SAS® Data Agent 2.5 for Linux: Deployment Guide
Contents

Chapter 1 / Introduction ... 1
 Steps for a Successful Deployment ... 1
 How Deployment Works .. 3
 Deployment Examples and Guidance ... 4
 SAS Products and Supporting Components .. 7
 Contact SAS Technical Support ... 8

Chapter 2 / System Requirements ... 9
 Hardware Requirements ... 10
 Operating System Requirements .. 13
 Server Software Requirements .. 16
 Data Source and Storage Requirements ... 17
 Security Requirements .. 21
 User and Group Requirements ... 23
 Deployment Tools ... 26

Chapter 3 / Pre-installation Tasks ... 27
 Create a Mirror Repository .. 28
 Create a Playbook ... 31
 Enable Required Ports .. 34
 Configure SELinux ... 34
 Configure a Proxy Server ... 36
 Enable the Yum Cache .. 37
 Perform Linux Tuning .. 37
 Confirm the Identities of the Hosts ... 40
 (Optional) Enable Key-Based SSH Authentication 41
 Install Ansible ... 41

Chapter 4 / Installation .. 45
 Edit the Inventory File ... 45
 (Optional) Configure Network Settings ... 48
 Modify the vars.yml File .. 53
 Deploy the Software .. 60
 Deployment Logs .. 62

Chapter 5 / Post-installation .. 63
 SAS Data Preparation Deployment Tasks: Configure Communication with Remote SAS Data Agent .. 64
 SAS Data Preparation Deployment Tasks: Configure the Co-located SAS Data Agent ... 68
 SAS Data Agent Deployment Tasks: Configure Communication 74
 SAS Data Agent Deployment Tasks: Configure Data Access 77
 Configure a Proxy Server to Communicate with the SAS Data Preparation Deployment .. 84

Chapter 6 / Validating the Deployment .. 87
 Validate Round-Trip Communication between SAS Data Preparation and SAS Data Agent ... 87
 Perform Installation Qualification on RPM Packages 88
Chapter 7 / Completing the Deployment
- Verify PostgreSQL ... 90
- Verify the SAS/ACCESS Interface to Your Databases 91

Chapter 8 / Managing Your Software
- Overview .. 95
- Updating Your SAS Viya Software 97
- Adding SAS Viya Software to a Deployment 103
- Upgrading to SAS Viya 3.5 from Earlier Versions of SAS Viya 107

Chapter 9 / Uninstalling SAS Viya
- What deploy-cleanup Does .. 117
- Use deploy-cleanup .. 117
- Uninstall a Mirror Repository 119

Appendix 1 / Creating High Availability PostgreSQL Clusters
- Overview .. 121
- HA PostgreSQL and HA PGPool Topologies 122
- Set Up a Horizontal Cluster 125
- Set Up a Vertical Cluster ... 127
- Set Up a Hybrid Cluster ... 129
- Set Up Multiple Clusters ... 131
- Deployment Logs ... 135
- Verify the Deployment ... 135

Appendix 2 / Troubleshooting
- Nothing to Do Dialog .. 137
- PCA and KCLUS Procedures Were Not Found 138
- Timeout Dialog ... 138
- From Any Browser: Connection Is Not Private 139
- From Google Chrome: Connection Is Not Private 139
- Unable to Read a Key .. 140
- Connection Reset by Peer Network Problem 140
- Internet Connectivity Problems 141
- Invalid Host Name in the sitedefault.yml File 143
- SAS Data Agent Log Contains Multiple Errors 144
- SAS Data Agent Log: File Was Not Found 145
- Problems When Using the SAS Data Agent CLI 145
- SSL Connection Problems When the Data Agent Tenant Initialization Script is Run 146
Steps for a Successful Deployment

Before You Begin

- Because the contents of this guide are subject to continual updates, make sure that you have the latest guide. You can always access the latest release of this guide from the following site:
 SAS Viya Deployment Guides

 If you accessed this guide directly from the Software Order Email (SOE), you are viewing the latest guide. If you are viewing a saved copy of the PDF version of this guide, the content might be outdated.

- To use this guide successfully, you should have a working knowledge of Ansible and the Linux operating system. For more information, see “How Deployment Works” on page 3.

- SAS Data Agent moves data for use by SAS Data Preparation and is optimized to connect to SAS Data Preparation that is running on a private or public cloud. To understand the deployment process, see “Deployment Examples and Guidance” on page 4.
To configure SAS Data Agent, SAS Data Preparation must also be deployed and operational. For more information about deploying SAS Data Preparation, see SAS Viya for Linux Deployment Guide.

SAS Data Agent and SAS Data Preparation can be ordered together. If you received an SOE that includes SAS Data Preparation, then SAS Data Agent is also included. Although SAS Data Agent is included in the order, it is not included in the list of software in the SOE.

Step 1 — Prepare for the Deployment

1. Perform one of the following tasks:
 - To update or add software to an existing deployment, go directly to Chapter 8, “Managing Your Software,” on page 95.
 - To deploy a new SAS Data Agent server, continue with the following the steps.
2. Go to Chapter 2, “System Requirements,” on page 9 to learn about requirements for hardware, software, data sources, and more.
3. Go to Chapter 3, “Pre-installation Tasks,” on page 27 to prepare your environment before you deploy the software.

Step 2 — Perform the Deployment

1. Go to Chapter 4, “Installation,” on page 45 to deploy the software. The steps for running the playbook are included in this section.
2. Go to Chapter 5, “Post-installation,” on page 63 to register the SAS Data Agent server with SAS Data Preparation and to configure data access.

Step 3 — Validate and Complete the Deployment

1. Go to Chapter 6, “Validating the Deployment,” on page 87 to verify that the servers were deployed correctly and that SAS can access your data.
2. Go to Chapter 7, “Completing the Deployment,” on page 93 to learn about post-deployment best practices, including initial administration tasks.
How Deployment Works

The Basics

- Ansible is used to deploy SAS Data Agent. Ansible is configuration management software that provides a straightforward approach to deploying the software. To deploy using Ansible, you customize files for your environment, and then you run a command to deploy software according to the values in those files. The set of files, known collectively as “the playbook,” provides the instructions about what software is deployed on which machines. In this guide, “run the playbook” means to deploy or update the software.

- The playbook that you run must first be customized for your order. You will use the SAS Orchestration Command Line Interface (CLI) to create the customized playbook. The instructions for downloading the SAS Orchestration CLI and for creating a playbook are provided in this guide. Also, the Software Order Email (SOE) that SAS sends to your business or organization contains a file attachment that is required in order to create the playbook. The file attachment in the SOE contains information that is specific to your order.

- During the deployment process, the software to which you are entitled is downloaded from repositories that are maintained by SAS or from mirror repositories at your own site. Creating mirror repositories before running the playbook is optional for deployments on Red Hat Enterprise Linux and is required for deployments on SUSE Linux. The instructions for using SAS Mirror Manager to create mirror repositories are provided in this guide.

- Each time you run the playbook, Ansible automates a series of commands that securely access the latest software to which you are entitled.

- To use Ansible, you must install it first. In this guide, the machine on which you install Ansible is called the “Ansible controller.” The Ansible controller must have SSH access to the machine on which you plan to deploy SAS Data Agent.

- During the post-installation process, SAS Data Agent is registered to SAS Data Preparation. SAS Data Preparation must be deployed and operational before you can register SAS Data Agent to SAS Data Preparation. Because SAS Data Preparation and SAS Data Agent are deployed to different machines, you must perform tasks on both machines to configure communications.

For an overview of registering SAS Data Agent to SAS Data Preparation, see “Deployment Examples and Guidance” on page 4.

Files Used for Deployment

The following files are used to deploy the software. Before you run the playbook, you will edit the files to specify the machines on which to deploy the software, which software to deploy, and site-specific configuration settings. Also, each filename is a
reserved name that is required for running your playbook. Therefore, when you edit the file, be sure to save as the filename that is shown.

<table>
<thead>
<tr>
<th>File</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory.ini</td>
<td>You edit the inventory.ini file to map machines (or hosts) to the software components, which are represented as host groups within the inventory.ini file.</td>
</tr>
<tr>
<td>vars.yml</td>
<td>The vars.yml file includes the variables that enable you to customize your deployment.</td>
</tr>
<tr>
<td>sitedefault.yml (optional)</td>
<td>Typically, the sitedefault.xml is not used for the initial deployment. The sitedefault.yml file contains variables for more advanced implementations, such as setting up a high availability PostgreSQL cluster.</td>
</tr>
</tbody>
</table>

Deployment Examples and Guidance

Deployed and Registered with SAS Data Preparation

Depending on your business needs, SAS Data Agent can be deployed in different ways. Consider the following:

- SAS Data Agent is deployed and then registered with SAS Data Preparation. SAS Data Preparation must be deployed and operational before you can register SAS Data Agent with SAS Data Preparation.

- This guide provides instructions for deploying a remote SAS Data Agent server and then registering it with SAS Data Preparation. Also, the instructions for registering a co-located SAS Data Agent server are provided in this guide.

 Note: When SAS Data Agent is used on the opposite side of the firewall from SAS Data Preparation, it is referred to as the remote SAS Data Agent. When SAS Data Agent is deployed on the same side of the firewall as SAS Data Preparation, it is referred to as a co-located SAS Data Agent server.

- The instructions to deploy a co-located SAS Data Agent server and SAS Data Preparation are provided in the SAS Viya for Linux: Deployment Guide

The following example shows a co-located and a remote SAS Data Agent server that have been deployed and registered to communicate with SAS Data Preparation. Both servers are configured to access their respective data sources.
Registered with SAS Data Preparation in a Multi-tenant Environment

If SAS Data Preparation is deployed within a SAS Viya multi-tenant environment, you can register one or more SAS Data Agent servers to communicate with each tenant. Each SAS Data Agent server can be registered to only one tenant. In other words, you do not have to register a SAS Data Agent server to every tenant.

The following example provides an overview of deploying and registering multiple remote SAS Data Agent servers to a SAS Viya multi-tenant environment that includes SAS Data Preparation. In each case, the remote SAS Data Agent server connects to the tenant across a firewall.
A remote SAS Data Agent server is deployed and then registered to tenant A, which includes SAS Data Preparation.

Two remote SAS Data Agent servers are deployed and then registered to tenant C, which includes SAS Data Preparation. Notice that a SAS Data Agent server is not registered to tenant B.

Note: The steps to deploy a SAS Data Agent server and to register it to SAS Data Preparation are provided in this guide. To achieve a SAS Viya multi-tenant environment that includes SAS Data Preparation, see the following documentation:

- To deploy a SAS Viya multi-tenant environment, see SAS Viya for Linux: Deployment Guide.
- To onboard a tenant, see SAS Viya Administration: Multi-tenancy.

Cluster for High Availability PostgreSQL

SAS Data Agent uses a PostgreSQL database to store user content and preferences. By default, Ansible deploys PostgreSQL as a single node on a single machine. The standard deployment consists of one PGPool and one PostgreSQL data node. However, you can deploy a High Availability (HA) PostgreSQL cluster to
achieve higher performance and to support redundancy. For more information, see Appendix 1, “Creating High Availability PostgreSQL Clusters,” on page 121.

The following example shows an HA PostgreSQL horizontal cluster, where each data node is on a separate machine. Other topologies, such as a vertical cluster or a hybrid cluster, are supported.

Figure 1.3 High Availability PostgreSQL Horizontal Cluster

SAS Products and Supporting Components

This guide provides information for deploying software that is listed in your Software Order Email (SOE), which can include the following:

<table>
<thead>
<tr>
<th>SAS Data Agent 2.5</th>
<th>SAS/ACCESS Interface to ODBC (on SAS Viya)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS/ACCESS Interface to Amazon Redshift (on SAS Viya)</td>
<td>SAS/ACCESS Interface to Oracle (on SAS Viya)</td>
</tr>
<tr>
<td>SAS/ACCESS Interface to DB2 (on SAS Viya)</td>
<td>SAS/ACCESS Interface to PostgreSQL (on SAS Viya)</td>
</tr>
<tr>
<td>SAS/ACCESS Interface to Hadoop (on SAS Viya)</td>
<td>SAS/ACCESS Interface to SAP HANA (on SAS Viya)</td>
</tr>
<tr>
<td>SAS/ACCESS Interface to Microsoft SQL Server (on SAS Viya)</td>
<td>SAS/ACCESS Interface to Teradata (on SAS Viya)</td>
</tr>
</tbody>
</table>

Note: Unless another situation is specifically cited, the information in this guide pertains to the software that you ordered.
Contact SAS Technical Support

Technical support is available to all customers who license SAS software. However, you are encouraged to engage your designated on-site SAS support personnel as your first support contact. If your on-site SAS support personnel cannot resolve your issue, have them contact SAS Technical Support to report your problem.

Before you contact SAS Technical Support, explore the SAS Support website at support.sas.com/techsup/. This site offers access to the SAS Knowledge Base, as well as SAS communities, Technical Support contact options, and other support materials that might answer your questions.

When you contact SAS Technical Support, you are required to provide information, such as your SAS site number, company name, email address, and phone number, that identifies you as a licensed SAS software customer.
System Requirements

Hardware Requirements
- Host Requirements
- General Hardware Considerations
- File System and Storage Requirements

Operating System Requirements
- Supported Operating Systems
- Linux Requirements
- Additional Requirements for Red Hat Enterprise Linux and Oracle Linux
- Additional Requirements for SUSE Linux
- SAS Support for Alternative Operating Systems

Server Software Requirements
- Java
- Apache httpd

Data Source and Storage Requirements
- Supported Data Sources
- Requirements for SAS/ACCESS Interface to Amazon Redshift
- Requirements for SAS/ACCESS Interface to DB2
- Requirements for SAS/ACCESS Interface to Hadoop
- Requirements for SAS/ACCESS Interface to Microsoft SQL Server
- Requirements for SAS/ACCESS Interface to ODBC
- Requirements for SAS/ACCESS Interface to Oracle
- Requirements for SAS/ACCESS Interface to PostgreSQL
- Requirements for SAS/ACCESS Interface to SAP HANA
- Requirements for SAS/ACCESS Interface to Teradata

Security Requirements
- Transport Layer Security

User and Group Requirements
- Overview: User Accounts
- Set Up the User Account that Deploys the Software
- Set Up User Accounts for SAS Data Agent Users
- User Accounts (Reference)
- Services that Require Root Privileges

Deployment Tools
- Ansible Controller Requirements
Hardware Requirements

Host Requirements

Each target machine in your deployment must have all of the following attributes:

- A static IP address

 The SAS Configuration Server component binds to a single private IP address per machine. If any of your intended hosts has multiple network interface cards (NICs), verify whether multiple NICs have been assigned IP addresses, including private IP addresses. SAS recommends that you use network.conf files to specify the network address to be used for the deployment. Otherwise, the deployment uses default values. For more information, see “(Optional) Configure Network Settings” on page 48.

- A static host name

 Some networking environments, such as Dynamic Host Configuration Protocol (DHCP), and some cloud providers use dynamic host names or IP address assignments by default. Although it is possible to deploy the software successfully in these environments, any future change to either IP addresses or host names might result in an inoperative deployment. Therefore, SAS recommends that before you start the installation, you work with your network administrator to ensure that IP addresses and host names are static.

 Important: On the Linux machine that will host the CAS server, make sure that the host name in /etc/hosts is specified in all lowercase letters. If you change the host name to comply with this requirement, verify that the image is stable and that all other services are working correctly before you start the deployment process.

- A host name that conforms to internet standards

 Multiple internet standards include a restriction on special characters, with the exception of hyphens. Host names can consist of 'a-z', 'A-Z', '0-9,' and '–' only and cannot contain underscore characters (_).

- A host name that can be resolved to an IP address

 Reverse DNS resolution must be enabled. Your DNS server should have a mapping of each IP address to its corresponding fully qualified domain name (FQDN) for each machine in your deployment. As an alternative, both the FQDN and IP address of each machine can be added to its /etc/hosts file.

- An FQDN that is 64 characters or fewer in length

 This restriction is related to the implementation of Transport Layer Security (TLS). One of the specifications for the certificate revocation list is a 64-character limit for the common name (CN) attribute. For more information, see RFC 5280.

- The /tmp directory on the Ansible target machines must be on a partition that is mounted as executable. A deployment script must be able to execute from /tmp.
If you plan to deploy the software on multiple machines, make sure that the clock time is synchronized across all of them. For example, you can use a Network Time Protocol (NTP) server for this purpose.

(Optional) You can deploy SAS Infrastructure Data Server in a cluster for high availability. This deployment topology is referred to as “HA PostgreSQL” throughout this guide. As part of an HA PostgreSQL deployment, you can also create a PGPool cluster. When it is running in a cluster, the PGPool service requires a virtual IP address that is accessible to every host in the SAS Viya environment. SAS recommends that you configure it before you run the playbook. For more information, see “Values in vars.yml” on page 123.

General Hardware Considerations

SAS strongly recommends consulting with a sizing expert to obtain an official hardware recommendation that is based on your deployment topology, the estimated SAS workload, and the number of users. To request sizing expertise, contact your SAS account representative. If you need assistance in determining your SAS account representative, send an email to contactcenter@sas.com.

CPU and RAM Recommendations

SAS Viya has undergone rigorous performance testing with various hardware combinations. In addition to being tested on high-performing Intel Xeon E3-E7 series microprocessors, SAS Viya has also been tested with newer Intel chips, such as Intel Xeon Scalable Processors. SAS Viya also supports 64-bit AMD chipsets. Thirty-two-bit chipsets are not supported.

Consider the following as you prepare for the deployment process:

- The hardware guidelines in this guide reflect baseline standards. For a production environment, CPU, RAM, and disk resources should be increased after the expected amount of data to be processed and number of concurrent users are taken into consideration.
- Overall system performance will improve with the addition of both RAM and CPU cores.
- Test machines were equipped with RAM that had a minimum memory clock speed of 1600 MHz.

Baseline Hardware Requirements

The following table indicates the minimum RAM and number of CPU cores that are required to support SAS Data Agent on a single machine.

The table represents what is required to start all system services and to enable a single user to operate against a small sample data set in order to validate operational functionality. These out-of-the-box requirements should be increased for larger deployments.

Additional RAM should be added based on the expected amount of data that will be processed. More resources are required for multiple-user, production-scale deployments that use large data sets.
Table 2.1 Minimum Hardware Requirements for SAS Data Agent

<table>
<thead>
<tr>
<th>Product</th>
<th>RAM (GB)</th>
<th>CPU Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS Data Agent</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

The playbook installs executables and creates configuration directories in `/opt/sas/`. The minimum available disk space that is required to install and start SAS Viya and SAS Data Agent is less than 8 GB. However, logs and operational data can grow to exceed that amount. Therefore, the actual space that is required will depend on the amount of data and the level of activity in your specific deployment. For more information, see “File System and Storage Requirements” on page 12.

File System and Storage Requirements

Disk Space Considerations

Verify that at least 48 GB of disk space are available for your SAS Data Agent installation. The installation files are automatically downloaded to the `/var/cache/yum` directory.

The software is installed in the `/opt` directory on each target machine. In many cases, this directory is in a file system with 50 GB or fewer of disk space. To increase available disk space for the installation, SAS recommends that you mount additional volumes at `/opt/sas` instead of to a subdirectory of `/opt/sas`. Mounting a volume in the installation directories increases the difficulty of uninstalling the software or of moving the volume to another location at a later time.

Additional space for logs is required in `/opt/sas/viya`. The amount that is required depends on the logging level that you have set. However, the minimum amount of disk space that is required for the installation and for logging is 40 GB.

If disk space is limited, SAS recommends that you create symbolic links from the installation or log directories to the partitions where sufficient disk space (at least 40 GB) is available. For example, you can create a symbolic link from the log directory (`/var/log`) to a directory that has additional free space:

```
/var/log/sas/viya -> ../../../opt/sas/viya/config/var/log/sas/
```

As part of your log management strategy, create symbolic links at the `/opt/sas` level in order to capture all logging activity from SAS Data Agent components.

The Apache `httpd` component of the Apache HTTP Server logs to `/var/log/httpd`. The logs in this directory can grow very large. In addition to using symbolic links to change the log location, you should also implement a log rollover strategy. See the Apache documentation for guidance about log rotation.
Operating System Requirements

Supported Operating Systems

For the full list of supported operating systems, see https://support.sas.com/en/documentation/third-party-software-reference/viya/35/support-for-operating-systems.html.

In a multi-machine deployment, SAS recommends that all server machines have the same version of Linux, including the same distribution, release, and patch level. Note that all CAS Server machines must be running the same version of Linux.

Linux Requirements

The requirements in this section apply to all of the supported Linux operating systems.

Libraries and Packages

The typical Linux installation includes most of the packages and libraries that SAS requires. Problems can occur if default packages were removed from the base operating system (for example, X11 libraries and system utilities).

The following libraries and packages are required for Red Hat Enterprise Linux, Oracle Linux, and SUSE Linux:

- acl-2.2 or later
 The acl package is installed with Red Hat Enterprise Linux by default. For SUSE Linux, it is available in the base repositories.

- curl-7.19.7-53 or later
 On Red Hat Enterprise Linux 6.7 and later within 6.x, apply the RHSA-2017:0847-01 security update for curl to ensure that you have a supported version of the utility.
 On Oracle Linux 6.7 and later within 6.x, apply the ELSA-2017-0847 security update.
 Red Hat Enterprise Linux 7.x, Oracle Linux 7.x, and SUSE Linux 12.2 have a supported version of curl by default.

- glibc-2.12-1.166.el6 and later (on Red Hat Enterprise Linux 6.x or the equivalent). Refer to RHBA-2015:1465 on the Red Hat Customer Portal to obtain the latest updated package list.
 glibc-2.17-107.el7 and later (on Red Hat Enterprise Linux 7.x or the equivalent). Refer to RHSA-2016:2573 on the Red Hat Customer Portal to obtain the latest updated package list.
glibc-2.22 and later (on SUSE Linux)
- libpng (on Red Hat Enterprise Linux 6.x or the equivalent)
- libpng12 (on Red Hat Enterprise Linux 7.x, Oracle Linux 7.x, or SUSE Linux)
- libXp
 Note: For SUSE Linux, the package is named libXpm4.
- libXmu
- net-tools
- the numactl package
- systemd version 219-30 or later
- the X11/Xmotif (GUI) packages
- xterm

Verifying systemd

On Linux 7.x and SUSE Linux, verify that the systemd package on each machine is a supported version. Run the following command:

```bash
rpm -qa | grep systemd
```

For Red Hat or Oracle, if the version that is returned is not at least 219-30, run the following command to retrieve the most recent package:

```bash
yum update systemd
```

For SUSE, run the following command to retrieve systemd information:

```bash
zypper update systemd
```

Disabling the requiretty Setting

On some versions of Red Hat Enterprise Linux, a default setting causes errors with selected SAS Data Agent start-up scripts. Scripts that execute as root or with sudoers permissions cannot run if the default requiretty setting is enabled.

To avoid these errors, take one of the following steps:

- Disable requiretty entirely by removing or commenting out the following line in the `/etc/sudoers` file:
  ```
  Defaults requiretty
  ```
- Disable requiretty for the root user. Add the following line to the `/etc/sudoers` file:
  ```
  Defaults:root !requiretty
  ```

Additional Requirements for Red Hat Enterprise Linux and Oracle Linux

SUSE Linux does not use yum as a deployment tool and therefore does not require a subscription service. If you are using SUSE Linux, you should skip this section.
A SAS Viya deployment requires the operating system to be registered with the Red Hat Network or Oracle Unbreakable Linux Network (ULN). Registration enables you to receive periodic software updates. For a SAS software deployment, registration also enables yum to download software from SAS repositories. Verify that the machine where you perform the deployment (typically, the Ansible controller) is registered and that your subscription has been activated.

The Ansible controller must be connected to the Red Hat Network with a Server-Optional subscription in addition to the Base (operating-system) subscription. The managed nodes must also be registered to the Red Hat Network, but a Base subscription is sufficient.

To check whether the system is registered, run the following command on Red Hat Enterprise Linux:

```
subscription-manager version
```

The command returns information about the subscription service to which the system is registered. To check whether the subscription has been activated, run the following command:

```
subscription-manager list --available
```

A list of active subscriptions is returned.

For Oracle Linux, you periodically see a message stating that This system is not registered with ULN if your ULN subscription is not active. To register an Oracle Linux installation with the ULN, run the following command as the root user:

```
uln_register
```

On a machine that lacks a support contract with Oracle, you can set up a connection to the Oracle Public Yum Server. For more information, see http://public-yum.oracle.com/.

If you have enabled Security-Enhanced Linux (SE Linux) in your environment, you must perform additional steps to accommodate SE Linux for a SAS Viya deployment with Ansible. For more information, see “Configure SE Linux” on page 34.

The default shell, Bash, is required. You can use other shells, but Bash must be present.

In addition, the setuid mount option must be enabled for the file systems in which SAS software is installed. A few processes must be able to access these file systems at SAS run time.

Additional Requirements for SUSE Linux

Deployments on SUSE require the libjpeg62 package.

The default shell, Bash, is required. If your machine is set to use a different shell, errors will occur during the deployment process.

To avoid errors during playbook execution, verify that the which utility has been installed. Use the following command:

```
sudo zypper in which
```
SAS Support for Alternative Operating Systems

SAS provides support on a limited basis for alternative operating system distributions that customers might select. For more information, see the official support policy statement at http://support.sas.com/techsup/pcn/altopsys.html.

Server Software Requirements

Java

A Java Runtime Environment (JRE) must be installed on every machine in your deployment. The playbook checks for a preinstalled version of Java that meets or exceeds the requirements. If one is found, it is used. Otherwise, the playbook attempts to install a recent version of OpenJDK and to set the path in a system configuration file. You can also specify the path to an existing JRE in the vars.yml file before you run your playbook.

For a list of supported JRE distributions and other requirements, see: https://support.sas.com/en/documentation/third-party-software-reference/viya/35/support-for-jre.html.

Third-party distributions of the JRE are supported as long as the version matches the one that is listed on the SAS Support website. However, IBM SDK, Java Technology Edition is not supported. In some cases, running sudo yum install java to install Java can result in the unintentional installation of the IBM JRE, which causes failures with an installation utility.

The current JRE options for SAS Viya have been tuned for OpenJDK and Oracle JRE. If you use a JRE from another vendor and experience performance issues, SAS might recommend using OpenJDK or Oracle JRE. You should also verify that the version of Java is the same on every CAS server machine. You can determine the current Java version on a Linux machine by running the following command:

```
java -version
```

Apache httpd

The deployment process automatically installs Apache httpd on the machines that you designate as targets for the HTTP proxy installation unless it has already been installed. Apache httpd with the mod_ssl module is required in order to create the Apache HTTP Server, which provides security and load balancing for multiple SAS Viya components. This server is also referred to as the reverse proxy server in this guide.

SAS recommends that you install Apache httpd and configure the Apache HTTP Server to use certificates that comply with the security policies at your enterprise before you start the deployment process. The playbook will automatically configure the certificates to secure the server. For more information, see “Enhance Default Security Settings” on page 22.

A high-availability proxy environment is not installed by default, but is a supported configuration. For example, you can include multiple machine targets in the playbook to install httpd on multiple servers. A load balancer is then required to provide high availability for the Apache HTTP Server. Otherwise, you risk bringing the SAS Viya environment down if one httpd instance becomes unavailable.

