
SAS/CONNECT® 9.4
User’s Guide, Fourth
Edition

SAS® Documentation
January 22, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS/CONNECT® 9.4 User’s Guide, Fourth Edition.
Cary, NC: SAS Institute Inc.

SAS/CONNECT® 9.4 User’s Guide, Fourth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P10:connref

Contents

Stylistic Conventions . vii
What's New in SAS/CONNECT 9.4 . xiii

PART 1 Introduction to SAS/CONNECT 1

Chapter 1 / Introduction . 3
About This Book . 3
What is SAS/CONNECT? . 5
Access Methods . 10
Encryption Providers . 11

PART 2 Using SAS/CONNECT 13

Chapter 2 / Signing On . 15
Types of Sign-ons . 15
Interfaces for Using SAS/CONNECT . 21
Locked-Down SAS Sessions . 26

Chapter 3 / Using Compute Services . 29
Overview of Compute Services . 30
MP CONNECT . 31
Use SAS Explorer to Monitor SAS/CONNECT Tasks . 40
Compute Services and the Output Delivery System . 40
Use the SAS Windowing Environment to Control Remote Processing 42
Use the Macro Facility with SAS/CONNECT . 45
Use SYSPROCESSMODE to Display the Run Mode or Server Type 55
Compute Services and Break Windows . 55
Examples Using Compute Services . 58

Chapter 4 / Using Remote Library Services (RLS) . 71
Introduction to Remote Library Services . 72
Advantages . 73
Considerations for Using RLS . 73
RLS to Access Types of Data . 75
Use SAS Views with Servers . 77
WHERE Processing to Reduce Network Traffic . 78
Example 1: Access Server Data to Print a List of Reports . 79
Example 2: Access Server Data By Using the WHERE Statement 80
Example 3: Update Server Data . 80
Example 4: An SCL Program That Uses the WHERE Statement 81

Example 5: Update a Server Data Set By Applying a Client
Transaction Data Set . 82

Example 6: Subset Server Data for Client Processing and Display 84

Chapter 5 / Using Data Transfer Services . 87
Introduction to Data Transfer Services . 87
Data Transfer Services: Advantages . 88
Considerations for Using Data Transfer Services . 90
Transfer Status Window . 92
Non-English Keyboards . 93
Data Transfer Services Tips . 94

PART 3 SAS/CONNECT Language Reference 97

Chapter 6 / System Options . 99
Dictionary . 99

Chapter 7 / SIGNON and SIGNOFF Statements . 127
Dictionary . 127

Chapter 8 / RSPT Statements . 153
Dictionary . 153

Chapter 9 / RSUBMIT Statements . 161
Dictionary . 161

Chapter 10 / FILENAME Statement . 201
Dictionary . 201

Chapter 11 / LIBNAME Statement . 205
Dictionary . 205

Chapter 12 / LIBNAME Statement, SASESOCK Engine . 209
Dictionary . 209

Chapter 13 / Commands . 213
Dictionary . 213

Chapter 14 / UPLOAD Procedure . 217
Overview: UPLOAD Procedure . 218
Syntax: UPLOAD Procedure . 218
Usage: UPLOAD Procedure . 239
Results: UPLOAD Procedure . 240
Examples: UPLOAD Procedure . 240

Chapter 15 / DOWNLOAD Procedure . 255
Overview: DOWNLOAD Procedure . 256
Syntax: DOWNLOAD Procedure . 256
Usage: DOWNLOAD Procedure . 273
Results: DOWNLOAD Procedure . 274
Examples: DOWNLOAD Procedure . 274

iv Contents

Chapter 16 / SAS Component Language (SCL) Functions and Options . 287
Use SCL to Locate and Store Sample Script Files . 287
Dictionary . 288

Chapter 17 / SAS/CONNECT Script Statements . 293
Dictionary . 293

PART 4 Administration 305

Chapter 18 / Access Methods . 307
Access Methods Supported by SAS/CONNECT . 307
Configure SAS/CONNECT for Use with a Firewall . 312

Chapter 19 / The SAS/CONNECT Spawner . 319
Introduction to the SAS/CONNECT Spawner . 319
Spawner Options . 326
Spawner Examples . 336

Chapter 20 / UNIX Operating Environment . 339
Overview . 340
Network Requirements . 341
Spawner Connections on UNIX . 345
SASCMD Connections on UNIX . 354
Telnet Connections on UNIX . 356
Examples . 358

Chapter 21 / z/OS Operating Environment . 361
Overview . 362
Spawner Connections on z/OS . 363
MP Connections on z/OS . 374
Telnet Connections on z/OS . 377
Environment Variables . 379

Chapter 22 / Windows Operating Environment . 383
Overview . 383
Network Requirements . 384
Spawner Connections on Windows . 390
SASCMD Connections on Windows . 400
Telnet Connections on Windows . 402

Chapter 23 / SAS/CONNECT Files . 405
SAS/CONNECT Files and Directories . 405
SAS/CONNECT Sign-on Script Files . 408

PART 5 Logging and Debugging 419

Chapter 24 / Administering Logging for SAS/CONNECT . 421
SAS Logging Facility . 421
SAS Console Log . 424

Contents v

Chapter 25 / TCP/IP Troubleshooting . 429
UNIX: TCP/IP Access Method . 429
z/OS: TCP/IP Access Method . 430
Windows: TCP/IP Access Method . 430

Chapter 26 / Sign-On Troubleshooting . 431
Troubleshooting Sign-On Problems . 431

Chapter 27 / Compute Services Troubleshooting . 435
Problems and Solutions When Using the RSUBMIT Statement 435

Chapter 28 / Data Transfer Services Troubleshooting . 439
Troubleshooting the UPLOAD and DOWNLOAD Procedures 439

PART 6 Appendix 443

Appendix 1 / Cross-Architecture Issues . 445
Translation of SAS Data between Computers That Represent Data Differently . . 445
Translation of Floating-Point Numbers between Computers 448
Encoding Compatibility between SAS/CONNECT Client and Server Sessions . . 449

Appendix 2 / SAS/CONNECT Cross-Version Issues . 451
Factors Affecting Access to SAS Files . 452
Features Exclusive to SAS Releases after SAS 6 . 452
RLS: Access SAS Files in a Mixed Cross-Version Library . 455
Access SAS Data Sets . 457
Access SAS Views . 459
Access Catalogs . 460
File Format Translation Algorithms . 462

vi Contents

Stylistic Conventions

Overview of Syntax Conventions for the
SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

vii

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...
END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<
>).

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string
has a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not
required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument
pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the

viii Stylistic Conventions

option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

Style Conventions ix

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

x Stylistic Conventions

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

References to SAS Libraries and
External Files

Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

References to SAS Libraries and External Files xi

xii Stylistic Conventions

What's New in SAS/CONNECT
9.4

Overview
The following features are new or enhanced for SAS/CONNECT 9.4:

n new CONNECTEVENTS system option

n enhanced RSUBMIT command with NEW statement option

n new XATTR= data set option in PROC UPLOAD and PROC DOWNLOAD

n new SAS/CONNECT spawner start-up options and new management interface

n enhanced logging and messaging

n enhanced data transfer of encoded data

n added flexibility for password and user ID naming

n enhanced password support on z/OS

n support for new Base SAS language elements

n support for extended attributes

n support for the new default values of the LRECL= Option

SAS/CONNECT 9.4M1 has the following enhancement:

n new locked-down state restrictions

SAS/CONNECT 9.4M2 has the following enhancement:

n enhanced INFILE option in PROC UPLOAD and PROC DOWNLOAD

SAS/CONNECT 9.4M3 has the following enhancement:

n document enhancements

SAS/CONNECT 9.4M5 has the following enhancements:

n new Authinfo file support for credentials

n new TCPPROXYLIST environment variable

n changed default value for the TCPLISTENTIME option

n new NOCLEARTEXT default spawner behavior

xiii

n new error message for sign-ons from workspace servers that allow numeric
session-ids

n added _USER_ option to %SYSRPUT statement

New CONNECTEVENTS System Option
In SAS/CONNECT 9.4 the new CONNECTEVENTS system option specifies
whether SAS events are propagated from the SAS/CONNECT server through the
SAS/CONNECT client to SAS Enterprise Guide or to the Add-In for Microsoft Office
(AMO). For more information, see “CONNECTEVENTS” on page 102.

Enhanced RSUBMIT Command with
NEW Statement Option

In SAS/CONNECT 9.4 when you specify the LOG= statement or the OUTPUT=
statement in the RSUBMIT command, you can now specify NEW to open the file for
output and clear the log. Specifying NEW keeps your log file from appending, which
is the default behavior for log files in SAS/CONNECT. If the log file or output file
already exists, then it is deleted and re-created rather than appended. For more
information, see LOG=.

New XATTR= Data Set Option in PROC
UPLOAD and PROC DOWNLOAD

In SAS/CONNECT 9.4 the new XATTR= option in the PROC UPLOAD and PROC
DOWNLOAD statements enables you to specify whether to transfer extended
attributes with a SAS data set or SAS library.

xiv What's New in SAS/CONNECT 9.4

New SAS/CONNECT Spawner Start-Up
Options and New Management Interface

The SAS/CONNECT spawner features a new management interface that is
compatible with the Windows, UNIX, and z/OS operating environments. The new
interface enables administrators to monitor and manage the SAS/CONNECT
spawner using SAS Management Console or PROC IOMOPERATE. A new
spawner start-up command and new spawner options enable administrators to
control how the spawner starts and operates.

Enhanced Logging and Messaging
n Improved Messaging: In grid-enabled sign-ons, you can now see the job ID and

the grid host output in the log.

n SAS Logging Facility: The SAS logging facility is now the standard debugging
tool for using SAS/CONNECT in a client/server environment. The Logging
Facility offers new functionality, new appenders, and new loggers for monitoring
SAS/CONNECT and providing more detailed debug tracing. For more
information about using the Logging Facility in SAS/CONNECT, see
Administering Logging for SAS/CONNECT .

Enhanced Data Transfer of Encoded
Data

SAS 9.4 supports UTF-8 to Non-UTF-8 client/server connections. Connections can
now be made between client/server sessions in which one session is using UTF-8
encoded data and the other session is using non-UTF-8 encoded data. For more
information about client/server session compatibility, see Encoding Compatibility
between SAS/CONNECT Client and Server Sessions.

Enhanced Data Transfer of Encoded Data xv

Added Flexibility for Password and User
ID Naming

SAS/CONNECT now supports the use of periods (.) and spaces in passwords and
user-IDs for the PASSWORD= and USERNAME= options. The PASSWORD=
option can be specified in the SIGNON statement or the RSUBMIT statement when
signing on to a server session or submitting code to a remote SAS session.

Enhanced Password Support on z/OS
SAS/CONNECT now supports passwords that have mixed case on z/OS, and it
supports the IBM standard for password phrases that have a length of up to 100
characters. For information about the IBM standard for password phrases, see
Assigning Password Phrases in z/OS Security Server RACF Security
Administrator's Guide.

Support for New Base SAS Language
Elements

SAS/CONNECT supports the new SAS automatic macro variable
SYSPROCESSMODE, which returns the name of the run mode or server type for
the current SAS session. For more information about using SYSPROCESSMODE
with SAS/CONNECT, see Using SYSPROCESSMODE to Display the Run Mode or
Server Type.

Support for Extended Attributes
The UPLOAD and DOWNLOAD procedures in SAS/CONNECT now support the
transfer of data containing extended attributes. Extended attributes are created and
managed by specifying options in the MODIFY statement of PROC DATASETS. The
new XATTR= option in SAS/CONNECT specifies whether to allow for the transfer of

xvi What's New in SAS/CONNECT 9.4

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha700/asgpp.htm

extended attributes that are defined on a SAS data set or a SAS library. For more
information, see XATTR=YES | NO.

For general information about extended attributes in Base SAS, see “Extended
Attributes” in SAS Language Reference: Concepts. For syntax information about
extended attributes in Base SAS, see the “DATASETS Procedure” in Base SAS
Procedures Guide.

Support for the New Default Values of
the LRECL= Option

Starting in SAS 9.4, the default logical record length (LRECL) that SAS allows for
reading and writing external files has increased to 32767. If you are using fixed
length records (RECFM=F), the default value for LRECL is 256. For more
information about using the LRECL= option in SAS/CONNECT, see “Tips for Using
PROC DOWNLOAD and PROC UPLOAD ” on page 94.

New Locked-Down State Restrictions
The LOCKDOWN statement and LOCKDOWN system option are new in Base SAS
9.4M1. With LOCKDOWN, the SAS server administrator can create a restricted
environment in which there is limited access to specified directories and files. All
other directories and files are inaccessible. In addition to there being access
restrictions on directories and files, there are also restrictions on how you sign on
when running a SAS session in a locked-down state. For more information, see
“Locked-Down SAS Sessions” on page 26. Locked-Down SAS Sessions.

Enhanced INFILE= Option in PROC
UPLOAD and PROC DOWNLOAD

In SAS/CONNECT 9.4M2 enhancements have been made to the INFILE option in
PROC UPLOAD and PROC DOWNLOAD. Now, when selecting multiple files for
upload or download using the INFILE option, you can use the wildcard character to
specify 0 or more characters anywhere in the filename. For example, you can
specify Report2*.txt to select all files beginning with Report2 and ending with .txt. In
previous releases, the wildcard character could not be used to represent characters
within a filename. This new pattern-matching capability enables you to more

Enhanced INFILE= Option in PROC UPLOAD and PROC DOWNLOAD xvii

efficiently transfer data to and from remote sessions. For more information, see
INFILE=client-file-identifier.

