9 0.9 0.9 1 0.9
  0.9 0.9 0.9 0.9 0.9 1
;  run;

%macro make_data(n=10000, nx=12, seed=54321, out=corr);
  proc simnormal data=cov
    out = osim(drop=Rnum)
    numreal = &n
    seed = &seed.;
  var x1-x6;
  run;

  data uncorr;
    call streaminit(&seed.);
    do i=1 to &n.;
      %do j = 7 %to &nx. ;
        x&j. = rand('normal', 0, 1);
      %end;
      e = rand('normal', 0, 1);
      output;
    end;
  run;

  data &out.;
    keep x: y;
  merge osim uncorr;
  y = 4*x1 + 4*x2 + 2*x3 + 2*x4
    - 4*x7 - 4*x8 - 2*x9 - 2*x10 + e;
  run;
%mend;
%make_data(n=10000, nx=12, seed=54323, out=train);
%make_data(n=10000, nx=12, seed=65437, out=valid);

data train;
  set train;
  is_valid = 0;
data valid;
  set valid;
  is_valid = 1;
data train_valid;
  set train valid;
run;
```
The following code runs PROC HPFOREST on the simulated data and outputs a table of loss reduction variable importance:

```sas
proc hpforest data=train_valid
  maxdepth=6 maxtrees=100 vars_to_try=8 leafsize=10;
  input x:/level=interval;
  target y/level=interval;
  partition var=is_valid (train=0, valid=1);
  ods output VariableImportance=loss_reduction_importance;
  save file="simModel.sav";
quit;

proc print data=loss_reduction_importance;
run;
```

In the following code, PROC HP4SCORE imports the forest model that was created by PROC HPFOREST and computes the RBA importance based on the validation data:

```sas
proc hp4score data=valid;
  ods output VariableImportance=rba_importance_valid;
  performance threads=1;
  importance file="simModel.sav" role=valid out=_NULL_
    var=(x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12);
run;

proc print data=rba_importance_valid;
run;
```

Output 3.2.1 shows the loss reduction variable importance from PROC HPFOREST. The variables are ranked in the correct order: \(X_1, X_2, X_7,\) and \(X_8\) are ranked higher than \(X_3, X_4, X_9,\) and \(X_{10}\), which in turn are ranked higher than the variables that do not determine the target \(Y\). However, the bias for correlated input variables is apparent in every loss measure. For example, the importance of \(X_1\) and \(X_2\) based on the mean square error (MSE) is 61 and 49 respectively, compared to 11 for \(X_7\) and \(X_8\) even though \(X_7\) and \(X_8\) are equally important in determining the target \(Y\). The ratio is \((61 + 49)/(11 + 11) = 5\) for the mean square error (MSE) and \(3.2\) for the average absolute error (AAE). For validation data, these values increase to 5.6 and 3.7.

Output 3.2.1 Loss Reduction Variable Importance

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>NRules</th>
<th>MSE</th>
<th>AAE</th>
<th>MSEOOD</th>
<th>AAOEOD</th>
<th>MSEValid</th>
<th>AAValid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1</td>
<td>955</td>
<td>61.17811</td>
<td>2.484819</td>
<td>59.83483</td>
<td>2.401652</td>
<td>61.26276</td>
<td>2.421626</td>
</tr>
<tr>
<td>2</td>
<td>x2</td>
<td>964</td>
<td>48.73350</td>
<td>1.972620</td>
<td>47.87615</td>
<td>1.906176</td>
<td>48.69894</td>
<td>1.931309</td>
</tr>
<tr>
<td>3</td>
<td>x7</td>
<td>1484</td>
<td>11.03954</td>
<td>0.700361</td>
<td>9.89977</td>
<td>0.592789</td>
<td>9.88596</td>
<td>0.587833</td>
</tr>
<tr>
<td>4</td>
<td>x8</td>
<td>1577</td>
<td>10.53590</td>
<td>0.688316</td>
<td>9.59638</td>
<td>0.589516</td>
<td>9.61320</td>
<td>0.589553</td>
</tr>
<tr>
<td>5</td>
<td>x3</td>
<td>262</td>
<td>7.67508</td>
<td>0.312884</td>
<td>7.24842</td>
<td>0.288919</td>
<td>7.63209</td>
<td>0.300699</td>
</tr>
<tr>
<td>6</td>
<td>x4</td>
<td>379</td>
<td>6.96668</td>
<td>0.327308</td>
<td>6.54167</td>
<td>0.289813</td>
<td>6.42698</td>
<td>0.278946</td>
</tr>
<tr>
<td>7</td>
<td>x6</td>
<td>87</td>
<td>0.25129</td>
<td>0.014611</td>
<td>0.13346</td>
<td>0.007387</td>
<td>0.10053</td>
<td>0.004822</td>
</tr>
<tr>
<td>8</td>
<td>x9</td>
<td>172</td>
<td>0.27391</td>
<td>0.020281</td>
<td>0.10890</td>
<td>0.006877</td>
<td>0.11964</td>
<td>0.008350</td>
</tr>
<tr>
<td>9</td>
<td>x10</td>
<td>186</td>
<td>0.26835</td>
<td>0.021811</td>
<td>0.08897</td>
<td>0.006443</td>
<td>0.07500</td>
<td>0.004838</td>
</tr>
<tr>
<td>10</td>
<td>x5</td>
<td>72</td>
<td>0.14623</td>
<td>0.010539</td>
<td>0.07912</td>
<td>0.004914</td>
<td>0.07776</td>
<td>0.005193</td>
</tr>
<tr>
<td>11</td>
<td>x11</td>
<td>3</td>
<td>0.00209</td>
<td>0.000132</td>
<td>-0.00282</td>
<td>-0.000130</td>
<td>-0.00152</td>
<td>-0.000088270</td>
</tr>
<tr>
<td>12</td>
<td>x12</td>
<td>4</td>
<td>0.00171</td>
<td>0.000189</td>
<td>-0.00320</td>
<td>-0.000165</td>
<td>-0.00199</td>
<td>-0.000096393</td>
</tr>
</tbody>
</table>
Output 3.2.2 shows the RBA variable importance based on the validation data from PROC HP4SCORE. Again the variables are ranked correctly and the bias for correlated input variables is apparent. However, the bias is much smaller in RBA than in loss reduction. The values for X_1 and X_2 divided by those for X_7 and X_8 is 2.1 instead of 5.6 for MSE, and is 1.7 instead of 3.2 for AAE. Although not perfect, the RBA is evidently much less influenced by correlations and this is the reason for recommending them. Neville and Tan (2014) present evidence that the RBA method is also less influenced than Breiman’s method (Breiman and Cutler 2003) as coded in the randomForest() function in R (Liaw and Wiener 2002).

Output 3.2.2 Random Branch Assignments Variable Importance

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>MSE</th>
<th>AAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_1</td>
<td>32.64192</td>
<td>2.14331</td>
</tr>
<tr>
<td>2</td>
<td>x_2</td>
<td>21.59520</td>
<td>1.571426</td>
</tr>
<tr>
<td>3</td>
<td>x_7</td>
<td>12.86978</td>
<td>1.11280</td>
</tr>
<tr>
<td>4</td>
<td>x_8</td>
<td>12.47144</td>
<td>1.08268</td>
</tr>
<tr>
<td>5</td>
<td>x_4</td>
<td>1.66376</td>
<td>0.151793</td>
</tr>
<tr>
<td>6</td>
<td>x_3</td>
<td>1.45702</td>
<td>0.141694</td>
</tr>
<tr>
<td>7</td>
<td>x_9</td>
<td>0.36474</td>
<td>0.037843</td>
</tr>
<tr>
<td>8</td>
<td>x_{10}</td>
<td>0.31070</td>
<td>0.032483</td>
</tr>
<tr>
<td>9</td>
<td>x_6</td>
<td>0.03927</td>
<td>0.001427</td>
</tr>
<tr>
<td>10</td>
<td>x_5</td>
<td>0.03597</td>
<td>0.003694</td>
</tr>
<tr>
<td>11</td>
<td>x_{11}</td>
<td>0.00132</td>
<td>0.000089926</td>
</tr>
<tr>
<td>12</td>
<td>x_{12}</td>
<td>0.00055</td>
<td>0.000072972</td>
</tr>
</tbody>
</table>

Example 3.3: Importance of Variable Values

This example illustrates how to plot the importance of individual observations against the values of the variable being evaluated. The plot can suggest whether certain values are more influential than others. The importance of a single observation is its contribution to the importance of the variable and can be computed from information in the output data set.

This example uses a binary target variable SPAM, which can take the value 0 or 1. PROC HP4SCORE creates variable names P_SPAM0 and P_SPAM1 for the posterior probabilities. The margin function equals the posterior probability of the actual value minus the posterior probability of the other value: P_SPAM0 minus P_SPAM1 for an observation in which SPAM has the value 0. To compute the importance of variable X for an observation, subtract the margin for the row that has Variable equal to X from the margin of the preceding row that has Variable blank. This is done in a DATA step in the example.

The example uses the Spambase data that are available from the UCI Machine Learning Repository (Lichman 2013) at http://archive.ics.uci.edu/ml/datasets/Spambase. The following SAS statements create a SAS data set from a URL. The observations represent emails, and the target is 1 if the email is an unsolicited commercial email. The value of an input variable whose name is of the form

1Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising, products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of any advertising, products, or other materials on, or available from, such websites or resources.
WF_string is the percentage of words in the email that match string. The value of an input variable whose name is of the form CF_char is the percentage of characters in the email that match char. An ID variable is added and is used to merge the original values of the input variables with the predicted values.

data spambase;
%let url=//archive.ics.uci.edu/ml/machine-learning-databases;
infile "http:\url/spambase/spambase.data" device=url delimiter=',';
input wf_make wf_adress wf_all wf_3d wf_our
 wf_over wf_remove wf_internet wf_order wf_mail
 wf_receive wf_will wf_people wf_report wf_addresses
 wf_free wf_business wf_email wf_you wf_credit
 wf_your wf_font wf_000 wf_money wf_hp
 wf_hpl wf_george wf_650 wf_lab wf_labs
 wf_telnet wf_857 wf_data wf_415 wf_85
 wf_technology wf_1999 wf_parts wf_pm wf_direct
 wf_cs wf_meeting wf_original wf_project wf_re
 wf_edu wf_table wf_conference
 cf_semicolon cf_parenthese cf_bracket cf_exclamation
 cf_dollar cf_pound
 average longest total
 spam;
 id = _n_;
run;

The following code runs PROC HPFOREST on the Spambase data set; saves a model in a binary file spamModel.sav; and saves the loss reduction variable importance in a SAS table, loss_reduction_importance.

proc hpforest data=spambase maxtrees=100 vars_to_try=26;
 input w: c: average longest total/level=interval;
 target spam/level=binary;
 id id;
 ods output VariableImportance=loss_reduction_importance;
 save file="spamModel.sav";
quit;

The following statements print the first five observations in loss_reduction_importance, which are shown in Output 3.3.1:

proc print data=loss_reduction_importance(obs=5);
run;

Output 3.3.1 Loss Reduction Variable Importance

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>NRules</th>
<th>Gini</th>
<th>Margin</th>
<th>GiniOOB</th>
<th>MarginOOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cf_dollar</td>
<td>506</td>
<td>0.092378</td>
<td>0.184756</td>
<td>0.08653</td>
<td>0.17882</td>
</tr>
<tr>
<td>2</td>
<td>wf_remove</td>
<td>360</td>
<td>0.052379</td>
<td>0.104758</td>
<td>0.05021</td>
<td>0.10191</td>
</tr>
<tr>
<td>3</td>
<td>cf_exclamation</td>
<td>1140</td>
<td>0.053544</td>
<td>0.107088</td>
<td>0.04379</td>
<td>0.09703</td>
</tr>
<tr>
<td>4</td>
<td>wf_your</td>
<td>986</td>
<td>0.043859</td>
<td>0.087717</td>
<td>0.03291</td>
<td>0.07702</td>
</tr>
<tr>
<td>5</td>
<td>wf_free</td>
<td>511</td>
<td>0.031140</td>
<td>0.062280</td>
<td>0.02491</td>
<td>0.05625</td>
</tr>
</tbody>
</table>
The most important variables that are based on loss reduction are cf_dollar, wf_your, and wf_remove. The following statements compute the RBA variable importance on these three variables. The output data set (named Scored) contains four observations for each observation input from the Spambase data set. One output observation contains the standard predictions, and the other three contain modified predictions: one modification for each of the three variables being evaluated. The ID variable is used later to merge the original values of these variables into the Scored data set. The THREADS=1 option in the PERFORMANCE statement ensures that the same random branch assignments are made if you run the code again.

```plaintext
proc hp4score data=spambase;
   ods output VariableImportance=rba_importance;
   id id;
   performance threads=1;
   importance file="spamModel.sav" out=scored
      var=(cf_dollar wf_your wf_remove);
run;
```

The following DATA step uses the margin loss function to compute the importance of each observation. For a binary target variable, the margin loss function is simply the predicted probability of the actual target value minus the predicted probability of the other target value.

```plaintext
data importance;
   set scored;
   retain baseline 0;
   keep id importance variable;
   if variable="" then baseline=P_spam1 - P_spam0;
   else if variable ne "" then do;
      importance = baseline-(P_spam1 - P_spam0);
      if spam = 0 then importance = -importance;
      output;
   end;
run;
```

The following macro merges the importance of variable Varname for an observation with the observed value of Varname and then plots the result:

```plaintext
%macro actual_vs_importance(varname=, dataout=);
   data actual;
      set spambase;
      keep &varname id;
   data varimp;
      set importance;
      keep id importance;
      if variable="&varname" then output;
   proc sort data=varimp; by id;
   data &dataout.;
      merge actual varimp;
      by id;
   run;

   proc sgplot data=&dataout.;
      title "&varname importance vs &varname values";
```

Example 3.3: Importance of Variable Values
Figure 3.3.2 shows the importance of variable cf_dollar for each observation plotted against the values of cf_dollar. Most of the points have positive importance, indicating that all values of cf_dollar are important. A polynomial regression of degree 3 is superimposed. The curve rises slowly from cf_dollar = 0 to about 1.8, suggesting that values from 0 to 1.8 are increasingly influential for the prediction, and values greater than 1.8 have about the same influence. However, conclusions about values greater than 1.8 might be unreliable because the observations are relatively few.

Output 3.3.2 The Importance versus Actual Values of cf_dollar
Figure 3.3.3 shows the importance of the variable wf_your for each observation plotted against the values of wf_your. The large number of observations that have values of wf_your up to 6 suggests that the rise of influence of wf_your is more reliable than the rise of influence for cf_dollar. However, the downturn of influence for larger values should probably be ignored because it is based on few observations.

Output 3.3.3 The Importance versus Actual Values of wf_your

![Graph showing the importance of wf_your vs its values](image)

Figure 3.3.4 is the corresponding plot for the variable wf_remove and shows more dramatically what can go wrong when extreme values of the variable are rare. The polynomial regression curve rises steeply at the right side of the plot. This rise is a random result and does not represent a real relationship. It is based on two observations. The importance values of those two observations can change significantly with different values of the SEED= option in the PROC HP4SCORE statement. A proper study of the relationship between the importance of a variable and the values of the variable would require you to run PROC HP4SCORE several times with different values of the SEED= option.
References

Chapter 4
The HPBNET Procedure

Contents
Overview: HPBNET Procedure ... 56
PROC HPBNET Features ... 56
Getting Started: HPBNET Procedure ... 57
 Structure Learning ... 57
 Probability Table ... 58
 Variable Selection ... 59
Syntax: HPBNET Procedure .. 60
 PROC HPBNET Statement .. 60
 CODE Statement ... 64
 FREQ Statement ... 65
 ID Statement ... 65
 INPUT Statement ... 65
 OUTPUT Statement .. 66
 PARTITION Statement .. 66
 PERFORMANCE Statement .. 67
 TARGET Statement .. 67
Details: HPBNET Procedure .. 68
 Independence Tests ... 68
 Variable Selection ... 69
 Structure Learning .. 70
 Parameter Learning ... 71
Examples: HPBNET Procedure ... 71
 Example 4.1: Naive Bayesian Network 71
 Example 4.2: Tree-Augmented Naive Bayesian Network 72
 Example 4.3: Parent-Child Bayesian Network 73
 Example 4.4: Markov Blanket .. 73
 Example 4.5: Bayesian Network-Augmented Naive Bayesian Network 74
 Example 4.6: Model Selection .. 75
References .. 77
Overview: HPBNET Procedure

The HPBNET procedure is a high-performance procedure that learns a Bayesian network from an input data set. A Bayesian network is a directed acyclic graphical model in which nodes represent random variables and the links between nodes represent conditional dependency of the random variables. Because the Bayesian network provides conditional independence structure and a conditional probability table at each node, the model has been used successfully as a predictive model in supervised data mining. For more information about Bayesian networks, see Pearl (1988).

The HPBNET procedure can learn different types of Bayesian network structures, including naive, tree-augmented naive (TAN), Bayesian network-augmented naive (BAN), parent-child Bayesian network, and Markov blanket. PROC HPBNET performs efficient variable selection through independence tests, and it selects the best model automatically from the specified parameters. It also generates SAS DATA step code to score a data set.

The HPBNET procedure runs in either single-machine mode or distributed mode.

NOTE: Distributed mode requires SAS High-Performance Data Mining.

PROC HPBNET Features

The HPBNET procedure has the following features:

- structure learning through efficient local learning algorithms
- efficient variable selection through independence tests
- automatic selection of the best parameters by using a validation data subset
- learning of different types of Bayesian network structures
- handling of both nominal and interval input variables
- binning of the interval input variables
- handling of missing values
- multithreading during the training and scoring phases

Because the HPBNET procedure is a high-performance analytical procedure, it also does the following:

- enables you to run in distributed mode on a cluster of machines that distribute the data and the computations, if you have the SAS High-Performance Data Mining license.
- enables you to run in single-machine mode on the server where SAS is installed
- exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”
Getting Started: HPBNET Procedure

Consider a study of the analgesic effects of treatments on elderly patients who have neuralgia. Two test treatments and a placebo are compared. The response variable is whether the patient reported pain or not. Researchers recorded the age and gender of 60 patients and the duration of complaint before the treatment began. The following DATA step creates the data set Neuralgia:

```plaintext
Data Neuralgia;
  input Treatment $ Sex $ Age Duration Pain $ @@;
  datalines;
  P F 68 1 No B M 74 16 No P F 67 30 No
  P M 66 26 Yes B F 67 28 No B F 77 16 No
  A F 71 12 No B F 72 50 No B F 76 9 Yes
  A M 71 17 Yes A F 63 27 No A F 69 18 Yes
  B F 66 12 No A M 62 42 No P F 64 1 Yes
  A F 64 17 No P M 74 4 No A F 72 25 No
  P M 70 1 Yes B M 66 19 No B M 59 29 No
  A F 64 30 No A M 70 28 No A M 69 1 No
  B F 78 1 No P M 83 1 Yes B F 69 42 No
  B M 75 30 Yes P M 77 29 Yes P F 79 20 Yes
  A M 70 12 No A F 69 12 No B F 65 14 No
  B M 70 1 No B M 67 23 No A M 76 25 Yes
  P M 78 12 Yes B M 77 1 Yes B F 69 24 No
  P M 66 4 Yes P F 65 29 No P M 60 26 Yes
  A M 78 15 Yes B M 75 21 Yes A F 67 11 No
  P F 72 27 No P F 70 13 Yes A M 75 6 Yes
  B F 65 7 No P F 68 27 Yes P M 68 11 Yes
  P M 67 17 Yes B M 70 22 No A M 65 15 No
  P F 67 1 Yes A M 67 10 No P F 72 11 Yes
  A F 74 1 No B M 80 21 Yes A F 69 3 No
```

The Neuralgia data set contains five variables: Treatment, Sex, Age, Duration, and Pain. The last variable, Pain, is the target variable. Pain=Yes indicates that the patient felt pain, and Pain=No indicates no pain. The variable Treatment is a nominal variable that has three levels: A and B represent the two test treatments, and P represents the placebo treatment. The gender of the patients is indicated by the nominal variable Sex. The variable Age is the age of the patients, in years, when treatment began. The duration of complaint, in months, before the treatment began is indicated by the variable Duration.

Structure Learning

The following statements use the HPBNET procedure to learn a Bayesian network with Treatment and Sex as nominal variables and Age and Duration as interval variables. The two interval variables are binned into three equal-width levels.
The following statements produce Figure 4.1, which shows the network structure that PROC HPBNET has learned. There are three variables in the network: Treatment is the parent of Pain, and Pain is the parent of Age. From the structure, you can infer that Pain is dependent on Treatment and is also dependent on Age, but is (conditionally) independent of Sex or Duration.

```r
proc hpnet data=Neuralgia numbin=3;
  target Pain;
  input Treatment Sex/level=NOM;
  input Age Duration/level=INT;
  output network=network varselect=varselect;
run;
```

```r
proc print data=network noobs label;
  var _parentnode_ _childnode_;
  where _type_="STRUCTURE";
run;
```

Figure 4.1 Network Structure

<table>
<thead>
<tr>
<th>Parent Node</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Pain</td>
</tr>
<tr>
<td>Pain</td>
<td>Age</td>
</tr>
</tbody>
</table>

Probability Table

The following statements produce Figure 4.2, which shows the conditional probability table for each node in the network. You can use these probability tables for scoring or inferences or both. The conditional probability tables together with the network structure determine the Bayesian network.

```r
proc print data=network noobs label;
  var _parentnode_ _parentcond_ _childnode_ _childcond_ _value_;
  where _type_="PROBABILITY";
run;
```
Variable Selection

The network in Figure 4.1 does not include variables Sex or Duration, because PROC HPBNET automatically selects those variables by using independence tests. The following statements produce Figure 4.3, which shows the variable selection results. PROC HPBNET removes Duration from the network because the p-value of the chi-square and G-square statistics of Duration is greater than 0.05 (the default value for the ALPHA= option, which is not specified). Sex is conditionally independent of Pain given Treatment; therefore, PROC HPBNET also removes it from the network.

```latex
proc print data=varselect noobs label;
run;
```

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Selected</th>
<th>Chi-Square Statistics</th>
<th>G-Square Statistics</th>
<th>P-Value of Chi-Square Statistics</th>
<th>P-Value of G-Square Statistics</th>
<th>Mutual Information</th>
<th>Degree of Freedom</th>
<th>Conditional Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>NO</td>
<td>7.2000</td>
<td>7.5945</td>
<td>0.06579</td>
<td>0.05518</td>
<td>0.34481</td>
<td>3</td>
<td>Treatment</td>
</tr>
<tr>
<td>Treatment</td>
<td>YES</td>
<td>13.7143</td>
<td>14.0230</td>
<td>0.00105</td>
<td>0.00090</td>
<td>0.45652</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>YES</td>
<td>14.6000</td>
<td>15.2712</td>
<td>0.00068</td>
<td>0.00048</td>
<td>0.47404</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>NO</td>
<td>2.2579</td>
<td>3.3485</td>
<td>0.32337</td>
<td>0.18745</td>
<td>0.23298</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4: The HPBNET Procedure

Syntax: HPBNET Procedure

The following statements are available in the HPBNET procedure:

```
PROC HPBNET <options> ;
    TARGET variable </ORDER=order> ;
    INPUT variables </LEVEL=level> ;
    ID variables ;
    FREQ variable ;
    PARTITION <options> ;
    PERFORMANCE <options> ;
    OUTPUT <options> ;
    CODE FILE=’external-file’ | fileref ;
```

The PROC HPBNET statement, the TARGET statement, and the INPUT statement are required. You can specify only one TARGET statement, but you can specify multiple INPUT statements. The following sections describe the PROC HPBNET statement and then describe the other statements in alphabetical order.

PROC HPBNET Statement

```
PROC HPBNET <options> ;
```

The PROC HPBNET statement invokes the procedure. Table 4.1 summarizes important options in the PROC HPBNET statement by function.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Options</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data set</td>
</tr>
<tr>
<td>NUMBIN=</td>
<td>Specifies the binning number for interval variables</td>
</tr>
<tr>
<td>PRESCREENING=</td>
<td>Specifies the initial screening for the input variables</td>
</tr>
<tr>
<td>VARSELECT=</td>
<td>Specifies the selection for the input variables</td>
</tr>
<tr>
<td>MISSINGINT=</td>
<td>Specifies the missing value handling for interval variables</td>
</tr>
<tr>
<td>MISSINGNOM=</td>
<td>Specifies the missing value handling for nominal variables</td>
</tr>
<tr>
<td>Independence Test Options</td>
<td></td>
</tr>
<tr>
<td>INDEPTEST=</td>
<td>Specifies the methods for independence tests</td>
</tr>
<tr>
<td>ALPHA=</td>
<td>Specifies the significance level for independence tests by using chi-square or G-square statistics</td>
</tr>
<tr>
<td>MIALPHA=</td>
<td>Specifies the significant level for independence tests by using mutual information</td>
</tr>
<tr>
<td>Structure Learning Options</td>
<td></td>
</tr>
<tr>
<td>STRUCTURE=</td>
<td>Specifies the network structure types</td>
</tr>
<tr>
<td>PARENTING=</td>
<td>Specifies the structure learning methods</td>
</tr>
</tbody>
</table>
You can specify the following options:

ALPHA=number

specifies the significance level for independence tests by using chi-square or G-square statistics. The valid range is 0 to 1, inclusive. If you want to choose the best model among several, you can specify up to five numbers, separated by spaces. If you specify multiple numbers but you do not specify the BESTMODEL option, PROC HPBNET uses the first number and ignores the remaining numbers. By default, \(\text{ALPHA} = 0.05 \).

BESTMODEL

requests that the best model be selected by using a validation data subset. You can specify the validation data subset by using the PARTITION statement. If you specify this option, you can specify multiple values for the ALPHA=, PRESCREENING=, VARSELECT=, STRUCTURE=, and PARENTING= options. PROC HPBNET uses the misclassification errors on the validation data to automatically decide the best set of parameter values among these options. By default, a best model is not selected.

DATA=SAS-data-set

names the SAS data set that contains the training and possibly the validation observations to be used by PROC HPBNET to train the Bayesian network. The default input data set is the most recently created data set. If PROC HPBNET executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel. For information about the alongside-the-database model, see the section “Alongside-the-Database Execution” on page 14.

INDEPTEST=ALL | CHIGSQUARE | CHISQUARE | GSQUARE | MI

specifies the method for independence tests. You can specify the following values:

ALL

uses the chi-square, the G-square statistics, and the normalized mutual information for independence tests. A variable is independent of the target if both the \(p \)-values of the chi-square and the G-square statistics are greater than the specified \(\text{ALPHA} = \) value and the normalized mutual information is less than the specified \(\text{MIALPHA} = \) value.

CHIGSQUARE

uses both the chi-square and the G-square statistics for independence tests. A variable is independent of the target if both the \(p \)-values of the chi-square and the G-square statistics are greater than the specified \(\text{ALPHA} = \) value.
Chapter 4: The HPBNET Procedure

CHISQUARE uses the chi-square statistics for independence tests. A variable is independent of the target if the \(p \)-value of the statistics is greater than the specified ALPHA= value.

GSQUARE uses the G-square statistics for independence tests. A variable is independent of the target if the \(p \)-value of the statistics is greater than the specified ALPHA= value.

MI uses the normalized mutual information for independence tests. A variable is independent of the target if the normalized mutual information is less than the specified MIALPHA= value.

By default, INDEPTEST=CHIGSQUARE.

MAXPARENTS=\(\text{integer} \)
specifies the maximum number of parents that is allowed for each node in the network structure. The valid range is 1 to 16, inclusive. If you specify the BESTMODEL option, PROC HPBNET calculates from 1 to \(\text{integer} \) and decides the best number of parents.

By default, MAXPARENTS=5.

MIALPHA=\(\text{number} \)
specifies the threshold for independence tests by using mutual information. The valid range is 0 to 1, inclusive.

By default, MIALPHA = 0.05.

MISSINGINT=\(\text{IGNORE | IMPUTE} \)
specifies the missing value handling for all the interval variables. You can specify the following values:

IGNORE ignores the observations that have missing values in any of the interval variables.

IMPUTE replaces the missing values in any interval variable by the mean of the variable.

By default, MISSINGINT=IGNORE.

MISSINGNOM=\(\text{IGNORE | IMPUTE | LEVEL} \)
specifies the missing value handling for all the nominal variables. You can specify the following values:

IGNORE ignores the observations that have missing values in any of the nominal variables.

IMPUTE replaces the missing values in any nominal variable by the mode of the variable.

LEVEL treats the missing values in any nominal variable as a separate level of the variable.

By default, MISSINGNOM=IGNORE.

NUMBIN=\(\text{integer} \)
NBIN=\(\text{integer} \)
specifies the number of binning levels for all interval variables. PROC HPBNET bins each interval variable into \(\text{integer} \) equal-width levels. The valid range of \(\text{integer} \) is 2 to 1024, inclusive.

By default, NUMBIN=5.
STRUCTURE=MB | NAIVE | PC | TAN

specifies the network structure. Together with the MAXPARENTS= option, this option determines the network structure that the procedure learns from the training data. You can specify the following values:

MB
learns the Markov blanket of the target variable. The Markov blanket includes the parents, the children, and the other parents of the children. After learning the Markov blanket, PROC HPBNET further determines the parents of the target, the links from the parents to the children, and the links among the children. When you specify STRUCTURE=MB, the procedure learns the Markov blanket regardless of the values of PRESCREENING= and VARSELECT= options.

NAIVE
assumes a naive Bayesian network structure (that is, the target has a direct link to each input variable). If MAXPARENTS=1, the structure is a naive Bayesian network (NB). If MAXPARENTS is greater than 1, the structure is a Bayesian network-augmented naive Bayesian network (BAN).

PC
learns the parent-child Bayesian network structure (PC). PC differs from the NAIVE structure in that some input variables could be learned as the parents of the target variable. In addition, links from the parents to the children and among the children are also possible in PC.

TAN
learns the tree-augmented naive Bayesian network structure. The TAN structure includes a direct link from the target to each input variable plus a tree structure among the input variables.

If you want to choose the best structure among several structures, you can specify multiple values in any combination, separated by spaces, and also specify the BESTMODEL option. If you specify multiple structures but you do not specify the BESTMODEL option, PROC HPBNET uses the first value that you specify, and ignores the rest.

By default, STRUCTURE=PC.

PARENTING=BESTONE | BESTSET

specifies the algorithm for orienting the network structure. You can specify the following values:

BESTONE
uses a greedy approach to determine the parents of each node; that is, for each node, the best candidate is added as a parent of the node in each iteration.

BESTSET
determines the best set of variables among possible candidate sets as the parents of each node; that is, instead of adding one variable in an iteration, PROC HPBNET tests multiple sets of variables together and chooses the best set as the parents of the node.

If you want to choose between the two methods, you can specify both of them and also specify the BESTMODEL option. If you specify both methods but you do not specify the BESTMODEL option, PROC HPBNET uses the first specified method, and ignores the other.

By default, PARENTING=BESTSET.
Chapter 4: The HPBNET Procedure

PRESCREENING=0 | 1
specifies the initial screening for the input variables. You can specify the following values:

0 uses all the input variables.
1 uses only the input variables that are dependent on the target.

If you want to choose the best model with or without prescreening, you can specify PRESCREENING=0 1 or PRESCREENING= 1 0 and also specify the BESTMODEL option. If you specify both but you do not specify the BESTMODEL option, PROC HPBNET uses the first specified value, and ignores the other.

By default, PRESCREENING=1.

VARESELECT=0 | 1 | 2 | 3
specifies the selection for the input variables beyond the prescreening. You can specify the following values:

0 uses all input variables that remain after the initial screening is performed as specified in the PRESCREENING= option.
1 tests each input variable for conditional independence of the target variable given any other input variable. It uses only the variables that are conditionally dependent on the target given any other input variable.
2 tests each input variable further for conditional independence of the target variable given any subset of other input variables. It uses only the variables that are conditionally dependent on the target given any subset of other input variables.
3 determines the Markov blanket of the target variable and uses only the variables in the Markov blanket.

If you specify VARESELECT=1, 2, or 3, PROC HPBNET automatically tests each input variable for unconditional independence of the target regardless of the value of the PRESCREENING= option. If there are no variables left at a particular variable selection level, PROC HPBNET rolls back to the previous level. For example, if you specify VARESELECT=3 and there are no variables in the Markov blanket of the target, PROC HPBNET uses the variables from the previous level, VARESELECT=2.

If you want to choose the best model among different levels of variable selections, you can specify any combination of values for the VARESELECT= option and also specify the BESTMODEL option. If you specify multiple values for the VARESELECT= but you do not specify the BESTMODEL option, PROC HPBNET uses the first specified value, and ignores the remaining values.

By default, VARESELECT=1.

CODE Statement

```plaintext
CODE FILE= 'external-file' | fileref ;
```

The CODE statement is optional in PROC HPBNET. If you use a CODE statement, score code is generated and stored in a file that can be used for scoring purposes. You can specify multiple CODE statements.
FREQ Statement

FREQ variable;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency of occurrence for each observation. The HPBNET procedure treats each observation as if it appeared \(n \) times, where \(n \) is the value of the variable for the observation. If \(n \) is not an integer, it is truncated to an integer. If \(n \) is less than 1 or is missing, the observation is ignored. When the FREQ statement is not specified, each observation is assigned a frequency of 1.

ID Statement

ID variables;

The optional ID statement lists one or more variables from the input data set to be transferred to the prediction output data set. The ID statement accepts both numeric and character variables. The variables in an ID statement can also appear in any other statements.

To avoid data duplication for large data sets, by default PROC HPBNET includes only the target variable from the input data set in the prediction output data set. Therefore, you can use the ID statement to copy variables from the input data set to the prediction output data set.

INPUT Statement

INPUT variables </LEVEL=level> ;

The INPUT statement specifies one or more variables as input variables. You can specify multiple INPUT statements. PROC HPBNET does not support duplicate input variables. If the INPUT statement contains a duplicate variable, PROC HPBNET returns an error message and then exits. You can specify the following option in each INPUT statement:

LEVEL=NOM | INT
LEVEL=NOMINAL | INTERVAL

specifies the type of all the variables in the current INPUT statement. You can specify the following options:

NOM treats all the variables in the current INPUT statement as nominal variables.
INT treats all the variables in the current INPUT statement as interval variables.

By default, LEVEL=NOM.
OUTPUT Statement

OUTPUT < options > ;

The OUTPUT statement specifies the outputs from the procedure. You can use the following options in the OUTPUT statement.

FIT=SAS-data-set
names the SAS data set that contains the fit statistic (for example, the number of nodes and links of the network, and the Bayesian information criterion score of the network).

NETWORK=SAS-data-set
names the SAS data set that contains the network structure and the probability distributions.

PARAMETER=SAS-data-set
names the SAS data set that contains parameter values for the resulting model.

PRED=SAS-data-set
names the SAS data set that contains the predicted probabilities for the input data.

VALIDINFO=SAS-data-set
names the SAS data set that contains validation results.

VARINFO=SAS-data-set
names the SAS data set that contains the variable information such as number of levels, number of missing values, and so on.

VARLEVEL=SAS-data-set
names the SAS data set that contains the details of each level of the variables.

VARORDER=SAS-data-set
names the SAS data set that contains the order of the input variables.

VARSELECT=SAS-data-set
names the SAS data set that contains the variable selection results.

PARTITION Statement

PARTITION ROLEVAR=variable (TRAIN="value" | VALIDATE="value") ;

PARTITION FRACTION (VALIDATE=number | SEED=integer) ;

The PARTITION statement specifies how to divide the input data set into a training subset and a validation subset.

The statement implements two alternate methods of specifying the split between the training and validation data. Either you can explicitly specify training observations and validation observations by specifying ROLEVAR=variable, where variable is a variable in the input data set, or you can request that an approximate fraction of the input data set be used for validation observations by specifying FRACTION (VALIDATE=number). You can specify one, and only one, of the following options:
ROLEVAR=variable (TRAIN="value" | VALIDATE="value")
specifies that the variable in the input data set be used to decide whether an observation is used for
training or for validation. The variable is treated as a nominal variable. You can request that the value
be used to identify training observations or validation observations or both. PROC HPBNET uses
an observation for training if the value of variable equals "value" in the TRAIN= suboption and for
validation if the value of variable equals "value" in the VALIDATE= suboption.

By default, TRAIN="1" and VALIDATE="0".

FRACTION (VALIDATE=number | SEED=integer)
specifies the approximate fraction of the input data set to be used for validation. You can specify the
following suboptions:

VALIDATE=number specifies the approximate fraction of the data set to be used as validation
observations. (The remaining data are used as training observations.) The valid
range of number is 0 to 1, inclusive.

SEED=integer specifies the random seed for partitioning the input data. Any integer is valid. When
SEED=0, PROC HPBNET uses the current system time as the seed.

The split between training and validation observations can only approximate the requested fraction
because that fraction is used as a cutoff value for a random number generator to determine the actual
split. If you require a more accurate split or a split that is guaranteed to be identical across different
distributed computing environments, you must use the ROLEVAR option to specify the split explicitly.

By default, VALIDATE=0.33 and SEED=12345.
FMTDESC orders the levels of the target in descending order based on the formatted values.

If you define a user-defined format for the target variable and you specify ORDER=DESC or ORDER=ASC, PROC HPBNET prints a warning message and uses the corresponding FMTDESC or FMTASC value instead.

By default, ORDER=DESC.

Details: HPBNET Procedure

Independence Tests

Both variable selection and structure learning require either independence tests between two variables or conditional independence tests given some other variables. PROC HPBNET supports independence tests by using the chi-square statistic, G-square statistic, normalized mutual information, or some combination of them.

Given two nominal variables X and Y (or interval variables after binning) that have levels r and c, respectively, the chi-square statistic is computed as

\[
\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}
\]

where \(O_{ij} \) is an observed frequency in a cell of the contingency table of the two variables and \(E_{ij} \) is the expected frequency of the cell. The degree of freedom for the test is \((r - 1) \times (c - 1) \). If the \(p \)-value of the test statistic is greater than the specified significance level, the two variables are independent.

Similarly, the G-square statistic is calculated as

\[
G^2 = 2 \sum_{i=1}^{r} \sum_{j=1}^{c} O_{ij} \ln \left(\frac{O_{ij}}{E_{ij}} \right)
\]

where \(O_{ij} \) is an observed frequency, \(E_{ij} \) is the expected frequency, and the degree of freedom for the test is \((r - 1) \times (c - 1) \). If the \(p \)-value of the test statistic is greater than the specified significance level, the two variables are independent.

The mutual information between X and Y is defined as

\[
I(X, Y) = \sum_{x=1}^{r} \sum_{y=1}^{c} p(x, y) \ln \left(\frac{p(x, y)}{p(x)p(y)} \right)
\]
where \(p(x, y) = \frac{O_{xy}}{N} \) is the joint distribution function of X and Y, \(p(x) = \frac{\sum_{y=1}^{c} O_{xy}}{N} \) and \(p(y) = \frac{\sum_{x=1}^{r} O_{xy}}{N} \) are the marginal probability distributions of X and Y, respectively, and N is the total number of observations in the training data.

The mutual information is then normalized to be between 0 and 1 as

\[
NI(X, Y) = \sqrt{1 - e^{-2I(X,Y)}},
\]

where \(I(X, Y) \) is the mutual information between X and Y.

If the value of the normalized mutual information is less than the specified significance level, the two variables are considered to be independent.

To test the conditional independence between two variables X and Y given a subset S of other variables (\(X \notin S \) and \(Y \notin S \)), the corresponding statistics are summed for each value combination of S, and the corresponding degree of freedom for the chi-square and G-square statistics is \((r - 1) \times (c - 1) \times q\), where q is the number of value combinations for S.

The following PROC HPBNET options are related to independence tests:

- **INDEPTTEST** specifies which test statistic or combination of them to use.
- **ALPHA** specifies the significance level for the chi-square and the G-square statistics.
- **MIALPHA** specifies the significance level for the normalized mutual information.

Variable Selection

A Bayesian network is a graphical model that consists of two parts, \(< G, P >\), where G is a directed acyclic graph (DAG) whose nodes correspond to the random variables in U (U is the set of input variables plus the target variable in PROC HPBNET and P is a set of local probability distributions, one for each node conditional on each value combination of the parents). The joint probability distribution of U can be factorized to the product of the local probability distributions; that is \(p(U) = \prod_{X \in U} p(X|\pi(X)) \), where \(\pi(X) \) are the parents of X. It is assumed that the network structure G and the probability distribution P are faithful to each other; that is, every conditional independence in the structure G is also present in P, and vice versa.

Given a target variable T, a Markov blanket of T is defined as a subset of input variables \(MB \subseteq U - \{T\} \) such that T is conditionally independent of each of the remaining input variables \(X \in U - MB - \{T\} \) given \(MB \). Under the faithful assumption, the Markov blanket of T is unique. According to the definition of the Markov blanket, the probability distribution of T is completely determined by its Markov blanket; therefore, the Markov blanket can be used for variable selection.

PROC HPBNET supports two types of variable selections: one by independence tests between each input variable and the target (when PRESCREENING=1) and the other by conditional independence tests between each input variable and the target given any subset of other input variables (when VARSELECT=1, 2, or 3).

PROC HPBNET uses specialized data structures to efficiently compute the contingency tables for any variable combinations, and it uses dynamic candidate generation to reduce the false candidates (variable combinations).
Structure Learning

In general, there are two approaches to learning the network structure: one is score-based, and the other is constraint-based. The score-based approach uses a score function to measure how well a structure fits the training data and tries to find the structure that has the best score. The constraint-based approach uses independence tests to determine the edges and the directions.

PROC HPBNET uses both score-based and constraint-based approaches to learn the network structure. It uses the BIC (Bayesian information criterion) score, which is defined as

$$\text{BIC}(G, D) = N \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} p(\pi_{ij}) p(X_i = v_{ik}) \ln p(X_i = v_{ik} | \pi_{ij}) - \frac{M}{2} \ln N$$

where G is a network, D is the training data set, N is the number of observations in D, n is the number of variables, X_i is a random variable, r_i is the number of levels for X_i, v_{ik} is the kth value of X_i, q_i is the number of value combinations of X_i’s parents, π_{ij} is the jth value combination of X_i’s parents, and $M = \sum_{i=1}^{n} (r_i - 1) \times q_i$ is the number of parameters for the probability distributions.

PROC HPBNET uses independence tests to determine the edges and the directions as follows. Assume that you have three variables, X, Y, and Z, and that it has been determined (using independent tests) that there are edges between X and Z and Y and Z, but no edge between X and Y. If X is conditionally independent of Y given any subset of variables $S = \{Z\} \cup S', S' \subseteq U - \{X, Y, Z\}$, then the directions between X and Z and between Y and Z are $X \rightarrow Z$ and $Y \rightarrow Z$, respectively. Notice that using independence tests alone might not be able to orient all edges because some structures are equivalent with respect to conditional independence tests. For example, $X \leftarrow Y \leftarrow Z$, $X \leftarrow Y \rightarrow Z$, and $X \leftarrow Y \rightarrow Z$ belong to the same equivalence class. In these cases, PROC HPBNET uses the BIC score to determine the directions of the edges.

PROC HPBNET learns different types of network structures: naive Bayesian (NB), tree-augmented naive (TAN), Bayesian network-augmented naive (BAN), parent-child Bayesian network (PC), and Markov blanket (MB). Based on the network structure specified, it uses different algorithms. For example, if you specify STRUCTURE=TAN, the procedure uses the maximum spanning tree to learn the tree structure, where the weight for an edge is the mutual information between the two nodes. PROC HPBNET uses either the BESTONE or BESTSET value of the PARENTING= option to learn the other network structures (BAN, PC, MB).

PROC HPBNET orders the input variables based on the BIC score with the target. The BIC score of an input variable X with the target is defined as

$$\text{BIC}(X, T) = \max(\text{BIC}(X \rightarrow T), \text{BIC}(T \rightarrow X))$$

where $\text{BIC}(X \rightarrow T)$ is the BIC score when X is the parent of T (ignoring all the remaining variables) and $\text{BIC}(T \rightarrow X)$ is the BIC score when X is the child of T (ignoring all the remaining variables).

PROC HPBNET learns the parents of the target first for structures PC and MB. Then it learns the parents of the input variable that has the highest BIC score with the target. It continues learning the parents of the input variable that has the next highest BIC score, and so on. When learning the parents of a node, it first
Parameter Learning

Parameter learning determines the probability distribution for each node in a network structure. In PROC HPBNET, the probability distribution is discrete because the interval variables are binned.

You can use the resulting probability distribution table to score an observation \((x_1, x_2, \cdots, x_{n-1})\) as

\[
\arg\max_c p(T = c|x_1, x_2, \cdots, x_{n-1}) = \frac{p(x_1, x_2, \cdots, x_{n-1}|T = c)}{\prod_i p(x_i|\pi(X_i))} \times K
\]

where \(c\) is a level of the target variable, \(\pi(X_i)\) are the parents of \(X_i\), \(K\) is a constant, and \(X_n = T\) (target) for convenience.

To estimate the parameters \(p(x_i|\pi(X_i))\), PROC HPBNET uses an additive smoothing technique:

\[
\hat{p}(x_i|\pi(X_i)) = \frac{\text{counts}_{(xi, pi(X_i))} + \alpha}{\text{counts}_{(pi(X_i))} + \alpha \times n_i}
\]

where \(\alpha\) is the smoothing parameter (\(\alpha = 0\) corresponds to no smoothing, and PROC HPBNET uses \(\alpha = 1\)) and \(n_i\) is the number of possible values for \(X_i\).

The general reason for smoothing is to avoid overfitting the data. The case where the count of some class is 0 is just a particular case of overfitting. PROC HPBNET still smooths the probabilities when every class is observed.

Examples: HPBNET Procedure

Example 4.1: Naive Bayesian Network

This example shows how you can use PROC HPBNET to learn a naive Bayesian network for the Iris data available in the Sashelp library. The following statements specify MAXPARENTS=1, PREScreening=0,
and VARSELECT=0 to request that PROC HPBNET use only one parent for each node and use all the input variables.

```plaintext
proc hpbnets data=sashelp.Iris numbin=3 structure=Naive maxparents=1
   prescreening=0 varselect=0;
   target Species;
   input PetalWidth PetalLength SepalLength SepalWidth/level=INT;
   output network=network;
run;
```

The following statements produce Output 4.1.1, which shows the network structure. In the structure, Species is the parent of PetalWidth, PetalLength, SepalLength, and SepalWidth.

```plaintext
proc print data=network noobs label;
   var _parentnode_ _childnode_; 
   where _type_="STRUCTURE";
run;
```

Output 4.1.1 Naive Bayesian Network Structure

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>PetalLength</td>
</tr>
<tr>
<td>Species</td>
<td>PetalWidth</td>
</tr>
<tr>
<td>Species</td>
<td>SepalLength</td>
</tr>
<tr>
<td>Species</td>
<td>SepalWidth</td>
</tr>
</tbody>
</table>

Example 4.2: Tree-Augmented Naive Bayesian Network

This example also uses the Iris data set that is available in the Sashelp library. In the following statements, STRUCTURE=TAN results in a tree-augmented Bayesian network.

```plaintext
proc hpbnets data=sashelp.Iris numbin=3 structure=TAN
   prescreening=0 varselect=0;
   target Species;
   input PetalWidth PetalLength SepalLength SepalWidth/level=INT;
   output network=network;
run;
```

The following statements produce Output 4.2.1, which shows the network structure. In the structure, Species is a parent of PetalWidth, PetalLength, SepalLength, and SepalWidth. In addition, PetalWidth is a parent of PetalLength, SepalLength is a parent of SepalWidth, and PetalWidth is a parent of SepalWidth.

```plaintext
proc print data=network noobs label;
   var _parentnode_ _childnode_; 
   where _type_="STRUCTURE";
run;
```
Example 4.3: Parent-Child Bayesian Network

This example also uses the Iris data set that is available in the Sashelp library. In the following statements, STRUCTURE=PC results in a parent-child Bayesian network.

```sas
proc hpbnet data=sashelp.Iris numbin=3 structure=PC
   prescreening=0 varselect=0;
   target Species;
   input PetalWidth PetalLength SepalLength SepalWidth/level=INT;
   output network=network;
run;
```

The following statements produce Output 4.3.1, which shows the network structure. In the structure, PetalLength is the parent of Species, and Species is the parent of PetalWidth, SepalLength, and SepalWidth.

```sas
proc print data=network noobs label;
   var _parentnode_ _childnode_; 
   where _type_="STRUCTURE";
run;
```

Output 4.3.1 Parent-Child Network Structure

<table>
<thead>
<tr>
<th>Parent Node</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>PetalLength</td>
<td>Species</td>
</tr>
<tr>
<td>Species</td>
<td>PetalWidth</td>
</tr>
<tr>
<td>Species</td>
<td>SepalLength</td>
</tr>
<tr>
<td>Species</td>
<td>SepalWidth</td>
</tr>
</tbody>
</table>

Example 4.4: Markov Blanket

This example uses the HMEQ sample data set that is available in the Sampsio library to learn a Markov blanket Bayesian network, which is specified by STRUCTURE=MB.

```sas
proc hpbnet data=sampsio.hmeq indeptest=MI mialpha=0.2 structure=MB nbin=5
   missingint=IMPUTE missingnom=LEVEL;
   target Bad;
   input Reason Job Delinq Derog Ninq/level=NOM;
   input Loan Mortdue Value Yoj Clage Clno Debtinc/level=INT;
   output network=network;
run;
```

Output 4.4.1 Markov Blanket Network Structure

<table>
<thead>
<tr>
<th>Parent Node</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>PetalWidth</td>
<td>SepalWidth</td>
</tr>
<tr>
<td>Species</td>
<td>PetalWidth</td>
</tr>
<tr>
<td>Species</td>
<td>SepalLength</td>
</tr>
<tr>
<td>Species</td>
<td>SepalWidth</td>
</tr>
</tbody>
</table>
The following statements produce Output 4.4.1, which shows the network structure. In the structure, Bad is a parent of Delinq and Derog, Delinq and Ninq are the other parents of Derog, and Ninq is the other parent of Delinq.

```plaintext
proc print data=network noobs label;
    var _parentnode_ _childnode_;
    where _type_="STRUCTURE";
run;

Output 4.4.1 Markov Blanket Network Structure

<table>
<thead>
<tr>
<th>Parent Node</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD</td>
<td>DELINQ</td>
</tr>
<tr>
<td>NINQ</td>
<td>DELINQ</td>
</tr>
<tr>
<td>BAD</td>
<td>DEROG</td>
</tr>
<tr>
<td>DELINQ</td>
<td>DEROG</td>
</tr>
<tr>
<td>NINQ</td>
<td>DEROG</td>
</tr>
</tbody>
</table>
```

Example 4.5: Bayesian Network-Augmented Naive Bayesian Network

This example also uses the HMEQ sample data set that is available in the Sampsio library to learn a BAN structure, which is specified by STRUCTURE=NAIVE.

```plaintext
proc hpbnet data=sampsio.hmeq numbin=10 alpha=0.1 structure=Naive
    missingint=IMPUTE missingnom=LEVEL;
    target Bad;
    input Reason Job Delinq Derog Ninq/level=NOM;
    input Loan Mortdue Value Yoj Clage Clno Debtinc/level=INT;
    output network=network;
run;
```

The following statements produce Output 4.5.1, which shows the network structure. In the structure, Bad is a parent of Delinq, Derog, Job, Ninq, Clage, Clno, Loan and Mortdue. In addition, Delinq is the other parent of Derog, Job is a parent of both Mortdue and Clno.

```plaintext
proc print data=network noobs label;
    var _parentnode_ _childnode_;
    where _type_="STRUCTURE";
run;
```
Example 4.6: Model Selection

This example uses the German Credit sample data which is available in the Sampsio library to learn the best Bayesian network model among all network structures: naive, TAN, PC, and MB, with or without variable selection. PROC HPBNET also tries to choose the best value for the MAXPARENTS= option. About 30% of the input data is used for validation.