To install redundant instances and to specify the machine target or targets for the Apache HTTP Server, use the [httpproxy] host group in the inventory file. For more information, see “Assign the Target Machines to Host Groups” on page 47. If you install Apache httpd before starting the deployment process, specify any machines where you have installed it for the [httpproxy] host group so that the deployment can add required software to them. However, because the Apache HTTP Server is required for internal communications among SAS Viya components, do not replace the Apache components that are installed by the playbook.

The Apache HTTP Server must be dedicated to a single SAS Viya deployment.

Data Source and Storage Requirements

Supported Data Sources

SAS Data Agent supports the following external data sources, which require a SAS/ACCESS product. In some cases, these products might have individual requirements:

- Amazon Redshift
- Apache Hive
- IBM DB2
- Microsoft SQL Server
- Data sources that are accessible with an ODBC driver
- Oracle
- PostgreSQL
- SAP HANA
- Teradata

SAS Data Agent also supports CSV files, which do not require a SAS/ACCESS product and can be accessed directly.
A PostgreSQL database is also used as an internal data store, named SAS Infrastructure Data Server. It is based on PostgreSQL version 9 and is configured specifically to support SAS software by storing user content and preferences.

Requirements for SAS/ACCESS Interface to Amazon Redshift

SAS/ACCESS Interface to Amazon Redshift (on SAS Viya) includes SAS Data Connector to Amazon Redshift. It also includes a required ODBC driver.

The required client software is installed automatically. In order to reference a Data Source Name (DSN) in your connections, some post-installation configuration is required. For more information, see “Configure SAS/ACCESS to Amazon Redshift” on page 77.

Requirements for SAS/ACCESS Interface to DB2

SAS/ACCESS Interface to DB2 (on SAS Viya) includes SAS Data Connector to DB2.

IBM DB2 Connect™ must also be licensed if you plan to connect to IBM DB2 databases that are running on AS/400, VSE, VM, MVS, and z/OS systems. The following DBMS products are supported:

- IBM DB2 version 10.5 or later
- Client utilities for IBM DB2 version 10.5 or later

SAS recommends installing the latest FixPack on the client and server.

Some post-installation configuration is required in order to register the SAS Data Agent Server. For more information, see “Configure SAS/ACCESS Interface to DB2” on page 78.

Requirements for SAS/ACCESS Interface to Hadoop

SAS/ACCESS Interface to Hadoop (on SAS Viya) includes SAS Data Connector to Hadoop.

SAS Data Agent supports the following Hadoop third-party distributions:

- Cloudera CDH 5.5 and later releases
- Hortonworks HDP 2.4 and later releases
- MapR 5.2 and later releases
- Amazon Elastic MapReduce

Post-installation configuration is required. For more information, see “Configure SAS/ACCESS Interface to Hadoop” on page 79.
Requirements for SAS/ACCESS Interface to Microsoft SQL Server

SAS/ACCESS Interface to Microsoft SQL Server (on SAS Viya) includes SAS Data Connector to Microsoft SQL Server.

SAS/ACCESS Interface to Microsoft SQL Server supports the following Microsoft products:

- Microsoft Azure SQL Database
- Microsoft SQL Server 2012 or later

SAS/ACCESS to Microsoft SQL Server also supports the following cloud variants of Microsoft SQL Server:

- Amazon RDS Microsoft SQL Server (Microsoft SQL Server 2012 or later)
- Microsoft Azure SQL Database

The client software is installed automatically along with SAS/ACCESS Interface to Microsoft SQL Server.

If your deployment requires encryption, be aware that the SSL library is not included with SAS/ACCESS Interface to Microsoft SQL Server. You can determine whether the SSL library is installed on your machine by running the following command:

```
locate libssl.so | xargs ls -al
```

If required, install the OpenSSL library from https://www.openssl.org.

Post-installation configuration might be required. For more information, see "Configure SAS/ACCESS Interface to Microsoft SQL Server" on page 79.

Requirements for SAS/ACCESS Interface to ODBC

SAS/ACCESS Interface to ODBC (on SAS Viya) enables access to multiple data source types by means of a generic ODBC driver. SAS/ACCESS Interface to ODBC includes SAS Data Connector to ODBC.

Before you can use SAS Data Agent with ODBC, an ODBC driver is required for the data source from which you want to access data. ODBC drivers are often available from DBMS vendors and other third-party ODBC driver developers. Your ODBC driver must comply with the ODBC 3.5 (or later) specification.

Note: The ODBC driver that you select might require additional DBMS software in order to enable network access.

Some post-installation configuration is required. For more information, see "Configure SAS/ACCESS Interface to ODBC" on page 80.
Requirements for SAS/ACCESS Interface to Oracle

SAS/ACCESS Interface to Oracle (on SAS Viya) includes SAS Data Connector to Oracle.

SAS Data Agent requires the following Oracle components:
- Oracle Database 11gR2 or Oracle Server version 12c
- Oracle Client 11gR2 or Oracle Client version 12c (64-bit libraries)

SAS/ACCESS Interface to Oracle supports the following cloud variants of Oracle:
- Amazon RDS Oracle (11gR2 or 12c)
- Oracle Cloud Platform (11gR2 or 12c)

Post-installation configuration is required. For more information, see “Configure SAS/ACCESS Interface to Oracle” on page 81.

Requirements for SAS/ACCESS Interface to PostgreSQL

SAS/ACCESS Interface to PostgreSQL (on SAS Viya) includes SAS Data Connector to PostgreSQL.

SAS Data Agent supports PostgreSQL Database version 9.4.4 or a later version.

It also supports the following cloud variants of PostgreSQL:
- Amazon Aurora (PostgreSQL engine version 9.6 or later)
- Amazon RDS PostgreSQL (Engine version 9.6 or later)

SAS Data Agent requires a driver manager and an ODBC driver for PostgreSQL. SAS provides both of these ODBC client components and installs them automatically. In order to reference a Data Source Name (DSN) in your connections, post-installation configuration is required. For more information, see “Configure SAS/ACCESS Interface to PostgreSQL” on page 82.

Requirements for SAS/ACCESS Interface to SAP HANA

SAS/ACCESS Interface to SAP HANA (on SAS Viya) includes SAS Data Connector to SAP HANA.

SAS/ACCESS Interface to SAP HANA requires the ODBC driver (64-bit) for SAP HANA from SAP. This driver is part of the SAP HANA Client. The following SAP products are also required:
- SAP HANA SPS 11 Server or later
- SAP HANA ODBC Client for SPS 11 or later

Some post-installation configuration is required. For more information, see “Configure SAS/ACCESS Interface to SAP HANA” on page 83.
Requirements for SAS/ACCESS Interface to Teradata

SAS/ACCESS Interface to Teradata (on SAS Viya) includes SAS Data Connector to Teradata.

SAS Data Agent supports the following products:

- Teradata Database 15.10 or later
- Teradata CLTv2 client libraries, TTU 15.10 or later for Linux (64-bit libraries)

SAS/ACCESS Interface to Teradata supports Teradata Database 15.10 or later on the following cloud platforms:

- Teradata IntelliCloud
- Amazon Web Services
- Microsoft Azure
- VMware

Post-installation configuration is required. For more information, see “Configure SAS/ACCESS Interface to Teradata” on page 83.

Security Requirements

Transport Layer Security

Transport Layer Security (TLS) is applied to many of the network connections in the deployment. These connections are secured by SAS Secrets Manager, which is provided by HashiCorp Vault. In a deployment that is fully compliant with SAS security standards, the certificates are all signed by a root CA that is generated by SAS Secrets Manager and an intermediate certificate.

The deployment process provides a default level of encryption for data in motion (transmitted data). However, you should perform several additional actions to increase the level of security on your systems.

How Default Security Is Applied

An Apache HTTP server is used as a reverse proxy server to secure your environment. Default security settings use the Apache mod_ssl module to secure the server with self-signed certificates.

The playbook can automatically install Apache httpd with the mod_ssl module. This option uses default Apache security settings and self-signed certificates. These settings are reasonably secure, but they are not compliant with SAS security standards.

The playbook also inspects any existing certificates and the CA chain to determine whether they comply with SAS security requirements. If compliant certificates are
found, they are used without changes. If only the default mod_ssl is found, the playbook generates a self-signed certificate and configures mod_ssl to use it.

You can add your own certificates after the completion of the deployment process, which will require a brief outage. If you do not add compliant certificates and instead keep the default security settings and certificates, end users will see a standard web browser warning message. SAS recommends replacing the certificates before giving end users access to the software.

To protect data in motion, SAS Viya attempts to use the highest level of the TLS protocol that the operating system library supports, up to TLS 1.2. The OpenSSL implementation is used for TLS protocols. SAS Viya attempts to use the cipher suites that ensure Perfect Forward Secrecy and that provide the highest level of security that the host can support. For more information, see **TLS Encryption**.

Enhance Default Security Settings

SAS recommends that you enhance the default security that is applied by the playbook. As a best practice, follow these steps before you start the deployment process:

1. Install the Apache httpd module and the Apache mod_ssl module on all the web servers in your environment.
2. Add certificates that conform to the policies at your enterprise.
3. Specify the location of the intermediate certificates and the root CA when you edit the playbook. For more information, see “Specify the Path to Certificates” on page 56.

The playbook can then enhance the security of your software deployment automatically. It detects the CA chain that is configured for mod_ssl and incorporates it into the truststores for all other machines in your deployment. On machines that are targets for Consul deployment, the playbook performs additional security configuration.

(Optional) You can also perform these actions after the playbook has been run:

- Block external connections to port 80.
- Use HTTPS for access to the user interfaces from a web browser.
- Add custom certificates to the self-signed certificates that the playbook provides on all machines.
- Upgrade the security protocol and ciphers that are enabled by default using the sas-ssl.conf file.
- Prevent administrators from altering the default permissions on subdirectories of `opt/sas/viya`. Use your preferred network monitoring or security tool to monitor permissions on subdirectories of `opt/sas/viya` after the deployment has completed.

For more information about setting up the Apache HTTP Server and configuring additional security settings, see **Encryption in SAS Viya: Data in Motion**.
User and Group Requirements

Overview: User Accounts

In addition to an installation account with sudoers privileges, SAS Data Agent requires one service account. This service account owns critical files and is used to run various processes.

The required service account must belong to a group named “sas.” You cannot assign an alternative name to this group. By default, the playbook will create the sas group as a local Linux group (in /etc/group) on each target computer that you define. However, you can explicitly create the sas group before you run the playbook. You can create it locally (in /etc/group), or in an LDAP scheme that is configured for the authentication provider of the Linux servers that will be your installation targets.

If you create the sas group locally, the group ID (GID) must be consistent across all servers in the SAS Data Agent environment.

Set Up the User Account that Deploys the Software

The user account that is used to configure and start the deployment process must meet the following requirements:

- Super user (sudo) or root access.

 To verify that your user ID is included in the sudoers file, run the following command:

 `sudo -v`

 As an alternative, to verify your sudoers privileges, run this command:

 `sudo -l`

 Make sure that commands that can be run as “sudo” are unrestricted on the installation computer.

 This user account must be able to access the root and sas accounts as “sudo”.

- Appropriate permissions to create subdirectories in the directory where you saved the playbook. The recommended path is `/sas/install/sas_viya_playbook`. For more information, see “Store the Playbook” on page 33.

- A home directory.
Set Up User Accounts for SAS Data Agent Users

Additional user accounts are required in order to configure and run the software after the deployment process has completed.

The following requirements apply to the user accounts that can access SAS Data Agent:

- Each user must be able to authenticate to the LDAP provider.
- To administer SAS Data Agent, users must be included in the Data Agent Administrators group.

 Adding users to SAS Data Agent groups is a post-deployment task.
- To access SAS Data Agent features, these users must be included in the Data Agent Power Users group.

User Accounts (Reference)

This section provides reference information about user accounts that are required for SAS Data Agent. The table identifies and describes these accounts. Because these accounts are required for the installation and for running services during the product’s normal operation, do not delete them or change their names. These user accounts do not require root or sudo privileges.

<table>
<thead>
<tr>
<th>Default Account Name and Group</th>
<th>Description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>sas; member of sas group</td>
<td>A service account without user restrictions. A login shell is required. No password. You can add a password after installation, if necessary, but make sure that it does not expire. The default user name is required. The sas group is an administration group, not a general user group.</td>
<td>Required for the installation, and created automatically. The installation process sets user and group ownership permissions on all the installation files. This user must exist to enable ownership. After the installation has completed, this user account enables required components to run. The sas group is intended to allow access to administrative features, such as logs and backup. It is the group owner of many files on disk. Restrict membership in this group to administrators.</td>
</tr>
</tbody>
</table>

24 Chapter 2 / System Requirements
An SSH key for the sas user account is required in order to enable the Data Agent Database. This key is created during the deployment and is delivered to every pgpoolc and sasdatasvrc host that is listed in your inventory.ini file.

The following additional groups are required to support third-party components and are also added to /etc/group automatically:

- apache
- postgres

An additional user account, named sasrabbitmq, is created automatically as the owner of the RabbitMQ component. This component is also added to /etc/passwd automatically.

Services that Require Root Privileges

When the deployment process has completed, several services are automatically configured to run with root privileges. Do not downgrade (change from root privilege to another privilege) any of the following services. Doing so would result in an inoperable environment:

- identsvcs and launchsvcs—Authorize and perform the launching of the CAS server. These services must run as root because, on Linux, the root identity is required in order to start a running process under a different identity. The launchsvcs process creates a CAS session under the identity of the user who submitted the request. The identsvcs process authenticates users when they attempt to connect to a CAS server with a username and password using PAM.

- consul-template—Supports SAS Configuration Server, which is based on HashiCorp Consul. SAS Configuration Server is a registry that contains service configuration data and status information. The consul-template process extracts configuration change data from the server and updates the appropriate service configuration file.
- **vault**—Supports SAS Secrets Manager, which is based on HashiCorp Vault. It stores and generates secrets such as certificates.

- **RabbitMQ**—Supports SAS Message Broker, which is a message service that is based on Pivotal RabbitMQ. SAS Message Broker manages and routes messages among SAS Viya components.

- **Apache httpd**—Supports the Apache HTTP Server, which provides security and load balancing for multiple SAS Viya components.

Deployment Tools

Ansible Controller Requirements

A typical Ansible deployment consists of at least one control machine (the Ansible controller) and multiple Ansible managed nodes (the machines where SAS software is installed). In a single-machine deployment, Ansible and all SAS software are installed on the Ansible controller. For more information, see "Install Ansible" on page 41.

In a distributed deployment, the managed nodes use a secure shell (SSH) framework for connections to the Ansible controller. Verify network connectivity between the controller and the managed nodes. Connectivity is also required among all machines in the deployment and from the controller to the SAS yum repositories.

For information about supported Ansible versions and other requirements, see: https://support.sas.com/en/documentation/third-party-software-reference/viya/35/support-for-operating-systems.html#ansible.
Pre-installation Tasks

Create a Mirror Repository .. 28
SAS Mirror Manager and the Mirror Repository 28
Using SAS Mirror Manager with a Proxy Server 30
Specify a Log Location ... 31

Create a Playbook .. 31
Download the SAS Orchestration CLI 31
Create a Playbook with the SAS Orchestration CLI 32
Store the Playbook .. 33

Enable Required Ports ... 34

Configure SELinux .. 34
Options for Deploying SAS Viya with SELinux 34
Disable SELinux and Deploy SAS Viya 35
Configure the Environment to Accommodate SELinux 35
Disable SELinux, Deploy SAS Viya, then Re-enable SELinux .. 36

Configure a Proxy Server ... 36
Overview .. 36
Using curl ... 36
Using yum ... 37

Enable the Yum Cache .. 37

Perform Linux Tuning .. 37
Set the ulimit Values .. 37
Set the Semaphore Values ... 39
Change the Default Time-outs ... 39
(SUSE Linux Only) Change the Maximum Number of Operating System Tasks . 40

Confirm the Identities of the Hosts .. 40

(Optional) Enable Key-Based SSH Authentication 41

Install Ansible .. 41
Standard Ansible Installation ... 42
Streamlined Ansible Installation for Red Hat Enterprise Linux and Equivalent Distributions 42
Streamlined Ansible Installation for SUSE Linux 43
Test Your Ansible Installation ... 43
Create a Mirror Repository

A mirror repository is required for all SAS Viya deployments on SUSE Linux. For other platforms, it is optional.

Note: The process for creating a mirror repository for SAS Viya 3.4 and later is different from the one used in previous versions. If you are familiar with earlier versions of SAS Viya, you should not assume any similarities with the process used by those versions.

SAS Mirror Manager and the Mirror Repository

SAS Mirror Manager is a command-line utility for synchronizing a collection of SAS software repositories. Its primary use is to create and manage mirror repositories for software deployment. If you intend to eventually add tenants or additional CAS servers to your deployment, use a mirror repository to ensure that the same software is deployed on each machine.

SAS Mirror Manager downloads the software that you ordered and creates a mirror repository. It can create the mirror repository in a specified location, such as a shared NFS mount point or a web server that serves the files with HTTP. The default location for the download is the `sas_repos` directory that is created in the installation user’s home directory. Make sure that the default location for the download and the destination for the mirror repository have adequate space.

This guide refers to the default location as `sas_repos`. If you want to specify the mirror destination, use the `--path` option, followed by the full directory path. In addition, replace instances of `sas_repos` that are used in this guide with the actual location that you select.

The `sas_repos` directories and files are explained as follows:

- The entitlements.json is a list of the repositories to which you are entitled.
- The `location_group_declarations.json` file and the `sasmd` directory contain data that is used by the SAS Orchestration CLI to create the order-specific tools for your deployment.
- Any remaining directories are the software repositories, organized by native deployment tools:
 - `repos` contains yum files for Linux.
 - `win` contains MSI files for Windows.
 - `deb` contains APT files for Debian.

To create a mirror repository with SAS Mirror Manager:

1. The Software Order Email (SOE) instructed you to save the `SAS_Viya_deployment_data.zip` file attachment. If you have not already saved the file, save it to the location where you intend to use it.
2 Download SAS Mirror Manager from the SAS Mirror Manager download site to the machine where you want to create your mirror repository. If you use Internet Explorer to download the Linux or Macintosh version, save the file as a .tgz file instead of a .gz file.

Note: This step requires internet connectivity. If you receive warnings or errors regarding connectivity, see “Internet Connectivity Problems” on page 141.

3 Uncompress the downloaded file.

4 (Optional) Add the location of SAS Mirror Manager to your PATH environment variable.

Note: This step is not required. However, the example SAS Mirror Manager commands in this section assume that you have added the recommended location to your PATH.

 export PATH=/opt/sas/viya/home/bin:$PATH

5 Run the following basic command to create the mirror repository in the default location:

Note: All the software to which your order entitles you is downloaded if you use the basic command in the previous step. To download software for selected target platforms, skip to the next step.

 mirrormgr mirror --deployment-data path-to-SAS_Viya_deployment_data.zip

By default, the repositories are placed in the sas_repos directory in the installation user’s home directory. Use the --path option, followed by the full directory location of the mirror destination, to change this location.

6 (Optional) Run the following command to see a list of the platforms that you can select for the download operation:

 mirrormgr list remote platforms --deployment-data path-to-SAS_Viya_deployment_data.zip

7 (Optional) Use the --platform option and one of the values that were returned by the list remote platforms command to download software only for a selected target platform:

Important: Use x64-redhat-linux-6 for all supported versions of Red Hat Enterprise Linux and its equivalent, such as Oracle Linux. The x64-redhat-linux-7 value indicates a package type that is only compatible with a different type of deployment.

 mirrormgr mirror --deployment-data path-to-SAS_Viya_deployment_data.zip --path location-of-mirror-repository --platform platform --latest

8 (Optional) Use the --latest option to exclude any obsolete packages from the mirror repository that is being created.

If you use this option, be sure to use it with any subsequent mirrormgr commands. For example, to compare the contents of your mirror with the contents of SAS repositories, use the diff command with --latest if you used this option with the mirror command.

9 (Optional) After the initial download is complete, move the file structure to a web server or shared NFS mount point. Internet connectivity is not required for the destination machine.
Depending on your platform, you can use tools like rsync and scp to move the files. Here is a typical command for rsync:

```
rsync -av --progress sas_repos target_machine:/var/www/html/pulp/
```

Using SAS Mirror Manager with a Proxy Server

If your environment requires a proxy server and is set up to use it, the SAS Mirror Manager commands work automatically. However, if your environment is not set up to send data through the proxy, you can add an environment variable to the command to run SAS Mirror Manager. The environment variable identifies where the proxy is located and what is required to send data through it.

Use the environment variable that is appropriate for the target of the query that passes through the proxy. For example, if you are trying to reach a SAS repository, use the HTTPS environment variable because the SAS repository is on an HTTPS site. In most cases, the HTTPS environment variable is appropriate.

Here are some examples of SAS Mirror Manager commands that include environment variables.

Note: Specify these commands on a single line. Multiple lines are used here to improve readability.

Example 1: An HTTPS site.

```
https_proxy=http://user-name:password@internet-proxy-server-FQDN:proxy-port
```

Example 2: HTTPS with the certificate location.

If you use the `https_proxy` variable, the run command for SAS Mirror Manager might also require the `--cacert` option. That option indicates the location of the certificate that the proxy must use. The proxy certificate is managed by your organization. Here is an example of the environment variable and the run command for SAS Mirror Manager used together:

```
https_proxy=https://proxyid:password@proxy.company.com:3129 mirrormgr mirror --deployment-data SAS_Viya_deployment_data.zip --platform x64-redhat-linux-7 --path sas_repos --cacert ../proxycert.crt --latest
```

Example 3: An HTTP site.

```
http_proxy=http://user-name:password@internet-proxy-server-FQDN:proxy-port
```

Example 4: An HTTP site with the environment variable and the run command for SAS Mirror Manager used together.

```
http_proxy=http://proxyid:password@proxy.company.com:443 mirrormgr mirror --deployment-data SAS_Viya_deployment_data.zip --platform x64-redhat-linux-7 --path sas_repos --latest
```
Specify a Log Location

The default location for SAS Mirror Manager logs is
user-home-directory/.local/share/mirrormgr/mirrormgr.log. To specify an
alternative log location, use the --log-file option:

mirrormgr mirror --deployment-data path-to-
SAS_Viya_deployment_data.zip --path location-of-mirror-repository --
log-file location-of-mirror-repository/mirrormgr.log --platform Linux-
distribution --latest

Create a Playbook

The SAS Orchestration Command Line Interface (CLI) uses the order information
that was included in your Software Order Email (SOE) to create a playbook for
deploying your SAS Viya software. The SAS Orchestration CLI can be run on Linux
or Windows and it requires the Java Runtime Environment 1.8.x. It also requires
access to the internet, unless you are deploying from a mirror repository.

Before you use the SAS Orchestration CLI, ensure that the
SAS_Viya_deployment_data.zip file attachment from your SOE is copied to a
directory on a machine that runs the Linux, Macintosh, or Windows operating
system.

Download the SAS Orchestration CLI

1 The SOE indicated that you should save the SAS_Viya_deployment_data.zip file
attachment. If you have not already done so, save that file now.

2 Go to the SAS Orchestration CLI download site and download the SAS
Orchestration CLI for the operating system where you stored the ZIP file. The
SOE recommended that you save the ZIP file to a machine that runs Linux,
which is where you will install your SAS Viya software. However, you can also
store it on a machine that runs Macintosh or Windows. If you use Internet
Explorer to download the Linux or Macintosh version, save the file as a .tgz file
instead of a .gz file.

 Note: This step requires internet connectivity. If you receive warnings or errors
 regarding connectivity, see “Internet Connectivity Problems” on page 141.

3 Uncompress the .tgz file (Linux and Macintosh) or .zip file (Windows) in the
same location where you downloaded it. The result is a file named sas-
orchestration on Linux or Macintosh or a file named sas-orchestration.exe on
Windows.
Create a Playbook with the SAS Orchestration CLI

Basic Command

To create a playbook, use the command that is appropriate for the operating system where the SAS Orchestration CLI is located.

Note: The following commands are organized by the operating system where the SAS Orchestration CLI runs, rather than by the operating system where your SAS Viya software will be deployed. After you create the playbook, you can move it to the machine where you deploy your software. Enter each command on a single line. Multiple lines are used here to improve readability.

Linux or Macintosh

```
./sas-orchestration build --input location-of-ZIP-file-including-file-name --platform deployment-platform-tag --architecture deployment-architecture-tag --deployment-type data-agent-on-premises
```

Windows

```
\sas-orchestration.exe build --input location-of-ZIP-file-including-file-name --platform deployment-platform-tag --architecture deployment-architecture-tag --deployment-type data-agent-on-premises
```

For `deployment-platform-tag`, specify the target operating system, one of the following:

- `redhat` for Red Hat Enterprise Linux or an equivalent distribution, such as Oracle Linux
- `suse` for SUSE Linux Enterprise Server

For `deployment-architecture-tag`, specify the target chip for the deployment, one of the following:

- `x64` for 64-bit chips
- `ppc64le` for IBM POWER9 chips

Using the SAS Orchestration CLI creates a new file named `SAS_Viya_playbook.tgz`.

Options

Use a Proxy Server

If you use an unauthenticated proxy to reach the internet, you must add the following option to the run command in order to make an outgoing connection:

```
--java-option "-Dhttps.proxyHost=proxy-server-IP-address-or-host-name"
```

In addition, if the proxy server is not using the default proxy port of 80, you must also add the following option:

```
--java-option "-Dhttps.proxyPort=proxy-server-port-number"
```
If you use both options, they should not be combined into a single option. The following is an example of using both options on a Linux machine:

```bash
./sas-orchestration --java-option "-Dhttps.proxyHost=my.proxy.com" --java-option "-Dhttps.proxyPort=1111" build --input /tmp/SAS_Viya_deployment_data.zip --deployment-type data-agent-on-premises
```

The `--java-option` tags must come before the `build` command.

Use a Mirror Repository

If you created a mirror repository with SAS Mirror Manager, you must include its location with the `--repository-warehouse` option.

```bash
./sas-orchestration build --input /sas/install/
SAS_Viya_deployment_data.zip --platform redhat --architecture x64 --repository-warehouse "URL-to-mirror-repository-content" --deployment-type data-agent-on-premises
```

Here is an example for a mirror repository on a Windows machine:

```bash
\sas-orchestration build --input c:\sas\install
\SAS_Viya_deployment_data.zip --platform suse --architecture x64 --repository-warehouse file:///sas_repos --deployment-type data-agent-on-premises
```

Note: The repository warehouse URL must be available to all hosts in the deployment to retrieve packages from the repositories. For example, if the repository warehouse is file-based, then that location should be shared across hosts and should be shared at the same path on each of those hosts. For more information about URLs, consult with your system administrator.

For more information about SAS Mirror Manager, see “Create a Mirror Repository” on page 28.

Help with the Options

The SAS Orchestration CLI includes several options. To learn about all the options for the SAS Orchestration CLI, use the appropriate command:

Linux or Macintosh

```bash
./sas-orchestration build --help
```

Windows

```bash
\sas-orchestration.exe build --help
```

Store the Playbook

1. If necessary, move the `SAS_Viya_playbook.tgz` file to a directory on your Ansible controller that can be read by other users. The recommended location is `/sas/install`.

2. In the same directory where you have saved the playbook, uncompress it.

   ```bash
tar xf SAS_Viya_playbook.tgz
```

In addition, SAS recommends that you create a directory on each machine in your deployment for storing files that are used to deploy and maintain your software. The best practice is to use the same directory location on each machine. SAS
Enable Required Ports

The following ports are used by SAS Viya and should be available before you begin to deploy your software. The same ports should also be available for any firewalls that are configured on the operating system or the network.