Document Enhancements
In SAS/CONNECT 9.4M3 the SAS/CONNECT User’s Guide was improved. Content
from the Communication Access Methods for SAS/CONNECT and SAS/SHARE
relevant to SAS/CONNECT software was moved to SAS/CONNECT User’s Guide
to provide easier access to all information related to SAS/CONNECT software.

Some of these changes include the following:

n a new administrative section that contains information about TCP/IP
connections, signing on, and setting up the SAS/CONNECT spawner

n a new section describing SAS/CONNECT files and the terminology used to
discuss them

n a new section defining the contents and scope of the document

n a reorganization of the SAS/CONNECT language elements into one
comprehensive dictionary, entitled Part 3: SAS/CONNECT Language Reference

n a new section containing sign-on examples

New Authinfo File Support for
Credentials

In SAS/CONNECT 9.4M5 support was added so that the user can supply
credentials in an authinfo file instead of on a SIGNON statement. Use of an authinfo
file is required if you want to connect from SAS 9.4M5 to SAS running in SAS Viya
and connect to SAS Cloud Analytic Services (CAS).

New TCPPROXYLIST Environment
Variable

In SAS/CONNECT 9.4M5 the TCPPROXYLIST environment variable were added to
support HTTP_CONNECT so that SAS clients outside of the cloud can sign-on to
SAS/CONNECT spawners. By setting the TCPPROXYLIST environment variable,
you can connect to different clouds from the same client.

xviii What's New in SAS/CONNECT 9.4

Changed Default Value for the
TCPLISTENTIME Option

In SAS/CONNECT 9.4M5 the default value for the TCPLISTENTIME option was
changed to 300. Previously, the default value was 0, or no time limit. The
TCPLISTENTIME option is the amount of time a SAS/CONNECT server will listen
for a SAS/CONNECT client to connect

New NOCLEARTEXT Default Spawner
Behavior

In SAS/CONNECT 9.4M5 you no longer need to add the NOCLEARTEXT spawner
option to increase security. The NOCLEARTEXT spawner option has been made
the default value and is no longer valid as an option. The CLEARTEXT option has
been added. to be used only when absolutely necessary because credentials are
transmitted unencoded.

New Error Message for Sign-ons from
Workspace Servers That Allow Numeric
Session-ids

In SAS/CONNECT 9.4M5 users that sign on from workspace servers that allow
numeric session-ids will now get an error message. The documentation has been
updated to indicate that a server name must be 8 characters or less and start with
an alphabetic character.

New Error Message for Sign-ons from Workspace Servers That Allow Numeric Session-
ids xix

Added _USER_ Option to %SYSRPUT
Statement

In SAS/CONNECT 9.4M5 the _USER_ option was added to the %SYSRPUT
statement to enable all user-defined macro variables to be sent from the server to
the client.

Deprecation of Telnet and CLEARTEXT
option

With the June 2023 hot fix, Telnet is deprecated and it is recommended to use
SAS/CONNECT Spawner for client sign-ons. The -CLEARTEXT option has been
deprecated and is no longer available. For more information, see SAS Note 70114.

xx What's New in SAS/CONNECT 9.4

https://support.sas.com/kb/70/114.html

PART 1

Introduction to SAS/CONNECT

Chapter 1
Introduction . 3

1

2

1
Introduction

About This Book . 3
Overview . 3
Document Scope . 4
SAS/CONNECT in a SAS Intelligence Platform Environment . 5

What is SAS/CONNECT? . 5
Overview . 5
Compute Services . 7
Remote Library Services . 9
Data Transfer Services . 9

Access Methods . 10

Encryption Providers . 11

About This Book

Overview
This document provides the following information:

n Part 1: Introduction – provides an overview of SAS/CONNECT software and the
services that it offers.

n Part 2: Using SAS/CONNECT – contains conceptual and practical information
about how to use SAS/CONNECT to perform various types of sign-ons and how
to use the three services that are offered with SAS/CONNECT: compute
services (CS), remote library services (RLS), and data transfer services (DTS).

n Part 3: SAS/CONNECT Language Reference – contains a dictionary of
SAS/CONNECT language elements and their syntax.

n Part 4: Administration – contains information about the access methods that are
used with SAS/CONNECT and the connection types that are available. This

3

section also contains information about how to manually set up and use the
SAS/CONNECT spawner in a SAS Foundation environment.

n Part 5: Logging and Debugging – contains information about logging and
troubleshooting sign-ons, TCP/IP connections, and data transfers.

This document is for SAS/CONNECT with SAS 9.4. For information about
SAS/CONNECT with SAS Viya, see SAS/CONNECT for SAS Viya: User's Guide.

Document Scope

Administrative Sections
The sections contained in Part 4: Administration focus primarily on administrative
tasks that are performed with SAS Foundation installations as opposed to those
performed for planned deployments in which much of the initial configuration is done
for you by the SAS Deployment Wizard. As such, this document describes the
manual setup of the SAS/CONNECT spawner, as well as the access methods and
connection types that are available with SAS/CONNECT software in a SAS
Foundation environment.

Information for managing servers (including the SAS/CONNECT server) in a SAS
Intelligence Platform deployment can be found in the SAS® Intelligence Platform
Documentation.

For a list of documents related to setting up and managing the SAS/CONNECT
spawner in a SAS Intelligence Platform environment, see “SAS/CONNECT in a SAS
Intelligence Platform Environment” on page 5.

If you used the SAS Deployment Wizard to initially configure SAS/CONNECT in a
planned deployment, but you want to make specific updates to the SAS/CONNECT
spawner configuration without the use of the SAS Deployment Manager, you can
manually configure the SAS/CONNECT spawner using the steps outlined in this
document.

Usage and Language Reference Sections
Part 2: Using SAS/CONNECT and Part 3: SAS/CONNECT Language Reference
contain usage and syntax information related to SAS/CONNECT software and are
not specific to any particular SAS environment or SAS product. This information is
intended to serve as the primary reference for SAS/CONNECT language elements
in all SAS environments (including SAS Intelligence Platform deployments, SAS
Foundation installations, and other scenarios that include SAS/CONNECT
software).

4 Chapter 1 / Introduction

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html
http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

SAS/CONNECT in a SAS Intelligence Platform
Environment

The following resources contain information for managing the SAS/CONNECT
spawner and server in a SAS Intelligence Platform environment:

Conceptual Information:

n Understanding SAS/CONNECT Servers in SAS Intelligence Platform:
Application Server Administration Guide.

n The Uses of SAS/CONNECT in the SAS Intelligence Platform in SAS
Intelligence Platform: Application Server Administration Guide

Server Administration, Installation, and Configuration:

n SAS 9.4 Intelligence Platform: Administration Documentation

n Initial Configuration of the SAS/CONNECT Server in SAS Intelligence Platform:
Application Server Administration Guide

n Using Scripts to Operate SAS Servers Individually in SAS Intelligence Platform:
Application Server Administration Guide.

n Using SAS Management Console to Operate the SAS Object Spawner or the
SAS/CONNECT Spawner in SAS Intelligence Platform: Application Server
Administration Guide.

n SAS 9.4 Intelligence Platform: Installation, Configuration and Migration
Documentation

What is SAS/CONNECT?

Overview
SAS/CONNECT software is a SAS client/server toolset that provides the ability to
manage, access, and process data in a distributed and parallel SAS environment.
As a client/server application, SAS/CONNECT links a SAS client session to a SAS
server session. The terms client and server depict the relationship between two SAS
sessions. The client session is the initial SAS session that creates and manages
one or more server sessions. The server session can run either on the same
computer as the client (for example, on an SMP computer) or on separate
hardware, such as on a remote computer across a network.

What is SAS/CONNECT? 5

http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#p04sasapplicserver000admingd.htm
http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n04007intelplatform00srvradm.htm
http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html
http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n04012intelplatform00srvradm.htm
http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#n0mb6964vbfoeqn1hahrxyf89ugi.htm
http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#n0mb6964vbfoeqn1hahrxyf89ugi.htm
http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#n0mb6964vbfoeqn1hahrxyf89ugi.htm
http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/install94.html
http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/install94.html

Features
SAS/CONNECT enables users and applications developers to achieve the
following:

maintain SAS interoperability across architectures and SAS releases

n transfer disk copies of data

n directly process a remote data source and get results back locally

n develop local graphical user interfaces that process remote data sources

develop scalable SAS solutions

n run multiple independent processes asynchronously

n scale up to fully use the capabilities of symmetric multiprocessing (SMP)
hardware

n scale out to fully use the features of distributed processors

n use pipeline processing (TCP/IP ports) to run multiple dependent processes
asynchronously

n combine the resources of multiple computers to work in parallel

manage distributed resources

n perform daily or nightly automated backups

n initiate transaction processing to a master database at a specified time
each day

n centralize and automate data and report distribution to workstations in a
network

n centralize and automate data collection from workstations in a network

Note: Asynchronous Compute Services is commonly referred to as MP (Multi-
Process) CONNECT.

Services
The SAS/CONNECT toolset offers 3 types of services:

n Compute Services

n Remote Library Services

6 Chapter 1 / Introduction

n Data Transfer Services

Compute Services

Compute Services That Use RSUBMIT
Compute Services provides access to all of the computing resources on your
network by enabling you to direct the execution of SAS programs to one or more
server sessions. An RSUBMIT block, or a “remote submit,” is a block of statements
that are created in the client session using the RSUBMIT and ENDRSUBMIT
statements. RSUBMIT blocks are executed in the remote server session. The
results and any output that is generated by the remote execution are returned to the
client session.

For short-running tasks, remote submits can be processed synchronously. This
means that control is returned to the client session after the remote processing is
complete. For longer-running tasks, remote submits can be processed
asynchronously. This means that control is returned immediately, and you can
continue local processing or remote processing to another server session.

Figure 1.1 Model of Compute Services

The figure shows that these services enable you to move some or all portions of an
application's processing to a remote computer.

Compute Services enables you to do the following:

n achieve scalability for your SAS applications

o perform remote tasks in the background (asynchronously) while processing
locally

o run multiple SAS processes asynchronously and coordinate the results from
each task execution in your client SAS session

o use pipeline processing to overlap execution of multiple dependent SAS
DATA steps or procedures

o use processors on an SMP computer (which is referred to as "scaling up")
and using idle processors across a network (which is referred to as "scaling
out")

n access remote resources

What is SAS/CONNECT? 7

o take advantage of server hardware and software resources

o access mainframe and other legacy systems (for example, by building a
single SAS program that contains statements that run locally and statements
that execute on multiple remote legacy computers)

o execute against the remote copy of the data

o submit macro steps remotely to the server, and then pass return code
information about the server process to the client

o execute graphics programs on the server and display the graphics locally by
using the graphics capabilities of the local workstation, plotter, or printer

Compute Services That Use Remote SQL
Pass-Through
Remote SQL pass-through (RSPT) gives you control of where SQL processing
occurs. RSPT enables you to pass SQL statements to a remote SAS SQL
processor by passing them through a remote SAS server. You can also use RSPT
to pass SQL statements to a remote DBMS by passing them through a remote SAS
server and a Remote access engine that supports pass-through.

Figure 1.2 Remote SQL Pass-Through Services

1 The SAS client uses a Remote engine to pass SQL statements to a server
session.

2 The SQL statements are passed to the server session.

3 The SQL statements are passed to SAS SQL to select data or to execute
statements in order to modify, manipulate, and manage data. This includes
creating SAS SQL views.

4 The SQL statements are passed to a remote DBMS to select data or to execute
statements in order to modify, manipulate, and manage data. This includes
creating DBMS views.

You can invoke RSPT by using PROC SQL statements that are passed to the
remote server for execution in the server SAS session, or you can store SQL pass-
through statements in local SQL views. For information about statements that are
used for remote SQL pass-through, see “RSPT” on page 153.

For more information about using compute services, see “Overview of Compute
Services” on page 30

8 Chapter 1 / Introduction

Remote Library Services
Remote Library Services (RLS) provides transparent access to SAS data that is
located on a remote computer. The data resides in server libraries, and RLS moves
the data through the network as client processing requests it. The data must again
pass through the network on any subsequent use by the client session. As the
following figure shows, a copy of the data is not written to the client file system.

Figure 1.3 Model of RLS Processing

The SAS procedures and DATA steps that run in the SAS/CONNECT client session
request access via the Remote engine to SAS files that are located on a
SAS/CONNECT server. The Remote engine communicates the requests for data to
the server. The server administers the requests to access SAS files on behalf of the
client.

RLS provides the following:

n transparent access to SAS data that is located on a remote computer

n access to current SAS data because no client copy is made

n a reduction of disk space consumption because multiple copies of the data are
not created

n the ability to run a local graphical user interface and process SAS data that is
located on a remote computer

For more information about remote library services, see Using Remote Library
Services on page 72.

Data Transfer Services
Data Transfer Services enables you to move a copy of your data from one computer
to another computer. The data is translated between computer architectures and
SAS version formats, as necessary.