```sas
proc hpbnet data=sampsio.dmagecr numbin=10 alpha=0.05
structure=Naive TAN PC MB varselect=0 1 bestmodel;
   target Good_Bad;
   input Checking History Purpose Savings Employed Installp Marital Coapp Resident Property Other Housing Existcr Job Depends Telephon Foreign/level=NOM;
   input Age Amount Duration/level=INT;
   partition FRACTION (VALIDATE=0.3);
   output network=network fit=fit validinfo=validinfo;
run;
```

The following statements produce Output 4.6.1, which shows the fit statistics, including the fact that 742 observations are used for training and 258 are used for validation. In the resulting network, there are 15 nodes, 15 links between the nodes, and the number of parameters is 129.

```sas
proc print data=fit noobs label;
run;
```
Chapter 4: The HPBNET Procedure

Output 4.6.1 Model Selection: Fit Statistics

<table>
<thead>
<tr>
<th>Number of Observations for Training</th>
<th>Number of Observations for Validation</th>
<th>Number of Observations Ignored</th>
<th>Sum of Frequencies for Training</th>
<th>Sum of Frequencies for Validation</th>
<th>Sum of Frequencies Ignored</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>742</td>
<td>258</td>
<td>0</td>
<td>742</td>
<td>258</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Links</th>
<th>Average Degree</th>
<th>Number of Parents in Network</th>
<th>Number of Parameters</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>129</td>
<td>-13179.18</td>
</tr>
</tbody>
</table>

The following statements produce Output 4.6.2, which shows that PROC HPBNET has learned a PC Bayesian network structure. In the structure, Checking is the parent of Good_Bad, and Good_Bad is the parent of all the other input variables.

```sas
proc print data=network noobs label;
    var _parentnode_ _childnode_;
    where _type_="STRUCTURE";
run;
```

Output 4.6.2 Model Selection: Best Structure

<table>
<thead>
<tr>
<th>Parent Node</th>
<th>Child Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>checking</td>
<td>good_bad</td>
</tr>
<tr>
<td>good_bad</td>
<td>employed</td>
</tr>
<tr>
<td>good_bad</td>
<td>foreign</td>
</tr>
<tr>
<td>good_bad</td>
<td>history</td>
</tr>
<tr>
<td>good_bad</td>
<td>housing</td>
</tr>
<tr>
<td>good_bad</td>
<td>marital</td>
</tr>
<tr>
<td>good_bad</td>
<td>other</td>
</tr>
<tr>
<td>good_bad</td>
<td>property</td>
</tr>
<tr>
<td>good_bad</td>
<td>purpose</td>
</tr>
<tr>
<td>good_bad</td>
<td>savings</td>
</tr>
<tr>
<td>good_bad</td>
<td>telephon</td>
</tr>
<tr>
<td>foreign</td>
<td>telephon</td>
</tr>
<tr>
<td>good_bad</td>
<td>age</td>
</tr>
<tr>
<td>good_bad</td>
<td>amount</td>
</tr>
<tr>
<td>good_bad</td>
<td>duration</td>
</tr>
</tbody>
</table>

The following statements produce Output 4.6.3, which shows the validation results for each parameter combination. The PC Bayesian network structure has misclassified 68 observations out of 258 validation observations when MAXPARENTS is greater than or equal to 2 and VARSELECT=0. The TAN structure has 70 misclassification errors. The MB Bayesian network structure has 74 misclassification errors when MAXPARENTS is greater than or equal to 2. The naive Bayesian network has 76 misclassification errors.

```sas
proc print data=validinfo noobs label;
    var _bestmodel_ _miserrors_ _structure_ _varselect_ _maxparents_;
run;
```
Output 4.6.3 Model Selection: Validation Information

<table>
<thead>
<tr>
<th>Best Model</th>
<th>Misclassification Errors</th>
<th>Input Parameter: Structure</th>
<th>Input Parameter: Variable Selection</th>
<th>Input Parameter: Maximum Number of Parents</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>68 PC</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68 PC</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68 PC</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68 PC</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 TAN</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 MB</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 MB</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 MB</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 MB</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 PC</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 PC</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 PC</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 PC</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 PC</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 NAIVE</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 NAIVE</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 NAIVE</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 NAIVE</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76 NAIVE</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 MB</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 PC</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 NAIVE</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 NAIVE</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 NAIVE</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 NAIVE</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85 NAIVE</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91 TAN</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

References

Chapter 5
The HPCLUS Procedure

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: HPCLUS Procedure</td>
<td>80</td>
</tr>
<tr>
<td>PROC HPCLUS Features</td>
<td>80</td>
</tr>
<tr>
<td>Client and Grid Execution Modes</td>
<td>81</td>
</tr>
<tr>
<td>Getting Started: HPCLUS Procedure</td>
<td>81</td>
</tr>
<tr>
<td>Syntax: HPCLUS Procedure</td>
<td>84</td>
</tr>
<tr>
<td>PROC HPCLUS Statement</td>
<td>84</td>
</tr>
<tr>
<td>CODE Statement</td>
<td>88</td>
</tr>
<tr>
<td>FREQ Statement</td>
<td>89</td>
</tr>
<tr>
<td>ID Statement</td>
<td>89</td>
</tr>
<tr>
<td>INPUT Statement</td>
<td>89</td>
</tr>
<tr>
<td>PERFORMANCE Statement</td>
<td>90</td>
</tr>
<tr>
<td>SCORE Statement</td>
<td>90</td>
</tr>
<tr>
<td>Details: HPCLUS Procedure</td>
<td>90</td>
</tr>
<tr>
<td>Obtaining the Statistics for Clustering</td>
<td>90</td>
</tr>
<tr>
<td>Missing Values</td>
<td>91</td>
</tr>
<tr>
<td>Initial Seed Selection</td>
<td>91</td>
</tr>
<tr>
<td>Standardization</td>
<td>91</td>
</tr>
<tr>
<td>Finding the Number of Clusters</td>
<td>92</td>
</tr>
<tr>
<td>Clustering Nominal Variables</td>
<td>93</td>
</tr>
<tr>
<td>Dissimilarity Measures</td>
<td>93</td>
</tr>
<tr>
<td>Computing Cluster Centers</td>
<td>94</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>94</td>
</tr>
<tr>
<td>Performance Information</td>
<td>94</td>
</tr>
<tr>
<td>Model Information</td>
<td>94</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>94</td>
</tr>
<tr>
<td>Aligned Box Criterion Parameters</td>
<td>94</td>
</tr>
<tr>
<td>Aligned Box Criterion Statistics</td>
<td>95</td>
</tr>
<tr>
<td>Estimated Number of Clusters</td>
<td>95</td>
</tr>
<tr>
<td>Cluster Summary</td>
<td>95</td>
</tr>
<tr>
<td>Cluster Summary for Nominal Variables</td>
<td>96</td>
</tr>
<tr>
<td>Iteration Statistics</td>
<td>96</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>96</td>
</tr>
<tr>
<td>Descriptive Statistics for Nominal Variables</td>
<td>96</td>
</tr>
<tr>
<td>Within-Cluster Statistics</td>
<td>97</td>
</tr>
<tr>
<td>Within-Cluster Frequencies for Nominal Variables</td>
<td>97</td>
</tr>
<tr>
<td>Standardization</td>
<td>97</td>
</tr>
</tbody>
</table>
Overview: HPCLUS Procedure

The HPCLUS procedure is a high-performance procedure that performs clustering, which is a common step in data exploration. You can use the HPCLUS procedure to read and write data in distributed form, and to perform clustering and scoring in parallel by making full use of multicore computers or distributed computing environments.

The HPCLUS procedure performs a cluster analysis on the basis of distances that are computed from one or more quantitative variables. The observations are divided into clusters such that every observation belongs to one and only one cluster.

The HPCLUS procedure uses the \(k \)-means algorithm for clustering numeric interval input variables and uses the \(k \)-modes algorithm for clustering nominal input variables. The HPCLUS procedure uses only numeric interval variables or only nominal variables to perform clustering. It does not perform clustering for mixed levels of input variables.

The HPCLUS procedure uses the least squares (\(L_2 \)) estimation in the \(k \)-means clustering method to compute the cluster centroids. In this method, each iteration reduces the criterion (for example, the least squared criterion for Euclidean distance) until convergence is achieved or the maximum iteration number is reached.

PROC HPCLUS produces brief summaries of cluster analysis in two output data sets:

- The OUT= data set is produced by the SCORE statement. This data set contains the cluster membership and distance variables for each observation in the input data set. It can be used for more detailed examination of the clusters.
- The OUTSTAT= data set is produced by the PROC HPCLUS statement. This data set can be used for more detailed examination of between-cluster statistics.

PROC HPCLUS Features

PROC HPCLUS enables you to use parallel execution for clustering in a distributed computing environment, while you can still run it in single-machine mode on the server where SAS is installed. The following list summarizes the basic features of PROC HPCLUS:

- can execute clustering in parallel
• is highly multithreaded
• provides a clustering technique based on the \(k\)-means method
• provides a new technique called the aligned box criterion (ABC) for estimating the number of clusters in the data set

Client and Grid Execution Modes

The HPCLUS procedure can take advantage of computer grids to compute the distances between each observation and each cluster independently on different grid nodes in parallel. In addition, multithreading is supported at each node. For more information about the execution of SAS high-performance analytical procedures on a grid of computers, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

PROC HPCLUS controls the execution of computation in two dimensions: the number of parallel threads per execution node; and the number of computing nodes to engage.

Getting Started: HPCLUS Procedure

This example shows how to use the HPCLUS procedure to compute clusters of observations in a SAS data set.

Suppose you want to group the observations in `inputData`, in which the variables are raw measures on interval scales.

The following SAS DATA step creates the SAS data set `inputData`, which has four variables: the first two variables are the input variables among which \(x\) has missing values, the third variable is the frequency variable, and the last variable is an index variable.

```sas
data inputData;
  title 'Using PROC HPCLUS to Analyze Data';
  drop n;
  id=1;
  do n=1 to 1000;
    x=2*rannor(12345)+20;
    y=4*rannor(12345)+20;
    freq = 1;
    id = id + 1;
    output;
  end;
  do n=1 to 1000;
    x=3*rannor(12345)+10;
    y=5*rannor(12345)+10;
    freq=2;
    id = id + 1;
    output;
  end;
```
do n=1 to 700;
 x=10*rannor(12345);
 y=10*rannor(12345);
 freq=1;
 id = id + 1;
 output;
end;

run;

do n=1 to 200;
 x=.;
 y=10*rannor(12345);
 freq=1;
 id = id + 1;
 output;
end;

The following statements run PROC HPCLUS and output the results to ODS tables:

\begin{verbatim}
proc hpclus data=inputData maxclusters=3;
 input x y;
 freq freq;
run;
\end{verbatim}

The following statements run PROC HPCLUS and output the results to ODS tables:

\begin{verbatim}
proc hpclus data=inputData maxclusters=3;
 input x y;
 freq freq;
run;
\end{verbatim}

Figure 5.1 shows the values of the parameters that are used in clustering. Because MAXCLUSTERS=3 and
the number of clusters is not estimated by default, three clusters are generated. Figure 5.1 shows the number
of clusters and default values for other options.

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Iteration</td>
</tr>
<tr>
<td>Stop Criterion</td>
</tr>
<tr>
<td>Stop Criterion Value</td>
</tr>
<tr>
<td>Clusters</td>
</tr>
<tr>
<td>Seed Initialization</td>
</tr>
<tr>
<td>Distance</td>
</tr>
</tbody>
</table>

Figure 5.2 shows the “Number of Observations Used” is less than “Number of Observations Read.” By
default, the HPCLUS procedure ignores observations that have missing values, and it does not use them in
cluster analysis. The two additional rows, “Sum of Frequencies Read” and “Sum of Frequencies Used,” are
displayed when the FREQ statement is specified. They provide information about the frequency values that
are read and used.

<table>
<thead>
<tr>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Sum of Frequencies Read</td>
</tr>
<tr>
<td>Sum of Frequencies Used</td>
</tr>
</tbody>
</table>
Figure 5.3 shows the statistics for each cluster. For each cluster, this table shows the number of observations; the maximum, minimum, and average distances from that cluster’s centroid to the observations in that cluster; the sum of squares error; and the standard deviation. In addition, Figure 5.3 displays information about the nearest cluster to that cluster and the distance between their centroids.

Figure 5.3 Cluster Summary

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Frequency</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>SSE</th>
<th>Standard Deviation</th>
<th>Nearest Cluster</th>
<th>Distance to Nearest Cluster Centroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2042</td>
<td>31.8174</td>
<td>0.2222</td>
<td>5.1753</td>
<td>77850.8</td>
<td>6.1745</td>
<td>2</td>
<td>13.8708</td>
</tr>
<tr>
<td>2</td>
<td>1157</td>
<td>29.2421</td>
<td>0.0395</td>
<td>4.4134</td>
<td>30848.0</td>
<td>5.1635</td>
<td>1</td>
<td>13.8708</td>
</tr>
<tr>
<td>3</td>
<td>501</td>
<td>30.7357</td>
<td>0.7688</td>
<td>10.7289</td>
<td>75041.2</td>
<td>12.2386</td>
<td>1</td>
<td>18.2334</td>
</tr>
</tbody>
</table>

Figure 5.4 shows the sum of squares error (SSE) for each iteration.

Figure 5.4 Iteration Statistics

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>SSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>363065</td>
</tr>
<tr>
<td>1</td>
<td>280328</td>
</tr>
<tr>
<td>2</td>
<td>236942</td>
</tr>
<tr>
<td>3</td>
<td>197374</td>
</tr>
<tr>
<td>4</td>
<td>187016</td>
</tr>
<tr>
<td>5</td>
<td>184540</td>
</tr>
<tr>
<td>6</td>
<td>184026</td>
</tr>
<tr>
<td>7</td>
<td>183921</td>
</tr>
<tr>
<td>8</td>
<td>183816</td>
</tr>
<tr>
<td>9</td>
<td>183754</td>
</tr>
<tr>
<td>10</td>
<td>183740</td>
</tr>
</tbody>
</table>

Figure 5.5 and Figure 5.6 show the statistics for each variable in the INPUT statement. Figure 5.5 shows the variable statistics for all the observations in the input data set, and Figure 5.6 shows the variable statistics for the observations that belong to a specific cluster.

Figure 5.5 Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>11.020648</td>
<td>8.189686</td>
</tr>
<tr>
<td>y</td>
<td>10.756547</td>
<td>9.180654</td>
</tr>
</tbody>
</table>
Figure 5.6 Within-Cluster Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cluster</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>9.6471</td>
<td>10.5402</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.0775</td>
<td>5.8267</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1.9872</td>
<td>9.0487</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>9.4768</td>
<td>11.0994</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>19.6486</td>
<td>7.7187</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-4.5625</td>
<td>8.4227</td>
</tr>
</tbody>
</table>

Syntax: HPCLUS Procedure

The following statements are available in the HPCLUS procedure:

```
PROC HPCLUS <options> ;
   INPUT variables <options> ;
   ID variables ;
   FREQ variable ;
   SCORE <options> ;
   CODE <options> ;
   PERFORMANCE <performance-options> ;
```

The PROC HPCLUS statement and an INPUT statement are required. You can specify multiple INPUT statements.

The following sections describe the PROC HPCLUS statement and then describe the other statements in alphabetical order.

PROC HPCLUS Statement

```
PROC HPCLUS <options> ;
```

The PROC HPCLUS statement invokes the procedure. Table 5.1 summarizes the options available in the PROC HPCLUS statement.

Table 5.1 PROC HPCLUS Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA=</td>
<td>Specifies the input data set</td>
</tr>
<tr>
<td>OUTSTAT=</td>
<td>Specifies the output data set to contain cluster centroids</td>
</tr>
<tr>
<td>OUTITER</td>
<td>Adds cluster centroids for each iteration to the OUTSTAT= data set</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses ODS output</td>
</tr>
</tbody>
</table>

The following sections describe the PROC HPCLUS statement and then describe the other statements in alphabetical order.
Table 5.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering Options</td>
<td></td>
</tr>
<tr>
<td>MAXCLUSTERS=</td>
<td>Specifies the number of clusters</td>
</tr>
<tr>
<td>STOPCITERION=</td>
<td>Specifies the stop criterion for the iteration</td>
</tr>
<tr>
<td>DISTANCE=</td>
<td>Specifies the distance method for similarity measurement (used for numeric interval input variables)</td>
</tr>
<tr>
<td>DISTANCENOM=</td>
<td>Specifies the distance method for similarity measurement (used for nominal input variables)</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations</td>
</tr>
<tr>
<td>SEED=</td>
<td>Sets the seed that is used for pseudorandom number generation</td>
</tr>
<tr>
<td>Data Processing Options</td>
<td></td>
</tr>
<tr>
<td>IMPUTE=</td>
<td>Specifies the imputation method for numeric interval input variables</td>
</tr>
<tr>
<td>IMPUTENOM=</td>
<td>Specifies the imputation method for nominal input variables</td>
</tr>
<tr>
<td>STANDARDIZE=</td>
<td>Specifies the standardization method</td>
</tr>
<tr>
<td>Number of Clusters Estimation Options</td>
<td></td>
</tr>
<tr>
<td>NOC=</td>
<td>Specifies the method for finding number of clusters</td>
</tr>
</tbody>
</table>

You can specify the following *options*.

DATA= `<libref.> SAS-data-set`

names the input SAS data set to be used by PROC HPCLUS. If you do not specify this option, PROC HPCLUS uses the most recently created data set. If the procedure executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance database. In that case PROC HPCLUS reads the data alongside the distributed database. For information about the various execution modes, see the section “Processing Modes” on page 6; for information about the alongside-the-database model, see the section “Alongside-the-Database Execution” on page 14. Both sections are in Chapter 2, “Shared Concepts and Topics.”

DISTANCE= EUCLIDEAN | MANHATTAN

specifies the distance measure for similarity that is used for numeric interval input variables. You can choose from the following methods:

- EUCLIDEAN calculates the Euclidean distance.
- MANHATTAN calculates Manhattan distance.

By default, DISTANCE=EUCLIDEAN.

DISTANCENOM= BINARY | GLOBALFREQ | RELATIVEFREQ

specifies the distance measure for similarity that is used for nominal input variables. You can choose from the following methods:

- BINARY calculates a simple matching distance.
- GLOBALFREQ calculates distance based on the frequency of levels of nominal input variables in the input data set.
RELATIVEFREQ calculates distance based on the frequency of levels of nominal input variables in each cluster.

By default, DISTANCENOM=BINARY. For more information about these distance functions, see the section “Clustering Nominal Variables” on page 93.

IMPUTE= MEAN | NONE specifies the imputation method to be used when the INPUT statement specifies numeric interval variables. You can choose from the following methods:

- MEAN imputes missing values of variables in observations by using the mean value for that variable.
- NONE does not do any imputation and excludes observations that have any missing values.

If IMPUTE=NONE and the number of observations that have nonmissing values is less than the value of the MAXCLUSTERS= option, then the number of clusters is set to the number of observations that have nonmissing values.

By default, IMPUTE=NONE.

IMPUTENOM= MODE | NONE specifies the imputation method to be used when the INPUT statement specifies nominal variables. You can choose from the following methods:

- MODE imputes missing values of variables in observations by using the mode value for that variable.
- NONE does not do any imputation and excludes observations that have any missing values.

If IMPUTENOM=NONE and the number of observations that have nonmissing values is less than the value of the MAXCLUSTERS= option, then the number of clusters is set to the number of observations that have nonmissing values.

By default, IMPUTENOM=NONE.

MAXCLUSTERS= number specifies either the number of clusters to be searched (if the NOC= option is not specified) or the maximum number of clusters to be searched (if the NOC= option is specified).

By default, MAXCLUSTERS=6.

MAXITER= number specifies the maximum number of iterations for the algorithm to perform. In each iteration of the k-means clustering method, each observation is assigned to the nearest cluster centroid, and the centroids are recomputed.

By default, MAXITER=10.

NOC= NONE | ABC < suboptions > specifies the method to use for estimating the number of clusters.

You can specify the following values. By default, NOC=NONE.
NONE does not estimate the number of clusters and uses the value specified in MAX-CLUSTERS= option.

ABC < suboptions > estimates number of clusters by using the aligned box criterion (ABC) method. For more information about this method, see the section “Finding the Number of Clusters” on page 92. You can specify one or more of the following suboptions:

B=number specifies the number of reference data sets to be created for each cluster candidate. By default, B=1.

MINCLUSTERS=number specifies the minimum number of clusters for searching for the best number of clusters. By default, MINCLUSTERS=2.

CRITERION=keyword specifies the criterion to use to estimate the number of clusters that use the statistics obtained in the ABC method. You can specify the following values:

GLOBALPEAK uses the peak value that has the maximum value among all the peak values in gap statistics.

FIRSTPEAK uses the first peak value among the peak values in gap statistics.

FIRSTMAXWITHSTD uses the smallest k such that the gap value for that k is greater than the one-standard-error adjusted gap value for $k+1$.

ALL uses all the preceding options and selects the number of clusters based on which one is chosen the most often. If each option selects a different number, then the number selected by GLOBALPEAK is used.

By default, CRITERION=GLOBALPEAK.

ALIGN=keyword specifies the method for aligning the reference data set based on the input data. You can specify the following values:

NONE generates the reference data set from a uniform distribution over the range of values for each subset of the input data set.

PCA generates the reference data set from a uniform distribution over a box that is aligned with the principal components of each subset of the input data set.

By default, ALIGN=NONE.
Chapter 5: The HPCLUS Procedure

NOPRINT
suppresses ODS output.

OUTITER
outputs the cluster centroids to the OUTSTAT= data set for each iteration.

OUTSTAT=libref.SAS-data-set
creates the output SAS data set to contain the cluster centroids for each cluster. This data set includes the iteration number as _ITERATION_, the cluster ID as _CLUSTER_ID_ and the cluster centroids, which consist of the variables that are specified in the INPUT statement. If the OUTITER option is specified, the data set contains cluster centroids for each iteration. If STANDARDIZE=RANGE or STANDARDIZE=STD, the data set contains the standardized values of the cluster centroids, which are displayed by adding the S_ prefix to the variables in the INPUT statement.

SEED=number
specifies a positive integer for the pseudorandom number generator that is used for randomly selecting the initial cluster centroids from the input data set.

By default, SEED=12345.

STANDARDIZE=NONE | RANGE | STD
specifies the method to standardize the numeric input variables. PROC HPCLUS uses the location and scale measures specific to that method. You can specify the following values:

NONE does not standardize and uses the actual values for the input variables.
RANGE standardizes the input variables by using the range method. PROC HPCLUS uses the minimum as the location and the range as the scale.
STD standardizes the input variables by using the traditional standardization method. PROC HPCLUS uses the mean as the location and the standard deviation as the scale.

By default, STANDARDIZE=NONE.

STOPCRITERION=CLUSTER_CHANGE(< VALUE=number >)
specifies the method to use for convergence. Only the cluster-change method is supported in this release. The optional VALUE= suboption enables you to check convergence by specifying the percentile of observations that do not change their cluster membership for that iteration. If VALUE=0, PROC HPCLUS runs until the cluster centroids do not change any more. If you do not specify the STOPCRITERION= option, the algorithm stops after it reaches the maximum number of iterations (which is specified in MAXITER= option).

CODE Statement

CODE < FILE=filename >;

The CODE statement generates SAS DATA step code that mimics the computations that are done by the SCORE statement. You can specify the following option:
FILE=filename

specifies the filename of the file to write the SAS score code to.

GROUP=filename

specifies the prefix for the array and label names in the score code. This option enables group processing and ensemble models.

By default, the generated SAS DATA step code is written to the log.

FREQ Statement

```
FREQ variable ;
```

The `variable` in the FREQ statement identifies a numeric variable in the data set that contains the frequency of occurrence for each observation. SAS high-performance analytical procedures that support the FREQ statement treat each observation as if it appeared `f` times, where `f` is the value of the FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer. If the frequency value is less than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not specified, each observation is assigned a frequency of 1.

ID Statement

```
ID variables ;
```

The ID statement lists one or more `variables` from the input data set that are transferred to the scored output data set, provided that the output data set produces one (or more) records per input observation. When you specify the OUT= option in the SCORE= statement, the ID variables, followed by the `_CLUSTER_ID_` variable and the `_DISTANCE_` variable, are added to the output data set that is specified in OUT= option. By default, the HPCLUS procedure does not transfer any variables from the input data set to the output data set. The ID statement accepts numeric and character variables. The variables in an ID statement can appear in any INPUT statement.

INPUT Statement

```
INPUT variables <LEVEL=BINARY | NOMINAL | ORDINAL | INTERVAL> ;
```

The INPUT statement specifies the names of the `variables` to be used in clustering. It names one or more input variables that use common options. If you want to use different options for different variables, you can specify multiple INPUT statements. You can include the following option in each INPUT statement:

LEVEL=BINARY | NOMINAL | ORDINAL | INTERVAL

specifies the level of measurement of the variables. For clustering, only interval, binary, and nominal variables are accepted.

NOTE: If you specify LEVEL=ORDINAL, the variables are ignored by the HPCLUS procedure.

By default, LEVEL=INTERVAL for numeric variables, and LEVEL=NOMINAL for categorical character variables. Binary variables are considered to be nominal variables.
PERFORMANCE Statement

PERFORMANCE < performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of the HPCLUS procedure.

You can also use the PERFORMANCE statement to control whether the HPCLUS procedure executes in single-machine mode or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on page 31 in Chapter 2, “Shared Concepts and Topics.”

SCORE Statement

SCORE < options> ;

The SCORE statement causes the HPCLUS procedure to write the cluster membership information of each observation to the output data set. This information includes the variables that are specified in the ID statement and two new variables, _CLUSTER_ID_ and _DISTANCE_, which are the ID of the closest cluster and the distance between the observation and the centroid of that cluster, respectively. If you specify STANDARDIZE=RANGE or STANDARDIZE=STD in the PROC HPCLUS statement, then PROC HPCLUS adds another column called _STANDARDIZED_DISTANCE_ which contains the distance between the standardized values of the observation and the standardized values of cluster centroid.

OUT=<libref.SAS-data-set

specifies the name of the output data set to contain the scored data.

Details: HPCLUS Procedure

Obtaining the Statistics for Clustering

The HPCLUS procedure calculates the following cluster-based statistics (in addition to the variable-based statistics) about data in the input data set.

- summary statistics for each cluster (for example, the number of observations)
- summary statistics for the variables in each cluster (for example, the mean value of a numeric interval input variable in a cluster)

You can use these statistics in addition to the output data sets to further analyze the clustering results.
Missing Values

Observations that have missing values affect the result of clustering because the distance measures that are computed for these observations do not reflect the actual values. To solve this problem, you can use the IMPUTE= option for numeric interval input variables and the IMPUTENOM= option for nominal input variables in the PROC HPCLUS statement. If IMPUTE=NONE or IMPUTENOM=NONE, observations that have missing values are not considered in cluster analysis. If IMPUTE=MEAN for numeric interval input variables, observations that have missing values are considered by replacing the missing values with the average value for that missing variable. Similarly, if IMPUTENOM=MODE for nominal input variables, observations that have missing values are considered by replacing the missing values with the mode value for that missing variable. However, observations that have all missing values are not considered in cluster analysis.

Initial Seed Selection

By default, random observations from the input data set are selected as initial cluster centroids. The initial aim of PROC HPCLUS is to select the observations that have no missing values.

You can change the observations that are selected from the input data set by using the SEED= option. You can use this option to set the seed value for the random number generator, which is used for generating random observation indices.

Because the random number generator creates indices for the observations, the initial cluster centroids will be different depending on where and how you run the procedure and where the input data reside. When the data are distributed or the computation is done in parallel, the indices of the observations will change depending on the number of nodes and number of threads that are used:

- If you run on the client, the input data set is on the client, and you run the procedure with the same number of threads, you can get the same initial cluster centroids with the same input data set and same SEED value. Otherwise, the initial cluster centroids might be different.

- If you run on the SAS appliance (with input data set on the client or on the SAS appliance) and you use the same number of nodes and threads in the PERFORMANCE statement, you can get the same initial cluster centroids with the same input data set and same SEED= value.

Standardization

Because variables that have large variances tend to affect the distance measure more than variables that have small variances, it is recommended that you standardize the variables before clustering the observations. The STANDARDIZE= option in the PROC HPCLUS statement provides a convenient way to standardize the INPUT variables. This option standardizes all the variables by using the method that is specified in that option and adds the standardized values to the output data sets.
Finding the Number of Clusters

To estimate the number of clusters (NOC), you can specify NOC=ABC in the PROC HPCLUS statement. This option uses the aligned box criterion (ABC) method to estimate an interim number of clusters and then runs the \(k\)-means clustering method to produce the final clusters. NOC= option works only for numeric interval variables. If the NOC= option is not specified, PROC HPCLUS uses the MAXCLUSTERS= option in the PROC HPCLUS statement to set the number of the clusters, and then runs the \(k\)-means clustering method to produce the final clusters.

The ABC method estimates the number of clusters for well-separated clusters. Similar to the gap statistics method that is presented in Tibshirani, Walther, and Hastie (2001), the ABC method uses within-cluster dispersion from the results of clustering as an error measure, making the ABC method independent of the method that is used for clustering. In order to estimate the number of clusters, the ABC method compares the change in the error measure with the change that is expected under an appropriate reference null distribution.

The cubic clustering criterion (CCC), proposed in Sarle (1983), is based on the assumption that a uniform distribution on a hyperrectangle is divided into clusters that are shaped approximately like hypercubes. In recent and widely accepted work, Tibshirani, Walther, and Hastie (2001) propose a gap statistics method that uses Monte Carlo simulation (instead of a heuristic) to generate a hypercube reference distribution. The ABC method improves on the CCC and gap statistics methods by leveraging the SAS High-Performance Analytics architecture in order to generate more restricted and aligned reference distributions that consider different features in the input data set.

Although the reference distribution is calculated differently than the other methods, the computation of the error measure is similar to the method presented in Tibshirani, Walther, and Hastie (2001). The error measure—also called the gap and represented as \(\text{Gap}(k)\)—is obtained by subtracting the logarithm of the within-cluster sum of squares error from the logarithm of its expectation for clustering solutions over a range of possible \(k\) values. The simulation-adjusted standard deviation of the reference distribution—represented as \(s(k)\)—is obtained by using the standard deviation of the logarithm of the within-cluster sum of squares errors for reference data sets. The one-standard-error adjusted gap is obtained by subtracting \(s(k)\) from the gap. For more information, see Tibshirani, Walther, and Hastie (2001).

The number of clusters is estimated by considering the \(\text{Gap}(k)\) and \(s(k)\) values for each cluster candidate \(k\). You can choose one of four methods for estimating the number of clusters by specifying the CRITERION= suboption in the NOC=ABC option in the PROC HPCLUS statement:

- The FIRSTPEAK option selects the first peak value among all the values in \(\text{Gap}(k)\).
- The GLOBALPEAK option selects the peak value that has the maximum value among the peak values in \(\text{Gap}(k)\).
- The FIRSTMAXWITHSTD option considers the standard deviation in each cluster in addition to the values in \(\text{Gap}(k)\). It considers the values in the one-standard-error adjusted gap to estimate the number of clusters. It selects the smallest \(k\) such that the gap value for that \(k\) is greater than the one-standard-error adjusted gap value for \(k+1\).
- The ALL option uses all the preceding options and selects the number of clusters based on which number is chosen the most often. If each option selects a different number, then the number selected by the GLOBALPEAK option is used.
Clustering Nominal Variables

The \(k \)-means algorithm works only with numeric data sets. One way to apply the \(k \)-means algorithm to nominal data is to use data transformation methods to transform the nominal data into a new feature space. However, this approach can be very inefficient, and it does not produce good results. For clustering nominal data sets, the HPCLUS procedure implements the \(k \)-modes clustering algorithm, which extends the \(k \)-means algorithm by using different dissimilarity measures and a different method for computing cluster centers (Huang 1997).

Dissimilarity Measures

In the \(k \)-modes clustering algorithm, distance measures depend on the level of nominal variables. Let \(X \) and \(Y \) be two observations, which are described by \(F \) nominal variables. Each nominal variable \(j \) in \(F \) has a different number of distinct values, which are called levels (or sometimes called categories).

The dissimilarity measure between observations \(X \) and \(Y \) is

\[
d(X,Y) = \sum_{j=1}^{F} \delta(x_j, y_j)
\]

where \(\delta(x_j, y_j) \) is the dissimilarity measure between two nominal variables \(j \).

PROC HPCLUS supports the following dissimilarity measures:

- The simple matching dissimilarity measure calculates the total number of mismatches of the corresponding variables of two observations. If the number of mismatches is small, then the observations are similar to each other. The dissimilarity measure between two nominal variables \(j \) is

\[
\delta(x_j, y_j) = \begin{cases}
0 & \text{if } x_j = y_j \\
1 & \text{if } x_j \neq y_j
\end{cases}
\]

This algorithm is very efficient. However, it might lead to clusters that have weak intrasimilarity, depending on the number of levels and the number of observations that have these levels. For more information, see Huang (1997). Specify DISTANCENOM=BINARY in the PROC HPCLUS statement to use this distance measure.

- The global frequency-based dissimilarity measure takes into account the frequencies of levels of each variable in the input data set. The dissimilarity measure between two nominal variables \(j \) is

\[
\delta(x_j, y_j) = \begin{cases}
0 & \text{if } x_j = y_j \\
\frac{(n_{x_j} + n_{y_j})}{n_{x_j} \ast n_{y_j}} & \text{if } x_j \neq y_j
\end{cases}
\]

where \(n_{x_j} \) is the number of observations that have level \(x_j \) of variable \(j \) in the input data set and \(n_{y_j} \) is the number of observations that have level \(y_j \) of variable \(j \) in the input data set. You can use this measure to find underrepresented clusters because it assigns more importance to rare categories than to frequent ones. For more information, see Huang (1997). Specify DISTANCENOM=GLOBALFREQ in the PROC HPCLUS statement to use this distance measure.

- The cluster frequency-based dissimilarity measure takes into account the relative frequencies of levels of each variable in each cluster. The dissimilarity measure between two nominal variables \(j \) is

\[
\delta(x_j, y_j) = \begin{cases}
1 - \frac{n_{x_j}}{n_c} & \text{if } x_j = y_j \\
1 & \text{if } x_j \neq y_j
\end{cases}
\]
where n_c is the number of observations in cluster c and $n_{x_j}^c$ is the number of objects that have level x_j of variable j in cluster c.

This distance measure enables the algorithm to assign less similar observations to the clusters that have weak intrasimilarity. Thus, the generated clusters have strong intrasimilarities. For more information, see Ng et al. (2007). Specify DISTANCENOM=RELATIVEFREQ in the PROC HPCLUS statement to use this distance measure.

Computing Cluster Centers

The k-modes algorithm uses modes instead of means as cluster centers. The HPCLUS procedure uses a frequency-based method to update the modes after each iteration in order to minimize the clustering cost function. Cluster centers are updated using the same approach for all the distance measures.

Displayed Output

The HPCLUS procedure displays various tables for cluster analysis.

The following sections describe the output in the order of their appearance when the related options are specified.

Performance Information

The “Performance Information” table is produced by default. It displays information about the grid host for distributed execution and indicates whether the procedure executes in client mode, distributed mode, or alongside-the-database mode. The numbers of compute nodes and threads are also displayed, depending on the environment.

Model Information

The “Model Information” table displays the basic information about the parameters that are used in the cluster analysis. This information includes the maximum number of iterations, number of clusters, initialization technique, and distance method.

Number of Observations

The “N Observations” table displays the number of observations that are read from the input data set and used. The number of observations that are used is basically calculated by considering the value in the variable that is specified in the FREQ statement and the missing values in the observations if IMPUTE=NULL in the PROC HPCLUS statement.

Aligned Box Criterion Parameters

The “ABC Parameters” table displays the following:

- minimum number of clusters that are searched
- maximum number of clusters that are searched
• reference distribution count
• alignment method used for determining the region for generating the reference data set

Aligned Box Criterion Statistics

The “ABC Statistics” table displays the following:

• number of clusters (k)
• logarithm of within-cluster sum of squares (W_k^*) for the input data for k number of clusters
• logarithm of within-cluster sum of squares (W_k) for the reference data for k number of clusters
• gap between the error measure from the reference data and the error measure from the input data
• simulation-adjusted standard deviation (s) that is obtained from the reference data set
• one-standard-error adjusted gap

Estimated Number of Clusters

The “Estimated Number of Clusters” table displays the following:

• criterion used for estimating the number of clusters from the measures that are calculated in the specified method
• estimated number of clusters for the input data set

Cluster Summary

The “Cluster Summary” table displays the following for each cluster when the variables in INPUT statement are interval:

• cluster number
• frequency (the number of observations in the cluster)
• maximum, minimum, and average distances from the cluster centroid to the observations in the cluster
• SSE (sum of squares errors between the observations and the closest cluster centroids to them)
• standard deviation (the root mean square distances between the observations and the cluster centroids that are closest to them)
• nearest cluster (the ID of the cluster whose centroid is closest to the current cluster’s)
• distance between the cluster centroid of the current cluster and the nearest cluster

If the number of observations in a cluster is zero, then this cluster is not displayed in the “Cluster Summary” table.
Cluster Summary for Nominal Variables
The “Cluster Summary for Nominal Variables” table displays the following for each cluster when the variables that are specified in the INPUT statement are nominal:

- cluster number
- frequency (the number of observations in the cluster)
- maximum, minimum, and average distances from the cluster centroid to the observations in the cluster
- within-cluster distance
- nearest cluster (the ID of the cluster whose centroid is closest to the current cluster’s centroid)
- distance between the cluster centroid of the current cluster and the nearest cluster

If the number of observations in a cluster is zero, then this cluster is not displayed in the “Cluster Summary for Nominal Variables” table.

Iteration Statistics
The “Iteration Statistics” table displays the following when the variables that are specified in the INPUT statement are interval:

- iteration number
- SSE (sum of square distances between the observations and the closest cluster centroids)

The “Iteration Statistics” table displays the following when the variables that are specified in the INPUT statement are nominal:

- iteration number
- WithinDist (sum of distances between the observations and the closest cluster centroids)

Descriptive Statistics
The “Descriptive Statistics” table displays the mean and standard deviation for each interval variable in the INPUT statement. The mean and standard deviation are calculated by using all the observations in the input data set.

Descriptive Statistics for Nominal Variables
The “Descriptive Statistics for Nominal Variables” table displays the levels and their frequencies for each nominal variable that is specified in the INPUT statement. The frequencies of levels are calculated by using all the observations in the input data set.
Within-Cluster Statistics

The “Within Cluster Statistics” table displays the following for each interval variable that is specified in the `INPUT` statement in each cluster:

- mean of the values for each variable in that cluster
- standard deviations of the values for each variable in that cluster

Within-Cluster Frequencies for Nominal Variables

The “Within Cluster Frequencies for Nominal Variables” table displays the following for each nominal variable in the `INPUT` statement in each cluster:

- levels of each variable in that cluster
- frequencies of the levels of each variable in that cluster

Standardization

The “Standardization” table displays the following:

- variable name
- location value that is used for standardization
- scale value that is used for standardization

Timing

The “Timing” table displays the timing for each step of the procedure. This table is displayed only when the `DETAILS` option is specified in the `PERFORMANCE` statement.

ODS Table Names

Each table created by the HPCLUS procedure has a name associated with it, and you must use this name to refer to the table when you use ODS statements. These names are listed in Table 5.2.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement or Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformanceInfo</td>
<td>Performance information</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>Default</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>Default</td>
</tr>
</tbody>
</table>
Table 5.2 continued

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement or Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterSum</td>
<td>Cluster summary for numeric interval input variables</td>
<td>Variables in INPUT statement are interval</td>
</tr>
<tr>
<td>ClusterSumNom</td>
<td>Cluster summary for nominal input variables</td>
<td>Variables in INPUT statement are nominal</td>
</tr>
<tr>
<td>IterStats</td>
<td>Iteration statistics</td>
<td>Default</td>
</tr>
<tr>
<td>DescStats</td>
<td>Descriptive statistics for numeric interval input variables</td>
<td>Variables in INPUT statement are interval</td>
</tr>
<tr>
<td>DescStatsNom</td>
<td>Descriptive statistics for nominal input variables</td>
<td>Variables in INPUT statement are nominal</td>
</tr>
<tr>
<td>WithinClusStats</td>
<td>Statistics for numeric interval input variables within clusters</td>
<td>Variables in INPUT statement are interval</td>
</tr>
<tr>
<td>WithinClusStatsNom</td>
<td>Frequencies for nominal variables within clusters</td>
<td>Variables in INPUT statement are nominal</td>
</tr>
<tr>
<td>ABCParameters</td>
<td>Parameters that are specified in the NOC= option</td>
<td>NOC=ABC in PROC HPCLUS statement</td>
</tr>
<tr>
<td>ABCStats</td>
<td>Statistics that are computed for estimating the number of clusters</td>
<td>NOC=ABC in PROC HPCLUS statement</td>
</tr>
<tr>
<td>ABCResults</td>
<td>Estimated number of clusters and the criteria that are used to calculate them</td>
<td>NOC=ABC in PROC HPCLUS statement</td>
</tr>
<tr>
<td>Standardization</td>
<td>Information about the standardization method and its parameters</td>
<td>STANDARDIZE=RANGE or STANDARDIZE=STD in PROC HPCLUS statement</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times for tasks that are performed by the procedure</td>
<td>DETAILS option in PERFORMANCE statement</td>
</tr>
</tbody>
</table>

Examples: HPCLUS Procedure

Example 5.1: Cluster Analysis

This example uses the iris data set as input to demonstrate how to use PROC HPCLUS to perform cluster analysis. The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and cluster analysis. The sepal length, sepal width, petal length, and petal width are measured...
in millimeters on 50 iris specimens from each of three species: *Iris setosa*, *I. versicolor*, and *I. virginica*. Mezzich and Solomon (1980) discuss a variety of cluster analyses of the iris data.

In this example, the HPLUS procedure is used to find three clusters. When the input data set resides on the client and no PERFORMANCE statement is specified, as in the following example, the client performs all computations:

```latex
proc hpclus data=sashelp.iris maxclusters=3 outiter outstat=hpclusOutstat1;
  score out=hpclusOut1;
  input SepalLength SepalWidth PetalLength PetalWidth;
  id SepalLength SepalWidth PetalLength PetalWidth Species;
run;
```

Output 5.1.1 shows the results from the cluster analysis.

Output 5.1.1 PROC HPCLUS with Three Clusters

Using PROC HPCLUS to Analyze Data

The HPCLUS Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
<th>Execution Mode</th>
<th>Single-Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Threads</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
<th>Engine</th>
<th>Role</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASHELP.IRIS</td>
<td>V9</td>
<td>Input</td>
<td>On Client</td>
</tr>
<tr>
<td>WORK.HPCLUSOUT1</td>
<td>V9</td>
<td>Output</td>
<td>On Client</td>
</tr>
<tr>
<td>WORK.HPCLUSOUTSTAT1</td>
<td>V9</td>
<td>Output</td>
<td>On Client</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Iteration</td>
<td>10</td>
</tr>
<tr>
<td>Stop Criterion</td>
<td>Cluster Change</td>
</tr>
<tr>
<td>Stop Criterion Value</td>
<td>0</td>
</tr>
<tr>
<td>Clusters</td>
<td>3</td>
</tr>
<tr>
<td>Seed Initialization</td>
<td>12345</td>
</tr>
<tr>
<td>Distance</td>
<td>Euclidean</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>150</td>
</tr>
</tbody>
</table>
Chapter 5: The HPCLUS Procedure

Output 5.1.1 continued

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Frequency</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>SSE</th>
<th>Standard Deviation</th>
<th>Nearest Cluster</th>
<th>Distance to Nearest Cluster Centroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>16.6064</td>
<td>2.1994</td>
<td>7.3815</td>
<td>3982.1</td>
<td>8.0142</td>
<td>3</td>
<td>17.9718</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>12.4803</td>
<td>0.6618</td>
<td>4.8171</td>
<td>1515.1</td>
<td>5.5047</td>
<td>1</td>
<td>33.5693</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>15.2971</td>
<td>2.5958</td>
<td>7.1984</td>
<td>2387.9</td>
<td>7.9272</td>
<td>1</td>
<td>17.9718</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration Number</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>SepalLength</td>
</tr>
<tr>
<td>SepalWidth</td>
</tr>
<tr>
<td>PetalLength</td>
</tr>
<tr>
<td>PetalWidth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Within Cluster Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>SepalLength</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SepalWidth</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PetalLength</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PetalWidth</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
In this example, PROC HPCLUS generates the data set hpclusOut1, which contains the cluster membership information for each observation in the input data set. For each observation, the hpclusOut1 data set includes the variables that are specified in the ID statement and two new variables, _CLUSTER_ID_ and _DISTANCE_, which are the ID of the closest cluster and the distance between the observation and the centroid of the closest cluster, respectively. This example uses the variables in both the INPUT statement and the ID statement in order to transfer these variables to the output data set to do further analysis. The following statements extract the first 10 observations from the output data set; they are shown in Output 5.1.2.

```
proc print noobs data=hpclusOut1(obs=10);
   title1 'First 10 Observations in Output Data Set from PROC HPCLUS';
run;
```

Output 5.1.2 First 10 Observations in the Output Data Set

<table>
<thead>
<tr>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
<th>Species</th>
<th>CLUSTER_ID</th>
<th>DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>33</td>
<td>14</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>1.49599</td>
</tr>
<tr>
<td>46</td>
<td>34</td>
<td>14</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>4.15187</td>
</tr>
<tr>
<td>46</td>
<td>36</td>
<td>10</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>6.40297</td>
</tr>
<tr>
<td>51</td>
<td>33</td>
<td>17</td>
<td>5</td>
<td>Setosa</td>
<td>2</td>
<td>3.82596</td>
</tr>
<tr>
<td>55</td>
<td>35</td>
<td>13</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>5.26859</td>
</tr>
<tr>
<td>48</td>
<td>31</td>
<td>16</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>4.13739</td>
</tr>
<tr>
<td>52</td>
<td>34</td>
<td>14</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>2.10666</td>
</tr>
<tr>
<td>49</td>
<td>36</td>
<td>14</td>
<td>1</td>
<td>Setosa</td>
<td>2</td>
<td>2.56866</td>
</tr>
<tr>
<td>44</td>
<td>32</td>
<td>13</td>
<td>2</td>
<td>Setosa</td>
<td>2</td>
<td>6.69014</td>
</tr>
<tr>
<td>50</td>
<td>35</td>
<td>16</td>
<td>6</td>
<td>Setosa</td>
<td>2</td>
<td>3.86756</td>
</tr>
</tbody>
</table>
```

The following statements run PROC FREQ with the output data set hpclusOut1 to compare the clusters with the species classification. Output 5.1.3 shows the results.

```
proc freq data=hpclusOut1;
 tables _CLUSTER_ID_*Species;
run;
```
Output 5.1.3  Comparison of Clusters Using PROC FREQ

The FREQ Procedure

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Table of <em>CLUSTER_ID</em> by Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td>Species(Iris Species)</td>
</tr>
<tr>
<td>Row Pct</td>
<td>Setosa  Versicolor  Virginica</td>
</tr>
<tr>
<td>Col Pct</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>1  0  48  14  62</td>
</tr>
<tr>
<td></td>
<td>0.00  32.00  9.33  41.33</td>
</tr>
<tr>
<td></td>
<td>0.00  77.42  22.58</td>
</tr>
<tr>
<td></td>
<td>0.00  96.00  28.00</td>
</tr>
<tr>
<td>2</td>
<td>50  0  0  50</td>
</tr>
<tr>
<td></td>
<td>33.33  0.00  0.00  33.33</td>
</tr>
<tr>
<td></td>
<td>100.00  0.00  0.00</td>
</tr>
<tr>
<td></td>
<td>100.00  0.00  0.00</td>
</tr>
<tr>
<td>3</td>
<td>0  2  36  38</td>
</tr>
<tr>
<td></td>
<td>0.00  1.33  24.00  25.33</td>
</tr>
<tr>
<td></td>
<td>0.00  5.26  94.74</td>
</tr>
<tr>
<td></td>
<td>0.00  4.00  72.00</td>
</tr>
<tr>
<td>Total</td>
<td>50  50  50  150</td>
</tr>
<tr>
<td></td>
<td>33.33  33.33  33.33  100.00</td>
</tr>
</tbody>
</table>

PROC HPCLUS creates the output statistics data set, which contains the cluster centroids. This data set includes the iteration number as _ITERATION_, the cluster ID as _CLUSTER_ID_, and the cluster centroids, which consist of the variables that are specified in the INPUT statement. Because the OUTITER option is specified, cluster centroids for each iteration are added to the hpclusOutStat1 data set. The following statements extract the centroids before the first iteration and after the last iteration. Output 5.1.4 and Output 5.1.5 show the results.

```
proc print noobs data=hpclusOutstat1(firstobs=1 obs=3);
 title2 'Cluster centroids before the first iteration';
run;
 title2;

proc print noobs data=hpclusOutstat1(firstobs=13 obs=15);
 title2 'Cluster centroids after the last iteration';
run;
 title2;
```

Output 5.1.4  Cluster Centroids before the First Iteration

Cluster centroids before the first iteration

<table>
<thead>
<tr>
<th><em>ITERATION</em></th>
<th><em>CLUSTER_ID</em></th>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>63</td>
<td>25</td>
<td>49</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>61</td>
<td>28</td>
<td>47</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>63</td>
<td>33</td>
<td>60</td>
<td>25</td>
</tr>
</tbody>
</table>
Example 5.1: Cluster Analysis

Output 5.1.5  Cluster Centroids after the Last Iteration

**Cluster centroids after the last iteration**

<table>
<thead>
<tr>
<th><em>ITERATION</em></th>
<th><em>CLUSTER_ID</em></th>
<th>SepalLength</th>
<th>SepalWidth</th>
<th>PetalLength</th>
<th>PetalWidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>59.3231</td>
<td>27.5538</td>
<td>44.2923</td>
<td>14.3846</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>50.0600</td>
<td>34.2800</td>
<td>14.6200</td>
<td>2.4600</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>68.7429</td>
<td>30.8857</td>
<td>57.9143</td>
<td>21.1714</td>
</tr>
</tbody>
</table>

To plot the clusters, you can use the CANDISC procedure to compute canonical variables and then use the SGPLOT procedure to plot the results as follows:

```sas
proc candisc data=hpclusOut1 anova out=can;
 class _CLUSTER_ID_;
 var SepalLength SepalWidth PetalLength PetalWidth;
 title2 'Canonical Discriminant Analysis of Iris Clusters';
run;

proc sgplot data=Can;
 scatter y=Can2 x=Can1 / group=_CLUSTER_ID_;
 title3 'Plot of Canonical Variables Identified by Cluster';
run;
```

Output 5.1.6 shows the plot for clustering.

Output 5.1.6  Graphs for Cluster Analysis
**Example 5.2: Finding the Number of Clusters**

You can find the number of clusters in the data set by specifying NOC=ABC in the PROC HPCLUS statement as follows:

```plaintext
proc hpclus data=sampsio.dmairis maxclusters=9
 NOC=ABC(B=10 minclusters=2 align=PCA criterion=FIRSTPEAK);
 input sep pet;
 ods output ABCStats=ABCStats1;
run;
```

These statements create three additional ODS tables, which are shown in Output 5.2.1, Output 5.2.2, and Output 5.2.4. Output 5.2.1 shows the parameters that are used in the aligned box criterion (ABC) method.