Table 3.1 Ports to Be Made Available

<table>
<thead>
<tr>
<th>Process</th>
<th>Required Port</th>
<th>Requires Allowed Inbound Traffic From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache HTTP Server</td>
<td>443 (external)</td>
<td>SAS Data Agent</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>5431</td>
<td>SAS Data Agent</td>
</tr>
<tr>
<td>FSNet port</td>
<td>25141</td>
<td>SAS Data Agent</td>
</tr>
<tr>
<td>SAS Data Agent port</td>
<td>26301</td>
<td>SAS Data Agent</td>
</tr>
</tbody>
</table>

Configure SELinux

If Security-Enhanced Linux (SELinux) is enabled in your environment, it must be disabled or accommodated before you can use Ansible to deploy SAS Viya.

Options for Deploying SAS Viya with SELinux

If SELinux is required in your environment, it is supported if you perform some additional tasks.

To determine the present status of SELinux in your environment:

```
sudo sestatus -v
```

- If you get a message that the command is not enabled, SELinux is not active in your environment. You can use Ansible to deploy SAS Viya.
- If a mode that is not `permissive` is returned, SELinux is enabled. In order to deploy SAS Viya, you must select one of the following options:
 - Disable SELinux and deploy SAS Viya.
 - Configure the environment to accommodate SELinux.
Disable SELinux, deploy SAS Viya, and then re-enable SELinux after the deployment has completed.

Disable SELinux and Deploy SAS Viya

If SELinux is active in your environment, one option is to configure permissive mode for SELinux on all the target machines in your deployment.

Note: Permissive mode effectively disables SELinux.

To change the mode value to `permissive` on all target machines in your deployment:

```
sudo setenforce 0
sudo sed -i.bak -e 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config
```

Configure the Environment to Accommodate SELinux

To deploy SAS Viya with SELinux enabled on all target machines in your deployment, perform all the following tasks:

1. Disable the pre-installation check that determines whether SELinux is active. For more information, see “Verify System Requirements” on page 55.

2. Configure SELinux to enable the Apache HTTP Server. By default, SELinux does not allow the Apache httpd component to access the network.

 Run the following command on any machines that are deployTargets for the [httpproxy] host group in the inventory.ini file:

   ```
sudo setsebool -P httpd_can_network_connect 1
```

3. Make sure that the SELinux Policy `deny_unknown` status is set to `allowed`.

 Perform the following steps:

 a. Run the following command to determine the current SELinux settings:

   ```
sudo sestatus -v
```

 b. Check the value of Policy `deny_unknown` status in the output. If the value is not `allowed`, you must change the policy setting.

 c. As root, edit the `/etc/selinux/semange.conf` file.

 d. Add the following line:

   ```
   handle-unknown=allow
   ```

 e. As root, run the following command to rebuild and reload the policy:

   ```
   semodule -B
   ```
Disable SELinux, Deploy SAS Viya, then Re-enable SELinux

A final option is to disable SELinux during the deployment and then re-enable it as soon as the deployment has completed. If you select this option, perform tasks 2 and 3, as described in "Configure the Environment to Accommodate SELinux".

In addition, if you use key-based authentication to enable Ansible tasks to run on multiple machines without password prompts, perform an additional task. Any SSH keys that were generated while SELinux was in permissive mode will no longer work when you set SELinux back to enforcing mode. You must restore the context for your SSH keys as a post-deployment step. For more information, see "(Optional) Enable Key-Based SSH Authentication" on page 41.

Configure a Proxy Server

Overview

The SAS Viya deployment process uses both curl and yum to download RPM packages from SAS repositories. If your organization uses a forward HTTP proxy server, both curl and yum on each target deployment machine must be configured for forward proxy servers.

Refer to the Linux man pages for yum.conf and curl for more information about proxy settings.

Using curl

Curl uses the https_proxy and http_proxy environment variables to send requests to proxy servers. You can export these variables in a new shell profile script such as /etc/profile.d/httpproxy.sh. Here is an example of the /etc/profile.d/httpproxy.sh script:

```bash
export https_proxy=http://user-name:password@internet-proxy-server-FQDN:8080/
export http_proxy=http://user-name:password@internet-proxy-server-FQDN:8080/
```

In addition, ensure that HTTP requests between machines in the deployment are not routed through the proxy server during deployment by adding the IP addresses, host names, or domains for the SAS Viya machines to the no_proxy variable in your profile.d script. For example, if the SAS Viya machines are using the IP addresses, 10.255.47.131 and 10.255.47.132, and the host names, machine1.example.com and machine2.example.com, you can configure no_proxy as follows:

```bash
export no_proxy="localhost,127.0.0.1,.example.com,10.255.47.131,10.255.47.132"
```
If the profile script is properly configured, these environment variables are set at login for all users. Curl requests for HTTP or HTTPS resources should use the connection information from these variables.

Using yum

Forward proxy server settings for yum can be configured in `/etc/yum.conf`. Here is an example of the `/etc/yum.conf` script:

```bash
proxy=internet-proxy-server-FQDN:8080/
proxy_username=user-name
proxy_password=password
```

Enable the Yum Cache

Note: SUSE Linux does not use yum as a deployment tool. If you are using SUSE Linux or installing from a local mirror repository, skip this section.

By default, yum deletes downloaded files after a successful operation when they are no longer needed, minimizing the amount of storage space that yum uses. However, you can enable caching so that the files that yum downloads remain in cache directories. By using cached data, you can perform certain operations without a network connection.

In order to enable caching, add the following text to the `main` section of `/etc/yum.conf`.

```bash
keepcache = 1
```

This task should be performed on each machine in the deployment.

Perform Linux Tuning

This section describes tuning that should be performed on your Linux machines before you deploy your software. For information about tuning that can be performed after you deploy your software, see Tuning the Linux Operating System.

Set the ulimit Values

Overview

The Linux operating system provides mechanisms that enable you to set the maximum limit for the amount of resources that a process can consume. Here are some of the resource types:
open file descriptors

stack size

processes available to a user ID

Each resource type with limits is stored in the appropriate file on each machine in your deployment.

Here is the format of the `/etc/security/limits.conf` file for setting the maximum number of open file descriptors:

```
*     -     nofile     value
```

The asterisk (*) indicates all user accounts.

For a single user account, * can be replaced with the user ID for that account. Here is an example:

```
account-name     -     nofile     value
```

This line is duplicated in the file for each user ID.

For a group, * can be replaced with the at symbol (@) followed by the group name. Here is an example:

```
@group-name     -     nofile     value
```

Set the Maximum Number of Open File Descriptors and Stack Size

For each machine in your deployment:

1. Open the `/etc/security/limits.conf` file.

2. Set the limit for open file descriptors as follows:

 - If PostgreSQL will be deployed on the machine, set the limit (using the `nofile` item) to 150000 for the sas user.

 `sas - nofile 150000`

 - If you are deploying SAS Visual Investigator or SAS Intelligence and Investigation Management and the machine is running Elasticsearch, set the limit to at least 65536 for the sas user.

 `sas - nofile 65536`

 - For all other machines in the deployment, set the limit for the sas account, the cas account, and any other account that will be used to run a CAS session, including the root user, to at least 48000.

 `* - nofile 48000`

 Note: If you are performing a single-machine deployment, use the highest limit (described in step 2) for all users.

 `* - nofile 150000`

3. For machines on which PostgreSQL will be deployed, set the limit for the stack size (using the `stack` item) to 10240 for the sas user.

 `sas - stack 10240`

For machines that will not have PostgreSQL deployed on them, do not set a limit for the stack size.
4 Save and close the `/etc/security/limits.conf` file.

Set the Maximum Number of Processes Available

For each machine in your deployment:

1 Open the appropriate file. For Red Hat Enterprise Linux 6.7 or an equivalent distribution, open `/etc/security/limits.d/90-nproc.conf`. For Red Hat Enterprise Linux 7.1 and greater or an equivalent distribution, open `/etc/security/limits.d/20-nproc.conf`. For SUSE Linux, open `/etc/security/limits.conf`.

2 Set the limit for the number of processes as follows:
 - If PostgreSQL will be deployed on the machine, set the limit (using the nproc item) to 100000 for the sas user.
     ```
     sas     -     nproc     100000
     ```
 - For all other machines in the deployment, set the sas account, the cas account, and any other account that will be used to run a CAS session to at least 65536.
     ```
     *     -     nproc     65536
     ```

 Note: If you are performing a single-machine deployment, use the highest limit (described in step 2) for all users.
   ```
   *     -     nproc     100000
   ```

3 Save and close the `*-nproc.conf` file.

Set the Semaphore Values

For each machine on which PostgreSQL will be deployed.

1 Open the `/etc/sysctl.conf` file.

2 Add the following lines or modify existing values as follows:
   ```
   kernel.sem=512 32000 256 1024
   net.core.somaxconn=2048
   ```

3 Save and close the `/etc/sysctl.conf` file.

4 Refresh the revised settings from the `/etc/sysctl.conf` file:
   ```
   sudo sysctl -p
   ```

Change the Default Time-outs

Note: The information in this section applies only to systems running Red Hat Enterprise Linux 7.1 and later or equivalent distributions, including SUSE 12.1 and later. If you are using an earlier Linux distribution, you should skip this section.
To change the default time-out values:

1. Open the `/etc/systemd/system.conf` file.
2. Find the two variables that control time-outs: `DefaultTimeoutStartSec` and `DefaultTimeoutStopSec`.
3. If the lines that contain these variables are not already uncommented, uncomment each line by removing the number sign (#).
4. Assign both the `DefaultTimeoutStartSec` and `DefaultTimeoutStopSec` variables a value of `1800s`.

```bash
DefaultTimeoutStartSec=1800s
DefaultTimeoutStopSec=1800s
```
5. Save and close the `/etc/systemd/system.conf` file.

(SUSE Linux Only) Change the Maximum Number of Operating System Tasks

If you are deploying on SUSE Linux, run the following commands to change the maximum number of operating system (OS) tasks that each user can run concurrently.

Note: Run these commands as a root or `sudo` user.

```bash
sudo sed -i 's#.*UserTasks.*#UserTasksMax=50000#g' /etc/systemd/logind.conf
sudo systemctl restart systemd-logind
```

These commands allow the user to run 50000 tasks concurrently.

Confirm the Identities of the Hosts

Each machine in the deployment must have a fully qualified domain name (FQDN). To ensure that each machine in the deployment has the host name that you expect, run the `hostname`, `hostname -f`, and the `hostname -s` commands on each machine. If any of the machines are not named as you expect or do not have an FQDN, correct the issue and run the commands again to confirm the correction.

Note: For more information about the `hostname` command and its options, see the Linux man pages.
(Optional) Enable Key-Based SSH Authentication

Note: Key-based SSH authentication is optional, but it is recommended.

In order to run Ansible tasks on multiple hosts without being prompted for a password, you can create an SSH key pair and distribute the public key to the machines where SAS software will be installed. Performing this task provides a secure authentication mechanism for SSH logins and avoids the need for SSH password options when performing Ansible tasks.

Here is an example of setting up an SSH key pair. However, there are many methods for creating and propagating SSH keys.

Note: These steps assume that the PasswordAuthentication keyword has been enabled in the SSH daemon configuration file. It is also assumed that the user has a password that can be used for ssh-copy-id authentication.

1. Create an SSH key pair without a passphrase. The following example specifies the RSA key type. However, you can specify any key type that is supported by your SSH installation. Refer to the ssh-keygen man page for more information.

 ssh-keygen -t rsa -N "" -f ~/.ssh/id_rsa

2. Copy the public key to each target host. Here is an example:

 ssh-copy-id target0.example.com
 ssh-copy-id target1.example.com

 If the machine where Ansible is installed is also a target host for installing SAS software, run ssh-copy-id against the Ansible host.

3. Verify that you can authenticate to all target hosts without being prompted for a password.

If you enable SELinux by setting it to enforcing after the deployment has completed, you must restore the context of any SSH keys that were generated while SELinux was running in permissive mode. Here is an example of the command:

 restorecon -R -v /path-to-keys/.ssh

For path-to-keys, substitute the location of your SSH key files.

Install Ansible

Ansible is third-party software that provides automation and flexibility for deploying software to multiple machines. You must install a supported version of Ansible.
Standard Ansible Installation

The Ansible installation process is documented at http://docs.ansible.com/ansible/latest/intro_installation.html. You should always follow the Ansible documentation and choose the installation method that works best for your IT environment.

Not all versions of Ansible that are available for installation are supported by SAS Viya. For a list of supported Ansible versions, see: https://support.sas.com/en/documentation/third-party-software-reference/viya/35/support-for-operating-systems.html#ansible. On that same page, SAS provides a list of supported versions of Python. Python support is determined by the release of Ansible that you install.

Streamlined Ansible Installation for Red Hat Enterprise Linux and Equivalent Distributions

Note: Even though you are advised to follow the instructions in the Ansible documentation, streamlined installation instructions are provided here as a convenience. Before performing these instructions, ensure that they are appropriate for your site and that they comply with the IT policies in your organization.

These steps assume that you have sudo access to the machine where you are installing Ansible.

1. Run the following commands to attach the EPEL repository to your server. You can copy and paste this entire block of text for convenience.

```
## find out which release (6 or 7)
if   grep -q -i "release 6" /etc/redhat-release ; then
    majversion=6
elif grep -q -i "release 7" /etc/redhat-release ; then
    majversion=7
else
    echo "Apparently, running neither release 6.x nor 7.x "
fi
## Attach EPEL
# Display the available repositories
sudo yum repolist
```

2. To Install Python PIP and related packages:

```
sudo yum install -y python python-setuptools python-devel openssl-devel
sudo yum install -y python-pip gcc wget automake libffi-devel python-six
```

3. Because EPEL will no longer be required, you can remove it with the following command:

```
sudo yum remove -y epel-release
```

4. Upgrade PIP and setuptools using one of the following methods, based on the version of Python you are running.

Specific versions of Python modules are required. Here are some examples:
Streamlined Ansible Installation for SUSE Linux

Note: Even though you are advised to follow the instructions in the Ansible documentation, streamlined installation instructions are provided here as a convenience. Before performing these instructions, ensure that they are appropriate for your site and that they comply with the IT policies in your organization.

These steps assume that you have sudo access to the machine where you are installing Ansible.

1. To install Python’s setup tools:
   ```
   sudo zypper install python-setuptools
   ```

2. To Install Python PIP:
   ```
   sudo easy_install pip
   ```

3. To install a specific version of Ansible through PIP:
   ```
   sudo pip install ansible==2.7.2
   ```

Test Your Ansible Installation

1. To test the Ansible version:
   ```
   ansible --version
   ```

 Here is an example of successful output:
   ```
   ansible 2.7.2
   config file =
   configured module search path = Default w/o overrides
   python version = 2.7.15 (default, May 14 2019, 07:55:04)
   [GCC 4.8.5 20150623 (Red Hat 4.8.5-14)]
   ```

2. To perform a basic ping test:
   ```
   ansible localhost -m ping
   ```

 Here is an example of successful output:
   ```
   [WARNING]: Host file not found: /etc/ansible/hosts
   [WARNING]: provided hosts list is empty, only localhost is available
   localhost | SUCCESS => {
   "changed": false,
   "ping": "pong"
   ```
Edit the Inventory File

Overview
Ansible uses an inventory file to specify the machines to be included in a deployment and the software to be installed on them. For SAS Viya deployments,
sas_viya_playbook/inventory.ini is used as the inventory file. If you used the recommended location for uncompressing your playbook, the file is located at /sas/install/sas_viya_playbook/inventory.ini.

Each inventory file consists of two parts:

deployment target definition
A specification of each machine on which SAS Viya software will be deployed.

host group assignment list
A mapping of the installable groups of software and the machines on which they will be deployed. SAS Viya software is deployed as host groups, which are identified by square brackets ([]) in the inventory file. Each host group is preceded by comments that describe the purpose of the software in the host group. The user specifies the machines on which a host group will be deployed by listing them under the host group name. A machine can have more than one host group deployed on it.

Here is an example of a host group assignment list:

The CommandLine host group contains command line interfaces for remote interaction with services.
[CommandLine]
deployTarget
deployTarget2

More details about the deployment target definition and the host group assignment list are included in the following sections.

Note: Inventory files are generated for a specific software order. Do not copy files from one playbook and attempt to use them with another playbook.

Multiple inventory.ini Files

If you deploy SAS Data Agent more than once, you must create and maintain a separate inventory.ini file for each deployment you perform. To do so, copy the inventory.ini file from the uncompressed playbook and paste it in the same location with a name that is different but meaningful for the specific deployment of SAS Data Agent.

Update the File

Specify the Machines in the Deployment

The first section in the inventory.ini file identifies a deployment target for each target machine. It also specifies the connection information that is needed by Ansible to connect to each machine. The following format is used to specify the deployment target reference. It is located at the beginning of the inventory.ini file.

deployTarget ansible_host=<machine address> ansible_user=<userid>
ansible_ssh_private_key_file=<keyfile>

The following table describes the components of the deployment target reference:
Table 4.1 Descriptions of Components of the Deployment Target Reference

<table>
<thead>
<tr>
<th>Component of the Deployment Target Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deployTarget</td>
<td>specifies the alias that is used by Ansible to refer to the physical machine definition. The default alias is <code>deployTarget</code>. In a multi-machine deployment, you specify multiple deployment targets. In this case, choose a different alias name for each deployment target. Choose a meaningful alias such as <code>ansible-controller</code>.</td>
</tr>
<tr>
<td>ansible_host</td>
<td>specifies any resolvable address for the target host, such as the IP address or fully qualified domain name.</td>
</tr>
<tr>
<td>ansible_user</td>
<td>specifies the user ID that is used by Ansible to connect to each of the remote machines and to run the deployment. Must have root or sudo permissions.</td>
</tr>
<tr>
<td>ansible_ssh_private_key_file</td>
<td>specifies the private key file that corresponds to the public key that was previously installed on each of the remote machines. This file typically resides in your <code>~/.ssh</code> directory.</td>
</tr>
</tbody>
</table>

Note: Do not use the same machine for more than one alias. See the example below where each machine has a different alias.

The following example specifies the deployment target to be used when SAS Data Agent will be deployed on the machine that is running Ansible:

```
deployTarget ansible_connection=local
```

The following example specified the deployment target when SAS Data Agent will be deployed on a machine that is not running Ansible:

```
deployTarget ansible_host=host1.example.com ansible_user=user1 ansible_ssh_private_key_file=~/.ssh/id_rsa
```

Assign the Target Machines to Host Groups

The second section in the inventory file is used to assign deployment targets to each host group. Under each group, assign machines to the group by using the appropriate alias. In most cases the only change that should be made is to change the machine name to match the one you used in the deployment target reference.

Do not add white space in order to indent machine name entries.

Here is a typical assignment that uses the machine from the preceding example.

Note: The inventory file contains comments that precede each host group and that describe its function to help in assigning machines. Those comments have been removed from this example to improve readability.

```
[CommandLine]
deployTarget

[DataAgent]
deployTarget

[consul]
deployTarget
```
[httpproxy]
deployTarget

[pgpoolc]
deployTarget

[sasdatasvrc]
deployTarget

[sas_all:children]
CommandLine
DataAgent
consul
httpproxy
pgpoolc
sasdatasvrc

Consider the following issues when editing the inventory file:

- SAS recommends that you do not remove any host groups from the list or any entries from the [sas_all:children] list unless you are an experienced Ansible user. A host group can have no entries under it, but the host group should not be removed, even if it is empty. Removing a host group that contains targeted machines from the [sas_all:children] list can result in critical tasks not being executed on those targeted machines.

- Ensure that any machine you place in the [DataAgent] host group is also listed in the [consul] host group.

- If the machines that you specify for [pgpoolc] or [sasdatasvrc] do not have an alias of deployTarget in the deployment target reference, you must open the sas_viya_playbook/vars.yml file and replace the instance of deployTarget under INVOCATION VARIABLES with the alias that you used in the deployment target reference:

  ```
  # Multiple invocation definitions
  INVOCATION_VARIABLES:
    deployTarget:
  ```

After you have completed your edits, save and close the inventory.ini file.

Note: By default, your deployment includes a single-machine, single-node instance of HA PostgreSQL. To deploy HA PostgreSQL with multiple nodes, see Appendix 1, “Creating High Availability PostgreSQL Clusters,” on page 121.

(Optional) Configure Network Settings

Note: If you are upgrading your deployment to SAS Viya 3.5, skip this task. The processes described here do not apply to an upgrade.
Specify Network Settings for Selected Machines

Your deployment might require you to specify certain network settings. Examples of why you might need to specify network settings are described in “Use Cases” on page 52. You can configure network settings for the deployment by using network configuration files. If you do not use network configuration files, default values are used. Be aware that changing the network configuration after the software has been deployed is not supported. Although this task is optional, be sure of your decision if you decide to skip it.

Important: Before creating network configuration files, you must create a new directory in your playbook named host_vars.

For each machine in your deployment for which you want to specify network settings:

1 Create a new file in the host_vars directory and use the deployment alias for the machine (as it is listed in the inventory.ini file) as the file name. For example, for a machine that has a deployment alias of sas-programming, create a file that is named sas-programming.yml. For more information about naming machines in the inventory.ini file, see “Edit the Inventory File” on page 45.

2 Ensure that the following two lines are at the top of the machine-name.yml file:

 network_conf:

 Note: Spacing and indentation are important in .yml files.

3 In the machine-name.yml file, you can configure variables that relate to IP addresses for use with SAS Viya, network binding addresses, and IP addresses for external use. For details about the variables, see “Variables for network.conf” on page 49.

4 Save and close machine-name.yml file.

Here is an example of a completed network configuration file:

 network_conf:
 SAS_HOSTNAME: sasmachinel.mycompany.com
 SAS_BIND_ADDR: 192.168.1.23
 SAS_SERVICE_ADDR: sasmachinel.mycompany.com
 SAS_SAN_DNS: "sasmachinel.mycompany.com localhost"
 SAS_SAN_IP: "127.0.0.1 192.168.1.23"

Variables for network.conf

When adding variables to machine-name.yml file, be sure to precede each new variable with two spaces.

Configuration variables that support IP addresses are divided into three groups:

- IP addresses used with SAS Viya
- TLS Certificate Parameters
Binding variables for external ports

SAS Viya services usually identify themselves based on the host’s IP address. Bind addresses can be specified directly with SAS_BIND_ADDR. However, you might prefer to use the network name or CIDR addressing options. The following variables allow the same value to be used across all machines in a deployment or to account for changes to an IP address on the same machine over time.

Table 4.2 Variables for Using IP Address

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
</table>
| SAS_BIND_ADDR | The IP address for services on this machine. The value must be an IPv4 address. If the variable is omitted, services bind to 0.0.0.0. Do not set this variable to 0.0.0.0. However, to use the default binding, remove this variable or set it to an empty string. This value allows the SAS Viya deployment to be restricted to a specific network on a machine with multiple NICs.
 Note: If you set SAS_BIND_ADDR to anything other than 127.0.0.1 on the machine on which you are deploying the object spawner, you must also change the webdms.workspaceServer.hostName property in the vars.yml file to the same host. For more information about this variable, see “Change SAS Studio Configuration Properties” on page 58. |
| SAS_BIND_ADDR_IF | If SAS_BIND_ADDR is not set, this variable can be used to specify a network name. SAS_BIND_ADDR is set to the first primary IP address that is found for that network. |
| SAS_BIND_ADDR_CIDR | If SAS_BIND_ADDR and SAS_BIND_ADDR_IF are not set, this variable specifies an address range using CIDR notation, such as 192.168.100.0/24. SAS_BIND_ADDR is set to the first primary IP address that is found that matches the address range. For more information about CIDR notation, see Classless IN-ADDR.ARPA delegation. |
| SAS_HOSTNAME | The default host name for this machine. This value is used to connect to this machine or register services that are running on this machine. This value is also used as the Common Name for TLS certificates that are generated for this machine. |
| SAS_USE_IP_REGISTRATION | If the variable is set to a non-blank value, the value directs services to register with the IP address that is specified in SAS_BIND_ADDR instead of the name in SAS_HOSTNAME. |
| SAS_SERVICE_ADDR | Overrides the host name or address that is used to register services. This value is not typically set to a custom value. |

The following variables are other network binding options.
Table 4.3 TLS Certificate Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS_SAN_DNS</td>
<td>A list of alternative DNS names for this machine. This variable is used for DNS entries under Subject Alternative Name for all TLS certificates that are generated for this machine. If you specify alternative DNS names for this machine, you must also specify localhost (or the value that is used for loopback). The list must be enclosed in quotation marks ("). Individual values should be delimited by a space.</td>
</tr>
<tr>
<td>SAS_SAN_IP</td>
<td>A list of alternative IP addresses for this machine. This variable is used for IP Address entries under Subject Alternative Name for all TLS certificates that are generated for this machine. If you specify alternative IP addresses for this machine, you must also specify 127.0.0.1 (or the value that is used for loopback). The list must be enclosed in quotation marks ("). Individual values should be delimited by a space.</td>
</tr>
</tbody>
</table>

There are a few ports that need public access and might require different network binding settings than those specified in the previous table. The following variables are used to specify public access.

Table 4.4 Variables for External Ports

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS_EXTERNAL_BIND_ADDR</td>
<td>The IP address for public services on this machine. If the value is omitted, public services bind to 0.0.0.0. Do not set this variable to 0.0.0.0. However, to set the default binding, remove this variable or set it to an empty string.</td>
</tr>
<tr>
<td>SAS_EXTERNAL_BIND_ADDR_IF</td>
<td>If SASEXTERNAL_BIND_ADDR is not set, this variable can be used to specify a network name. SASEXTERNAL_BIND_ADDR is then set to the first primary IP address that is found for that network.</td>
</tr>
<tr>
<td>SAS_EXTERNAL_BIND_ADDR_CIDR</td>
<td>If SAS_EXTERNAL_BIND_ADDR and SAS_EXTERNAL_BIND_ADDR_IF are not set, this variable specifies an address range using CIDR notation.</td>
</tr>
<tr>
<td>SAS_EXTERNAL_HOSTNAME</td>
<td>This variable is used to register public services that are running on this machine. The value is used as the Common Name for TLS certificates that are generated for public services on this machine.</td>
</tr>
</tbody>
</table>
Variable Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS_EXTERNAL_SAN_DNS</td>
<td>A list of alternative DNS names for this machine. This variable is used for DNS entries under Subject Alternative Name for TLS certificates that are generated for external services on this machine. If you specify alternative DNS names for this machine, you must also specify <code>localhost</code> (or the value that is used for loopback). The list must be enclosed in quotation marks (<code>"</code>). Individual values should be delimited by a space.</td>
</tr>
<tr>
<td>SAS_EXTERNAL_SAN_IP</td>
<td>A list of alternate IP addresses for this machine. This variable is used for IP Address entries under Subject Alternative Name for TLS certificates that are generated for external services on this machine. If you specify alternative IP addresses for this machine, you must also specify <code>127.0.0.1</code> (or the value that is used for loopback). The list must be enclosed in quotation marks (<code>"</code>). Individual values should be delimited by a space.</td>
</tr>
<tr>
<td>SAS_EXTERNAL_SERVICE_AD DR</td>
<td>Overrides the host name or address that is used to register external services.</td>
</tr>
</tbody>
</table>

Use Cases

Using Machines with Multiple Network Interface Cards

For machines that have multiple network interface cards (NICs), communication between machines that run SAS Viya and CAS can be restricted to specific NICs.