What is SAS/CONNECT? 9

Figure 1.4 Model of Data Transfer Services (UPLOAD and DOWNLOAD)

Data is transferred using the UPLOAD and DOWNLOAD procedures. You can
transfer SAS data sets, SAS catalogs, MDDB, SQL views, entire SAS libraries, and
external text or binary files.

The data transfer capabilities enable you to do the following:

n customize data transfers

o transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC UPLOAD or PROC DOWNLOAD
step.

o transfer collections of files (such as a partitioned data set, a MACLIB, or a
directory) between a client and a server.

o use WHERE processing for dynamic data subsetting and SAS data set
options when transferring individual SAS data sets.

o transfer catalog entries that contain graphics output by using a simple one-
step process.

n protect data

o increase the robustness of your decision support environment by keeping a
local copy of your data, which is insulated from network failure.

o back up local files to a server.

n manage data distribution

o automate both data or application distribution and centralized data collection.

o distribute files from one workstation by uploading to a server and
downloading to other workstations that need the files.

o move SAS files between releases of SAS as well as across operating
environments.

For more information about using data transfer services, see Using Data Transfer
Services on page 87.

Access Methods
TCP/IP is the supported access method on UNIX, z/OS, and Windows operating
environments. The XMS access method is also supported when both client and

10 Chapter 1 / Introduction

server sessions are on z/OS. For more information about TCP/IP Access Method,
see “TCP/IP Access Method” on page 308.

Encryption Providers
Encryption providers include the SAS products and third-party strategies for
protecting data and credentials (user IDs and passwords) that are exchanged in a
SAS/CONNECT client/server environment. All these providers use proven, industry-
standard encryption algorithms for data protection.

Here are the encryption providers that SAS/CONNECT can use:

SAS Proprietary
is a fixed encoding algorithm that is included with Base SAS software. It requires
no additional SAS product licenses. The SAS proprietary algorithm is strong
enough to protect your data from casual viewing. SAS Proprietary provides a
medium level of security.

SAS/SECURE
is a product within the SAS System. In SAS 9.4, SAS/SECURE is included with
Base SAS software. In prior releases, SAS/SECURE was an add-on product that
was licensed separately. This change makes strong encryption available in all
deployments (except where prohibited by import restrictions).

Transport Layer Security/Secure Sockets Layer (TLS/SSL)
cryptographic protocols that are designed to provide communications security
over a computer network. In addition to providing encryption services, TLS/SSL
performs client and server authentication, and it uses message authentication
codes to ensure data integrity.

Secure Shell (SSH)
is a protocol that enables users to access a remote computer via a secure
connection. SSH is available through various commercial products and as
freeware. OpenSSH is a free version of the SSH protocol suite of network
connectivity tools. Although SAS software does not include a programming
interface to SSH functionality, SAS does support the tunneling feature of SSH
that enables a SAS client to make an encrypted connection to a SAS server. Port
forwarding is another term for tunneling. The SSH client and SSH server act as
agents between the SAS client and the SAS server, tunneling information via the
SAS client's port to the SAS server's port.

For details about these encryption providers, see Encryption in SAS.

Encryption Providers 11

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

12 Chapter 1 / Introduction

PART 2

Using SAS/CONNECT

Chapter 2
Signing On . 15

Chapter 3
Using Compute Services . 29

Chapter 4
Using Remote Library Services (RLS) . 71

Chapter 5
Using Data Transfer Services . 87

13

14

2
Signing On

Types of Sign-ons . 15
Overview . 15
Non-Metadata Server-based Sign-ons . 16
Metadata Server-based Sign-ons . 18
Where to Find More Information . 21

Interfaces for Using SAS/CONNECT . 21
Types of Interfaces for Using SAS/CONNECT . 21
The SAS Windowing Environment with SAS/CONNECT . 21
The Program Editor Window with SAS/CONNECT . 24
Use the Autoexec File with SAS/CONNECT . 25

Locked-Down SAS Sessions . 26
Sign On to Locked-Down SAS Sessions . 26

Types of Sign-ons

Overview
There are several types of SAS/CONNECT sign-ons. These sign-on types can be
grouped into two main categories: those that use SAS metadata and those that do
not use SAS metadata.

n Non-metadata server-based sign-ons:

o “Spawner Sign-ons” on page 16

o “SASCMD (MP Connect) Sign-ons” on page 16

o “Telnet Sign-ons” on page 17

n Metadata server-based sign-ons (in a SAS Intelligence Platform Deployment):

o Sign-ons to a Logical SAS/CONNECT server on page 19

15

o Sign-ons in a SAS grid server on page 19

Non-Metadata Server-based Sign-ons

Spawner Sign-ons
Spawner sign-ons occur when a SAS/CONNECT client uses TCP/IP to contact a
SAS/CONNECT spawner running on a remote host to start a SAS session on that
remote host. Here is an example of a sign-on to a UNIX server that is running the
SAS/CONNECT spawner:

%let session1=xyz.mydomain.com 2324;
signon session1;

In the example, the name of the remote server on which the SAS session runs is
xyz.mydomain.com. The spawner is listening for client requests on port 2324. If no
port is specified, the default port 23 is used. The session for this connection is
named ‘session1.’

Using the SAS/CONNECT spawner to sign on eliminates the need for a sign-on
script and it provides default encryption for a user ID and password. Signing on to a
SAS/CONNECT spawner is preferred over signing on using a Telnet daemon
because the SAS/CONNECT spawner provides a medium level of security through
SAS Proprietary Encryption.

You can use an authinfo file to sign on to the spawner without having to specify
credentials in a SIGNON statement. An authinfo file contains a user ID and
password that is used for authentication. Use of an authinfo file is not available
under the z/OS operating environment.

SAS/CONNECT first checks for credentials in the USER= and PASSWORD=
options or the AUTHDOMAIN= option in the SIGNON statement. If you use an
authinfo file, you must explicitly specify _AUTHINFO_ as the value in the
PASSWORD= option in the SIGNON statement. If there is more than one user ID in
your authinfo file that could be used to connect to the spawner, you should specify a
value for the USER= option to select which one to use. If you specify_AUTHINFO_
and SAS/CONNECT fails to retrieve functional credentials from an authinfo file, the
system generates an error message and the connection attempt fails.

For more information about the authinfo file, including how to create and format a
file, see “Client Authentication Using an Authinfo File” in Client Authentication Using
an Authinfo File.

SASCMD (MP Connect) Sign-ons
SASCMD signons can be established when you want to run multiple, independent
SAS sessions on the same multiprocessor machine. Here is an example of a
SASCMD sign-on:

signon session1 sascmd="!sascmd -nosyntaxcheck -noterminal";

16 Chapter 2 / Signing On

http://documentation.sas.com/?docsetId=authinfo&docsetVersion=9.4&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm&locale=en
http://documentation.sas.com/?docsetId=authinfo&docsetVersion=9.4&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm&locale=en

 rsubmit session1 wait=no;
 <statements>;
 endrsubmit;

signon session2 sascmd="!sascmd -nosyntaxcheck -noterminal";
 rsubmit session2 wait=no;
 <statements>;
 endrsubmit;
signoff session1;
signoff session2;

Note: The global SASCMD option is defined by the system administrator as a
restricted option by defining it in the rsasv9.cfg file. When the SASCMD= option is in
a SIGNON statement, it fails and results in a warning that says : SASCMD option is
restricted by the Site Administrator and cannot be changed. The
restricted option value will be used. For more details, see Configuration
Guide for SAS 9.4 Foundation for UNIX Environments - Restricted Options.

Telnet Sign-ons

IMPORTANT With the June 2023 hot fix, Telnet is deprecated and it is
recommended that you use SAS/CONNECT Spawner for client sign-ons. The
-CLEARTEXT option has been deprecated and is no longer available. For
more information, see SAS Note 70114.

Telnet sign-ons use the Telnet program to connect to a remote server across a
TCP/IP network without the use of the SAS/CONNECT spawner. In Telnet sign-ons,
the SIGNON statement starts a Telnet session that connects to the remote host
where a sign-on script is executed to start SAS. You must specify a sign-on script
when signing on using Telnet.

Here is an example of a Telnet sign-on in which the FILENAME statement specifies
the sign-on script and the OPTIONS statement specifies the name of the remote
host:

filename rlink '!sasroot/misc/connect/tcptso.scr';
options remote=xyz.mydomain.com;
signon;

Types of Sign-ons 17

http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf
https://support.sas.com/kb/70/114.html

Metadata Server-based Sign-ons

SAS Metadata Server
If you are running SAS/CONNECT in a SAS Intelligence Platform environment, then
there are other types of sign-ons that require you to access the SAS Metadata
Server.

The SAS Metadata Server is a multi-user server that serves metadata from
metadata repositories to all of the SAS Intelligence Platform client applications in
your environment. The SAS Metadata Server holds the information for a collection
of servers that can all be managed under one logical SAS Application Server. The
SAS Application Server can contain multiple logical servers, including a
SAS/CONNECT server and a SAS Grid server, that help make up the compute tier
of your SAS architecture. In this context, SAS/CONNECT server properties and
sign-on properties are stored as metadata in the metadata repository.

By accessing the metadata server, you can continue to execute SAS/CONNECT
applications in the traditional interactive and batch execution modes, but with the
convenient access to configured sign-on properties. This access means that you do
not need to specify SAS options for signing on in your code. Once you establish a
connection with the metadata server, you can use the SIGNON statement to sign on
to the SAS/CONNECT server component of the SAS Application Server.

For both SAS/CONNECT server sign-ons and SAS Grid Server sign-ons, your client
computer must be able to access the SAS Metadata Server. The SAS Metadata
Server contains the definitions for the SAS/CONNECT server and SAS Grid Server
in the SAS Metadata Repository. You can access the SAS Metadata Server by
specifying certain SAS system options for metadata. Here is an example:

options metaserver="max.apex.na.com"
metaport=8561
metaprotocol="bridge"
metauser="domain\joe"
metapass="*******";

In this example, you submit the appropriate credentials to access the SAS Metadata
Server, which runs on the computer max.apex.na.com. The bridge network protocol
is used to communicate with the SAS Metadata Server via port 8561.

Note: If the client session is not configured to access the SAS Metadata Server,
SAS displays a pop-up window in which you can configure access to the SAS
Metadata Server.

18 Chapter 2 / Signing On

Logical SAS/CONNECT Server Sign-ons
After you access the SAS Metadata Server, you can use the SIGNON statement to
sign on to the SAS/CONNECT server component of the SAS Application Server. In
the SAS Open Metadata Architecture, the metadata for a SAS Application Server
specifies one or more server components that provide SAS services to a client. You
must know the name of the SAS Application Server. Before sign-on, you can see a
list of the configured sign-on properties for the SAS Application Server by specifying
either the SERVER= or SERVERV= options in the SIGNON statement. In the
following examples, the name of the SAS Application Server is SASApp:

signon server="SASApp";

or

signon serverv="SASApp";

Here is an excerpt of the output that is generated when the SIGNON
serverv=”SASApp” statement is executed:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASApp";
NOTE: Server= SASApp - Connect Server
 Remote Session ID= remhost
 ServerComponentID= A5SXFC1R.AU000002
 Remote Host= max.apex.na.com
 Communication Protocol=TCP
 Port= 7551
 AuthDomain= DefaultAuth
 Wait= Yes
 SignonWait= Yes
 Status= Yes
 Notify= No

After you view the sign-on properties, you can sign on to the server session. Here is
an example:

signon server="SASApp";

A sign-on to the SAS Application Server that is named SASApp implies a
SAS/CONNECT server sign-on.

Note: The output generated by the SERVERV= option includes properties that
control server sign-on and server session execution. These connection properties
are saved and stored in the metadata repository via SAS Management Console.

SAS Grid Server Sign-ons
Servers operating in a SAS grid environment are simply SAS/CONNECT servers
that have been started out “on the grid” and that have been defined in a particular
way on the metadata server. The primary difference between a SAS/CONNECT
server that is grid-enabled and one that is not is how they are defined in metadata.

Types of Sign-ons 19

To sign on to a grid enabled server, you must have SAS Grid Manager installed and
your client computer must be able to access the SAS Metadata Server. To access
the SAS Metadata Server, specify the SAS system options for metadata.

After you have specified the metadata server options, specify the
GRDSVC_ENABLE function followed by the SIGNON statement in your
SAS/CONNECT client session. Specify _ALL_ as the value for the
GRDSVC_ENABLE function to enable grid execution on all SAS server sessions.
This enables grid execution on all subsequent sign-ons and remote submits to all
server sessions.

If you use the GRDSVC_ENABLE function to enable grid execution on a specific
server session, then only grid execution is enabled for all future sign-ons and
remote submits to that server session.

When the user is connecting to SAS Workload Orchestrator using credentials that
consist of a user ID and password, the credentials will either be retrieved from
metadata or from an AUTHINFO file. If the metadata user has credentials stored in
metadata for the logical grid server’s authentication domain, those credentials will
be used. Else, the AUTHINFO file for the current SAS user will be checked for
credentials that match the host and port of the grid master.

In the following example, Section 1 establishes access to the metadata server.
Section 2 uses the GRDSVC_ENABLE function with _ALL_ to enable grid execution
for all server sessions. Section 3 disables grid execution for a specific server
session, which, in this case, does not support grid execution.