**Output 5.2.1**  Aligned Box Criterion Parameters

*Canonical Discriminant Analysis of Iris Clusters  
Plot of Canonical Variables Identified by Cluster*

The **HPCLUS Procedure**

<table>
<thead>
<tr>
<th>ABC Parameters</th>
<th>Reference Distribution Count Alignment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Cluster</td>
<td>Maximum Cluster</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

**Output 5.2.2**  Aligned Box Criterion Statistics

*ABC Statistics  
Logarithm of Within-Cluster SSE*

<table>
<thead>
<tr>
<th>Number of Clusters</th>
<th>Input</th>
<th>Reference</th>
<th>Gap</th>
<th>Simulation Adjusted Standard Deviation</th>
<th>One Standard Error Adjusted Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9.6315</td>
<td>10.1170</td>
<td>0.4856</td>
<td>0.0537</td>
<td>0.4319</td>
</tr>
<tr>
<td>3</td>
<td>8.9739</td>
<td>9.2887</td>
<td>0.3149</td>
<td>0.0367</td>
<td>0.2782</td>
</tr>
<tr>
<td>4</td>
<td>8.6565</td>
<td>8.9954</td>
<td>0.3389</td>
<td>0.1334</td>
<td>0.2056</td>
</tr>
<tr>
<td>5</td>
<td>8.5146</td>
<td>8.8023</td>
<td>0.2878</td>
<td>0.0461</td>
<td>0.2416</td>
</tr>
<tr>
<td>6</td>
<td>8.2676</td>
<td>8.7028</td>
<td>0.4352</td>
<td>0.0747</td>
<td>0.3605</td>
</tr>
<tr>
<td>7</td>
<td>8.1476</td>
<td>8.5232</td>
<td>0.3757</td>
<td>0.0655</td>
<td>0.3102</td>
</tr>
<tr>
<td>8</td>
<td>8.0911</td>
<td>8.4819</td>
<td>0.3907</td>
<td>0.0834</td>
<td>0.3073</td>
</tr>
<tr>
<td>9</td>
<td>8.0416</td>
<td>8.4292</td>
<td>0.3876</td>
<td>0.0906</td>
<td>0.2971</td>
</tr>
</tbody>
</table>
The following statements plot the gap values:

```plaintext
title "ABC Statistics Plot Using Gap Values";
proc sgplot data= ABCStats1;
 xaxis type=discrete;
 series x= K y= Gap;
run;
```

Output 5.2.3 shows that the first peak value is at 4. This result is also shown in the estimated number of clusters table, which is shown in Output 5.2.4.

**Output 5.2.3  Gap Values**

![Gap Values Graph](image)

**Output 5.2.4  Estimated Number of Clusters**

<table>
<thead>
<tr>
<th>Estimated Number of Clusters</th>
<th>Number of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRSTPEAK</td>
<td>4</td>
</tr>
</tbody>
</table>

When you use the **NOC**= option, the HPCLUS procedure first estimates the number of clusters, *k*, and then it displays the cluster analysis results with *k*. Output 5.2.5 shows the cluster summary table that is obtained by four clusters.
**Chapter 5: The HPCLUS Procedure**

Output 5.2.5  Cluster Summary Table for Four Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Frequency</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>SSE Standard Deviation</th>
<th>Nearest Cluster</th>
<th>Distance to Nearest Cluster Centroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>12.0987</td>
<td>1.7532</td>
<td>6.8952</td>
<td>1251.3</td>
<td>7.3759</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>11.1331</td>
<td>1.6971</td>
<td>5.4636</td>
<td>1119.6</td>
<td>6.1090</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>8.8626</td>
<td>2.1567</td>
<td>6.0045</td>
<td>1852.4</td>
<td>6.2779</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>12.3935</td>
<td>0.5993</td>
<td>4.8413</td>
<td>1524.0</td>
<td>5.5209</td>
<td>2</td>
</tr>
</tbody>
</table>

Example 5.3: Clustering Nominal Variables

In this example, PROC HPCLUS clusters nominal variables in the Soybean data set, which is from the UCI Machine Learning Repository at [http://archive.ics.uci.edu/ml/datasets/Soybean+%28Small%29](http://archive.ics.uci.edu/ml/datasets/Soybean+%28Small%29). The Soybean data set includes 47 observations, each of which has 35 variables. Each observation is labeled as one of four diseases: D1, D2, D3, and D4. Diseases D1, D2, and D3 have 10 observations each, and disease D4 has 17 observations. For more detailed data information, see Lichman (2013). All the variables in this data set are used in this example.

You can execute the following SAS code to generate the SAS data set:

```sas
%let base = http://archive.ics.uci.edu/ml/datasets/Soybean;
%let _INPUTNOMVAR = date plantstand precip temp hail
 crophist areadamaged severity seedtmt
 germination plantgrowth leaves
 leafspotshalo leafspotsmarg leafspotsize
 leafshread leafmalf leafmild stem
 lodgings stemcankers cankerlesion
 fruitingbodies externaldecay mycelium
 intdiscolor sclerotia fruitpods fruitspots
 seed moldgrowth seeddiscolor seedsize
 shriveling roots;

data soybean;
 length soybeanID 8;
 infile "&base/soybean-small.data" device=url delimiter=',’;
 input &_INPUTNOMVAR. classID $;
 soybeanID = _N_;
 run;
```

---

Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising, products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of any advertising, products, or other materials on, or available from, such websites or resources.
The following statements run the $k$-modes clustering algorithm with a frequency-based distance measure (DISTANCENOM=RELATIVEFREQ) and check whether the clusters that the procedure obtains match the labels of the observations in the data set:

```latex
\begin{verbatim}
proc hpclus data=soybean maxiter=10 maxc=4 DISTANCENOM= RELATIVEFREQ
 outstat=outstat outiter ;
 input &_INPUTNOMVAR. / level=nominal;
 id classID soybeanID ;
 score out=out_hpclus1;
run;

proc sort data=out_hpclus1;
 by _cluster_id_;
run;

title " ";
proc freq data=out_hpclus1;
 by _CLUSTER_ID_;
 table classID ;
run;
\end{verbatim}
```

Output 5.3.1 shows the cluster summary table that is produced for four clusters.

Output 5.3.2 shows some of the entries from the descriptive statistics table that is produced for each nominal input variable. This table shows the frequencies of levels for the input nominal variables in the data set.

```
Output 5.3.1 Cluster Summary Table for Four Clusters

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Frequency</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Average</th>
<th>Sum of Within Cluster Distance</th>
<th>Distance to Nearest Cluster Centroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>9.2000</td>
<td>4.8000</td>
<td>6.0100</td>
<td>60.1000</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6.9000</td>
<td>4.1000</td>
<td>5.7400</td>
<td>57.4000</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>7.3000</td>
<td>5.1000</td>
<td>5.9500</td>
<td>59.5000</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>8.7059</td>
<td>5.8235</td>
<td>7.2076</td>
<td>122.5</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Output 5.3.2  Descriptive Statistics for Nominal Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>plantstand</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>precip</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
### Output 5.3.3  Within-Cluster Frequencies for Nominal Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>plantstand</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>precip</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>temp</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>hail</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>crophist</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>areadamaged</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>severity</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>seedtmt</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>germination</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>plantgrowth</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leaves</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafspotshalo</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafspotsmarg</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafspotsize</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafshread</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafmalf</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>leafmild</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>stem</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>lodgings</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>stemcankers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>
Output 5.3.4 through Output 5.3.7 show whether the observations are classified correctly with respect to the specified labels of observations (D1, D2, D3, and D4). Output 5.3.4 shows that all observations that belong to class D3 are in cluster 1. Similarly, all observations that belong to classes D1, D2, and D4 are in clusters 2, 3, and 4, respectively. Thus, you can conclude that the clustering algorithm classified the observations accurately for this example without using the labels in an unsupervised approach.

**Output 5.3.4**  Labels of Observations for Cluster 1  
**The FREQ Procedure**

<table>
<thead>
<tr>
<th>classID</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>10</td>
<td>100.00</td>
<td>10</td>
<td>100.00</td>
</tr>
</tbody>
</table>

**Output 5.3.5**  Labels of Observations for Cluster 2  
**The FREQ Procedure**

<table>
<thead>
<tr>
<th>classID</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>10</td>
<td>100.00</td>
<td>10</td>
<td>100.00</td>
</tr>
</tbody>
</table>

**Output 5.3.6**  Labels of Observations for Cluster 3  
**The FREQ Procedure**

<table>
<thead>
<tr>
<th>classID</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>10</td>
<td>100.00</td>
<td>10</td>
<td>100.00</td>
</tr>
</tbody>
</table>

**Output 5.3.7**  Labels of Observations for Cluster 4  
**The FREQ Procedure**

<table>
<thead>
<tr>
<th>classID</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>17</td>
<td>100.00</td>
<td>17</td>
<td>100.00</td>
</tr>
</tbody>
</table>
References


# Chapter 6

## The HPDECIDE Procedure

### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: HPDECIDE Procedure</td>
<td>113</td>
</tr>
<tr>
<td>Getting Started: HPDECIDE Procedure</td>
<td>114</td>
</tr>
<tr>
<td>Syntax: HPDECIDE Procedure</td>
<td>117</td>
</tr>
<tr>
<td>PROC HPDECIDE Statement</td>
<td>117</td>
</tr>
<tr>
<td>CODE Statement</td>
<td>118</td>
</tr>
<tr>
<td>DECISION Statement</td>
<td>118</td>
</tr>
<tr>
<td>FREQ Statement</td>
<td>120</td>
</tr>
<tr>
<td>ID Statement</td>
<td>120</td>
</tr>
<tr>
<td>PERFORMANCE Statement</td>
<td>120</td>
</tr>
<tr>
<td>POSTERIORS Statement</td>
<td>120</td>
</tr>
<tr>
<td>PREDICTED Statement</td>
<td>121</td>
</tr>
<tr>
<td>TARGET Statement</td>
<td>121</td>
</tr>
<tr>
<td>Details: HPDECIDE Procedure</td>
<td>121</td>
</tr>
<tr>
<td>Decision Matrix</td>
<td>121</td>
</tr>
<tr>
<td>Variables</td>
<td>122</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>122</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>122</td>
</tr>
<tr>
<td>Examples: HPDECIDE Procedure</td>
<td>123</td>
</tr>
<tr>
<td>Example 6.1: Using a Revenue Matrix and Cost Variables to Make Decisions</td>
<td>123</td>
</tr>
<tr>
<td>Example 6.2: Running with Client Data in Distributed Mode</td>
<td>124</td>
</tr>
</tbody>
</table>

## Overview: HPDECIDE Procedure

The HPDECIDE procedure creates optimal decisions that are based on a decision matrix that you specify, on prior probabilities, and on output from a modeling procedure. This output can be either posterior probabilities for a categorical target variable or predicted values for an interval target variable. The HPDECIDE procedure can also adjust the posterior probabilities for changes in the prior probabilities.

Some modeling procedures assume that the prior probabilities for categorical variable level membership either are all equal or are proportional to the relative frequency of the corresponding response level in the data set. PROC HPDECIDE enables you to specify other prior probabilities. Thus, you can conduct a sensitivity analysis without running the modeling procedure again.

The HPDECIDE procedure runs in either single-machine mode or distributed mode.

**Note:** Distributed mode requires SAS High-Performance Data Mining.
Because the HPDECIDE procedure is a high-performance analytical procedure, it also does the following:

- enables you to run in distributed mode on a cluster of machines that distribute the data and the computations
- enables you to run in single-machine mode on the server where SAS is installed
- exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

---

**Getting Started: HPDECIDE Procedure**

The HPDECIDE procedure can adjust posterior probabilities from a modeling procedure to make decisions. This fictitious example shows how to use the HPDECIDE procedure to adjust posterior probabilities from the DISCRIM procedure, and how to use a revenue matrix and cost constants to make decisions.

In a population of men who consult urologists for prostate problems, 70% have benign enlargement of the prostate, 25% have an infection, and 5% have cancer. A sample of 100 men is taken, and two new diagnostic measures, X and Y, are taken on each patient. The training set also includes the diagnosis that is made by reliable, conventional methods. For each patient, three treatments are available: antibiotics, surgery, or no treatment. Antibiotics are effective against infection, but they might have moderately bad side effects. Antibiotics have no effect on benign enlargement or cancer. Surgery is effective for all diseases but has potentially severe side effects such as impotence.

The first step is to create the sample of 100 men. To simulate the measurements of diagnostics X and Y, this example uses the SAS random number generator. Because you specify the initial seed to the random number generator, all your results will be identical to those presented in this example.

The following statements create the Prostate data set. The first 70 observations represent benign tumors, the next 25 represent infections, and the final 5 represent cancer.

```sas
data Prostate;
 length dx $14;
 dx='Benign';
 mx=30; sx=10;
 my=30; sy=10;
 n=70;
 link generate;
 dx='Infection';
 mx=70; sx=20;
 my=35; sy=15;
 n=25;
 link generate;
 dx='Cancer';
 mx=50; sx=10;
 my=50; sy=15;
 n=5;
 link generate;
```
The following statements run the DISCRIM procedure, which assumes that all prior probabilities are equal (1/3 for this example). In this example, the DISCRIM procedure misidentifies some of the benign tumors as cancer or an infection. Also, it misidentifies some of the infections as benign tumors.

```plaintext
proc discrim data=prostate out=outdis short;
class dx;
var x y;
run;
```

Because PROC DISCRIM misidentifies some of the data, you want to create a data set that contains prior probabilities and revenue information. The revenue information indicates the benefit of each treatment. The cost of each treatment, such as bad side effects, will be specified later in a DECISION statement. The following DATA step creates the revenue matrix:

```plaintext
data rx(type=revenue);
 input dx $14. eqprior prior nothing antibiot surgery;
datalines;
Benign 0.3333 70 0 0 5
Infection 0.3333 25 0 10 10
Cancer 0.3333 5 0 0 100
;
```

The variable `eqprior` defines an equal prior probability for each diagnosis, and the variable `prior` uses information that is known from the sample data set. The other variables define the revenue of each treatment option. The revenue (benefit) of doing nothing in either case is 0, and the benefit of taking antibiotics is relevant only if the patient has an infection. Surgery can remove a benign tumor, but it has very little benefit because it is not necessary. Surgery completely removes an infection, so it has the same value as antibiotics. Finally, surgery can remove a cancerous tumor and therefore is an immense benefit to the patient.

The following statements assign a treatment to each patient. In the DECISION statement, you specify the costs of treatment. The cost of doing nothing is 0, the cost of antibiotics is 5, and the cost of surgery is 20.

```plaintext
proc hpdecide data=outdis out=decOut outstat=decSum;
target dx;
posteriors benign infection cancer;
decision decdata=rx
 oldpriorvar=eqprior priorvar=prior
decvars=nothing antibiot surgery
cost= 0 5 20;
run;
```

```plaintext
proc print data=decSum;
run;
```

Output 6.1 shows the fit statistics information.
The data set `decOut` indicates that only one benign tumor was misidentified, but the number of infections that were misidentified as benign is similar to the results from the DISCRIM procedure. All the cancerous tumors were identified and assigned the treatment of surgery, as was the lone misidentified benign tumor. The total profit for all patients, identified in the data set `decSum`, is 470.

Because medical decisions are personal, the costs that are associated with each treatment can vary considerably from patient to patient. Some patients regard the side effects of surgery as more severe than other patients. Likewise, the costs of antibiotics might vary because of the patients’ insurance plans. The following statements assume a higher cost for surgery and leave the other costs constant:

```plaintext
proc hpdecide data=outdis out=decOut2 outstat=decSum2;
 target dx;
 posteriors benign infection cancer;
 decision decdata=rx
 oldpriorvar=eqprior priorvar=prior
 decvars=nothing antibiot surgery
 cost= 0 5 50;
run;
proc print data=decSum2;
run;
```

Output 6.2 shows the fit statistics information that results from the higher cost of surgery.

Notice that the misclassified benign tumor is now correctly classified. However, one of the cancer cases is identified as benign; this is a costly mistake. Notice in `decOut` that the total profit has been reduced from 470 to 285.
Syntax: HPDECIDE Procedure

The following statements are available in the HPDECIDE procedure:

**PROC HPDECIDE** < options > ;
   ID variables ;
   FREQ variable ;
   PERFORMANCE performance-options ;
   POSTERIORS variables ;
   PREDICTED variables ;
   TARGET variable ;
   DECISION DECDATA=< libref. >SAS-data-set < options > ;
   CODE < options > ;

PROC HPDECIDE Statement

PROC HPDECIDE < options > ;

The PROC HPDECIDE statement invokes the procedure and identifies the input and output data sets. You also need the following statements:

- DECISION statement
- either a POSTERIORS or a PREDICTED statement
- TARGET statement

You can specify the following options in the PROC HPDECIDE statement:

**DATA=< libref. >SAS-data-set**

specifies the input data set that contains the output from a modeling procedure. The default is the most recently created data set. If the data are already distributed, PROC HPDECIDE reads the data alongside the distributed database. For information about the various execution modes and about the alongside-the-database model, see the sections “Processing Modes” on page 6 and “Alongside-the-Database Execution” on page 14 in Chapter 2, “Shared Concepts and Topics.”

**OUT=< libref. >SAS-data-set**

specifies the output data set, which always contains any variables from the input data set that is specified in the ID statement, the chosen decision (with a prefix of D_), and the expected consequence of the chosen decision (with a prefix of either EL_ or EP_).

If the target value is in the input data set, then the output data set also contains the following variables: the consequence of the chosen decision (which is computed from the target value and has a prefix of either CL_ or CP_) and the consequence of the best possible decision when the target value is known (this variable has a prefix of either BL_ or BP_).

If the profit matrix is revenue, then the output data set also contains the following variables: the investment cost (which has a prefix of IC_) and the return on investment (which has a prefix of ROI_).

Additionally, if the PRIORVAR= and OLDPRIORVAR= variables are specified, then this data set contains the recalculated posterior probabilities.
OUTSTAT=libref.>SAS-data-set
specifies an output data set to contain fit statistics. These statistics include the total and average profit or loss. By default, this data set is not created.

ROLE=TRAIN | VALID | VALIDATION | TEST | SCORE
specifies the role of the input data set. This option affects the variables that are created in the DATA= data set. The default value is TRAIN or SCORE. You can specify the following values:

TRAIN specifies that the role of the input data set is training.
VALIDATION specifies that the role of the input data set is validation.
TEST specifies that the role of the input data set is testing.
SCORE specifies that the role of the input data set is scoring.

NOTE: The selection of ROLE does not change the values in the OUTSTAT data set. If the role of the input data set is validation, letter "V" is added to the variable names of the total and average profit or loss. If the role of the input data set is testing, letter "T" is added to the variable names of the total and average profit or loss.

CODE Statement

CODE <options> ;
The CODE statement generates SAS DATA step code that can be used to score data sets. If neither the FILE= option nor the METABASE= option is specified, then the SAS code is written to the SAS log. You can specify both the FILE= option and the METABASE= option to write code to both locations.

FILE=file-name
names the file into which score code is saved.

METABASE=catalog-spec
specifies a catalog entry to contain the SAS score code. For example, you can specify METABASE=myLibrary.myCatalog.catalog-entry.

RESIDUAL
computes the variables that depend on the target variable in the score code.

DECISION Statement

DECISION DECDATA=libref.>SAS-data-set <options> ;

Required Argument

DECDATA=libref.>SAS-data-set <type>
names the input data set that contains the decision matrix or the prior probabilities, or both. This argument is required.

The named data set must contain the target variable that is specified in the TARGET statement. It might also contain decision variables that are specified in the DECVARS= option and prior probability variables that are specified in the PRIORVAR= option or the OLDPRIORVAR= option or both.
For a categorical target variable, there should be one observation for each class. Each entry \( d_{ij} \) in the decision matrix indicates the consequence of selecting target value \( i \) for variable \( j \). If any class appears more than once in this data set, an error message is printed and the PROC HPDECIDE terminates. Any class value in the input data set that is not found in this data set is treated as a missing class value. The classes in this data set must correspond exactly to the variables in the POSTERIORS statement.

For an interval target variable, each row defines a knot in a piecewise linear spline function. The consequence of making a decision is computed by interpolation in the corresponding column of the decision matrix. If the predicted target value is outside the range of knots in the decision matrix, the consequence is computed by linear extrapolation. If the target values are monotonically increasing or decreasing, any interior target value is allowed to appear twice in data set. This enables you to specify discontinuities in the data. No target value is allowed to appear more than twice. If the target values are not monotonic, then they are sorted by PROC HPDECIDE and are not allowed to appear more than once.

The data set option \( \text{type} \) is specified in parentheses after the data set name when the data set is created or used. The possible values of \( \text{type} \) are LOSS, PROFIT, and REVENUE; the default is PROFIT.

**Optional Arguments**

You can specify the following *options*:

- **DECVARS=** *variables*
  specifies the numeric decision variables in the DECDATA= data set that contain the target-specific consequences for each decision. The decision variables cannot contain any missing values.

- **COST=** *list-of-costs*
  specifies the numeric constants that give the cost of a decision, the numeric variables in the input data set that contain case-specific costs, or any combination of constants and variables.

  The number of cost constants and variables must match the number of decision variables in the DECVARS= option. You cannot use abbreviated variable lists. For any observation in which a cost variable is missing, the results for that observation are considered missing. By default, all costs are assumed to be 0. You can specify this option only when \( \text{type} \) is REVENUE.

- **PRIORVAR=** *variable*
  specifies the number variable in the DECDATA= data set that contains the prior probabilities that are used to make decisions. Prior probabilities are also used to adjust the total and average profit or loss. Prior probabilities cannot be missing or negative, and there must be at least one positive prior probability. The prior probabilities are not required to sum to 1. But if they do not sum to 1, then they are scaled by some constant so that they do sum to 1. If you do not specify this option, then no adjustment for prior probabilities is applied to the posterior probabilities.

- **OLDPRIORVAR=** *variable*
  specifies the numeric variable in the DECDATA= data set that contains the prior probabilities that were used the first time the model was fit. If you specify this option, then you must also specify the PRIORVAR= option.
FREQ Statement

\texttt{FREQ \textit{variable} ;}

The FREQ statement specifies a single numeric variable whose value represents the frequency of each observation. If you use the FREQ statement, the HPDECIDE procedure treats the data set as if each observation appeared \( n \) times, where \( n \) is the value of the FREQ variable. The FREQ variable has no effect on decisions of the adjustment for prior probabilities. It affects only the summary statistics in the OUTSTAT= data set. If a value of the FREQ variable is not an integer, then the fractional part is not truncated. If a value of the FREQ variable is less than or equal to 0, then the observation does not contribute to the summary statistics. However, all the variables in the OUT= data set are processed as if the FREQ variable were positive.

ID Statement

\texttt{ID \textit{variables} ;}

The ID statement lists one or more variables from the input data set that are transferred to the output data set created by the HPDECIDE procedure. By default, to avoid data duplication for large data sets, the HPDECIDE procedure does not include any variables from the input data set in the output data sets. Therefore, the ID statement can be used to copy variables from the input data set to the output data set.

PERFORMANCE Statement

\texttt{PERFORMANCE < \textit{performance-options} > ;}

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of the HPDECIDE procedure.

You can also use the PERFORMANCE statement to control whether the HPDECIDE procedure executes in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on page 31 of Chapter 2, “Shared Concepts and Topics.”

POSTERIORS Statement

\texttt{POSTERIORS \textit{variable-list} ;}

The POSTERIORS statement specifies a list of the numeric variables in the input data set that contain the estimated posterior probabilities that correspond to the categories of the target variable. If one of the following conditions is met, then an observation is set to missing and the variable \_WARN\_ contains the flag \( \textit{P} \):

- The posterior probability is missing, negative, or greater than 1.
There is a nonzero posterior that corresponds to a zero posterior.

There is not at least one valid positive posterior probability.

The order of the variables in the *variable-list* must correspond exactly to the order of the classes in the data set that is specified in the DECDATA= option in the DECISION statement.

### PREDICTED Statement

```
PREDICTED variable ;
```

The PREDICTED statement specifies the numeric variable in the input data set that contains the predicted values of an interval target variable. You can specify only an interval target variable in the PREDICTED statement. You cannot use both the POSTERIORS statement and the PREDICTED statement.

### TARGET Statement

```
TARGET variable ;
```

The TARGET statement specifies which variable is the target variable in the data set that is specified in the DECDATA= option in the DECISION statement. The TARGET statement is required.

The HPDECIDE procedure searches for a target variable that has the same name in the input data set. If none is found, then the HPDECIDE procedure assumes that actual target values are unknown. For a categorical variable, the target variables in the data sets that are specified in the DATA= option in the PROC HPDECIDE statement and in the DECDATA= option in the DECISION statement do not need to be the same type because only the formatted values are used for comparisons. For an interval target, both variables must be numeric. If scoring code is generated by the CODE statement, the code formats the target variable by using the format and length from the DATA= data set.

### Details: HPDECIDE Procedure

#### Decision Matrix

The decision matrix contains columns (decision variables) that correspond to each decision and rows (observations) that correspond to target values. The values of the decision variables represent target-specific consequences, which might be profit, loss, or revenue. These consequences are the same for all cases that are scored.

For each decision, there might also be either a cost variable or a numeric constant. The values of these variables represent case-specific consequences, which are always costs. These consequences do not depend on the target values of the cases that are scored. Costs are used for computing return on investment as

\[
\frac{\text{revenue} - \text{cost}}{\text{cost}}
\]
Variables

Cost variables might be specified only if the decision data set contains revenue, not profit or loss. Therefore, if revenues and costs are specified, profits are computed as revenue minus cost. If revenues are specified without costs, the costs are assumed to be 0. The interpretation of consequences as profits, losses, revenues, and costs is needed only to compute return on investment. You can specify values in the decision data set that are target-specific consequences but that might have some practical interpretation other than profit, loss, or revenue. Likewise, you can specify values for the cost variables that are case-specific consequences but that might have some practical interpretation other than costs. If the revenue/cost interpretation is not applicable, the values that are computed for return on investment might not be meaningful.

The HPDECIDE procedure chooses the optimal decision for each observation. If the type of decision data set (as specified in the DECISION statement) is PROFIT or REVENUE, PROC HPDECIDE chooses the decision that produces the maximum expected or estimated profit. If type is LOSS, PROC HPDECIDE chooses the decision that produces the minimum expected or estimated loss.

If the actual value of the target variable is known, the HPDECIDE procedure calculates the following:

- the consequence of the chosen decision for the actual target value for each case
- the best possible consequence for each case
- summary statistics that give the total and average profit or loss

Displayed Output

The “Performance Information” table is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the number of compute nodes and the number of threads per node.

If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a “Timing” table in which elapsed times (absolute and relative) for the main tasks of the procedure are displayed.

ODS Table Names

Table 6.1 lists the names of the ODS tables that are created by the HPDECIDE procedure. You must use these names in ODS statements.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement or Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformanceInfo</td>
<td>Performance information</td>
<td>Default output</td>
</tr>
<tr>
<td>Timing</td>
<td>Timing</td>
<td>PERFORMANCE statement with DETAILS option</td>
</tr>
</tbody>
</table>
Example 6.1: Using a Revenue Matrix and Cost Variables to Make Decisions

This fictitious example demonstrates how to use PROC HPDECIDE to adjust posterior probabilities and how to use a revenue matrix and cost variables to make decisions. In the following DATA steps, the categorical target variable tar has two levels in the data set data1: a and b.

```sas
data data1(drop=i);
 do i=1 to 5;
 tar="b";
 if i<3 then tar="a";
 p_a=abs(ranuni(81923));
 p_b=abs(1-p_a);
 c1=ranpoi(38192,5);
 c2=ranpoi(28131,7);
 output;
 end;
run;
```

```sas
data decdata1(type=revenue);
 input dv1-dv2 op np tar $;
DATALINES;
 5 3 .5 .2 a
 6 3 .5 .8 b
;```

The estimated posterior probabilities that correspond to the categories of the target variable are denoted by p_a and p_b. The two cost variables, c1 and c2, represent the target-specific consequences for the decision variables dv1 and dv2, respectively. The variable op contains the “old” prior probabilities that were used the first time the model was fictitiously fit. The variable np contains the “new” prior probabilities that are used to make decisions.

The following statements take the data set data1 and the data set decdata1, and output the data set out1 and the data set outstat1. The target variable is tar. Because the input data set resides on the client and no PERFORMANCE statement is specified, the client performs all computations.

```sas
proc hpdecide data=data1 out=out1 outstat=outstat1;
  decision decdata=decdata1 decvars=dv1-dv2
  oldpriorvar=op priorvar=np cost=c1 c2;
  posteriors p_a p_b;
  target tar;
  performance details nthreads=2;
run;
```

```sas
proc print data=out1;
  var p_a p_b I_tar F_tar dv1 dv2 D_DECDATA1 EP_DECDATA1 CP_DECDATA1;
run;
```

```sas
proc print data=outstat1;
run;
```
Output 6.1.1 shows the out1 data set, which displays the decision for each observation. The adjusted posterior probabilities are also shown in the out1 data set.

Output 6.1.1 out1 Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>p_a</th>
<th>p_b</th>
<th>l_tar</th>
<th>F_tar</th>
<th>dv1</th>
<th>dv2</th>
<th>D_DECDATA1</th>
<th>EP_DECDATA1</th>
<th>CP_DECDATA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35602</td>
<td>0.64398</td>
<td>B</td>
<td>A</td>
<td>0.64398</td>
<td>-6</td>
<td>dv1</td>
<td>0.64398</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.38571</td>
<td>0.61429</td>
<td>B</td>
<td>A</td>
<td>0.61429</td>
<td>-1</td>
<td>dv1</td>
<td>0.61429</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.18922</td>
<td>0.81078</td>
<td>B</td>
<td>B</td>
<td>-1.18922</td>
<td>-2</td>
<td>dv1</td>
<td>-1.18922</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0.11035</td>
<td>0.88965</td>
<td>B</td>
<td>B</td>
<td>4.88965</td>
<td>0</td>
<td>dv1</td>
<td>4.88965</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0.29158</td>
<td>0.70842</td>
<td>B</td>
<td>B</td>
<td>-3.29158</td>
<td>-2</td>
<td>dv2</td>
<td>-2.00000</td>
<td>-2</td>
</tr>
</tbody>
</table>

Output 6.1.2 shows the outstat1 data set, which shows that the total profit is 2.6666666667 and the average profit is 0.5333333333, based on the decisions from the out1 data set.

Output 6.1.2 outstat1 Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>PROF_</th>
<th>APROF_</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.66667</td>
<td>0.53333</td>
</tr>
</tbody>
</table>

Output 6.1.3 shows the performance information.

Output 6.1.3 Performance Information

The HPDECIDE Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

Example 6.2: Running with Client Data in Distributed Mode

This example demonstrates how to use PROC HPDECIDE to make decisions when the type of the decision data set is LOSS and the target is continuous. When the input data set resides on the client and a PERFORMANCE statement with a NODES= option is specified, as in the following statements, PROC HPDECIDE copies the data set to the SAS appliance, where the computation is performed:
Example 6.2: Running with Client Data in Distributed Mode

data data2;
 input tar p ;
 DATALINES;
 1 6
 2 2
 3 1
 3 4
 4 2
 5 0
 3 3
 6 2
 7 1
 3 5
;

data decdata2(type=loss);
 input dv1 dv2 dv3 tar ;
 DATALINES;
 0 0 3 0
 1 0 2 1
 0 2 1 2
 0 3 0 3
;

The following statements take as input the data2 and decdata2 data sets (which reside on the client) and output the out2 and outstat2 data sets. The decision variables are dv1, dv2, and dv3, and the target variable is tar. Because five grid nodes are specified in the PERFORMANCE statement, the input data sets are distributed from the client to the five grid nodes, which perform the computations and then write the output data sets back to the client.

proc hpdecide data=data2 out=out2 outstat=outstat2;
 decision decdata=decdatal2 decvars=dv1-dv3;
 predicted p;
 target tar;
 performance details nodes=5 nthreads=8
 host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

proc print data=out2;
run;

proc print data=outstat2;
run;
Output 6.2.1 shows the `out2` data set, which displays the decision for each observation. For each observation, the continuous target variable was interpolated.

Output 6.2.1 out2 Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>p</th>
<th>dv1</th>
<th>dv2</th>
<th>dv3</th>
<th>D_DECDATA2</th>
<th>EL_DECDATA2</th>
<th>CL_DECDATA2</th>
<th>BL_DECDATA2</th>
<th>WARN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>dv1</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>dv1</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>dv1</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>dv1</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>dv2</td>
<td></td>
<td></td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>-2</td>
<td>dv3</td>
<td></td>
<td></td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

Output 6.2.2 shows the `outstat2` data set, which shows that the total loss is 0 and the average loss is 0, based on the decisions from the `out2` data set.

Output 6.2.2 outstat2 Data Set

<table>
<thead>
<tr>
<th>Obs</th>
<th>LOSS</th>
<th>ALOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Output 6.2.3 shows the performance information.

Output 6.2.3 Performance Information

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Install Location</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

Output 6.2.4 shows the timing information.

Output 6.2.4 Timing Information

<table>
<thead>
<tr>
<th>Procedure Task Timing</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup of Distributed Environment</td>
<td>2.68</td>
<td>79.16%</td>
</tr>
<tr>
<td>Data Transfer from Client</td>
<td>0.01</td>
<td>0.22%</td>
</tr>
<tr>
<td>Computation</td>
<td>0.00</td>
<td>0.01%</td>
</tr>
<tr>
<td>Writing Output</td>
<td>0.70</td>
<td>20.61%</td>
</tr>
</tbody>
</table>
Chapter 7
The HPFOREST Procedure

Contents

Overview: HPFOREST Procedure .. 128
PROC HPFOREST Features .. 129
PROC HPFOREST Contrasted with Other SAS Procedures 129
Getting Started: HPFOREST Procedure 130
Syntax: HPFOREST Procedure .. 134
 PROC HPFOREST Statement ... 134
 FREQ Statement ... 140
 INPUT Statement ... 140
 ID Statement ... 140
 PARTITION Statement ... 141
 PERFORMANCE Statement ... 141
 SAVE Statement ... 141
 SCORE Statement ... 142
 TARGET Statement .. 142
 TREATMENT Statement (Experimental) 143
Details: HPFOREST Procedure .. 143
 Bagging the Data .. 143
 Training a Decision Tree ... 144
 Controlling for Variable Selection Bias 145
 Selecting a Splitting Variable ... 148
 Binned Search ... 149
 Hothorn, Hornik, and Zeileis ... 149
 Loh and GUIDE .. 150
 Searching for a Splitting Rule ... 151
 Rules ... 151
 Criteria ... 151
 Algorithm .. 152
 Pruning .. 153
 Definitions .. 153
 Recommendations .. 154
 Predicting an Observation .. 156
 Measuring Prediction Error .. 157
 Adjusting Statistics When Sampling Target Classes Unevenly 157
 Formulas for Adjusting the Predictions and Fit Statistics 158
 Why the Adjustments Matter ... 159
 Technical Derivations of Adjustment Formulas 163
Overview: HPFOREST Procedure

The HPFOREST procedure is a high-performance procedure that creates a predictive model called a forest that consists of several decision trees. A predictive model defines a relationship between input variables and a target variable. The purpose of a predictive model is to predict a target value from inputs. The HPFOREST procedure trains the model; that is, it creates the model using training data in which the target values are known. The model can then be applied to observations in which the target is unknown. If the predictions fit the new data well, the model is said to generalize well. Good generalization is the primary goal for predictive tasks. A predictive model might fit the training data well but generalize poorly.
A decision tree is a type of predictive model that has been developed independently in the statistics and artificial intelligence communities. The HPFOREST procedure creates a tree recursively. An input variable is chosen and used to create a rule to split the data into two segments. The process is then repeated in each segment, and then again in each new segment, and so on until some constraint is met. In the terminology of the tree metaphor, the segments are nodes, the original data set is the root node, and the final unpartitioned segments are leaves or terminal nodes. A node is an internal node if it is not a leaf. The data in a leaf determine the estimates of the value of the target variable. These estimates are subsequently applied to predict the target of a new observation assigned to the leaf.

The HPFOREST procedure creates decision trees that differ from each other in two ways. First, the training data for a tree is a sample, without replacement, from the original training data of the forest. Second, the input variables considered for splitting a node are randomly selected from all available inputs. Among these variables, the HPFOREST procedure considers only a single variable when forming a splitting rule. The chosen variable is the one that is most associated with the target.

PROC HPFOREST runs in either single-machine mode or distributed mode. In distributed mode, PROC HPFOREST trains decision trees in parallel, and accesses all the data for every tree. Note: Distributed mode requires SAS High-Performance Data Mining.
with the target among candidates randomly selected in that node. Consequently, the HPFOREST procedure creates different trees than the other procedures.

The ARBORETUM procedure distinguishes between split-based and observation-based variable importance measures. The HPFOREST procedure calls these measures loss reduction and Breiman’s method of variable importance, respectively.

The HPFOREST and HPSPLIT procedures are high-performance analytical procedures; the ARBORETUM procedure is not.

Getting Started: HPFOREST Procedure

This example uses diabetes data to illustrate PROC HPFOREST. Diabetes is a major American disease. The American Diabetes Association estimates that over 8% of Americans have diabetes, and diabetes costs Americans over $175 billion a year. The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) has been studying diabetes and obesity in the Akimel O’otham (formerly known as Pima Indians) in Arizona for over 30 years. Smith et al. (1988) prepared some of the NIDDK data for forecasting the onset of diabetes and then donated the data for community use. Since then, the data have been applied to dozens of experimental algorithms for predicting the onset of diabetes.

The Pima Indians Diabetes data set is in the UCI Machine Learning Repository (Lichman 2013) and is available at http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes. The following SAS statements create a SAS data set from a URL:

```sas
data diabetes;
  %let url=//archive.ics.uci.edu/ml/machine-learning-databases;
  infile "http:&url/pima-indians-diabetes/pima-indians-diabetes.data"
    device=url delimiter=',';
  input NumPregnancies PlasmaGlucose DiastolicBloodPr TricepsSkinfold HrSerumInsulin BodyMassIndex DiabetesPedigreeFn Age Diabetes $;
run;
```

The variable `diabetes` has values 0 and 1, 1 indicating the presence of diabetes. The other variables are raw measures on interval scales, except for `DiabetesPedigreeFn`, which is an interval variable created by Smith et al. (1988) to capture the family history of diabetes. PROC HPFOREST uses an interval scale for numeric

1 Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising, products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of any advertising, products, or other materials on, or available from, such websites or resources.
variables and a nominal scale for categorical variables unless the scale is specified. The following statements run PROC HPFOREST and save the model in a binary file:

```sas
proc hpforest data=diabetes;
   input NumPregnancies PlasmaGlucose DiastolicBloodPr TricepsSkinfold HrSerumInsulin BodyMassIndex DiabetesPedigreeFn Age;
   target Diabetes;
   ods output FitStatistics=fitstats;
   save file="model";
run;
```

Figure 7.1 shows that the program ran locally and that four threads were used. The default number of threads is the number of processors in the computer. The listing also shows the values of the training parameters and the number of observations (768). No parameters are specified in the PROC HPFOREST statement; therefore, all the values are default. The maximum number of decision trees to create is 50. The `VARS_TO_TRY=` option value is 3, indicating that three of the eight input variables are randomly selected to be considered for a splitting rule.

Figure 7.1 PROC HPFOREST Getting Started Example Output

The HPFOREST Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>WORK.DIABETES</td>
</tr>
</tbody>
</table>
Figure 7.2 shows the baseline fit statistics. PROC HPFOREST first computes baseline statistics without using a model. The listing shows a baseline misclassification rate of 0.349, because that is the proportion of observations for which the value of diabetes is 1.

Figure 7.3 shows the first 10 and last 10 observations of the fit statistics. When PROC HPFOREST runs in single-machine mode, it computes fit statistics for a sequence of forests that have an increasing number of trees. As the number of trees increases, the fit statistics usually improve (decrease) at first and then level off and fluctuate in a small range. Forest models provide an alternative estimate of average square error and misclassification rate, called the out-of-bag (OOB) estimate. The OOB estimate is a convenient substitute for an estimate that is based on test data and is a less biased estimate of how the model will perform on future data. For more information, see the section “Bagging the Data” on page 143. The listing shows that the OOB error estimate is worse (larger) than the estimate that evaluates all observations on all trees. This is usual.
The OOB misclassification rate for the model fluctuates between 0.230 and 0.238, which is in a range much less than the baseline rate of rate of 0.349. Therefore, you can conclude that the model is good.

Figure 7.3 PROC HPFOREST Getting Started Example Output

<table>
<thead>
<tr>
<th>Number of Trees</th>
<th>Number of Leaves</th>
<th>Average Square Error (Train)</th>
<th>Average Square Error (OOB)</th>
<th>Average Misclassification Rate (Train)</th>
<th>Average Misclassification Rate (OOB)</th>
<th>Log Loss (Train)</th>
<th>Log Loss (OOB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363</td>
<td></td>
<td>0.0448</td>
<td>0.1092</td>
<td>0.04564</td>
<td>0.1107</td>
<td>0.9816</td>
<td>2.436</td>
</tr>
<tr>
<td>735</td>
<td></td>
<td>0.0277</td>
<td>0.0979</td>
<td>0.04664</td>
<td>0.1078</td>
<td>0.2462</td>
<td>2.008</td>
</tr>
<tr>
<td>1094</td>
<td></td>
<td>0.0232</td>
<td>0.1000</td>
<td>0.02601</td>
<td>0.1137</td>
<td>0.1201</td>
<td>1.941</td>
</tr>
<tr>
<td>1432</td>
<td></td>
<td>0.0204</td>
<td>0.0954</td>
<td>0.02651</td>
<td>0.1117</td>
<td>0.0822</td>
<td>1.743</td>
</tr>
<tr>
<td>1782</td>
<td></td>
<td>0.0187</td>
<td>0.0908</td>
<td>0.01829</td>
<td>0.1126</td>
<td>0.0668</td>
<td>1.516</td>
</tr>
<tr>
<td>2131</td>
<td></td>
<td>0.0176</td>
<td>0.0887</td>
<td>0.02064</td>
<td>0.1110</td>
<td>0.0657</td>
<td>1.386</td>
</tr>
<tr>
<td>2430</td>
<td></td>
<td>0.0175</td>
<td>0.0852</td>
<td>0.01661</td>
<td>0.1084</td>
<td>0.0677</td>
<td>1.198</td>
</tr>
<tr>
<td>2817</td>
<td></td>
<td>0.0163</td>
<td>0.0813</td>
<td>0.01527</td>
<td>0.1045</td>
<td>0.0653</td>
<td>1.058</td>
</tr>
<tr>
<td>3174</td>
<td></td>
<td>0.0156</td>
<td>0.0782</td>
<td>0.01292</td>
<td>0.1021</td>
<td>0.0640</td>
<td>0.953</td>
</tr>
<tr>
<td>3551</td>
<td></td>
<td>0.0152</td>
<td>0.0777</td>
<td>0.01158</td>
<td>0.1019</td>
<td>0.0638</td>
<td>0.899</td>
</tr>
<tr>
<td>32740</td>
<td></td>
<td>0.0123</td>
<td>0.0636</td>
<td>0.00185</td>
<td>0.0943</td>
<td>0.0618</td>
<td>0.227</td>
</tr>
<tr>
<td>33042</td>
<td></td>
<td>0.0124</td>
<td>0.0635</td>
<td>0.00201</td>
<td>0.0940</td>
<td>0.0619</td>
<td>0.227</td>
</tr>
<tr>
<td>33426</td>
<td></td>
<td>0.0123</td>
<td>0.0635</td>
<td>0.00185</td>
<td>0.0945</td>
<td>0.0618</td>
<td>0.227</td>
</tr>
<tr>
<td>33794</td>
<td></td>
<td>0.0123</td>
<td>0.0636</td>
<td>0.00201</td>
<td>0.0936</td>
<td>0.0618</td>
<td>0.227</td>
</tr>
<tr>
<td>34140</td>
<td></td>
<td>0.0123</td>
<td>0.0636</td>
<td>0.00201</td>
<td>0.0940</td>
<td>0.0618</td>
<td>0.227</td>
</tr>
<tr>
<td>34492</td>
<td></td>
<td>0.0123</td>
<td>0.0635</td>
<td>0.00185</td>
<td>0.0940</td>
<td>0.0617</td>
<td>0.224</td>
</tr>
<tr>
<td>34846</td>
<td></td>
<td>0.0123</td>
<td>0.0635</td>
<td>0.00218</td>
<td>0.0946</td>
<td>0.0618</td>
<td>0.220</td>
</tr>
<tr>
<td>35195</td>
<td></td>
<td>0.0123</td>
<td>0.0635</td>
<td>0.00201</td>
<td>0.0941</td>
<td>0.0618</td>
<td>0.221</td>
</tr>
<tr>
<td>35575</td>
<td></td>
<td>0.0123</td>
<td>0.0635</td>
<td>0.00168</td>
<td>0.0941</td>
<td>0.0618</td>
<td>0.221</td>
</tr>
<tr>
<td>35921</td>
<td></td>
<td>0.0123</td>
<td>0.0634</td>
<td>0.00168</td>
<td>0.0943</td>
<td>0.0618</td>
<td>0.220</td>
</tr>
</tbody>
</table>

Estimates of variable importance appear after the fit statistics. The Number of Rules column in Figure 7.4 shows the number of splitting rules that use a variable. The section “Measuring Variable Importance” on page 168 explains the measures of importance. Each measure is computed twice: once on training data and once on out-of-bag data. As with fit statistics, the out-of-bag estimates are less biased. The rows are sorted by the OOB Gini measure, which is a more stringent measure than the OOB margin measure. The OOB Gini column is negative for seven variables, and the OOB margin column is negative for two variables. The splitting rules that involve these two variables are, on average, spurious. The main conclusion from fitting the forest model to these data is that plasmaGlucose is the most important predictor of future onset of diabetes.
Syntax: HPFOREST Procedure

The following statements are available in the HPFOREST procedure:

```plaintext
PROC HPFOREST <options> ;
   FREQ variable ;
   INPUT variables <options> ;
   ID variables ;
   PARTITION ROLEVAR=variable <TRAIN='value' > <VALIDATE='value' > ;
   PERFORMANCE performance-options ;
   SAVE <options> ;
   SCORE <score-options> ;
   TARGET variable <options> ;
   TREATMENT variable <ORDER=order> ;
```

The PROC HPFOREST statement, INPUT, and TARGET statements are required. The INPUT statement can appear multiple times. The TREATMENT statement is experimental.

PROC HPFOREST Statement

```plaintext
PROC HPFOREST <options> ;
```

The PROC HPFOREST statement invokes the procedure. You can specify one or more of the following optional arguments.

`DATA=<libref.>SAS-data-set`

names the SAS data set to be used by PROC HPFOREST for training the model. The default is the most recently created data set.

If the data are already distributed, the procedure reads the data alongside the distributed database. See the section “Processing Modes” on page 6 for the various execution modes and the section “Alongside-the-Database Execution” on page 14 for the alongside-the-database model. Data from all the computer grid nodes are combined into a structure that is optimized for model training and redistributed to the nodes. The different nodes then proceed independently with identical data to create decision trees.

Section: Syntax: HPFOREST Procedure

The following statements are available in the HPFOREST procedure:

```plaintext
PROC HPFOREST <options> ;
   FREQ variable ;
   INPUT variables <options> ;
   ID variables ;
   PARTITION ROLEVAR=variable <TRAIN='value' > <VALIDATE='value' > ;
   PERFORMANCE performance-options ;
   SAVE <options> ;
   SCORE <score-options> ;
   TARGET variable <options> ;
   TREATMENT variable <ORDER=order> ;
```

The PROC HPFOREST statement, INPUT, and TARGET statements are required. The INPUT statement can appear multiple times. The TREATMENT statement is experimental.

Section: PROC HPFOREST Statement

```plaintext
PROC HPFOREST <options> ;
```

The PROC HPFOREST statement invokes the procedure. You can specify one or more of the following optional arguments.

`DATA=<libref.>SAS-data-set`

names the SAS data set to be used by PROC HPFOREST for training the model. The default is the most recently created data set.

If the data are already distributed, the procedure reads the data alongside the distributed database. See the section “Processing Modes” on page 6 for the various execution modes and the section “Alongside-the-Database Execution” on page 14 for the alongside-the-database model. Data from all the computer grid nodes are combined into a structure that is optimized for model training and redistributed to the nodes. The different nodes then proceed independently with identical data to create decision trees.

Table: Loss Reduction Variable Importance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of Rules</th>
<th>Gini</th>
<th>OOB Gini</th>
<th>Margin</th>
<th>OOB Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlasmaGlucose</td>
<td>1341</td>
<td>0.121668</td>
<td>0.04130</td>
<td>0.243336</td>
<td>0.16453</td>
</tr>
<tr>
<td>NumPregnancies</td>
<td>698</td>
<td>0.031116</td>
<td>-0.01226</td>
<td>0.062232</td>
<td>0.01934</td>
</tr>
<tr>
<td>BodyMassIndex</td>
<td>1665</td>
<td>0.075439</td>
<td>-0.02387</td>
<td>0.150878</td>
<td>0.04945</td>
</tr>
<tr>
<td>HrSerumInsulin</td>
<td>815</td>
<td>0.029283</td>
<td>-0.02493</td>
<td>0.058566</td>
<td>0.00500</td>
</tr>
<tr>
<td>TricepsSkinfold</td>
<td>780</td>
<td>0.023756</td>
<td>-0.02584</td>
<td>0.047512</td>
<td>-0.00134</td>
</tr>
<tr>
<td>Age</td>
<td>1814</td>
<td>0.068814</td>
<td>-0.02874</td>
<td>0.137628</td>
<td>0.03839</td>
</tr>
<tr>
<td>DiastolicBloodPr</td>
<td>1228</td>
<td>0.038636</td>
<td>-0.03966</td>
<td>0.077272</td>
<td>-0.00008</td>
</tr>
<tr>
<td>DiabetesPedigreeFn</td>
<td>2005</td>
<td>0.064256</td>
<td>-0.05610</td>
<td>0.128512</td>
<td>0.00764</td>
</tr>
</tbody>
</table>
PROC HPFOREST Statement

ALPHA=`number`

specifies a threshold p-value for the significance level of a test of association of a candidate variable with the target. If no association meets this threshold, the node is not split. The default value is 1.

BALANCE=`YES | NO`

specifies whether to modify the splitting criterion for a nominal target so that the number of observations in each target class are effectively equal. A weight is applied to the count of observations in a class. The weight is different in different nodes. You can specify the following values:

- **YES**
 modifies the splitting criterion so that the number of observations in each target class are effectively equal. Setting BALANCE=YES can improve prediction when the class sizes are very different.

- **NO**
 does not modify the splitting criterion.

By default, BALANCE=NO.

CATBINS=`k`

specifies the maximum number of categories of a nominal candidate variable to use in the association test. k refers only to the categories that are present in the training data in the node and that satisfy the `MINCATSIZE=` option. The categories are counted independently in each node. If more than k categories are present, then the least frequent categories are removed from the association test. Many infrequent categories can dilute a strong predictive ability of common categories. The search for a splitting rule uses all categories that satisfy the `MINCATSIZE=` options. The value of k must be a positive integer. The default value is 30.

EXHAUSTIVE=`number`

specifies the maximum number of splits to examine in a complete enumeration of all possible splits when the input variable is nominal and the target has more than two nominal categories. The exhaustive method of searching for a split examines all possible splits. If the number of possible splits is greater than `number`, then a heuristic search is done instead of an exhaustive search. The default value of `number` is 5,000.

GRIDCLASSSIZE=`n`

specifies the minimum number of observations of any value of a binary or nominal target to exist on a grid node when `GRIDCOPY=MINIMAL` is specified. Observations are copied between grid nodes as necessary to meet this minimum. This option is ignored unless PROC HPFOREST is running in distributed mode. The default value is 10,000.

GRIDCOPY=`ALL | MINIMAL | NONE | TRAINING`

specifies how many observations to copy between grid nodes when PROC HPFOREST runs in distributed mode. PROC HPFOREST creates a decision tree on a single grid node without using data on other nodes unless observations are copied from other nodes before any tree is created. Generally, the more observations on a node, the larger the tree can grow and the more accurate the forest. The disadvantage is time, because the core processors have more work to do. You can specify the following values:

- **ALL**
 copies all training and validation data.