At a minimum, set the following options in the network configuration file:

- Set `SAS_BIND_ADDR` to the IP address that services should bind to on this machine.
- Set `SAS_HOSTNAME` to the host name for this machine that SAS Viya traffic is directed to.

You can specify additional options for other host names or IP addresses that are unknown to this machine. These host names or IP addresses can be used by clients and are used in server certificates:

- Set `SAS_SAN_DNS` to a list of all host names to which this machine should respond.
- Set `SAS_SAN_IP` to a list of all IP addresses to which this machine should respond.

Using DNS Aliases

A machine with a single NIC has consistent and static host names. You want to use DNS aliases to address services on that machine.

Set `SAS_SAN_DNS` to a list of all host names that this machine should respond to.
Using Different NICs for Internal and External Communications

A machine has multiple NICs. One serves network communication that is internal to the data center. Another NIC serves network communication outside of the data center. The second NIC has a host name that is registered in the company's DNS server that maps to this IP address. Any communication that is internal to the SAS Viya deployment must use the internal network. Any client communication with the SAS Viya deployment from outside of the data center must use the external network.

- Set SAS_HOSTNAME, SAS_BIND_ADDR, SAS_SAN_DNS, or SAS_SAN_IP for internal communication.
- Set SAS_EXTERNAL_HOSTNAME, SAS_EXTERNAL_BIND_ADDR, SAS_EXTERNAL_SAN_DNS, or SAS_EXTERNAL_SAN_IP for external communication.

Note: If external references are necessary, then additional configuration of CAS might be required. For more information, see the information about the cas.DCHOSTNAMERESOLUTION variable in [*Configuration File Options Reference* in *SAS Viya Administration: SAS Cloud Analytic Services*](#).

Using IP Addresses

In order for applications to address other applications through IP addresses instead of host names, set SAS_USE_IP_REGISTRATION to yes.

Using High Availability PGPool

If you are using High Availability (HA) PGPool, the value used for HA_PGPOOL_VIRTUAL_IP in the vars.yml should be included in the list of IP addresses in the SAS_SAN_IP variable of the network.conf file for every machine that is used as a PGPool node. For more information about HA PGPool, see [*“HA PostgreSQL and HA PGPool Topologies” on page 122*](#).

Modify the vars.yml File

As its name suggests, the vars.yml file contains deployment variables that enable you to customize your deployment to meet your needs. It is found in the top level of the uncompressed playbook (if you have used the defaults, the location is /sas/install/sas_viya_playbook/vars.yml). Note that all entries in the vars.yml file are case-sensitive.

Note: There are more variables in the vars.yml file than are described in this section. If a variable in the vars.yml file is not described in this section, you should make no changes for it.
Multiple vars.yml Files

If you deploy SAS Data Agent more than once and require different values for any of the variables in the vars.yml file for the separate deployments, you must create and maintain a separate vars.yml file for each variation you will need. To do so, copy the vars.yml file from the uncompressed playbook and paste it in the same location with a name that is different but meaningful for the specific deployment of SAS Data Agent.

Set the Deployment Label

The `DEPLOYMENT_LABEL` is a unique name used to identify the deployment across multiple machines. A default value for `DEPLOYMENT_LABEL` is set by the playbook.

If you want to use a customized `DEPLOYMENT_LABEL`, replace the default entry with another name, within double quotation marks, that is appropriate for your deployment. The name can contain only lowercase alphabetic characters, numbers, and hyphens. Nonalphanumeric characters, including a space, are not allowed. Here is an example of a valid name:

```
DEPLOYMENT_LABEL: "va-04april2017"
```

Note: Do not change the value of `DEPLOYMENT_LABEL` after the software has been deployed, including when performing an update.

Set the Pre-deployment Validation Parameters

The setting of the `VERIFY_DEPLOYMENT` variable determines the extent of the pre-deployment validation that the playbook performs. If the variable is set to true (the default), all of the following actions take place. If the variable is set to false, only the Ansible version check is performed.

Check the Ansible Version

The playbook checks the installed Ansible version to determine whether it is at least the minimum supported version. If not, the playbook stops with a message.

Note: For information about supported Ansible versions, see “Ansible Controller Requirements” on page 26.

Verify Machine Properties

The playbook checks each machine in the deployment to ensure that the necessary conditions for deployment are met. If any of the following conditions is not met, a warning is given and the playbook stops the deployment.

1. Verify that the `DEPLOYMENT_LABEL` variable has content and contains only lowercase alphabetic characters, numbers, and hyphens.
Modify the vars.yml File

Note: For more information about the `DEPLOYMENT_LABEL` variable, see “Set the Deployment Label” on page 54.

2 Verify that each machine’s fully qualified domain name contains less than or equal to 64 characters.

3 Verify that each machine in the inventory file can successfully connect to every other machine in the inventory file.

 Note: For more information about modifying the inventory file, see “Specify the Machines in the Deployment” on page 46.

4 Verify that each machine’s fully qualified domain name resolves to the same address for every other machine.

5 If the sas user already exists, verify that it is part of the sas user group.

Create and Verify sas User and sas Group

If the sas user and sas group do not already exist, the playbook creates the sas user and places it in the sas group. If this validation fails, a warning is given and the playbook stops.

Verify System Requirements

The playbook ensures that some system requirements are met. If any of the following requirement checks fail, a warning is given and the playbook stops.

1 Verify that SELinux mode for each machine is disabled. The value should be set to `permissive`, which disables SELinux.

 This check is performed by default. You can deploy SAS Viya in an environment where SELinux is enabled. However, some additional configuration is required. For more information about the requirements to run with SELinux enabled, see “Configure SELinux” on page 34.

 You can temporarily set SELinux to `permissive` until the deployment has completed. However, if you instead deploy with SELinux enabled (that is, set to `enforcing`), you must add a key-value pair that disables playbook checks for SELinux. For more information, see “(Optional) Disable SELinux Verification” on page 58.

2 Verify that systemd is at version 219–30 or later.

3 Verify that each machine has enough free disk space to accommodate the packages that are installed on that machine. The amount of free space depends on the deployment layout.

 Note: For more information about assigning packages to machines, see “Specify the Machines in the Deployment” on page 46.

4 For each machine, verify the nofile and nproc settings for the install user.

 Note: For more information about setting ulimits, see “Set the ulimit Values” on page 37.
Specify Security Settings

The `SECURE_CONSUL` and `DISABLE_CONSUL_HTTP_PORT` variables in vars.yml work together to determine the status of the HTTP and HTTPS ports. You can set both variables to true or false with the following results.

- If you set `SECURE_CONSUL` to false, only the HTTP port (8500) will be available after the software is deployed.
- If you set `SECURE_CONSUL` to true, the results depend on how `DISABLE_CONSUL_HTTP_PORT` is set:
 - If you set `DISABLE_CONSUL_HTTP_PORT` to true, only the HTTPS port (8501) will be available.
 - If you set `DISABLE_CONSUL_HTTP_PORT` to false, both the HTTP port (8500) and the HTTPS port (8501) will be available.

By default, `SECURE_CONSUL` is set to true and `DISABLE_CONSUL_HTTP_PORT` is set to true. Only the HTTPS port will be available after the software is deployed.

Specify the Path to Certificates

Note: By default, when SAS Viya is deployed, it will install Apache httpd with a self-signed certificate for use across the deployment. If you want to accept the default, you should skip this section. If, however, you already have httpd set up and configured, you must provide a value for the `HTTPD_CERT_PATH` variable as described here.

The SSLCertificateChainFile is a variable set in httpd’s security configuration file at `/etc/httpd/conf.d/ssl.conf`. It is a location on your system containing certificate information. SAS recommends that the file at the location that SSLCertificateChainFile represents contain the root certificate authority (CA) and all intermediate certificates in the chain.

To set `HTTPD_CERT_PATH`:

1. Open the vars.yml file.
2. Set the value of `HTTPD_CERT_PATH` based on the following conditions. Ensure that any value you use is enclosed in single quotation marks (').

- If your SSLCertificateChainFile contains the root certificate authority (CA) and all intermediate certificates, remove the existing value for `HTTPD_CERT_PATH`. Ensure that all browsers and clients have the root CA in their truststore.

Here is an example of the modified variable:

```yaml
HTTPD_CERT_PATH:
```

- If your SSLCertificateChainFile contains the intermediate links but not the root CA, `HTTPD_CERT_PATH` should be the path to the file on the machine in the [httpproxy] host group in the inventory file that contains the root CA.

- If your SSLCertificateChainFile contains no certificates and no root CA, `HTTPD_CERT_PATH` should be the path to the file on the machine in the
[httpproxy] host group in the inventory file that contains the intermediate certificates and the root CA. Ensure that all the intermediate certificates are in the truststore of all browsers and clients.

Here is an example of the `HTTPD_CERT_PATH` variable with a value:

```plaintext
HTTPD_CERT_PATH: '/etc/pki/tls/certs/my-ca-chain.crt'
```

Note: The default value for `HTTPD_CERT_PATH` in the vars.yml file is the most likely location for the necessary file for Red Hat Enterprise Linux and equivalent distributions. If that file is in the default location, you do not need to make any changes. The default location for SUSE Linux is `/etc/apache2/ssl.crt/localhost.crt`.

3 Save and close the vars.yml file.

Change the Repository Warehouse

When you generate the playbook with the SAS Orchestration CLI, the `REPOSITORY_WAREHOUSE` variable in the vars.yml file is set to the default repository warehouse or to the repository warehouse that was specified in the command-line option. If you are using a mirror repository, the value for `REPOSITORY_WAREHOUSE` should be the location of that mirror. If the target deployment systems use a different address to the mirror repository or if the mirror repository is moved after the initial deployment, you should change the mirror location by revising the `REPOSITORY_WAREHOUSE` value.

Note: If you are using a Red Hat Satellite Server, use a value of `none` to prevent the deployment from adding more repositories to the server.

```
REPOSITORY_WAREHOUSE: "URL-to-mirror-repository-content"
```

Define Multiple Invocations

The `INVOCATION_VARIABLES` block is used to set the parameters of a High Availability (HA) PostgreSQL cluster of more than one machine. For details, see Appendix 1, “Creating High Availability PostgreSQL Clusters,” on page 121.

(Optional) Specify JRE

The Java Runtime Environment (JRE) must be installed on each target machine to enable SAS Viya. By default, the playbook attempts to install a recent version of OpenJDK and to set the path in a system configuration file. You can instead supply the path to an existing JRE before you run the playbook. To use a pre-installed version of the JRE:

1 With a text editor, open the vars.yml file.

2 Set the value of `sas_install_java` to `false`. For example:

```
sas_install_java: false
```
3 Add the file path to the JRE as the value of `sasenv_java_home`. Be sure to include `jre` in the file path. For example:

```
sasenv_java_home: /usr/lib/jvm/java-1.8.0-openjdk-1.8.0.101-3.b13.el6_8.x86_64/
jre
```

4 Save and close the `vars.yml` file.

(Optional) Disable SELinux Verification

If SELinux is active in your environment, and you want to deploy SAS Viya with SELinux enabled, add a key-value pair.

1 Open the `vars.yml` file if it is not already open.

2 Add the following statement at the bottom of the file:

```
VERIFY_SELINUX: false
```

3 Save and close the `vars.yml` file.

For more information about SELinux, see "Configure SELinux" on page 34.

Change SAS Studio Configuration Properties

Note: If you are performing an upgrade, skip this section.

To change SAS Studio configuration properties:

1 Open the `vars.yml` file if it is not already open.

2 Locate the `STUDIO_CONFIGURATION` block of variables.

```
# Updates the init_deployment.properties and appserver_deployment.sh
STUDIO_CONFIGURATION:
init:
  #sasstudio.appserver.port_comment: '# Port that Studio is listening on'
  #sasstudio.appserver.port: 7080
  #sasstudio.appserver.https.port: 7443
  #webdms.workspaceServer.hostName: localhost
  #webdms.workspaceServer.port: 8591
appserver:
  #1: '# Comment about KEY'
  #2: KEY="value with spaces"
```

3 To change any default properties for SAS Studio:

 a In the `init` subsection, to indicate a variable to change, uncomment its line by removing the number sign (`#`) from the beginning of the line. Here are the definitions of the variables that can be changed:
Table 4.5 Descriptions of SAS Studio Variables in the vars.yml File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sasstudio.appserver.port_comment</td>
<td>Adds a comment before the port entry in the init_deployment.properties that are created by the deployment process.</td>
</tr>
<tr>
<td>sasstudio.appserver.port</td>
<td>Specifies the port to use for HTTP. Should be modified for programming-only deployments.</td>
</tr>
<tr>
<td>sasstudio.appserver.https.port</td>
<td>Specifies the port to use for HTTPS. Should be modified for programming-only deployments.</td>
</tr>
<tr>
<td>webdms.workspaceServer.hostName</td>
<td>Specifies the host to use to connect to the workspace server.</td>
</tr>
<tr>
<td>webdms.workspaceServer.port</td>
<td>Specifies the port to use to connect to the workspace server.</td>
</tr>
</tbody>
</table>

Here is an example of the SAS Studio ports to be changed:

```yaml
# Updates the init_deployment.properties and appserver_deployment.sh
STUDIO_CONFIGURATION:
  init:
    #sasstudio.appserver.port_comment: '# Port that Studio is listening on'
    sasstudio.appserver.port: 7080
    sasstudio.appserver.https.port: 7443
    #webdms.workspaceServer.hostName: localhost
    #webdms.workspaceServer.port: 8591
```

b Change the values, as appropriate. Here is an example:

```yaml
# Updates the init_deployment.properties and appserver_deployment.sh
STUDIO_CONFIGURATION:
  init:
    #sasstudio.appserver.port_comment: '# Port that Studio is listening on'
    sasstudio.appserver.port: 7081
    sasstudio.appserver.https.port: 7444
    #webdms.workspaceServer.hostName: localhost
    #webdms.workspaceServer.port: 8591
```

To add environment variables for SAS Studio:

a Uncomment the lines in the appserver subsection by removing the number sign (#) from the beginning of the lines. Here is an example of a commented line:

```yaml
appserver:
  1: '# Comment about KEY'
  2: KEY="value with spaces"
```

b Add the environment variables, as appropriate, and ensure that the line numbers are incremented by one for each line that you add. Use the indentation that is already in the vars.yml file. Ensure that the value in each line is enclosed in single quotation marks. Comments must include the comment character, #, within the quotation marks.
After you have made the appropriate changes, save and close the `vars.yml` file.

Deploy the Software

Assessment Test

Before you deploy the software, SAS recommends that you run the following command to assess the readiness of your system for deployment. Before running the command, ensure that you are at the top level of the playbook in the `sas_viya_playbook` directory.

```bash
ansible-playbook system-assessment.yml
```

Add an option based on the password requirements for the user ID that performs the command:

Table 4.6 Command Options Based on Password Requirements

<table>
<thead>
<tr>
<th>Password Requirements</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not require passwords</td>
<td>use the command as written</td>
</tr>
<tr>
<td>Requires a sudo password only</td>
<td><code>--ask-become-pass</code></td>
</tr>
<tr>
<td>Requires an SSH password only</td>
<td><code>--ask-pass</code></td>
</tr>
<tr>
<td>Requires both a sudo and an SSH password</td>
<td><code>--ask-pass --ask-become-pass</code></td>
</tr>
</tbody>
</table>

If you receive an unexpected error, run the following command to ensure that you are using a supported version of Ansible.

```bash
ansible-playbook --version
```

Note: For information about supported Ansible versions, see “Ansible Controller Requirements” on page 26.

If you are using a supported version of Ansible and still receive errors from the system assessment, fix those errors before you run the deployment command.

Deployment Command

Ensure that you are at the top level of the playbook in the `sas_viya_playbook` directory. Here is the basic syntax for the command to run the playbook and deploy the software:

```bash
ansible-playbook site.yml [ option ]
```
If you are deploying SAS Data Agent with a vars.yml or inventory.ini file that does not have the default name, such as if you have created separate files for multiple deployments, the command looks like this:

```
ansible-playbook -i inventory-file-name site.yml -e "@vars-file-name" [ option ]
```

Add an option based on the password requirements for the user ID that performs the command, using Table 4.6 on page 60. To specify if you want to perform only an installation or configuration, see “Install Only” on page 61.

In addition, SAS recommends adding a -vvv option to enable verbose logging. This option will assist SAS Technical Support in diagnosing any issues you might need to contact them about.

Install Only

To install, but not configure the software, use the same command that is described in “Deployment Command” on page 60, but replace site.yml with install-only.yml. Here is an example:

```
ansible-playbook install-only.yml --ask-pass --ask-become-pass -vvv
```

To configure software that has been installed only, use the full command that is described in “Deployment Command” on page 60.

Run from a Directory Other Than the Default

The playbook runs the commands from the top-level sas_viya_playbook directory, by default. If you want to run the playbook from another directory, modify the ansible.cfg configuration file with the appropriate configuration options. Refer to the Ansible documentation to find the appropriate ansible.cfg file and add those options.

Successful Playbook Execution

Here is an example of the output from a successful playbook execution:

```
PLAY RECAP ********************************************************************
deployTarget               : ok=81   changed=65   unreachable=0    failed=0
```

The most important indicator of success from this message is failed=0.

If the deployment is successful, the software is deployed to the /opt/sas directory.

Retry a Failed Deployment

If your deployment fails, and you are able to respond to the error message and can recover from the error, you must restart the deployment using the appropriate deployment commands described in “Assessment Test” on page 60 and any appropriate options.
Failures can occur if there are port conflicts.

Deployment Logs

Logs for Ansible deployments are stored in `sas_viya_playbook/deployment.log`. If you used the recommended location for uncompressing your playbook, the file is located at `/sas/install/sas_viya_playbook/deployment.log`.

To view the logs from the yum installation commands that are used in your deployment, run the following commands:

```bash
sudo yum history
sudo less /var/log/yum.log
```
Post-installation

SAS Data Preparation Deployment Tasks: Configure Communication with Remote SAS Data Agent

- Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Preparation Deployment... 64
- Restart the Data Agent Services
- Register Remote SAS Data Agent Servers and OAuth Client

SAS Data Preparation Deployment Tasks: Configure the Co-located SAS Data Agent

- Register Co-located SAS Data Agent Server and OAuth Client
- Add Groups and Add Users to Groups
- Configure the SAS Data Agent Server

SAS Data Agent Deployment Tasks: Configure Communication

- Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Agent Machine
- Configure On-Premises Connection to the SAS Viya Cloud Deployment

SAS Data Agent Deployment Tasks: Configure Data Access

- Configure SAS/ACCESS to Amazon Redshift
- Configure SAS/ACCESS Interface to DB2
- Configure SAS/ACCESS Interface to Hadoop
- Configure SAS/ACCESS Interface to Microsoft SQL Server
- Configure SAS/ACCESS Interface to ODBC
- Configure SAS/ACCESS Interface to Oracle
- Configure SAS/ACCESS Interface to PostgreSQL
- Configure SAS/ACCESS Interface to SAP HANA
- Configure SAS/ACCESS Interface to Teradata

Configure a Proxy Server to Communicate with the SAS Data Preparation Deployment

- Configure a Proxy Server to Communicate with the SAS Data Preparation Deployment... 84
SAS Data Preparation Deployment Tasks: Configure Communication with Remote SAS Data Agent

Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Preparation Deployment

1. Get the certificate in either of the following ways:

 - On the machine that is assigned to the [httpproxy] host group in the inventory.ini file for the SAS Data Agent deployment, locate the HTTP certificate file `/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/httpproxy-deployTarget-ca.crt`. For more information about assigning machines to host groups, see “Edit the Inventory File” on page 45.

 Note: If you set up a reverse proxy as a best practice, then you should get the file from the endpoint. The value for the certificate name, `deployTarget`, might be different in your deployment, depending on the host alias that is assigned to the [httpproxy] host group in the inventory file.

 Copy the certificate to the machine that is assigned to the [CommandLine] host group in the SAS Data Preparation deployment where the sas user ID has Read and Write access. For example, copy the file to the `/tmp` directory. The location of the certificate will be used in step 2 as the value for `path-to-cert`.

 - On a machine that is assigned to the [CommandLine] host group in the SAS Data Preparation deployment, run the following command:

     ```bash
     openssl s_client -connect root-endpoint-of-sas-data-agent:443 | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/data_agent.crt
     ```

 This command captures the certificate from the SAS Data Preparation deployment and places it in a file named `/tmp/data_agent.crt`. The file name can be customized as needed in the command. The file name will also be used in step 2 as the value for `path-to-cert`.

2. As the sas user, add the certificate to Consul on the machine that is assigned to the [CoreServices] host group in the SAS Data Preparation deployment:

   ```bash
   source /opt/sas/viya/config/consul.conf;
   ```
export CONSUL_HTTP_SSL=true;

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file
/opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default
/client.token kv write --key "cacerts/op1"
--value "$(cat path-to-cert)"

Note: The op1 value is a unique name that you assign to the http certificate. The path-to-cert value is the full path and file name of the certificate from the SAS Data Agent deployment.

Here is an example:

source /opt/sas/viya/config/consul.conf;
export CONSUL_HTTP_SSL=true;
/opt/sas/viya/home/bin/sas-bootstrap-config --token-file
/opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default
/client.token kv write --key "cacerts/data_agent.crt"
--value "$(cat /tmp/data_agent.crt)"

3 From the Ansible controller machine where you ran the SAS Data Preparation deployment, and while using the installation account, change directories to the location where the playbook is located:

cd sas-viya-playbook-directory

4 On the Ansible controller in the SAS Data Preparation deployment, rebuild the truststore:

ansible-playbook utility/rebuild-trust-stores.yml

Restart the Data Agent Services

On each machine that is assigned to the [DataServices] host group in the SAS Data Preparation deployment in your cloud environment, restart the SAS Data Agent REST services by running the following commands:

- For Red Hat Enterprise Linux 6.x:

sudo service sas-viya-dataagentservices-default restart

- For Red Hat Enterprise Linux 7.x and SUSE Linux:

sudo systemctl restart sas-viya-dataagentservices-default

Register Remote SAS Data Agent Servers and OAuth Client

Register the SAS Data Agent Server to a SAS Data Preparation Environment

Before you register the SAS Data Agent server, you must have already installed the SAS Data Preparation environment.
On the Data Agent server machine in the SAS Data Preparation deployment, as the sas user, run the da_reg_server.sh script to register the Data Agent OAuth client and to apply rules and register the remote Data Agent server.

Note: Enter the command on a single line. Multiple lines are used here to improve readability.

```
/opt/sas/viya/home/bin/da_reg_server.sh
--remotehost remote-Data-Agent-or-http-proxy-server
--remoteport remote-Data-Agent-or-http-proxy-port
--sasadministratoruser sasboot-or-a-user-in-the-SAS-Administrator-group
--sasadministratorpassword password
--secret secret-Vault-string
```

Note: You can ignore the following message:

```
/opt/sas/viya/home/bin/da_reg_server.sh: line 124: 0: Permission denied
```

Register the SAS Data Agent Server to a Multi-Tenant SAS Data Preparation Environment

Before you register the SAS Data Agent server to a tenant, you must have already onboarded the tenant in the SAS Data Preparation environment.

On the co-located SAS Data Agent server machine, run the da_reg_server.sh script as the sas user to register the Data Agent and the OAuth client.

- To register to the provider tenant, use --tenantid provider, and use --provider-endpoint with --tenant-endpoint:

 Note: Enter the command on a single line. Multiple lines are used here to improve readability.

  ```
  /opt/sas/viya/home/bin/da_reg_server.sh --tenantid provider
  --remotehost remote-Data-Agent-or-http-proxy-server
  --remoteport remote-Data-Agent-or-http-proxy-port
  --sasadministratoruser sasboot-or-a-user-in-the-SAS-Administrator-group
  --sasadministratorpassword password
  --secret secret-Vault-string
  --provider-endpoint https://SAS-Data-Preparation-cloud-hostname:443
  --tenant-endpoint https://SAS-Data-Preparation-cloud-hostname:443
  ```

- To register to a tenant, use --tenantID tenantID, and use --provider-endpoint with --tenant-endpoint:

 Note: Enter the command on a single line. Multiple lines are used here to improve readability.

  ```
  /opt/sas/viya/home/bin/da_reg_server.sh --tenantid tenantID
  --remotehost remote-Data-Agent-or-http-proxy-server
  --remoteport remote-Data-Agent-or-http-proxy-port
  --sasadministratoruser sasprovider-or-a-user-in-the-tenant-SAS-Administrator-group
  --sasadministratorpassword password
  --secret secret-Vault-string
  --provider-endpoint https://SAS-Data-Preparation-cloud-hostname:443
  --tenant-endpoint https://SAS-Data-Preparation-cloud-hostname:443
  ```

Argument Details

Note: The script detects any required options that are missing and displays all required options along with their values. A blank value indicates that a value needs to be specified.
Note: To access help, use the `da_reg_server.sh --help` command.

Required arguments:

--remotehost
The fully qualified host name or IP of a remote SAS Data Agent server.

--remoteport
The port of a SAS Data Agent server. There is no default value.

--sasadministratoruser
The user who is your SAS Administrator in your cloud environment.

--sasadministratorpassword
The password for the user who is your SAS Administrator in your cloud environment.

--secret
Any string that follows standard password guidelines. The string is used by OAuth client registration to authenticate users from the remote SAS Data Agent.

Optional arguments:

--conopts
A string that can be added to or that can overwrite the default conopts string that is stored in Consul in the key value (KV) store. `application/data-agent/dagentsrv-customer-instance/conopts`

--customerid
The customer ID of a remote SAS Data Agent deployment. This variable is used only in single-tenant deployments. The default value is shared and must be unique for each data agent that is registered.

--provider-endpoint
The full host name and the port of SAS Data Preparation in your cloud environment. This variable is used only in multi-tenant deployments.

--proxydomain
The outbound proxy domain.

--proxyhost
The outbound proxy host name.

--proxyport
The outbound proxy port.

--registeredservername
Any valid string that can be used to register a second SAS Data Agent service. Use this option to register a second SAS Data Agent server or to register a SAS Data Agent server without using the default naming convention.

--regoverwrite
A value that is used to overwrite an existing SAS Data Agent service registration of the same name. A value of Y overwrites the registration, and a value of N does not overwrite the registration.

--sas-endpoint
The full host name and the port of SAS Data Preparation in your cloud environment. This variable is used only in single-tenant deployments. There is no default value.

--sitename
The name that is used to describe a remote Data Agent server. The default name is private.
--tenantid
The tenant ID of the remote SAS Data Agent deployment. This variable is used only for multi-tenant deployments. The default value is shared, and it must be a unique value for each tenant.

--tenant-endpoint
The full host name and the port of the SAS Data Agent, including the tenant subdomain. This variable is used only for multi-tenant deployments.

SAS Data Preparation Deployment Tasks:
Configure the Co-located SAS Data Agent

Register Co-located SAS Data Agent Server and OAuth Client

Register the SAS Data Agent Server
Before you register the co-located SAS Data Agent server, you must have already installed the SAS Data Preparation environment. You must register the SAS Data Agent in each tenant you onboard.

On the co-located SAS Data Agent server machine, run the da_reg_server.sh script to register the Data Agent and the OAuth client. If the tenant is the tenant in a single-tenant deployment or the provider in a multi-tenant deployment, run the script as the sas user. If the tenant is any other tenant, run the script as the deployment admin or the tenant admin.