1 options metaserver="max.apex.na.com"
 metaport=8561
 metaprotocol="bridge"
 metauser="domain\joe"
 metapass="*******";

2 %put gs_rc=%sysfunc(grdsvc_enable(_all_,server=SASApp));
 signon grid1;

3 %put gc_zos_rc=%sysfunc(grdsvc_enable(zos,""));
 %let zos=zoshost.mydomain.com 3456;
 signon zos;
 signoff _all_;

1 access the metadata server

2 enable grid execution for all server sessions

3 disable grid execution for a specific session (session with server-ID ZOS)

Note: To disable grid execution on one or all server sessions, specify the "" (empty
string) option in the GRDSVC_ENABLE function.

For more information about the GRDSVC_ENABLE function, see
GRDSVC_ENABLE in Grid Computing in SAS.

20 Chapter 2 / Signing On

http://support.sas.com/documentation/cdl/en/gridref/67371/HTML/default/viewer.htm#n1x4fhd14au95fn1hhcknbvtpn1b.htm

Where to Find More Information
This document provides more detailed information about signing on in a non-
metadata server-based environment. This information is organized according to
operating environment and can be found in the following locations:

n Chapter 20, “UNIX Operating Environment,” on page 339

n Chapter 21, “z/OS Operating Environment,” on page 361

n Chapter 22, “Windows Operating Environment,” on page 383

For more information about metadata server-based environments, see the SAS 9.4
Intelligence Platform: Administration Documentation web page at http://
support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html.

Interfaces for Using SAS/CONNECT

Types of Interfaces for Using SAS/CONNECT
You can use SAS/CONNECT and start server sessions in any of these interfaces:

n SAS Windowing Environment

n Program Editor Window

n Autoexec File

The SAS Windowing Environment with
SAS/CONNECT

The Sign-on Window
To start a SAS/CONNECT session:

1 Select Run ð Signon from the menu bar in the SAS Program Editor window.

2 Complete the following fields in the Sign-on window.

Interfaces for Using SAS/CONNECT 21

http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html
http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html

Script file name:
If you use the TCP/IP access method and choose to use a script file, enter
the full path and the name of the script file. For example, to connect to the
z/OS operating environment by using the TCP/IP access method, enter the
following: pathname/tcptso.scr

The default location of the script file varies according to operating
environment.

Remote session name:
Enter the name of the session that you are connecting to. For details, see
“CONNECTREMOTE=” on page 108.

Communications access method ID:
Enter the value for the COMAMID= option. For example, for the TCP/IP
access method, enter the following: tcp

For complete details about access methods, see “Access Methods Supported
by SAS/CONNECT” on page 307.

Transmission buffer size:
Enter the value of the buffer size that SAS/CONNECT uses for transferring
data. For details, see “TBUFSIZE=” on page 121.

Remote session macro variable/macvar:
Enter the name of the macro variable that you want to use to associate with
the server session. For details about the CMACVAR= option, see
“ CMACVAR=value” on page 148.

Display transfer status (yes/no):
Type yes or no to specify whether the status window is displayed during data
transfers. For details, see “CONNECTSTATUS” on page 110.

Execute remote submit synchronously (yes/no):
Type yes or no to specify whether remote submits are to be executed
synchronously or asynchronously.

22 Chapter 2 / Signing On

YES
specifies synchronous remote submits, which means that control is not
returned to the client session until the remote submit is finished
processing. This is the default.

NO
specifies asynchronous remote submits, which means that control is
immediately returned to the client session after processing begins on the
server session.

For details, see “CONNECTWAIT” on page 111.

SAS command to be used for multi-process signon:
If you do not use SMP hardware, omit this field. If you use SMP hardware,
specify a command and options in this field to invoke a server session that
executes on the multiprocessor computer. For details about multiprocessing,
see “MP CONNECT” on page 31.

Note: If you have defined an RLINK fileref, you must clear the reference as
follows: filename rlink clear;

3 Select OK to sign on, or select Cancel to return to the Program Editor window
without signing on.

The Sign-off Window
1 To stop a SAS/CONNECT session by signing off, from the menu in the Program

Editor window, select Run ð Signoff.

2 If you are signed on to only one server session, you can click OK to end that
session.

If you are signed on to multiple server sessions, verify that the field entries are
valid for the session that you want to end.

Interfaces for Using SAS/CONNECT 23

The Program Editor Window with SAS/CONNECT

Use the Program Editor Window to Sign
On SAS/CONNECT
1 Enter an OPTIONS statement in the Program Editor window of the client

session.

Use the SUBMIT command, statement, or function key to execute the OPTIONS
statement. You use the OPTIONS statement to specify the COMAMID= and
REMOTE= system options. For example:

options comamid=communications-method
 remote=server-ID;

Note: The REMOTE= option is an alias for the CONNECTREMOTE= system
option.

For details about specifying values for these options, see “COMAMID=” on page
101 and “CONNECTREMOTE=” on page 108.

2 Issue the SIGNON command or enter the SIGNON statement in the client
session. Specify the appropriate sample script (if necessary) for the operating
environment:

signon cscript='external-file-name-of-script';

Note: Sample automatic sign-on scripts should be modified with installation-
specific information before you can use them to start the connection.

Here is an example of signing on to a server that is running a spawner program:

remote=nodename servicename;
signon user=_prompt_;

After the SIGNON command executes successfully, a message in the Log window
indicates that the connection is established.

Use the Program Editor Window to Sign
Off SAS/CONNECT
Issue the SIGNOFF command, or enter the SIGNOFF statement in the client
session:

signoff;

24 Chapter 2 / Signing On

After the SIGNOFF command executes successfully, a message in the Log window
indicates that the connection has ended.

Note: If you used a script to sign on, the same script can be used to stop the
connection. The sample scripts that are used for automatic sign-on are used for
signing off your server session.

Use the Autoexec File with SAS/CONNECT
The autoexec file contains SAS statements that can be executed automatically
when you begin a client session. You can simplify the process of starting and
stopping the connection by following these recommendations:

n Include a FILENAME statement in the autoexec file that defines the fileref
RLINK. Make sure that it gives the correct file specification for the script that you
use to start SAS/CONNECT. For details, see “FILENAME” on page 201.

By assigning the fileref RLINK to your script, you can start the connection without
specifying the script name in the SIGNON command.

Also, you can stop the connection without specifying the script name in the
SIGNOFF command because RLINK is the reserved fileref for script files.

When SAS executes a SIGNON or a SIGNOFF command without a fileref, SAS
automatically searches for a file that is defined with RLINK as the fileref. If
RLINK has been defined, SAS executes the corresponding script.

n Include an OPTIONS statement in your autoexec file to specify the COMAMID=
and CONNECTREMOTE= system options.

Windows Example:

options comamid=tcp
 remote=remhost;

Using the autoexec file to specify system options is a convenience over having
to execute an OPTIONS statement in each SAS session when using
SAS/CONNECT.

Modifying your autoexec file as recommended eliminates a step in the process of
starting the connection, and you can use the short form of the SIGNON and
SIGNOFF commands.

For example, to start a connection from a SAS session that was invoked by using a
modified autoexec file, issue the SIGNON command or submit the SIGNON
statement:

 signon

or

 signon;

After you have completed your server processing, in order to end the connection,
issue the SIGNOFF command or submit the SIGNOFF statement :

 signoff

or

Interfaces for Using SAS/CONNECT 25

 signoff;

For more information about the autoexec file, see the information for your operating
environment:

n “Customizing Your SAS Session By Using Configuration and Autoexec Files” in
SAS Companion for UNIX Environments

n “Autoexec Files” in SAS Companion for z/OS

n “Uses for the Autoexec File” in SAS Companion for Windows

Locked-Down SAS Sessions

Sign On to Locked-Down SAS Sessions

Overview
The LOCKDOWN feature allows administrators to limit access to files for SAS
processes that are executing in batch or server processing mode. When a SAS
process is running in a locked-down state, these resources are accessible to the
user:

n resources that are specified in the lockdown path list1

n libref and filerefs that are defined in the autoexec file

n pre-assigned libraries that are defined in metadata

n source code repositories for defined stored process programs

When LOCKDOWN is in effect, there is limited access to files, and there are
restrictions on how you can sign on.

For more information about locked-down SAS sessions, see SAS Intelligence
Platform: Security Administration Guide.

SASCMD Sign-ons
If the SAS process that you are running is in a locked-down state, then you can
create SAS/CONNECT server sessions on your local machine under the following
conditions:

n Only "!SASCMD" and "!SASCMDV" are valid as values for the SASCMD=
option. If you specify a script file or command as the value for the SASCMD=
option, the sign-on will fail. For example, the following error message is
displayed when an invalid value is specified for the SASCMD= option:

1. The lockdown path list is typically created and maintained by the system administrator to make specified files available and
not subject to the lockdown.

26 Chapter 2 / Signing On

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p13flc1vsrqwr8n1vutzds8rp3t0.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p13flc1vsrqwr8n1vutzds8rp3t0.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n16cfsauaono3bn1syrk9rmjsv5s.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0bmj7wjme32ayn1h4wim7trkhp6.htm&docsetTargetAnchor=n1mklv1rtrpn1en1vt1vau15oe4v&locale=en
http://support.sas.com/documentation/cdl/en/bisecag/67045/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/bisecag/67045/HTML/default/viewer.htm#titlepage.htm

ERROR: Only "!SASCMD" or "!SASCMDV" are allowed for the SASCMD option
when the LOCKDOWN option is specified. ERROR: Remote signon canceled.

n Any additional options that are specified after the SASCMD option is specified
are ignored. For example, the sign-on in the following example will be
successful, but the TBUFSIZE option will be ignored, and there will be a
WARNING in the log.

signon sess1 sascmd="!sascmdv -tbufsize 1024";
WARNING: Additional options after !SASCMD are ignored when the
LOCKDOWN option is specified.

Scripted Sign-ons
If you are doing a scripted sign-on, the script file must be available to the client
session. If SAS is in a locked-down state on the local machine and the script file is
not in a path accessible to the client, then the sign-on will fail. In the following
example, a client attempts to use the tcpwin.scr file to perform a scripted spawner
sign-on. The script file is not defined in the lockdown path list, so an invalid path
error is displayed in the log and the sign-on fails:

filename rlink "C:\Program Files\SASHome\SASFoundation\9.4\connect\
 saslink\tcpwin.scr";
ERROR: The path
C:\Program Files\SASHome\SASFoundation\9.4\connect\saslink\
tcpwin.scr is not in the list of
accessible paths when SAS is in the lockdown state.
ERROR: Error in the FILENAME statement.

Server Security
The following steps should be taken when locking down a SAS/CONNECT server:

n Specify the LOCKDOWN option in the SAS configuration file, and define a
lockdown path list in the SAS autoexec file.

n Start the SAS/CONNECT spawner using the -NOSCRIPT option. This prevents
users from gaining access to the system by inserting operating system
commands into the script file.

o When starting the spawner with the -NOSCRIPT option, either specify the
spawner’s SASCMD command in the spawner start-up, or define the
SASCMD command in the SAS/CONNECT server’s metadata. The spawner
uses this command to start the SAS/CONNECT server session.

n Ensure that the SAS/CONNECT spawner is not started with the -SHELL option.
As long as the -SHELL option is not specified, the -NOXCMD option will be added
by default to the server’s invocation parameters. -NOXCMD prevents clients from
executing X commands from their SAS sessions to access system files.

Locked-Down SAS Sessions 27

Logging
If a user attempts to access a resource that is locked down, SAS issues an error
message to the SAS log. If the SAS session is configured for the SAS Logging
Facility, SAS issues an error message to the Audit.Lockdown logger. Log files that
are defined in the logging facility configuration file are not limited by lockdown and
can be used for debugging purposes.

28 Chapter 2 / Signing On

3
Using Compute Services

Overview of Compute Services . 30

MP CONNECT . 31
MP CONNECT . 31
Independent Parallelism . 32
Pipeline Parallelism . 33
Benefits of MP CONNECT . 35
Scalability with MP CONNECT . 36
Monitor MP CONNECT Tasks . 38

Use SAS Explorer to Monitor SAS/CONNECT Tasks . 40

Compute Services and the Output Delivery System . 40

Use the SAS Windowing Environment to Control Remote Processing 42
Overview of Remote Processing Control Using the SAS Windowing Environment . 42
Remote Submit . 42
Remote Get . 44
Remote Display . 45

Use the Macro Facility with SAS/CONNECT . 45
Overview . 45
Submit Code Remotely Using a Macro . 46
MPRINT and MLOGIC Macro System Options . 47
The %NRSTR Function . 49
The %SYSLPUT and %SYSRPUT Statements . 51

Use SYSPROCESSMODE to Display the Run Mode or Server Type 55

Compute Services and Break Windows . 55
Overview . 55
SAS/CONNECT Attention Handler Window . 56
Communication Services Break Handler Window . 57

Examples Using Compute Services . 58
Example 1: MP CONNECT for a Long-Running Remote Task 58
Example 2: Administer Server Data Sets from a Client . 59
Example 3: The CMACVAR= Option with MP CONNECT . 59
Example 4: The Output Delivery System with SAS/CONNECT 60
Example 5: MP CONNECT and the WAITFOR Statement . 63
Example 6: MP CONNECT with Piping . 64

29

Example 7: Prevent Pipes from Closing Prematurely . 65
Example 8: Force Macro Variables to Be Defined When %SYSRPUT Executes . . . 66
Example 9: Use Server Software from a Client Session . 67

Overview of Compute Services
SAS/CONNECT Compute Services provides a set of statements and commands
that enable the client to distribute SAS processing to one or more server sessions
and to maintain control of these server sessions and their results from the single
client session. This very powerful capability enables you to run SAS across many
(possibly heterogeneous) platforms as well as communicate between different
releases of SAS that might be installed on these operating environments.