- **MINIMAL**
 copies enough training data to achieve a minimum on each node. This option uses the `GRIDCLASSSIZE=` and `GRIDNODESIZE=` option values to determine the minimum number of observations required on each grid node.
NONE does not copy any observations.
TRAINING copies all training data.

By default, GRIDCOPY=MINIMAL.

GRIDNODESIZE=n
specifies the minimum number of observations to use on a grid node when PROC HPFOREST runs in distributed mode and GRIDCOPY=MINIMAL is specified. If the number of observations on a node is less than n, then observations are copied from other nodes to achieve n. The default value is 100,000.

IMPORTANCE=YES | NO
specifies whether to compute variable importance. You can specify the following values:

YES computes loss reduction variable importance.
NO does not computes loss reduction variable importance. If you save the model (by specifying the SAVE statement) and subsequently input it to PROC HP4SCORE, then PROC HP4SCORE cannot compute variable importance either.

By default, IMPORTANCE=YES.

INBAGFRACTION=f
specifies the fraction of training observations to train a tree with, where f can be any number greater than 0 and at most 1. Using less than all the available data often improves the generalization error. A different in-bag sample is taken for each tree. The default value of f is 0.6. PROC HPFOREST uses at least four observations in the in-bag data regardless of how small f is (assuming four observations exist). If an observation is available for training but is not an in-bag datum, then it is either out-of-bag or a pruning datum. If f is too small to accommodate the LEAFSIZE=, LEAFFRACTION=, and SPLITSIZE options then no tree is made. The INBAGFRACTION= option accepts a fraction instead of an absolute number to specify the same quantity. Specifying both the INBAGN= and INBAGFRACTION= options is an error.

INBAGN=n
specifies how many observations to use to train each tree. The observations are counted without regard to the variable specified in the FREQ statement. Using less than all the available data often improves the generalization error. A different in-bag sample is taken for each tree. n can be any positive integer. If n is greater than the number of observations in the data set specified in the DATA= option, then all the available data are used. n must be at least 3 and large enough to accommodate the values of the LEAFSIZE=, LEAFFRACTION=, and SPLITSIZE options. The default value is 0.6 times the number of available observations in DATA= data set. The INBAGFRACTION= option accepts a fraction instead of an absolute number to specify the same quantity as the INBAGN= option. Specifying both the INBAGN= and INBAGFRACTION= is an error.

INTERVALBINS=k
specifies the number of equally spaced bins into which variables are divided when the PRESELECT=BINNEDSEARCH algorithm is executed. The default value is 100.
**LEAFFRACTION=*/f*

specifies the smallest number of training observations that a new branch can have, expressed as the fraction of the number \(N \) of available observations in the DATA= data set. \(N \) might be less than the total number of observations in the data set because observations with a missing target value or non positive value of the variable specified in the FREQ statement are excluded from \(N \). If you specify a number in the LEAFSIZE= option that implies a larger number than that specified in the LEAFFRACTION= option, \(f \) is ignored. The value \(f \) must be larger than 0 and less than 1. The default value is 0.00001.

**LEAFSIZE=*/n*

specifies the smallest number of training observations a new branch can have. If you specify a value for the LEAFFRACTION= option that implies a larger value than \(n \), the LEAFSIZE= option is ignored. The default value is 1.

**MAXDEPTH=*/d*

specifies the maximum depth of a node in any tree that PROC HPFOREST creates. The depth of a node equals the number of splitting rules needed to define the node. The root node has depth 0. The children of the root have depth 1, the children of those children have depth 2, and so on. The smallest acceptable value of \(d \) is 1. The default value of \(d \) is 20 (implying a maximum of 1,048,576 leaves).

**MAXTREES=*/n*

specifies the number of trees in the forest. \(n \) is a positive integer. The number of trees in the resulting forest can be less than \(n \) when the HPFOREST procedure fails to split the training data for a tree. Up to two times \(n \) trees are attempted. If the procedure fails to split the training data for more than \(n \) trees, then less than \(n \) trees are created. The ALPHA=, LEAFSIZE=, and MINCATSIZE= options constrain the split search to form trees that are more likely to predict well using new data. Setting all of these options to 1 generally frees the search algorithm to find a split and train a tree, although the tree might not help the forest predict well. The default value of \(n \) is 100.

**MINCATSIZE=*/n*

specifies the minimum number of observations that a given nominal input category must have in order to use the category in a split search. Categorical values that appear in fewer than \(n \) observations are handled as if they were missing. The categories that occur in fewer than \(n \) observations are merged into the pseudo category for missing values for the purpose of finding a split. The policy for assigning such observations to a branch is the same as the policy for assigning missing values to a branch. The default value of \(n \) is 5.

**MINUSEINSEARCH=*/n*

specifies a threshold for utilizing missing values in the split search when MISSING=USEINSEARCH is specified as the missing value policy. If the number of observations in which the splitting variable has missing values in a node is greater than or equal to \(n \), where \(n \) is the value of the MINUSEINSEARCH= option, then PROC HPFOREST initiates the USEINSEARCH policy for missing values. See the section “Handling Missing Values” on page 164 for a more complete explanation. The default value of \(n \) is 1.

**MISSING=*USEINSEARCH | BIGBRANCH*

specifies how the training procedure handles an observation with missing values. If MISSING=USEINSEARCH and the number of training observations in the node is more than \(n \), where \(n \) is the value of the MINUSEINSEARCH= option, then the missing value is used as a separate, legitimate value in the test of association and the split search. If MISSING=BIGBRANCH, observations with a missing value of the candidate variable are omitted from the test of association and split search in that node. A splitting rule will assign such an observation to the branch containing the most observations
among those used in the split search. See the section “Handling Missing Values” on page 164 for a more complete explanation. By default, MISSING=USEINSEARCH.

NODESIZE=\(n \) | **ALL**
specifies the number of training observations to use for association tests and split searches. NODESIZE=ALL requests to use all the observations. The acceptable range is from two to two billion on most machines. The default value of \(n \) is 100,000.

The procedure counts the number of training observations in a node without adjusting the number with the values of the variable specified in the FREQ statement. If the count is larger than \(n \), then the split search for that node is based on a random sample of size \(n \). For categorical targets, the sample uses as many observations with less frequent target values as possible. The calculations for the association measures and split worth adjust the category counts to the category proportions in the node before sampling.

PRESELECT=BINNEDSEARCH | LOH | HOTHORN
specifies the method for selecting the variable to split with. You can specify the following values:

BINNEDSEARCH selects the variable that produces the rule that has the largest worth. This option searches for a splitting rule for each candidate variable. Values of an interval variable are binned before the search. This option preferentially selects nominal variables that have many categories. But if such variables do not exist or if all the variables have a similar number of categories, then this option potentially selects better variables than the other methods. This option usually takes longer because searching for a splitting rule is more complex. For more information, see the section “Binned Search” on page 149.

HOTHORN selects the variable that produces the rule that has the highest association with the target. For more information, see the section “Hothorn, Hornik, and Zeileis” on page 149.

LOH selects the variable that has the smallest \(p \)-value of a chi-square test of association in a contingency table. For more information, see the section “Loh and GUIDE” on page 150.

If no nominal variables have more than five categories, then PRESELECT=BINNEDSEARCH by default. Otherwise, if some variables are not nominal or if any nominal variable has five categories more than another nominal variable, then PRESELECT=LOH by default.

PRUNEFACTION=\(g \)
specifies the fraction of training observations that are available for pruning a split. The value of \(g \) can be any number from 0 to 1, although a number close to 1 would leave little to grow the tree. The default value of \(g \) is 0; the default action is to not prune.

PRUNETHRESHOLD=\(t \)
specifies the lower limit of allowable shrinkage when the distance of the child node from the parent is measured by the pruning data instead of the in-bag data. For more information, see the section “Pruning” on page 153. The value of \(t \) must be between 0 and 1. The default value of \(t \) is 0.1.
PROC HPFOREST Statement

SCOREPROLE=DEFAULT | INBAG | OOB | VALID

specifies which observations are used for the prediction of a new observation in the `SCORE` statement. Predictions are based on average values of observations that have the same role in leaves. All the observations included in an average have a single role: in-bag, out-of-bag, or validation. The `SCOREPROLE=` option does not affect the “Fit Statistics” output table. The HP4SCORE procedure outputs the same predictions as the HPFOREST procedure.

You can specify the following values:

- **DEFAULT** selects the default value as if the option was not specified.
- **INBAG** outputs predictions that are based on in-bag observations.
- **OOB** outputs predictions that are based on out-of-bag observations. If out-of-bag observations are not present, then the in-bag observations in the leaf are used.
- **VALID** outputs predictions that are based on validation observations. If validation observations are not present in a leaf node, the out-of-bag observations in that leaf are used. If out-of-bag observations are not present, then the in-bag observations in the leaf are used.

By default, `SCOREPROLE=INBAG`.

SEED=n

specifies the seed for generating random numbers. The HPFOREST procedure uses random numbers to select training observations for each tree and to select candidate variables in each node to split on. \(n \) is a nonnegative integer. Set \(n \) to 0 to use the internal default. The default value of the seed is 8,976,153.

SKIP_SEQ_ROWS=n

specifies the number of rows to skip in the “Fit Statistics” table in distributed mode. After every \(n \) trees that are trained on a grid node, the fit statistics on the node are updated, consolidated with statistics from other nodes, and eventually output in the “Fit Statistics” table. Each row in the table contains statistics for a specific number of trees in a forest. The table has gaps of up to \(n \) rows. The gap is smaller if fewer than \(n \) trees are made on a grid node, and no gap appears if only one tree is made on a node. The `SKIP_SEQ_ROWS=` option has no affect in single-machine mode. By default, `SKIP_SEQ_ROWS=5`.

SPLITSIZE=n

specifies the requisite number of training observations a node must have for the HPFOREST procedure to consider splitting it. By default, \(n \) is twice the value of the `LEAFSIZE=` option (or \(n \) is the value implied by `LEAFFRACTION=` option if the procedure ignores the `LEAFSIZE=` option). The procedure counts the number of observations in a node without adjusting the number with the values of the variable specified in the `FREQ` statement when it interprets the value specified in the `LEAFFRACTION=`, `LEAFSIZE=`, `MINCATSIZE=`, and `SPLITSIZE=` options.

VARS_TO_TRY=m | ALL

specifies the number of input variables to consider splitting on in a node. \(m \) ranges from 1 to the number of input variables, \(v \). The default value of \(m \) is \(\sqrt{v} \). Specify `VARS_TO_TRY=ALL` to use all the inputs as candidates in a node.
FREQ Statement

FREQ variable;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency of occurrence for each observation. PROC HPFOREST accepts any positive value of a frequency variable without converting the value to an integer. If the frequency value is missing or less than or equal to 0, the observation is not used in the analysis. When the FREQ statement is not specified, each observation is assigned a frequency of 1.

INPUT Statement

INPUT variables < options>;

The INPUT statement names input variables with common options. The INPUT statement can be repeated. You can specify the following options:

LEVEL=level
specifies the level of measurement of the variables. Accepted values of level are: BINARY, NOMINAL, ORDINAL, and INTERVAL. Specifying BINARY is the same as specifying NOMINAL.

ORDER=order
specifies the sorting order of the values of an ordinal input variable. Table 7.1 provides recognized values of order.

Table 7.1 ORDER= Option Values

<table>
<thead>
<tr>
<th>Value of ORDER=</th>
<th>Variable Values Sorted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCENDING</td>
<td>Ascending order of unformatted values (default)</td>
</tr>
<tr>
<td>ASCFORMATTED</td>
<td>Ascending order of formatted values</td>
</tr>
<tr>
<td>DESCENDING</td>
<td>Descending order of unformatted values</td>
</tr>
<tr>
<td>DESFORMATTED</td>
<td>Descending order of formatted values</td>
</tr>
<tr>
<td>DSORDER</td>
<td>Order of appearance in the input data set</td>
</tr>
</tbody>
</table>

NOTE: The DSORDER sort option is not supported for input data sets stored on the SAS appliance.

ID Statement

ID variables;

The ID statement lists one or more variables from the input data set that are transferred to the output data set that is specified in the SCORE statement. By default, high-performance analytical procedures do not include all variables from the input data set in output data sets.
The ID statement is optional. However, when you are running in distributed mode or with concurrent the SCORE statement rearranges the observations. An ID variable is needed to correctly merge the output data with other variables from the input data set.

PARTITION Statement

```
PARTITION ROLEVAR=variable < TRAIN='value' > < VALIDATE='value' > ;
```

The PARTITION statement specifies how to divide the input data set into a training subset and a validation subset. *Variable* names the variable in the input data set whose values are used to assign roles to each observation.

You can specify following suboptions:

- **TRAIN=value**
 - requests that an observation be assigned to training if it matches *value*.

- **VALIDATE=value**
 - requests that an observation be assigned to validation if it matches *value*.

If you do not specify the TRAIN= suboption, then any observation whose role is not determined by the VALIDATE= suboption is assigned to the training role.

If validation data is available, and the SCOREROLE= PROC option is set to VALID, then predictions are based on the validation data in the leaves instead of the training data.

PERFORMANCE Statement

```
PERFORMANCE < performance-options > ;
```

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables that describe the distributed computing environment, and requests detailed results about the performance characteristics of the HPFOREST procedure.

You can also use the PERFORMANCE statement to control whether the HPFOREST procedure executes in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on page 31 of Chapter 2, “Shared Concepts and Topics.”

SAVE Statement

```
SAVE < option > ;
```

The SAVE statement outputs the forest model information into a binary file. You can specify the following *option*:
FILE=filename
names the file into which tree information is saved. The filename can be either a SAS file reference or the full path and member name of the binary file.

Starting in SAS Enterprise Miner 14.1, you can score new data sets against the forest model by specifying the name of this binary file in the FILE= option in the SCORE statement in the HP4SCORE procedure. Earlier releases of SAS Enterprise Miner cannot read the file filename.

SCORE Statement

```
SCORE Statement
```

```
SCORE OUT=libref.SAS-data-set < score-options > ;
```

The SCORE statement applies the forest model to the training data and outputs a data set that contains the ID variables that are specified in the ID statement in addition to predictions, residuals, and decisions.

The prediction variables depend on the measurement type of the target variable in the model. For a target that has an interval measurement level, a single prediction variable is generated. For each level of the target that has a nominal measurement level, a posterior probability variable is generated in addition to the final predicted level. The names of the variables are constructed using the rules that are explained in the SAS Enterprise Miner product documentation.

When PROC HPFOREST runs in distributed mode or with concurrent threads, the SCORE statement rearranges the observations. An ID variable is needed to correctly merge the output data with other variables from the input data set.

You must specify the output data set with the OUT= option.

```
OUT= libref.SAS-data-set
```

names the output data set to contain the scored data.

You can also specify the following score-options:

```
MAXDEPTH=< n >
```

produces predictions from trees that are pruned to a depth of n. The trees are not truncated by default.

```
NTREES=< n >
```

produces predictions from the first n trees only. If the option is omitted then PROC HPFOREST uses all the trees in the model for predictions. Scoring with fewer trees can sometimes increase the speed without significantly reducing the accuracy.

TARGET Statement

```
TARGET Statement
```

```
TARGET variable < LEVEL=level > ;
```

The TARGET statement names the variable whose values PROC HPFOREST tries to predict. You can specify the following optional argument:
LEVEL=specifies the level of measurement. Accepted values of _level_ are: BINARY, NOMINAL, and INTERVAL. Note that _level_ cannot be ORDINAL. Specifying BINARY is the same as specifying NOMINAL.

TREATMENT Statement (Experimental)

```
TREATMENT variable < ORDER=order > ;
```

The TREATMENT statement names a binary treatment _variable_ and estimates how much the prediction of an observation changes when the treatment changes. The analysis of differential treatment effects is sometimes called *incremental response modeling* (IRM). The target variable specified in the TARGET statement must have an interval or binary measurement level. For information about how PROC HPFOREST uses the treatment variable, see the section “Modeling Incremental Response from a Treatment” on page 166. Creation of forests with a treatment variable is experimental in PROC HPFOREST.

ORDER=specifies the sorting order of the treatment values. The smallest and largest sorted values are coded as 0 and 1 respectively in the names of variables in the output data set of the SCORE statement. Table 7.1 provides the recognized values of _order_.

Details: HPFOREST Procedure

Bagging the Data

A decision tree in a forest trains on new training data that are derived from the original training data presented to the HPFOREST procedure. Training different trees with different training data reduces the correlation of the predictions of the trees, which in turn should improve the predictions of the forest.

The HPFOREST procedure samples the original data without replacement to create the training data for an individual tree. Most forest algorithms sample with replacement. The convention of sampling with replacement originated with Leo Breiman’s bagging algorithm (Breiman 1996, 2001). The word *bagging* stems from “bootstrap aggregating,” where “bootstrap” refers to a process that uses sampling with replacement. Breiman refers to the observations that are excluded from the sample as *out-of-bag* (OOB) observations. Therefore, observations in the training sample are called the *bagged* observations, and the training data for a specific decision tree are called the *bagged data_. Subsequently, Freedman and Popescu (2003) argued that sampling without replacement can provide more variability between the trees, especially with larger training sets.

The INBAGN= and INBAGFRACTION= options in the PROC HPFOREST statement specify the number of observations to sample without replacement into a bagged data set.

Estimating the goodness-of-fit of the model by using the training data is usually too optimistic; the fit of the model to new data is usually worse than the fit to the training data. Estimating the goodness-of-fit by using the out-of-bag data is usually too pessimistic at first. With enough trees, the out-of-bag estimates are an unbiased estimate of the generalization fit.
Training a Decision Tree

The HPFOREST procedure trains a decision tree by forming a binary split of the bagged data, then forming a binary split of each of the segments, and so on recursively until some constraint is met.

Creating a binary split involves a few subtasks:

1. selecting candidate inputs
2. reducing the number of nominal input categories
3. computing the association of each input with the target
4. searching for the best split that uses the most highly associated input

PROC HPFOREST selects candidate inputs independently in every node. The purpose of preselecting candidate inputs is to increase the differences between the trees, thereby decreasing the correlation and theoretically increasing the quality of the forest predictions. The selection is random, and each input has the same chance. The VARS_TO_TRY= option specifies the number of candidates to select. The quality of the forest often depends on the number of candidates. Unfortunately, a good value for the VARS_TO_TRY= option is generally not known in advance. Data that contain more irrelevant variables generally warrant a larger value.

The reason for searching only one input variable for a splitting rule instead of searching all inputs and choosing the best split is to improve prediction on new data. An input that offers more splitting possibilities provides the search routine more chances to find a spurious split. Loh and Shih (1997) demonstrate the bias towards spurious splits that result. They also demonstrate that preselecting the input variable and then searching only on that one input reduces the bias. The HPFOREST procedure preselects the input with the smallest p-value of an asymptotic permutation distribution of an association statistic. Hothorn, Hornik, and Zeileis (2006) originated the idea and describe the statistic.

The HPFOREST procedure sometimes reduces the number of categories of a nominal input. Nominal inputs that have fewer categories in the node than the number specified in the CATBINS= option are not modified. For nominal inputs that have more categories, PROC HPFOREST ignores observations that have the least frequent category values. Limiting the number of categories in a nominal input can strengthen the association of that input with the target by eliminating categories that have less predictive potential. PROC HPFOREST reduces the categories independently in every node.

The split search seeks to maximize the reduction in the Gini index for a nominal target and the reduction in variance of an interval target.
Controlling for Variable Selection Bias

Split-search algorithms generally inflate the worth of variables that offer many split possibilities beyond the predictive ability of the variable. Nominal variables are especially troublesome because they offer $2^{(k-1)}$ possible binary splits of the data, where k is the number of categories. A nominal variable that has many categories and no predictive power can produce a split of greater apparent worth simply by chance than a predictive variable that offers fewer split choices.

The problem motivated Gordon Kass to invent CHAID (Kass 1980), an algorithm that penalizes variables that produce more split candidates. The problem is mentioned in Breiman et al. 1984, p. 42, as one of the weaknesses of their algorithm. The problem is worse in Ross Quinlan’s C5.0 algorithm (1993) because that algorithm creates many branches for a categorical input and only two for an interval input. Each branch provides an estimate of the target. Allowing some variables more estimates of a target than others gives those variables an unfair competitive advantage.

A popular solution is to select the splitting variable with a statistical test that does not involve searching for a splitting rule. The test adjusts for the different number of categories. Only the winning variable is used in a search for a splitting rule. Loh and Shih (1997) first proposed this in their QUEST algorithm, and Loh continues to evolve the method in GUIDE. The PRESELECT=LOH and PRESELECT=HOTHORN options in the PROC HPFOREST statement specify a variation of Loh’s method and a different method that is attributed to Hothorn, Hornik, and Zeileis (2006), respectively.

Although these methods are fast and mitigate selection bias, they do not focus on selecting a variable that produces the strongest split. When there is no nominal input variable that has many categories, searching for a split with each variable is apt to produce a more accurate model. The PRESELECT=BINNEDSEARCH option specifies this approach. For more information, see the section “Selecting a Splitting Variable” on page 148.

This section illustrates selection bias in traditional methods and the impressive handling by the more recent methods. The data contain a purely random input X_j, which has j nominal categories, and a second input Z_k, which has k categories and is predictive of the target. The plots show the proportions of samples in which a method selects X_j instead of the predictive input, Z_k. The larger the proportion, the greater the bias of the method toward variables that offer more splitting possibilities than predictive power.

The data contain 500 observations. The target Y has values 0 and 1 with equal probabilities. Nominal input Z_k has equally probable integer values from 0 through $k − 1$. The probability that $Y = 1$ given that Z_k is greater than or equal to $k/2$ is 0.6 (and therefore $P(Y = 1 | Z_k < k/2) = 0.4$). With enough data, a splitting algorithm that uses Z_k assigns values that are less than $k/2$ to one branch, and the rest to the other branch. X_j is equally distributed without reference to Y. With enough data, the best split on X_j has negligible worth. A variable selection method chooses between two variables. After repeating this for 1,000 samples, the proportion of times X_j is selected is recorded and plotted for several combinations of j and k.

Figure 7.5 shows the proportion of samples for which X_j is selected instead of Z_k when the split-search algorithm uses the reduction in Gini impurity as the splitting criterion. As shown in the figure, Gini reduction selects X_j more often as the number of categories j increases. When j is similar to k, Gini reduction selects X_j between 15% and 30% of the time. For $j − k = 10$, X_j is selected about 75% of the time. Gini reduction selects the wrong variable more often than not for these values of j and k.
Figure 7.6 shows the proportion of samples for which X_j is selected using the CHAID split-search algorithm. The figure shows that CHAID selects X_j less often as the number of categories j increases. CHAID penalizes variables that have many categories, and the penalty is larger than necessary. For $j - k = 10$, the proportion of times CHAID selects X_j decreases from about 70% ($j = 12$) to less than 10% ($j = 38$). CHAID selects the wrong variable more often than not when j is much less than k.
Figure 7.6 Proportion of Samples for Which CHAID Selects X_j

Figure 7.7 shows the proportion of samples for which the PRESELECT=HOTHORN option in the PROC HPFOREST statement selects X_j by using a test of association. As shown in the figure, given Z_k, PROC HPFOREST selects X_j the same proportion of times regardless of the number of categories j. When the number of categories k of Z_k increases, PROC HPFOREST selects X_j more often. However, the proportion never reaches 40%. The PRESELECT=HOTHORN option does not select the wrong variable more than 40% of the time for any values of j and k examined. The PRESELECT=LOH option produces similar results and is not shown.
The material in this section is part of a fuller discussion in De Ville and Neville (2013) of variable selection bias.

Figure 7.7 Proportion of Samples for Which an Association Test Selects X_j

PROC HPFOREST offers three methods for selecting a variable to use in a splitting rule. The PRESELECT=LOH and PRESELECT=HOTHORN options specify two methods that avoid the bias towards nominal variables that is discussed in the section “Controlling for Variable Selection Bias” on page 145. The PRESELECT=HOTHORN is slightly faster on large data sets than PRESELECT=LOH. The third method, PRESELECT=BINNEDSEARCH, is appropriate when bias is less of a concern than finding the strongest variable to use in the splitting rule. The PRESELECT=BINNEDSEARCH method is slower than the other two methods.
Binned Search

Specify the `PRESELECT=BINNEDSEARCH` option to select the variable that produces the rule that has the largest worth. Unlike the `PRESELET=LOH` and `PRESELECT=HOTHORN` options, the `PRESELECT=BINNEDSEARCH` option searches for a splitting rule for each variable. This method preferentially selects nominal variables that have many categories. However, if such variables do not exist or if all the variables have a similar number of categories, then the `PRESELECT=BINNEDSEARCH` option potentially selects better variables than the other methods.

The `PRESELECT=BINNEDSEARCH` option usually takes longer than the other methods because searching for a splitting rule is more complex. To make it run faster, interval variables are divided into equally spaced bins just before the search. If an interval variable is deemed best, then PROC HPFOREST uses the unbinned data to search for a rule that uses the selected variable. Binning is done independently in every node. The `INTERVALBINS=` option specifies the number of bins.

Hothorn, Hornik, and Zeileis

Specify the `PRESELECT=HOTHORN` option to select the variable that has the highest association with the target as measured by the C_{quad} statistic that is described in Hothorn, Hornik, and Zeileis (2006).

Specifically, let Y and X denote the target variable and input variable, respectively. Let Y_i and X_i denote their values in observation i. The formulas for the association depend on whether Y and X are categorical. If Y is categorical, let J denote the number of values, and let $Y_{ij} = 1$ if $Y_i = j$ and 0 otherwise. Similarly, if X is categorical, let K denote the number of values, and let $X_{ik} = 1$ if $X_i = k$ and 0 otherwise. Let T denote the statistic defined in Table 7.2.

<table>
<thead>
<tr>
<th>Type of Variable</th>
<th>Dimension of T</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>J</td>
<td>$T_j = \sum Y_{ij} X_i$</td>
</tr>
<tr>
<td>J classes</td>
<td>$J \times K$</td>
<td>$T_{jk} = \sum Y_{ij} X_{ik}$</td>
</tr>
<tr>
<td>Interval</td>
<td>K</td>
<td>$T_K = \sum Y_i X_{ik}$</td>
</tr>
<tr>
<td>J classes</td>
<td>$J \times K$</td>
<td>$T_{jk} = \sum Y_{ij} X_{ik}$</td>
</tr>
</tbody>
</table>

The test statistic is

\[
C_{quad} = (T - \hat{\mu})^T \hat{\Sigma}^{-1} (T - \hat{\mu})
\]

where

- $\hat{\mu}$ is the estimate of the expected value of T
- $\hat{\Sigma}$ is the estimate of the covariance of T
- $\hat{\Sigma}^{-1}$ is the generalized inverse of $\hat{\Sigma}$

PROC HPFOREST selects the variable that has the smallest p-value, the integral from C_{quad} to infinity of the density of a chi-square distribution with degrees of freedom equal to the rank of $\hat{\Sigma}$.

Table 7.3 contains formulas for $\hat{\mu}$.

Table 7.2 Definition of T for Different Types of Variables
Table 7.3 Definition of $\hat{\mu}$ for Different Types of Variables

<table>
<thead>
<tr>
<th>Type of Variable</th>
<th>Dimension of X</th>
<th>Dimension of $\hat{\mu}$</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>Interval 1</td>
<td>1</td>
<td>$\hat{\mu} = (\sum Y_i)(\sum X_i)/N$</td>
</tr>
<tr>
<td>J classes</td>
<td>Interval J</td>
<td>J</td>
<td>$\hat{\mu}j = (\sum Y{ij})(\sum X_i)/N$</td>
</tr>
<tr>
<td>Interval</td>
<td>K categories</td>
<td>K</td>
<td>$\hat{\mu}k = (\sum Y_i)(\sum X{ik})/N$</td>
</tr>
<tr>
<td>J classes</td>
<td>K categories</td>
<td>$J \times K$</td>
<td>$\hat{\mu}{jk} = (\sum Y{ij})(\sum X_{ik})/N$</td>
</tr>
</tbody>
</table>

To make the formulas more concise, let $J = 1$ and $Y_{ij} = Y_i$ when Y has an interval measurement level. Now J and Y_{ij} are defined for all types of Y. Similarly, let $K = 1$ and $X_{ik} = X_i$ when X has an interval measurement level. The multiple definitions of T in Table 7.2 now reduce to the single formula,

$$T_{jk} = \sum_{i=1}^{N} Y_{ij} X_{ik}$$

and the concise definition of $\hat{\mu}$ becomes

$$\hat{\mu}_{jk} = (\sum_{i=1}^{N} Y_{ij})(\sum_{i=1}^{N} X_{ik})/N$$

The dimension of $\hat{\Sigma}$ equals $(J \times K)^2$, the dimension of T squared. If X has a large number of categories, then K is large, and storing and inverting $\hat{\Sigma}$ can impede performance.

The formula for $\hat{\Sigma}$ is built as follows from the expectation and covariance of Y and a factor that depends on X:

$$E(Y)_j = \sum_{i=1}^{N} Y_{ij}/N$$

$$\text{Cov}(Y)_{hk} = \sum_{i=1}^{N} (Y_{ih} - E(Y)_h)(Y_{ij} - E(Y)_j)/N$$

$$\hat{\Sigma}_{kl} = 1(k = l)(\sum_{i=1}^{N} X_{ik} X_{ik}) - (\sum_{i=1}^{N} X_{ik})(\sum_{i=1}^{N} X_{il})$$

$$\hat{\Sigma}_{hijkl} = \text{Cov}(Y)_{hk} \hat{\Sigma}_{kl} N/(N - 1)$$

where $1(k = l)$ equals 1 when $k = l$ and 0 otherwise.

Loh and GUIDE

Specify the PRESELECT=LOH option to use ideas developed by Loh in a series of papers and implemented in the GUIDE software (Loh and Shih 1997; Loh 2002, 2009).

This method selects the variable that has the smallest p-value of a chi-square test of association in a contingency table. As before, let Y and X denote the target variable and input variable, respectively. Let Y_i and X_i denote their values in observation i. If Y is categorical, let J denote the number of values. Similarly, if X is categorical, let K denote the number of values or the value of the CATBINS= option, whichever is smaller. If the CATBINS= option value is smaller, then only the observations that have the most frequent categories in the node are used to select a variable.
If both Y and X are categorical, then form the $J \times K$ contingency table of the frequencies of the observations and compute the p-value. If Y has interval measurement level, then note whether Y_i is greater than or less than the average of Y, \bar{Y}, in the node, and then form the $2 \times K$ table of frequencies and compute the p-value.

If X has interval measurement level, then let

$$ K = \begin{cases} 3 & \text{if } N < 20J \\ 4 & \text{otherwise} \end{cases} $$

where N is the number of observations in the calculations and $J = 2$ if Y has an interval measurement level. If $K = 3$, assign X_i to a table column that is defined by the following boundary points:

$$ \xi_1 = \bar{X} - \sqrt{3}\hat{\sigma}/3 \\
\xi_2 = \bar{X} + \sqrt{3}\hat{\sigma}/3 $$

Otherwise, use the boundary points

$$ \xi_1 = \bar{X} - \sqrt{3}\hat{\sigma}/2 \\
\xi_2 = \bar{X} \\
\xi_3 = \bar{X} + \sqrt{3}\hat{\sigma}/2 $$

where \bar{X} denotes the average value of X and

$$ \hat{\sigma}^2 = \frac{\sum_i (X_i - \bar{X})^2}{N} $$

Searching for a Splitting Rule

Rules

A PROC HPFOREST splitting rule uses the value of a single input variable to assign an observation to one of two branches. If the split-search algorithm uses missing values, then the rule includes an assignment of missing values to a branch.

A rule might assign all observations that have a nonmissing value of the splitting variable to one branch, and all observations that have a missing value to the other. In this case, the missing values go the second branch.

If the split-search algorithm does not use missing values, then the rule assigns an observation that has a missing value to both branches and adds to each copy a fractional weight that is proportional to the number of training observations in each branch. This is the policy when the splitting variable contains no missing variables in the node during training, even if the MISSING=USEINSEARCH option is specified.

Criteria

The HPFOREST procedure searches for rules that maximize the measure of worth that is associated with the splitting criterion. For binary, nominal, and interval targets, the worth of a split s is the reduction in node impurity,

$$ \Delta i(s, \omega) = i(\omega) - \sum_{b=1}^{B} p(\omega_b | \omega) i(\omega_b) $$
where \(i(\omega) \) is the impurity of the node \(\omega \), and \(p(\omega|\omega_b) \) is the proportion of training observations in branch \(b \). Generally, \(p(\omega) \) is a nonnegative number that equals 0 if all observations in \(\omega \) have the same target value, and \(p(\omega) \) is large if the target values in \(\omega \) are very different.

The impurity function for the Gini index is

\[
i(\omega) = 1 - \sum_{j=1}^{J} p_j^2
\]

where \(p_j \) is the probability of target value \(j \). The impurity function for variance reduction is

\[
i(\omega) = \frac{1}{N(\omega)} \sum_{i=1}^{N(\omega)} (Y_i - \bar{Y})^2
\]

where \(N(\omega) \) is the number of observations in node \(\omega \), \(Y_i \) is the target value of observation \(i \), and \(\bar{Y} \) is the average of \(Y_i \) in \(\omega \).

For an ordinal target that has \(J \) values, the worth of a split is the Kolmogorov-Smirnov statistic,

\[
\kappa(s) = \max_{k=1}^{J} |F_k(\text{left branch}) - F_k(\text{right branch})|
\]

where

\[
F_k(\omega) = \sum_{j=1}^{k} p_j
\]

The impurity measures originate with Breiman et al. (1984), and the Kolmogorov-Smirnov splitting criterion originates in Friedman (1977).

Algorithm

PROC HPFOREST searches for a splitting rule as follows:

1. It sorts the values in one of the following ways:
 - For an interval or ordinal input, it sorts by nonmissing values of the input.
 - For a nominal input with interval target, it sorts the categories by the average target value in the category.
 - For a nominal input with binary target, it sorts the categories by the proportion of one of the target values in the categories.

2. It walks from the lowest to the highest values, and it evaluates the split at every permissible position. A permissible position is one that does not separate two observations with the same target value and that satisfies any constraints, such as the LEAFSIZE= option.

If the algorithm allows missing input values, then the algorithm evaluates two splits at every permissible position of an interval or ordinal input: one that assigns the missing values to the left branch, and another that assigns missing values to the right branch.
For a nominal input, sorting reduces the number of candidate splits to \(m - 1 \) from \(2^{(m-1)} \), where \(m \) is the number of nominal categories. Fisher (1958) proved it works and that the best split is among the \(m - 1 \) examined. Breiman et al. (1984) applied their theorem to decision trees.

No similar reduction is known for a nominal input with a nominal target (with more than two categories). However, PROC HPFOREST uses the following simple extension which usually works: For each nominal target category \(y \), it sorts the input categories by the proportion of \(y \) and finds the best permissible split among the \(m - 1 \) sorted positions. A total of \(km \) splits are considered, where \(k \) denotes the number of target values. PROC HPFOREST uses this approach unless the value of the \texttt{EXHAUSTIVE=} option is greater than or equal to \(2^{(m-1)} \), in which case PROC HPFOREST examines all permissible splits.

Before PROC HPFOREST applies the algorithm, it might combine small nominal input categories to satisfy the \texttt{CATBINS=} and \texttt{MINCATSIZE=} options. The algorithm uses the combined category only if \texttt{MISSING=} \texttt{USEINSEARCH} and the number of missing observations in the node is greater than or equal to the value of the \texttt{MINUSEINSEARCH=} option.

Pruning

Definitions

An observation can have one of three possible roles when a tree is trained:

- **INBAG** split construction
- **PRUNE** split evaluation
- **OOB** model evaluation

The role of the pruning data is to confirm or reject a split. A center of each node is computed for the in-bag data and again for the pruning data. If the pruning estimate of the center of a child node is much closer to the center of the parent node than the in-bag estimate of the child node, then the split is deemed unreliable and is pruned. The node is never split again.

Specifically, the split is pruned when

\[
\frac{d(C_{\text{prune}}, C_{\text{parent}})}{d(C_{\text{inbag}}, C_{\text{parent}})} < \tau
\]

where

- \(C_{\text{parent}} \) is the in-bag center of the parent node,
- \(C_{\text{inbag}} \) is the in-bag center of a child node,
- \(C_{\text{prune}} \) is the prune center of a child node,
- \(d(a, b) \) is a signed measure of distance from \(a \) to \(b \), and
- \(\tau \) is a fixed number between 0 and 1.
The **PRUNETHRESHOLD**= option specifies \(\tau \). For an interval target, \(C_o \) is the average target value in the node, and \(d(a, b) \) is \(a - b \). For a categorical target, \(C_o \) is the vector of target value proportions, and

\[
d(a, b) = \sum_{j=1}^{J} (a_j - b_j)(C_{\text{inbag},j} - C_{\text{parent},j})
\]

Pruning a split immediately after the split is created (called *instant pruning*) is a different approach to pruning than the approach in traditional decision trees in which the complete tree is grown before any node is pruned (called *retrospective pruning*). These two terms are used when necessary to distinguish between the two approaches to pruning.

Recommendations

PROC HPFOREST runs faster when it prunes but usually does not fit the data as well. Pruning is more effective with classification than with regression, and with smaller signal-to-noise ratios.

Figure 7.8 shows the proportion of increase in misclassification rate on test data when PROC HPFOREST prunes for various levels of signal-to-noise ratios. The deterioration in misclassification rate is approximately linear with the signal-to-noise ratio. With very small signals, pruning improves the misclassification rate.

More specifically, the vertical axis is

\[
\rho = \frac{\text{MISC with pruning} - \text{MISC without pruning}}{\text{MISC without pruning}}
\]

The data are generated as follows:

\[
\begin{align*}
Y &= \begin{cases} 1 & \text{if } W \geq 2 \\ 0 & \text{otherwise} \end{cases} \\
W &= f(x) + \sum_{i=1}^{D} U_i + R\varepsilon \\
f(x) &= X_1 + 5X_2 + 10X_3 + X_4^2 + 5X_5^2 \\
X_i &\sim \text{Uniform}(-1,1) \\
U_i &\sim \text{Uniform}(-1,1) \\
\varepsilon &\sim \text{Normal}(0,1)
\end{align*}
\]

\(R \) determines the signal-to-noise ratio. The number of irrelevant variables \(D \) varies from 10 to 100 in increments of 10. For each value of \(R \) and \(D \), 25 training and test data sets are created and contain 10,000 and 20,000 observations, respectively. For each pair of data sets, PROC HPFOREST creates 100 trees with **INBAGFRACTION**=100, **PRUNEFRACTION**= 0 or 0.3, and **PRUNETHRESHOLD**=0.10. PROC HP4SCORE scores the test data. A DATA step computes the misclassification rate.
Figure 7.8 Proportion of Increase in Misclassification Rate with Pruning

Figure 7.9 shows that the corresponding execution times of runs that use pruning are only 14% to about 22% of the execution times of runs that do not use pruning. The ratio of execution times increases as the signal-to-noise ratio increases. The ratio seems to level off with larger signals.
Predicting an Observation

To predict an observation, the HPFOREST procedure first assigns the observation to a single leaf in each decision tree in the forest, then uses that leaf to make a prediction based on the tree that contains the leaf, and finally simply averages the predictions over the trees. For an interval target, the prediction in a leaf equals the average of the target values among the bagged training observations in that leaf. For a nominal target, the posterior probability of a target category equals the proportion of that category among the bagged training observations in that leaf. The predicted nominal target category is the category with the largest posterior probability. In case of a tie, the first category that occurs in the training data is the prediction.

The HPFOREST procedure also computes out-of-bag predictions. The out-of-bag prediction of an observation uses only trees for which the observation is out of bag (that is, not selected as part of the training data for that tree).

A model is worthless if its predictions are no better than predictions without a model. For an interval target, the no-model prediction of an observation is the average of the target among training observations. For
Measuring Prediction Error

The HPFOREST procedure computes the average square error measure of prediction error. For a binary or nominal target, PROC HPFOREST also computes the misclassification rate and the log-loss.

The average square error for an interval, the average square error for a nominal target, the misclassification rate, and the log-loss are defined respectively as

\[
ASE_{\text{int}} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\]

\[
ASE_{\text{cat}} = \frac{1}{JN} \sum_{i=1}^{N} \sum_{j=1}^{J} (\delta_{ij} - \hat{p}_{ij})^2
\]

\[
\text{MISC} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y_i \neq \hat{y}_i)
\]

\[
\text{LogLoss} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \log(\hat{p}_{ij})
\]

where \(\hat{y}_i \) is the target prediction of observation \(i \), \(\delta_{ij} = 1 \) if the nominal target value \(j \) occurs in observation \(i \) or equals 0 if it does not occur there, \(\hat{p}_{ij} \) is the predicted probability of nominal target value \(j \) for observation \(i \), \(N \) is the number of observations, \(J \) is the number of nominal target values (classes), and \(\hat{p}_{ij} \) is \(\hat{p}_{ij} \) truncated away from 0 and 1:

\[
\hat{p}_{ij} = \max(\min(\hat{p}_{ij}, 1 - 10^{-10}), 10^{-10})
\]

The definitions are valid whether \(\hat{y}_i \) is the usual model prediction, the out-of-bag prediction, or the no-model prediction. The three predictions result in three different estimates of \(ASE_{\text{int}} \). The model has some predictive ability if the out-of-bag estimate of fit is smaller than the no-model estimate. The \(ASE_{\text{int}} \) that is based on the usual model predictions of the original training data is usually optimistic and smaller than what its value will be on future data.

Adjusting Statistics When Sampling Target Classes Unevenly

When the proportions of target classes in the training data differ from the proportions in the population to which the model is applied, predictions and fit statistics need to be adjusted for the population of interest. Consider fraud detection as an example. A random sample of 100,000 transactions might have too few fraudulent observations for training a good model. One solution is to preferentially include fraudulent cases in the sample. Adding extra observations of a rare target class into the training data is called oversampling. Another solution is to randomly sample enough transactions (several million perhaps) to obtain enough fraudulent cases. In this situation, the number of non-fraudulent cases might be more than are necessary for
training and might be a burden for data processing. Removing observations of a common target class from the training data is called undersampling.

Typically, the greater the class proportion in the training data, the greater the class posterior probability from a model. When the class proportions in the training data differ from those in the population of interest, the model inflates the predictions of the classes that are overrepresented in the training data. The following sections explain how to adjust the predictions and the fit statistics that estimate how well the model will perform when applied, illustrate why the adjustments matter, and present a technical derivation of the adjustment formulas.

Formulas for Adjusting the Predictions and Fit Statistics

The formulas for adjusting the probabilities and statistics assume that the distribution of the inputs for a target class is the same in the training data as in the population of interest. The class proportions can differ, but the distribution of input values within a class must be the same.

The formula for converting probabilities from the training sample to the population of interest is

\[
\hat{p}_{\pi j} = \frac{p_{\pi j} y_j}{\sum_k p_{\pi k} y_k}
\]

where

\[
\begin{align*}
\hat{p}_{\pi j} & = \text{estimate of } p_{\pi j} \text{ that is computed with the training data} \\
p_{\pi j} & = \text{adjusted probability of class } j \text{ for the population of interest} \\
p_{\pi j} & = \text{unadjusted probability of class } j \text{ for the training data} \\
y_j & = \pi_j / \tau_j \\
\pi_j & = \text{proportion of class } j \text{ in the population of interest} \\
\tau_j & = \text{proportion of class } j \text{ in the training data}
\end{align*}
\]

The circumflex above a population statistic such as \(p_{\pi j} \) indicates that the statistic is estimated from training data. A population statistic without a circumflex indicates that the statistic is computed from population data.

Let \(S \) denote a statistic that can be expressed as the average of a loss metric, \(\text{Loss}(y, p(y)) \), between the actual target value and the predicted probabilities. Average square error and misclassification rate are examples.

The probability \(p(y) \) might be adjusted or unadjusted, and the average might be taken over the training data or the population of interest. An optional argument to \(S \) indicates whether the probabilities are adjusted, and an optional suffix indicates the sample for evaluating the statistic. Thus,

\[
\begin{align*}
S_{\pi}(p_{\pi}) &= \sum_{i=1}^{N_{\pi}} \frac{\text{Loss}(y_i, p_{\pi i})}{N_{\pi}} \\
S_{\pi}(p_{\pi}) &= \sum_{i=1}^{N_{\pi}} \frac{\text{Loss}(y_i, p_{\pi i})}{N_{\pi}} \\
S_{\pi}(p_{\pi}) &= \sum_{i=1}^{N_{\pi}} \frac{\text{Loss}(y_i, p_{\pi i})}{N_{\pi}} \\
S_{\pi}(p_{\pi}) &= \sum_{i=1}^{N_{\pi}} \frac{\text{Loss}(y_i, p_{\pi i})}{N_{\pi}}
\end{align*}
\]
To compute the estimate of a population statistic $S_{\pi}(p_{\pi})$, multiply the terms for target class j by the proportion of class j observations in the population as

$$\hat{S}_{\pi} = \sum_j S_{\tau j}(\hat{p}_{\pi})p_j$$

where

$$S_{\tau j}(\hat{p}_{\pi}) = \sum_{i: y_i = j} \frac{\text{Loss}(y_i, \hat{p}_{\pi i j})}{N_{\tau j}}$$

$N_{\tau j}$ = number of class j observations in the training data

The class j formulas for the average square error and misclassification rate are

$$\text{ASE}_{\tau j} = \sum_{i: y_i = j} \sum_{k=1}^J \frac{(\delta_{jk} - \hat{p}_{\pi ik})^2}{JN_{\tau j}}$$

$$\text{MISC}_{\tau j} = \sum_{i: y_i = j} \frac{1(j \neq \hat{y}_i)}{N_{\tau j}}$$

where

$\delta_{jk} = 1$ if $j = k$ and 0 otherwise

\hat{y}_i = the class k with the largest value of $\hat{p}_{\pi ik}$

Why the Adjustments Matter

This section illustrates the need to adjust probabilities and statistics. The data consist of a binary target and two independent input variables from a normal distribution with standard deviation of 0.25. The mean value of an input is 0.25 for target class 0, and is 0.75 for class 1.

The test data set has 20,000 class 0 observations and 80,000 class 1 observations. All runs use the same test data. The training and validation data sets have 5,000 observations. The percentage of class 0 observations varies from 5 to 95. For each percentage, 20 training and validation data sets are generated. A decision tree is fit to each of the 20 training data sets and applied to the test data.

Figure 7.10 shows the misclassification rate of each tree, which is evaluated on the test data. A smooth curve passes near the average misclassification rate at each percentage of class 0 observations. (Technically, the curve is a cubic spline with λ equal to 0.05.) The rate is computed twice: once with the probabilities adjusted for the class proportions in the test data, and once without adjusting. A separate curve is drawn for each. The two rates are the same when the proportion of class 0 observations in the training data is 20 percent, which is the same as in the test data. The misclassification rates increase (get worse) as the class proportions in the training data differ more from the proportions in the test data. If you could choose the proportions of the target classes in the training data, this example suggests that the best choice would be to choose the same proportions as in the population of interest. However, if one target value is rare, oversampling would still be necessary to ensure that the training data have enough rare observations for the algorithm to work with.

In this example, adjusting probabilities is better because the rates that are computed after adjusting probabilities are generally smaller (better) than those computed without adjusting. The difference is larger when the class proportions in the training data differ more from those in the test data.
Figure 7.10 Test Set Misclassification Rates Using Adjusted and Unadjusted Predictions

Figure 7.11 shows the average square error (ASE) for each tree, which is evaluated on the test data. A smooth curve passes near the average ASE for each percentage of class 0 observations. When the proportion of class 0 observations in the training data is 0.5 or less, adjusting the probabilities makes no difference to the ASE. For larger proportions of class 0, adjusting the probabilities results in a slightly larger (worse) ASE in this example.
Figure 7.11 Test Set Average Square Error Using Adjusted and Unadjusted Predictions

Figure 7.12 shows the misclassification rate that is computed using validation data and adjusted probabilities. The rate is estimated in two ways: one estimate adjusts only the probabilities, and the other adjusts both the statistics and the probabilities. The two are defined respectively as

\[
\text{MISC}_{\text{unadjusted}} = \sum_{j} \sum_{i} \frac{1(j \neq \hat{y}_i) N_{tj}}{N_t} \frac{N_{tj}}{N_t}
\]

\[
\text{MISC}_{\text{adjusted}} = \sum_{j} \sum_{i} \frac{1(j \neq \hat{y}_i)}{N_{tj}} \pi_j
\]

Only the last factor in each term is different. In Figure 7.12, the curve for MISC_{\text{adjusted}} is indistinguishable from the curve for the test set misclassification rate. MISC_{\text{adjusted}} predicts the test set rate perfectly in this example. On the other hand, the curve for MISC_{\text{unadjusted}} is completely different and unreliable. Adjusting the misclassification rate is necessary in this example to get a good estimate of the rate in the test set.
Figure 7.12 Estimates of Test Set Misclassification Using Adjusted and Unadjusted Statistics

Figure 7.13 is the corresponding plot for ASE. The solid gray curve passes near the average ASE that is computed on the test data. The dashed blue curve that approximately follows the gray curve is the adjusted statistic that is computed on the validation data. The dashed green hill-shaped curve is the unadjusted statistic that is computed on the validation data. The evidence for adjusting the statistics for ASE is less compelling in this example than for the misclassification rate. For class 0 proportions between 45 and 65%, the unadjusted estimates of ASE are closer to the test set ASE than the adjusted estimates. For other class 0 proportions, the adjusted estimates are closer.

Figure 7.13 is the corresponding plot for ASE. The solid gray curve passes near the average ASE that is computed on the test data. The dashed blue curve that approximately follows the gray curve is the adjusted statistic that is computed on the validation data. The dashed green hill-shaped curve is the unadjusted statistic that is computed on the validation data. The evidence for adjusting the statistics for ASE is less compelling in this example than for the misclassification rate. For class 0 proportions between 45 and 65%, the unadjusted estimates of ASE are closer to the test set ASE than the adjusted estimates. For other class 0 proportions, the adjusted estimates are closer.
Technical Derivations of Adjustment Formulas

The formulas for adjusting the probabilities and statistics rely on statistical theory that assumes that the training data and the population of interest are both samples drawn from two infinite, ideal populations. For each target value, the distributions of the inputs are assumed to be the same in the two ideal populations: $P(X_\tau | Y_\tau = j) = P(X_\pi | Y_\pi = j)$, where X_τ and Y_τ designate the inputs and target random variables in the population of the training sample and X_π and Y_π designate the inputs and target variables in the population of interest.

The formulas also assume that the model predictions converge to the population probabilities $P(y = j | x)$ as the training sample becomes large. The formula for adjusting the probabilities follows from Bayes’ theorem, where α is a constant that is independent of the target class:
The sum of the class probabilities equals 1:

\[\sum_j P(Y_\pi = j | X_\pi) = 1 \]

Therefore,

\[\alpha = \frac{1}{\sum_j P(Y_\tau = j | X_\tau) P(Y_\pi = j) / P(Y_\tau = j)} \]

The formula works well when the model predictions are close to the population probabilities, \(P(y = j | x) \). Similarly, the formula for adjusting a statistic \(S \) works well when \(S \) is close to its expected value. \(S_\pi(p_\pi) \) equals the average of a loss function over a sample from the population of interest, and \(S_\tau(p_\pi) \) equals the average of a loss function over the training population. The central limit theorem asserts that \(S_\pi(p_\pi) \) converges to its expected value, \(E_\pi(\text{Loss}(Y, p_\pi)) \), as the sample size increases. Similarly, \(S_\tau(p_\pi) \to E_\tau(\text{Loss}(Y, p_\pi)) \). The same is true when the average is restricted to observations with the same target value, \(S_{\tau j}(p_\pi) \to E_{\tau j}(\text{Loss}(Y, p_\pi)) \). The formula that uses \(S_\tau \) to estimate \(S_\pi \) assumes the averages are close to their expected values.

\[E_\pi(\text{Loss}(Y_\pi, p_\pi)) = \int \int \text{Loss}(Y_\pi, p_\pi) p(X_\pi, Y_\pi) dX_\pi dY_\pi \]
\[= \sum_j \int \int \text{Loss}(Y_\pi, p_\pi) p(X_\pi | Y_\pi = j) dX_\pi P(Y_\pi = j) \]
\[= \sum_j \int \int \text{Loss}(Y_\tau, p_\pi) p(X_\pi | Y_\tau = j) dX_\tau P(Y_\tau = j) \]
\[= \sum_j E_{\tau j}(\text{Loss}(Y_\tau, p_\pi)) P(Y_\pi = j) \]

King and Zeng (2001, Appendix B) discuss the adjustments of probabilities in more detail. Discussions of the adjustments of the statistics are hard to find.