Note: Enter the command on a single line. Multiple lines are used here to improve readability.

/opt/sas/viya/home/bin/da_reg_server.sh
--sasadministratoruser sasboot-or-a-user-in-the-SAS-Administrator-group
--sasadministratorpassword password --secret secret-Vault-string

Argument Details
Note: The script detects any required options that are missing and displays all required options along with their values. A blank value indicates that a value needs to be specified.

Note: To access help, use the da_reg_server.sh --help command.

Required arguments:
--sasadministratoruser
The user who is your SAS Administrator in your cloud environment.
--sasadministratorpassword
The password for the user who is your SAS Administrator in your cloud environment.

--secret
Any string that follows standard password guidelines. The string is used by OAuth client registration to authenticate users from the co-located SAS Data Agent.

Optional arguments:

--conopts
A string that can be added to or that can overwrite the default conopts string that is stored in Consul in the key value (KV) store. application/data-agent/dagentsrv-customer-instance/conopts

--customerid
The customer ID of a co-located SAS Data Agent deployment. This variable is used only in single-tenant deployments. The default value is shared and must be unique for each data agent that is registered.

--provider-endpoint
The full host name and the port of SAS Data Preparation in your cloud environment. This variable is used only in multi-tenant deployments.

--proxydomain
The outbound proxy domain.

--proxyhost
The outbound proxy host name.

--proxyport
The outbound proxy port.

--registeredservername
Any valid string that can be used to register a second SAS Data Agent service. Use this option to register a second SAS Data Agent server or to register a SAS Data Agent server without using the default naming convention.

--regoverwrite
A value that is used to overwrite an existing SAS Data Agent service registration of the same name. A value of Y overwrites the registration, and a value of N does not overwrite the registration.

--remotehost
The fully qualified host name or IP of a co-located SAS Data Agent server.

--remoteport
The port of a SAS Data Agent server. There is no default value.

--sas-endpoint
The full host name and the port of SAS Data Preparation in your cloud environment. This variable is used only in single-tenant deployments. There is no default value.

--sitename
The name that is used to describe a co-located Data Agent server. The default name is private.

--tenantid
The tenant ID of the co-located SAS Data Agent deployment. This variable is used only for multi-tenant deployments. The default value is shared, and it must be a unique value for each tenant.
Add Groups and Add Users to Groups

Strategies for Adding Groups and Users

SAS Data Agent requires two sets of user capabilities that are defined by two custom groups: Data Agent Administrators and Data Agent Power Users.

Here are three strategies for creating the Data Agent Administrators and Data Agent Power Users groups:

- Create and use the default Data Agent Administrators group and the Data Agent Power Users group.

 For details about the Data Agent Administrators and Data Agent Power Users groups, refer to Add Users to Groups in the Cloud Data Exchange for SAS Viya: Administrator’s Guide.

- Use existing custom groups or use existing LDAP groups.

 For both of these cases, edit the `/etc/sysconfig/sas/sas-viya-dagentsrv-default` file and specify the non-default names. If you are working with a tenant in a multi-tenant deployment, the file name is `/etc/sysconfig/sas/sas-tenant-dagentsrv-default`.

- Create new groups that are not the default group names.

 You must edit the `/etc/sysconfig/sas/sas-viya-dagentsrv-default` file and specify the non-default names. If you are working with a tenant in a multi-tenant deployment, the file name is `/etc/sysconfig/sas/sas-tenant-dagentsrv-default`.

To set up groups and users:

1. Decide which type of groups to use.
2. For non-default group names, edit the sysconfig file as explained in “Configure Non-Default Names for Groups” on page 71.
3. To create new groups, verify that the groups do not already exist, and then create the groups as explained in “Add Default Groups or New Groups” on page 71.
4. To add users to groups, see “Add Users to the New Group or Existing Groups” on page 72.

How to Create Groups and Users

You can use the command line or SAS Environment Manager to set up groups and users.
To use SAS Environment Manager, follow these steps but use the user interface information in *Identity Management How To: SAS Environment Manager* in SAS Viya Administration Guide: Identity Management.

To use the command line:

On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, as the sas user, perform these steps:

1. To set up the certification file:
   ```
   export SSL_CERT_FILE=/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/trustedcerts.pem
   ```

2. To set the endpoint:
   ```
   /opt/sas/viya/home/bin/sas-admin profile set-endpoint https://cloud-machine:443
   ```

3. To get the authentication token:
   ```
   /opt/sas/viya/home/bin/sas-admin auth login --user sas-admin-or-tenant-admin --password sas-admin-or-tenant-admin-password
   ```

Configure Non-Default Names for Groups

If you are using non-default names for groups, edit the `/etc/sysconfig/sas/sas-viya-dagentsrv-default` file and add the following lines:

```
DA_ADMIN_GRP="your-Data-Agent-Administrators-group"
DA_POWER_GRP="your-Data-Agent-Power-Users-group"
```

If you are working with a tenant in a multi-tenant deployment, the file name should be `/etc/sysconfig/sas/sas-tenant-dagentsrv-default`

Add Default Groups or New Groups

You can add users to groups using the command line or SAS Environment Manager. Verify whether the groups already exist. If the groups do not exist, create the groups.

To create groups, on the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, as the sas user, perform the following steps:

Note: Names must be the exact group names (not IDs).

1. To add the default Data Agent Administrators group or a new group, run the following command:
   ```
   /opt/sas/viya/home/bin/sas-admin identities create-group
   --id "your-Data-Agent-Administrators-group-ID"
   --name "your-Data-Agent-Administrators-group-name"
   --description "your-Data-Agent-Administrators-group-description"
   ```
 Here is an example of how to add the default Data Agent Administrators group:
   ```
   /opt/sas/viya/home/bin/sas-admin identities create-group
   --id "DataAgentAdministrators"
   --name "Data Agent Administrators"
   --description "Data Agent Administrators group"
   ```

2. To add the default Data Agent Power Users group or a new group, run the following command:
Here is an example of how to add the default Data Agent Power Users group:

```
/opt/sas/viya/home/bin/sas-admin identities create-group
--id "DataAgentPowerUsers"
--name "Data Agent Power Users" --description "Data Agent Power Users group"
```

Add Users to the New Group or Existing Groups

You can add users to groups using the command line or SAS Environment Manager.

On the machine that is assigned to the [CommandLine] host group in the SAS Data Agent deployment, run the following commands to add users to groups:

Note: Ensure that the user IDs are the same as the user name, but without spaces.

1 As the sas user, add an LDAP user that has access to SAS Data Preparation in the cloud deployment. Add the LDAP user to the Data Agent Administrators group, to your new group, or to an existing group by running the following command:

```
/opt/sas/viya/home/bin/sas-admin identities add-member
--group-id "your-Data-Agent-Administrators-group-ID"
--user-member-id "data-agent-user-ID"
```

Here is an example:

```
/opt/sas/viya/home/bin/sas-admin identities add-member
--group-id "DataAgentAdministrators"
--user-member-id "dataagentuserID"
```

2 To add a user to the Data Agent Power Users group, to your new group, or to an existing group, run the following command:

```
/opt/sas/viya/home/bin/sas-admin identities add-member
--group-id "your-Data-Agent-Power-Users-group-ID"
--user-member-id "power-user-ID"
```

Here is an example:

```
/opt/sas/viya/home/bin/sas-admin identities add-member
--group-id "DataAgentPowerUsers"
--user-member-id "DA-power-user"
```

Configure the SAS Data Agent Server

The SAS Data Preparation environment includes a SAS Data Agent server which must be configured in a manner similar to the on-premises SAS Data Agent server.
Add OAuth Secret to Vault

1. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, as the sas user, add the OAuth client secret to Vault by running the following command:

 - For single-tenant deployments:

     ```bash
     /opt/sas/viya/home/bin/da_init_tenant.sh [--customerid shared] --secret secret
     ```

 - For multi-tenant deployments:

     ```bash
     /opt/sas/viya/home/bin/da_init_tenant.sh [--tenantid tenantID] --secret secret
     ```

 By default, the --customerid and --tenantid are not required but if you are returned a message that the script cannot find them, perform the command again with the missing tag.

 Note: The secret phrase can be customized but must match the string that you configured in "Register Remote SAS Data Agent Servers and OAuth Client" on page 65. The value for --customerid must be the same as the string that you configured in "Register Remote SAS Data Agent Servers and OAuth Client" on page 65.

2. If the same machine is running on Red Hat Enterprise Linux 7.x, as the install user, run the following command:

   ```bash
   sudo systemctl daemon-reload
   ```

 Restart the SAS Data Agent Server

 On the machine that is assigned to the [DataAgent] host group in the SAS Data Preparation deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:

     ```bash
     sudo service sas-viya-dagentsrv-default restart
     ```

 - For multi-tenant deployments, use

     ```bash
     sudo service sas-tenant-dagentsrv-default restart
     ```

 - For Red Hat Enterprise Linux 7.x and SUSE Linux:

     ```bash
     sudo systemctl restart sas-viya-dagentsrv-default
     ```

 The start-up script registers the SAS Data Agent server in Consul and ensures that the Apache HTTP server is aware of the SAS Data Agent server.

 Check the Log File

 1. As the sas user on the machine that is assigned to the [DataAgent] host group in the SAS Data Preparation deployment, go to the /opt/sas/viya/config/var/log/dagentsrv/default directory.

 2. Locate and open the da_short-host-name_year_month_day_PID.log file. An example file name is da_ddtjkss03_2018-07-26_24096.log.
3 At the end of the log file, look for the following messages that indicate success:

In addition, ensure that there are no ERROR messages in the log. If you have errors, see Appendix 2, “Troubleshooting,” on page 137.

SAS Data Agent Deployment Tasks: Configure Communication

Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Agent Machine

1 Get the certificate in either of the following ways:

- On the machine that is assigned to the [CommandLine] host group in the SAS Data Preparation deployment, locate the HTTP certificate file /opt/sas/viya/config/etc/SASSecurityCertificateFramework/caacerts/htpproxy-deployTarget.ca.crt.

 Note: The value for the certificate name, deployTarget, might be different in your environment, depending on the host alias that is assigned to the [htpproxy] host group in the inventory file.

 Copy the certificate to a machine assigned to the [htpproxy] host group in the SAS Data Agent deployment where the sas user ID has Read and Write access. For example, copy the file to the /tmp directory.

- On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, run the following command:

 Note: Multiple lines are used to improve readability. However, in your environment, make sure that you enter the command on a single line.

 openssl s_client -connect ${root-endpoint-of-sas-viya-with-data-prep}:443 | sed -ne '/-BEGIN CERTIFICATE-/p' > /tmp/dataprep.crt

2 As the sas user, add the certificate to Consul on the machine that is assigned to the [CommandLine] host group in the SAS Data Agent deployment:

 Note: Multiple lines are used for the third command to improve readability. However, in your environment, make sure that you enter the command on a single line.
Configure On-Premises Connection to the SAS Viya Cloud Deployment

Add Group and Add Users to Groups

The remote SAS Data Agent requires groups and members of groups just like the co-located SAS Data Agent server. Use the instructions at “Add Groups and Add Users to Groups” on page 70 to create groups and members.

Configure the SAS Data Agent Machine to Access the SAS Data Preparation Machine

1. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, as the sas user, edit the following file:

 /etc/sysconfig/sas/sas-viya-dagentsrv-default

2. Uncomment the option for your DA_SERVICES_HOST and set it to the machine name that is assigned to the [CoreServices] host group in the SAS Data Preparation deployment:

 DA_SERVICES_HOST=SAS-Data-Preparation-host-name
Note: You were given a URL for access to your cloud resources. Here is an example:

You would then specify mycompany.cloudprovider.providercompany.com for the DA_SERVICES_HOST value.

3 If your system uses a forward proxy on the machine that is assigned to the [DataAgent] host group in the remote SAS Data Agent deployment, specify the proxy information. This machine is used to communicate with the SAS Data Preparation deployment.

 DA_SERVICES_PROXY_SERVER=proxy-server-FQDN
 DA_SERVICES_PROXY_PORT=proxy-host-port-number

 If your proxy requires credentials:
 DA_SERVICES_PROXY_USER=proxy-username
 DA_SERVICES_PROXY_PASS=proxy-password

4 Save the file.

Add OAuth Secret to Vault

1 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, as the sas user, add the OAuth client secret to Vault by running the following command:

 - For single-tenant deployments:
 /opt/sas/viya/home/bin/da_init_tenant.sh --customerid shared --secret secret
 - For multi-tenant deployments:
 /opt/sas/viya/home/bin/da_init_tenant.sh --tenantid tenantID --secret secret

 Note: The secret phrase can be customized but must match the string that you configured in "Register Remote SAS Data Agent Servers and OAuth Client" on page 65. The value for --customerid must be the same as the string that you configured in "Register Remote SAS Data Agent Servers and OAuth Client" on page 65.

2 If the same machine is running on Red Hat Enterprise Linux 7.x, as the install user, run the following command:

 sudo systemctl daemon-reload

Restart the SAS Data Agent Server

On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:
 sudo service sas-viya-dagentsrv-default restart
 - For multi-tenant deployments, use
 sudo service sas-tenant-dagentsrv-default restart
 - For Red Hat Enterprise Linux 7.x and SUSE Linux:
sudo systemctl restart sas-viya-dagentsrv-default

For multi-tenant deployments, use
sudo systemctl restart sas-tenant-dagentsrv-default

The start-up script registers the SAS Data Agent server in Consul and ensures that the Apache HTTP server is aware of the SAS Data Agent server.

Check the Log File

1. As the sas user on the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, go to the /opt/sas/viya/config/var/log/dagentsrv/default directory.

2. Locate and open the da_short-host-name_year_month_day_PID.log file. An example file name is da_ddtjss03_2018-07-26_24096.log.

3. At the end of the log file, look for the following messages that indicate success:

In addition, ensure that there are no ERROR messages in the log. If you have errors, see Appendix 2, “Troubleshooting,” on page 137.

SAS Data Agent Deployment Tasks: Configure Data Access

Configure SAS/ACCESS to Amazon Redshift

Note: This information is applicable only if you ordered SAS/ACCESS Interface to Amazon Redshift (on SAS Viya).

1. To reference a Data Source Name (DSN) in your connection, add the DSN to the odbc.ini file.
 a. On the SAS client node, edit the /opt/sas/spre/home/lib64/accessclients/odbc.ini file and add your DSN definition.
 b. On the CAS node, edit the /opt/sas/viya/home/lib64/accessclients/odbc.ini and add your DSN definition.
For an example DSN definition, see the [Amazon RedShift Wire Protocol] template in the odbc.ini file.

2 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.

 sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default

3 Add the following lines:

 export ODBCINI=/opt/sas/viya/home/lib64/accessclients/odbc.ini
 export ODBCINST=/opt/sas/viya/home/lib64/accessclients/odbcinst.ini
 export ODBCHOME=/opt/sas/viya/home/lib64/accessclients
 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ODBCHOME/lib

4 Save and close the sas-viya-dagentsrv-default file.

5 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:

 sudo service sas-viya-dagentsrv-default restart

 - For Red Hat Enterprise Linux 7.x and SUSE Linux:

 sudo systemctl restart sas-viya-dagentsrv-default

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to DB2

Note: This information is applicable only if you ordered SAS/ACCESS Interface to DB2 (on SAS Viya).

1 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.

 sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default

2 Add the following lines:

 export DB2INSTANCE=DB2-instance
 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:location-of-your-DB2-installation

3 Save and close the sas-viya-dagentsrv-default file.

4 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:

 sudo service sas-viya-dagentsrv-default restart

 - For Red Hat Enterprise Linux 7.x and SUSE Linux:

 sudo systemctl restart sas-viya-dagentsrv-default
The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to Hadoop

Note: The information in this section is applicable only if you ordered SAS/ACCESS Interface to Hadoop (on SAS Viya).

To manually configure the variables:

1. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.

   ```bash
   sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default
   ```

2. Add the following lines:

   ```bash
   export JAVA_HOME=location-of-your-Java-8-JRE
   export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib/amd64/server
   ```

 If you installed your own version of Java, insert its location in the JAVA_HOME field. If you are using the JRE that is installed with your SAS software, its default location is /usr/lib/jvm/jre-1.8.0. The default should be used unless you edit the vars.yml file in the playbook to specify a different location for the installation of the JRE.

3. If you are using MapR, add the following line:

   ```bash
   export MAPR_HOME=/opt/mapr
   ```

4. Save and close the sas-viya-dagentsrv-default file.

5. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:

     ```bash
     sudo service sas-viya-dagentsrv-default restart
     ```
 - For Red Hat Enterprise Linux 7.x and SUSE Linux:

     ```bash
     sudo systemctl restart sas-viya-dagentsrv-default
     ```

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to Microsoft SQL Server

Note: This information is applicable only if you ordered SAS/ACCESS Interface to Microsoft SQL Server (on SAS Viya).

1. To reference a Data Source Name (DSN) in your connection, add the DSN to the odbc.ini file.
Configure SAS/ACCESS Interface to ODBC

Note: This information is applicable only if you ordered SAS/ACCESS Interface to ODBC (on SAS Viya).

1. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the `sas-viya-dagentsrv-default` file.

```
sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default
```

2. Add the following lines, depending on the version of ODBC that you are using.

 For DataDirect:

   ```
   export ODBCHOME=ODBC-home-directory
   ```

 For Red Hat Enterprise Linux 6.x:

   ```
   sudo service sas-viya-dagentsrv-default restart
   ```

 For Red Hat Enterprise Linux 7.x and SUSE Linux:

   ```
   sudo systemctl restart sas-viya-dagentsrv-default
   ```

 The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.
export ODBCINST=location-of-your-odbc.ini-file-including-file-name
export ODBCINI=location-of-your-odbcinst.ini-file-including-file-name
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ODBCHOME/lib

For iODBC:

export ODBCINI=location-of-your-odbc.ini-file-including-file-name
export ODBCINST=location-of-your-odbcinst.ini-file-including-file-name
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:location-of-ODBC-driver-manager-library

For unixODBC:

export ODBCSYSINI=location-of-odbc.ini-and-odbcinst.ini-file-without-file-name
export ODBCINI=name-of-your-odbc.ini-file
export ODBCINST=name-of-your-odbcinst.ini-file
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:location-of-ODBC-driver-manager-library

Note: For unixODBC, if ODBCSYSINI is not set in your environment, then ODBCINI and ODBCINSTINI should be full paths to the respective files, including the filenames.

3 Save and close the sas-viya-dagentsrv-default file.

4 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:
 - For Red Hat Enterprise Linux 6.x:
 sudo service sas-viya-dagentsrv-default restart
 - For Red Hat Enterprise Linux 7.x and SUSE Linux:
 sudo systemctl restart sas-viya-dagentsrv-default

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to Oracle

Note: The information in this section is applicable only if you ordered SAS/ACCESS Interface to Oracle (on SAS Viya).

To manually configure the variables:

1 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.
 sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default

2 Add the following lines:
 export ORACLE_HOME=Oracle-home-directory
 export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH

3 Save and close the sas-viya-dagentsrv-default file.

4 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:
For Red Hat Enterprise Linux 6.x:

```
sudo service sas-viya-dagentsrv-default restart
```

For Red Hat Enterprise Linux 7.x and SUSE Linux:

```
sudo systemctl restart sas-viya-dagentsrv-default
```

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to PostgreSQL

Note: This information is applicable only if you ordered SAS /ACCESS to PostgreSQL (on SAS Viya).

A file that contains information about the database connection is required. You have two options for providing connection information:

Note: Create the file in the `/opt/sas/viya/home` directory.

- **Reference a Data Source Name (DSN).**

 Create an `odbc.ini` file. Here is an example of an `odbc.ini` file that supports DSN:

  ```ini
  [postgresql_data_source_name]
  Driver=/opt/sas/viya/home/lib64/psqlodbcw.so
  ServerName=localhost or hostname or ip>
  username=user name
  password=password
  database=database
  port=5432
  ```

- **Specify connection information in your code.**

 Create and configure the `odbcinst.ini` file. Here is an example:

  ```ini
  [ODBC Drivers]
  PostgreSQL=Installed
  [PostgreSQL]
  Description=ODBC for PostgreSQL
  Driver=/opt/sas/viya/home/lib64/psqlodbcw.so
  ```

 Note: During installation, you should also have set the `ODBCINI` environment variable.

1. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the `sas-viya-dagentsrv-default` file.

   ```
   sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default
   ```

2. Add the following lines:

   ```
   export ODBCINI=location-of-your-odbc.ini-file-including-file-name
   export ODBCINST=location-of-your-odbcinst.ini-file-including-file-name
   export PGCLIENTENCODING=UTF-8
   export LD_LIBRARY_PATH=/opt/sas/spre/home/lib64
   ```

3. Save and close the `sas-viya-dagentsrv-default` file.
4 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

- For Red Hat Enterprise Linux 6.x:

  ```bash
  sudo service sas-viya-dagentsrv-default restart
  ```

- For Red Hat Enterprise Linux 7.x and SUSE Linux:

  ```bash
  sudo systemctl restart sas-viya-dagentsrv-default
  ```

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to SAP HANA

Note: This information is applicable only if you ordered SAS/ACCESS Interface to SAP HANA (on SAS Viya).

1 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.

   ```bash
   sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default
   ```

2 Add the following lines:

   ```bash
   export ODBCINI=location-of-your-odbc.ini-file-including-file-name
   export ODBCINST=location-of-your-odbcinst.ini-file-including-file-name
   export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:location-of-your-SAP-HANA-client
   ```

3 Save and close the sas-viya-dagentsrv-default file.

4 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

- For Red Hat Enterprise Linux 6.x:

  ```bash
  sudo service sas-viya-dagentsrv-default restart
  ```

- For Red Hat Enterprise Linux 7.x and SUSE Linux:

  ```bash
  sudo systemctl restart sas-viya-dagentsrv-default
  ```

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure SAS/ACCESS Interface to Teradata

Note: The information in this section is applicable only if you ordered SAS/ACCESS Interface to Teradata (on SAS Viya).

To manually configure the variables:

1 Locate the clispb.dat file, which is your Teradata client configuration file.
2 Ensure that the following two lines are in the clispb.dat file.

```plaintext
charset_type=N
charset_id=UTF8
```

3 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, use a text editor to open the sas-viya-dagentsrv-default file.

```bash
sudo vi /etc/sysconfig/sas/sas-viya-dagentsrv-default
```

4 Add the following lines:

 Note: Multiple lines are used for LD_LIBRARY_PATH to improve readability. However, in your environment, make sure that you enter the command on a single line.

```bash
export COPERR=location-of-Teradata-installation/lib
export COPLIB=directory-that-contains-clispb.dat
export NLSPATH=Teradata-TTU-installation-directory/msg/%N:$NLSPATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Teradata-TTU-installation-path-including-lib64-directory:$LD_LIBRARY_PATH
export THREADONOFF=1
```

 An example of the TTU Default LD_LIBRARY_PATH is

```bash
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/teradata/client/15.10/lib64
```

5 Save and close the sas-viya-dagentsrv-default file.

6 On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, restart SAS Data Agent server by running the following command:

 - For Red Hat Enterprise Linux 6.x:
     ```bash
     sudo service sas-viya-dagentsrv-default restart
     ```
 - For Red Hat Enterprise Linux 7.x and SUSE Linux:
     ```bash
     sudo systemctl restart sas-viya-dagentsrv-default
     ```

The start-up script registers the SAS Data Agent server in Consul. The script also verifies that the Apache HTTP server is aware of the SAS Data Agent server that was just registered.

Configure a Proxy Server to Communicate with the SAS Data Preparation Deployment

Configuration steps are required if the Consul UI for the SAS Data Preparation deployment communicates with SAS Data Agent through a proxy server. You can configure the proxy server to enable communication using either of two methods. Choose the method that is appropriate for your security policies and performance requirements.

- The proxy server can be configured to operate in pass-through mode. This method provides the best performance and does not require additional changes for security certificates. Refer to the documentation for your proxy server for information about how to configure pass-through mode.
The truststores for each segment of the connection between the Consul UI and SAS Data Agent should be updated with information about the segments with which it communicates. The SAS Data Agent truststore should be updated with certificate information about the proxy server. The truststore that is used by Consul UI should be updated with certificate information about the proxy server. The proxy server truststore should be updated with certificate information about both the Consul UI and SAS Data Agent.
Validating the Deployment

Validate Round-Trip Communication between SAS Data Preparation and SAS Data Agent

When you run `sas-admin dagentsrv services list` from the SAS Data Agent, the following validations occur:

- SAS Data Preparation can handle authentication and communication.
- SAS Data Agent services are running.
- SAS Data Agent is running and SAS Data Preparation can communicate to it.
- At a minimum, if the listing shows `--_SERVER_ and BASE`, the SAS Data Agent was correctly initialized and is awaiting further instructions.
- The Data Agent itself is running, and SAS Data Preparation can communicate to it.

These validations ensure that a complete round-trip is successful.

On the SAS Data Agent machine, as the `sas` user, perform these tasks:

1. Run the following commands and enter the specified responses:
   ```
   export SSL_CERT_FILE=/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/trustedcerts.pem
   /opt/sas/viya/home/bin/sas-admin profile init
   Enter configuration options:
   Service Endpoint>
   Output type (text|json|fulljson)> text
   ```
Perform Installation Qualification on RPM Packages

Some of your SAS software is collected in RPM (Red Hat Package Manager) packages.

1. To qualify the installation of your RPM packages, run the basic RPM commands:

rpm -Vv package-name

 For example, to verify the contents of the sas-certframe package:

sudo rpm -Vv sas-certframe
To verify SAS Data Agent deployment, to obtain a list of the relevant RPM packages that are deployed on your system:

```
sudo rpm -Vv sas-dagentsrv
```

Here is the output:

```
......... /opt/sas/viya/home/SASFoundation
......... /opt/sas/viya/home/SASFoundation/sasexe
......... /opt/sas/viya/home/SASFoundation/sasexe/fsnetiom.so
......... /opt/sas/viya/home/SASFoundation/utilities
......... /opt/sas/viya/home/SASFoundation/utilities/bin
......... /opt/sas/viya/home/SASFoundation/utilities/bin/tktsql
```

Create a for loop command for verifying multiple packages that share a common naming convention. For example, to verify that all packages whose names begin with `sas-`, use the following query:

```
for i in $(rpm -qg "SAS");do sudo rpm -Vv $i;done
```

Here is a successful verification that shows the list of files that make up the RPM but with no error indicators:

```
# rpm -Vv sas-certframe
......... /opt/sas/viya/home/lib/sas-certframe/sas-init-functions
```

Here is an unsuccessful verification that provides error indicators next to the file name:

```
# rpm -Vv sas-certframe
S.5....T. /opt/sas/viya/home/lib/sas-certframe/sas-init-functions
```

The error indicators are shown in the following format:

```
SM5DLUGT c
```

In addition, if a file is missing, the error message contains the phrase "missing":

```
missing /opt/sas/viya/home/lib/sas-certframe/sas-init-functions
```

The meaning of each error indicator is described as follows:

S
File size. RPM keeps track of file sizes. A difference of even one byte triggers a verification error.

M
File mode. The permissions mode is a set of bits that specifies access for the file’s owner, group members, and others. Even more important are two additional bits that determine whether a user's group or user ID should be changed if they execute the program that is contained in the file. Since these bits permit any user to become root for the duration of the program, you must be cautious with a file's permissions.