The RSUBMIT statement or command is used to direct SAS processing to a specific
server session. For details, see “RSUBMIT” on page 161.

Here are some of the benefits of Compute Services:

n gives you access to additional CPU resources.

You might have multiprocessor SMP computers or remote computers on your
network that are underused. These CPUs could be used to execute the CPU
intensive portions of your application faster and more efficiently than your local
computer. Compute Services enables you to move some or all segments of an
application to one or more server sessions for execution and return the results to
the client session.

n lets you execute the application on the computer where the data resides.

Data center rules or data characteristics might mandate a single, centralized
copy of the data that is needed by your application. Moving the processing to the
computer where the data resides eliminates the need to transfer or create
additional copies of the data. Using only one copy of data can satisfy security
requirements as well as enable access to data sources that are too large or too
dynamic for transfer.

For example, although data links between computers make file transfers
convenient and easy, large files do not move quickly between computers. It is
also inefficient to maintain multiple copies of large files when developing and
testing programs that are designed to process those files. Compute Services
overcomes this limitation by developing applications on one computer while
running them and keeping the data that they use on a different computer.

To test your application, submit it remotely from the client session so that it will
run in the server session on a remote computer. All processing occurs on the
computer where the data resides, but the output appears in the client session.

30 Chapter 3 / Using Compute Services

MP CONNECT

MP CONNECT
Prior to SAS 8, when an RSUBMIT statement was executed, the client session was
suspended until processing by the server session had completed. In SAS 8, MP
CONNECT functionality was added, which enables you to execute RSUBMIT
statements asynchronously. When an RSUBMIT is executed asynchronously, the
unit of work is sent to the server session and control is immediately returned to the
client session. The client session can continue with its own processing or execute
RSUBMIT statements to one or more additional server sessions. Asynchronous
RSUBMIT statements are most useful for longer-running tasks.

MP CONNECT enables you to perform multiprocessing with SAS by establishing a
connection between multiple SAS sessions and enabling each of the sessions to
asynchronously execute tasks in parallel. You can also merge the results of the
asynchronous tasks into your local execution stream at the appropriate time. In
addition, establishing connections to processes on the same local computer has
been greatly simplified. This enables you to exploit SMP hardware as well as
network resources to perform parallel processing and easily coordinate all the
results into the client SAS session.

You can use MP CONNECT to start any number of SAS processes that you want to
perform in parallel. SAS processes that are started on a single multiprocessor
computer are independent, unique processes just as they are if they are initiated on
a remote host. For example, under Windows and UNIX, each SAS session is a
separate process that has its own unique SAS Work library. Each process also
assumes the user context of the parent or of the user that invoked the original SAS
session, and has all the rights and privileges that are associated with that parent.
Under z/OS, each SAS session is an MVS BPX address space that inherits the
same STEPLIB and USERID as the client address space. The client's SASHELP,
SASMSG, SASAUTOS, and CONFIG allocations are passed to the new session as
SAS option values.

MP CONNECT is implemented by executing an RSUBMIT statement and the
CONNECTWAIT=NO option. This method causes SAS/CONNECT to submit a task
to a server session for processing and return control immediately to the client
session so that you can start other tasks in the client session or in other server
sessions. For details about the CONNECTWAIT= option, see “RSUBMIT” on page
161.

MP CONNECT 31

Independent Parallelism

Overview
Independent parallelism is possible when the execution of Task A and Task B do not
have any interdependencies. For example, an application might need to run PROC
SORT against two different SAS data sets and merge the sorted data sets into one
final data set. Because there is no dependency between the two data sets that
initially need to be sorted, the two SORT procedures can be performed in parallel.
When sorting is complete, the merge can take place. MP CONNECT can be used to
accomplish independent parallelism.

MP CONNECT can also be used to start multiple SAS sessions to execute
independent units of work in parallel. The client session can synchronize the
execution of the parallel tasks for subsequent processing. For this example, two
SAS sessions would be started, and each session would perform one of the SORT
procedures. The merge would be executed in the client session after the two parallel
SORT procedures are completed.

Considerations for Independent Parallelism
When using MP CONNECT (especially on an SMP computer), ensure that the
implementation of parallel sessions does not create an I/O bottleneck in one or both
of the following areas:

n single input data source

n I/O activity in the Work library of each SAS session

Single Input Data Source
If a single input data source is being read by each of the parallel SAS sessions,
overall execution time can actually be longer if all the parallel SAS sessions are
trying to read their input from a single disk and single I/O channel. One way to solve
this bottleneck would be to create multiple copies of your data on separate disks or
mount points. Another way would be to create subsets of your data on multiple
mount points, and have each parallel session process a different subset of the data.
In addition, you could enable multi-user access to a single large data source by
using the new Scalable Performance Data Engine (SPD Engine), which is available
in SAS 9. The SPD Engine accelerates the processing of large data sets by
accessing data that has been partitioned into multiple physical files called partitions.
The SPD Engine initiates multiple threads with each thread having a direct path to a
partition of the data set. Each partition can then be accessed in parallel (by a
separate processor), which allows the application to analyze data in parallel as fast

32 Chapter 3 / Using Compute Services

as the data is read from disk. This can effectively reduce I/O bottlenecks and
substantially decrease the amount of time that is used to process data.

I/O Activity in the Work Library of Each
SAS Session
The I/O activity in the Work library for a typical SAS process can be very high. When
you use MP CONNECT to start multiple SAS sessions on the same SMP computer,
each session has its own Work library. The Work libraries for these processes are all
created in the same temporary directory by default. As a result, you might have
multiple SAS processes performing intensive I/O in the same directory on the same
physical disk, causing an I/O bottleneck. This problem can be minimized in one of
two ways.

n Use the Work invocation option on each of the MP CONNECT processes to
direct each process to create its Work library on a separate disk.

n Use the SPD Engine to create a temporary library to be used instead of the Work
library, and point the USER= option to this temporary library. The SPD Engine
can partition data sets over multiple file systems. Utility data sets that are
created by SAS procedures continue to be stored in the Work library. However,
any data sets that have one-level names and that are created by your SAS
programs are stored in the User library.

Note: When using MP CONNECT on multiple remote computers, the Work library
of the remote sessions exists on the individual computers, so this bottleneck does
not occur.

Pipeline Parallelism

Overview of Pipeline Parallelism
Pipeline parallelism occurs when the execution of Task A and Task B have
interdependencies. For example, a SAS DATA step might be followed by a PROC
SORT of the data set that is created by the DATA step. PROC SORT is dependent
on the execution of the DATA step, because the output of the DATA step is the input
needed by PROC SORT. However, the execution of the two steps can be
overlapped, and the DATA step can pipe its output into PROC SORT. The piping
feature of MP CONNECT provides pipeline parallelism.

Piping enables you to overlap the execution of SAS DATA steps and some SAS
procedures. This is accomplished by starting one SAS session to run one DATA
step or SAS procedure and piping its output through a TCP/IP socket as input into
another SAS session that is running another DATA step or SAS procedure. This
pipeline can be extended to include multiple steps and can be extended between
different physical computers. Piping improves performance not only because it

MP CONNECT 33

enables overlapped task execution, but also because intermediate I/O is directed to
a TCP/IP pipe instead of written to disk by one task and then read from disk by the
next task.

Piping is implemented by using a LIBNAME statement to identify a port to be used
for the pipe. For details about using the LIBNAME statement to implement piping,
see “LIBNAME: SASESOCK Engine” on page 209. For an example of piping, see
“Example 6: MP CONNECT with Piping” on page 64.

Limitation of Pipeline Parallelism
A limitation of piping is that it supports single-pass, sequential data processing.
Because piping stores data for reading and writing in TCP/IP ports instead of disks,
the data is never permanently stored. Instead, after the data is read from a port, the
data is removed entirely from that port and the data cannot be read again. If your
data requires multiple passes for processing, piping cannot be used.

Here are some examples of SAS procedures and statements that process single-
pass, sequential data:

n DATA step

n SORT procedure

n SUMMARY procedure

n GANTT procedure

n PRINT procedure

n COPY procedure

n CONTENTS procedure

Considerations for Piping
n The benefit of piping should be weighed against the cost of potential CPU or I/O

bottlenecks. If execution time for a SAS procedure or statement is relatively
short, piping is probably counterproductive.

n Ensure that each SAS procedure or statement is reading from and writing to the
appropriate port.

For example, a single SAS procedure cannot have multiple writes to the same
pipe simultaneously or multiple reads from the same pipe simultaneously. You
might minimize port access collisions on the same computer by reserving a
range of ports in the SERVICES file. To completely eliminate the potential for
port collisions, request a dynamically allocated port instead of selecting an
explicit port for use. For details, see “LIBNAME” on page 205.

n Ensure that the port that the output is written to is on the same computer that the
asynchronous process is running on. However, a SAS procedure that is reading
from that port can be running on another computer.

n Ensure that the task that reads the data does not complete before the task that
writes the data. For example, if one process uses a DATA step that is writing
observations to a pipe and PROC PRINT is running in another task that is

34 Chapter 3 / Using Compute Services

reading observations from the pipe, PROC PRINT must not complete before the
DATA step is complete. This problem might occur if the DATA step is producing a
large number of observations, but PROC PRINT is printing only the first few
observations that are specified by the OBS= option. This would result in the
reading task closing the pipe after the first few observations had been printed,
which would cause an error for the DATA step, which would continue to try to
write to the pipe that had been closed.

Note: Although the task that is writing generates an error and will not complete,
the task that is reading will complete successfully. You could ignore the error in
the writing task if the completion of this task is not required (as is the case with
the DATA step and PROC PRINT example in this item).

n Be aware of the timing of each task's use of the pipe. If the task that is reading
from the pipe opens the pipe to read and there is a delay before the task that is
writing actually begins to write to the pipe, the reading task might time-out and
close the pipe prematurely. This could happen if the writing task has other steps
to execute before the DATA step or SAS procedure that is actually writing to the
pipe.

Use the TIMEOUT= option in the LIBNAME statement to increase the time-out
value for the task that is reading. Increasing the value for the TIMEOUT= option
causes the reading task to wait longer for the writing task to begin writing to the
pipe. This will allow the initial steps in the writing task to complete and the DATA
step or SAS procedure to begin writing to the pipe before the reading task time-
out expires. For an example, see “Example 7: Prevent Pipes from Closing
Prematurely” on page 65.

Benefits of MP CONNECT
MP CONNECT can greatly reduce the total elapsed time that is required to execute
your SAS applications that contain tasks that can be executed in parallel. MP
CONNECT provides a syntactic interface to distribute multiple units of work across
idle CPUs either on the same SMP computer or across multiple computers on your
network.

MP CONNECT uses hardware resources that you might have thought were
outdated and useless. Using MP CONNECT, you can put multiple, slow, inexpensive
computers to work in parallel on a job, transforming them into a powerful and
inexpensive computing resource.

Large jobs that previously never finished executing can be implemented via MP
CONNECT to repeatedly distribute small pieces of a problem to multiple processors
until the entire problem is solved.

MP CONNECT enables you to use SAS in cluster and grid environments for high-
performance computing.

Piping enables you to overlap the execution of one or more SAS DATA steps and
procedures in order to accelerate processing. Piping has the added benefit of
eliminating the need to write intermediate SAS data sets to disk, which not only
saves time but reduces the physical disk space requirements for your SAS
processing.

MP CONNECT 35

Scalability with MP CONNECT

Overview of Scalability
Scalability reduces the time-to-solution for your critical tasks. Scalability can be
accomplished by performing two or more tasks in parallel (independent parallelism)
or overlapping two or more tasks (pipeline parallelism). Scalability requires two
things: 1) that some part(s) of your application can be overlapped or performed in
parallel, and 2) that you have hardware that is capable of multiprocessing. All
applications are not scalable, and not all hardware configurations are capable of
providing scalability.

To decide whether an application can be scaled, consider the following questions:

n Does the time that is required to run a job exceed the batch window of time that
you have available?

n Does the time that is required to run a job allow enough time so that you can
make appropriate decisions after you get the information from the application?
The applications that are the best candidates for scalability generally take hours,
days, or maybe even weeks to execute.

n Can the application (or some part of it) be segmented into sub-tasks that are
independent and can be run in parallel? It might be worthwhile to duplicate some
data in order to achieve this independence.

n Does the application contain dependent steps that could benefit from piping?

Hardware that is capable of multiprocessing includes an SMP computer or multiple
computers on a network with each computer containing one or more processors. In
addition to the number of processors, it is important to have multiple I/O channels.
This is inherent to multiple computers on a network. For an SMP computer, this can
be accomplished with RAID arrays that enable you to stripe or spread your data
across multiple physical disks. Even for a single threaded application, this can
improve I/O performance, because the operating system is able to read data from
multiple drives simultaneously and synchronize the result for the application.