Handling Missing Values

Strategies

Tree-based models use observations with missing input values. The HPFOREST procedure offers two strategies for handling missing values. The simplest strategy is to regard a missing value as a special nonmissing value. For a nominal input, a missing value simply constitutes a new categorical value. For an input whose values are ordered, each missing value constitutes a special value that is assigned a place in the ordering that yields the best split. The place is generally different in different nodes of the tree.

This strategy is beneficial when missing values are predictive of certain target values. For example, people with large incomes might be more reluctant to disclose their income than people with ordinary incomes. If income were predictive of a target, then missing income would be predictive of the target and the missing
values would be regarded as a special large income value. The strategy seems harmless when the distribution of missing values is uncorrelated with the target because no choice of branch for the missing values would help predict the target.

A linear regression could use the same strategy by adding binary indicator variables to designate whether a value is missing. Alternatively, and much more commonly, a linear regression could simply remove observations in which any input is missing. Let p denote the probability that a variable value is missing, and let v denote the number of input variables. The probability that an observation has one or more missing values is $1 - (1 - p)^v$ (assuming missingness is independent and identically distributed among the inputs). If $p = 0.1$ and $v = 10$, then 65% of the observations would have missing values and be removed from linear regression.

The alternative strategy for decision trees is to exclude from the search algorithm observations that have a missing value in the single input variable that defines the splitting rule. If $p = 0.1$ and $v = 10$, then only 10% instead of 65% of the observations are excluded. Although this compares favorably with common linear regression, using observations with missing values might still be better. PROC HPFOREST is designed to run faster by using observations with missing values than by not using them.

When missing values are excluded from the split search, a new policy is needed for assigning an observation with missing values to a branch. Beginning with SAS Enterprise Miner 14.1, PROC HPFOREST assigns such observations to the branch that contains the most observations from the sample that was used during the split search. In previous releases, PROC HPFOREST distributed observations that had a missing value into both branches. Although that approach was better for statistics, it is no longer implemented because it took too long to train and score observations.

Specifics

If the value of a target variable is missing, the observation is excluded from training and from evaluating the model. If the value of an input variable is missing, PROC HPFOREST uses the missing value as a legitimate value by default or if `MISSING=USEINSEARCH` and the number of observations in which the splitting variable has missing values is at least as large as the value of the `MINUSEINSEARCH=` option.

The discussion in this section applies to each candidate variable and each node separately. For example, the test of association that uses input variable X might use all observations, and the test that uses input variable Z might ignore some observations because of missing values. The test that uses X might use all observations in one node but not all observations in another node.

Handling Values That Are Absent from Training Data

A splitting rule that uses a categorical variable might not recognize all possible values of the variable. Some categories might not exist in the training data. Others might be so infrequent in the training sample in the node that the procedure excludes them. The `MINCATSIZE=` option specifies the minimum number of occurrences required for a categorical value to participate in the search for a splitting rule. Splitting rules assign unseen categorical values to the branch that has the most in-bag training observations.
Modeling Incremental Response from a Treatment

The incremental response modeling (IRM) method of analysis predicts how much a target value would change if a treatment were applied to the observation. For example, a conventional model might predict the probability of someone purchasing an item. An incremental response model would predict how much the probability of purchase would increase if the person were to receive a promotional coupon.

PROC HPFOREST provides an experimental implementation that uses a splitting criterion described in Su et al. (2009) and Radcliffe and Surry (2011). The treatment variable must be binary, and the target must have a binary or interval level of measurement.

A treatment variable differs from an input variable because the treatment is assigned at the discretion of some outside agent. The treatments must be assigned in such a way that input values associated with the response are balanced between the two treatment groups. If the data are not balanced, the predictions from many incremental response algorithms, including PROC HPFOREST, can be invalid. For example, if high values of an input X tend to produce high values in a target and a treatment value T is disproportionally assigned to observations that have high values of X, then PROC HPFOREST would incorrectly credit T with high values of the target.

Let T and C denote the two values of the treatment, and let L and R denote two branches of a tree node into which an observation can be assigned. PROC HPFOREST finds a split with the largest value of $\hat{\xi}^2$, where

$$\hat{\xi}^2 = \frac{(\Delta \hat{\Delta}p)^2}{\text{SE}^2}$$

$$\Delta \hat{\Delta}p = |(p_{TL} - p_{CL}) - (p_{TR} - p_{CR})|$$

$$\text{SE}^2 = \hat{\delta}^2(1/N_{TL} + 1/N_{CL} + 1/N_{TR} + 1/N_{CR})$$

For a binary target,

$$\hat{\delta}^2 = \frac{\sum_{t \in T,C} \sum_{b \in L,R} N_{tb} p_{tb} (1 - p_{tb})}{N - 4}$$

For an interval target,

$$\hat{\delta}^2 = \frac{\sum_{t \in T,C} \sum_{b \in L,R} (N_{tb} - 1) \sum_{X_i \in L,R} (X_i - \bar{X}_{tb})}{N - 4}$$

Increasing Accuracy by Increasing Tree Size

A common mistake is to build trees that are too shallow. Forests usually benefit from some overfitting of the individual trees. Forests with larger trees are usually more accurate than ones with smaller trees, although the benefit of increasing size diminishes eventually. In some cases, as with low signal-to-noise data, pruning the trees can improve accuracy.

The principle is illustrated by increasing the depth of the tree. The data consist of 50,000 and 25,000 observations for training and validation, respectively. These observations are generated by the relationship,

$$Y = 10\sin(\pi X_1 X - 2) + 20(X_3 - 1/2)^2 + 10X_4 + 5X_5 + \epsilon$$
where \(X_i \) is uniform between 0 and 1 and \(\epsilon \) is normally distributed with mean 0 and variance 1. The relationship originally appeared as equation 61 in Friedman (1991).

Figure 7.14 shows the average square error of the prediction versus the values of the MAXDEPTH= option. The bottom, blue line represents the errors from the training data. The green and red lines represent errors from the out-of-bag and validation data, respectively. The average square error in the out-of-bag and validation data decreases with depth and then begins to level in this example.
limited to the observations on its single machine. PROC HPFOREST creates a single decision tree with data on a single machine. When the data are distributed, only the observations on a specific machine are available to create the trees on that machine. Accuracy for this approach might be worse than when trees are created by using all the data because using more data usually results in larger trees and greater accuracy. However, after some minimal number of observations, the gain in accuracy might not warrant the extra computational effort. PROC HPFOREST can copy some or all observations from one machine to all the other machines in order to increase the number of observations on each machine.

You can use the GRIDCOPY= option to specify whether to copy any observations. You can copy all observations (GRIDCOPY=ALL), all training observations (GRIDCOPY=TRAINING), or no observations(GRIDCOPY=NONE). You can also specify GRIDCOPY=MINIMAL, which requests that a minimum number of observations be copied to establish a minimum number of observations on each machine, and, for a nominal target, a minimum number of observations for each target value. The GRIDNODESIZE= and GRIDCLASSSIZE= options specify these minimums, respectively.

Increasing the value of the MAXTREES= option to a multiple of the number of machines that contain data is good practice because accuracy can improve without taking any more time: if one machine is creating T trees, each machine should create T trees or some machine will become idle and wait for the others to finish.

When a single machine does not contain all observations, PROC HPFOREST outputs baseline statistics for the training data on each machine. (These statistics are set to 0 on machines that have no trees.) The statistics are useful for detecting whether the data differ between machines. If large differences exist, then the training data on a single machine might not be representative of the data on which the forest will be applied. The generalization accuracy of the forest would be degraded.

The NODES= option in the PERFORMANCE statement specifies the number of machines to use.

Measuring Variable Importance

The importance of a variable is the contribution it makes to the success of the model. For a predictive model, success means good prediction. Often the prediction relies mainly on a few variables. A good measure of importance reveals those variables. The better the prediction, the closer the model represents reality, and the more plausible it is that the important variables represent the true cause of prediction. Some people prefer a simple model so they can understand it. However, a simple model usually relinquishes details of reality. Sometimes it is better to first find a good model and ask what variables are important than to first ask what model is good for variable importance and train that model.

M. J. Van der Laan (2006) asks whether a predictive model is appropriate at all. He believes that if variable importance is your goal, then you should predict importance directly instead of fitting a model. If your goal is to select suspicious genes for further study in a lab or to find variables in an industrial process that might influence the quality of the product, then his argument is persuasive. However, the purpose of many predictive models is to make predictions. In these cases, gaining insight to causes can be useful.

Variable importance is also useful for selecting variables for a subsequent model. The comparative importance between the selected variables does not matter. Researchers often seek speed and simplicity from the first model and seek accuracy from the subsequent model. Despite this tendency, a forest is often more useful than a simpler regression as a first model when you want interactions because variables contribute to the forest model through interactions.
Several authors have demonstrated that using a forest to select variables, then using only those variables in a subsequent forest, and then repeating the process produces a final forest that predicts better than the original. Leo Breiman’s seminal publication (2001) gives one measure of importance, which is called Breiman’s method here. Breiman and Cutler (2003) introduce another method, which they call Gini increase but which is called loss reduction here for reasons discussed in the following section. Several modifications to Breiman’s method have been proposed. Strobl’s method (2008) assigns less importance to correlated variables than Breiman’s method, which in turn assigns less than loss reduction. Strobl’s method is also the most complex and takes the longest time to compute. Breiman’s method is again in the middle. Running time is the main reason Breiman introduced loss reduction. A more recent method called random branch assignments (RBA) (Neville and Tan 2014) uses the same theory as Strobl’s method but runs as fast as Breiman’s method. PROC HP4SCORE uses the RBA method.

Loss Reduction

Loss reduction is also called Gini increase, Gini importance, or impurity reduction. It was introduced in Breiman et al. (1984) for decision trees, later modified for gradient boosting machines (Friedman 2001), and later used in forests (Breiman and Cutler 2003).

The importance of variable v is proportional to the sum of the reduction in node impurity, summed over nodes that v splits. Breiman et al. (1984) and Breiman and Cutler (2003) introduce the impurity measure with the Gini splitting criterion, hence the name Gini importance. However, Gini impurity is defined only for a categorical target. For an interval target, the most common node impurity measure is the sum of square errors. Friedman (2001) uses a square root at the end of the calculation to revert back to the scale of the target. This can fail when you use validation data because the impurity reduction can be negative. Therefore, the HPFOREST procedure computes both the reduction in absolute error and the reduction in square error.

PROC HPFOREST uses the word loss instead of impurity to associate the measure of importance with the reduction in loss from using the model. A loss function is a statistic that measures how well a model fits data. Average square error is a common loss function. Given a loss function, the next equation defines an associated measure of variable importance. The sum over variables of the associated variable importance equals the total loss when a model is not used minus the loss when a model is used. In other words, the loss reduction variable importance assigns shares to the variables of the total reduction in the loss that the model achieves.

The loss reduction variable importance for input v in tree T is computed as

$$I_{loss}(v; T) \propto \sum_{\omega \in T} 1(v \text{ splits } \omega) \Delta Loss(\omega)$$

where the sum is over internal nodes ω in T and where $1(v \text{ splits } \omega)$ is 1 if v is the splitting variable in ω and 0 otherwise. $\Delta Loss(\omega)$ is the reduction in loss from splitting ω. A loss function maps a response value and a prediction to a number that represents how bad the prediction is. Square error loss is most common,

$$\Delta Loss(\omega) = SSE(\omega) - \sum_{b \in B(\omega)} SSE(\omega_b)$$

$$SSE(\omega) = \begin{cases}
\sum_{i=1}^{N(\omega)} (Y_i - \hat{Y}(\omega))^2 & \text{for interval } Y \\
\sum_{i=1}^{N(\omega)} \sum_{j=1}^{J} (\delta_{ij} - \hat{p}_j(\omega))^2 & \text{for target with } J \text{ categories}
\end{cases}$$
where
\[B(\omega) = \text{set of branches from } \omega \]
\[\omega_b = \text{child node of } \omega \text{ in branch } b \]
\[N(\omega) = \text{number of observations in } \omega \]
\[\bar{Y}(\omega) = \text{average } Y \text{ in training data in } \omega \]
\[\delta_{ij} = 1 \text{ if } Y_i = j, 0 \text{ otherwise} \]
\[\hat{p}_j(\omega) = \text{average } \delta_{ij} \text{ in training data in } \omega \]

For an interval target, PROC HPFOREST also computes absolute error loss,
\[
\Delta \text{Loss}(\omega) = \text{SAE}(\omega) - \sum_{b \in B(\omega)} \text{SAE}(\omega_b)
\]

where
\[
\text{SAE}(\omega) = \sum_{i=1}^{N(\omega)} |Y_i - \bar{Y}(\omega)|
\]

For a categorical target, the formula for \(\text{SSE}(\omega)\) reduces to
\[
\text{SSE}(\omega) = \begin{cases}
N(1 - \sum_{j=1}^{J} \hat{p}_{j}^2) & \text{for training data} \\
N(1 - \sum_{j=1}^{J} (2p_j - \hat{p}_j)\hat{p}_j) & \text{for validation data}
\end{cases}
\]

where \(p_j\) is the proportion of the validation data with target value \(j\), and \(N, p_j, \) and \(\hat{p}_j\) are evaluated in node \(\omega\). \(\text{SSE}(\omega)\) for training data equals the Gini impurity index. Loss reduction variable importance is commonly called Gini importance for this reason.

Another measure of importance for a categorical target is based on the margin, the probability of the true class minus the maximum probability of the other classes. A good model increases the margin. Therefore, loss reduction variable importance uses the negative of margin.
\[
\Delta \text{Loss}(\omega) = \text{SNM}(\omega) - \sum_{b \in B(\omega)} \text{SNM}(\omega_b)
\]

where
\[
\text{SNM}(\omega) = -\sum_{j=1}^{J} N_j(\hat{p}_j - \max_{k \neq j} \hat{p}_k)
\]

and \(N_j\) is the number of class \(j\) observations in \(\omega\) in the data set being used to evaluate the variable importance.

When the target is binary, variable importance based on the margin equals twice that of the variable importance based on the Gini index.
Breiman’s Method

Breiman’s method is also called a permutation-based or randomization method. Breiman’s method calculates importance as

\[I_{\text{Breiman}}(v; T) \propto \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y}_i) - \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y}_i(v)) \]

where \(\hat{y}_i \) is the prediction for observation \(i \) and \(\hat{y}_i(v) \) is the prediction for observation \(i \) after randomizing the values of input \(v \). In Breiman’s writings, the sum uses only out-of-bag observations, and randomizing is done by permuting the out-of-bag values of \(v \). Originally Breiman (2001) uses misclassification as the loss function. Breiman and Cutler (2003) retract that, saying misclassification loss is too volatile with many variables. Instead they recommend the margin for a nominal target: the probability of the true class minus the maximum probability among the other classes. Breiman (2001) bases the loss on the entire forest, not a single tree. Today authors generally compute the importance for each tree and then average these (Berk 2008; Grömping 2009).

Bias and Correlation

The loss reduction method uses only the variables that PROC HPFOREST selects for splitting rules. Selecting the wrong variable among candidates that compete for a rule reduces the importance of the correct variable in the final tally. Variable selection bias produces bias in variable importance as a consequence. PROC HPFOREST uses a variable selection method that is widely agreed to be free from bias for practical purposes (Strobl et al. 2008).

Even so, only one of possibly several deserving variables is selected in a node for splitting. Only one gets credit for loss reduction in a node. Ideally, a forest handles this by letting the variables compete many times in many trees with slightly different data and in nodes in which some variables are randomly excluded. The process should result in a fair distribution of the use of the variables, without correlated inputs masking each other, and a fair representation in the final variable importance.

Conditional and Marginal Importance

The difference between loss reduction and Breiman’s method can be illustrated with a simple example. Suppose \(X \) and \(Z \) are correlated and \(Y = X \). Should \(Z \) be assigned any importance? One answer is no: \(Z \) is not even in the formula that generates \(Y \). The other answer is yes: observing \(Z \) provides information about \(Y \), and therefore \(Z \) is helpful in explaining the variation of \(Y \). An input has conditional importance if it is needed for prediction even after values of the other variables are given; \(Z \) has no conditional importance. An input has marginal importance if it is predictive of \(Y \) by itself; \(Z \) has marginal importance.

The degree to which correlations determine the final importance values depends both on the algorithm for importance and on the algorithmic parameters for the model. In the current example, if \(\text{VARS_TO_TRY}=2 \), then \(X \) and \(Z \) compete in every node, PROC HPFOREST selects \(X \) to split almost all the nodes, and all importance measures assign \(Z \) negligible importance. If \(\text{VARS_TO_TRY}=1 \), then PROC HPFOREST must use \(Z \) to split some nodes, and it assigns some importance to \(Z \). In general, loss reduction assigns more importance to correlated variables than Breiman’s method, and Breiman’s method assigns more importance than a conditional permutation method that is introduced in Strobl et al. (2008) and summarized in the section “Strobl’s Method” on page 172.

Figure 7.15 shows the result from generating 25 samples at each of several correlation values that range from 0 to 1. Each sample has 500 bivariate correlated normal observations. PROC HPFOREST is run with
VARS_TO_TRY=1 and outputs the proportion of total importance that is assigned to Z. Figure 7.15 has a point for each of three measures of importance that are evaluated on each sample. Unless the correlation equals 1, Breiman’s method and Strobl’s method assign little importance to Z. All methods choose X as the most important variable unless they are perfectly correlated.

Figure 7.15 Z's Proportion of Total Importance

Archer and Kimes (2008) present a simulation that compares the variable importance methods. To emulate genomic data, correlated variables appear in groups, and at most one variable in a correlated group is in the regression equation that generates the target. Both forest methods are about as good as using a method of variable importance from regression. This is consistent with Figure 7.15, which deems X the most important variable by every method and every correlation value except a correlation of 1.

Strobl’s Method

Strobl et al. (2008) obtain a more conditional measure of importance by analyzing the logic of Breiman’s method and revealing an omission. The analysis centers around statistical independence. If Y and Z are independent, then for sets B and C,

\[
P((Y \in B) \cap (Z \in C)) = P(Y \in B)P(Z \in C)
\]
Measuring Variable Importance

A bivariate histogram of the data would be approximately equal to the product of univariate histograms. If the values of Z are permuted, the univariate histogram of those values would remain unchanged and so would the bivariate histogram. On the other hand, if permuting the values of Z does significantly change the bivariate histogram, then Y has some dependence on Z.

Strobl et al. say that this is the essence of Breiman’s logic and that this logic ignores the influence of other variables. To incorporate the other variables, the reasoning should proceed from conditional independence:

$$P((Y \in B) \cap (Z \in C) \mid X \in A) = P(Y \in B \mid X \in A) P(Z \in C \mid X \in A)$$

Probabilities that involve Y and Z are computed separately for separate values of X. When the values of Z are permuted, only values from observations that have the same value of X are permuted. Strobl et al. develop an algorithm around conditional independence. The resulting variable importance measure is closer to the conditional end of the spectrum than Breiman’s.

The method of Strobl et al. works well for data that contain a few hundred observations, but it becomes prohibitively slow for hundreds of thousands of observations. Let V denote the number of variables, and let T denote the number trees. Then Breiman’s method requires approximately $VT/3$ permutations. Strobl’s method multiplies that number by some proportion of the number of observations.

Random Branch Assignments

Neville and Tan (2014) present a simple algorithm, called random branch assignments (RBA), that satisfies the logic of Strobl et al. (2008) and avoids all the permutations. When the trees are created, the number of observations in each node is saved. The statistical distribution of training data must be similar to that of the data with which variable importance is being evaluated because the algorithm assumes that the observation sizes that are saved in each node are proportional to the number of observations in the evaluation data that visit the node.

To compute the importance of a variable Z, randomize the branch assignment rules that involve Z and then apply the randomized model to the data and compute a goodness-of-fit measure. The randomized rule is one that randomly assigns an observation to a branch with a probability that is proportional to the number of observations in the branch. For example, suppose a node that contains 100 training observations is split by values of Z into two nodes: one contains 25 training observations and the other contains 75. When the importance of Z is evaluated, an observation that reaches the node is randomly assigned to the smaller branch with probability 0.25. As in the Breiman method, the importance of Z is proportional to the randomized fit minus the fit without randomization.

Neville and Tan claim that RBA satisfies the objectives of the methods of Breiman and of Strobl et al. The purpose of permuting the values is to break any relationship between the response variable and Z without changing the univariate distribution of Z. The same thing can be accomplished by replacing an observation value with a value that is randomly chosen from the univariate distribution. The branch assignment rule lumps together the values that are assigned to the same branch. To assign a branch to an observation, all that is needed is the probability that Z is in a lump, not the probabilities of the individual values. The RBA method uses the lump probabilities that are conditioned on arriving at the node that is being split, which is exactly the conditional requirement of Strobl et al.
Preferences

Breiman’s method and variants are generally not used in practice. One reason is the long running time needed to score every observation for every variable that is evaluated. A more important reason is the lack of a convincing example where Breiman’s method succeeds and others fail. The comparison in the previous section applies only to forests because only in forests can the VARS_TO.Try= option be set. No comparison of importance measures is published with the VARS_TO.Try= option equal to all the variables.

Some authors insist on using Breiman’s method. Berk (2008) says that importance must be measured outside of the procedure that is used to measure it. Otherwise, it is not a practical measure. It simply restates a part of the model itself without reference to the practical reason for creating the model. Nicodemus and Malley (2009) present plots that clearly show loss reduction as hopelessly biased, while Breiman’s method gives the correct results on the same data. Actually, they are not the same data. All these authors use training data with loss reduction and holdout data with Breiman’s method. Berk even says loss reduction is a fit measure, and as such should be used with the training data. This is misguided. Using holdout data to evaluate a predictive model is generally recommended. Computing loss reduction with both training and validation data can reveal which inputs are fooling the training algorithm, and corrective action can be taken.

Displaying the Output

The HPFOREST procedure displays the parameters that are used to train the model, fit statistics of the trained model, and other information. The output is organized into various tables, which are discussed here in order of appearance.

Performance Information

The “Performance Information” table is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the number of compute nodes, and the number of threads per node. If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a “Timing” table in which elapsed times for the main tasks of the procedure are displayed.

Model Information

The “Model Information” table contains the settings of the training parameters. The table is produced by default.

Number of Observations

The “Number of Observations” table contains the number of observations that are read from the input data set and the number of observations that are used in the analysis.

Baseline Fit Statistics

The “Baseline Fit Statistics” table contains fit statistics that are calculated without a model. Compare the baseline statistics with the model fit statistics to determine how beneficial the model is. Fit statistics are described in the section “Measuring Prediction Error” on page 157. The table is produced by default.
Fit Statistics

The “Fit Statistics” table contains statistics that measure the model’s goodness of fit. The fit of the model to the data improves with the number of trees in the forest. Successive rows in the table contain fit statistics for a forest that has more trees. The SKIP_SEQ_ROWS= option controls how many more trees successive rows represent. Compare these fit statistics with the baseline fit statistics to determine how beneficial the model is. Fit statistics are described in the section “Measuring Prediction Error” on page 157. The table is produced by default.

Baseline Grid Statistics

The “Baseline Grid Statistics” table contains baseline fit statistics of the training data on each grid node when the data are distributed over multiple machines. If the statistics are markedly different on different machines, predictions of new data might be worse than if the data on different machines were similar. The statistics are not computed in single-machine mode nor when all the data are copied to all the machines.

Loss Reduction Variable Importance

The “Variable Importance” table displays variable importance based on loss reduction, which is explained in the section “Loss Reduction” on page 169. The table is produced by default. If you do not want this table, then specify IMPORTANCE=NO to turn off the calculation and conserve some memory resources.

ODS Table Names

Table 7.4 lists the names of the data tables created by the HPFOREST procedure. Use these names in ODS statements.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement and Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerformanceInfo</td>
<td>Performance information</td>
<td>Default output</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>Default output</td>
</tr>
<tr>
<td>Baseline</td>
<td>Fit statistics without a model</td>
<td>Default output</td>
</tr>
<tr>
<td>FitStatistics</td>
<td>Fit statistics from the model</td>
<td>Default output</td>
</tr>
<tr>
<td>GridStatistics</td>
<td>Baseline statistics by grid node</td>
<td>Default for distributed data</td>
</tr>
<tr>
<td>VariableImportance</td>
<td>Loss reduction variable importance</td>
<td>Default output</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>Default output</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times for tasks</td>
<td>PERFORMANCE DETAILS</td>
</tr>
<tr>
<td></td>
<td>performed by the procedure</td>
<td></td>
</tr>
</tbody>
</table>
Examples: HPFOREST Procedure

The following examples illustrate the basic concepts of forests. The first three examples use the Spambase data available from the UCI Machine Learning Repository (Lichman 2013) at http://archive.ics.uci.edu/ml/datasets/Spambase.

Example 7.1: Out-Of-Bag Estimate of Misclassification Rate

Using the original training data to evaluate a forest model is poor practice because the forest predicts the training data much better than it predicts similar data withheld from training. Using the out-of-bag data is better practice because, with enough trees, the fit of a forest to the out-of-bag data converges to what the fit would be on similar data withheld from training. With only a few trees, the fit to the out-of-bag data is worse than what the fit would be on withheld data. Consequently, the training and out-of-bag data provide lower and upper bounds to what the error rate will be when the forest is applied to new data.

This example illustrates the difference between the misclassification rates estimated from the training and out-of-bag data. The HPFOREST procedure is run on the Spambase data. The target, SPAM, has two values: 0 indicates a legitimate e-mail, 1 indicates spam. The number of trees is set large enough for the out-of-bag misclassification error rates to converge (MAXTREES=200 or 500).

The following SAS statements create a SAS data set from an URL:

```sas
data spambase;
  %let url=/archive.ics.uci.edu/ml/machine-learning-databases;
  infile "http://\url/spambase/spambase.data"
    device=url delimiter='
' input wf_make wf_adress wf_all wf_3d wf_our
      wf_over wf_remove wf_internet wf_order wf_mail
      wf_receive wf_will wf_people wf_report wf_addresses
      wf_free wf_business wf_email wf_you wf_credit
      wf_your wf_font wf_000 wf_money wf_hp
      wf_hpl wf_george wf_650 wf_lab wf_labs
      wf_telnet wf_857 wf_data wf_415 wf_85
      wf_technology wf_1999 wf_parts wf_pm wf_direct
      wf_cs wf_meeting wf_original wf_project wf_re
      wf_edu wf_table wf_conference
      cf_semicolon cf_parenthese cf_bracket cf_exclamation
      cf_dollar cf_pound
    average longest total spam;
run;
```

2Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising, products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of any advertising, products, or other materials on, or available from, such websites or resources.
Example 7.1: Out-Of-Bag Estimate of Misclassification Rate

```sas
proc hpforest data=spambase maxtrees=200;
    input w: c: average longest total/level=interval;
    target spam/level=binary;
    ods output FitStatistics=fitstats(rename=(Ntrees=Trees));
run;

data fitstats;
    set fitstats;
    label Trees = 'Number of Trees';
    label MiscAll = 'Full Data';
    label Miscoob = 'OOB';
run;

proc sgplot data=fitstats;
    title "OOB vs Training";
    series x=Trees y=MiscAll;
    series x=Trees y=Miscoob/lineattrs=(pattern=shortdash thickness=2);
    yaxis label='Misclassification Rate';
run;
```

Output 7.1.1 Plot of OOB versus Training Misclassification Rate
Figure 7.1.1 shows the misclassification rate is worse (larger) based on the out-of-bag (OOB) data, and more trees are needed for the out-of-bag rates to level off. Both characteristics are typical of a forest.

Example 7.2: Number of Variables to Try When Splitting a Node

This example illustrates the effect of changing the number of variables to randomly select as candidate splitting variables in a node. In each node in each tree, m variables are randomly selected to be candidates to split on. Use the `VARS_TO_TRY=` option to specify m. Specifying m less than the number of available inputs is one way to reduce the correlation between the trees in the forest. Broadly speaking, the predictions of a forest improve when the trees are less correlated. On the other hand, the predictions of the forest improve when the predictions of the trees improve (without changing the correlations). When the number of useful inputs are much less than the total number of inputs, smaller values of m produce weaker trees because fewer nodes consider useful inputs for defining a splitting rule. Try several values of m to find a good one for the data.

The following SAS statements create a SAS data set from an URL:

```sas
data spambase;
  %let url=//archive.ics.uci.edu/ml/machine-learning-databases;
  infile "http:&url/spambase/spambase.data"
    device=url delimiter=',';
  input wf_make wf_adress wf_all wf_3d wf_our
       wf_over wf_remove wf_internet wf_order wf_mail
       wf_receive wf_will wf_people wf_report wf_addresses
       wf_free wf_business wf_email wf_you wf_credit
       wf_your wf_font wf_000 wf_money wf_hp
       wf_hpl wf_george wf_650 wf_lab wf_labs
       wf_telnet wf_857 wf_data wf_415 wf_85
       wf_technology wf_1999 wf_parts wf_pm wf_direct
       wf_cs wf_meeting wf_original wf_project wf_re
       wf_edu wf_table wf_conference
       cf_semicolon cf_parenthese cf_bracket cf_exclamation
       cf_dollar cf_pound
    average longest total spam;
run;

%macro hpforest(Vars=);
  proc hpforest data=spambase maxtrees=200
    vars_to_try=&Vars.;
    input w: c: average longest total/level=interval;
    target spam/level=binary;
    ods output
      FitStatistics = fitstats_vars&Vars.(rename=(Miscoob=VarsToTry&Vars.));
  run;
%mend;

%hpforest(vars=all);
%hpforest(vars=40);
%hpforest(vars=26);
%hpforest(vars=7);
```
Example 7.2: Number of Variables to Try When Splitting a Node

%hpforest(vars=2);

data fitstats;
 merge
 fitstats_varsall
 fitstats_vars40
 fitstats_vars26
 fitstats_vars7
 fitstats_vars2;
 rename Ntrees=Trees;
 label VarsToTryAll = "Vars=All";
 label VarsToTry40 = "Vars=40";
 label VarsToTry26 = "Vars=26";
 label VarsToTry7 = "Vars=7";
 label VarsToTry2 = "Vars=2";
run;

proc sgplot data=fitstats;
 title "Misclassification Rate for Various VarsToTry Values";
 series x=Trees y=VarsToTryAll/lineattrs=(Color=black);
 series x=Trees y=VarsToTry40/lineattrs=(Pattern=ShortDash Thickness=2);
 series x=Trees y=VarsToTry26/lineattrs=(Pattern=ShortDash Thickness=2);
 series x=Trees y=VarsToTry7/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
 series x=Trees y=VarsToTry2/lineattrs=(Pattern=LongDash Thickness=2);
 yaxis label='OOB Misclassification Rate';
run;
 title;
Specifying a value of 7 or 26 for the VARS_TO_TRY= option results in a more accurate forest than would occur without random selection of variables (VARS_TO_TRY=ALL). Specifying VARS_TO_TRY=2 is no better than specifying VARS_TO_TRY=ALL. A good value for the VARS_TO_TRY= option depends on the data. In this example, the HPFOREST procedure uses a default value of $\sqrt{58} = 7$, which worked well.

Example 7.3: Fraction of Training Data to Train a Tree

This example illustrates the effect of changing the fraction of original training observations used to train an individual tree. Use the INBAGFRACTION= option to specify f. Specifying f less than 1 is one way to reduce the correlation between the trees in the forest.

The following SAS statements create a SAS data set from an URL:

```sas
data spambase;
  %let url=//archive.ics.uci.edu/ml/machine-learning-databases;
  infile "http://url/spambase/spambase.data"
    device=url delimiter=',';
```
Example 7.3: Fraction of Training Data to Train a Tree

```
input wf_make wf_adress wf_all wf_3d wf_our
   wf_over wf_remove wf_internet wf_order wf_mail
   wf_receive wf_will wf_people wf_report wf_addresses
   wf_free wf_business wf_email wf_you wf_credit
   wf_your wf_font wf_000 wf_money wf_hp
   wf_hpl wf_george wf_650 wf_lab wf_labs
   wf_telnet wf_857 wf_data wf_415 wf_85
   wf_technology wf_1999 wf_parts wf_pm wf_direct
   wf_cs wf_meeting wf_original wf_project wf_re
   wf_edu wf_table wf_conference
   cf_semicolon cf_parenthese cf_bracket cf_exclamation
   cf_dollar cf_pound
   average longest total spam;
run;

%macro hpforest(f=, output_suffix=);
   proc hpforest data=spambase maxtrees=500 vars_to_try=26
      trainfraction=&f;
   input w: c: average longest total/level=interval;
   target spam/level=binary;
   ods output
      FitStatistics = fitstats_f&output_suffix.(rename=(Miscoob=fraction&output_suffix.));
run;
%mend;

%hpforest(f=0.8, output_suffix=08);
%hpforest(f=0.6, output_suffix=06);
%hpforest(f=0.4, output_suffix=04);

data fitstats;
   merge
      fitstats_f08
      fitstats_f06
      fitstats_f04;
   rename Ntrees=Trees;
   label fraction08 = "Fraction=0.8";
   label fraction06 = "Fraction=0.6";
   label fraction04 = "Fraction=0.4";
run;

proc sgplot data=fitstats;
   title "Misclassification Rate for Various Fractions of Training Data";
   series x=Trees y=fraction08/lineattrs=(Pattern=ShortDash Thickness=2);
   series x=Trees y=fraction06/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
   series x=Trees y=fraction04/lineattrs=(Pattern=LongDash Thickness=2);
   yaxis label='OOB Misclassification Rate';
run;
title;
```
In this example, `INBAGFRACTION=0.4` and `INBAGFRACTION=0.6` produce the best OOB misclassification rate initially, with few trees. When more trees are used, `INBAGFRACTION=0.8` is best.
Example 7.4: Loss Reduction Variable Importance

This example compares the loss reduction variable importance measure on uncorrelated and correlated variables. The data have eight inputs that are generated from a standard normal distribution. The first four inputs are independent; the last four have a correlation of 0.9. The target Y is computed as

$$ Y = X_1 + X_2 + 2X_3 + X_5 + X_6 + 2X_7 $$

The following SAS statements create a SAS data set and run PROC HPFOREST:

```sas
data output;
    call streaminit(54321);
    do i=1 to 10000;
        x1 = rand('normal', 0, 1);
        x2 = rand('normal', 0, 1);
        x3 = rand('normal', 0, 1);
        x4 = rand('normal', 0, 1);
        output;
    end;
run;

data cov;
    input x5-x8;
    datalines;
    1 0.9 0.9 0.9
    0.9 1 0.9 0.9
    0.9 0.9 1 0.9
    0.9 0.9 0.9 1
run;

proc simnormal data=cov(type=cov)
    out = osim(drop=Rnum)
    numreal = 10000
    seed = 54321;
    var x5-x8;
run;

data output;
    merge output osim;
    y = x1 + x2 + 2*x3 + x5 + x6 + 2*x7;
run;

proc hpforest data=output vars_to_try=all;
    input x:/level=interval;
    target y/level=interval;
    ods select VariableImportance;
run;
```

Output 7.4.1 shows the PROC HPFOREST variable importance table. The NRules column contains the number of splitting rules that use each variable. The next four columns are loss reduction measures of variable importance. The mean square error and the absolute error are computed with the training data. The OOB columns contain the same measures computed with out-of-bag data. In this example, the relative importance of any pair of variables is similar in every measure.
Output 7.4.1 Loss Reduction Variable Importance

The HPFOREST Procedure

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number of Rules</th>
<th>MSE</th>
<th>OOB MSE</th>
<th>Absolute Error</th>
<th>OOB Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7</td>
<td>72378</td>
<td>14.2407</td>
<td>13.85367</td>
<td>1.712545</td>
<td>1.547167</td>
</tr>
<tr>
<td>X3</td>
<td>27781</td>
<td>3.83720</td>
<td>3.61553</td>
<td>0.733943</td>
<td>0.615512</td>
</tr>
<tr>
<td>X2</td>
<td>55452</td>
<td>0.89617</td>
<td>0.70102</td>
<td>0.318129</td>
<td>0.176243</td>
</tr>
<tr>
<td>X1</td>
<td>43551</td>
<td>0.87622</td>
<td>0.67743</td>
<td>0.305295</td>
<td>0.174770</td>
</tr>
<tr>
<td>X5</td>
<td>25464</td>
<td>0.68688</td>
<td>0.52503</td>
<td>0.195358</td>
<td>0.106519</td>
</tr>
<tr>
<td>X6</td>
<td>28679</td>
<td>0.54327</td>
<td>0.38216</td>
<td>0.182299</td>
<td>0.090802</td>
</tr>
<tr>
<td>X4</td>
<td>14266</td>
<td>0.03407</td>
<td>-0.03572</td>
<td>0.029800</td>
<td>-0.010282</td>
</tr>
<tr>
<td>X8</td>
<td>330091</td>
<td>0.14373</td>
<td>-0.07492</td>
<td>0.192920</td>
<td>-0.021246</td>
</tr>
</tbody>
</table>

PROC HPFOREST reports X7 as the most important variable. Although X7 and X3 have the same coefficient, X7 steals importance from correlated variables X5 and X6. PROC HPFOREST assigns less importance to X5 and X6 than to the uncorrelated variables X1 and X2 as a result, even though all four variables have the same coefficient in the formula for Y.

Variables X4 and X8 are not in the formula for Y. The OOB measures of importance are negative for both variables because, on balance, the spurious splits assign out-of-bag observations to the branch that has the worse prediction. The in-bag measures of importance are much larger for X8 than for X4 because X8 is correlated with variables that are predictive. Some splits that use X8 have validity because of this correlation.

Specifying VARS_TO_TRY=ALL in this example requests that PROC HPFOREST compare all inputs when it selects a variable to split a node on. The larger the number, the more dominant the importance of X7 is in this example. If VARS_TO_TRY=3 or less, variables X5, X6, and X7 would each get approximately the same importance, which would be slightly higher than the importance given to X3. Changing the VARS_TO_TRY= option has little affect on the importance of X1, X2, and X3.

Example 7.5: Missing Values and Imputed Values

This example uses the Home Equity data from the SAS sample library to illustrate the difference between using missing values and using imputed values. A nonrandom pattern of missingness in the data can help predict the target. PROC HPFOREST cannot use this pattern when missing values are replaced by imputed values in the training data. The following statements illustrate this by running PROC HPFOREST twice: once on the original data, and once on the data after missing nominal values have been replaced by the mode and missing interval values have been replaced by the mean of the variable.

The Sampsio.Hmeq data set contains fictitious mortgage data in which each case represents an applicant for a home equity loan. All applicants have an existing mortgage. The binary target BAD equals 1 for an applicant who eventually defaulted or was ever seriously delinquent. Nine interval inputs are available for modeling. JOB and REASON are the only nominal inputs. The modes for JOB and REASON are OTHER and DEBTCON, respectively.
Example 7.5: Missing Values and Imputed Values

```sas
proc hpimpute data=sampsio.hmeq out=imout;
  input mortdue value yoj clage ninq clno debtinc derog delinq;
  impute mortdue value yoj clage ninq clno debtinc derog delinq/method=mean;
run;

data job_reason;
  set sampsio.hmeq;
  if job='' then job="Other";
  if reason='' then reason="DebtCon";
run;

data imout;
  merge imout job_reason;
run;

proc hpforest data=imout vars_to_try=all;
  input im:/level=interval;
  input reason job/level=nominal;
  target bad/level=binary;
  ods output
    VariableImportance=imvi
    FitStatistics=imfit(rename=(Ntrees=Trees Miscall=ImMiscall Miscoob=ImMiscoob));
run;

proc hpforest data=sampsio.hmeq vars_to_try=all;
  input mortdue value yoj clage ninq clno debtinc derog delinq/level=interval;
  input reason job/level=nominal;
  target bad/level=binary;
  ods output
    Baseline=bs
    VariableImportance=vi
    FitStatistics=fit(rename=(Ntrees=Trees));
run;

proc sql noprint;
  select value into :MiscBaseline trimmed from bs
  where Statistic='Misclassification Rate';
quit;

data fitstats;
  merge imfit fit;
  MiscBaseline = &MiscBaseline;
  label Trees = 'Number of Trees';
  label MiscAll = 'Full Data';
  label Miscoob = 'OOB';
  label ImMiscAll = 'Full Data - Impute';
  label ImMiscoob = 'OOB - Impute';
  label Miscbaseline = 'Baseline';
run;

proc sgplot data=fitstats;
  title "Misclassification Rate With and Without Imputed Values";
  series x=trees y=Miscbaseline/lineattrs=(Pattern=Solid Color=black);
```
series x=Trees y=MiscAll/lineattrs=(Pattern=Solid Thickness=2);
series x=Trees y=Miscoob/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=ImMiscAll/lineattrs=(Pattern=ShortDash Thickness=2);
series x=Trees y=ImMiscoob/lineattrs=(Pattern=MediumDashDotDot Thickness=2);
yaxis label='Misclassification Rate';
run;

data vi;
 set vi;
 keep Variable NRules Gini GiniOOB Rank;
 Rank = _n_;
run;

proc sort data=vi;
 by Variable;
run;

data imvi;
 set imvi;
 keep Variable RankImputed NRules Gini GiniOOB;
 if substr(Variable,1,3)='IM_' then Variable=substr(Variable, 4);
 RankImputed=_n_;
 label RankImputed="Rank (Imput)"
 rename NRules=RulesImputed;
 label NRrules="Rules (Imputed)"
 rename Gini=GiniImputed;
 label Gini="Gini (Imputed)"
 rename GiniOOB=GiniOOBImputed;
 label GiniOOB="OOB Gini Reduction (Impute)"
run;

proc sort data=imvi;
 by Variable;
run;

data vi;
 merge vi imvi;
 by Variable;
 rename NRules=Rules;
run;

proc sort data=vi;
 by rank;
run;

data t1(keep=Variable Rules RulesImputed RankImputed)
 t2(keep=Variable Gini GiniImputed GiniOOB GiniOOBImputed);
 set vi;
run;

proc print data=t1;
run;

proc print data=t2;
run;

data debtinc_miss;
set sampsio.hmeq;
 if debtinc =. then debtinc_is_missing='MISSING ';
 else debtinc_is_missing='NOT MISSING';
run;

proc freq data=debtinc_miss;
 tables debtinc_is_missing*bad/nocol;
run;

Figure 7.5.1 shows the misclassification rate and the out-of-bag misclassification rate with and without imputed missing values. Without any model, the misclassification rate equals 0.1995. The out-of-bag rate from the model trained with imputed values is not much better. The out-of-bag rate with the original data is much better, equal to half the baseline rate.

Output 7.5.1 The Effect of Imputing Missing Values

Output 7.5.2 shows the number of times each model uses each variable. The Rules column shows the number of times by using the original data; the RankImputed column shows the number of times by using the imputed data. The numbers in the Rules column vary much more than those in the RuleImputed column, which
suggests that variables with missing values have more distinctive information than variables with imputed values.

The order of the variables is the order of importance from the model that uses the original data. The RankImpute column shows the order of importance from the model that uses imputed values. DEBTINC is the most important variable when the original data are used, and among the last in importance when imputed values are used. Imputing changes the characteristics of these data dramatically.

Output 7.5.2 Variable Importance Ranking

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>Rules</th>
<th>RulesImputed</th>
<th>RankImputed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEBTINC</td>
<td>2194</td>
<td>8540</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>DELINQ</td>
<td>1715</td>
<td>5480</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>DEROG</td>
<td>1909</td>
<td>3723</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>REASON</td>
<td>1078</td>
<td>1473</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>JOB</td>
<td>1671</td>
<td>2228</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>CLAGE</td>
<td>3816</td>
<td>7311</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>NINQ</td>
<td>3202</td>
<td>6003</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>YOJ</td>
<td>3492</td>
<td>6925</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>CLNO</td>
<td>4282</td>
<td>7657</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>MORTDUE</td>
<td>4238</td>
<td>8840</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>VALUE</td>
<td>8611</td>
<td>17885</td>
<td>11</td>
</tr>
</tbody>
</table>

Output 7.5.3 shows the in-bag and out-of-bag Gini measures of importance for each variable. PROC HPFOREST uses only the training data in a tree to compute the in-bag measure, and it uses only the out-of-bag data in a tree for the out-of-bag measure. The out-of-bag measure is a better estimate of the contribution the variable makes to predicting new observations. A negative value indicates that the variable makes the prediction worse on average. The GiniOOB column shows that DEBTINC is twice as important than the next variable. However, when missing values are imputed, GiniOOB is slightly negative for DEBTINC, indicating that DEBTINC makes prediction slightly worse.

Output 7.5.3 Variable Importance Ranking

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>Gini</th>
<th>GiniOOB</th>
<th>GiniImputed</th>
<th>GiniOOBImputed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEBTINC</td>
<td>0.127531</td>
<td>0.11252</td>
<td>0.041793</td>
<td>-0.02517</td>
</tr>
<tr>
<td>2</td>
<td>DELINQ</td>
<td>0.020504</td>
<td>0.01246</td>
<td>0.019190</td>
<td>-0.01290</td>
</tr>
<tr>
<td>3</td>
<td>DEROG</td>
<td>0.012098</td>
<td>0.00142</td>
<td>0.012566</td>
<td>-0.00921</td>
</tr>
<tr>
<td>4</td>
<td>REASON</td>
<td>0.002568</td>
<td>-0.00112</td>
<td>0.005097</td>
<td>0.00032</td>
</tr>
<tr>
<td>5</td>
<td>JOB</td>
<td>0.005247</td>
<td>-0.00120</td>
<td>0.009309</td>
<td>-0.00121</td>
</tr>
<tr>
<td>6</td>
<td>CLAGE</td>
<td>0.029162</td>
<td>-0.00157</td>
<td>0.034663</td>
<td>-0.02860</td>
</tr>
<tr>
<td>7</td>
<td>NINQ</td>
<td>0.014559</td>
<td>-0.00521</td>
<td>0.019456</td>
<td>-0.01763</td>
</tr>
<tr>
<td>8</td>
<td>YOJ</td>
<td>0.018500</td>
<td>-0.00802</td>
<td>0.028476</td>
<td>-0.02356</td>
</tr>
<tr>
<td>9</td>
<td>CLNO</td>
<td>0.019504</td>
<td>-0.00845</td>
<td>0.030647</td>
<td>-0.02737</td>
</tr>
<tr>
<td>10</td>
<td>MORTDUE</td>
<td>0.021067</td>
<td>-0.01055</td>
<td>0.036690</td>
<td>-0.03043</td>
</tr>
<tr>
<td>11</td>
<td>VALUE</td>
<td>0.042275</td>
<td>-0.01187</td>
<td>0.065912</td>
<td>-0.05417</td>
</tr>
</tbody>
</table>
Output 7.5.4 shows the count of observations for which DEBTINC is or is not missing for each value of the target BAD. DEBTINC is missing in 21% of the observations. If DEBTINC is missing, then the proportion of observations with BAD equal to 1 (which indicates an applicant who becomes delinquent) is 62%. If DEBTINC is not missing, then the proportion is only 8.6%. Missing values in DEBTINC are highly predictive of BAD in this example. Imputing the missing values destroys the predictive power.

Output 7.5.4 Contingency Table of BAD by DEBTINC_IS_MISSING

<table>
<thead>
<tr>
<th>Table of debtinc_is_missing by BAD</th>
<th>BAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>debtinc_is_missing</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td>37.96</td>
</tr>
<tr>
<td>NOT Missing</td>
<td>4290</td>
</tr>
<tr>
<td></td>
<td>71.98</td>
</tr>
<tr>
<td></td>
<td>91.41</td>
</tr>
<tr>
<td>Total</td>
<td>4771</td>
</tr>
<tr>
<td></td>
<td>80.05</td>
</tr>
</tbody>
</table>

References

Overview: HPNEURAL Procedure

The HPNEURAL procedure is a high-performance procedure that trains a multilayer perceptron neural network. For more information about multilayer perceptron neural networks, see Bishop (1995). PROC HPNEURAL can also use a previously trained network to score a data set (referred to as stand-alone scoring), or it can generate SAS DATA step statements that can be used to score a data set.
PROC HPNEURAL runs in either single-machine mode or distributed mode.

Note: Distributed mode requires SAS High-Performance Data Mining.

Because the HPNEURAL procedure is a high-performance analytical procedure, it also does the following:

- Enables you to run in distributed mode on a cluster of machines that distribute the data and the computations
- Enables you to run in single-machine mode on the server where SAS is installed
- Exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

Training a multilayer perceptron neural network requires the unconstrained minimization of a nonlinear objective function. Because there are currently no practical methods to guarantee finding a global minimum of that objective function, one way to be reasonably sure of finding a good solution is to train the network multiple times using different sets of initial values for the weights. Thus, even problems with smaller numbers of variables and training observations can benefit from the use of distributed mode.

PROC HPNEURAL Features

The HPNEURAL procedure was designed with two goals in mind: to perform efficient, high-speed training of neural networks, and to be as easy to use as possible while still creating models that fit the training data well and generalize well. With these goals in mind, most parameters for the neural network are automatically selected.

The following list summarizes some basic features of PROC HPNEURAL:

- Ability to train and score using distributed mode
- Parallel read of input data and parallel write of output data when the data source is the appliance database
- High degree of multithreading during all phases of training and scoring
- Automatic standardization of input and target variables
- Intelligent defaults for most neural network parameters such as activation and error functions
- Either automatic or manual selection and use of a validation data subset
- Automatic termination of training when the validation error stops improving
- Ability to weight individual observations or automatically use inverse prior probabilities as weights
PROCP HPNEURAL Contrasted with Other SAS Procedures

Table 8.1 compares the HPNEURAL procedure with the SAS Enterprise Miner Neural Network Node.

<table>
<thead>
<tr>
<th>PROC HPNEURAL</th>
<th>Neural Network Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multithreaded</td>
<td>Single-threaded</td>
</tr>
<tr>
<td>Can execute in single-machine mode or</td>
<td>Can execute only in single-machine mode</td>
</tr>
<tr>
<td>distributed mode</td>
<td></td>
</tr>
<tr>
<td>Has few required user-specified parameters so that</td>
<td>Gives you fine control over the myriad of possible choices of parameters that control</td>
</tr>
<tr>
<td>users with minimal experience with neural</td>
<td>the training of a neural network</td>
</tr>
<tr>
<td>networks can obtain good solutions to problems</td>
<td></td>
</tr>
<tr>
<td>that are amenable to supervised training</td>
<td></td>
</tr>
<tr>
<td>Can automatically select validation subset of</td>
<td>Must create and specify separate validation data set</td>
</tr>
<tr>
<td>training data set</td>
<td></td>
</tr>
<tr>
<td>Uses the validation subset to stop training early</td>
<td>Does not use a validation subset during training to prevent overfitting; uses the</td>
</tr>
<tr>
<td>to prevent overfitting</td>
<td>validation subset only to compute validation statistics</td>
</tr>
<tr>
<td>Uses the limited memory</td>
<td>Can use a variety of conjugate gradient or quasi-Newton optimization methods, but not</td>
</tr>
<tr>
<td>Broyden–Fletcher–Goldfarb–Shanno (LBFGS)</td>
<td>LBFGS</td>
</tr>
<tr>
<td>optimization method (Nocedal and Liu 1989) with</td>
<td></td>
</tr>
<tr>
<td>proprietary enhancements. LBFGS was chosen for the</td>
<td></td>
</tr>
<tr>
<td>HPNEURAL procedure because of both its speed of</td>
<td></td>
</tr>
<tr>
<td>training and its limited use of memory, which can</td>
<td></td>
</tr>
<tr>
<td>be especially important for problems with large</td>
<td></td>
</tr>
<tr>
<td>amounts of training data.</td>
<td></td>
</tr>
</tbody>
</table>

Getting Started: HPNEURAL Procedure

Training

The HPNEURAL procedure can either train a neural network model or use a previously trained model to score a data set. We will first discuss training.
Chapter 8: The HPNEURAL Procedure

The HPNEURAL procedure does not have many parameters that you must specify. It simply needs to know where the training data are (the DATA= option in the PROC statement), the names and types of the input variables (the INPUT statement), the names and types of the target variables (the TARGET statement), the number of hidden layers, and the number of neurons in each hidden layer (the HIDDEN statement), and, the number of training tries with each try using different randomly generated initial weights (the TRAIN statement).