5
MD5 checksum. The MD5 checksum of a file is a 128-bit number that is mathematically derived from the contents of the file. The MD5 checksum conveys no information about the contents of the original file, but, any change to the file results in a change to the MD5 checksum. RPM creates MD5 checksums for all files that it manipulates, and stores the checksums in its database. If one of these files is changed, the MD5 checksum changes and the change is detected by RPM.

D
Major and minor numbers. Device character and block files contain a major number. The major number is used to communicate information to
the device driver that is associated with the special file. Under Linux, the special files for SCSI disk drives should have a major number of 8, and the major number for an IDE disk drive's special file should be 3. Any change to a file's major number could produce disastrous effects. RPM tracks such changes. A file's minor number is similar to the major number, but conveys different information to the device driver. For disk drives, this information can consist of a unit identifier.

L Symbolic link. If a file is a symbolic link, RPM checks the text string that contains the name of the symbolically linked file.

U File owner. Most operating systems keep track of each file's creator, primarily for resource accounting. Linux and UNIX also use file ownership to help determine access rights to the file. In addition, some files, when executed by a user, can temporarily change the user's ID, normally to a more privileged ID. Therefore, any change of file ownership might have significant effects on data security and system availability.

G File group. Similar to file ownership, a group specification is attached to each file. Primarily used for determining access rights, a file's group specification can also become a user's group ID if that user executes the file's contents. Therefore, any changes in a file's group specification are important and should be monitored.

T Modification time. Most operating systems keep track of the date and time that a file was last modified. RPM keeps modification times in its database.

c Configuration file. This is useful for quickly identifying configuration files, since they are likely to change and therefore are unlikely to verify successfully. You could also get a d in this slot, indicating that the file is for documentation, which is also likely to change often.

Verification failures are expected for files that contain frequently changing content, such as environment-specific Java paths, newly generated TLS certificates, SAS license information, and CAS customizations. Such verification failures for these types of files usually do not indicate any errors in the files.

Note: The following files are renamed during the deployment process. If you perform a verification and receive "missing" indications for the following files, they can be safely ignored. Here are the default pathnames.

- /opt/sas/viya/config/etc/evmcltsvcs/sas-ops-agent-update.sh
- /opt/sas/viya/config/etc/evmsvrops/sas-ops-agentsrv-update.sh

Verify PostgreSQL

1 On the machine that you assigned to the [pgpoolc] host group, to check status:

- On Red Hat Enterprise Linux 6.x and Linux 7.x:

 sudo service sas-viya-sasdatasvrc-postgres status
For SUSE Linux:

```bash
sudo /etc/init.d/sas-viya-sasdatasvrc-postgres status
```

2 If PostgreSQL is running appropriately, you should receive a response like this:

```
P GAPool is running with PID=11445
Checking Postgresql nodes status...
node_id | hostname | port | status | lb_weight | role | select_cnt
--------+----------+------+--------+-----------+------|-----------
  0     | machine1 | 5452 | up     | 0.250000  | primary | 1
  1     | machine2 | 5452 | up     | 0.250000  | standby | 0
  2     | machine3 | 5452 | up     | 0.250000  | standby | 0
  3     | machine4 | 5452 | up     | 0.250000  | standby | 0
| load_balance_node | replication_delay
|-------------------+------------------|
| true             | 0                |
| false            | 0                |
| false            | 0                |
| false            | 0                |
(4 rows)
```

A status of `up` for a node indicates that the node is running.

Verify the SAS/ACCESS Interface to Your Databases

To validate the SAS/ACCESS interface to your databases, refer to the Getting Started in the Cloud Data Exchange for SAS Viya: Administrator's Guide.

Note: On the Data Sources tab, be sure to select a Source type of Cloud Data Exchange (CDE).
Save Snapshot Directory Content

If you successfully deployed your software using Ansible, the process saved valuable information for later use. The information is saved in the sas_deployment.tgz file in the directory in which you saved the playbook, in the /snapshot/epoch subdirectory. The sas_deployment.tgz file includes the following files, among others:

- the inventory file that is used in the deployment
- the vars.yml file that is used in the deployment
- the deployment log

SAS recommends that you copy the sas_deployment.tgz file and save it to a separate location, possibly on another machine. You have a backup of important files that might be required later, such as to update an existing order.

Share Important Deployment Information with the Administrators

If other persons are responsible for administering your SAS deployment, it is recommended that you share the following important information with them:

- The location of the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.
- The URL to access the software.
Refer to Additional Documentation

After you validate the deployment, you can perform initial administrative tasks. For more information, refer to Cloud Data Exchange for SAS Viya: Administrator’s Guide.

For usage information, refer to the Help that is available from the product and administrative interfaces.

Also, the appendix in this guide provides information to help you set up High Availability PostgreSQL.
Managing Your Software

Overview

What Is an Update?

An update provides modifications for features that are not working as intended or adds minor software enhancements and compatibility. Software updates are

What Is an Add-On Product?

What Is an Upgrade?
released to address security issues when they occur, to address minor bugs discovered in the software, and to improve the operation of hardware or peripherals. These incremental updates improve the operation of your software and are small enough that they do not require a new order. Updated software is intended to be compatible with existing configuration, content, and data. To perform an update, you will run the same tools that were run during the initial deployment. You might determine that your software needs updating or you might be notified by SAS that updates are available.

To update your SAS Viya software, see “Updating Your SAS Viya Software” on page 97.

What Is an Add-On Product?

An add-on product is new software that you can order and then install with your currently deployed software. You will need a new order for an add-on product. Adding new software to your deployment also updates your currently deployed software.

Because an add-on product is added to the currently deployed software in an environment, you might need to expand your environment’s capacity before installing an add-on product.

For information about adding on a product, see “Adding SAS Viya Software to a Deployment” on page 103.

What Is an Upgrade?

Upgrading to SAS Viya 3.5 from Earlier Versions of SAS Viya

An upgrade for SAS Viya adds significant feature changes or improvements to SAS Viya. To perform an upgrade, you will run the same tools that were run during the initial deployment. You will need a new order to upgrade your deployed software, and you must get an updated version of the Orchestration CLI to create a new playbook. Add-on products in the order are installed as part of the upgrade process. An upgrade might require changes to the deployed software’s configuration.

You might determine that your software needs upgrading or you might be notified by SAS that upgrades are available. SAS recommends creating a backup of the deployed software environment before performing an upgrade. For more information, see Overview in SAS Viya Administration: Backup and Restore.

For information about upgrading to SAS Viya 3.5 from other versions of SAS Viya, see “Upgrading to SAS Viya 3.5 from Earlier Versions of SAS Viya” on page 107.

Note: If you have upgraded SAS Data Preparation in SAS Viya 3.5, then you should upgrade SAS Data Agent in SAS Viya 3.5.
Updating Your SAS Viya Software

Overview

An update replaces some or all of your deployed software with the latest versions of that software. You perform the update with the same command that was used to install SAS Viya, and use the same software order and the same playbook. If you have deployed SAS Data Agent multiple times, you should perform these steps for each deployment.

- To see what updates are available for your deployed software, go to the SAS Viya Hot Fix Availability web page at http://ftp.sas.com/techsup/download/hotfix/HF2/Viya_home.html.
- Use the same tool to update that you used to install.
- SAS might update components of the Ansible playbook that is used to deploy your SAS Viya software. You will need to download the current version of the SAS Orchestration CLI to generate a new Ansible playbook for your deployment, and then run the new Ansible playbook.

Here are other considerations when preparing for an update:

- The update process preserves any user-modified configuration values in the vars.yml file, but changes made to other files in the deployment might be lost. Therefore, SAS recommends that you make changes to vars.yml when possible in order to avoid any loss of customizations that you made to other files.
- You will need the location of the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.
- If you are using a PDF version of this guide, go to the Deployment Guides web page at https://support.sas.com/en/documentation/install-center/sas-viya/deployment-guides.html and verify that you have the latest version of the deployment documentation before you start the update process. The release date of each document is located in the bottom right corner of the front page.
- Updating SAS Viya software requires an outage period because some SAS Viya services are stopped and restarted automatically during the update process.

User Requirements for Performing the Update

To perform the update process, you must have administrator privileges for the machine. In addition, your account must have superuser (sudo) access. To verify sudo user privileges, run the following command: sudo -v or sudo -l.
Synchronize the Mirror Repository

If you are using a mirror repository:

1. (Optional) To list the packages that are available for the update process, run the following command on the machine where the mirror repository is located:

 Note: Enter the command on a single line. Multiple lines are used here to improve readability.

   ```bash
   mirrormgr mirror diff --deployment-data path-to-SAS_Viya_deployment_data.zip
   --platform linux-distribution-value --path path-to-mirror-destination
   --latest
   ```

 For more information, see “SAS Mirror Manager and the Mirror Repository” on page 28.

 Note: Unless you add the --platform option, the mirrormgr mirror diff command returns the available files for all supported platforms of the products in the deployment. The --platform option filters out unwanted content from the output of the command.

2. Synchronize the deployment's mirror repository with SAS' mirror repository. Use the same options to update the mirror repository that you used to create the mirror repository. For more information, see “SAS Mirror Manager and the Mirror Repository” on page 28.

 To synchronize, run the following command on the machine where the connected mirror repository is located:

 Note: Enter the command on a single line. Multiple lines are used here to improve readability.

   ```bash
   mirrormgr mirror --deployment-data path-to-SOE-deployment-zip-file --path
   path-to-mirror-destination --latest
   ```

3. If you are in a deployment without internet access, move the files from the machine where the connected mirror repository is located to the machine where the unconnected mirror repository is located.

(Optional) List the Packages That Are Available for Update

To list the packages that are available for the update process, run the following command:

on Red Hat Enterprise Linux:

   ```bash
   sudo yum check-update "sas-*"
   ```

on SUSE Linux:

   ```bash
   sudo zypper list-updates | grep "sas-*"
   ```
Update with Ansible

To update a SAS Viya deployment using Ansible:

1. (Optional) Record the existing list of installed software before you begin.
 - On each machine in your deployment, create a file that lists the names and versions of all the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists all the RPM packages:
   ```
   sudo rpm -qg SAS > /sas/install/viya_rpms.txt
   ```

 - On each machine in your deployment, create a file that lists the SAS host groups that are installed on a machine. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:
   ```
   sudo yum grouplist "SAS*" > /sas/install/viya_yumgroups.txt
   ```

 Run the following command to create a text file that lists the RPM packages on SUSE Linux:
   ```
   sudo rpm -qa | grep "sas-" > /sas/install/viya_packages.txt
   ```

 Note: If you receive a message such as the following, it can be ignored.
   ```
   Repository repository-name is listed more than once in the configuration
   ```

2. Review the *_deployment.* files (for example, casconfig_deployment.lua) in the existing deployment for any user-modified changes. If there are any user-modified changes to the *_deployment.* files, back up the file and update the vars.yml file with the changes before you perform the update. If you have questions, contact SAS Technical Support.

 Note: SAS recommends that you add your customizations to the vars.yml file rather than to a *_deployment.* file in order to preserve your customizations. Otherwise, your customizations would be lost during the update process.

3. To verify the health of the SAS Infrastructure Data Server before running the playbook, perform the task in “Verify PostgreSQL” on page 90.

4. To initiate the update:
   ```
   ansible-playbook update-only.yml
   ```
 Be sure to use the same options that you used when you performed the initial deployment. For more information, see “Deploy the Software” on page 60.

5. (Optional) Record the new list of installed software.
 - On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed.
Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

Run the following command to create a text file that lists the RPM packages:

```
sudo rpm -qg SAS > /sas/install/new_viya_rpms.txt
```

b On each machine in your deployment, create a file that lists the yum groups or packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

- Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

  ```
sudo yum grouplist "SAS*" > /sas/install/new_viya_yumgroups.txt
  ```

- Run the following command to create a text file that lists the RPM packages on SUSE Linux:

  ```
sudo rpm -qa | grep "sas-" > /sas/install/new_viya_packages.txt
  ```

 Note: If you receive a message such as the following, it can be ignored.

 Repository repository-name is listed more than once in the configuration

You can see the differences between the previous and current deployments by comparing the lists of installed software that precedes the update (Step 1 on page 99) and that follows the update.

c To verify that a specific update was applied, compare the contents of the text file created in Step 5 on page 99 to the packages listed for the specific update. The package list for a specific update is available in the Manifest View for the update on the SAS Viya Hot Fix Availability web page at http://ftp.sas.com/techsup/download/hotfix/HF2/Viya_home.html.

Generate a New Ansible Playbook

You will need the location of the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

If updates are needed in the Ansible playbook, to generate and apply a new Ansible playbook for your deployment:

1. (Optional) Record the existing list of installed software before you begin.

 a On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists all the RPM packages:

      ```
sudo rpm -qg SAS > /sas/install/viya_rpms.txt
      ```
On each machine in your deployment, create a file that lists the yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

- Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

 `sudo yum grouplist *SAS* > /sas/install/viya_yumgroups.txt`

- Run the following command to create a text file that lists the RPM packages on SUSE Linux:

 `sudo rpm -qa | grep "sas-" > /sas/install/viya_packages.txt`

 Note: If you receive a message such as the following, it can be ignored.

 `Repository repository-repository-name is listed more than once in the configuration`

2 Use the Software Order Email (SOE) for your original deployment to download the current version of the SAS Orchestration CLI.

3 Using the SAS Orchestration CLI that you downloaded, create a new playbook using the instructions on the SAS Orchestration Command Line Interface (CLI) download site. For more information, see “Create a Playbook” on page 31.

4 You must extract the new playbook to a location that is different from that of your original playbook. For example, if you extracted your original playbook to `/sas/install/`, you might extract the new playbook to `/sas/upgrade/` instead. You must extract the new playbook to a location that is different from the one that you used for your deployment for these reasons:

- To preserve the original vars.yml file and the inventory file.

- To ensure that the playbook directory correctly reflects what is delivered. If a new playbook is accidentally extracted over an existing playbook, files that were removed in the newer playbook would still be available and could negatively affect the process for researching and resolving deployment issues.

 To extract the new playbook, use a command that is similar to the following:

 `tar xf SAS_Viya_playbook.tgz -C /sas/upgrade`

5 Merge the vars.yml file and the inventory file from the previous deployment into the new playbook. If the previous inventory file contains any spaces that are used to indent machine names, do not include the extra spaces.

a Compare the two inventory files to check for additions or changes in the newer set of files. Be sure to evaluate the comments to determine whether the requirements for host groups changed between releases of the software.

 Note: Enter each command on a single line. Multiple lines are used here to improve readability.

 `diff /sas/install/sas_viya_playbook/vars.yml /sas/upgrade/sas_viya_playbook/vars.yml`

 `diff /sas/install/sas_viya_playbook/inventory-file /sas/upgrade/sas_viya_playbook/inventory.ini`

b If the new files contain new content, then merge your customized edits from the two original files into the two new files. If a key/value pair in the original
If the file is not included in the new file, you do not need to add the key/value pair to the new file. If you have any questions, contact SAS Technical Support.

If you have questions about whether to add a key/value pair from an original file to the new file, contact SAS Technical Support.

6 To apply the new Ansible playbook, change to the directory where the new playbook is located:
 cd /sas/upgrade/

 Run the following command:
 ansible-playbook site.yml

7 (Optional) Record the new list of installed software.

 a On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists the RPM packages:
   ```
   sudo rpm -qg SAS > /sas/install/new_viya_rpms.txt
   ```

 b On each machine in your deployment, create a file that lists the SAS yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:
   ```
   sudo yum grouplist "SAS*" > /sas/install/new_viya_yumgroups.txt
   ```

 Run the following command to create a text file that lists the RPM packages on SUSE Linux:
   ```
   sudo rpm -qa | grep "sas-" > /sas/install/new_viya_packages.txt
   ```

 Note: If you receive a message such as the following, it can be ignored.

 Repository repository-name is listed more than once in the configuration

You can see the differences between the previous and current deployments by comparing the lists of installed software that precedes the update (Step 1 on page 100) and that follows the update.

To verify that a specific update was applied, compare the contents of the text file created in Step 7 on page 102 to the packages listed for the specific update. The package list for a specific update is available in the Manifest View for the update on the SAS Viya Hot Fix Availability web page at http://ftp.sas.com/techsup/download/hotfix/HF2/Viya_home.html.
Adding SAS Viya Software to a Deployment

Overview

Adding new software to your deployment also updates your currently deployed software. You will need a new software order to add SAS Viya software to an existing deployment.

Adding SAS Viya software to an existing deployment requires an outage period. During the process, all SAS Viya services must be stopped and then restarted.

This chapter includes all the steps that are required for adding SAS Viya software regardless of the version of the source environment and the software installed.

You will need the location of the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

Add SAS Viya Software

To add SAS Viya software and update a SAS Viya deployment:

1. Before you begin, you should review the Chapter 1, “Introduction,” on page 1, Chapter 2, “System Requirements,” on page 9, and Chapter 3, “Pre-installation Tasks,” on page 27 chapters of this guide.

2. (Optional) Record the existing list of installed software before you begin.
 a. On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists all the RPM packages:

      ```
      sudo rpm -qg SAS > /sas/install/viya_rpms.txt
      ```
 b. On each machine in your deployment, create a file that lists the yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

      ```
      sudo yum grouplist "SAS*" > /sas/install/viya_yumgroups.txt
      ```

 Run the following command to create a text file that lists the RPM packages on SUSE Linux:
sudo rpm -qa | grep "sas-" > /sas/install/viya_packages.txt

Note: If you receive a message such as the following, it can be ignored.
Repository repository-name is listed more than once in the configuration

3 If your deployment used a mirror repository, you must download the current version of SAS Mirror Manager. For more information, see “SAS Mirror Manager and the Mirror Repository” on page 28.

4 If you are adding software and your software is mirrored, you must update the mirror using the ZIP file that is attached to your new Software Order Email (SOE) before you perform these steps. For more information, see “Synchronize the Mirror Repository” on page 98. If you are upgrading existing software to a new version, you might want to create a new mirror so that you can delete the old files after the upgrade. For more information, see “SAS Mirror Manager and the Mirror Repository” on page 28.

5 Download the latest SAS Orchestration CLI. For more information, see “Create a Playbook” on page 31.

6 Using the SAS Orchestration CLI that you downloaded, create a new playbook. For more information, see “Create a Playbook” on page 31.

You must extract the new playbook to a location that is different from that of your original playbook. For example, if you extracted your original playbook to /sas/install/, you might extract the new playbook to /sas/addon/ or /sas/upgrade/ instead. You must extract the new playbook to a location that is different from the one that you used for your deployment for these reasons:

- To preserve the original vars.yml file and the inventory file.
- To ensure that the playbook directory correctly reflects what is delivered. If a new playbook is mistakenly extracted over an existing playbook, files that were removed in the newer playbook would still be available and could negatively affect the process for researching and resolving deployment issues.

To extract the new playbook, use a command that is similar to the following:

tar xf SAS_Viya_playbook.tgz -C /sas/new-playbook-directory-name/

7 Merge the vars.yml file and the inventory file from the previous deployment into the new playbook. If the previous inventory file contains any spaces that are used to indent machine names, do not include the extra spaces.

- Compare the two vars.yml files, and compare the two inventory files. Check for additions or changes in the newer set of files. Be sure to evaluate the comments to determine whether the requirements for host groups changed between releases of the software.

Note: Enter each command on a single line. Multiple lines are used here to improve readability.

diff /sas/install/sas_viya_playbook/vars.yml
/sas/new-playbook-directory-name/sas_viya_playbook/vars.yml

diff /sas/install/sas_viya_playbook/inventory.ini
/sas/new-playbook-directory-name/sas_viya_playbook/inventory.ini

Note: The [consul], [httpproxy], and [operations] host groups must be present in /sas/new-playbook-directory-name/sas_viya_playbook/
inventory.ini and must contain the host entries from the original deployment.

Note: The [consul] and [httpproxy] host groups must be present in each /sas/new-playbook-directory-name/sas_viya_playbook/CAS-server-inventory-file-name and must contain the host entries from the original deployment.

b If the new files contain new content, then merge your customized edits from the two original files into the two new files. If a key/value pair in the original file is not included in the new file, you do not need to add the key/value pair to the new file. If you have any questions, contact SAS Technical Support.

Note: All host groups that are present in the inventory file from the previous deployment must remain on the same machines in the inventory file for the new deployment. New host groups that were not in the previous deployment should be assigned to machines in the current deployment. Review the comments that precede each host group before assigning host groups to machines. For more information, see "Assign the Target Machines to Host Groups" on page 47.

c If you have questions about whether to add a key/value pair from an older file to the new file, contact SAS Technical Support.

8 To verify the health of the SAS Infrastructure Data Server before running the playbook, perform the task in "Verify PostgreSQL" on page 90.

9 Complete the tasks in "File System and Storage Requirements" on page 12, as appropriate.

10 It is recommended to add a 404 redirect in your deployment’s web server to prevent users from accessing the deployment before the process is completed. See your web server documentation.

Note: As administrators, use a secondary URL to complete the deployment steps.

11 Install your SAS Viya software beginning with "Modify the vars.yml File" on page 53.

12 After you install the software, you must complete the post-installation tasks that are appropriate for your deployment.

a If you added any SAS/ACCESS software to your deployment, configure data access on page 77 as appropriate.

b Configure any products that you have added to your deployment that have specific steps listed in Chapter 5, “Post-installation,” on page 63.

c To stop and then start sas-viya-dagentsrv, perform one of the following actions, as appropriate:

- On Red Hat Enterprise Linux 6.x or an equivalent distribution:

 sudo service sas-viya-dagentsrv-default stop
 sudo service sas-viya-dagentsrv-default start

- On Red Hat Enterprise Linux 7.x, SUSE Linux, or an equivalent distribution:

 sudo systemctl stop sas-viya-dagentsrv-default
 sudo systemctl start sas-viya-dagentsrv-default
For more information, see General Servers and Services: Operate (Linux) in SAS Viya Administration: General Servers and Services.

d Validate the deployment on page 87.

e Complete the deployment on page 93.

13 If you created a 404 redirect for your deployment’s web server in Step 10 on page 105, remove the 404 redirect. See your web server documentation.

14 (Optional) Record the new list of installed software.

a On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

Run the following command to create a text file that lists the RPM packages:

```
sudo rpm -qg SAS > /sas/install/new_viya_rpms.txt
```

b On each machine in your deployment, create a file that lists the SAS yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

- Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

  ```
sudo yum grouplist "SAS*" > /sas/install/new_viya_yumgroups.txt
  ```

- Run the following command to create a text file that lists the RPM packages on SUSE Linux:

  ```
sudo rpm -qa | grep "sas-*" > /sas/install/new_viya_packages.txt
  ```

 Note: If you receive a message such as the following, it can be ignored.

 Repository repository-name is listed more than once in the configuration

 You can see the differences between the previous and current deployments by comparing the lists of installed software that precedes the update (Step 2 on page 103) and that follows the update.

c To verify that a specific update was applied, compare the contents of the text file created in Step 14a on page 106 to the packages that are listed for the specific update. The package list for a specific update is available in the Manifest View for the update on the SAS Viya Hot Fix Availability web page at http://ftp.sas.com/techsup/download/hotfix/HF2/Viya_home.html.

User-Related Tasks

Inform users that they must perform the following actions:

- Clear web browser caches before using the upgraded deployment.
- Change any entries in web browser bookmarks from SASHome to SASDrive.
Upgrading to SAS Viya 3.5 from Earlier Versions of SAS Viya

Overview

An upgrade adds significant feature changes or improvements to your deployed software. To perform an upgrade, you will run the same tools that were run during the initial deployment. You will need a new software order to upgrade your deployed software. An upgrade might require changes to the deployed software’s configuration.

You might determine that your software needs to be upgraded or you might be notified by SAS that upgrades are available. SAS recommends creating a backup of the deployed software environment before performing an upgrade. For more information, see Overview in SAS Viya Administration: Backup and Restore.

Add-on products that are present in the order are installed as part of the upgrade process.

Upgrading SAS Viya software requires an outage period. During the upgrade process, all SAS Viya services must be stopped and then restarted.

This chapter includes all the required steps for the upgrade process, regardless of the version of the source environment and the software installed.

You will need the location of the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

Before you start the upgrade, it is recommended that you review all the steps to determine the tasks that are applicable to your deployed software. During your review, identify the tasks that can be performed before a scheduled outage and those that must be performed during a scheduled outage.

If during or after the upgrade process you encounter issues, see Appendix 2, “Troubleshooting,” on page 137.

Upgrade Using a Mirror Repository

If you are upgrading a SAS Viya deployment that used a mirror repository and you want to use a mirror repository again, you must create a SAS Viya 3.5 mirror repository to upgrade to SAS Viya 3.5. For more information, see “Create a Mirror Repository” on page 28.
Create the New SAS Viya 3.5 Playbook

To create the new playbook that you will use to upgrade your SAS Viya deployment to SAS Viya 3.5:

1. When you upgrade SAS Viya, you receive a new Software Order Email (SOE) from SAS. Use your SOE to download the SAS Orchestration CLI.

2. Using the SAS Orchestration CLI that you downloaded, create a new playbook using the instructions on the SAS Orchestration Command Line Interface (CLI) download site. For more information, see “Create a Playbook” on page 31.

3. You must extract the new playbook to a location that is different from the location used in your original playbook. For example, if you extracted your original playbook to `/sas/install/`, you might extract the new playbook to `/sas/upgrade/` instead. You must extract the new playbook to a location that is different from the one that you used for your deployment for these reasons:
 - To preserve the original vars.yml file and the inventory file.
 - To ensure that the directory that contains the playbook correctly reflects what is delivered. If a new playbook is accidentally extracted over an existing playbook, the files that were removed in the newer playbook would still be available and could negatively affect the process for researching and resolving deployment issues.

 To extract the new playbook, use a command that is similar to the following:

   ```
tar xf SAS_Viya_playbook.tgz -C /sas/upgrade/
   ```

Merge the User-Modified Files

Note: (Optional) You can run the SAS Viya Administration Resource Kit (ARK) merge playbook to perform most of the steps in this task.

For more information, see (Optional) Using the SAS Viya Administration Resource Kit in SAS Viya for Linux: Deployment Guide and the SAS Viya ARK merge playbook page on GitHub at https://github.com/sassoftware/viya-ark/blob/master/playbooks/merge-playbook/README.md. After you run the playbook, view the output files. To find the location of the output files, see the README for the merge playbook.

After you run the merge playbook, you can skip all steps in this task except Step 8 on page 110.

Merging user-modified files includes the following actions:

- Compare the existing deployment’s vars.yml, inventory, and ansible.cfg files with the new files for the SAS Viya upgrade.
- Find any post-deployment edits in the existing deployment’s files.
- Update the new files with any post-deployment edits in the existing deployment’s files.
You will find or create original, unedited versions of the vars.yml file from the original SAS Viya deployment. You will compare the three vars.yml files described here and edit the vars.yml for the SAS Viya upgrade. You will also compare the current inventory file and the new inventory file, the current ansible.cfg file and the new ansible.cfg file, and edit the new files with needed changes.

This guide refers to the three types of vars.yml files as follows:

- **vars_original.yml** — the vars.yml file for the original SAS Viya deployment as it was received from SAS or created by SAS tools.
- **vars_current.yml** — the vars.yml file for your current SAS Viya deployment that might contain post-deployment edits.
- **vars.yml** — the vars.yml file for the SAS Viya upgrade as it was received from SAS or created by SAS tools.

To merge the user-modified files:

1. Locate the current vars.yml for your SAS Viya deployment that might contain post-deployment edits, and save a copy of the file by renaming the file as vars_current.yml.