Parallel Threads and Parallel Processes
SAS 9 has the capability to leverage the available hardware resources to both scale
up and scale out your applications. SAS provides scalability in two ways:

n parallel SAS processes

n parallel threads within a SAS process

36 Chapter 3 / Using Compute Services

Parallel Processes
A SAS process consists of many pieces, including execution units, data structures,
and resources. A process corresponds to an operating environment process. A
process has a largely private address space. It is scheduled by the operating
environment, and its resources are managed by the operating environment at the
lowest level. Multiple SAS processes use multiple processors on an SMP computer,
but they can also be run on multiple remote single or multiprocessor computers on a
network. When running multiple SAS processes on an SMP computer, SAS does
not schedule a specific process to a specific processor; scheduling is controlled by
the operating environment. MP CONNECT provides the ability to run multiple SAS
processes.

Parallel Threads
A process consists of one or more threads. A thread is also scheduled by the
operating environment, but the running process might influence the behavior of
threads by using synchronization techniques. All threads in a process share an
address space and must cooperatively share the resources of the process. Multiple
threads use multiple processors on an SMP computer but cannot be executed
across computers. When running multiple threads within a SAS process, SAS does
not schedule a specific thread to a specific processor; scheduling is controlled by
the operating environment.

Scaling Up
Scaling up means to increase the number of processors, disk drives, and I/O
channels on a single server computer. Scaling up also means to leverage the
multiple processors, disk drives, and I/O channels on a single server computer.

Scaling Out
Scaling out means adding more hardware, not bigger hardware. Scaling out also
means to exploit network resources to run parts of an application. When you scale
out, the size and speed of an individual computer does not limit the total capacity of
the network.

Multiple Threads and Multiple Processors
Beginning in SAS 9, multiple threads are used to scale up and use multiple
processors in SMP hardware. Multithreading has been incorporated into SAS 9 (and
later), including many SAS servers, several performance-critical SAS procedures,

MP CONNECT 37

and many SAS engines. Multithreading is used for both computing-intensive parts
as well as I/O-intensive parts in order to process data quickly and reduce the total
execution time.

Multiple SAS processes (MP CONNECT) are used to both scale up and scale out.
By running multiple processes on an SMP computer, the operating environment can
schedule the processes on different processors to use all the hardware resources
on the computer. In addition, by running multiple SAS processes across the
computers that are available on a network, you can use idle processors and put
multiple, slow, inexpensive computers to work in parallel on a job and turn them into
a valuable, powerful, inexpensive computing resource.

Multithreading and multiple SAS processes (MP CONNECT) are not mutually
exclusive. For some applications, the greatest gains in performance result from
applying a solution that incorporates multiple threads and multiple processes.
Provided you have the hardware resources to support it, you can use MP
CONNECT to run multiple SAS processes and each process can use
multithreading. When running multiple processes by using multiple threads on an
SMP computer, it might be necessary to set SAS system options in each of the SAS
processes to tune the amount of threading that is performed by each process.
Tuning threading behavior avoids the sum of the processes and threads from
overloading your system. When using multiple remote computers with each SAS
process running on a physically separate computer, it might be better to let the
threading within the process fully use the individual computers.

Successfully scaled performance is not obtained by installing more and faster
processors or more and faster I/O devices. Scalability involves making choices
about investing in SMP hardware, upgrading I/O configurations, using networked
computers, reorganizing your data, and modifying your application. True scalability
results from choosing scalable hardware and the appropriate software that is
specifically designed to leverage it. The extent of the original problem that can be
processed in parallel determines the amount of scalability that is achievable from
the software solution.

Monitor MP CONNECT Tasks

Overview of Monitoring MP CONNECT
Tasks
To monitor MP CONNECT tasks, the RDISPLAY command or statement creates two
windows that enable you to view the contents of the accumulated server log and
output without interrupting the asynchronous processing of the remote submitted
task. The two windows enable you to view the accumulated log and output before
merging them into your client session's log and output windows. For details about
the syntax for the RDISPLAY command or statement, see “RDISPLAY” on page 182
and “RDISPLAY” on page 214.

As an alternative to RDISPLAY, you can use the SAS Explorer Monitor. For details,
see “Use SAS Explorer to Monitor SAS/CONNECT Tasks” on page 40.

38 Chapter 3 / Using Compute Services

Manage MP CONNECT Log and Output
Results
The log and output results that are generated by MP CONNECT server sessions are
sent back to the client session as they are created. Because MP CONNECT tasks
and client session tasks are processing in parallel, by default, the log and output are
spooled to a utility file for later retrieval. If the log and output lines were written to the
client Log and Output windows as they were produced, the output from MP
CONNECT tasks and client session tasks would be interleaved, and the
interpretation of the results of the executions would be impossible.

The MP CONNECT task log and output results can be viewed in separate windows
using the RDISPLAY command or statement. For details, see “RDISPLAY” on page
182 and “RDISPLAY” on page 214.

Log and output results can also be written to, retrieved from, or merged in the client
session Log and Output windows by using the RGET statement or command or
redirecting to a file by using the LOG= option and the OUTPUT= option. For details
about RGET, see “RGET” on page 183. For details about the LOG= option and the
OUTPUT= option, see “RSUBMIT” on page 161.

MP CONNECT Task Completion
You can use any of the following to test for the completion of MP CONNECT tasks:

n LISTTASK statement

n SAS/CONNECT Monitor window from the SAS Explorer window

n CMACVAR macro variable

n NOTIFY=YES option

n WAITFOR statement

The LISTTASK statement lists information about a single active task by name or
about all tasks in the current session. For details, see “LISTTASK” on page 197.

The SAS Explorer provides a menu selection that enables you to monitor
SAS/CONNECT tasks that are executing asynchronously (or synchronously) in one
or more server sessions. For details, see “Use SAS Explorer to Monitor
SAS/CONNECT Tasks” on page 40.

The CMACVAR macro variable can be programmatically queried to learn the
processing status (completed, failed, in progress) of an MP CONNECT task. For
details, see “RSUBMIT” on page 161.

The NOTIFY=YES option requests the display of a notification message window to
report the completion of an MP CONNECT task. For details, see “RSUBMIT” on
page 161.

The WAITFOR statement makes the current SAS session wait for the completion of
one or more asynchronously executing tasks that are already in progress. For
details, see “WAITFOR” on page 195.

MP CONNECT 39

Use SAS Explorer to Monitor
SAS/CONNECT Tasks

SAS Explorer provides a menu selection that enables you to monitor
SAS/CONNECT tasks that are executing in one or more server sessions. A server
session can execute across a network, or it can execute on a computer that is
equipped with SMP hardware, which facilitates multi-processing.

To start the SAS/CONNECT Monitor, from the menu, select: View ð
SAS/CONNECT Monitor.

The SAS/CONNECT Monitor displays information about the tasks in two columns:
Name and Status.

Name Status

Task1 Complete
Task2 Running Asynchronously
Task3 Running Synchronously

The list of tasks is dynamically updated as new tasks start, and the Status field
changes from Running to Complete, as appropriate. When you use the SIGNOFF
statement to end a connection, the task is automatically removed from the window.

Note: If you do not see both columns, select View ð Details.

You can also end a task that is running asynchronously by clicking the task in the
Monitor and selecting the Kill option from the menu that is displayed when you right-
click the mouse button. Similarly, you can select the RDisplay option from the menu
to display a Log and Output window for a task that is running asynchronously.

Compute Services and the Output
Delivery System

You can use the SAS Output Delivery System (ODS) to format the SAS output that
is generated in a SAS session that runs on a server either synchronously or
asynchronously.

Here are four typical programming scenarios for using Compute Services with ODS
to manage output that is produced in a server session.

n Remotely submit procedure statements without any ODS statements.

Any output that is produced by the remote submit produces a node in the
Results window that has the name Rsubmit:(server-ID). The Results window

40 Chapter 3 / Using Compute Services

uses ODS to generate pointers (nodes) to various positions in the Output
window. The resulting node is a record of the output that is generated during a
SAS server session.

n Precede and end the remote submit block (RSUBMIT through ENDRSUBMIT)
with the appropriate ODS opening statement (such as ODS HTML or ODS PDF)
and the corresponding ODS closing statement (such as HTML CLOSE or PDF
CLOSE). Appropriate results are produced in the SAS session at the client. For
example, ODS HTML produces output in the Results Viewer. ODS PDF
produces output in the Results window.

ODS pdf;
rsubmit;
 <statements>;
endrsubmit;
ods pdf close;

n Precede RSUBMIT with the ODS OUTPUT statement.

The output from the RSUBMIT appears in the Results window and is saved as a
SAS data set.

ODS pdf;
rsubmit;
 <statements>;
endrsubmit;

n Remotely submit ODS statements and procedures and DATA step statements to
produce the ODS output in the server session.

The output is processed and generated entirely in the server session. Therefore,
the results (for example, a SAS data set or HTML output) must be downloaded
from the server session to the client session.

rsubmit;
 ODS pdf;
 <statements>;
endrsubmit;

For all scenarios that use asynchronous processing, use the “RGET” on page 183.
The output is not available until the results are retrieved. The accumulated output is
retrieved and transferred to the client session.

For details about ODS, see the SAS Output Delivery System: User’s Guide.

Compute Services and the Output Delivery System 41

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Use the SAS Windowing Environment to
Control Remote Processing

Overview of Remote Processing Control Using the
SAS Windowing Environment

The SAS windowing environment includes menu selections that enable you to
control remote processing during a SAS session. The following Compute Services
menu selections are available from the Run menu:

Remote Submit
enables you to submit one or more statements to a SAS/CONNECT server
session for remote processing.

Remote Get
merges the spooled Log and Output lines from the asynchronous remote submit
operation with the client's Log and Output windows for viewing.

Remote Display
enables you to view the spooled Log and Output lines that are created by the
asynchronous remote submit operation in the Log and Output windows that are
created for the specific remote server session.

Remote Submit
To submit one or more statements to a SAS/CONNECT server session for remote
processing, open the SAS Program Editor window and select Run ð Remote
Submit from the menu bar.

The Remote Submit dialog box appears.

42 Chapter 3 / Using Compute Services

Figure 3.1 Remote Submit Dialog Box

Here are explanations of the fields:

Remote session name
specifies the server session that the statements are executed in. If only one
session is active, this field can be empty. If multiple server sessions are active,
omitting the remote session name causes the program statements to be run in
the session that is specified in the CONNECTREMOTE= option. You can find out
which server session is current by examining the value that is specified in the
CONNECTREMOTE system option.

For information about the CONNECTREMOTE= option, see “RSUBMIT” on page
161.

Remote session macro variable name
associates a macro variable with a specific RSUBMIT block. Macro variables are
especially useful for controlling the execution of multiple asynchronous
RSUBMIT operations.

For information about the CMACVAR= option, see “RSUBMIT” on page 161.

Display transfer status (yes/no)
specifies whether the status window for file transfers is displayed for the current
remote submit operation.

If this field is empty, the default value is obtained from the CONNECTSTATUS=
system option or the CONNECTSTATUS= option in the SIGNON= statement for
this server.

For information about the CONNECTSTATUS= option, see “RSUBMIT” on page
161.

Execute remote submit synchronously (yes/no):
specifies whether the remote submit operation executes synchronously or
asynchronously. Synchronous processing means that server processing must be
completed before control is returned to the client session. Asynchronous
processing permits the client and one or more server session processes to
execute in parallel. Control is returned to the client session immediately after a
remote submit begins execution to allow continued processing in the client
session.

Use the SAS Windowing Environment to Control Remote Processing 43

If the field is empty, the default value is obtained from the CONNECTWAIT=
system option or the CONNECTWAIT= option in the SIGNON= statement for this
server.

For information about the CONNECTWAIT= option, see “RSUBMIT” on page
161.

Remote Submit Limitation:
CAUTION
The Remote Submit menu cannot be used if a CARDS statement, a
CARDS4 statement, a DATALINES statement, a DATALINES4 statement, or
a PARMCARDS statement is included in the remote submit operation. The
Remote Submit menu is prohibited from processing data because of its
implementation as a macro. A macro definition cannot contain a CARDS statement,
a DATALINES statement, a PARMCARDS statement, or data lines.

However, you can use any of the following methods to execute a remote submit
that contains any of these statements:

n Enter the RSUBMIT command in the command window.

n Enter the RSUBMIT and ENDRSUBMIT statements in the editor window.

n Submit the statements for local execution, and then use PROC UPLOAD to
transfer the created output to the server session.

Remote Get
To merge the spooled log and output from the asynchronous remote submit
operation with the client's Log and Output windows for viewing, open the SAS
Program Editor window and select Run ð Remote Get from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the server session whose spooled log and output lines are to be
merged into the client's Log and Output windows. If only one session is active,
this field can be empty. If multiple server sessions are active, omitting the remote
session name causes RGET to execute for the session that is specified in the
CONNECTREMOTE= option.

For more information, see “RGET” on page 183.

Note: Remote Get applies only to asynchronous remote submit operations. If you
execute Run ð Remote Get while the asynchronous remote submit operation is in
progress, the operation is automatically converted to synchronous processing so
that all of the lines from the server session can be merged.