Optionally, you can also specify where to write the score file that contains targets from the input file and predicted targets from the trained network and where to write the model file that contains the parameters of the trained network (the SCORE statement), and where to write the SAS data step statements that can be used to score new data sets (the CODE statement).

The most important parameters you can specify are the number of hidden layers and number of hidden neurons in each hidden layer in the network. A good strategy is to start with a single hidden layer by specifying a single HIDDEN statement with a small number of hidden neurons, and slowly increase the number until the validation error stops improving.

The next most important parameter you can specify is the number of times the network is to be retrained using different sets of initial weights (the NUMTRIES option in the TRAIN statement). A good strategy is to start with 5 (the default) and increase by 2 until the validation error stops improving.

Finally, unless your training data set is very large, you should set the MAXITER= option in the TRAIN statement to 1,000 or more to prevent the optimization algorithm from stopping prematurely. The value of the MAXITER= option is only a limit. Specifying MAXITER=1000 does not mean that the algorithm will run for 1,000 iterations. Most training runs will use far fewer iterations. If you have a large data set, you can start with MAXITER=1 to see how long a single iteration takes, and then make it larger.

The following small example trains a neural network to predict the type of iris plant, given several measurements, and then scores the same data set that was used for training. The DATA step contains 150 observations derived from the R. A. Fisher (1936) Iris data set:

```sas
title 'Fisher (1936) Iris Data';
proc format;
  value specname
    1='Setosa '
    2='Versicolor'
    3='Virginica ';
run;
data iris;
  input SepalLength SepalWidth PetalLength PetalWidth Species @@;
  format Species specname.;
datalines;
50 33 14 02 1 64 28 56 22 3 65 28 15 2 67 31 56 24 3
63 28 51 15 3 46 34 14 03 1 69 31 51 23 3 62 22 45 15 2
59 32 48 18 2 46 36 10 02 1 61 30 46 14 2 60 27 51 16 2
65 30 52 20 3 56 25 39 11 2 65 30 55 18 3 58 27 51 19 3
68 32 59 23 3 51 33 17 05 1 57 28 45 13 2 62 34 54 23 3
77 38 67 22 3 63 33 47 16 2 67 33 57 25 3 76 30 66 21 3
49 25 45 17 3 55 35 13 02 1 67 30 52 23 3 70 32 47 14 2
```
64 32 45 15 2 61 28 40 13 2 48 31 16 02 1 59 30 51 18 3
55 24 38 11 2 63 25 50 19 3 64 32 53 23 3 52 34 14 02 1
49 36 14 01 1 54 30 45 15 2 79 38 64 20 3 44 32 13 02 1
67 33 57 21 3 50 35 16 06 1 58 26 40 12 2 44 30 13 02 1
77 28 67 20 3 63 27 49 18 3 47 32 16 02 1 55 26 44 12 2
50 23 33 10 2 72 32 60 18 3 48 30 14 03 1 51 38 16 02 1
61 30 49 18 3 48 34 19 02 1 50 30 16 02 1 50 32 12 02 1
61 26 56 14 3 64 28 56 21 3 43 30 11 01 1 58 40 12 02 1
51 38 19 04 1 67 31 44 14 2 62 28 48 18 3 49 30 14 02 1
51 35 14 02 1 56 30 45 15 2 58 27 41 10 2 50 34 16 04 1
46 32 14 02 1 60 29 45 15 2 57 26 35 10 2 57 44 15 04 1
50 36 14 02 1 77 30 61 23 3 63 34 56 24 3 58 27 51 19 3
57 29 42 13 2 72 30 58 16 3 54 34 15 04 1 52 41 15 01 1
71 30 59 21 3 64 31 55 18 3 60 30 48 18 3 63 29 56 18 3
49 24 33 10 2 56 27 42 13 2 57 30 42 12 2 55 42 14 02 1
49 31 15 02 1 77 26 69 23 3 60 22 50 15 3 54 39 17 04 1
66 29 46 13 2 52 27 39 14 2 60 34 45 16 2 50 34 15 02 1
44 29 14 02 1 50 20 35 10 2 55 24 37 10 2 58 27 39 12 2
47 32 13 02 1 46 31 15 02 1 69 32 57 23 3 62 29 43 13 2
74 28 61 19 3 59 30 42 15 2 51 34 15 02 1 50 35 13 03 1
56 28 49 20 3 60 22 40 10 2 73 29 63 18 3 67 25 58 18 3
49 31 15 01 1 67 31 47 15 2 63 23 44 13 2 54 37 15 02 1
56 30 41 13 2 63 25 49 15 2 61 28 47 12 2 64 29 43 13 2
51 25 30 11 2 57 28 41 13 2 65 30 58 22 3 69 31 54 21 3
54 39 13 04 1 51 35 14 03 1 72 36 61 25 3 65 32 51 20 3
61 29 47 14 2 56 29 36 13 2 69 31 49 15 2 64 27 53 19 3
68 30 55 21 3 55 25 40 13 2 48 34 16 02 1 48 30 14 01 1
45 23 13 03 1 57 25 50 20 3 57 38 17 03 1 51 38 15 03 1
55 23 40 13 2 66 30 44 14 2 68 28 48 14 2 54 34 17 02 1
51 37 15 04 1 52 35 15 02 1 58 28 51 24 3 67 30 50 17 2
63 33 60 25 3 53 37 15 02 1

proc hpneural data=iris;
 input SepalLength SepalWidth PetalLength PetalWidth;
 target Species / level=nom;
 hidden 2;
 train outmodel=model_iris maxiter=1000;
 score out=scores_iris;
run;

Figure 8.1 displays the SAS log output, which shows the percentage of validation observations that were misclassified by the trained network. If there had been any interval targets, the log would have shown the absolute average percentage error and the absolute maximum percentage error for each interval target.
Chapter 8: The HPNEURAL Procedure

Figure 8.1 SAS Log Output

NOTE: The HPNEURAL procedure is executing in single-machine mode.
NOTE: Reading data...
NOTE: 150 usable observations in input data set.
NOTE: Training...
NOTE: Try 1 complete after 28 iterations. Reason for stopping: Training error=0.000000
NOTE: Try 2 complete after 28 iterations. Reason for stopping: Training error=0.000000
NOTE: Try 3 complete after 29 iterations. Reason for stopping: Training error=0.000000
NOTE: Try 4 complete after 26 iterations. Reason for stopping: Training error=0.000000
NOTE: Try 5 complete after 29 iterations. Reason for stopping: Training error=0.000000
NOTE: Writing Model File...
NOTE: Scoring...
NOTE: Misclassification Error for target Species: 5.2632%
NOTE: There were 150 observations read from the data set WORK.IRIS.
NOTE: The data set WORK.MODEL_IROIS has 11 observations and 18 variables.
NOTE: The data set WORK.SCORES_IROIS has 150 observations and 5 variables.

Figure 8.2 displays the “Model Information,” “Performance Information,” and “Number of Observations” tables. The HPNEURAL procedure creates a neural network model for the nominal variable Species. Of the 150 observations, 38 are used as a validation subset, which consists of the first observation and every fourth observation thereafter. The other 112 observations make up the training subset.

PROC HPNEURAL executes in single-machine mode. That is, the model is trained on the machine where the SAS session executes.

Figure 8.2 Model Information, Performance Information, and Number of Observations Tables

Fisher (1936) Iris Data

The HPNEURAL Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Architecture</td>
</tr>
<tr>
<td>Number of Input Variables</td>
</tr>
<tr>
<td>Number of Hidden Layers</td>
</tr>
<tr>
<td>Number of Hidden Neurons</td>
</tr>
<tr>
<td>Number of Target Variables</td>
</tr>
<tr>
<td>Number of Weights</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
</tbody>
</table>
Figure 8.3 displays the “Misclassification Table.” It shows the results of scoring the validation subset by using the neural network model that is trained on the training subset. This example shows two incorrect classifications: two observations whose target value was “Virginica” were incorrectly classified as “Versicolor.”

<table>
<thead>
<tr>
<th>Class</th>
<th>SETOSA</th>
<th>VERSICOLOR</th>
<th>VIRGINICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SETOSA</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VERSICOLOR</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>VIRGINICA</td>
<td>0</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Stand-Alone Scoring

The primary purpose for training a neural network model is to use the trained model to score new data that was not seen during training. It is very important that the new data have the same statistical characteristics as the data that were used for training. The following statements use the model that was trained in the preceding section to score some new observations:

```plaintext
title 'New Iris Data';

data new_iris;
  input SepalLength SepalWidth PetalLength PetalWidth;
  datalines;
  50 33 14 02
  64 28 56 22
  65 28 46 15
  67 31 56 24
  63 28 51 15
  46 34 14 03
  69 31 51 23
  62 22 45 15
  59 32 48 18
  46 36 10 02
  61 30 46 14
  60 27 51 16
  65 30 52 20
  56 25 39 11
  65 30 55 18
  58 27 51 19
;```
proc hpneural data=new_iris;
    score model=model_iris out=scores_new_iris;
run;

Syntax: HPNEURAL Procedure

The following statements are available in the HPNEURAL procedure:

PROC HPNEURAL < DATA=SAS-data-set > < DISTR=ALL | SPLIT > < NOPRINT > ;
    PERFORMANCE performance-options ;
    ARCHITECTURE architecture-options ;
    ID variables ;
    INPUT variables < / LEVEL=INT | LEVEL=NOM < MISSING=MAP >> ;
    WEIGHT variable | _INVERSE_PRIORS_ ;
    HIDDEN number < / ACT= activation-function > ;
    TARGET variables < / < LEVEL=INT | LEVEL=NOM >
        < ACT=activation-function > < ERROR=error-function > ;
    PARTITION ROLEVAR=variable( TRAIN=value | VALIDATE=value ) ;
    PARTITION FRACTION( TRAIN=number | VALIDATE=number ) ;
    TRAIN < NUMTRIES=number > < MAXITER=number >
        < VALID=NONE > < OUTMODEL=SAS-data-set > ;
    SCORE OUT=SAS-data-set < MODEL=SAS-data-set > ;
    CODE FILE='external-file' | fileref ;

When you train a neural network, the PROC HPNEURAL, INPUT, TARGET, and TRAIN statements are required. The HIDDEN statement is required unless you use the logistic architecture (in which case, the HIDDEN statement is not allowed).

When you use a previously trained neural network to score a data set, only the PROC HPNEURAL, SCORE, ID, PERFORMANCE, and CODE statements are allowed.

PROC HPNEURAL Statement

PROC HPNEURAL < DATA=SAS-data-set > < DISTR=ALL | SPLIT > < NOPRINT > ;

The PROC HPNEURAL statement invokes the procedure. You can specify the following options in the PROC HPNEURAL statement:

DATA=SAS-data-set

names the SAS data set that contains the training and validation observations to be used by PROC HPNEURAL to train the neural network or that contains the observations to be scored when you are performing stand-alone scoring. The default input data set is the most recently created data set.

When you use PROC HPNEURAL to train a neural network, each observation must contain the input, weight, validation, ID, and target variables that are specified in the associated INPUT, WEIGHT, PARTITION, ID, and TARGET statements.
When you use PROC HPNEURAL to perform stand-alone scoring, the input data set must contain the input variables that were specified when the network was trained (as saved in the model data set) and optionally the target variables that were specified when the network was trained. In addition, if you applied formats to variables when training, the same formats must be applied when you do stand-alone scoring. Only the target variables (if they exist) and the network’s predictions are written to the output data set, which is specified in the SCORE statement.

For nominal variables of character type, levels are truncated to 32 bytes and converted to upper case. Also, when you train a network, if all observations that have a specific level for a nominal variable contain missing values in other input, target, weight, or validation variables, then that specific level is discarded and does not appear in the analysis.

If PROC HPNEURAL executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel. For information about the alongside-the-database model, see the section “Alongside-the-Database Execution” on page 14.

When PROC HPNEURAL runs in single-machine mode, the input data set must fit into the available memory on the single machine. When PROC HPNEURAL runs in distributed mode, the input data set must fit into the total memory available across the distributed environment.

**DISTR=ALL | SPLIT**

specifies whether the input data set is to be replicated in the memory of each node in distributed mode. If this option is not specified, PROC HPNEURAL makes this decision automatically based on the size of the input data set. This option is ignored if PROC HPNEURAL is not running in distributed mode.

When PROC HPNEURAL runs in distributed mode, PROC HPNEURAL usually divides the input data set among all the nodes to minimize the time it takes to optimize each try. However, if the input data set is small, dividing the data in this way might be inefficient because of the interconnect delay (the time it takes to send partial results between nodes). It might be more efficient to have each node have a complete copy of the data and run each try in parallel on separate nodes. Each try might take longer because it uses only a single node, but it could take less time to finish all the tries because the tries are running in parallel.

You can force the data to be redistributed so that each node has a complete in-memory copy by specifying DISTR=ALL. You can prevent the data from being redistributed by specifying DISTR=SPLIT.

**NOPRINT**

specifies that no ODS tables be created.

---

**ARCHITECTURE Statement**

```
ARCHITECTURE architecture-option;
```

The ARCHITECTURE statement specifies the architecture of the neural network to be trained. You can specify one of the following values for the `architecture-option`:

**LOGISTIC**

specifies a multilayer perceptron that has no hidden units (which is equivalent to a logistic regression). If you specify this architecture, the HIDDEN statement is not allowed.
MLP
specifies a multilayer perceptron that has one or more hidden layers. This is the default.

MLP DIRECT
specifies a multilayer perceptron that has one or more hidden layers and has direct connections between each input and each target neuron.

When you use PROC HPNEURAL to train a neural network, the ARCHITECTURE statement is optional. The ARCHITECTURE statement is not allowed when you use PROC HPNEURAL to perform stand-alone scoring.

CODE Statement

CODE FILE='external-file' | fileref ;

The CODE statement uses the current neural network model to generate SAS DATA step statements and save them in an external text file that can be used later to score a data set. The file does not contain the surrounding PROC and RUN statements. The DATA step statements can be used with the standard DATA step, PROC DS2, or PROC HPDS2.

You must specify the FILE= argument in one of the following ways:

FILE='external-file'
specifies an external text file where the generated statements are saved.

FILE=fileref
specifies a fileref that refers to an external text file where the generated statements are saved.

The CODE statement is optional.

HIDDEN Statement

HIDDEN number < / ACT=activation-function> ;

The HIDDEN statement specifies the number of hidden layers in the network and the number of neurons in each hidden layer. The number of HIDDEN statements specifies the number of layers in the network. The first HIDDEN statement specifies the number of hidden neurons in the first hidden layer. The second HIDDEN statement specifies the number of hidden neurons in the second hidden layer, and so on. A maximum of 100 HIDDEN statements are allowed.

You must specify number, and it must be an integer greater than or equal to 1.

You can also specify the following option:

ACT=COS | IDENTITY | TANH
specifies the activation function for each hidden layer. You can specify the following values:

COS
specifies the cosine function.

IDENTITY
specifies the identity function.
ID Statement

ID variables;

The ID statement lists one or more variables from the input data set that are transferred to the output data set, which is specified in the SCORE statement.


The ID statement is optional.

INPUT Statement

INPUT variables < / LEVEL=INT | LEVEL=NOM <MISSING=MAP>> ;

The INPUT statement identifies the variables in the input data set that are inputs to the neural network.

LEVEL=INT

specifies that the variables are interval variables, which must be numeric. This is the default.

LEVEL=NOM

specifies that the variables are nominal variables, also known as classification variables, which can be numeric or character.

MISSING=MAP

specifies that the missing value for nominal variables should be treated as a valid level (mapped to level 0). This option is not allowed for interval variables.

When training, you must include one or more INPUT statements. You need more than one INPUT statement when you have both interval and nominal input variables. The INPUT statement is not allowed when you do stand-alone scoring.

All interval input variables are automatically standardized to the range \([-1, 1]\).

When you are training, any observation that has missing values for any variable is not used.

When you are performing stand-alone scoring, if an interval variable is missing, its mean (as observed during the training phase) is used. If a nominal variable is missing, all input neurons associated with the variable (one per class level, except for binary variables, which have a single neuron) are set to 0.

TANH specifies the hyperbolic tangent function.

By default, ACT=TANH.

When training, you must include one or more HIDDEN statements, unless you specify ARCHITECTURE LOGISTIC (in which case the HIDDEN statement is not allowed). The HIDDEN statement is not allowed when you do stand-alone scoring.
PARTITION Statement

PARTITION ROLEVAR=variable( TRAIN=value | VALIDATE=value ) ;

PARTITION FRACTION( TRAIN=number | VALIDATE=number ) ;

The PARTITION statement specifies how to divide the input data set into a training subset and a validation subset.

The statement implements two alternate methods of specifying the split between the training and validation data. Either you can explicitly specify training observations and validation observations by specifying ROLEVAR=variable, where variable is a variable in the input data set, or you can specify that an approximate fraction of the input data set be used for training observations or validation observations by specifying FRACTION( TRAIN=number ) or FRACTION( VALIDATE=number ).

ROLEVAR=variable( TRAIN=value | VALIDATE=value )

specifies that the variable in the input data set be used to decide whether an observation is used for training or for validation. You can either specify the value used to identify training observations or the value used to identify validation observations. If you specify TRAIN=value, then an observation is used for training if the value of variable equals value; otherwise the observation is used for validation. If you specify VALIDATE=value, then an observation is used for validation if the value of variable equals value; otherwise the observation is used for training.

FRACTION( TRAIN=number | VALIDATE=number )

specifies the approximate fraction of the input data set to be used for training or validation. If you specify TRAIN=number, then approximately the fraction of the data set specified by number is used as training observations, and the rest are used for validation observations. If you specify VALIDATE=number, then approximately the fraction of the data set specified by number is used as validation observations. The split between training and validation observations can only approximate the requested fraction because that fraction is used as a cutoff value for a random number generator to determine the actual split. If you require a more accurate split or a split that is guaranteed to be identical across different distributed computing environments, you must use the ROLEVAR option to specify the split explicitly.

When you are training, the PARTITION statement is optional. If you do not include the PARTITION statement, every fourth observation (starting with the first observation) is used as a validation observation, unless you specify VALID=NONE in the TRAIN statement. In this case, no validation is performed. The PARTITION statement is not allowed when you are doing stand-alone scoring.

Fit statistics reported after training are only computed using validation observations. Fit statistics reported after stand-alone scoring are computed using all observations.

PERFORMANCE Statement

PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing. The PERFORMANCE statement is documented further in the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”
The PERFORMANCE statement is optional.

---

**SCORE Statement**

```
SCORE OUT=SAS-data-set < MODEL=SAS-data-set> ;
```

The SCORE statement causes the HPNEURAL procedure to write the network’s target and predicted output for each observation in the input data set to the output data set that is specified by the OUT option, along with any variables from the input data set that are specified in the ID statement.

- **OUT=SAS-data-set** specifies the data set to contain the predicted values of the target variables. For nominal variables, each observation also contains the computed probabilities of each class level. This keyword is required.

- **MODEL=SAS-data-set** specifies the data set that contains the model parameters for a previously trained network. You can specify this keyword only when you are doing stand-alone scoring.

When you are training, the SCORE statement is optional but the MODEL= keyword is not allowed. When you are doing stand-alone scoring, the SCORE statement is required and the MODEL= keyword must be used.

---

**TARGET Statement**

```
TARGET variables < / < LEVEL=INT | LEVEL=NOM > < ACT=activation-function> < ERROR=error-function> > ;
```

The TARGET statement identifies the variables in the input data set that the network is to be trained to predict.

You can specify the following options:

- **LEVEL=INT | NOM** specifies the variables type. You can specify the following values:
  - **INT** specifies that the variables are interval variables, which must be numeric.
  - **NOM** specifies that the variables are nominal variables, also known as classification variables, which can be numeric or character.

  By default, LEVEL=INT.

- **ACT=COS | EXP | IDENTITY | TANH** specifies the activation function for interval target variables only. You cannot specify the activation function for nominal variables. It is always the softmax function.

  You can specify the following values:
**COS** specifies the cosine function.

**EXP** specifies the exponential function.

**IDENTITY** specifies the identity function.

**TANH** specifies the hyperbolic tangent function.

By default, ACT=IDENTITY.

**ERROR=GAMMA | NORMAL | POISSON** specifies the error function for interval target variables only. The optimizer uses this function to characterize the difference between the network output and the target value. You can specify the following values:

**GAMMA** specifies the gamma function. The gamma error function is usually used when you want to predict the time between events.

**NORMAL** specifies the normal function, which is the sum of the squared differences between the network output and the target value.

**POISSON** specifies the Poisson function. The Poisson error function is usually used when you want to predict the number of events per unit time.

By default, ERROR=NORMAL.

You can specify the ACT= and ERROR= options only for interval variables. You can specify ACT=EXP if and only if you also specify ERROR=GAMMA or ERROR=POISSON.

Nominal variables have one target neuron per class level, except for nominal variables that have only two levels (binary variables), which have a single neuron. Each of these neurons uses the softmax activation function to ensure that the sum of the outputs for all neurons is 1.0. The output of each neuron can then be interpreted as the probability that the variable is the corresponding class level. The error function for nominal variables is always the cross entropy function. Neither the ACT= option nor the ERROR= option is allowed for nominal variables.

When training, you must include one or more TARGET statements. You need more than one TARGET statement when you have both interval and nominal target variables. The TARGET statement is not allowed when you do stand-alone scoring.

When you are training, any observation that has missing values for any variable is not used.

You cannot specify the same variable in both an INPUT statement and a TARGET statement.

---

**TRAIN Statement**

```
TRAIN < NUMTRIES=number> < MAXITER=number > < VALID=NONE > < OUTMODEL=SAS-data-set > ;
```

The TRAIN statement causes the HPNEURAL procedure to use the training data that are specified in the PROC HPNEURAL statement to train a neural network model whose structure is specified in the ARCHITECTURE, INPUT, TARGET, and HIDDEN statements. The goal of training is to determine a set of
network weights that best predicts the targets in the training data while still doing a good job of predicting targets of unseen data (that is, generalizing well and not overfitting).

Training starts with a pseudorandomly generated set of initial weights. PROC HPNEURAL then computes the objective function for the training subset, and the optimization algorithm adjusts the weights. This process is repeated until any one of the following conditions is met:

- The objective function that is computed using the training subset stops improving.
- The objective function that is computed using the validation subset stops improving.
- The process has been repeated the number of times specified in the MAXITER= option.

By default, every fourth observation that is read (starting with the first observation) is used as a validation observation. You can override this by specifying VALID=NONE in the TRAIN statement or by using the PARTITION statement. Any observations with missing values for input, weight, validation, or target variables are not used for training or validation error calculation, although they are scored if a SCORE statement is present. Fit statistics reported after training are only computed using validation observations. Fit statistics reported after stand-alone scoring are computed using all observations.

In distributed mode, the order of the observations that are read is not guaranteed to be the same across different distributed environments. Therefore, different validation observations might be selected in different environments when the default method is used for choosing validation observations, causing results to be somewhat different between different distributed environments. You can avoid this by using the ROLEVAR= option in a PARTITION statement to explicitly specify which observations are validation observations.

The weights that result in the smallest value of the objective function for the validation subset are saved and used for calculating fit statistics and for scoring.

When you are training, you must include exactly one TRAIN statement. The TRAIN statement is not allowed when you are doing stand-alone scoring.

**NUMTRIES=number**

specifies the number of times the network is to be trained using a different starting points. Specifying this option helps ensure that the optimizer finds the set of weights that truly minimizes the objective function and does not return a local minimum. The value of number must be an integer between 1 and 99,999.

The default is 5.

**MAXITER=number**

specifies the maximum number of iterations (weight adjustments) for the optimizer to make before terminating.

Setting number to a large value does not mean that the optimizer actually iterates that many times. Often, training or validation error stops improving much sooner, usually after a few hundred iterations.

When you are training using large data sets, you can do a training run with MAXITER=1 to determine approximately how long each iteration will take.

The default is 50.
**VALID=NONE**
specifies that a validation subset not be used to help determine when to stop training.

If you specify VALID=NONE in the TRAIN statement, you cannot have a PARTITION statement.

**OUTMODEL=SAS-data-set**
specifies the data set to which to save the model parameters for the trained network. These parameters include the network architecture, input and target variable names and types, and trained weights.

You can use the model data set later to score a different input data set as long as the variable names and types of the variables in the new input data set match those of the training data set.

---

**WEIGHT Statement**

```
WEIGHT variable | _INVERSE_PRIORS_ ;
```

If you specify a WEIGHT statement, variable identifies a numeric variable in the input data set that contains the weight to be placed on the prediction error (the difference between the output of the network and the target value specified in the input data set) for each observation during training.

If, instead of specifying a variable, you specify the keyword _INVERSE_PRIORS_, the HPNEURAL procedure calculates the weight applied to the prediction error of each nominal target variable as the total number of observations divided by the number of observations whose target class is the same as the current observation (in other words, the inverse of the fraction of the number of times that the target class occurs in the input data set).

If variable is less than or equal to 0 or is missing, the observation is not used for training or for computing validation error. When validation error is computed during training, the weights on the validation observations are used even though weights are not used when scoring.

The WEIGHT statement is optional. If a WEIGHT statement is not included, all observations are assigned a weight of 1.

---

**Details: HPNEURAL Procedure**

**Computational Method**

PROC HPNEURAL trains a multilayer perceptron neural network with one or more hidden layers. For more information about multilayer perceptron neural networks, see Bishop (1995).

Unless specified otherwise, all interval input variables are scaled to be in the range [-1, 1].

For all nominal input variables, except binary variables (which have a single input neuron), there is one input neuron per level. The value assigned to each input neuron is 0 except for the neuron which represents the actual input level for an observation, which has an input value of 1.
For nominal target variables, the output activation function is the softmax function, and the error function is the cross entropy function. There is one output neuron per level, except for binary variables (which have a single output neuron). The target value for each output neuron is 0 except for the neuron that represents the actual target level for an observation, which has a target value of 1.

The error function for the network is a scalar function of the network weights. This function defines an error surface on which the optimization algorithm attempts to locate a minimum. Optimization is done in two parts: the limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm (Nocedal and Liu 1989) computes a descent direction along the error surface; then the Moré Thuente line search algorithm (Moré and Thuente 1992) finds a new minimum of the error function on the surface along that direction. If a sufficient decrease in the error function can be found, the weights that generate the new minimum are then used by the LBFGS algorithm to calculate a new descent direction. The process is repeated until a sufficient decrease in the error function cannot be obtained.

Both the LBFGS search direction algorithm and the Moré Thuente line search algorithm need to know the gradient of the error surface at several different points (sets of weights). This gradient is calculated by using the algorithm described in Bishop (1995).

Besides terminating due to the inability to improve the error function, the optimization algorithm also stops if the validation error (which is calculated after each line search) lacks improvement 40 times in a row. By default, every fourth observation is used as a validation observation, starting with the first observation. This default can be changed by using the PARTITION statement. Validation observations are not used in any other way by the optimization algorithm.

Fit statistics that are reported in the SAS log after training are computed by using only validation observations, unless training was done without validation. In the latter case, fit statistics that are reported in the SAS log are computed for training observations. Fit statistics that are reported in the FitStatistics ODS table are reported separately for training and validation observations. Fit statistics that are reported in the SAS log after stand-alone scoring are computed by using all observations.

**Multithreading**

Threading refers to the organization of the computational work into multiple tasks (processing units that can be scheduled by the operating system). A task is associated with a thread. Multithreading refers to the concurrent execution of threads. When multithreading is possible, substantial performance gains can be realized compared to sequential (single-threaded) execution.

By default, the number of threads used by the HPNEURAL procedure is the number of CPUs on a machine. You can control the number of threads by specifying the NTHREADS= option in the PERFORMANCE statement.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the default output.

The tasks multithreaded by the HPNEURAL procedure are primarily defined by dividing the data that are processed on a single machine among the threads: that is, the HPNEURAL procedure implements multithreading through a data-parallel model. For example, if the input data set on a machine has 1,000 observations and PROC HPNEURAL is running four threads in parallel, then 250 observations are processed in parallel by each thread.
Output Data Set

The output data set is specified by the OUT= option in the SCORE statement. If there is no SCORE statement, then no output data set is created, but fit statistics are still displayed in the log and in ODS tables.

Table 8.2 describes the columns of the output data set.

<table>
<thead>
<tr>
<th>Column</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID variables from the input data set</td>
<td>Name of each ID variable in the input data set</td>
</tr>
<tr>
<td>Predicted value of the variable from the trained network</td>
<td>A name of the form P_varname for interval variables and I_varname for nominal variables, where varname is the variable name from the input data set. The name is truncated to 32 bytes if necessary. Double-byte characters are converted to underscores unless the SAS system option VALIDVARNAMES=any.</td>
</tr>
<tr>
<td>For nominal values, additional columns for the raw network output for each level of each nominal variable. Because nominal variables use the softmax activation function, the raw value for a specific level is usually interpreted as the probability that the target variable is that level.</td>
<td>P_varnameLevelname where varname is the variable name from the input data set and Levelname is the level name from the input data set. The name is truncated to 32 bytes if necessary. Double-byte characters are converted to underscores unless the SAS system option VALIDVARNAMES=any.</td>
</tr>
</tbody>
</table>

Displayed Output

PROC HPNEURAL displays basic fit statistics in the SAS log and more detailed information in several ODS tables.

When you are training, the statistics in the log are based on the network’s prediction accuracy on the validation subset, unless there is no validation subset, in which case the statistics are based on the entire input data set.

When you are performing stand-alone scoring, the statistics depend on whether the target variables exist in the input data set: if the target variables exist in the input data set, the statistics are based on the network’s prediction accuracy on the entire input data set; otherwise no fits statistics can be computed.

For interval variables, PROC HPNEURAL displays the average absolute percentage error and maximum absolute percentage error in the SAS log. The percentage is the percentage of the range of the variable across the entire input data set (not just the validation observations). For nominal variables, PROC HPNEURAL displays the percentage of observations that were misclassified, as well as the class that had the worst prediction accuracy, and the misclassification percentage of that class.
In addition to information displayed in the SAS log, PROC HPNEURAL generates ODS tables that give detailed information about the model structure, input data, detailed training results, detailed fit statistics, and timings.

Other fit statistics can be computed from information in the score data set.

**ODS Table Names**

Each table created by the HPNEURAL procedure has a name associated with it, and you must use this name to refer to the table when you use ODS statements. The names of each table and a short description of the contents are listed in Table 8.3.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassLevels</td>
<td>Level information for nominal input variables</td>
<td>INPUT with LEVEL=NOM</td>
</tr>
<tr>
<td>Details</td>
<td>Detailed real times for each phase of the procedure</td>
<td>PERFORMANCE with DETAILS option</td>
</tr>
<tr>
<td>FitStatistics</td>
<td>A variety of statistics for both training and validation data sets</td>
<td>Default output</td>
</tr>
<tr>
<td>Iteration</td>
<td>Training and validation error for each iteration of the best try</td>
<td>Default output</td>
</tr>
<tr>
<td>Misclassification</td>
<td>Misclassification matrix for nominal target variables</td>
<td>TARGET with LEVEL=NOM</td>
</tr>
<tr>
<td>ModelInformation</td>
<td>Information about the modeling environment</td>
<td>Default output</td>
</tr>
<tr>
<td>Nobs</td>
<td>Number of observations read and used; number of validation observations used</td>
<td>Default output</td>
</tr>
<tr>
<td>PerformanceInfo</td>
<td>Information about the high-performance computing environment</td>
<td>Default output</td>
</tr>
<tr>
<td>Training</td>
<td>Training error, validation error, and reason for stopping for each try</td>
<td>Default output</td>
</tr>
</tbody>
</table>

**References**


Chapter 9
The HPREDUCE Procedure

Contents

Overview: HPREDUCE Procedure .................................................. 212
PROC HPREDUCE Features ......................................................... 212
PROC HPREDUCE Contrasted with Other SAS Procedures .................. 213
Getting Started: HPREDUCE Procedure ....................................... 213
Unsupervised Variable Selection with the HPREDUCE Procedure ....... 216
Supervised Variable Selection with HPREDUCE Procedure ............... 218
Syntax: HPREDUCE Procedure ..................................................... 220
PROC HPREDUCE Statement ...................................................... 220
CLASS Statement ................................................................. 223
PERFORMANCE Statement ....................................................... 223
REDUCE Statement ............................................................... 224
Details: HPREDUCE Procedure .................................................. 225
Unsupervised Variable Selection ................................................ 225
Supervised Variable Selection ................................................... 226
Variable Selection for Regression .............................................. 226
Variable Selection for Classification ......................................... 227
Criteria Used in Model Selection ............................................... 227
Computational Method ............................................................ 228
Displayed Output ................................................................. 229
Performance Information ......................................................... 229
Model Information ............................................................... 229
Number of Observations ........................................................ 229
Class Level Information .......................................................... 230
Selection Summary ............................................................... 230
Selected Variables ............................................................... 230
Procedure Task Timing ........................................................... 230
ODS Table Names ................................................................. 230
Examples: HPREDUCE Procedure .............................................. 231
Example 9.1: Running in Single-Machine Mode .............................. 231
Example 9.2: Running in Distributed Mode .................................. 233
Example 9.3: Output a Correlation Matrix to a SAS Data File .......... 234
Example 9.4: Output the Correlation Matrix in LIL Format ............... 235
Example 9.5: Output an ODS Table as A Local Data File ................. 237
References ............................................................................. 238
Overview: HPREDUCE Procedure

The HPREDUCE procedure is a high-performance procedure that performs both supervised and unsupervised variable selection on the SAS appliance. You can use the HPREDUCE procedure to read data in distributed form and perform variable selection in parallel in single-machine mode or distributed mode. For more information about these modes, see the section “Processing Modes” on page 6 in Chapter 2, “Shared Concepts and Topics.”

NOTE: Distributed mode requires SAS High-Performance Data Mining.

The HPREDUCE procedure performs unsupervised variable selection by identifying a set of variables that jointly explain the maximum amount of data variance. Unlike principal component analysis (PCA), which reduces dimensionality by generating a set of new variables (variable extraction), the HPREDUCE procedure reduces dimensionality by selecting a subset of the original variables (variable selection). Thus, this technique preserves model interpretation.

The HPREDUCE procedure performs supervised variable selection by identifying a set of variables that jointly explain the maximum amount of variance contained in the response variables. The HPREDUCE procedure supports variable selection in both the regression setting and the classification (categorization) setting.

The HPREDUCE procedure can also be used to output the sums of squares and crossproducts (SSCP) matrix, the correlation (CORR) matrix, or the covariance (COV) matrix for exploratory data analysis and direct input to statistical procedures that accept that form. This step saves time by eliminating redundant matrix aggregations.

PROC HPREDUCE Features

The HPREDUCE procedure conducts a variance analysis and reduces dimensionality by selecting the variables that contribute the most to the overall variance of the data (or the dependent variables). The following list summarizes the basic features of the HPREDUCE procedure:

- Variable selection is based on covariance analysis.
- Analysis can be performed on a massively parallel SAS high-performance appliance.
- Input data can be read in parallel when the data source is the appliance database.
- Computation of the CORR, COV, or SSCP matrix is distributed.
- Computation of the variable selection steps is distributed.
- All phases of analytic execution use of high degree of multithreading.
- Both supervised and unsupervised variable selection are supported.
- Multiple response variables are supported in variable selection for regression.
• The CLASS statement supports categorical inputs.
• The REDUCE statement supports main and interaction effects.
• The OUTCP statement supports outputting a CORR, COV, or SSCP matrix.

### PROC HPREDUCE Contrasted with Other SAS Procedures

This section compares the HPREDUCE procedure with the FACTOR, PRINCOMP, GLMSELECT, and DISCRIM procedures in SAS/STAT software.

When PROC HPREDUCE performs unsupervised variable selection, it conducts variance analysis and reduces dimensionality by forward selection of the variables that contribute the most to the overall data variance. The output lists the variables in order of their contribution to data variance and can be used directly for reporting or for selecting variables for model building procedures. In contrast, principal component analysis (PCA) conducts a variance analysis and then projects the data space to an orthogonal set of axes by a linear combination of the original variables. These new principal components best explain the data variance and can be used as input to model building procedures. In either case, the number of inputs to the modeling procedure has been reduced from the original set. PCA can be done through the SAS/STAT FACTOR and PRINCOMP procedures. The primary difference between PCA and PROC HPREDUCE is that PCA generates new variables, while PROC HPREDUCE reduces data dimensionality by selecting a subset of the original variables. This feature of PROC HPREDUCE is beneficial in applications where retaining the original variables is important for model exploration and interpretation.

When PROC HPREDUCE performs supervised variable selection, it conducts variance analysis and reduces dimensionality by forward selection of the variables that contribute the most to explaining the overall variance of the response variables (targets). The output lists the variables in order of their contribution to explaining response variance. The output can be used directly for reporting or for selecting variables for model building procedures. When PROC HPREDUCE is used to perform supervised variable selection, it most resembles the GLMSELECT procedure. However, PROC HPREDUCE allows multiple response variables, which is not supported by PROC GLMSELECT. When the response variable is a classification variable and its levelization is done in a special format, PROC HPREDUCE conducts variance analysis in the same way as linear discriminant analysis (LDA) does. LDA can be done through the SAS/STAT DISCRIM procedure. Like PCA, LDA generates new variables by linearly combining all original variables, while PROC HPREDUCE reduces data dimensionality by selecting a subset of the original variables.

### Getting Started: HPREDUCE Procedure

The following DATA step contains 100 observations with one character variable (C), one classification variable (y), and 10 continuous variables (x1–x10). This data set is used for both of the getting-started examples in the following sections.
data getStarted;
  input C$ y x1-x10;
  datalines;
D 0 10.2 6 1.6 38 15 2.4 20 0.8 8.5 3.9
F 1 12.2 6 2.6 42 61 1.5 10 0.6 8.5 0.7
D 1 7.7 1 2.1 38 61 1 90 0.6 7.5 5.2
J 1 10.9 7 3.5 46 42 0.3 0 0.2 6 3.6
E 0 17.3 6 3.8 26 47 0.9 10 0.4 1.5 4.7
A 0 18.7 4 1.8 2 34 1.7 80 1 9.5 2.2
B 0 7.2 1 0.3 48 61 1 11 0.8 3.5 4
D 0 0.1 3 2.4 0 65 1.6 70 0.8 3.5 0.7
H 1 2.4 4 0.7 38 22 0.2 20 0 3 4.2
J 0 15.6 7 1.4 0 98 0.3 0 1 5 5.2
J 0 11.1 3 2.4 42 55 2.2 60 0.6 4.5 0.7
F 0 4 6 0.9 4 36 2.1 30 0.8 9 4.6
A 0 6.2 2 1.8 14 79 1.1 70 0.2 0 5.1
H 0 3.7 3 0.8 12 66 1.3 40 0.4 0.5 3.3
A 1 9.2 3 2.3 48 51 2.3 50 0 6 5.4
G 0 14 3 2 18 12 2.2 0 0 3 3.4
E 1 19.5 6 3.7 26 81 0.1 30 0.6 5 4.8
C 0 11 3 2.8 38 9 1.7 50 0.8 6.5 0.9
I 0 15.3 7 2.2 20 98 2.7 100 0.4 7 0.8
H 1 7.4 4 0.5 28 65 1.3 60 0.2 9.5 5.4
F 0 11.4 2 1.4 42 12 2.4 10 0.4 1 4.5
C 1 19.4 1 0.4 42 4 2.4 10 0 6.5 0.1
G 0 5.9 4 2.6 12 57 0.8 50 0.4 2 5.8
G 1 15.8 6 3.7 34 8 1.3 90 0.6 2.5 5.7
I 0 10 3 1.9 16 80 3 90 0.4 9.5 1.9
E 0 15.7 1 2.7 32 25 1.7 20 0.2 8.5 6
G 0 11 5 2.9 48 53 0.1 50 1 3.5 1.2
J 1 16.8 0 0.9 14 86 1.4 40 0.8 9 5
D 1 11 4 3.2 48 63 2.8 90 0.6 0 2.2
J 1 4.8 7 3.6 24 1 2.2 20 1 8.5 0.5
J 1 10.4 5 2 42 56 1 20 0 3.5 4.2
G 0 12.7 7 3.6 8 56 2.1 70 1 4.5 1.5
G 0 6.8 1 3.2 30 27 0.6 0 0.8 2 5.6
E 0 8.8 0 3.2 2 67 0.7 10 0.4 1 5
I 1 0.2 0 2.9 10 41 2.3 60 0.2 9 0.3
J 1 4.6 7 3.9 50 61 2.1 50 0.4 3 4.9
J 1 2.3 2 3.2 36 98 0.1 40 0.6 4.5 4.3
I 0 10.8 3 2.7 28 58 0.8 80 0.8 3 6
B 0 9.3 2 3.3 44 44 0.3 50 0.8 5.5 0.4
F 0 9.2 6 0.6 4 64 0.1 0 0.6 4.5 3.9
D 0 7.4 0 2.9 14 0 0.2 30 0.8 7.5 4.5
G 0 18.3 3 3.1 8 60 0.3 60 0.2 7 1.9
F 0 5.3 4 0.2 48 63 2.3 80 0.2 8 5.2
C 0 2.6 5 2.2 24 4 1.3 20 0 2 1.4
F 0 13.8 4 3.6 4 7 1.1 10 0.4 3.5 1.9
B 1 12.4 6 1.7 30 44 1.1 60 0.2 6 1.5
I 0 1.3 1 1.3 8 53 1.1 70 0.6 7 0.8
F 0 18.2 7 1.7 26 92 2.2 30 1 8.5 4.8
J 0 5.2 2 2.2 18 12 1.4 90 0.8 4 4.9
G 1 9.4 2 0.8 22 86 0.4 30 0.4 1 5.9
<table>
<thead>
<tr>
<th>Column</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>10.4  2 1.7 26 31 2.4 10 0.2 7 1.6</td>
</tr>
<tr>
<td>J</td>
<td>13  1 1.8 14 11 2.3 50 0.6 5.5 2.6</td>
</tr>
<tr>
<td>A</td>
<td>17.9 4 3.1 46 58 2.6 90 0.6 1.5 3.2</td>
</tr>
<tr>
<td>D</td>
<td>19.4 6 3 20 50 2.8 100 0.2 9 1.2</td>
</tr>
<tr>
<td>I</td>
<td>19.6 3 3.6 22 19 1.2 0 0.6 5 4.1</td>
</tr>
<tr>
<td>I</td>
<td>6  2 1.5 30 30 2.2 20 0.4 8.5 5.3</td>
</tr>
<tr>
<td>G</td>
<td>13.8 1 2.7 0 52 2.4 20 0.8 6 2</td>
</tr>
<tr>
<td>B</td>
<td>14.3 4 2.9 30 11 2.3 90 0.6 0.5 4.9</td>
</tr>
<tr>
<td>E</td>
<td>15.6 0 0.4 38 79 0.4 80 0.4 1 3.3</td>
</tr>
<tr>
<td>D</td>
<td>14  2 1 22 61 3 90 0.6 2 0.1</td>
</tr>
<tr>
<td>C</td>
<td>9.4  5 0.4 12 53 1.7 40 0 3 1.1</td>
</tr>
<tr>
<td>H</td>
<td>13.2 1 1.6 40 15 0.7 40 0.2 9 5.5</td>
</tr>
<tr>
<td>A</td>
<td>13.5 5 2.4 18 89 1.6 20 0.4 9.5 4.7</td>
</tr>
<tr>
<td>E</td>
<td>2.6  4 2.3 38 6 0.8 20 0.4 5 5.3</td>
</tr>
<tr>
<td>E</td>
<td>12.4 3 1.3 26 8 2.8 10 0.8 6 5.8</td>
</tr>
<tr>
<td>D</td>
<td>7.6  2 0.9 44 89 1.3 50 0.8 6 0.4</td>
</tr>
<tr>
<td>I</td>
<td>12.7 1 2.3 42 6 2.4 10 0.4 1 3</td>
</tr>
<tr>
<td>C</td>
<td>10.7 4 3.2 28 23 2.2 90 0.8 5.5 2.8</td>
</tr>
<tr>
<td>H</td>
<td>10.1 2 2.3 10 62 0.9 50 0.4 2.5 3.7</td>
</tr>
<tr>
<td>C</td>
<td>16.6 1 0.5 12 88 0.1 20 0.6 5.5 1.8</td>
</tr>
<tr>
<td>I</td>
<td>0.2 3 2.2 8 71 1.7 80 0.4 0.5 5.5</td>
</tr>
<tr>
<td>C</td>
<td>10.8 4 3.5 30 70 2.3 60 0.4 4.5 5.9</td>
</tr>
<tr>
<td>F</td>
<td>7.1 4 3 14 63 2.4 70 0 7 3.1</td>
</tr>
<tr>
<td>D</td>
<td>16.5 1 3.3 30 80 1.6 40 0 3.5 2.7</td>
</tr>
<tr>
<td>H</td>
<td>17.1 7 2.1 30 45 1.5 60 0.6 0.5 2.8</td>
</tr>
<tr>
<td>D</td>
<td>4.3  1 1.5 24 44 0 70 0 5 0.5</td>
</tr>
<tr>
<td>H</td>
<td>15  2 0.2 14 87 1.8 50 0 4.5 4.7</td>
</tr>
<tr>
<td>G</td>
<td>19.7  3 1.9 36 99 1.5 10 0.6 3 1.7</td>
</tr>
<tr>
<td>H</td>
<td>2.8 6 0.6 34 21 2 60 1 9 4.7</td>
</tr>
<tr>
<td>G</td>
<td>16.6 3 3.3 46 1 1.4 70 0.6 1.5 5.3</td>
</tr>
<tr>
<td>E</td>
<td>11.7  5 2.7 48 4 0.9 60 0.8 4.5 1.6</td>
</tr>
<tr>
<td>F</td>
<td>15.6  3 0.2 4 79 0.5 0 0.8 1.5 2.9</td>
</tr>
<tr>
<td>C</td>
<td>5.3  6 1.4 8 64 2 80 0.4 9 4.2</td>
</tr>
<tr>
<td>B</td>
<td>8.1  7 1.7 40 36 1.4 60 0.6 6 3.9</td>
</tr>
<tr>
<td>I</td>
<td>14.8  2 3.2 8 37 0.4 10 0 4.5 3</td>
</tr>
<tr>
<td>D</td>
<td>7.4  4 3 12 3 0.6 60 0.6 7 0.7</td>
</tr>
<tr>
<td>D</td>
<td>4.8  3 2.3 44 41 1.9 60 0.2 3 3.1</td>
</tr>
<tr>
<td>A</td>
<td>4.5  0 0.2 4 48 1.7 80 0.8 9 4.2</td>
</tr>
<tr>
<td>D</td>
<td>6.9  6 3.3 14 92 0.5 40 0.4 7.5 5</td>
</tr>
<tr>
<td>B</td>
<td>4.7  4 0.9 14 99 2.4 80 1 0.5 0.7</td>
</tr>
<tr>
<td>I</td>
<td>7.5  4 2.1 20 79 0.4 40 0.4 2.5 0.7</td>
</tr>
<tr>
<td>C</td>
<td>6.1  0 1.4 38 18 2.3 60 0.8 4.5 0.7</td>
</tr>
<tr>
<td>C</td>
<td>18.3  1 1 26 98 2.7 20 1 8.5 0.5</td>
</tr>
<tr>
<td>F</td>
<td>16.4  7 3.2 32 94 2.9 40 0.4 5.5 2.1</td>
</tr>
<tr>
<td>I</td>
<td>9.4  2 2.3 32 42 0.2 70 0.4 8.5 0.3</td>
</tr>
<tr>
<td>F</td>
<td>17.9  4 1.3 32 42 2 40 0.2 1 5.4</td>
</tr>
<tr>
<td>H</td>
<td>14.9 3 1.6 36 74 2.6 60 0.2 1 2.3</td>
</tr>
<tr>
<td>C</td>
<td>12.7  0 2.6 0 88 1.1 80 0.8 0.5 2.1</td>
</tr>
<tr>
<td>F</td>
<td>5.4  4 1.5 2 1 1.8 70 0.4 5.5 3.6</td>
</tr>
<tr>
<td>J</td>
<td>12.1  4 1.8 20 59 1.3 60 0.4 3 3.8</td>
</tr>
</tbody>
</table>

;
Unsupervised Variable Selection with the HPREDUCE Procedure

The following statements use PROC HPREDUCE for unsupervised variable selection. The statements specify that the technique used for variable selection is variance analysis. The maximum number of variables to select is 5, and the maximum percentage of the total variance to explain is 95%. The procedure stops when either of two conditions is satisfied.