2. Perform one of the two following steps.
 - If you have the original and unedited vars.yml that was generated by the SAS Viya 3.4 Orchestration CLI during the original deployment, copy that unedited vars.yml file and save it with the name vars_original.yml.
 - Otherwise, run the SAS Viya 3.4 Orchestration CLI to create a new and unedited playbook using the original SOE attachments from the SAS Viya 3.4 deployment. Extract the vars.yml from the newly created playbook. Name it vars_original.yml.

3. Compare the file that is currently in use, vars_current.yml, to the file from the SAS Viya 3.5 playbook, vars.yml.

   ```bash
   diff vars_current.yml vars.yml
   ```

4. Make a list of all variables in vars_current.yml that are not also in vars.yml.

5. Compare the list of variables that you made in Step 4 on page 109 to the variables in vars_original.yml.
 - Any variable in the list that is not in vars_original.yml is probably a customization that you want to retain. Add the variable to vars.yml.
 - Any variable in the list that is also in vars_original.yml is a deprecated variable. Do not add the variable to vars.yml.

6. Merge the inventory file from the previous deployment into the new playbook. If the previous inventory file contains any spaces that are used to indent machine names, do not include the extra spaces.

 a. Compare the two inventory files to check for additions or changes in the newer set of files. Be sure to evaluate the comments to determine whether the requirements for host groups changed between releases of the software.

 Note: Enter the command on a single line. Multiple lines are used here to improve readability.

   ```bash
   diff /sas/install/sas_viya_playbook/inventory-file
   /sas/upgrade/sas_viya_playbook/inventory.ini
   ```
If the new files contain new content, merge your customized edits from the
two original files into the new file. If a key/value pair in the original file is not
included in the new file, you do not need to add the key/value pair to the new
file. If you have any questions, contact SAS Technical Support.

Note: All host groups that are present in the inventory file from the previous
deployment must remain on the same machines in the inventory file for the
upgrade. New host groups that were not in the previous deployment should
be assigned to machines in the current deployment. Review the comments
that precede each host group before assigning host groups to machines. For
more information, see “Assign the Target Machines to Host Groups” on page
47.

c If you have questions about whether to add a key/value pair from an original
file to the new file, contact SAS Technical Support.

7 Merge the ansible.cfg file from the previous deployment into the new ansible.cfg
file.

a Compare the two files to check for additions or changes in the newer file.

Note: Enter the command on a single line. Multiple lines are used here to
improve readability.

diff /sas/install/sas_viya_playbook/ansible.cfg
/sas/upgrade/sas_viya_playbook/ansible.cfg

b If the new file contains new content, merge your customized edits from the
original file into the new file. If you have any questions, contact SAS
Technical Support.

8 If you created a sitedefault.yml in the previous deployment, copy it to
sitedefault_original.yml to use as reference for any future deployments.

Note: Do not edit sitedefault.yml or sitedefault_original.yml.

(Optional) Run the SAS Viya ARK Pre-Upgrade Playbook

You can run an Ansible playbook to automate some of the pre-upgrade steps.

For more information, see (Optional) Using the SAS Viya Administration Resource
Kit in SAS Viya for Linux: Deployment Guide and the SAS Viya ARK upgrade
playbook page on GitHub at https://github.com/sassoftware/viya-ark/blob/master/
playbooks/viya-upgrade/README.md. After you run the playbook, view the
summary report. To find out the location of the summary report, see the README
for the pre-upgrade playbook.

Prepare to Upgrade SAS Viya Software

SAS recommends that you create a backup of the deployed software environment
before performing an upgrade. For more information, see Overview in SAS Viya
Administration: Backup and Restore.

To prepare to upgrade a SAS Viya deployment:
1 (Optional) Record the existing list of installed software before you begin.

Note: If you ran the SAS Viya ARK pre-upgrade playbook, and the report contains the heading Run Deployment Report in the Results section, skip this section. For more information see “(Optional) Run the SAS Viya ARK Pre-Upgrade Playbook” on page 110.

a On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

Run the following command to create a text file that lists all the RPM packages:

```
sudo rpm -qg SAS > /sas/install/viya_rpms.txt
```

b On each machine in your deployment, create a file that lists the yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

- Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

```
sudo yum grouplist "SAS*" > /sas/install/viya_yumgroups.txt
```

- Run the following command to create a text file that lists the RPM packages on SUSE Linux:

```
sudo rpm -qa | grep "sas-" > /sas/install/viya_packages.txt
```

Note: If you receive a message such as the following, it can be ignored.

Repository repository-name is listed more than once in the configuration

2 In the deployment that you are upgrading, find the following line in the original vars.yml that was used for the deployment:

```
casenv_user: casuser
```

Note: If you ran the SAS Viya ARK pre-upgrade playbook, and the report contains the heading Update Custom CAS User in the Results section, skip Step 2 on page 111 and Step 3 on page 111. For more information see “(Optional) Run the SAS Viya ARK Pre-Upgrade Playbook” on page 110.

3 If casuser is anything other than the default value cas, perform this step. Otherwise, skip this step.

On each machine listed in these three host groups in the inventory file of the deployment that is to be upgraded:

- sas_casserver_primary
- sas_casserver_secondary
- sas_casserver_worker

run the following command.

```
sudo usermod -G sas casuser
```

where casuser is the user account name specified in vars.yml.
4 Follow the steps that are described in “Perform Linux Tuning” on page 37 on the target machine before starting the upgrade process.

5 System requirements for RAM, CPU, and disk space are likely to change with each SAS Viya release. Verify that your environment meets the requirements that are listed in Chapter 2, “System Requirements,” on page 9.

Verify the Health of SAS Infrastructure Data Server

Note: If you ran the SAS Viya ARK pre-upgrade playbook, and the report contains the heading Verify the Health of the SAS Infrastructure Data Server in the Results section, skip this section. For more information see “(Optional) Run the SAS Viya ARK Pre-Upgrade Playbook” on page 110.

To verify the health of the SAS Infrastructure Data Server before running the playbook, perform the task in “Verify PostgreSQL” on page 90.

Note: Do not change the PostgreSQL cluster topology during an upgrade.

Upgrade SAS Viya Software

To upgrade a SAS Viya deployment:

1 Complete the tasks in “File System and Storage Requirements” on page 12, as appropriate.

 Note: If you ran the SAS Viya ARK pre-upgrade playbook, and the report contains the heading Disk Space Considerations in the Results section, skip this step. For more information see “(Optional) Run the SAS Viya ARK Pre-Upgrade Playbook” on page 110.

2 It is recommended that you add a 404 redirect in your deployment’s web server to prevent users from accessing the deployment before the process is completed. See your web server documentation.

 Note: As administrators, use a secondary URL to complete the deployment steps.

3 To stop sas-viya-dagentsrv, perform one of the following actions, as appropriate:
 - On Red Hat Enterprise Linux 6.x or an equivalent distribution:

     ```bash
     sudo service sas-viya-dagentsrv-default stop
     ```
 - On Red Hat Enterprise Linux 7.x, SUSE Linux, or an equivalent distribution:

     ```bash
     sudo systemctl stop sas-viya-dagentsrv-default
     ```

 For more information, see General Servers and Services: Operate (Linux) in SAS Viya Administration: General Servers and Services.

4 Install your SAS Viya software beginning with “Modify the vars.yml File” on page 53.

5 After the software has been installed, configure these features, as appropriate:
a If you added any SAS/ACCESS software to your deployment, configure data access on page 77 as appropriate.

b Configure any products that you have added to your deployment that have specific steps listed in Chapter 5, “Post-installation,” on page 63.

c To start sas-viya-dagentsrv, perform one of the following actions, as appropriate:

- On Red Hat Enterprise Linux 6.x or an equivalent distribution:

  ```
  sudo service sas-viya-dagentsrv-default start
  ```

- On Red Hat Enterprise Linux 7.x, SUSE Linux, or an equivalent distribution:

  ```
  sudo systemctl start sas-viya-dagentsrv-default
  ```

For more information, see General Servers and Services: Operate (Linux) in SAS Viya Administration: General Servers and Services.

d Validate the deployment on page 87.

e Complete the deployment on page 93.

f See any appendixes that contain information that is relevant to your deployment.

Register the SAS Data Agent

To register the SAS Data Agent after the upgrade, perform the following steps:

1 Perform the task in “Register Remote SAS Data Agent Servers and OAuth Client” on page 65.

2 To unregister the previous server name, run the following command:

   ```
   /opt/sas/viya/home/bin/da_unreg_server.sh --registeredservername dagentsrv-tenantID-default
   ```

(Optional) Run the SAS Viya ARK Post-Upgrade Playbook

You can run an Ansible playbook to automate some of the post-upgrade steps.

For more information, see (Optional) Using the SAS Viya Administration Resource Kit in SAS Viya for Linux: Deployment Guide and the SAS Viya ARK upgrade playbook page on GitHub at https://github.com/sassoftware/viya-ark/blob/master/playbooks/viya-upgrade/README.md. After you run the playbook, view the summary report. The location of the summary report can be found in the README for the post-upgrade playbook.
Back Up and Make a List of the New Deployment

To back up and make a list of the new deployment:

1. If you created a 404 redirect in your deployment’s web server in Step 2 on page 112, remove the 404 redirect. See your web server documentation.

2. Immediately after the upgrade, perform a backup of your deployment for possible recovery purposes.
 - Do not wait for the scheduled backup to run.
 - Do not use the backups of SAS Viya that were performed before this upgrade to use for recovery.

 For more information, see Overview in SAS Viya Administration: Backup and Restore.

3. (Optional) Record the new list of installed software.

 Note: If you ran the SAS Viya ARK post-upgrade playbook, and the report contains the heading Run Deployment Report in the Results section, skip this step. For more information see “(Optional) Run the SAS Viya ARK Post-Upgrade Playbook” on page 113.

 a. On each machine in your deployment, create a file that lists the names and versions of the RPM packages of the SAS Viya software that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 Run the following command to create a text file that lists the RPM packages:

      ```bash
      sudo rpm -qg SAS > /sas/install/new_viya_rpms.txt
      ```

 b. On each machine in your deployment, create a file that lists the SAS yum groups or packages that are installed. Create this file in the directory on each machine where you stored deployment and maintenance files. For more information about this directory, see “Store the Playbook” on page 33.

 - Run the following command to create a text file that lists the yum groups on Red Hat Enterprise Linux:

        ```bash
        sudo yum grouplist "SAS*" > /sas/install/new_viya_yumgroups.txt
        ```

 - Run the following command to create a text file that lists the RPM packages on SUSE Linux:

        ```bash
        sudo rpm -qa | grep "sas-" > /sas/install/new_viya_packages.txt
        ```

 Note: If you receive a message such as the following, it can be ignored.

      ```bash
      Repository repository-name is listed more than once in the configuration
      ```

 You can see the differences between the previous and current deployments by comparing the lists of installed software that precedes the update (Step 2 on page 103) and that follows the update.

c. To verify that a specific update was applied, compare the contents of the text file created in Step 3 on page 114 to the packages that are listed for the

User-Related Tasks

Inform users that they must perform the following actions:

- Clear web browser caches before using the upgraded deployment.
- Change any entries in web browser bookmarks from SASHome to SASDrive.
Uninstalling SAS Viya

What deploy-clean-up Does

When you use the deploy-clean-up command described in the following sections, it performs these actions:

1. Stop all SAS services.
2. Remove all SAS RPMs.
3. Delete any remaining SAS .pid files.
4. Delete the entitlement_certificate.pem and SAS_CA_Certificate.pem files.

The deploy-clean-up command renames the /opt/sas/viya directory to /opt/sas/viya_epoch.

The uninstallation does not remove the customized script that you received with your SOE, and it does not remove any users that have been set up.

Use deploy-clean-up

Using deploy-clean-up.yml removes the directory structure created by the deployment.

1. Ensure that you are at the top level of the playbook in the sas_viya_playbook directory.

2. Here is the basic syntax for the command to run the playbook and uninstall the software:

 ansible-playbook deploy-clean-up.yml
Add an option based on the password requirements for the user ID that performs the command, using Table 9.1.

Table 9.1 Command Options Based on Password Requirements

<table>
<thead>
<tr>
<th>Password Requirements</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not require passwords</td>
<td>use the command as written</td>
</tr>
<tr>
<td>Requires a sudo password only</td>
<td><code>--ask-become-pass</code></td>
</tr>
<tr>
<td>Requires an SSH password only</td>
<td><code>--ask-pass</code></td>
</tr>
<tr>
<td>Requires both a sudo and an SSH password</td>
<td><code>--ask-pass --ask-become-pass</code></td>
</tr>
</tbody>
</table>

Here is an example of the deploy command that requires both sudo and SSH passwords:

```bash
ansible-playbook deploy-cleanup.yml --ask-pass --ask-become-pass
```

If you have multiple deployments of SAS Data Agent, you will need to run a similar command for each:

Note: Enter the command on a single line. Multiple lines are used here to improve readability.

```bash
ansible-playbook -i additional-inventory-file-name deploy-cleanup.yml -e "@additional-vars-file-name"
```

Add an option based on the password requirements for the user ID that performs the command, using Table 9.1.

The deploy-cleanup command leaves a few running processes that should be removed individually.

1. `httpd` remains on your system because other software might be using it. If no other software is using `httpd`, you can stop its processes and remove it by running the following command:

   ```bash
   yum remove httpd
   ```

2. The `epmd` process remains running on your system as an artifact of SAS Message Broker. To stop the process:
 a. List all active processes by running the following command:
      ```bash
      ps -A
      ```
 b. In the results, find "epmd" in the far right column, and then locate its process ID (PID) in the far left column.
 c. Remove the `epmd` process by running the following command:
      ```bash
      kill process-ID-for-epmd
      ```

3. The `sas-configuration-cli` process could remain running on your system. To stop the process perform the following steps on every machine in your deployment:
 a. List all active processes by running the following command:
      ```bash
      ps -A
      ```
b In the results, find “sas-configuration-cli” in the far right column, and then locate its process ID (PID) in the far left column. If “sas-configuration-cli” is not listed, then you can move on to the next machine.

c Remove the sas-configuration-cli process by running the following command:

```
kill process-ID-for-sas-configuration-cli
```

Uninstall a Mirror Repository

If your deployment includes a mirror repository and you want to remove it as well, you can run a basic Linux command to do so. Because all the files of the mirror repository are contained in a single directory, use the following command to remove the mirror repository:

```
sudo rm -rf path-to-mirror-repository
```

If you did not change the default location of the SAS Mirror Manager log when you deployed your software, you should also remove the log from `/local/share/mirrormgr` in the home directory of the install user.
Overview

By default, when you use the instructions in Chapter 4, "Installation," on page 45, Ansible deploys HA PostgreSQL as a single node on a single machine. However, HA PostgreSQL supports other topologies. This appendix describes those topologies and explains how to use Ansible to deploy them.

Appendix 1

Creating High Availability PostgreSQL Clusters

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>121</td>
</tr>
<tr>
<td>HA PostgreSQL and HA PGPool Topologies</td>
<td>122</td>
</tr>
<tr>
<td>Overview</td>
<td>122</td>
</tr>
<tr>
<td>Values in vars.yml</td>
<td>123</td>
</tr>
<tr>
<td>Ports</td>
<td>124</td>
</tr>
<tr>
<td>Single-Node Example</td>
<td>125</td>
</tr>
<tr>
<td>Network Configuration Requirement for HA PGPool</td>
<td>125</td>
</tr>
<tr>
<td>Set Up a Horizontal Cluster</td>
<td>125</td>
</tr>
<tr>
<td>Set Up a Vertical Cluster</td>
<td>127</td>
</tr>
<tr>
<td>Set Up a Hybrid Cluster</td>
<td>129</td>
</tr>
<tr>
<td>Set Up Multiple Clusters</td>
<td>131</td>
</tr>
<tr>
<td>Deployment Logs</td>
<td>135</td>
</tr>
<tr>
<td>Verify the Deployment</td>
<td>135</td>
</tr>
</tbody>
</table>
HA PostgreSQL and HA PGPool Topologies

Overview

The standard PostgreSQL deployment with SAS Viya consists of one PGPool and one PostgreSQL data node. All data connection and database requests are routed through PGPool. You connect to PGPool just as you would connect to PostgreSQL, using standard database connectors. With SAS Viya you also have the ability to deploy HA PostgreSQL, a clustered database containing one PGPool and one or more data nodes. One data node is designated as a primary node and all others are standby nodes. Replication happens in real time to keep the data nodes in sync. All write requests are routed to the primary data node by PGPool. Read requests can be distributed across all data nodes, allowing for higher performance. If the primary data node is lost, PGPool automatically promotes a standby node to primary and reestablish replication from the new primary node to the remaining standby data nodes.

Starting in SAS Viya 3.5, SAS supports multiple instances of PGPool per cluster. However, you can still deploy a single PGPool per cluster. Clustered PGPool uses a Watchdog process to add high availability. Watchdog is used to resolve a single point of failure by coordinating multiple PGPool nodes. The Watchdog sub-process is used to ensure a quorum at all times and guards against split-brain syndrome and network partitioning. If you cluster PGPool, each cluster must have an odd number of PGPool nodes. Each cluster must also have at least three PGPool nodes.

The PostgreSQL deployment for SAS Viya also supports the ability to deploy multiple database clusters as part of a single deployment. For example, you might want to have your services on one cluster while having dedicated clusters for your CAS server. Each cluster is considered a service and each member of that cluster (PGPool and data nodes) is considered a node within that service. A cluster can be deployed on its own machine or with other clusters on the same machine.

A cluster can be deployed in four possible configurations:

- **Single Node** — One PGPool and one data node on the same machine. This is the default deployment for SAS Viya.
- **Horizontal** — Each data node on a separate machine.
- **Vertical** — All data nodes on a single machine.
- **Hybrid** — A combination of horizontal and vertical where there are at least two machines within the cluster and there is more than one data node on a machine within the cluster.

For PGPool, there are only two options:

- **Single node** — One PGPool, the default deployment.
- **Horizontal** — Each PGPool node on a separate machine.

For multi-node deployments, PGPool node can be co-located with data nodes or deployed on its own machine. Co-locating nodes on a machine provides increased
read throughput but also increases the risk of node loss if that machine becomes unavailable.

Important: Each PGPool node cannot share a host with another PGPool for the same cluster. All PGPools within a cluster must use the same ports.

The following table demonstrates how nodes can be distributed in the multi-node topologies.

<table>
<thead>
<tr>
<th>Cluster Configuration</th>
<th>Server</th>
<th>Port</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal</td>
<td>Server 1</td>
<td>5432</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>Server 2</td>
<td>5432</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 3</td>
<td>5432</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 4</td>
<td>5432</td>
<td>Standby</td>
</tr>
<tr>
<td>Vertical</td>
<td>Server 1</td>
<td>5532</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>Server 1</td>
<td>5533</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 1</td>
<td>5534</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 1</td>
<td>5535</td>
<td>Standby</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Server 1</td>
<td>5632</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td>Server 1</td>
<td>5633</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 2</td>
<td>5632</td>
<td>Standby</td>
</tr>
<tr>
<td></td>
<td>Server 2</td>
<td>5633</td>
<td>Standby</td>
</tr>
</tbody>
</table>

Values in vars.yml

You must modify the inventory.ini and vars.yml files for HA PostgreSQL. The inventory.ini file specifies roles for each machine. The vars.yml file specifies the settings for pgpoolc and sasdataasvrc that are used to define the HA PostgreSQL instance or instances on each machine. Because the definitions for HA PostgreSQL are created in both the inventory.ini and vars.yml files, you should ensure that your definitions in one file do not conflict with the definitions in the other file.

Modify the following variables located under INVOCATION_VARIABLES in the vars.yml file.

pgpoolc

Note: Starting in SAS Viya 3.5, SAS supports multiple PGPools per cluster. Additional variables have been added to the pgpoolc portion of the INVOCATION_VARIABLES section of the vars.yml file to support HA PGPool.
However, only one PGPool is allowed on a machine for a cluster. PGPools of different clusters are permitted on the same machine, but the virtual IP and ports (HA_PGPOOL_WATCHDOG_PORT, PCP_PORT, and PGPOOL_PORT) cannot be shared between different clusters.

- **HA_PGPOOL_VIRTUAL_IP**: the virtual IP address that is assigned to all PGPools within a cluster. All PGPool instances within a cluster must have the same virtual IP address.

 Note: The virtual IP address for a PGPool must be accessible to all cluster members and all Postgres clients.

- **HA_PGPOOL_WATCHDOG_PORT**: the port that the PGPool watchdog process listens on. All PGPool instances within a cluster must have the same watchdog port.

- **PCP_PORT**: the PCP port for the PGPool instance. All PGPool instances within a cluster must have the same PCP port. All PGPool instances within a cluster must have the same PGPOOL port.

- **PGPOOL_PORT**: the PGPool port. This is the primary port that all database connections use. All PGPool instances within a cluster must have the same PGPOOL port.

- **POOL_NUMBER**: the sequential PGPool node identifier starting at 0.

- **SANMOUNT**: the location where the data files are placed.

- **SERVICE_NAME**: the unique name that you assign to your cluster. This value must match the SERVICE_NAME of all sasdatasvrc nodes that will attach to this pgpoolc in the cluster. The service name can contain only letters, numbers, and underscores.

 sasdatasvrc

 Note: The NODE_TYPE property has been removed from the sasdatasvrc property list starting in SAS Viya 3.5.

 - **NODE_NUMBER**: the sequential node identifier starting at 0.

 - **PG_PORT**: the PostgreSQL database port. PGPool talks to the database on this port. Clients use the PGPOOL_PORT.

 - **SANMOUNT**: the location where the data files are placed.

 - **SERVICE_NAME**: the unique name that you assign to your cluster. This value must match the SERVICE_NAME of the pgpoolc node that this data node attaches to in the cluster.

Ports

For a single-cluster, single-machine, single-node deployment, default ports are automatically assigned in vars.yml. If the default ports are not available in your environment, you can modify the entries in the vars.yml file and assign ports that are available.

For multi-cluster and multi-node deployments, you must explicitly assign ports in vars.yml. A port can be assigned only once per machine. You cannot assign the same port to multiple data nodes in a vertical cluster since the nodes reside on the same machine. However, you can assign the same port to all data nodes in a horizontal cluster because the nodes are deployed to different machines. Always
ensure that the ports are available on the target machine or machines before assigning them in vars.yml.

You cannot have multiple PGpools for a cluster on the same machine. All PGpools within a cluster must use the same ports and virtual IP addresses.

Single-Node Example

This example of a vars.yml file shows only one target machine. It is important that the name of the target machine, deployTarget in this example, exactly match the name of the target machine that is defined in the inventory.ini file.

```yaml
# Multiple invocation definitions
INVOCATION_VARIABLES:
  deployTarget:
    pgpoolc:
      - HA_PGPOOL_VIRTUAL_IP: ''
        HA_PGPOOL_WATCHDOG_PORT: ''
        PCP_PORT: '5430'
        PGPOOL_PORT: '5431'
        POOL_NUMBER: '0'
        SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
        SERVICE_NAME: postgres
    sasdatasvrc:
      - NODE_NUMBER: '0'
        PG_PORT: '5432'
        SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
        SERVICE_NAME: postgres
```

Network Configuration Requirement for HA PGPool

In order to use HA PGPool, you must configure network settings as described in "(Optional) Configure Network Settings" on page 48.

The value used for HA_PGPOOL_VIRTUAL_IP should be included in the list of IP addresses in the SAS_SAN_IP variable of the network.conf file for every machine that is used as a PGPool node. The real IP address of the machine should be listed as the value for the SAS_BIND_ADDR variable in the same file.

Set Up a Horizontal Cluster

Edit the inventory.ini File

Modify the inventory.ini file as described in order to describe the topology that you are using. First, define all the machines in your deployment as described at “Specify the Machines in the Deployment” on page 46. Then assign the machines to the host
groups as described at “Assign the Target Machines to Host Groups” on page 47. Make sure that the machine that you want to use for PGPool is listed under [pgpoolc] and that every machine that you want to be a PostgreSQL data node is listed under [sasdatasvrc].

This is an example of a completed inventory.ini file that includes the horizontal cluster described in the table above, with PGPool being on the same machine as the first HA PostgreSQL node. (The example shows only the entries related to HA PostgreSQL):

```
[pgpoolc]
deployTarget1 ansible_host=host.example.com ansible_user=user1
    ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget2 ansible_host=host2.example.com ansible_user=user1
    ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget3 ansible_host=host3.example.com ansible_user=user1
    ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget4 ansible_host=host4.example.comx ansible_user=user1
    ansible_ssh_private_key_file=~/.ssh/id_rsa
...
...
```

Edit the vars.yml File

Open the vars.yml file in the playbook. In the INVOCATION_VARIABLES section, fill in the variables appropriate for your deployment. Using the horizontal cluster example from the table above, this section would describe four machines, one of which would have a subsection for pgpoolc and all having subsections for sasdatasvrc. This is what that section would look like when filled out for our example:

```
# Multiple invocation definitions
INVOCATION_VARIABLES:
deployTarget1:
    pgpoolc:
        - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
        - HA_PGPOOL_WATCHDOG_PORT: '5433'
        - PCP_PORT: '5430'
        - PGPOOL_PORT: '5431'
        - POOL_NUMBER: '0'
        - SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
        - SERVICE_NAME: postgres
    sasdatasvrc:
        - NODE_NUMBER: '0'
        - PG_PORT: '5432'
        - SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
        - SERVICE_NAME: postgres
deployTarget2:
```
pgpoolc:
- HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
 HA_PGPOOL_WATCHDOG_PORT: '5433'
 PCP_PORT: '5430'
 PGPOOL_PORT: '5431'
 POOL_NUMBER: '1'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres

sasdatasvrc:
- NODE_NUMBER: '1'
 PG_PORT: '5432'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres

deployTarget3:
 sasdatasvrc:
 - NODE_NUMBER: '2'
 PG_PORT: '5432'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres

deployTarget4:
 sasdatasvrc:
 - NODE_NUMBER: '3'
 PG_PORT: '5432'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres

Note that the machine listed under [pgpoolc] in the inventory.ini file is the only one that has pgpoolc variables in the vars.yml file. Because all four machines will have HA PostgreSQL nodes on them, all four machines have sasdatasvrc variables in the vars.yml file. The nodes are numbered from 0 to 3, and node 0, on the deployTarget1 machine, is the primary node. The entry for SANMOUNT: will read the deployment and use the location of the SAS CONFIG_ROOT directory and append the directory name.

After you save the vars.yml file and you complete the other deployment steps, use the commands described at “Deploy the Software” on page 60 to deploy your SAS Viya software, including HA PostgreSQL.