Note: To view the spooled Log and Output lines that are created by the
asynchronous remote submit operation (does not merge with the client's Log and
Output windows), select Remote Display.

44 Chapter 3 / Using Compute Services

Remote Display
To view only the spooled Log and Output lines from the asynchronous remote
submit operation, open the SAS Program Editor window and select Run ð Remote
Display from the menu bar.

Here are explanations of the fields:

Remote session name
specifies the session name of the server whose Log and Output lines are to be
viewed. If only one session is active, this field can be empty. If multiple server
sessions are active, omitting the remote session name causes RDISPLAY to
execute in the session that is specified in the CONNECTREMOTE= option.

For more information, see “RDISPLAY” on page 182.

Note: Remote Display applies only to asynchronous remote submit operations.

Note: To merge the spooled Log and Output lines that are created by the
asynchronous remote submit operation with the client's Log and Output windows,
select Remote Get.

Use the Macro Facility with
SAS/CONNECT

Overview
When using the RSUBMIT statement within a macro definition, it is important to
understand what code is compiled and executed locally versus what code is
submitted to the server for execution. Understanding this distinction will help you
when using macros and SAS/CONNECT software together.

This section discusses

n how compiled code and text behave when they are submitted remotely within a
macro

n options and functions that can help you with these types of macros

n techniques for creating macro variables on the local and remote hosts

See “Macro Processing” in SAS Macro Language: Reference for more information
about the SAS Macro Facility.

Use the Macro Facility with SAS/CONNECT 45

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1l32rogpt4wmpn14liiqdqcbf1u.htm&locale=en

Submit Code Remotely Using a Macro
In SAS/CONNECT, you can use RSUBMIT blocks to separate server-session
statements from client-session statements. Statements inside the RSUBMIT block
are executed in the server session and all other statements are executed in the local
session. However, this behavior can change when you use a macro with an
RSUBMIT statement to remotely submit code.

If you want to create a macro that will submit SAS code to a remote server, you can
do this by embedding an RSUBMIT block within a macro definition. We sometimes
refer to these types of macros as “macro-generated RSUBMITs.”

When a macro is compiled, two results are produced: compiled macro statements
and text. Even though they exist within the RSUBMIT block, these compiled macro
statements, or instructional code, is executed in the local SAS session. Only the
macro-generated text is passed to the remote server where it is executed remotely.

Understanding this distinction between what is passed along as text and what is
compiled and executed locally is important if you want to use macros with RSUBMIT
blocks.

Here is a complete list of code elements in SAS that are interpreted by the macro
facility as text and therefore executed remotely:

n macro variable references

n nested macro definitions and invocations

n macro functions, except %STR and %NRSTR

n arithmetic and logical macro expressions

n names and values of local macro variables

n text to be written by %PUT statements

n non-macro statements such as procedures and DATA step code

n field definitions in %WINDOW statements. This applies to SAS/CONNECT
software since you cannot RSUBMIT a macro window.

Here are some items that are compiled by the macro facility and executed locally:

n %LET

n %IF

n %DO

In the example below, the statements in the macro definition are labeled according
to how they are handled by the macro processor. Code that is compiled executes on
the local machine and code that is read as text executes on the remote server.

46 Chapter 3 / Using Compute Services

Figure 3.2 How Macro-generated RSUBMIT Statements Are Interpreted by the Macro
Processor

In the example below, if you were connecting from Windows to UNIX, the %IF
statement condition would resolve to “false” because the statement would be
compiled and processed in the local SAS session, which is running on Windows.
Since the %IF statement resolves to “false,” then the statements following it are
never executed, leaving nothing to submit to the remote host.

%macro test;
 rsubmit;
 %let dsn=test;
 %if %quote(&sysscpl)=%str(HP-UX) %then %do;
 libname test '/test';
 proc print data=&dsn..one;
 run;
 %end;
 endrsubmit;
 %mend test;
 %test;

To help you determine what parts of the macro statement are interpreted as text and
what parts are considered compiled code, you can use the MLOGIC and MPRINT
system options.

MPRINT and MLOGIC Macro System Options
The MLOGIC macro system option identifies and displays the instructional
(compiled) code that is executed locally. The MLOGIC option specifies whether the
macro processor prints a message whenever SAS executes any macro instructional
code within a macro. Any statements produced by the MLOGIC option occur on the
local host and everything else executes on the remote host.

The MPRINT macro system option identifies and displays the code that executes on
the remote host. The MPRINT option displays SAS statements generated by macro
execution. Any statements produced by the MPRINT option that appear between

Use the Macro Facility with SAS/CONNECT 47

the RSUBMIT ENDRSUBMIT block happen on the remote host and everything else
executes on the local host.

The following example illustrates the MLOGIC and MPRINT macro system options:

Example Code 3.1 Using the MPRINT and MLOGIC Macro System Options to Determine
Where Your Code Is Executing

options mlogic mprint;
 %macro test;
 rsubmit;
 data one;
 x=100;
 run;
 %let y=200;
 %put &y;
 endrsubmit;
 %mend;
 %test;

The following is written to the SAS log:

Example Code 3.1 MPRINT and MLOGIC Log Output

NOTE: Remote signon to HOST complete.
139
140 options mlogic mprint;
141 %macro test;
142 rsubmit;
143 data one;
144 x=100;
145 run;
146 %let y=200;
147 %put &y
148 endrsubmit;
149 %mend;
150 %test
MLOGIC(TEST): Beginning execution.
MPRINT(TEST): rsubmit
NOTE: Remote submit to HOST commencing.
MPRINT(TEST): ; data one;
MPRINT(TEST): x=100;
MPRINT(TEST): run;
MLOGIC(TEST): %LET (variable name is Y)
MLOGIC(TEST): %PUT &y
200
1 data one;
2 x=100;
3 run;
NOTE: The data set WORK.ONE has 1 observations and 1 variables.
NOTE: DATA statement used:
real time 0.23 seconds
cpu time 0.02 seconds
NOTE: Remote submit to HOST complete.
MPRINT(TEST): endrsubmit;
MLOGIC(TEST): Ending execution.

Notice that the MPRINT option shows the text that is pushed to the remote host; it
consists of the DATA step. The MLOGIC option shows the compiled statements that
remain on the local host. These are the %LET and %PUT statements.

48 Chapter 3 / Using Compute Services

See Also
n “MPRINT” in SAS Macro Language: Reference

n “MLOGIC” in SAS Macro Language: Reference

The %NRSTR Function
You can use the %NRSTR macro function to “hide” certain macro statements from
the macro processor during compile-time. Hiding them prevents the macro
processor from compiling and executing the specified statements locally. Instead,
the function tells the SAS macro processor to interpret the statement as text and to
pass it along to the remote session for execution. Here is an example of using the
%NRSTR function:

%nrstr(%put abc=&abc one=&one time=&time;)

The following example illustrates what happens without the %NRSTR function:

Example Code 3.2 Using a Macro-generated RSUBMIT without the %NRSTR Function

%macro test;
 %put &sysscp;
 rsubmit;
 %let x=100;
 data new;
 put "&x";
 run;
 %put &sysscp;
 endrsubmit;
 %mend test;
 %test;

The following is written to the SAS log:

Use the Macro Facility with SAS/CONNECT 49

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1dhqw0i5yj2m8n15opapnwteqra.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0xmqcv92coq2tn1k0z0q6fl2dew.htm&locale=en

Example Code 3.2 Output for a Macro-generated RSUBMIT without the %NRSTR Function

MLOGIC(TEST): Beginning execution.
MLOGIC(TEST): %PUT &sysscp
WIN
MPRINT(TEST): rsubmit
NOTE: Remote submit to HOST commencing.
MLOGIC(TEST): %LET (variable name is X)
MPRINT(TEST): ; data new;
MPRINT(TEST): put "&x";
MPRINT(TEST): run;
MLOGIC(TEST): %PUT &sysscp
WIN
16 data new;
17 put "&x";
WARNING: Apparent symbolic reference X not resolved.
18 run;
&x
NOTE: The data set WORK.NEW has 1 observations and 0 variables.
NOTE: DATA statement used:
real time 0.02 seconds
cpu time 0.00 seconds
NOTE: Remote submit to HOST complete.
MPRINT(TEST): endrsubmit;
MLOGIC(TEST): Ending execution.

If this code was submitted on a Windows platform and a connection was established
to an HP platform, the first %PUT would execute on the local host and print “WIN” in
the SAS log. The RSUBMIT would run, but two of the items within the macro-
generated RSUBMIT block, the %LET and %PUT statements, would be executed
on the local host. The DATA step would be pushed to the REMOTE host and
executed there. This would generate a warning because the %LET statement that
defined the macro variable executed on the local host, rather than the remote host,
where it is being called.

Here is the same example with the %NRSTR function added:

Example Code 3.3 Using a Macro-generated RSUBMIT Used with the %NRSTR Function

 %macro test;
 %put &sysscp;
 rsubmit;
 %put &sysscp;
 %nrstr(%let x=100;)
 data new;
 put "&x";
 run;
 %nrstr(%put &sysscp;)
 endrsubmit;
 %mend test;

 %test;

The following is written to the SAS log:

50 Chapter 3 / Using Compute Services

Example Code 3.3 Output for a Macro-generated RSUBMIT Used with the %NRSTR
Function

MLOGIC(TEST): Beginning execution.
MLOGIC(TEST): %PUT &sysscp
WIN
MPRINT(TEST): rsubmit
NOTE: Remote submit to HOST commencing.
MLOGIC(TEST): %PUT &sysscp
WIN
31 %let x=100;
32 ;
33 data new;
34 put "&x";
35 run;
100
NOTE: The data set WORK.NEW has 1 observations and 0 variables.
NOTE: DATA statement used:
real time 0.02 seconds
cpu time 0.01 seconds
36 %put &sysscp;
HP 800
NOTE: Remote submit to HOST complete.
MPRINT(TEST): ; %let x=100;
MPRINT(TEST): data new;
MPRINT(TEST): put "&x";
MPRINT(TEST): run;
MPRINT(TEST): %put &sysscp;
MPRINT(TEST): endrsubmit;
MLOGIC(TEST): Ending execution.

If this code was submitted on a Windows platform and a connection has been
established to an HP platform, the first %PUT statement would execute on the local
host and print “WIN” to the SAS log. The RSUBMIT statement would run but this
time everything within the RSUBMIT would execute on the remote host, as shown
by the MPRINT log output. When the DATA step executes on the remote host, the X
variable resolves without a warning because the %NRSTR function allows the
%LET statement to be executed on the remote host. The %NRSTR function also
allows the %PUT statement to executed on the remote host.

See Also
“%NRSTR” in SAS Macro Language: Reference

The %SYSLPUT and %SYSRPUT Statements
Another issue that you might encounter when using SAS/CONNECT software and
macros occurs when using macro variables. Many times, the macro variable is
created on the local host and resolution tries to take place on the remote host or
vice versa. The %SYSLPUT and %SYSRPUT statements can help with this issue.

The %SYSLPUT statement creates a new macro variable or modifies the value of
an existing macro variable on a remote host or server. The syntax for %SYSLPUT
varies across releases of SAS.

Use the Macro Facility with SAS/CONNECT 51

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0g7ff7een8s61n1etdfp2vo0kte.htm&locale=en

In the SAS 6 and 7 releases, %SYSLPUT is a SAS sample program with the
following syntax:

%SYSLPUT(macro-variable,value,remote=);

In the SAS 8 release, %SYSLPUT is a macro statement with the following syntax:

%SYSLPUT macro-variable=value;

In the SAS 8 release, there is also a SAS sample program called %LPUT with the
following syntax:

%LPUT(macro-variable,value,remote=);

In the SAS 9 release, %SYSLPUT is a macro statement that contains a new option
with the following syntax:

%SYSLPUT macro-variable=value </remote=server-id>;

macro-variable is either the name of a macro variable or a macro expression that
produces a macro variable name. The name can refer to a new or existing macro
variable on a remote host or server.

value is a string or a macro expression that yields a string. Omitting the value
produces a null (0 characters). Leading and trailing blanks are ignored. To make
them significant, enclose the value in the %STR function.

To use the %SYSLPUT statement, you must establish a successful SIGNON
between the local SAS session or client and a remote SAS session or server.

The following example shows how to use %SYSLPUT to create a macro variable
called Dir1 on the remote host:

Example Code 3.4 Using %SYSLPUT to Create a Macro Variable on the REMOTE Host

%macro test;
 %let dir1=/dept/test;
 %syslput dir1=&dir1;
 rsubmit;
 filename eng101 '/bin/sasfiles';
 proc upload infile= eng101 outfile="&dir1/eng101";
 run;
 endrsubmit;
 %mend test;
 %test;

In the SAS 9 release, a new option for the %SYSLPUT statement enables you to
specify the name of the session in which the macro variable is created.

If only one session is active, the server-id can be omitted. If there are multiple server
sessions active, omitting this option causes the macro to be created in the most
recently accessed server session.

You can find out which server session is current by examining the value assigned to
the CONNECTREMOTE system option.

The /REMOTE= option that is specified with the %SYSLPUT macro statement
overrides the CONNECTREMOTE= global option.

Due to the addition of the /REMOTE option in the %SYSLPUT statement, any value
that contains forward slashes should be quoted with a macro quoting function.