```sas
proc hpreduce data=getstarted technique=VarianceAnalysis;
 class C;
 reduce unsupervised C x1-x10 / maxeffects=5 varexp=0.95;
 performance details;
run;
```

The output from this analysis is presented in Figure 9.1 through Figure 9.6.

Figure 9.1 shows the “Performance Information” table, which indicates that the procedure executes in single-machine mode. That is, the procedure runs on the machine where the SAS system is running. The table also shows that two threads are used for computing.

**Figure 9.1 Performance Information**

<table>
<thead>
<tr>
<th>The HPREDUCE Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Information</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

Figure 9.2 shows the “Data Access Information” table, which provides the information about the data sets that the HPREDUCE procedure has accessed and generated.

**Figure 9.2 Data Access Information**

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Engine Role Path</td>
</tr>
<tr>
<td>WORK.GETSTARTED V9</td>
</tr>
</tbody>
</table>

Figure 9.3 displays the “Model Information” and “Number of Observations” tables. The “Model Information” table shows that the HPREDUCE procedure is used for unsupervised variable selection. The CLASS variable C is parameterized in the general linear model (GLM) parameterization, which is the default. The total number of variables is 11. The technique used for variable selection is variance analysis. The maximum number of variables to select is 5, and the maximum percentage of the total variance to explain is 95%. The “Number of Observations” table shows that all 100 observations in the data set are used in the analysis.
Figure 9.3 Model Information and Number of Observations

<table>
<thead>
<tr>
<th>Model Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td>GETSTARTED</td>
</tr>
<tr>
<td>Model Type</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>Class Parameterization</td>
<td>GLM</td>
</tr>
<tr>
<td>Selection Technique</td>
<td>Variance Analysis</td>
</tr>
<tr>
<td>Number of Variables</td>
<td>11</td>
</tr>
<tr>
<td>Number of Variables to Select</td>
<td>5</td>
</tr>
<tr>
<td>Variance to Explain</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 9.4 shows the “Class Level Information” table, which indicates that the CLASS variable C has 10 unique formatted levels.

Figure 9.4 Class Level Information and Response Profile

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Levels Values</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

Figure 9.5 shows the “Selection Summary” and “Selected Variables” tables. The “Selection Summary” table shows which variable (or level for CLASS variables) is selected in each step, in addition to the total variance that is explained by the variables selected so far. The “Selected Variables” table presents all the selected variables and their corresponding variable types.

Figure 9.5 Selection Summary and Selected Variables

<table>
<thead>
<tr>
<th>Selection Summary</th>
<th>Proportion of Variance Explained</th>
<th>SSE</th>
<th>MSE</th>
<th>AIC</th>
<th>AICC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
<td>Selected Effect</td>
<td>Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x3</td>
<td>-</td>
<td>0.0681</td>
<td>18.6380</td>
<td>0.1883</td>
<td>7.1052</td>
</tr>
<tr>
<td>2</td>
<td>x7</td>
<td>-</td>
<td>0.1326</td>
<td>17.3484</td>
<td>0.1770</td>
<td>6.9935</td>
</tr>
<tr>
<td>3</td>
<td>x10</td>
<td>-</td>
<td>0.1933</td>
<td>16.1341</td>
<td>0.1663</td>
<td>6.8609</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>I</td>
<td>0.2529</td>
<td>14.9423</td>
<td>0.1556</td>
<td>6.7042</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>F</td>
<td>0.3120</td>
<td>13.7607</td>
<td>0.1448</td>
<td>6.5218</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>J</td>
<td>0.3690</td>
<td>12.6210</td>
<td>0.1343</td>
<td>6.3154</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>B</td>
<td>0.4257</td>
<td>11.4856</td>
<td>0.1235</td>
<td>6.0811</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>G</td>
<td>0.4813</td>
<td>10.3749</td>
<td>0.1128</td>
<td>5.8194</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>D</td>
<td>0.5351</td>
<td>9.2980</td>
<td>0.1022</td>
<td>5.5298</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>H</td>
<td>0.5889</td>
<td>8.2218</td>
<td>0.0914</td>
<td>5.2068</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>A</td>
<td>0.6407</td>
<td>7.1867</td>
<td>0.0807</td>
<td>4.8522</td>
</tr>
<tr>
<td>12</td>
<td>x5</td>
<td>-</td>
<td>0.6916</td>
<td>6.1678</td>
<td>0.0701</td>
<td>4.4593</td>
</tr>
</tbody>
</table>
Figure 9.5 continued

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Selected Number</th>
<th>Variable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1</td>
<td>INTERVAL</td>
</tr>
<tr>
<td>2</td>
<td>x7</td>
<td>INTERVAL</td>
</tr>
<tr>
<td>3</td>
<td>x10</td>
<td>INTERVAL</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>CLASS</td>
</tr>
<tr>
<td>5</td>
<td>x5</td>
<td>INTERVAL</td>
</tr>
</tbody>
</table>

Figure 9.6 shows the “Procedure Task Timing” table, which provides details about how much time is used by each processing step.

Figure 9.6 Procedure Task Timing

<table>
<thead>
<tr>
<th>Task</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Read and Variable levelization</td>
<td>0.00</td>
<td>5.26%</td>
</tr>
<tr>
<td>Effect Levelization</td>
<td>0.00</td>
<td>0.51%</td>
</tr>
<tr>
<td>Data Preparation for Discriminant Analysis</td>
<td>0.00</td>
<td>0.01%</td>
</tr>
<tr>
<td>Cross-product Accumulation</td>
<td>0.04</td>
<td>91.19%</td>
</tr>
<tr>
<td>Variable Selection</td>
<td>0.00</td>
<td>3.02%</td>
</tr>
</tbody>
</table>

Supervised Variable Selection with HPREDUCE Procedure

The following statements use PROC HPREDUCE for supervised variable selection. The statements specify that y is the response variable, the technique used for variable selection is discriminant analysis, and the maximum number of variables to select is 5.

```sas
proc hpreduce data=getstarted technique=DiscriminantAnalysis;
 class C y;
 reduce supervised y = C x1-x10 / maxeffects=5;
 performance details;
run;
```

The output from this analysis is presented in Figure 9.7 through Figure 9.11.

Figure 9.7 shows the “Performance Information” table, which indicates that the procedure executes in single-machine mode. That is, the procedure runs on the machine where the SAS system is running. The table also shows that two threads are used for computing.
Figure 9.8 displays the “Model Information” and “Number of Observations” tables. The “Model Information” table shows that HPREDUCE procedure performed supervised variable selection. The CLASS variables are parameterized in the general linear model (GLM) parameterization, which is the default. The total number of variables is 12. The technique used for variable selection is discriminant analysis, and the maximum number of variables to select is 5. The “Number of Observations” table shows that all 100 observations in the data set are used in the analysis.

**Figure 9.8 Model Information and Number of Observations**

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Model Type</td>
</tr>
<tr>
<td>Class Parameterization</td>
</tr>
<tr>
<td>Selection Technique</td>
</tr>
<tr>
<td>Number of Variables</td>
</tr>
<tr>
<td>Number of Variables to Select</td>
</tr>
</tbody>
</table>

| Number of Observations Read       | 100        |
| Number of Observations Used       | 100        |

Figure 9.9 shows the “Class Level Information” table, which indicates that the CLASS variable C has 10 unique formatted levels and the CLASS variable y has two levels.

**Figure 9.9 Class Level Information and Response Profile**

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Levels Values</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>y</td>
</tr>
</tbody>
</table>

Figure 9.10 shows the “Selection Summary” and “Selected Variable” tables. The “Selection Summary” table shows which variable (or level for CLASS variables) is selected in each step, in addition to the total variance that is explained by the variables selected so far. The “Selected Variable” table presents all the selected variables and their corresponding variable types.

**Figure 9.10 Selection Summary and Selected Variable**

<table>
<thead>
<tr>
<th>Selection Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Variance Explained</td>
</tr>
<tr>
<td>Iteration</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
Figure 9.10  continued

<table>
<thead>
<tr>
<th>Selected Variables</th>
<th>Selected Variable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>x8</td>
</tr>
<tr>
<td>3</td>
<td>x2</td>
</tr>
<tr>
<td>4</td>
<td>x4</td>
</tr>
<tr>
<td>5</td>
<td>x9</td>
</tr>
</tbody>
</table>

Figure 9.11 shows the “Procedure Task Timing” table, which provides details about how much time is used by each processing step.

Figure 9.11  Procedure Task Timing

<table>
<thead>
<tr>
<th>Procedure Task Timing</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Read and Variable levelization</td>
<td>0.00</td>
<td>8.88%</td>
</tr>
<tr>
<td>Effect Levelization</td>
<td>0.00</td>
<td>0.75%</td>
</tr>
<tr>
<td>Data Preparation for Discriminant Analysis</td>
<td>0.00</td>
<td>0.03%</td>
</tr>
<tr>
<td>Cross-product Accumulation</td>
<td>0.03</td>
<td>88.19%</td>
</tr>
<tr>
<td>Variable Selection</td>
<td>0.00</td>
<td>2.16%</td>
</tr>
</tbody>
</table>

Syntax: HPREDUCE Procedure

The following statements are available in the HPREDUCE procedure:

```
PROC HPREDUCE <options> ;
 CLASS variable < (options)> . . . < variable < (options)> > < / global-options > ;
 REDUCE UNSUPERVISED effects < / reduce-options > ;
 REDUCE SUPERVISED response . . . < response > = effects < / reduce-options > ;
 PERFORMANCE performance-options ;
```

The PROC HPREDUCE statement and the REDUCE statement are required. The CLASS statement can appear multiple times. If a CLASS statement is specified, it must precede the REDUCE statement.

PROC HPREDUCE Statement

```
PROC HPREDUCE <options> ;
```

The PROC HPREDUCE statement invokes the procedure. Table 9.1 summarizes the important options in the PROC HPREDUCE statement by function. The options are then described fully in alphabetical order.
Table 9.1 PROC HPREDUCE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic Options</strong></td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data set</td>
</tr>
<tr>
<td>NAMELEN=</td>
<td>Limits the length of effect names</td>
</tr>
<tr>
<td>TECHNIQUE=</td>
<td>Selects the variable selection technique</td>
</tr>
<tr>
<td><strong>Options Related to Output</strong></td>
<td></td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses ODS output</td>
</tr>
<tr>
<td>NOCLPRINT</td>
<td>Limits or suppresses the display of CLASS levels</td>
</tr>
<tr>
<td>NOSUMPRINT</td>
<td>Suppresses generation of the selection summary table</td>
</tr>
<tr>
<td>TIMEPRINT</td>
<td>Prints the time used by each variable selection iteration</td>
</tr>
<tr>
<td>OUTCP=</td>
<td>Outputs the CORR, COV, or SSCP matrix</td>
</tr>
<tr>
<td><strong>Pearson Correlation Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>COV</td>
<td>Computes covariances</td>
</tr>
<tr>
<td>CORR</td>
<td>Computes correlations (default)</td>
</tr>
<tr>
<td>SSCP</td>
<td>Computes sums of squares and crossproducts</td>
</tr>
<tr>
<td><strong>User-Defined Formats</strong></td>
<td></td>
</tr>
<tr>
<td>FMTLIBXML=</td>
<td>Specifies the file reference for a format stream</td>
</tr>
</tbody>
</table>

You can specify the following *options* in the PROC HPREDUCE statement.

**CORR**

selects variables based on the correlation matrix. Assuming that \( X \) and \( Y \) are two variables, the correlation between \( X \) and \( Y \) is computed by:

\[
Corr(X, Y) = \frac{E ((X - E(X))(Y - E(Y)))}{\sqrt{E(X - E(X))^2 E(Y - E(Y))^2}}
\]

This is the default option for computing the Pearson correlation statistics in PROC HPREDUCE.

**COV**

selects variables based on the covariance matrix. Assuming that \( X \) and \( Y \) are two variables, the covariance between \( X \) and \( Y \) is computed by:

\[
Cov(X, Y) = E ((X - E(X))(Y - E(Y)))
\]

**DATA=SAS-data-set**

names the input SAS data set to be used by PROC HPREDUCE. The default is the most recently created data set. If the procedure executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance database. When data are already distributed, the procedure reads the data alongside the distributed database. See the sections “Processing Modes” on page 6 and “Alongside-the-Database Execution” on page 14 in Chapter 2, “Shared Concepts and Topics.”
Chapter 9: The HPREDUCE Procedure

FMTLIBXML=file-ref
specifies the file reference for the XML stream that contains the user-defined format definitions. In a distributed computing environment, user-defined formats are handled differently than they are in other SAS products. For information about how to generate an XML stream for your formats, see the section “Working with Formats” on page 29 in Chapter 2, “Shared Concepts and Topics.”

NAMELEN=number
specifies the length to which long effect names are shortened (20 \( \leq \) number \( \leq \) 128). The default and minimum value is 64.

NOCLPRINT<=number>
suppresses the display of the “Class Level Information” table if you do not specify number. If you specify number, the values of the classification variables are displayed for only those variables whose number of levels is less than number. Specifying a number helps to reduce the size of the “Class Level Information” table if some classification variables have a large number of levels.

NOPRINT
suppresses the generation of ODS output.

NOSUMPRINT
suppresses the generation of the “Selection Summary” table.

OUTCP=SAS-data-set</LIST< (EPS = number) >>
creates both a data set that contains a symmetric matrix that depicts the relationships among variables and also a set of statistics about the input data set and variables. Depending on the Pearson correlation statistics option specified in the PROC HPREDUCE statement, the symmetric matrix can be a correlation (CORR) matrix, a covariance (COV) matrix, or a sums of squares and crossproducts (SSCP) matrix.

When the LIST option is specified, the symmetric matrix is output in the list-of-list (LIL) format. In this format, the matrix is represented as a set of tuples \((i, j, x)\), where \(x\) is an entry in the matrix and \(i\) and \(j\) denote its row and column indices, respectively. LIL format can be used when the output contains too many columns to fit in a data set. For example, in most database systems the maximum number of columns in a table is usually limited to several thousand. If an output matrix contains more columns than the limit, you must use the LIST option to avoid errors that would arise from writing too many columns to the table. When LIL format is used, all 0 entries in the matrix are ignored in the output.

When EPS= number is specified in the LIST option, matrix entries that have an absolute value smaller than number are ignored in the output. This feature helps omit unreliable estimations and generate a compact representation for the matrix. When the EPS= option is not specified, only the 0 entries in the matrix are ignored in the output.

SSCP
selects variables based on the sums of squares and crossproducts matrix. Assuming that \(X\) and \(Y\) are two variables and that \(x\) and \(y\) are their corresponding variable vectors, the SSCP between \(X\) and \(Y\) is computed by:

\[
SSCP(X, Y) = x^T y
\]
TECHNIQUE=keyword
TECH=keyword

specifies the variable selection technique. You can specify the following keywords:

VARIANCEANALYSIS | VAR performs variance analysis for variable selection.
DISCRIMINANTANALYSIS | DSC performs discriminant analysis for variable selection.

The default value is TECHNIQUE=VAR.

You can use variance analysis for both supervised and unsupervised variable selection. You can use discriminant analysis only for supervised variable selection with one classification variable as the response. For more information, see the section “Variable Selection for Classification” on page 227.

TIMEPRINT

prints the time (in seconds) used by each variable selection iteration in the “Selection Summary” table. If this option does not appear in the PROC HPREDUCE statement, the time information is not printed.

CLASS Statement

CLASS variable <(options)> . . . <variable <(options)>> < / global-options> ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis. The CLASS statement must precede the REDUCE statement.


The HPREDUCE procedure does not support the SPLIT option in the CLASS statement. For CLASS variable parameterization, the HPREDUCE procedure only support the GLM method.

PERFORMANCE Statement

PERFORMANCE <performance-options> ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables about the distributed computing environment, and requests detailed results about the performance characteristics of the HPREDUCE procedure.

You can also use the PERFORMANCE statement to control whether the HPREDUCE procedure executes in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on page 31 of Chapter 2, “Shared Concepts and Topics.”
Chapter 9: The HPREDUCE Procedure

REDUCE Statement

REDUCE UNSUPERVISED effects < / reduce-options> ;

REDUCE SUPERVISED response . . . < response > = effects < / reduce-options> ;

PROC HPREDUCE can be used for both supervised and unsupervised variable selection. In unsupervised case, the REDUCE statement specifies the effects to be considered in the variable selection process. An effect can be an original variable in the input data set or a variable constructed from the original variables. In the supervised case, you need to specify both the effects and the response variables. A response variable can be an original variable in the input data set or a variable constructed from the original variables. For the regression case, you can specify more than one response variable.

Table 9.2 summarizes the reduce-options, which control the number of variables to be selected.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Performs model selection by using Akaike’s information criterion</td>
</tr>
<tr>
<td>AICC</td>
<td>Performs model selection by using the corrected Akaike’s information criterion</td>
</tr>
<tr>
<td>BIC</td>
<td>Perform model selection by using Schwarz Bayesian information criterion</td>
</tr>
<tr>
<td>MAXSTEPS=</td>
<td>Specifies the maximum number of steps to take; the number must be greater than or equal to 1</td>
</tr>
<tr>
<td>MAXEFFECTS=</td>
<td>Specifies the number of effects to select; the number must be greater than or equal to 1.</td>
</tr>
<tr>
<td>VARIANCEEXPLAINED</td>
<td>Specifies the fraction of the total variance to be explained; the value must be between 0 and 1.</td>
</tr>
<tr>
<td>VARINC=</td>
<td>Specifies the minimum increment of explained variance (in a fraction of the total variance); the value must be between 0 and 1.</td>
</tr>
</tbody>
</table>

The reduce-options determine the number of variables to be selected. You can specify the following reduce-options as stopping criteria for the HPREDUCE procedure. When you specify more than one option, PROC HPREDUCE stops whenever one of the specified options is satisfied, or when the explained variance equals to the total variance. In the latter case, the procedure prints the following message in the log: “Early stop: the proportion of the explained variance to the total variance equals 1.”

AIC stops PROC HPREDUCE if the Akaike’s information criterion (AIC) value fails to decrease in three contiguous steps.

AICC stops PROC HPREDUCE if the corrected Akaike’s information (AICC) value fails to decrease in three contiguous steps.
**BIC**

stops PROC HPREDUCE if the Schwarz Bayesian information criterion (BIC) value fails to decrease in three contiguous steps.

**MAXSTEPS=** \(n\)

stops PROC HPREDUCE after it runs \(n\) steps.

**MAXEFFECTS=** \(n\)

stops PROC HPREDUCE after \(n\) effects have been selected. Because individual levels of one classification variable can be selected in different steps of the variable selection process, PROC HPREDUCE might take more than \(n\) steps to select \(n\) effects.

**VARIANCEEXPLAINED=** \(fraction\)

**VAREXP=** \(fraction\)

stops PROC HPREDUCE when the \(fraction\) of the total variance can be explained by the selected variables.

**MINVARIANCEINCREMENT=** \(fraction\)

**VARINC=** \(fraction\)

stops PROC HPREDUCE when the minimum increment of the explained variance is less than \(fraction\) of the total variance.

---

**Details: HPREDUCE Procedure**

The performance of a learning model usually decreases in terms of accuracy and efficiency when the dimensionality of the input data is high. The problem is known as the “curse of dimensionality.” Variable selection techniques can reduce the dimensionality of a data set by removing irrelevant and redundant variables (Liu and Motoda 1998).

The HPREDUCE procedure performs both supervised and unsupervised variable selection. It selects variables by identifying a set of variables that can jointly explain the maximum amount of data variance.

**Unsupervised Variable Selection**

When no response variable is specified, PROC HPREDUCE conducts unsupervised variable selection. Assume that \(k\) variables need to be selected. Let \(X \in \mathbb{R}^{n \times m}\) be a data set that contains \(n\) samples and \(m\) variables; let \(X = (X_1, X_2)\), where \(X_1 \in \mathbb{R}^{n \times k}\) is the data set that contains the \(k\) selected variables and \(X_2 \in \mathbb{R}^{n \times (m-k)}\) contains the remaining \(m - k\) variables. PROC HPREDUCE selects the variables by minimizing the equation:

\[
\min \text{Trace} \left( X_2^T \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right) X_2 \right)
\]

\[
\left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right)^{\frac{1}{2}} X_2 \text{ projects } X_2 \text{ to the null space of } X_1. \text{ Therefore, the above equation measures the data variance that resides in the null space of } X_1, \text{ which is the data variance that cannot be explained by }
\]
the variables in $X_1$. Minimizing this equation leads to the selection of the variables that jointly explain the maximum amount of the variance in the original data.

Let $C_{11} = X_1^\top X_1$, $C_{12} = X_1^\top X_2$, and $C_{21} = X_2^\top X_1$. The following equations hold:

$$C = X^\top X = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$X_2^\top \left( I - X_1 \left( X_1^\top X_1 \right)^{-1} X_1^\top \right) X_2 = C_{22} - C_{21} C_{11}^{-1} C_{12}$$

When all the variables are centralized to have a zero mean, $C$ is the covariance matrix. This corresponds to setting the COV option in the PROC HPREDUCE statement, which specifies that the covariance matrix be used for variable selection. Similarly, if variables need to be both centralized and normalized to have unit length, you should specify the CORR option in the PROC HPREDUCE statement, which leads to the use of the correlation matrix for variable selection. If neither centralization nor normalization should be applied, you need to specify the SSCP option in the PROC HPREDUCE statement.

Principal component analysis (PCA) (Jolliffe 2002) also reduces dimensionality by preserving data variance. The key difference between PCA and PROC HPREDUCE is that PCA generates a small set of new variables (variable extraction) by linearly combining the original variables, while PROC HPREDUCE selects a small set of the original variables (variable selection). The variables returned by PROC HPREDUCE are the original variables. This feature is very important in applications where retaining the original variables is important for model exploration or interpretation (for example, genetic analysis, and text mining).

**Supervised Variable Selection**

When response variables are specified in a REDUCE statement, PROC HPREDUCE conducts supervised variable selection. The procedure supports variable selection both in a regression context and in a classification (categorization) context.

**Variable Selection for Regression**

In a regression setting, all response variables should be numerical. When a classification variable is in the response, this variable needs to be levelized to multiple dummy variables, with each dummy variable corresponding to a level of the classification variable. You can achieve this levelization by adding this variable to the variable list of the CLASS statement.

Let $Y \in \mathbb{R}^{n \times t}$ be the response data that contain $t$ response variables. Assume that $k$ variables need to be selected. Let $X \in \mathbb{R}^{n \times m}$ be a data set that contains $n$ samples and $m$ variables; let $X = (X_1, X_2)$, where $X_1 \in \mathbb{R}^{n \times k}$ is the data set that contains the $k$ selected variables and $X_2 \in \mathbb{R}^{n \times (m-k)}$ contains the remaining $m-k$ variables. PROC HPREDUCE selects the variables by minimizing the following equation:

$$\min Trace \left( Y^\top \left( I - X_1 \left( X_1^\top X_1 \right)^{-1} X_1^\top \right) Y \right)$$

$$\left( I - X_1 \left( X_1^\top X_1 \right)^{-1} X_1^\top \right)^{\frac{1}{2}} Y$$

projects $Y$ to the null space of $X_1$. Therefore, the equation measures the response variance that resides in the null space of $X_1$, which is the variance of the response variables that cannot be explained by the variables in $X_1$. Minimizing the equation leads to the selection of the variables that jointly explain the maximum amount of the variance of the response variables.
Variable Selection for Classification

In a classification setting, one classification variable is specified as the response, with each of its levels corresponding to a category of the classification problem. Let the classification variable be \( y \) with \( c \) levels \( \{1, \ldots, c\} \). Then \( y \) can be levelized in a special way to generate a response data \( Y \in \mathbb{R}^{n \times c} \) as:

\[
Y_{i,j} = \begin{cases} 
\frac{1}{\sqrt{n}} \left( \sqrt{\frac{n}{n_j}} - \sqrt{\frac{n_j}{n}} \right), & y_i = j \\
-\frac{1}{\sqrt{n}} \sqrt{\frac{n_j}{n}}, & y_i \neq j
\end{cases}
\]

By using this \( Y \) in the variance analysis, PROC HPREDUCE selects variables by using the discriminant criterion specified in linear discriminant analysis (LDA) (Fisher 1936; Cooley and Lohnes 1971). LDA also reduces dimensionality. The key difference between LDA and PROC HPREDUCE is that LDA generates a small set of new variables (variable extraction) by linearly combining the original variables, while PROC HPREDUCE selects a small set of the original variables (variable selection).

Criteria Used in Model Selection

The HPREDUCE procedure supports the following three fit statistics that you can specify as stopping criteria in the REDUCE statement:

- **AIC**: Akaike’s information criterion (Akaike 1969; Judge et al. 1985)
- **AICC**: Corrected Akaike’s information criterion (Hurvich and Tsai 1989)
- **BIC**: Schwarz Bayesian information criterion (Schwarz 1978; Judge et al. 1985)

The HPREDUCE procedure supports multiple response variables; therefore, it computes the AIC, AICC, and BIC that are defined for multivariate regression. Besides the three criteria, it also computes the error sum of squares (SSE) and residual mean square error (MSE).

Table 9.3 provides formulas and definitions for these fit statistics.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Definition or Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>( n )</td>
<td>Number of observations</td>
</tr>
<tr>
<td>( p )</td>
<td>Number of parameters</td>
</tr>
<tr>
<td>( t )</td>
<td>Number of response variables in supervised selection; number of unselected variables in unsupervised selection</td>
</tr>
<tr>
<td>SSE</td>
<td>Error sum of squares</td>
</tr>
<tr>
<td>MSE</td>
<td>( \frac{\text{SSE}}{n-p} )</td>
</tr>
<tr>
<td>AIC</td>
<td>( \ln (\text{SSE}) + \frac{2pt + t(t + 1)}{n} )</td>
</tr>
<tr>
<td>AICC</td>
<td>( \ln (\text{SSE}) + \frac{(n + p)t}{n - p - t - 1} )</td>
</tr>
</tbody>
</table>
### Computational Method

Given \( m \) variables, finding the \( k \) variables that minimize the proposed equations is a combinatorial problem, which is NP-hard (nondeterministic polynomial-time hard). To select \( k \) variables, PROC HPREDUCE applies \( k \) steps of a greedy search to generate a suboptimal solution for the problem.

Assume that \( q \) features have been selected, that \( X_1 \) contains the \( q \) selected variables, and that \( X_2 \) contains the remaining variables. PROC HPREDUCE selects the \( q \) variable, \( F \), by minimizing the equation

\[
\arg \min_{F} \text{Trace} \left( \hat{X}_2^T \left( I - \hat{X}_1 \left( \hat{X}_1^T \hat{X}_1 \right)^{-1} \hat{X}_1^T \right) \hat{X}_2 \right)
\]

where \( \hat{X}_1 \) is the data set that contains the feature \( F \) and the \( q \) selected variables, and \( \hat{X}_2 \) is the data set that contains the remaining variables. Minimizing the preceding problem is equivalent to maximizing the following problem:

\[
\frac{\left\| X_2^T \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right) f \right\|^2}{\left\| \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right)^{\frac{1}{2}} f \right\|^2}
\]

In the preceding equation, \( \left\| X_2^T \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right) f \right\|^2 \) is the summation of the squares of the covariance between the variable \( f \) and all the unselected variables in the null space of \( X_1 \). And \( \left\| \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right)^{\frac{1}{2}} f \right\|^2 \) is the square of the variance of \( f \) in the null space of \( X_1 \), which is used as a normalization factor.

This problem can be solved efficiently. Assuming that \( m \gg k \), the time complexity for solving it is

\( O \left( m^2 \left( n + k^2 \right) \right) \)

where \( m \) is the number of variables, \( n \) is the number of samples, and \( k \) is the number of selected variables. In the equation, \( m^2 n \) corresponds to the time for computing the covariance (or correlation, or SSCP) matrix. And \( m^2 k^2 \) corresponds to the time for selecting \( k \) variables out of \( m \).

Similar analysis also applies to supervised variable selection with PROC HPREDUCE. In this case, the following problem is maximized for variable selection:

\[
\frac{\left\| Y^T \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right) f \right\|^2}{\left\| \left( I - X_1 \left( X_1^T X_1 \right)^{-1} X_1^T \right)^{\frac{1}{2}} f \right\|^2}
\]

---

### Table 9.3 continued

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Definition or Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIC</td>
<td>( \ln \text{(SSE)} + \frac{p \ln(n)}{n} )</td>
</tr>
</tbody>
</table>
Here, $Y$ is the response data. Let $c$ be the number of columns in $Y$. The time complexity for selecting $k$ variables by solving the preceding problem is

$$O \left( k^2 (c + k) m + m^2 n \right)$$

Note that for most data of very high dimensionality, $c + k \ll m$.

PROC HPREDUCE is fully threaded and distributed. When there are $p$ machines used for computing, the time complexity for unsupervised variable selection is

$$CPU \left( \frac{m^2 (n + k^2)}{p} + m^2 \log p \right) + NET \left( m^2 \log p \right)$$

And the time complexity for supervised variable selection is

$$CPU \left( \frac{k^2 (c + k) m + m^2 n}{p} + m^2 \log p \right) + NET \left( m^2 \log p \right)$$

where CPU corresponds to the time used for computing and NET corresponds to the time used for communication among computers.

---

**Displayed Output**

The following sections describe the output that PROC HPREDUCE produces by default. The output is organized into various tables, which are discussed in the order of appearance.

**Performance Information**

The “Performance Information” table is produced by default. It displays information about the execution mode. For single-machine mode, the table displays the number of threads used. For distributed mode, the table displays the number of compute nodes and the number of threads per node. If you specify the DETAILS option in the PERFORMANCE statement, the procedure also produces a “Timing” table in which elapsed times (absolute and relative) for the main tasks of the procedure are displayed.

**Model Information**

The “Model Information” table displays basic information about the model, such as the data source, the selection technique, the number of selected variables, and the execution mode that the HPREDUCE procedure determines based on your input and options. If you want to know whether the procedure executed on the client machine or in distributed form or whether data were sent from the client or processed alongside the database, check the execution mode entry of this table.

**Number of Observations**

The “Number of Observations” table displays the number of observations read from the input data set and the number of observations used in the analysis.
Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You should check this information to make sure that the data are correct. You can adjust the order of the CLASS variable levels with the ORDER= option in the CLASS statement.

If the classification variables are in reference parameterization, the “Class Level Information” table also displays the reference value for each variable.

Selection Summary

The “Selection Summary” table displays for each iteration the name of the selected effect, the name of the selected level, and the total variance explained after the iteration. If you specify the TIMEPRINT option in the PROC HPREDUCE statement, information about the time used by each iteration is added to the “Selection Summary” table.

Selected Variables

The “Selected Variables” table summarizes which variables were selected in the selection process. It also provides information about the variable type of each selected variable.

Procedure Task Timing

If you specify the DETAILS option in the PERFORMANCE statement, the procedure produces a “Procedure Task Timing” table, which displays the elapsed time (absolute and relative) for the main tasks of the procedure.

ODS Table Names

Each table created by the HPREDUCE procedure has a name associated with it, and you must use this name to refer to the table when you use ODS statements. These names are listed in Table 9.4.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Required Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClassLevels</td>
<td>Level information from the CLASS statement</td>
<td>CLASS</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Information about modeling environment</td>
<td>Default output</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations read and used; number of events and trials, if applicable</td>
<td>Default output</td>
</tr>
<tr>
<td>SelectedEffects</td>
<td>Summary of selected variables</td>
<td>Default output</td>
</tr>
<tr>
<td>SelectionSummary</td>
<td>Selection summary</td>
<td>Default output</td>
</tr>
<tr>
<td>Timing</td>
<td>Absolute and relative times for tasks performed by the procedure</td>
<td>DETAILS option in the PERFORMANCE statement</td>
</tr>
</tbody>
</table>
Examples: HPREDUCE Procedure

Example 9.1: Running in Single-Machine Mode

This example first generates a data set, which has 2,000 observations and contains both interval variables (x1–x10) and CLASS variables (b1–b3, c1–c10). Then PROC HPREDUCE is run to select variables. When a host for distributed computing is not specified or the NODES option in the PERFORMANCE statement is not specified, PROC HPREDUCE automatically runs in single-machine mode.

```sas
data one;
array x{10};
array c{10};
do i=1 to 2000;
 do j=1 to 10;
 x{j}=ranuni(1);
 c{j}=int(ranuni(1)*4);
 end;
 if c{1} eq 0 then b1 = 'aa';
 if c{1} eq 1 then b1 = 'bb';
 if c{1} eq 2 then b1 = 'cc';
 if c{1} eq 3 then b1 = 'dd';
 if c{1} eq 4 then b1 = 'ee';
 if c{2} eq 0 then b2 = 'ff';
 if c{2} eq 1 then b2 = 'gg';
 if c{2} eq 2 then b2 = 'hh';
 if c{2} eq 3 then b2 = 'ii';
 if c{2} eq 4 then b2 = 'jj';
 if c{3} eq 0 then b3 = 'kk';
 if c{3} eq 1 then b3 = 'll';
 if c{3} eq 2 then b3 = 'mm';
 if c{3} eq 3 then b3 = 'nn';
 if c{3} eq 4 then b3 = 'oo';
 output;
end;
run;
ods listing;
proc hpreduce data=one;
 class b1-b3 c1-c3;
 reduce unsupervised b1 b1*b2 b3 c1-c3 x1-x10/maxsteps=5;
 performance details;
run;
```

Output 9.1.1 shows the results for PROC HPREDUCE running in single-machine mode. Notice that the “Performance Information” table shows that the “Execution mode” is “On client.”
Output 9.1.1 PROC HPREDUCE Running in Single-Machine Mode

The HPREDUCE Procedure

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Threads</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Access Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>WORK.ONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Model Type</td>
</tr>
<tr>
<td>Class Parameterization</td>
</tr>
<tr>
<td>Selection Technique</td>
</tr>
<tr>
<td>Number of Variables</td>
</tr>
<tr>
<td>Maximal Number of Steps</td>
</tr>
</tbody>
</table>

| Number of Observations Read | 2000 |
| Number of Observations Used  | 2000 |

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Levels</td>
</tr>
<tr>
<td>b1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>b3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>c3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Number</td>
</tr>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
Example 9.2: Running in Distributed Mode

When a host for distributed computing is specified and the NODES option in the PERFORMANCE statement is specified, PROC HPREDUCE uses the specified host for computing and runs in distributed mode.

```
option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

data one;
 array x{10};
 array c{10};
 do i=1 to 2000;
 do j=1 to 10;
 x{j}=ranuni(1);
 c{j}=int(ranuni(1)*4);
 end;
 y=int(ranuni(1)*2);
 output;
 end;
run;

proc hpreduce data=one tech=var;
 class c1 c2 c3;
 reduce supervised y = c1-c3 x1-x10/maxsteps=5;
 performance nodes=2;
run;
```

To run the preceding example successfully, you need to set the macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can replace the references to the macro variables in the example with the appropriate values.

Output 9.2.1 shows the results for PROC HPREDUCE running in distributed mode. Notice that the “Performance Information” table shows that the “Execution mode” is “Distributed.”

---

<table>
<thead>
<tr>
<th>Task</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Read and Variable levelization</td>
<td>0.01</td>
<td>15.41%</td>
</tr>
<tr>
<td>Effect Levelization</td>
<td>0.00</td>
<td>3.06%</td>
</tr>
<tr>
<td>Data Preparation for Discriminant Analysis</td>
<td>0.00</td>
<td>0.02%</td>
</tr>
<tr>
<td>Cross-product Accumulation</td>
<td>0.03</td>
<td>78.71%</td>
</tr>
<tr>
<td>Variable Selection</td>
<td>0.00</td>
<td>2.80%</td>
</tr>
</tbody>
</table>

---
Example 9.3: Output a Correlation Matrix to a SAS Data File

This example shows how to output a correlation matrix to a SAS data file. The OUTCP option creates an output data set named corr.

```sas
data one;
 array x{2};
 array c{2};
 do i=1 to 2000;
 a=int(ranuni(1)*2);
 do j=1 to 2;
 x(j)=ranuni(1);
 c(j)=int(ranuni(1)*2);
 end;
 output;
 end;
run;

title "Output the Correlation Matrix";
proc hpreduce data=one corr outcp=corr;
 class a;
 reduce unsupervised a x1-x2 /maxsteps=4;
run;

proc print data=corr;
run;
```

Output 9.3.1 shows the content of the data file generated by PROC HPREDUCE.

```
<table>
<thead>
<tr>
<th>Obs</th>
<th>ID</th>
<th>TYPE</th>
<th>VAR</th>
<th>LEV</th>
<th>vID</th>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>MEAN/FREQ</td>
<td></td>
<td></td>
<td></td>
<td>1015.00</td>
<td>985.00</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td>2000.00</td>
<td>2000.00</td>
<td>2000.00</td>
<td>2000.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>CORR</td>
<td>a</td>
<td>0</td>
<td>v1</td>
<td>1.00</td>
<td>-1.00</td>
<td>-0.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>CORR</td>
<td>a</td>
<td>1</td>
<td>v2</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>CORR</td>
<td>x1</td>
<td></td>
<td>v3</td>
<td>-0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>CORR</td>
<td>x2</td>
<td></td>
<td>v4</td>
<td>-0.02</td>
<td>0.02</td>
<td>-0.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>
```

Output 9.3.1 Output the Correlation Matrix
The values in the column _VAR_ are the name of the variables. The _LEV_ column shows the name of a CLASS variable’s levels, but is empty for interval variables. Assuming that you have \( n \) effects (the total number of interval variables and the levels of CLASS variables), the _vID_ column contains \( n \) markers, \( v1 \) to \( vn \), where \( vi \) denotes the \( i \)th effect. The column _TYPE_ defines the role of each row. When the _TYPE_ column shows MEAN/FREQ, the corresponding row contains either the mean for an interval variable or the frequency for a level of a CLASS variable. When the _TYPE_ column shows N, the corresponding row contains the number of samples. And when the _TYPE_ column shows CORR, COV, or SSCP, the corresponding row contains a row of the CORR, COV, or SSCP matrix. In this example, the CORR matrix is \( 4 \times 4 \), and it resides in the table in row 3 through row 6 and column 7 through column 10.

---

**Example 9.4: Output the Correlation Matrix in LIL Format**

By using the LIST option in the OUTCP option, you can output a correlation matrix in LIL format.

```sas
data one;
 array x{2};
 do i=1 to 2000;
 a=int(ranuni(1)*2);
 do j=1 to 2;
 x{j}=ranuni(1);
 end;
 output;
 end;
run;

title "Output the Correlation Matrix in LIL format";

proc hpreduce data=one corr outcp=corr_lil/list(eps=0.01);
 class a;
 reduce unsupervised a x1-x2 /maxsteps=4;
run;

proc print data=corr_lil;
run;
```

Output 9.4.1 shows the correlation matrix in LIL format.
Output 9.4.1 Output the Correlation Matrix in LIL Format

Output the Correlation Matrix in LIL Format

<table>
<thead>
<tr>
<th>Obs</th>
<th><em>TYPE</em></th>
<th><em>ID</em></th>
<th><em>NAME1</em></th>
<th><em>NAME2</em></th>
<th><em>VAL</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>1</td>
<td>samples</td>
<td></td>
<td>2000.00</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>2</td>
<td>nVar</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>3</td>
<td>nEff</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>a</td>
<td>0</td>
<td>979.00</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>2</td>
<td>a</td>
<td>1</td>
<td>1021.00</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>3</td>
<td>x1</td>
<td></td>
<td>0.49</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>4</td>
<td>x2</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>-1.00</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-0.03</td>
</tr>
<tr>
<td>13</td>
<td>R</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>14</td>
<td>R</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The column _TYPE_ defines the type of each row:

- When the _TYPE_ column shows S, the corresponding row contains the statistics of the data set. More specifically, when the _TYPE_ column shows S and the _NAME1_ column shows samples, the _VAL_ column in the corresponding row contains the number of samples in the data set. Similarly, when the _TYPE_ column shows S and the _NAME1_ column shows nVar, the _VAL_ column contains the number of variables. And when the _TYPE_ column show S and the _NAME1_ column shows nEff, the _VAL_ column in the corresponding row contains the number of effects.

- When the _TYPE_ column shows F, the row contains the frequency of a level of a CLASS variable. In this case, the _NAME1_ column contains the name of the CLASS variable and the _NAME2_ column contains the name of the corresponding level.

- When the _TYPE_ column shows M, the row contains the mean of an interval variable. In this case, the _NAME1_ column contains the name of the variable and the _NAME2_ column is empty.

- When the _TYPE_ column shows R, the row contains an entry in the correlation matrix. In this case, the _NAME1_ column contains the row ID, the _NAME2_ column contains the column ID, and the _VAL_ column contains the value.

- When the _TYPE_ column shows V or P, the corresponding row contains an entry of a COV matrix or an SSCP matrix, respectively.

Only entries in the lower triangle of the correlation matrix are written to the file, because the correlation matrix is symmetric. Also any entry of the matrix that has a value smaller than 0.01 is ignored in the output (EPS = 0.01), which saves storage space.
Example 9.5: Output an ODS Table as A Local Data File

The ODS output of PROC HPREDUCE can be stored in a local data file. The following example shows how the “Iteration History” table can be stored as a local file named IterHist by using the ODS output statement:

```plaintext
data one;
 array x{10};
 array c{10};
 do i=1 to 2000;
 do j=1 to 10;
 x{j}=ranuni(1);
 c{j}=int(ranuni(1)*4);
 end;
 if c{1} eq 0 Then b1 = 'aa';
 if c{1} eq 1 Then b1 = 'bb';
 if c{1} eq 2 then b1 = 'cc';
 if c{1} eq 3 then b1 = 'dd';
 if c{1} eq 4 then b1 = 'ee';
 if c{2} eq 0 Then b2 = 'ff';
 if c{2} eq 1 Then b2 = 'gg';
 if c{2} eq 2 then b2 = 'hh';
 if c{2} eq 3 then b2 = 'ii';
 if c{2} eq 4 then b2 = 'jj';
 if c{3} eq 0 Then b3 = 'kk';
 if c{3} eq 1 Then b3 = 'll';
 if c{3} eq 2 then b3 = 'mm';
 if c{3} eq 3 then b3 = 'nn';
 if c{3} eq 4 then b3 = 'oo';
 output;
 end;
run;

proc hpreduce data=one;
 ods output SelectionSummary=Summary;
 class b1-b3 c1-c3;
 reduce unsupervised b1 b1*b2 b3 c1-c3 x1-x10 /maxsteps =5;
 performance details;
run;
```
References


Overview: HPSVM Procedure

The support vector machines (SVM) algorithm is popular in the data mining area of classification. The HPSVM procedure executes the SVM algorithm in high-performance mode, which enables you to run the procedure on multiple threads in single-machine mode or, if you have a license for SAS High-Performance Data Mining, in multiple threads on multiple machines (distributed mode). PROC HPSVM uses both linear and nonlinear kernels to conduct training. Like other high-performance procedures, the HPSVM procedure
can read data in distributed form, and it can perform computation in parallel in either single-machine or
distributed mode. PROC HPSVM provides two optimization techniques: the interior-point method and the
active-set method. The interior-point method can run in either single-machine mode or distributed mode,
whereas active-set method runs only in single-machine mode.

PROC HPSVM Features

The HPSVM procedure has the following features:

- can perform analysis on a massively parallel SAS high-performance appliance
- reads input data in parallel when the data source is in a database on the appliance
- is highly multithreaded during all phases of analytic execution
- supports large-scale training data
- supports both continuous and categorical inputs
- supports classification of a binary target
- supports the interior-point method and the active-set method
- supports data partition for model validation
- supports cross validation for penalty selection
- supports scoring of models

Getting Started: HPSVM Procedure

This example trains the model by using a data set named SAMPSIO.DMAGECR (a German credit benchmark
data set). This data set is saved in the SAS library SAMPSIO, and it contains 1,000 observations. Each
observation consists of an applicant’s information, including the applicant’s credit rating (GOOD or BAD).
The binary target is named GOOD_BAD. Other variables are Checking, Duration, History, and so on. For
more information about the data, see http://support.sas.com or http://support.sas.com/

The following statements produce Figure 10.1 through Figure 10.4:

```
proc hpsvm data=sampsio.dmagecr;
 input checking history purpose savings employed marital coapp
 property other job housing telefon foreign/level=nominal;
 input duration amount installp resident existcr depends age/level=interval;
 target good_bad;
run;
```

The “Performance Information” table in Figure 10.1 shows that the procedure is executed in single-machine
mode and the number of threads is 4.
The “Training Results” table in Figure 10.2 shows that the inner product of weights is 11.6121718, the bias is –2.1296773, and the number of support vectors is 531, where 481 vectors are on the margin.

The “Classification Matrix” table in Figure 10.3 shows that among the total 1,000 observations, 700 observations are good and 300 observations are bad. The number of correctly predicted GOOD observations is, 626, and the number of correctly predicted BAD observations is 158. Thus the accuracy is 78.4%, which is indicated in “Fit Statistics” table, which is shown in Figure 10.4.
A relatively good model means that misclassification is low but both sensitivity and specificity are high. With PROC HPSVM, you can always adjust training parameters and use different kernels to obtain a better model.

---

**Syntax: HPSVM Procedure**

The following statements are available in the HPSVM procedure:

```sas
PROC HPSVM DATA=SAS-data-set <options> ;
 CODE FILE=filename ;
 ID variables ;
 INPUT variables-list / LEVEL=level <option> ;
 KERNEL kernel-type / kernel-parameters ;
 OUTPUT < output-options > ;
 PARTITION < partition-options > ;
 PENALTY C=constant-list ;
 PERFORMANCE < performance-options > ;
 SELECT < select-options > ;
 TARGET target / <option> ;
```

The following sections describe the PROC HPSVM statement and then describe the other statements in alphabetical order.

---

**PROC HPSVM Statement**

```sas
PROC HPSVM DATA=SAS-data-set <options> ;
```

The PROC HPSVM statement invokes the procedure. You must specify the following argument:

**DATA=SAS-data-set**

specifies the input SAS data set or database table to be used by PROC HPSVM. For single-machine mode, the input must be a SAS data set.

If PROC HPSVM executes in distributed mode, the input data are distributed to memory on the appliance nodes and analyzed in parallel, unless the data are already distributed in the appliance database. In this case, PROC HPSVM reads the data alongside the distributed database.

You can also specify the following options:

**C=number**

specifies the penalty value. The value of `number` must be a real number greater than 0.

By default, `C=1.0`.

**MAXITER=number**

specifies the maximum number of iterations before the process stops. You must specify a positive integer for `number`.

This option applies only to the interior-point method. By default, `MAXITER=25`. 
METHOD=IPOINT | ACTIVESET

specifies which method to use during training. You can specify following values:

- **ACTIVESET** uses the active-set method during training.
- **IPOINT** uses the interior-point method during training.

By default, METHOD=IPOINT.

**NOMISS**

requests that missing values for categorical variables be used. In this case, the missing value is treated as a special level of the categorical variables.

By default, all missing value observations are dropped during the training process.

**NOPRINT**

suppresses the generation of ODS outputs. If you specify this option, no ODS tables are generated.

**NOSCALE**

suppresses scaling during model fitting. (By default, PROC HPSVM scales the input variables to be between 0 and 1 inclusive.)

**TOLERANCE=number**

specifies the minimal tolerance at which the iteration stops. The tolerance *number* must equal to or greater than 1.0E–12.

By default, TOLERANCE=0.000001.

---

**CODE Statement**

**CODE FILE=filename ;**

The CODE statement is optional in PROC HPSVM. If you use a CODE statement, score code is generated and stored in a file that can be used for model scoring. Only one CODE statement is processed. If you specify multiple CODE statements, only the first one is used.

The CODE statement applies only to interior-point methods that uses a linear kernel and a polynomial kernel of degree 2 and 3. For a polynomial kernel of degree 4 and greater, a warning message is generated and the CODE statement is ignored.

For the active-set method, the CODE statement is ignored.

---

**ID Statement**

**ID variables ;**

The ID statement specifies one or more *variables* from the input data set to be transferred to the output data set, which is specified in the OUTPUT statement.


The ID statement is optional.
**INPUT Statement**

```plaintext
INPUT variables-list / LEVEL=level <option>;
```

The input variables can be either continuous or categorical.
You must specify the following LEVEL= option:

<table>
<thead>
<tr>
<th>LEVEL=INTERVAL</th>
<th>NOMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies whether the specified input variables are continuous or categorical. You can specify the following values:</td>
<td></td>
</tr>
<tr>
<td>INTERVAL</td>
<td>specifies that the input variables are continuous.</td>
</tr>
<tr>
<td>NOMINAL</td>
<td>specifies that the input variables are categorical.</td>
</tr>
</tbody>
</table>

For categorical variables, you can also specify the following option.

**ORDER=ordering**
ensures that the categorical input values are levelized in the specified order. (If you specify this option for continuous variables, the option is ignored.) You can specify one of the following values for ordering:

ASC	ASCENDING	levelizes values in ascending order.
DESC	DESCENDING	levelizes values in descending order.
FMTASC	ASCFORMATTED	levelizes values in ascending order of the formatted value.
FMTDESC	DESFORMATTED	levelizes values in descending order of the formatted value.

By default, ORDER=ASCENDING for categorical variables.

**KERNEL Statement**

```plaintext
KERNEL kernel-type / kernel-parameters;
```

The KERNEL statement specifies the type of kernel and any associated parameters to be used during training.
You can specify one of the following kernel-types; for some kernel-types, you must specify one or two kernel-parameters.

**LINEAR**
uses a linear kernel during training. No kernel-parameter is needed. The kernel is defined as

\[ k(x_1, x_2) = \langle x_1, x_2 \rangle \]

where \( x_1 \) and \( x_2 \) are two vectors and \( \langle, \rangle \) is the inner product.

**POLYNOM**
uses a polynomial kernel during training. Specify the polynomial degree as the kernel-parameter. For example, specify KERNEL POLYNOM / DEGREE=2. The kernel is defined as

\[ k(x_1, x_2) = (\langle x_1, x_2 \rangle + 1)^p \]

where \( p \) is the degree of the polynomial.
RBF

uses a radial basis function (RBF) kernel during training. Specify K_PAR as the kernel-parameter. For example, specify KERNEL RBF / K_PAR=1. The kernel is defined as

\[ k(x_1, x_2) = \exp\left(-\frac{||x_1 - x_2||^2}{2\sigma^2}\right) \]

where \( \sigma \) is a positive number, which is K_PAR.

SIGMOID

uses a sigmoid kernel during training. Specify two kernel-parameters, K_PAR and K_PAR2. For example, specify KERNEL SIGMOID / K_PAR=1 K_PAR2=-1. The kernel is defined as

\[ k(x_1, x_2) = \tanh(p_1 < x_1, x_2 > + p_2) \]

where \( p_1 \) is a positive number (as K_PAR) and \( p_2 \) is a negative number (as K_PAR2).

The default kernel type is LINEAR.

---

**OUTPUT Statement**

```
OUTPUT < output-options > ;
```

The OUTPUT statement creates a data set that contains the predicted values of the training data set. If you specify METHOD=ACTIVESET in the PROC HPSVM statement, you can request that additional scoring data sets be output.

```
OUT=SAS-data-set < COPYVARS=(variables) >
```

produces the “Out” data set, which contains the predicted target. The variables in the input data set are not included in this output data set. However, the variables that you specify in the ID statement or in the COPYVARS= suboption are included.

If you specify METHOD=ACTIVESET in the PROC HPSVM statement, you can also specify following output-options:

```
OUTCLASS=SAS-data-set
```

produces the “Outclass” data set, which contains the input variables and the corresponding class levels.

```
OUTEST=SAS-data-set
```

produces the “Outest” data set, which contains the training parameters, scale information, alphas, and support vectors.