Set Up a Vertical Cluster

Edit the inventory.ini File

Modify the inventory.ini file as described in order to describe the topology that you are using. First, define all the machines in your deployment as described at “Specify the Machines in the Deployment” on page 46. Then assign the machines to the host groups as described at “Assign the Target Machines to Host Groups” on page 47. Make sure that the machine that you want to use for PGPool is listed under [pgpoolc] and that every machine that you want to be a PostgreSQL data node is listed under [sasdatasvrc].
This is an example of a completed inventory.ini file that includes the vertical cluster described in the table above, with PGPool being on the same machine as the HA PostgreSQL nodes. (The example shows only the entries related to HA PostgreSQL):

```
deployTarget1 ansible_host=host.example.com ansible_user=user1
    ansible_ssh_private_key_file=~/.ssh/id_rsa
...
[pgpoolc]
deployTarget1
    ...
[sasdatasvrc]
deployTarget1
...
```

Edit the vars.yml File

Open the vars.yml file in the playbook. In the INVOCATION_VARIABLES section, fill in the variables appropriate for your deployment. Using the vertical cluster example from the table above, this section would describe a single machine, with a subsection for pgpoolc and four subsections for the sasdatasvrc nodes. This is what that section would look like when filled out for our example:

```
# Multiple invocation definitions
INVOCATION_VARIABLES:
  deployTarget1:
    pgpoolc:
      - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
        HA_PGPOOL_WATCHDOG_PORT: '5436'
        PCP_PORT: '5430'
        PGPOOL_PORT: '5431'
        POOL_NUMBER: '0'
        SANMOUNT: '{SAS_CONFIG_ROOT}/data/sasdatasvrc'
        SERVICE_NAME: postgres
  deployTarget2:
    pgpoolc:
      - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
        HA_PGPOOL_WATCHDOG_PORT: '5436'
        PCP_PORT: '5430'
        PGPOOL_PORT: '5431'
        POOL_NUMBER: '1'
        SANMOUNT: '{SAS_CONFIG_ROOT}/data/sasdatasvrc'
        SERVICE_NAME: postgres
  sasdatasvrc:
    - NODE_NUMBER: '0'
      PG_PORT: '5432'
      SANMOUNT: '{SAS_CONFIG_ROOT}/data/sasdatasvrc'
      SERVICE_NAME: postgres
    - NODE_NUMBER: '1'
      PG_PORT: '5433'
      SANMOUNT: '{SAS_CONFIG_ROOT}/data/sasdatasvrc'
      SERVICE_NAME: postgres
    - NODE_NUMBER: '2'
      PG_PORT: '5434'
      SANMOUNT: '{SAS_CONFIG_ROOT}/data/sasdatasvrc'
```

128 Appendix 1 / Creating High Availability PostgreSQL Clusters
SERVICE_NAME: postgres
- NODE_NUMBER: '3'
- PG_PORT: '5435'
- SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
- SERVICE_NAME: postgres

Note that the machine is described with a single pgpoolc entry and four sasdatasvrc entries. The nodes are numbered from 0 to 3, and node 0 is the primary node. The PORT entries all show a different port in order to avoid any conflict. The entry for SANMOUNT: will read the deployment and use the location of the SAS_CONFIG_ROOT directory and append the directory name.

After you save the vars.yml file and you complete the other deployment steps, use the commands described at "Deploy the Software" on page 60 to deploy your SAS Viya software, including HA PostgreSQL.

Set Up a Hybrid Cluster

Edit the inventory.ini File

Modify the inventory.ini file as described in order to describe the topology that you are using. First, define all the machines in your deployment as described at “Specify the Machines in the Deployment” on page 46. Then assign the machines to the host groups as described at “Assign the Target Machines to Host Groups” on page 47. Make sure that the machine that you want to use for PGPool is listed under [pgpoolc] and that every machine that you want to be a PostgreSQL data node is listed under [sasdatasvrc].

This is an example of a completed inventory.ini file that includes the hybrid cluster described in the table above, with PGPool being on the same machine as two of the HA PostgreSQL nodes. (The example shows only the entries related to HA PostgreSQL):

```
deployTarget1 ansible_host=host.example.com ansible_user=user1 ansible_ssh_private_key_file=/ssh/id_rsa
deployTarget2 ansible_host=host2.example.com ansible_user=user1 ansible_ssh_private_key_file=/ssh/id_rsa
...
[pgpoolc]
deployTarget1
...
[sasdatasvrc]
deployTarget1
deployTarget2
...
Edit the vars.yml File

Open the vars.yml file in the playbook. In the INVOCATION_VARIABLES section, fill in the variables appropriate for your deployment. Using the hybrid cluster example from the table above, this section would describe a two machines, with a subsection for pgpoolc on the same machine as two of the sasdatasvrc nodes. This is what that section would look like when filled out for our example:

```yaml
Multiple invocation definitions
INVOCATION_VARIABLES:
deployTarget1:
pgooolc:
 - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
 HA_PGPOOL_WATCHDOG_PORT: '5434'
 PCP_PORT: '5430'
 PGPOOL_PORT: '5431'
 POOL_NUMBER: '0'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
sasdatasvrc:
 - NODE_NUMBER: '0'
 PG_PORT: '5432'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
 - NODE_NUMBER: '1'
 PG_PORT: '5433'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
deployTarget2:
 - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
 HA_PGPOOL_WATCHDOG_PORT: '5434'
 PCP_PORT: '5430'
 PGPOOL_PORT: '5431'
 POOL_NUMBER: '1'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
sasdatasvrc:
 - NODE_NUMBER: '2'
 PG_PORT: '5432'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
 - NODE_NUMBER: '3'
 PG_PORT: '5433'
 SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres
```

Note that the first machine has a single pgpoolc entry and two sasdatasvrc entries. The nodes are numbered from 0 to 3, and node 0 is the primary node. The PORT entries for either machine show a different port in order to avoid any conflict. The entry for SANMOUNT: will read the deployment and use the location of the SAS_CONFIG_ROOT directory and append the directory name.
After you save the vars.yml file and you complete the other deployment steps, use the commands described at “Deploy the Software” on page 60 to deploy your SAS Viya software, including HA PostgreSQL.

Set Up Multiple Clusters

Modify inventory.ini and vars.yml Files

This example consists of four machines and has the following clusters:

- a single-node cluster with pgpoolc and sasdataservc on a machine named deployTarget1
- a horizontal cluster with pgpoolc on deployTarget1 and a sasdatasrvc node on each machine
- a vertical cluster with pgpoolc on deployTarget3 and all the sasdatasrvc nodes on deployTarget4
- a hybrid cluster with pgpoolc on deployTarget1, two sasdatasrvc nodes on deployTarget2, and two more sasdatasrvc nodes on deployTarget3

This is how the inventory.ini file should be modified for this HA PostgreSQL deployment (the entries related to HA PostgreSQL are shown):

```ini
[pgpoolc]
deployTarget1 ansible_host=host.example.com ansible_user=user1 ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget2 ansible_host=host2.example.com ansible_user=user1 ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget3 ansible_host=host3.example.com ansible_user=user1 ansible_ssh_private_key_file=~/.ssh/id_rsa
deployTarget4 ansible_host=host4.example.com ansible_user=user1 ansible_ssh_private_key_file=~/.ssh/id_rsa
...
[sasdatasrvc]
deployTarget1 deployTarget2 deployTarget3 deployTarget4
...
```

This is how the INVOCATION_VARIABLES section of the vars.yml file would be filled out:

```yaml
Multiple invocation definitions
INVOCATION_VARIABLES:
deployTarget1:
 pgpoolc:
```

deployTarget2:
  pgpoolc:
    - HA_PGPOOL_VIRTUAL_IP: '10.20.30.400'
      HA_PGPOOL_WATCHDOG_PORT: '5434'
      PCP_PORT: '5430'
      PGPOOL_PORT: '5431'
      POOL_NUMBER: '0'
      SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
      SERVICE_NAME: postgres_hybrid
    - HA_PGPOOL_VIRTUAL_IP: '
      HA_PGPOOL_WATCHDOG_PORT: '
      PCP_PORT: '5460'
      PGPOOL_PORT: '5461'
      POOL_NUMBER: '0'
      SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
      SERVICE_NAME: postgres
  sasdatasvrc:
    - NODE_NUMBER: '0'
      PG_PORT: '5452'
      SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
      SERVICE_NAME: postgres_horizontal
    - NODE_NUMBER: '0'
      PG_PORT: '5462'
      SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
      SERVICE_NAME: postgres

sasdatasvrc:
  - NODE_NUMBER: '0'
    PG_PORT: '5432'
    SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
    SERVICE_NAME: postgres_hybrid
  - NODE_NUMBER: '2'
    PG_PORT: '5433'
    SANMOUNT: '{{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
    SERVICE_NAME: postgres_hybrid
  - NODE_NUMBER: '1'
Set Up Multiple Clusters

```
PG_PORT: '5452'
SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
SERVICE_NAME: postgres_horizontal
deployTarget3:
pgpoolc:
 - HA_PGPOLL_VIRTUAL_IP: '10.20.40.400'
 HA_PGPOLL_WATCHDOG_PORT: '5446'
 PCP_PORT: '5440'
 PGPOLL_PORT: '5441'
 POOL_NUMBER: '1'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_vertical
 - HA_PGPOLL_VIRTUAL_IP: '10.20.50.400'
 HA_PGPOLL_WATCHDOG_PORT: '5453'
 PCP_PORT: '5450'
 PGPOLL_PORT: '5451'
 POOL_NUMBER: '1'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_horizontal
 - HA_PGPOLL_VIRTUAL_IP: '10.20.30.400'
 HA_PGPOLL_WATCHDOG_PORT: '5434'
 PCP_PORT: '5430'
 PGPOLL_PORT: '5431'
 POOL_NUMBER: '2'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_hybrid
sasdatasvrc:
 - NODE_NUMBER: '1'
 PG_PORT: '5432'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_hybrid
 - NODE_NUMBER: '3'
 PG_PORT: '5433'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_hybrid
 - NODE_NUMBER: '2'
 PG_PORT: '5452'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_horizontal
deployTarget4:
pgpoolc:
 - HA_PGPOLL_VIRTUAL_IP: '10.20.40.400'
 HA_PGPOLL_WATCHDOG_PORT: '5446'
 PCP_PORT: '5440'
 PGPOLL_PORT: '5441'
 POOL_NUMBER: '2'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_vertical
 - HA_PGPOLL_VIRTUAL_IP: '10.20.50.400'
 HA_PGPOLL_WATCHDOG_PORT: '5453'
 PCP_PORT: '5450'
 PGPOLL_PORT: '5451'
 POOL_NUMBER: '2'
 SANMOUNT: '{{$ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
 SERVICE_NAME: postgres_horizontal
sasdatasvrc:
```
- NODE_NUMBER: '0'
  PG_PORT: '5442'
  SANMOUNT: '${{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
  SERVICE_NAME: postgres_vertical
- NODE_NUMBER: '1'
  PG_PORT: '5443'
  SANMOUNT: '${{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
  SERVICE_NAME: postgres_vertical
- NODE_NUMBER: '2'
  PG_PORT: '5444'
  SANMOUNT: '${{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
  SERVICE_NAME: postgres_vertical
- NODE_NUMBER: '3'
  PG_PORT: '5445'
  SANMOUNT: '${{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
  SERVICE_NAME: postgres_vertical
- NODE_NUMBER: '3'
  PG_PORT: '5452'
  SANMOUNT: '${{ SAS_CONFIG_ROOT }}/data/sasdatasvrc'
  SERVICE_NAME: postgres_horizontal

Note: If you are deploying multiple clusters, one of the PGPool must be named postgres, and each PGPool name must be unique across clusters. In addition, each cluster must contain one sasdatasvrc node with a NODE_TYPE of P.

Configure Services to the Clusters

By default, all services connect to the HA Postgres cluster that is named postgres. You can configure individual services to use additional HA Postgres clusters (if they exist) by adding service-specific sections to the sitedefault.yml file. The service name is the name of the micro-service you want to consume the additional cluster. The cluster name is the name that is assigned to the additional cluster in INVOCATION_VARIABLES section of vars.yml.

1 If you have not already copied and renamed the sitedefault.yml file, locate the sitedefault_sample.yml file on the Ansible controller machine. If you used the recommended location for uncompressing your playbook, the file is located at /sas/install/sas_viya_playbook/roles/consul/files/sitedefault_sample.yml. Make a copy of sitedefault_sample.yml and name the copy sitedefault.yml.

2 Open the sitedefault.yml file.

3 At the end of the existing file and at the same indentation level as application, add the following content:

```yaml
config:
 application:
 ...
 service-name
 sas:
 database:
 databaseServerName: cluster-name
 spring.datasource.password: ${sas.database.cluster-name.password}
 databaseServerName: cluster-name
```
spring.datasource.username: ${sas.database.cluster-name.username}

The value for `cluster-name` must exactly match the SERVICE_NAME value for the cluster in the INVOCATION_VARIABLES section in the vars.yml file.

The following example shows the addition of the authorization service that uses an HA Postgres cluster named postgres-horizontal:

```yaml
config:
 application:
 ...
 authorization:
 sas:
 database:
 databaseServerName: postgres-horizontal

spring.datasource.password: ${sas.database.postgres-horizontal.password}
```

4  Save and close the sitedefault.yml file.

---

### Deployment Logs

Each PGPool node and HA PostgreSQL data node has its own set of directories for logging. For example, the logs for PGPool0 of the HA Postgres cluster are located at

```
/opt/sas/viya/config/var/log/sasdatasvrc/postgres/pgpool0/
```

The logs for the HA PostgreSQL nodes of the HA Postgres cluster are located at

```
/opt/sas/viya/config/var/log/sasdatasvrc/postgres/node0/
```

---

### Verify the Deployment

The deployment performs a verification of the HA PostgreSQL cluster before it completes. This verification first confirms that connections can be made to PGPool and to all data nodes, and then runs queries on all of the nodes. The verification also performs write and delete operations to ensure that values that are written to or removed from the primary data node are replicated to all of the standby nodes in a multinode deployment.

The verification log is called `validate_deployment_date-timestamp.log`. It can be found in the pgpool log folder of each cluster. The fastest way to determine whether your HA PostgreSQL deployment was successful is to read the deployment log. If verification fails, then the deployment fails, which in turn is noted in the deployment log.
136 Appendix 1 / Creating High Availability PostgreSQL Clusters
Appendix 2

Troubleshooting

Nothing to Do Dialog .......................................................... 137
PCA and KCLUS Procedures Were Not Found .......................... 138
Timeout Dialog ..................................................................... 138
From Any Browser: Connection Is Not Private ......................... 139
From Google Chrome: Connection Is Not Private ....................... 139
Unable to Read a Key .............................................................. 140
Connection Reset by Peer Network Problem ......................... 140
Internet Connectivity Problems ............................................. 141
Invalid Host Name in the sitedefault.yml File ......................... 143
SAS Data Agent Log Contains Multiple Errors ....................... 144
SAS Data Agent Log: File Was Not Found .............................. 145
Problems When Using the SAS Data Agent CLI ....................... 145
SSL Connection Problems When the Data Agent Tenant .............. 146
Initialization Script is Run ...................................................... 146

Nothing to Do Dialog

Error
After removing the software and attempting to re-install the software, this message is displayed:

Error: Nothing to do

Explanation
The directories that contain the software were deleted. However, the yum remove command was never run. In /var/log/yum.log, the last entry for the rpm message is Installed.

Resolution
Clean up the yum repository by running the following command.

yum remove packagename

You can then re-install the software.
PCA and KCLUS Procedures Were Not Found

**Error**
- ERROR: Procedure PCA not found
- or
- ERROR: Procedure KCLUS not found

**Explanation**
The installation was attempted on a system that was not completely cleaned up from a previous installation.

**Resolution**
- Uninstall SAS/CONNECT by running the following command:
  
yum groups mark remove "SAS/CONNECT"
- Re-install SAS/CONNECT by running the following command:
  
sudo yum groupinstall "SAS/CONNECT"

---

Timeout Dialog

**Error**
When running the deployment:

```
TimeoutError(error_message)
TimeoutError:
Timer expired", "rc": 257} 13:15:37 |
INFO: | * 13:15:37 |
WARNING: | Execution return code '2' is not the expected value '0' 13:15:37 |
INFO: | * 13:15:37 |
INFO: | Updating deployment times data for step deploy_time with value 19 13:15:37 |
INFO: | * 13:15:37 |
WARNING: | Ansible execution encountered failures
```

**Explanation**
The system failed to gather mount information.

**Resolution**
Perform one of the following actions:
- Set `/etc/mtab` as a link to `/proc/mounts` by running the following command:
  
sudo ln -s /proc/mounts /etc/mtab
- Edit the ansible.cfg file and add or change the timeout value for Ansible as follows:
  
timeout=number-of-seconds
  
Deploy your software by running the Ansible playbook again.
From Any Browser: Connection Is Not Private

Explanation
The default self-signed certificates are not in the operating system truststore by default. The Apache Web Server is configured to use a certificate that is signed by this Certificate Authority (CA). When you open any SAS URL and navigate to the web server from a machine that does not have this CA in the truststore, you will receive the message Your connection is not private. The message does not indicate that there is any problem with the SAS deployment.

Resolution
SAS recommends that you replace the certificates before you give end users access to SAS Viya. For details, see the Security section of the System Requirements chapter.

From Google Chrome: Connection Is Not Private

Error
When attempting to access SAS Viya software from Google Chrome, the following message is displayed:

Your connection is not private.

Explanation
If you have previously accessed a website using https, when you access the website again, Google Chrome automatically redirects to https.

Resolution
To reset Google Chrome so that it does not redirect to https:

1. In the Chrome address bar, enter this command:
   
   chrome://machine-name/#hsts

2. Under Query domain, in the Domain box, enter the name of the machine that was used in the URL that you were attempting to access.

3. Click Query to determine whether the machine is known to the browser.

4. If the machine is known to the browser, under Delete domain, enter that machine name in the Domain box. Click Delete.

The corrected URL should now work with the HTTP protocol.
Unable to Read a Key

Error
When running the deployment, the following message is displayed:

fatal: [deployTarget2]: FAILED! =>{"changed": false, "failed": true, "msg":
"Get http://localhost:8500/v1/kv/config/application/rabbitmq/username:
\nERROR: Unable to read a key\nGet http://localhost:8500/v1/kv/config/application/rabbitmq
\nERROR: Unable to read a key\n"

Explanation
Consul requires each machine to have a single, private IP address. It does not
bind to a public IP address by default. A machine target that is specified in your
inventory file has one of the following conditions:
- multiple network adapters that have been assigned private IP addresses.
- no private IP address.

Resolution
To confirm the cause of the failure, check the Consul logs for an entry that
resembles the following:

Starting Consul agent...==> Error starting agent: Failed to get advertise address:
Multiple private IPs found. Please configure one.

The resolution is to configure an adapter for the Consul bind parameter in /etc/
sysconfig/sas/sas-viya-consul-default

Note: This file was installed by the Ansible playbook. This problem can be
avoided by specifying the consul bind adapter in the inventory file during
deployment.

Locate the following section of the file:

# Consul option: -bind
# Specify the desired name of a network interface or IPv4 address.
exposed CONSUL_BIND_EXTERNAL=adapter-name

For adapter-name, supply the name of the adapter that Consul should use to
locate the machine.

Connection Reset by Peer Network Problem

Error
Deployments on Red Hat Enterprise Linux might receive a "Connection reset by
peer" message when installing or applying updates for SAS Viya. This is usually
indicative of networking issues.
Resolution

Deployments on Red Hat Enterprise Linux might receive a "Connection reset by peer" message during deployment or when applying updates for SAS Viya. This is usually indicative of networking issues.

To change the retries and timeout values for yum:

1. Open the /etc/yum.conf file as root or with sudo on the affected machine.
   Here is an example of a typical /etc/yum.conf file:

   ```
 [main]
 cachedir=/var/cache/yum
 keepcache=0
 debuglevel=2
 logfile=/var/log/yum.log
 exactarch=1
 obsoletes=1
 gpgcheck=1
 plugins=1
 metadata_expire=1800
   ```

2. If the retries and timeout variables are present, ensure that they are set to 20 and 120, respectively. If those variables are not present in the file, add them.

   ```
 [main]
 cachedir=/var/cache/yum
 keepcache=0
 debuglevel=2
 logfile=/var/log/yum.log
 exactarch=1
 obsoletes=1
 gpgcheck=1
 plugins=1
 metadata_expire=1800
 retries=20
 timeout=120
   ```

3. Save and close the /etc/yum.conf file.

4. Repeat these steps for every affected machine.

If you continue to get the "Connection reset by peer" message, reopen the /etc/yum.conf file and revise these values upward.

Internet Connectivity Problems

Performing the pre-installation and installation tasks requires connection to the internet and, specifically, SAS repositories online. If you receive errors about connecting to the internet, you should work with your system administrator to correct them. The following steps are provided as guidelines for general areas of connectivity.
1 If you are deploying on Red Hat or an equivalent distribution, ensure that your firewall is open in order to allow access to the IP address of the content delivery servers that provide updates from Red Hat or Oracle. The IP addresses for content delivery services vary by region. For more information about the list of IP addresses, see one of the following websites:

- Public CIDR Lists for Red Hat
- https://linux.oracle.com/

This website provides instructions for registering with the Oracle ULN.

2 Ensure that the firewall allows access to the SAS repositories.

   a In the same directory where you have saved the .tgz file, uncompress it.
   
   ```bash
 tar xf SAS_Viya_playbook.tgz
   ```

   Be sure to leave a compressed copy of the .tgz file in the same location.

   b Run the following command from the playbook subdirectory (`/sas/install/sas_viya_playbook` if you used the recommended location for uncompressing your playbook).
   
   ```bash
 curl -OLv --cert ./entitlement_certificate.pem --cacert ./SAS_CA_Certificate.pem https://ses.sas.download/ses/repos/meta-repo/bigfile.bin
   ```

   If the firewall is set up correctly, the command successfully transfers the bigfile.bin file. If a connection fails, add any failing server to your firewall proxy whitelist and try the command again. Repeat this step until you successfully transfer the bigfile.bin file.

3 The firewall service should not be running while you deploy your software.

   a Create a list of the services that are running by performing the appropriate command from the list below.

   - For Red Hat Enterprise Linux 6.x:
     
     ```bash
 sudo service --status-all
     ```

   - For Red Hat Enterprise Linux 7.x and SUSE Linux:
     
     ```bash
 sudo systemctl list-unit-files
     ```

   b Use the following table to identify the name of the service that you should look for in the output from the command.

   **Note:** To identify the version of Linux that you are using, Red Hat Enterprise Linux and Oracle Linux users should see the `/etc/redhat-release` file. CentOS Linux users should see the `/etc/centos-release` file. SUSE Linux users should see the `/etc/os-release` file.

   **Table A2.1 Firewalls Services by Linux Distribution and Version**

<table>
<thead>
<tr>
<th>Linux Version</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux earlier than 7.1</td>
<td>iptables</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7.1 or later</td>
<td>firewalld</td>
</tr>
</tbody>
</table>

   ```bash
   ```
<table>
<thead>
<tr>
<th>Linux Version</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux earlier than 7.1</td>
<td>iptables</td>
</tr>
<tr>
<td>Oracle Linux 7.1 or later</td>
<td>firewalld</td>
</tr>
<tr>
<td>CentOS Linux earlier than 7.1</td>
<td>iptables</td>
</tr>
<tr>
<td>CentOS Linux 7.1 or later</td>
<td>firewalld</td>
</tr>
<tr>
<td>SUSE Linux</td>
<td>SuSEfirewall2.service</td>
</tr>
</tbody>
</table>

If the firewall service from the table is listed in the output of the command, then the firewall is running and you should continue to the next step. Otherwise, you do not need to take any further actions.

c  To stop iptables, run the following commands:

```bash
sudo service iptables stop
sudo chkconfig iptables off
sudo service ip6tables stop
sudo chkconfig ip6tables off
```

To stop firewalld, run the following commands:

```bash
sudo systemctl stop firewalld.service
sudo systemctl disable firewalld.service
```

To stop SuSEfirewall2.service, run the following commands:

```bash
sudo systemctl stop SuSEfirewall2.service
sudo systemctl disable SuSEfirewall2.service
sudo systemctl stop SuSEfirewall2_init.service
sudo systemctl disable SuSEfirewall2_init.service
```

---

Invalid Host Name in the sitedefault.yml File

**Explanation**

You might have an error in sitedefault.yml such as an incorrect value for internal.hostnames. However, you cannot correct the error and rerun the playbook. The sitedefault.yml file is used to set site-based values for properties during an initial deployment. On a subsequent run of the deployment playbook, properties that were previously set are not modified. The sitedefault.yml preserves any customer-based modifications to these values. If you rerun the playbook, only sitedefault.yml properties that have no value in the environment are applied.

**Resolution**

SAS Environment Manager is the preferred tool to modify the site-based property values. During deployment, you can also use the sas-bootstrap-config command with the `--force` option before you rerun the playbook. To modify the values, the `--force` option is required. Here is an example of how to modify the internal host name:
SAS Data Agent Log Contains Multiple Errors

**Issue**

The SAS Data Agent log file contains errors like these:

```
2018-08-09T11:35:58,811 ERROR [00000009] App.DFASCL.Provider.MID :sas - Unable to load extension: (tkmttk)
2018-08-09T11:35:58,831 ERROR [00000009] App.Server :sas - 0; ; ; V_CTOR: Start-up error - Creation of server instance failed
```

**Resolution**

1. Evaluate the `/etc/sysconfig/sas/sas-viya-dagentsrv-default` file. Ensure that the `DA_SERVICES_HOST` variable has the correct value. See "Configure the SAS Data Agent Machine to Access the SAS Data Preparation Machine" on page 75 for more information.

2. Re-run the remote `da_init_tenant.sh` script, ensuring that the value for the `tenantid` is correct. See "Add OAuth Secret to Vault" on page 76.

3. Review the command that is used for `da_reg_server.sh` to verify that the SAS Data Preparation cloud provider registration was correct. See "Register Remote SAS Data Agent Servers and OAuth Client" on page 65.

4. Review the command that is used to add groups using the `sas-admin-identities` CLI. If the command did not contain all the parameters, use the following command to delete the group:

```
/opt/sas/viya/home/bin/sas-admin identities delete-group --id "group-ID"
```

Then add the group again, using the steps in "Add Groups and Add Users to Groups" on page 70.

5. If the other suggested resolutions fail, perform the following steps:

   a. On the machine that is assigned to the [DataAgent] host group in the SAS Data Agent deployment, edit the `/etc/sysconfig/sas/sas-viya-dagentsrv-default` file.

   b. Add the following line:

```
export DA_TENANT_ID=customerid-or-tenantid-value
```
Note: When setting an environment variable for the customerid, use the DA_TENANT_ID variable.

- Save the sas-viya-dagentsrv-default file.

---

**SAS Data Agent Log: File Was Not Found**

**Issue**
The SAS Data Agent log file contains errors like this:

```
```

**Resolution**
Ensure that the requiretty setting has been disabled in the sudoers file. See “Disabling the requiretty Setting” on page 14.

---

**Problems When Using the SAS Data Agent CLI**

**Issue**
When you use the SAS Data Agent CLI, the following error is displayed:

```
Error reading information for service BASE.
IOException[javax.net.ssl.SSLHandshakeException:
 sun.security.validator.ValidatorException: PKIX path building failed:
 sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target]
Host[ddtmzsuse03.DDT.sashq-r.openstack.sas.com] Port[443].
HTTPS with javax.net.ssl.trustStore = [/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/trustedcerts.jks].
```

**Resolution**
Ensure that the certificates are properly synchronized. See “Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Preparation Deployment” on page 64 and “Synchronize Certificates between the Cloud and Remote Deployments: SAS Data Agent Machine” on page 74.
SSL Connection Problems When the Data Agent Tenant Initialization Script is Run

**Issue**
When you run the da_init_tenant.sh script, an error similar to the following is displayed:

Mon Aug 13 14:20:33 EDT 2018 - register OAuth client secret for "dagentsrv-bar"
curl: (35) SSL connect error
Mon Aug 13 14:20:33 EDT 2018 - Failed to obtain register OAuth client secret for
dagentsrv-bar

**Resolution**
Ensure that you are using the correct version of curl. See "Linux Requirements" on page 13.