```
OUTFIT=SAS-data-set
```

produces the “Outfit” data set, which contains the outfit statistics, including the scale, method, kernel, number of support vectors, and so on.

The OUTPUT statement is optional.
PARTITION Statement

PARTITION < partition-options> ;

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjoint subsets for model training, validation, and testing. Either you can designate a variable in the input data set and a set of formatted values of that variable to determine the role of each observation, or you can specify proportions to use for random assignment of observations for each role.

You can specify the following mutually exclusive partition-options:

FRACTION(< VALIDATE=fraction> < TEST=fraction> < SEED=number>)

requests that specified proportions of the observations in the input data set be randomly assigned to training, validation, and testing roles.

You can specify the following suboptions:

VALIDATE=fraction
specifies the proportion for validation. The value of fraction must be nonnegative and less than 1.

TEST=fraction
specifies the proportion for testing. The value of fraction must be nonnegative and less than 1. If you specify both the VALIDATE= and TEST= options, then the sum of the specified fractions must be less than 1, and the remaining fraction of the observations are assigned to the training role.

SEED=number
specifies an integer that is used to start the pseudorandom number generator for random partitioning of data for training, validation and testing.

ROLEVAR=variable ( < TRAIN=value > < VALIDATE=value > < TEST=value > )

names the variable in the input data set whose values are used to assign roles to each observation.

You can specify following suboptions:

TRAIN=value
requests that an observation be assigned to training if it matches value.

VALIDATE=value
requests that an observation be assigned to validation if it matches value.

TEST=value
requests that an observation be assigned to testing if it matches value.

If you do not specify the TRAIN= suboption, then any observation whose role is not determined by the VALIDATE= suboption and the TEST= suboption is assigned to the training role.
PENALTY Statement

\[ \text{PENALTY } C=\text{constant-list} ; \]

The PENALTY statement specifies a list of penalty values. The penalty values are positive real numbers. If you specify a nonpositive penalty value, the procedure issues an error message and stops. If you specify the PENALTY statement, the penalty value in the C= option in the PROC HPSVM statement is ignored.

The PENALTY statement is combined with the SELECT statement to select the best penalty value through the cross validation statistics. The maximum number of penalty values in the list is 20. If the number of penalty values is more than 20, PROC HPSVM issues an error message and stops.

The PENALTY statement is optional.

PERFORMANCE Statement

\[ \text{PERFORMANCE } \langle \text{performance-options} \rangle ; \]

The PERFORMANCE statement defines performance parameters for multithreaded and distributed computing, passes variables about the distributed computing environment, and requests detailed results about the performance of the HPSVM procedure. You can also use the PERFORMANCE statement to control whether the HPSVM procedure executes in single-machine mode or distributed mode.

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement” on page 31 of Chapter 2, “Shared Concepts and Topics.”

SELECT Statement

\[ \text{SELECT } \langle \text{select-options} \rangle ; \]

You can use the SELECT statement in combination with the PENALTY statement to generate the best penalty value. The best penalty is selected through the cross validation statistics.

The SELECT statement specifies how to subdivide the training data into \( k \) parts when you request \( k \)-fold cross validation, where \( k \) is an integer between 2 and 20 inclusive.

You can specify the following select-options:

\[ \text{CV=} \text{BLOCK | SPLIT | RANDOM | VALIDATESET} \]

specifies the partition method. You can specify the following values:

- **BLOCK** requests that parts be formed of \( k \) equal-sized blocks of consecutive training observations.
- **SPLIT** requests that the \( i \)th part consist of training observations \( i, i+k, i+2k, \) and so on.
- **RANDOM** assigns each training observation randomly to one of the \( k \) parts.
- **VALIDATESET** requests that the penalty be selected by using the validation set that is specified in the PARTITION statement.

For \( k \)-fold cross validation, the default value is CV=RANDOM.
FOLD=k
specifies the number of folds for k-fold cross validation. If you specify CV=VALIDATESET, then the FOLD= suboption is not needed. In this case, the penalty is selected by using the validation set that is specified in the PARTITION statement.

SEED=number
specifies the seed for the random number generator if CV=RANDOM. The value of number must be a nonnegative integer. By default, SEED=0.

The penalty selection process is time-consuming. For k-fold cross validation, the total number of trainings is k times the number of the penalties. For example, if FOLD=10 and the number of penalties is 10, then the total number of trainings is equal to 100.

The SELECT statement is optional.

TARGET Statement

TARGET target / <option> ;

The TARGET statement names the target whose values PROC HPSVM tries to predict. The target must be binary and must be different from the variables in the INPUT statement.

You can specify following option:

ORDER=ordering
ensures that the target values are levelized in the specified order. You can specify one of the following values for ordering:

ASC | ASCENDING  levelizes the target values in ascending order.
DESC | DESCENDING  levelizes the target values in descending order.
FMTASC | ASCFORMATTED  levelizes the target values in ascending order of the formatted value.
FMTDESC | DESFORMATTED  levelizes the target values in descending order of the formatted value.

By default, ORDER=DESCENDING.

Details: HPSVM Procedure

PROC HPSVM uses linear or nonlinear kernels to compute support vector machine (SVM) learning classifiers for the binary pattern recognition problem. For more information about the theory and use of SVM learning, see Vapnik (1995); Burges (1998); Cristianini and Shawe-Taylor (2000). In the linear kernel case, PROC HPSVM computes the parameters $w$ and $\beta$ that define the model function,

$$f(x) = w^T x + \beta$$
by solving the following quadratic optimization problem

\[
\begin{align*}
& \text{minimize} \quad \frac{1}{2} w^T w + C e^T z \\
& \text{subject to} \quad D X w + \beta d \geq e - z \\
& \quad z \geq 0
\end{align*}
\]

where \( X \) denotes the \( m \times n \) matrix whose rows correspond to the observations; \( D \) denotes a diagonal matrix whose diagonals are 1 or -1; \( z \) denotes the slack variables that relax the classification constraints; and \( C \) denotes the penalty term. The corresponding dual optimization problem is

\[
\begin{align*}
& \text{minimize} \quad \frac{1}{2} \alpha^T Q \alpha - e^T \alpha \\
& \text{subject to} \quad d^T \alpha = 0 \\
& \quad 0 \leq \alpha \leq C
\end{align*}
\]

where \( Q = D XX^T D \). For a more general discussion about duality in the context of quadratic programming, see Chapter 14, “The OPTQP Procedure” (SAS/OR User’s Guide: Mathematical Programming). At the solution, \( w \) is related to \( \alpha \) by the equation \( w = X^T D \alpha \). Observations that correspond to nonzero entries in \( \alpha \) are called support vectors. Observations that correspond to entries in \( \alpha \) that are active at their upper bound are called support vectors on the margin.

In the nonlinear case, the dual optimization problem satisfies \( Q_{ij} = d_id_jk(x_i, x_j) \), where \( k(x, y) \) denotes the selected kernel function, which is defined in the section “KERNEL Statement” on page 244. The corresponding model function is defined in terms of \( \beta \), \( \alpha \), and the support vectors as follows:

\[
f(x) = \beta + \sum_{\alpha_i > 0} \alpha_i d_i k(x, x_i).
\]

When nonlinear kernels are used, the dimension of the corresponding primal problem can be prohibitively large, or infinite. Polynomial kernels are a special case in that the primal problem definition can be formed explicitly; in this case, the matrix \( X \) corresponds to explicitly projected observations.

---

**Optimization Techniques**

Two popular approaches for accurately obtaining the global solution for SVM optimization problems are interior-point and active-set methods. Interior-point methods are attractive in that the required number of iterations is relatively small and does not grow dramatically with problem size. The cost per iteration for interior-point methods can be quite high for large-scale problems unless there exists an underlying structure that can be exploited. For example, interior-point methods can be extremely efficient on problems where the number of variables (or constraints) are small in comparison to the number of constraints (or variables). When both the number of variables and number of constraints is large, interior-point methods become intractable for dense problems.

Active-set methods are advantageous in that the work per iteration can be significantly less than that of an interior-point method and in many cases the number of iterations required is comparable. However, worst-case scenarios do exist where the number of iterations grow exponentially. Consequently highly accurate solutions cannot be guaranteed for large-scale problems that use an active-set approach.

**Interior-Point Method**

PROC HPSVM applies a primal-dual interior-point method to linear and polynomial kernels of degree 2 and 3. In the polynomial kernel case, \( X \) is obtained by explicitly projecting each observation in the design matrix. The resulting number of columns is given by the binomial coefficient

\[
\binom{n + p}{p} = \frac{(n + p)!}{p!n!}
\]

where \( n \) denotes the number of columns in the levelized design matrix and \( p \) denotes the polynomial degree. Thus \( \text{KERNEL=} \text{POLYNOMIAL/DEG=}2 \) is not recommended when the number of columns in the design matrix is much greater than 100. Similarly \( \text{KERNEL=} \text{POLYNOMIAL/DEG=}3 \) is not recommended when the number of columns in the design matrix is much greater than 32.

Primal-dual interior-point methods perturb the optimality conditions in order to create a system of nonlinear equations that satisfy the requirements of Newton’s method. This perturbed system of nonlinear equations has the property that an interior solution (with respect to the inequality constraints) always exists; safeguards are then wrapped around Newton’s method to ensure that the interior (and hence feasible) approximate solution is obtained. Interior-point methods have the additional property that as the perturbation term goes to 0, the approximate solution converges to the true solution.

The dominant cost for each iteration comes from the need to solve a system of linear equations of size \((m + n) \times (m + n)\). Because PROC HPSVM assumes that \( m \) might be very large, it uses block reduction strategies similar to those describe in Gertz and Griffin (2005, 2010) to reduce the size of this system to a matrix of size \( n \times n \), where \( n \) denotes the number of columns in the design (or projected kernel) matrix. Then it performs dense matrix factorization on the resulting system. For problems where \( m \gg n \), the dominant computational cost occurs during the block-row reduction step. To reduce the solution time, this operation is both distributed and threaded.

**Active-Set Method**

The active-set method can be used for all supported kernel choices. For a list of supported kernel types, see the section “KERNEL Statement” on page 244. The active-set method is applied only to the dual optimization problem.

Active-set methods seek to form the solution by determining which inequality constraints are active at the solution, and they quickly converge as soon as the true active set is known. For the SVM case, active constraints correspond to the bound constraints where \( \alpha_i \in \{0, C\} \). If the active set is known, the optimal values for the remaining entries in \( \alpha \) can be determined by solving a single system of linear equations whose size is on the order of the number of inactive constraints. Because there are \( 2^m \) possible ways to partition the bound constraints into active and inactive, it is possible to create worst-case scenario problems where a prohibitive number of combinations are tried before a solution is reached. However, in practice the number
of combinations tried is usually much smaller. A consequence of this observation is that the run time for the active-set method for a particular problem is much harder to predict.

The computational cost of the active-set method is controlled by the number of support vectors, and that number is highly dependent on both the problem and the choice of kernel. As a rule, the run time increases with the number of inactive support vectors. A significant computational cost for the active-set method comes from the need to update the residual of the optimality error. Therefore, PROC HPSVM is multithreaded to reduce the solution time.

For the same problem, you might observe that the number of support vectors that the interior-point method finds is much larger than the number of support vectors that the active-set method finds. This can occur whenever the dual solution, \( \alpha \), is not unique and is a result of the interior-point method seeking to follow a positive trajectory of approximate minimizers to the solution. This implies that the interior-point method treats every vector as a support vector initially and uncovers non-support vectors in the limit, when it is pushed sufficiently near the boundary. In contrast, active-set methods add support vectors to the approximate solution incrementally and have a better chance of finding a sparser solution.

The active-set method is supported only for single-machine mode. Unlike the interior-point method, the active-set method supports only relatively small data set problems. For example, when the number of observations is greater than 20,000, the memory requirement can be dramatically increased.

## ODS Tables

Each table that the HPSVM procedure creates has a name associated with it. You must use this name to refer to the table in ODS statements. These table names are listed in Table 10.1.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement, Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIFICATIONMATRIX</td>
<td>Classification matrix table</td>
<td>Default</td>
</tr>
<tr>
<td>FITSTATISTICS</td>
<td>Accuracy information of the training</td>
<td>Default</td>
</tr>
<tr>
<td>ITERHISTORY</td>
<td>Iteration history</td>
<td>Default</td>
</tr>
<tr>
<td>MODELINFORMATION</td>
<td>Basic model information for the training</td>
<td>Default</td>
</tr>
<tr>
<td>NOBS</td>
<td>Observation information about the input data</td>
<td>Default</td>
</tr>
<tr>
<td>PENALTYSELECTION</td>
<td>List of cross validation statistics for each penalty</td>
<td>SELECT, PENALTY</td>
</tr>
<tr>
<td>PERFORMANCEINFO</td>
<td>Information about the high-performance environment</td>
<td>Default</td>
</tr>
<tr>
<td>TIMING</td>
<td>Time used during the training</td>
<td>PERFORMANCE, DETAILS</td>
</tr>
<tr>
<td>TRAININGRESULT</td>
<td>Displays the training results</td>
<td>Default</td>
</tr>
</tbody>
</table>

The following list provides more information about these tables:

**CLASSIFICATIONMATRIX** The “Classification Matrix” table contains the target information, both observed and predicted. The columns include observed target, predicted event, predicted
non-event, and total numbers of events or non-events for the training data. If the PARTITION statement is specified, the validating information is also displayed.

FITSTATISTICS The “Fit Statistics” table contains the model accuracy information, which includes accuracy, error, sensitivity, and specificity. The statistics are calculated from the “Classification Matrix” table.

ITERHISTORY The “Iteration History” table contains the number of iterations, the complementarity, and the feasibility. The complementarity is controlled by the TOLERANCE statement and the MAXITER option, which controls the number of iterations. This table is produced only by the interior-point method.

MODELINFORMATION The “Model Information” table contains the initial training settings, such as task type, optimization technique, and kernel function type. If the kernel function type is polynomial, then the kernel degree is also displayed.

NOBS The table contains the number of observations and the number of observations used.

PENALTYSELECTION The “Penalty Selection” table shows the cross validation statistics. It includes Penalty, True Positive, True Negative, False Negative, False Positive, Misclassification, and Accuracy. The table is generated if either the PENALTY statement or the SELECT statement is specified. The best penalty C is the first penalty that has the best accuracy value. If you specify only the PENALTY statement, the statistics in the table are based on the entire input data set.

PERFORMANCEINFO The “Performance Information” table displays information about the grid host for distributed execution and indicates whether the procedure executes in single-machine mode, distributed mode, or alongside-the-database mode. The table also displays the numbers of computing nodes and threads.

TIMING The “Procedure Task Timing” table shows the time consumed during the process, which includes the times for data processing and model training.

TRAININGRESULT The “Training Results” table shows the model information. It includes but is not limited to the inner product of weights, bias, and the number of support vectors.

---

**Scoring Process**

For the interior-point method, the scoring process is straightforward. As long as the training weight parameters and bias are known, the scoring process is just a linear combination. The event or non-event is decided by the decision function. If the decision function is less than or equal to 0, then the prediction is an event; otherwise, it is an non-event.

For the interior-point method, the score code is provided for a linear kernel and for a polynomial kernel of degree 2 and 3.

For the active-set method, three data sets("Outclass," "Outfit," and "Outest") are generated, and the SVMSCORE procedure is used for data scoring. See “Example 10.3: Active-Set Method” on page 257. For more information about the SVMSCORE procedure, see *SAS Enterprise Miner and SAS Text Miner Procedures Reference for SAS*.
Example 10.1: Single-Machine Mode

This example shows how you can use PROC HPSVM in the single-machine mode.

The following statements show the basic usage:

```sas
proc hpsvm data=sampsio.hmeq;
 input reason job derog delinq ninq / level=nominal;
 input loan mortdue value yoj clage clno debtinc / level=interval;
 target bad / order=desc;
 penalty C=0.5 1 5 10;
 select fold=3 CV=SPLIT;
 code file="scorecode.sas";
run;
```

PROC HPSVM generates several ODS tables, some of which are shown in Output 10.1.1 through Output 10.1.7.

The “Performance Information” table in Output 10.1.1 shows the running environment information: PROC HPSVM runs on a single machine, and the number of threads is 4.

**Output 10.1.1** PROC HPSVM Performance Information

<table>
<thead>
<tr>
<th>The HPSVM Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Performance Information</strong></td>
</tr>
<tr>
<td><strong>Execution Mode</strong></td>
</tr>
<tr>
<td><strong>Number of Threads</strong></td>
</tr>
</tbody>
</table>

The “Model Information” table in Output 10.1.2 shows the user settings: the kernel function is linear, and the penalty parameter value C is 1.

**Output 10.1.2** PROC HPSVM Model Information

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Task Type</strong></td>
</tr>
<tr>
<td><strong>Optimization Technique</strong></td>
</tr>
<tr>
<td><strong>Scale</strong></td>
</tr>
<tr>
<td><strong>Kernel Function</strong></td>
</tr>
<tr>
<td><strong>Penalty Method</strong></td>
</tr>
<tr>
<td><strong>Penalty Parameter</strong></td>
</tr>
<tr>
<td><strong>Maximum Iterations</strong></td>
</tr>
<tr>
<td><strong>Tolerance</strong></td>
</tr>
</tbody>
</table>

The observations table in Output 10.1.3 shows that the total number of observations is 5,960 and the number of observations used in the training is 3,364.
The “Penalty Selection” table in Output 10.1.4 shows the statistics of the cross validation result for each penalty. In the table, the best accuracy is 0.9185; thus the best penalty value is 1.

### Output 10.1.4  PROC HPSVM Penalty Selection

<table>
<thead>
<tr>
<th>Penalty</th>
<th>True Positive</th>
<th>True Negative</th>
<th>False Negative</th>
<th>False Positive</th>
<th>Misclassification</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500000</td>
<td>31</td>
<td>3058</td>
<td>269</td>
<td>6</td>
<td>275</td>
<td>0.9183</td>
</tr>
<tr>
<td>1.000000</td>
<td>32</td>
<td>3058</td>
<td>268</td>
<td>6</td>
<td>274</td>
<td>0.9185</td>
</tr>
<tr>
<td>5.000000</td>
<td>32</td>
<td>3058</td>
<td>268</td>
<td>6</td>
<td>274</td>
<td>0.9185</td>
</tr>
<tr>
<td>10.000000</td>
<td>32</td>
<td>3058</td>
<td>268</td>
<td>6</td>
<td>274</td>
<td>0.9185</td>
</tr>
</tbody>
</table>

The “Training Results” table in Output 10.1.5 shows the inner product of weights, bias, total slack, and so on.

### Output 10.1.5  PROC HPSVM Training Results

<table>
<thead>
<tr>
<th>Training Results</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Product of Weights</td>
<td>19.8000318</td>
</tr>
<tr>
<td>Bias</td>
<td>-1.5372926</td>
</tr>
<tr>
<td>Total Slack (Constraint Violations)</td>
<td>532.92348</td>
</tr>
<tr>
<td>Norm of Longest Vector</td>
<td>2.72195233</td>
</tr>
<tr>
<td>Number of Support Vectors</td>
<td>3361</td>
</tr>
<tr>
<td>Number of Support Vectors on Margin</td>
<td>267</td>
</tr>
<tr>
<td>Maximum F</td>
<td>1.0000874</td>
</tr>
<tr>
<td>Minimum F</td>
<td>-2.9999943</td>
</tr>
<tr>
<td>Number of Effects</td>
<td>12</td>
</tr>
<tr>
<td>Columns in Data Matrix</td>
<td>49</td>
</tr>
</tbody>
</table>

The “Classification Matrix” table in Output 10.1.6 displays the original observations and predicted values. Here the true positive is 43, and the false negative is 257. The true negative is 3,055, and the false positive is 9.

### Output 10.1.6  PROC HPSVM Classification Matrix

<table>
<thead>
<tr>
<th>Classification Matrix</th>
<th>Training Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>
The “Fit Statistics” table in Output 10.1.7 shows information about the accuracy, error, sensitivity, and specificity.

**Output 10.1.7** PROC HPSVM Fit Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.9209</td>
</tr>
<tr>
<td>Error</td>
<td>0.0791</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1433</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.9971</td>
</tr>
</tbody>
</table>

In addition to these ODS tables, PROC HPSVM also generates tables such as “Iteration History” and “Procedure Task Timing.” In this example, PROC HPSVM generates SAS code `scorecode.sas`. Advanced SAS Enterprise Miner users can easily score their data with the SAS code.

---

**Example 10.2: Distributed Mode**

This example shows how PROC HPSVM executes in a grid environment. The following DATA step generates 10 million observations:

```sas
data bigdata;
 array x[5] x1-x5;
 drop i n;
 do n=1 to 10000000;
 do i=1 to dim(x);
 x[i] = ranbin(10816, 12, 0.6);
 x6 = sum(x2-x4) + ranuni(6068);
 end;
 if x6 > 0.5 then
 y = 1;
 else if x6 < -0.5 then
 y = 0;
 else
 y = ranbin(6084, 1, 0.4);
 output;
 end;
run;
```

To run this program in a grid environment, you need to specify two macros for the options GRIDHOST and GRIDINSTALLLOC:

```sas
option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";
```

```sas
proc hpsvm data=bigdata;
 input x1-x6 / level=interval;
 target y;
 performance nodes=10 details;
run;
```
The “Performance Information” table in Output 10.2.1 shows the grid setting. The training processes run in 10 nodes, and each node has 8 threads. The execution mode is “Distributed.”

**Output 10.2.1** PROC HPSVM Performance Information

<table>
<thead>
<tr>
<th>Performance Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Node</td>
</tr>
<tr>
<td>Execution Mode</td>
</tr>
<tr>
<td>Number of Compute Nodes</td>
</tr>
<tr>
<td>Number of Threads per Node</td>
</tr>
</tbody>
</table>

The “Classification Matrix” table in Output 10.2.2 shows the classification result. The total number of observations when $y = 1$ is 5,631,506, and the total number of observations when $y = 0$ is 4,368,494.

**Output 10.2.2** PROC HPSVM Classification Matrix

<table>
<thead>
<tr>
<th>Classification Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Prediction</td>
</tr>
<tr>
<td>Observed</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The “PROC HPSVM Fit Statistics” table in Output 10.2.3 shows the accuracy (92.85%) and the error (7.15%) of the model.

**Output 10.2.3** PROC HPSVM Fit Statistics

<table>
<thead>
<tr>
<th>Fit Statistics</th>
<th>Statistic</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.9285</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.0715</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.9171</td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>0.9432</td>
<td></td>
</tr>
</tbody>
</table>

The “Procedure Task Timing” table in Output 10.2.4 shows the time used for data read and variable levelization (0.19 seconds) and for model training (26.19 seconds).

**Output 10.2.4** PROC HPSVM Procedure Task Timing

<table>
<thead>
<tr>
<th>Procedure Task Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>Reading Data and Levelization</td>
</tr>
<tr>
<td>Training SVM</td>
</tr>
</tbody>
</table>
Example 10.3: Active-Set Method

In this example, PROC HPSVM uses the active-set method with a radial basis function (RBF) kernel. The training data are the German credit benchmark data set, which is described in the section “Getting Started: HPSVM Procedure” on page 240.

The following statements specify the active-set method (METHOD=ACTIVESET) and specify the kernel as RBF with a parameter of 1.5:

```sas
proc hpsvm data=sampsio.dmagecr method=activeset;
 kernel rbf / k_par = 1.5;
 input checking history purpose savings employed marital coapp
 property other job housing telephon foreign/level=nominal;
 input duration amount installp resident existcr depends age/level=interval;
 target good_bad;
 output outclass=outclass outfit=outfit outest=outest;
run;
```

The “Model Information” table in Output 10.3.1 shows that the optimization technique is active set and the kernel function is RBF. The scale value YES means that the data are scaled to [0,1] during the training.

![Output 10.3.1](image)

The “Training Results” table in Output 10.3.2 shows that the number of support vectors is 760 and the number of support vectors on the margin is 342.

![Output 10.3.2](image)
Output 10.3.3 shows that the accuracy of the model is 93.80% and the misclassification rate is 6.20%.

Output 10.3.3  PROC HPSVM Model Misclassification, Active-Set Method

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.9380</td>
</tr>
<tr>
<td>Error</td>
<td>0.0620</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.9914</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.8133</td>
</tr>
</tbody>
</table>

The OUTPUT statement requests that the model parameters be saved in data sets named Outclass, Outfit, and Outest. You can use the SVMSCORE procedure to get the predictions. For more information about the SVMSCORE procedure, see SAS Enterprise Miner and SAS Text Miner Procedures Reference for SAS.

For example, if the data to be scored are in a data set named sampsi.dmagescr, then the following statements generate the predictions and store them in the output data set named score:

```plaintext
proc svmscore data=sampsi.dmagescr out=score
 inclass=outclass infit=outfit inest=outest;
run;
```

References


Subject Index

adjusting statistics when sampling target classes unevenly
  HPFOREST procedure, 157
algorithm
  HPFOREST procedure, 152
bagging the data
  HPFOREST procedure, 143
baseline fit statistics
  HPFOREST procedure, 174
bias and correlation
  HPFOREST procedure, 171
binning
  HPBNET procedure, 62
CLASS level
  HPReduce procedure, 222, 230
computational method
  HPNEURAL procedure, 206
  HPReduce procedure, 228
conditional and marginal importance
  HPFOREST procedure, 171
controlling for variable selection bias
  HPFOREST procedure, 145
criteria
  HPFOREST procedure, 151
decision matrix
  HPDECIDE procedure, 121
displayed output
  HP4SCORE procedure, 41
  HPReduce procedure, 94
  HPDECIDE procedure, 122
  HPFOREST procedure, 174
  HPNEURAL procedure, 208
  HPReduce procedure, 229
effect
  name length (HPReduce), 222
finding the number of clusters
  HPReduce procedure, 92
fit criteria
  HPReduce procedure, 227
fit statistics
  HPFOREST procedure, 175
formulas for adjusting statistics when sampling unevenly
  HPFOREST procedure, 158
HPFOREST procedure
frequency variable
  HPReduce procedure, 89
  HPDECIDE procedure, 120
  HPFOREST procedure, 140
grid statistics
  HPFOREST procedure, 175
handling missing values
  HPFOREST procedure, 164
handling values that are absent from training data
  HPFOREST procedure, 165
HP4SCORE procedure
  displayed output, 35
  input data sets, 38
  input model file, 39, 40
  number of observations, 42
  ODS table names, 42
  output data sets, 42
  performance information, 42
  timings, 42
  variable attributes, 41
  variable importance, 41, 42
HPReduce procedure
  binning, 62
  independence tests, 61, 62
  input data set, 61
  input variables, 65
  missing values, 62
  model selection, 61
  multithreading, 67
PROC HPReduce features, 56
PROC HPReduce statement, 60
PROC HPReduce syntax, 60
structure learning, 62, 63
target variable, 67
variable selection, 64
HPReduce procedure
  ABC parameters, 94
  ABC statistics, 95
  cluster centroid output data sets, 88
  cluster summary, 95
  cluster summary for Nominal Variables, 96
  descriptive statistics, 96
  descriptive statistics for nominal variables, 96
  displayed output, 94
  estimated number of clusters, 95
  finding the number of clusters, 92
  input data sets, 85
HPCLUS procedure
  ABC parameters, 94
  ABC statistics, 95
  cluster centroid output data sets, 88
  cluster summary, 95
  cluster summary for Nominal Variables, 96
  descriptive statistics, 96
  descriptive statistics for nominal variables, 96
  displayed output, 94
  estimated number of clusters, 95
  finding the number of clusters, 92
  input data sets, 85
iteration statistics, 96
model information, 94
multithreading, 90
number of observations, 94
ODS table names, 97
performance information, 94
standardization, 97
timing, 97
within-cluster frequencies for nominal variables, 97
within-cluster statistics, 97
HPDECIDE procedure, 113
code file, 118
code metabase, 118
code residual, 118
cost options, 119
decision data sets, 118
decision matrix, 121
decision variables, 119
displayed output, 122
input data sets, 117
ODS table name, 122
old prior variable, 119
output data sets, 117
outstat data sets, 118
prior variable, 119
role of data set, 118
variables, 122
HPFOREST procedure, 128
  adjusting statistics when sampling target classes unevenly, 157
  algorithm, 152
  association test number of categories, 135
  association test significance level, 135
  bagging the data, 143
  balance classes in split search, 135
  baseline fit statistics, 174
  bias and correlation, 171
  candidate variables to try, 139
  conditional and marginal importance, 171
  controlling for variable selection bias, 145
  coping data between grid nodes, 135
  criteria, 151
  displayed output, 174
  fit statistics, 175
  formulas for adjusting statistics when sampling unevenly, 158
  grid statistics, 175
  handling missing values, 164
  handling values that are absent from training data, 165
  illustrations of adjusting when sampling unevenly, 159
  in-bag fraction, 136
  Increasing accuracy by increasing tree size, 166
  incremental response from a treatment, 166
  input data sets, 134
  loss reduction variable importance, 175
  MAXDEPTH= option, 137
  maximum number of trees, 137
  measuring variable importance, 168
  minimum class size, 135
  minimum missing values to use in split search, 137
  minimum observations on a grid node, 136
  missing values, 137
  model information, 174
  number of observations, 174
  ODS table names, 175
  performance information, 174
  prediction based data role, 139
  preselect splitting var, 138
  preselection binnedsearch, 149
  preselection Hothorn et al, 149, 150
  prune fraction, 138
  prune threshold, 138
  pruning, 153
  pruning defined, 153
  pruning recommendations, 154
  random branch assignments, 173
  random number seed, 138
  request variable importance calculations, 136
  rules, 151
  save file, 142
  score out, 142
  searching for a splitting rule, 151
  selecting a splitting variable, 148
  skip rows of displayed fit statistics, 139
  split search exhaustive method, 135
  split search LEAFFRACTION= option, 137
  split search LEAFSIZE= option, 137
  split search MINCATSIZE= option, 137
  split search SPLITSIZE= option, 139
  Strobl’s method, 172
  technical derivations of adjustments formulas, 163
  training a decision tree, 144
  Using distributed data wisely, 167
  within node sample, 138
HPNEURAL procedure, 191
  computational method, 206
  displayed output, 208
  input data distribution, 199
  input data sets, 198
  multithreading, 202, 207
  ODS table names, 209
  output data set, 208
HPREDUCE procedure, 211
AIC, 224
AICC, 224
BIC, 225
CLASS level, 222, 230
computational method, 228
computes correlations, 221, 222
computes covariances, 221
displayed output, 229
effect name length, 222
fit criteria, 227
input data sets, 221
maximum effects, 225
maximum steps, 225
minimal explained variance increment, 225
model information, 229
multithreading, 223
number of observations, 229
ODS table names, 230
performance information, 229
prints the time used by each variable selection
iteration, 223
procedure task timing, 230
reduce options, 224
reduce options summary, 224
selected variable, 230
selection summary, 230
user-defined formats, 222
variance explained, 225
XML input stream, 222

illustrations of adjusting when sampling unevenly
HPFOREST procedure, 159
Increasing accuracy by increasing tree size
HPFOREST procedure, 166
incremental response from a treatment
HPFOREST procedure, 166
independence tests, 68
HPBNET procedure, 61, 62
input data set
HPBNET procedure, 61
input variables
HPBNET procedure, 65
HPNEURAL procedure, 201

loss reduction variable importance
HPFOREST procedure, 175
measuring variable importance
HPFOREST procedure, 168
missing values
HPBNET procedure, 62
model
information (HPFOREST), 174
information (HPREDUCE), 229
model selection
HPBNET procedure, 61
multithreading
HPBNET procedure, 67
HPCLUS procedure, 90
HPNEURAL procedure, 202, 207
HPREDUCE procedure, 223

number of hidden neurons
HPNEURAL procedure, 200
number of observations
HP4SCORE procedure, 42
HPFOREST procedure, 174
HPREDUCE procedure, 229

options summary
PROC HPCLUS statement, 84
PROC HPREDUCE statement, 220
output data set
HPNEURAL procedure, 208
output data sets
HP4SCORE procedure, 42
parameter learning, 58, 71
performance information
HP4SCORE procedure, 42
HPFOREST procedure, 174
HPREDUCE procedure, 229
posterior variables
HPDECIDE procedure, 120
predicted variable
HPDECIDE procedure, 121
preselection binnedsearch
HPFOREST procedure, 149
preselection Hothorn et al
HPFOREST procedure, 149, 150
PROC HPBNET features
HPBNET procedure, 56
PROC HPBNET statement
HPBNET procedure, 60
PROC HPBNET syntax
HPBNET procedure, 60
PROC HPSVM, 239
PROC HPSVM details, 248
PROC HPSVM features, 240
PROC HPSVM ODS tables, 251
PROC HPSVM score, 252
PROC HPSVM syntax, 242
PROC HPSVM techniques
active-set, 250
interior-point, 250
optimization, 249
procedure task timing
HPREDUCE procedure, 230
pruning
HPFOREST procedure, 153
pruning defined
  HPFOREST procedure, 153
pruning recommendations
  HPFOREST procedure, 154

random branch assignments
  HPFOREST procedure, 173
reduce options
  HPREDUCE procedure, 224
rules
  HPFOREST procedure, 151

searching for a splitting rule
  HPFOREST procedure, 151
selected variable
  HPREDUCE procedure, 230
selecting a splitting variable
  HPFOREST procedure, 148
selection summary
  HPREDUCE procedure, 230
Strobl's method
  HPFOREST procedure, 172
structure learning, 57, 70
  HPBNET procedure, 62, 63
target variable
  HPBNET procedure, 67
target variables
  HPNEURAL procedure, 203
technical derivations of adjustments formulas
  HPFOREST procedure, 163
timings
  HP4SCORE procedure, 42
training a decision tree
  HPFOREST procedure, 144

Using distributed data wisely
  HPFOREST procedure, 167

variable attributes
  HP4SCORE procedure, 41
variable importance
  HP4SCORE procedure, 41, 42
variable selection, 59, 69
  HPBNET procedure, 64
variables
  HPDECIDE procedure, 122
weight variable
  HPNEURAL procedure, 206
Syntax Index

AIC option
  REDUCE statement, 224
AICC option
  REDUCE statement, 224
ALPHA= option
  PROC HPFOREST statement, 135
ARCHITECTURE statement
  HPNEURAL procedure, 199
BALANCE= option
  PROC HPFOREST statement, 135
BIC option
  REDUCE statement, 225
BPC= option
  PERFORMANCE statement (high-performance analytical procedures), 31
CATBINS= option
  PROC HPFOREST statement, 135
CLASS statement
  HPREDUCE procedure, 223
CODE statement
  HPBNET procedure, 64
  HPCLUS procedure, 88
  HPDECIDE procedure, 118
  HPNEURAL procedure, 200
  HPSVM procedure, 243
COMMIT= option
  PERFORMANCE statement (high-performance analytical procedures), 31
CORR
  PROC HPREDUCE statement, 221
COST= option
  PROC HPDECIDE statement, 119
COV
  PROC HPREDUCE statement, 221
DATA= option
  PROC HP4SCORE statement, 38
  PROC HPCLUS statement, 85
  PROC HPDECIDE statement, 117
  PROC HPFOREST statement, 134
  PROC HPNEURAL statement, 198
  PROC HPREDUCE statement, 221
DECDATA= option
  PROC HPDECIDE statement, 118
DECISION statement
  HPDECIDE procedure, 118
DECVARS= option
  PROC HPDECIDE statement, 118
PROC HPDECIDE statement, 119
DETAILS option
  PERFORMANCE statement (high-performance analytical procedures), 31
DISTANCE= option
  PROC HPCLUS statement, 85
DISTANCES= option
  PROC HPCLUS statement, 85
DISTR option
  PROC HPNEURAL statement, 199
EXHAUSTIVE= option
  PROC HPFOREST statement, 135
FILE= option
  IMPORTANCE statement, 39
  PROC HPDECIDE statement, 118
  SCORE statement, 40
FMTLIBXML= option
  PROC HPREDUCE statement, 222
FREQ statement
  HPBNET procedure, 65
  HPCLUS procedure, 89
  HPDECIDE procedure, 120
  HPFOREST procedure, 140
GRIDCLASSSIZE= option
  PROC HPFOREST statement, 135
GRIDCOPY= option
  PROC HPFOREST statement, 135
GRIDHOST= option
  PERFORMANCE statement (high-performance analytical procedures), 32
GRIDMODE= option
  PERFORMANCE statement (high-performance analytical procedures), 32
GRIDNODESIZE= option
  PROC HPFOREST statement, 136
GRIDTIMEOUT= option
  PERFORMANCE statement (high-performance analytical procedures), 32
HIDDEN statement
  HPNEURAL procedure, 200
high-performance analytical procedures,
  PERFORMANCE statement, 31
BPC= option, 31
COMMIT= option, 31
DETAILS option, 31
<table>
<thead>
<tr>
<th>Syntax Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRIDHOST= option, 32</td>
</tr>
<tr>
<td>GRIDMODE= option, 32</td>
</tr>
<tr>
<td>GRIDTIMEOUT= option, 32</td>
</tr>
<tr>
<td>HOST= option, 32</td>
</tr>
<tr>
<td>INSTALL= option, 32</td>
</tr>
<tr>
<td>INSTALLLOC= option, 32</td>
</tr>
<tr>
<td>LASR= option, 32</td>
</tr>
<tr>
<td>LASRSERVER= option, 32</td>
</tr>
<tr>
<td>MODE= option, 32</td>
</tr>
<tr>
<td>NNODES= option, 32</td>
</tr>
<tr>
<td>NODES= option, 32</td>
</tr>
<tr>
<td>NTHREADS= option, 34</td>
</tr>
<tr>
<td>THREADS= option, 34</td>
</tr>
<tr>
<td>TIMEOUT= option, 32</td>
</tr>
<tr>
<td>HOST= option</td>
</tr>
<tr>
<td>PERFORMANCE statement (high-performance analytical procedures), 32</td>
</tr>
<tr>
<td>HP4SCORE procedure, 38</td>
</tr>
<tr>
<td>syntax, 38</td>
</tr>
<tr>
<td>HP4SCORE procedure, IMPORTANCE statement, 39</td>
</tr>
<tr>
<td>FILE= option, 39</td>
</tr>
<tr>
<td>MAXDEPTH= option, 39</td>
</tr>
<tr>
<td>NTREES= option, 39</td>
</tr>
<tr>
<td>OUT= option, 40</td>
</tr>
<tr>
<td>HP4SCORE procedure, PROC HP4SCORE statement</td>
</tr>
<tr>
<td>DATA= option, 38</td>
</tr>
<tr>
<td>HP4SCORE procedure, SCORE statement, 40</td>
</tr>
<tr>
<td>FILE= option, 40</td>
</tr>
<tr>
<td>MAXDEPTH= option, 40</td>
</tr>
<tr>
<td>NTREES= option, 40</td>
</tr>
<tr>
<td>OUT= option, 40</td>
</tr>
<tr>
<td>HP4SCOREC procedure, ID statement, 39</td>
</tr>
<tr>
<td>HP4SCOREC procedure, PROC HP4SCORE statement, 38</td>
</tr>
<tr>
<td>HPBNET procedure, 60</td>
</tr>
<tr>
<td>CODE statement, 64</td>
</tr>
<tr>
<td>FREQ statement, 65</td>
</tr>
<tr>
<td>ID statement, 65</td>
</tr>
<tr>
<td>INPUT statement, 65</td>
</tr>
<tr>
<td>OUTPUT statement, 66</td>
</tr>
<tr>
<td>PARTITION statement, 66</td>
</tr>
<tr>
<td>PERFORMANCE statement, 67</td>
</tr>
<tr>
<td>syntax, 60</td>
</tr>
<tr>
<td>TARGET statement, 67</td>
</tr>
<tr>
<td>HPCLUS procedure, 84</td>
</tr>
<tr>
<td>CODE statement, 88</td>
</tr>
<tr>
<td>FREQ statement, 89</td>
</tr>
<tr>
<td>ID statement, 89</td>
</tr>
<tr>
<td>INPUT statement, 89</td>
</tr>
<tr>
<td>PERFORMANCE statement, 90</td>
</tr>
<tr>
<td>PROC HPCLUS statement, 84</td>
</tr>
<tr>
<td>SCORE statement, 90</td>
</tr>
<tr>
<td>syntax, 84</td>
</tr>
<tr>
<td>HPCLUS procedure, PROC HPCLUS statement</td>
</tr>
<tr>
<td>DATA= option, 85</td>
</tr>
<tr>
<td>DISTANCE= option, 85</td>
</tr>
<tr>
<td>DISTANCENOM= option, 85</td>
</tr>
<tr>
<td>IMPUTE= option, 86</td>
</tr>
<tr>
<td>IMPUTENOM= option, 86</td>
</tr>
<tr>
<td>MAXCLUSTERS= option, 86</td>
</tr>
<tr>
<td>MAXITER= option, 86</td>
</tr>
<tr>
<td>NOPRINT, 88</td>
</tr>
<tr>
<td>OUTITER, 88</td>
</tr>
<tr>
<td>OUTSTAT= option, 88</td>
</tr>
<tr>
<td>SEED= option, 88</td>
</tr>
<tr>
<td>STANDARDIZE= option, 88</td>
</tr>
<tr>
<td>STOPCRITERION= option, 86, 88</td>
</tr>
<tr>
<td>HPDECIDE procedure, 117</td>
</tr>
<tr>
<td>CODE statement, 118</td>
</tr>
<tr>
<td>DECISION statement, 118</td>
</tr>
<tr>
<td>FREQ statement, 120</td>
</tr>
<tr>
<td>ID statement, 120</td>
</tr>
<tr>
<td>PERFORMANCE statement, 120</td>
</tr>
<tr>
<td>POSTERIORS statement, 120</td>
</tr>
<tr>
<td>PREDICTED statement, 121</td>
</tr>
<tr>
<td>PROC HPDECIDE statement, 117</td>
</tr>
<tr>
<td>syntax, 117</td>
</tr>
<tr>
<td>TARGET statement, 121</td>
</tr>
<tr>
<td>HPDECIDE procedure, PROC HPDECIDE statement</td>
</tr>
<tr>
<td>COST= option, 119</td>
</tr>
<tr>
<td>DATA= option, 117</td>
</tr>
<tr>
<td>DECDATA= option, 118</td>
</tr>
<tr>
<td>DECV ARS= option, 119</td>
</tr>
<tr>
<td>FILE= option, 118</td>
</tr>
<tr>
<td>METABASE= option, 118</td>
</tr>
<tr>
<td>OLDPRIORV AR= option, 119</td>
</tr>
<tr>
<td>OUT= option, 117</td>
</tr>
<tr>
<td>OUTSTAT= option, 118</td>
</tr>
<tr>
<td>PRIORV AR= option, 119</td>
</tr>
<tr>
<td>RESIDUAL, 118</td>
</tr>
<tr>
<td>ROLE= option, 118</td>
</tr>
<tr>
<td>HPFOREST procedure, 134</td>
</tr>
<tr>
<td>FREQ statement, 140</td>
</tr>
<tr>
<td>ID statement, 140</td>
</tr>
<tr>
<td>INPUT statement, 140</td>
</tr>
<tr>
<td>PARTITION statement, 141</td>
</tr>
<tr>
<td>PROC HPFOREST statement, 134</td>
</tr>
<tr>
<td>SAVE statement, 141</td>
</tr>
<tr>
<td>SCORE statement, 142</td>
</tr>
<tr>
<td>syntax, 134</td>
</tr>
<tr>
<td>TARGET statement, 142</td>
</tr>
<tr>
<td>TREATMENT statement, 143</td>
</tr>
<tr>
<td>HPFOREST procedure, FREQ statement, 140</td>
</tr>
<tr>
<td>HPFOREST procedure, ID statement, 140</td>
</tr>
<tr>
<td>HPFOREST procedure, PARTITION statement, 141</td>
</tr>
<tr>
<td>HPFOREST procedure, PROC HPFOREST statement</td>
</tr>
<tr>
<td>ALPHA= option, 135</td>
</tr>
<tr>
<td>BALANCE= option, 135</td>
</tr>
</tbody>
</table>
CATBINS= option, 135
DATA= option, 134
EXHAUSTIVE= option, 135
GRIDCLASSSIZE= option, 135
GRIDCOPY= option, 135
GRIDNODESIZE= option, 136
IMPORTANCE= option, 136
INBAGFRACTION= option, 136
INBAGN= option, 136
INTERVALBINS= option, 136
LEAFFRACTION= option, 137
LEAFSIZE= option, 137
MAXDEPTH= option, 137
MAXTREES= option, 137
MINCATSIZE= option, 137
MINUSEINSEARCH= option, 137
MISSING= option, 137
NODESIZE= option, 137
PRESELECT= option, 138
PRUNEFRACTION= option, 138
PRUNETHRESHOLD= option, 138
SCOREPROLE= option, 139
SEED= option, 38, 139
SKIP_SEQ_ROWS= option, 139
SPLITSIZE= option, 139
V ARS_TO_TRY= option, 139

HPFOREST procedure, SCORE statement, 142
MAXDEPTH= option, 142
NTREES= option, 142
HPLOGISTIC procedure, PROC HPREDUCE statement
NOSUMPRINT option, 222
HPNEURAL procedure, 198
ARCHITECTURE statement, 199
CODE statement, 200
HIDDEN statement, 200
ID statement, 201
INPUT statement, 201
PARTITION statement, 202
PERFORMANCE statement, 202
PROC HPNEURAL statement, 198
SCORE statement, 203
syntax, 198
TARGET statement, 203
TRAIN statement, 204
WEIGHT statement, 206
HPNEURAL procedure, ID statement, 201
HPNEURAL procedure, PERFORMANCE statement, 202
HPNEURAL procedure, PROC HPNEURAL statement, 198
DATA= option, 198
DISTR= option, 199
NOSUMPRINT option, 199
HPREDUCE procedure, TRAIN statement
MAXITER= option, 205
NUMTRIES= option, 205
OUTMODEL= option, 206
VALID= option, 205
HPNEURAL procedures, ARCHITECTURE statement, 199
HPNEURAL procedures, CODE statement, 200
HPNEURAL procedures, HIDDEN statement, 200
HPNEURAL procedures, INPUT statement, 201
HPNEURAL procedures, PARTITION statement, 202
HPNEURAL procedures, SCORE statement, 203
HPNEURAL procedures, TARGET statement, 203
HPNEURAL procedures, TRAIN statement, 204
HPNEURAL procedures, WEIGHT statement, 206
HPREDUCE procedure, 220
PERFORMANCE statement, 223
PROC HPREDUCE statement, 220
REDUCE statement, 224
syntax, 220
HPREDUCE procedure, CLASS statement, 223
HPREDUCE procedure, PERFORMANCE statement, 223
HPREDUCE procedure, PROC HPREDUCE statement
CORR, 221
COV, 221
DATA= option, 221
FMTLIBXML= option, 222
NAMELEN= option, 222
NOCLPRINT option, 222
NOSUMPRINT option, 222
OUTCP= option, 222
SSCP, 222
TECHNIQUE= option, 223
TIMEPRINT, 223
HPREDUCE procedure, REDUCE statement, 224
AIC option, 224
AICC option, 224
BIC option, 225
MAXEFFECTS option, 225
MAXSTEPS option, 225
MINVARIANCEINCREMENT option, 225
V AREXP option, 225
V ARIANCEEXPLAINED option, 225
VARINC option, 225
HPREDUCEC procedure, PROC HPREDUCE statement, 220
ID statement
HPBNET procedure, 65
HPCLUS procedure, 89
HPDECIDE procedure, 120
HPFOREST procedure, 140
HPNEURAL procedure, 201
HPSVM procedure, 243
IMPORTANCE= option
PROC HPFOREST statement, 136
IMPUTE= option
PROC HPFOREST statement, 136
IMPUTENOM= option
PROC HPCLUS statement, 86
INBAGFRACTION= option
PROC HPFOREST statement, 136
INBAGN= option
PROC HPFOREST statement, 136
INPUT statement
HPBNET procedure, 65
HPCLUS procedure, 89
HPFOREST procedure, 140
HPNEURAL procedure, 201
HPSVM procedure, 244
INSTALL= option
PERFORMANCE statement (high-performance analytical procedures), 32
INSTALLLOC= option
PERFORMANCE statement (high-performance analytical procedures), 32
INTERVALBINS= option
PROC HPFOREST statement, 136
KERNEL statement
HPBNET procedure, 244
LASR= option
PERFORMANCE statement (high-performance analytical procedures), 32
LASRSERVER= option
PERFORMANCE statement (high-performance analytical procedures), 32
LEAFFRACTION= option
PROC HPFOREST statement, 137
LEAFSIZE= option
PROC HPFOREST statement, 137
MAXCLUSTERS= option
PROC HPCLUS statement, 86
MAXDEPTH= option
IMPORTANCE statement, 39
PROC HPFOREST statement, 137
SCORE statement, 40, 142
MAXEFFECTS option
REDUCE statement, 225
MAXITER= option
PROC HPCLUS statement, 86
TRAIN statement, 205
MAXSTEPS option
REDUCE statement, 225
MAXTREES= option
PROC HPFOREST statement, 137
METABASE= option
PROC HPFOREST statement, 137
MINCATSIZE= option
PROC HPFOREST statement, 137
MINUSEINSEARCH= option
PROC HPFOREST statement, 137
MINVARIANCEINCREMENT option
REDUCE statement, 225
MISSING= option
PROC HPFOREST statement, 137
MODE= option
PERFORMANCE statement (high-performance analytical procedures), 32
NAMELEN= option
PROC HPREDUCE statement, 222
NNODES= option
PERFORMANCE statement (high-performance analytical procedures), 32
NOCLPRINT option
PROC HPREDUCE statement, 222
NODES= option
PERFORMANCE statement (high-performance analytical procedures), 32
NODESIZE= option
PROC HPFOREST statement, 138
NPRINT
PROC HPCLUS statement, 88
NPRINT option
PROC HPREDUCE statement, 222
NOSUMPRINT option
PROC HPREDUCE statement, 222
NTHREADS= option
PERFORMANCE statement (high-performance analytical procedures), 34
NTREES= option
IMPORTANCE statement, 39
SCORE statement, 40, 142
NUMTRIES= option
TRAIN statement, 205
OLDPRIORVAR= option
PROC HPDECIDE statement, 119
OUT= option
IMPORTANCE statement, 40
PROC HPREDUCE statement, 117
SCORE statement, 40
OUTCP= option
PROC HPREDUCE statement, 222
OUTITER
PROC HPCLUS statement, 88
OUTMODEL= option
TRAIN statement, 206

OUTPUT statement
  HPBNET procedure, 66
  HPSVM procedure, 245

OUTSTAT= option
  PROC HPCLUS statement, 88
  PROC HPDECIDE statement, 118

PARTITION statement
  HPBNET procedure, 66
  HPFOREST procedure, 141
  HPNEURAL procedure, 202
  HPSVM procedure, 246

PENALTY statement
  HPSVM procedure, 247

PERFORMANCE statement
  high-performance analytical procedures, 31
  HPBNET procedure, 67
  HPCLUS procedure, 90
  HPDECIDE procedure, 120
  HPNEURAL procedure, 202
  HPREDUCE procedure, 223
  HPSVM procedure, 246

POSTERIORS statement
  HPDECIDE procedure, 120

PREDICTED statement
  HPDECIDE procedure, 121

PRESELECT= option
  PROC HPFOREST statement, 138

PRIORVAR= option
  PROC HPDECIDE statement, 119

PROC HPBNET statement, 60
  ALPHA= option, 61
  BESTMODEL option, 61
  DATA= option, 61
  INDEPTEST= option, 61
  MAXPARENTS= option, 62
  MIALPHA= option, 62
  MISSINGINT= option, 62
  MISSINGNOM= option, 62
  NUMBIN= option, 62
  PARENTING= option, 63
  PRESCREENING= option, 64
  STRUCTURE= option, 63
  VARESELECT= option, 64

PROC HPCLUS statement
  HPCLUS procedure, 84

PROC HPDECIDE statement
  HPDECIDE procedure, 117

PROC HPFOREST statement
  HPFOREST procedure, 134

PROC HPNEURAL statement, see HPNEURAL procedure
  HPNEURAL procedure, 198

PROC HPREDUCE statement
  HPREDUCE procedure, 220

PROC HPSVM statement, 242
  C=option, 242
  input data set, 242
  MAXITER=option, 242
  METHOD=option, 243
  NOMISS option, 243
  NOPRINT, 243
  NOSCALE, 243
  TOLERANCE=option, 243

PROC HPSVM syntax, 242

PRUNEFRACTION= option
  PROC HPFOREST statement, 138

PRUNETHRESHOLD= option
  PROC HPFOREST statement, 138

REDUCE statement
  HPREDUCE procedure, 224

RESIDUAL
  PROC HPDECIDE statement, 118

ROLE= option
  PROC HPDECIDE statement, 118

SAVE statement
  HPFOREST procedure, 141

SCORE statement
  HPCLUS procedure, 90
  HPFOREST procedure, 142
  HPNEURAL procedure, 203

SCOREROLE= option
  PROC HPFOREST statement, 139

SEED= option
  PROC HPCLUS statement, 88
  PROC HPFOREST statement, 38, 139

SELECT statement
  HPSVM procedure, 247

SKIP_SEQ_ROWS= option
  PROC HPFOREST statement, 139

SPLITSIZE= option
  PROC HPFOREST statement, 139

SSCP
  PROC HPREDUCE statement, 222

STANDARDIZE= option
  PROC HPCLUS statement, 88

STOPCRITERION= option
  PROC HPCLUS statement, 86, 88

syntax
  HP4SCORE procedure, 38
  HPCLUS procedure, 84
  HPDECIDE procedure, 117
  HPFOREST procedure, 134
  HPREDUCE procedure, 220

TARGET statement
HPBNET procedure, 67
HPDECIDE procedure, 121
HPFOREST procedure, 142
HPNEURAL procedure, 203
HPSVM procedure, 248

TECHNIQUE= option
   PROC HPREDUCE statement, 223

THREADS= option
   PERFORMANCE statement (high-performance analytical procedures), 34

TIMEOUT= option
   PERFORMANCE statement (high-performance analytical procedures), 32

TIMEPRINT
   PROC HPREDUCE statement, 223

TRAIN statement
   HPNEURAL procedure, 204

TREATMENT statement
   HPFOREST procedure, 143

VALID= option
   TRAIN statement, 205

VAREXP option
   REDUCE statement, 225

VARIANCEEXPLAINED option
   REDUCE statement, 225

VARS_TO_TRY= option
   PROC HPFOREST statement, 139

WEIGHT statement
   HPNEURAL procedure, 206
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.