The following example uses the %BQUOTE function to mask forward slashes that
are used in a UNIX path-name that is assigned in the %SYSLPUT statement:

52 Chapter 3 / Using Compute Services

Example Code 3.5 Using the %BQUOTE Function with %syslput to Mask Forward Slashes
in a UNIX Pathname

 %let path=/testa/testb;
 %syslput path=%bquote(&path);
 rsubmit;
 %put &path;
 endrsubmit;

The following is written to the SAS log:

Example Code 3.4 Output for the %BQUOTE Function with %syslput

NOTE: Remote submit to HOST complete.
917 %let path=/testa/testb;
918 %syslput path=%bquote(&path);
919 rsubmit;
NOTE: Remote submit to HOST commencing.
5 %put &path;
/testa/testb
NOTE: Remote submit to HOST complete.

The following example illustrates what occurs if the macro variable contains a
forward slash and a macro quoting function is not used:

Example Code 3.6 Using a Macro Variable That Contains a Forward Slash without a Macro
Quoting Function

%let path=/testa/testb;
 %syslput path =&path;
 rsubmit;
 %put &path;
 endrsubmit;

The following is written to the SAS log:

Example Code 3.5 Output When Using a Macro Variable That Contains a Forward Slash
without a Macro Quoting Function

NOTE: Remote submit to HOST complete.
8 %let path=/testa/testb;
9 %syslput path=&path;
ERROR: Unrecognized option to the %SYSLPUT statement.
NOTE: Line generated by the macro variable "PATH".
1 /testa/testb
-
180
ERROR 180-322: Statement is not valid or it is used out of
proper order.
10 rsubmit;
NOTE: Remote submit to HOST commencing.
2 %put &path;
/testa/testb
NOTE: Remote submit to HOST complete.

The error is generated because once &path resolves, the first thing that is seen is
the forward slash, so SAS assumes that the REMOTE= option is coming up next.
Since the option is not there, an error occurs. This is not an issue in SAS releases
prior to SAS 9, because the option did not exist.

The following table shows how to use the %SYSLPUT macro statement based on
what version of SAS you are running.

Use the Macro Facility with SAS/CONNECT 53

Table 3.1 The %SYSLPUT Statement

Local Host Remote Host Usage

SAS 6 and 7 releases SAS 8 release use %SYSLPUT sample program

SAS 8 release SAS 8 release and
beyond

use %SYSLPUT macro
statement

SAS 8 release SAS 6 and 7 releases use %SYSLPUT sample program

Note: %SYSLPUT sample program can be used when connecting from a SAS 8
release to a SAS 8 release if the REMOTE= option is needed.

To do the opposite of the %SYSLPUT statement, you use the %SYSRPUT macro
statement. The %SYSRPUT statement assigns the value of a macro variable on a
remote host to a macro variable on the local host. Here is the only syntax for
%SYSRPUT:

%SYSRPUT local-macro-variable=value;

local-macro-variable specifies the name of a macro variable on the local host.

value is a macro variable reference or a character string on the remote host that is
assigned to the local-macro-variable.

The following example uses the %SYSRPUT statement to assign a macro variable
on a remote host to a macro variable on the local host:

Example Code 3.7 Using the %SYSRPUT Statement to Assign a Remote Macro Variable
to a Local Macro Variable

rsubmit;
 %macro download;
 proc download data=remote.mydata out=local.mydata;
 run;
 %sysrput retcode=&sysinfo;
 %mend download;
 %download;
 endrsubmit;
 %macro checkit;
 %if &retcode = 0 %then %do;
 <further processing on local host>
 %end;
 %mend checkit;
 %checkit;

This section describes what happens when you place RSUBMIT blocks inside
macro definitions. In many cases, you can move the RSUBMIT block outside the
macro definition if you are getting error messages or unexpected results. By doing
this, the macro itself is complied on the remote host and there is no question about
where the code is executing. The MLOGIC and MPRINT options can also help you
debug and determine what is being submitted remotely.

54 Chapter 3 / Using Compute Services

See Also
n “%SYSLPUT” in SAS Macro Language: Reference

n “%SYSRPUT” in SAS Macro Language: Reference

Use SYSPROCESSMODE to Display the
Run Mode or Server Type

SYSPROCESSMODE is a Read-Only automatic macro variable that you can use to
display the name of the SAS session run mode or server type. For example, you
can use &sysprocessmode with a %PUT macro statement in the RSUBMIT block to
have the server type, "SAS CONNECT Session," display in the log output, as shown
in the following program:

SIGNON session1 sascmd="!sascmd -nosyntaxcheck -noterminal";
rsubmit;
 %put &sysprocessmode;
endrsubmit;
signoff session1;

Below is the partial log output for this program:

NOTE: Remote signon to SESSION1 complete.
 rsubmit;
NOTE: Remote submit to SESSION1 commencing.
 %put &sysprocessmode;
SAS Connect Session

For more information about SYSPROCESSMODE, see “SYSPROCESSMODE” in
SAS Macro Language: Reference.

Compute Services and Break Windows

Overview
Break windows are a special class of windows for SAS/CONNECT client/server
connections. Break windows enable you to handle error conditions that cause
interruptions in processing by issuing a control-break signal. SAS provides two
break windows to enable you to handle system interruptions and error conditions:

n Communication Services Break Handler window

Compute Services and Break Windows 55

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p13mg8ttnegfzxn15lz4aky4d3p5.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0pd9l0abrc4lqn1ukr0840sopl2.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0rdf0yp3yp6gsn1vkpr1ybw5co8.htm&locale=en

n SAS/CONNECT attention handler window

These break windows also enable you to interrupt processing. Depending on which
program statements are executing, you might see either of these break windows.

The Communication Services Break Handler window contains selections for actions
that you can take in response to a problem or an interruption. Invoking the
SAS/CONNECT attention handler window is one of the actions that you can select.
Usually, you select the attention handler window to cancel statements that you have
submitted to the server.

SAS/CONNECT Attention Handler Window
If you need to interrupt processing of statements that were submitted to the server,
issue a break signal:

Table 3.2 Break Signals

Windows Ctrl-Break

UNIX Ctrl-C (This key combination can be reset with the UNIX
STTY command. During a SAS session in DMS mode under
the X Window System, you can select an interrupt button in
the SAS Session Manager window to issue a break signal.)
When you issue Ctrl-C, position the cursor in the window in
which the SAS session was invoked.

z/OS Attn key

After you issue a break signal, the SAS/CONNECT attention handler window
appears as follows.

Figure 3.3 The SAS/CONNECT Attention Handler Window

SAS/CONNECT attention handler

a=abort current remote processing,

c=continue

OK Cancel Help

The following selections are available in the attention handler window:

a
terminates the statements that are currently being processed in the server
session but continues the connection to the server session. This option is useful
if you want to terminate a very large file transfer, or if you want to interrupt a
remote SAS job that is generating many error messages.

Note: Control might not be passed back to the client session immediately.

56 Chapter 3 / Using Compute Services

c
continues the remote job. Select this option if you decide that you do not want to
interrupt the remote job.

Communication Services Break Handler Window
If the application detects an error condition, the Communication Services Break
Handler window is displayed.

The following selections are available in the Communication Services Break Handler
Window:

n Ctrl-Break displays the Tasking Manager window.

n Selecting 1. TCP send/recv task displays the TCP/IP Break window.

n Selecting 2. CONNECT displays the SAS/CONNECT attention handler window.

Compute Services and Break Windows 57

Examples Using Compute Services

Example 1: MP CONNECT for a Long-Running
Remote Task

Purpose
This long-running program calculates summary statistics from the variables in a
large SAS data set and downloads the summary statistics to your client session.
The program also defines the macro variable REMSTATUS to store the status of the
server task and uses the fileref REMLOG to store the log lines.

Program
rsubmit wait=no macvar=remstatus log=remlog;
libname remtdata 'external-file-name';
 proc summary data=remtdata.clinic;
 class diagnose;
 var age income visits;
 output out=sumstat
 n= mean= mage mincome mvisits;
 run;

 proc download data=sumstat out=summary;
 run;
endrsubmit;

58 Chapter 3 / Using Compute Services

Example 2: Administer Server Data Sets from a
Client

Purpose
From a client session, you can use Compute Services to perform administration
tasks on data sets that are located on the server.

This program administers password protection to the Tasklist data set and backs up
a data set that is named Current.

Program
rsubmit;
 proc datasets lib=tsolib;

 modify tasklist (alter=sesame); 1

 run;

 age current backup1 - backup7; 2

 run;
 quit;
endrsubmit;

1 Add password SESAME to server data set Tasklist.

2 Maintain a week's worth of backup copies of data set Current.

Example 3: The CMACVAR= Option with MP
CONNECT

Purpose
The following example enables you to remotely submit processing in a server
session and allows the client session to immediately continue processing, and then
retrieve and merge the results upon completion of that process.

The following program submits a PROC SORT and a PROC PRINT statement to be
executed asynchronously in a server session. This server process is tested for
completion by using the macro variable DONE.

Examples Using Compute Services 59

Program
rsubmit cwait=no cmacvar=done;
 proc sort data=permdata.standard(keep=fname
 lname major tgpa gender)
 out=honor_graduates(where=(tgpa>3.5));
 by gender;
 run;

 title 'Male and Female Honor Graduates';
 proc print;
 by gender;
 run;
endrsubmit;

%macro get_results_when_complete;
 %if &done=0 %then %do;
 %put Remote submit complete,
 issuing "rget" to get the results.;
 rget;
 %end;
 %else %do;
 %put Remote submit not complete.;
 %put Issue:
 "%nrstr(%%)get_results_when_complete"
 later.;
 %end;
%mend;
%get_results_when_complete;

/* Continue with client session processing. */
/* Issue again if RSUBMIT isvnot complete. */

%get_results_when_complete;

Example 4: The Output Delivery System with
SAS/CONNECT

Purpose
ODS enables you to format and change the appearance of a procedure's output.
The output is converted into objects that can be stored in HTML or in a SAS data set
and can be manipulated and viewed in different ways.

This program creates, in a server session, a SAS data set and a SAS view that
contain information about U.S. Presidents. The program then generates ODS

60 Chapter 3 / Using Compute Services

output. The first half of this example creates HTML from the SAS data set and SAS
view. The second half uses ODS to create a SAS data set from the SAS view.

Program
signon rmthost sascmd="!sascmd -nosyntaxcheck -noterminal";
rsubmit;
 data presidnt; 1

 length fname lname $8 party $1 lady1 $10;
 input fname lname party year_in lady1;
 label fname='First Name'
 lname='Last Name'
 party='Party'
 year_in='Start Year'
 lady1='First Lady'
 ;
 datalines;
John Kennedy D 1961 Jackie
Lyndon Johnson D 1963 LadyBird
Richard Nixon R 1969 Pat
Gerald Ford R 1974 Betty
Jimmy Carter D 1977 Rosalynn
Ronald Reagan R 1981 Nancy
George Bush R 1989 Barbara
Bill Clinton D 1993 Hillary
George Bush R 2001 Laura
Barack Obama D 2009 Michelle
 ;
 run;

 proc sql nocheck; 2

 create view democrat as
 select fname,lname,party,lady1
 from presidnt
 where party='D';
 quit;

endrsubmit;

filename rsub '/u/myuserid/rsub.html' mod; 3

filename rsubc '/u/myuserid/rsubc.html' mod;
filename rsubf '/u/myuserid/rsubf.html' mod;
ods html
 file=rsub;
 contents=rsubc
 frame=rsubf
 ;

proc sql nocheck;
 connect to remote (server=rmthost);
title 'Democrats';
 select fname,lname,lady1
 from connection to remote
 (select * from democrat);

Examples Using Compute Services 61

quit;

ods html close;

ods output output="rdata"; 4

title 'Republicans';
rsubmit;
 proc print data=presidnt;
 where party='R';
 run;

1 Create a data set on the server from data that is entered from the client.

2 Create a subsetted view on the server.

3 Use ODS to create an HTML table on the client using remote SQL PassThru to
the SQL view on the server.

4 Use ODS to create a SAS data set.

Figure 3.4 SAS Studio Results Tab

62 Chapter 3 / Using Compute Services

Example 5: MP CONNECT and the WAITFOR
Statement

Purpose
This example enables you to perform two encapsulated tasks in parallel, but both
tasks must be completed before the client session can continue.

The following program sorts two data sets asynchronously. After both sort
operations are complete, the results are merged.

Program
signon remote1 sascmd="!sascmd -nosyntaxcheck -noterminal";
 signon remote2 sascmd="!sascmd -nosyntaxcheck -noterminal";

rsubmit remote1 wait=no; 1

libname mydata '/project/test1';
 proc sort data=mydata.part1; 2

 by x;
 run;
endrsubmit;

rsubmit remote2 wait=no; 3

libname mydata '/project/test2';
 proc sort data=mydata.part2; 4

 by x;
 run;
endrsubmit;

waitfor _all_ remote1 remote2; 5

libname mydata ('/project/test1' '/project/test2'); 6

data work.sorted;
 merge mydata.part1 mydata.part2;
run;

1 Remote submit the first task.

2 Sort the first data set as one task. Because WAIT=NO, both tasks are processed
at the same time.

3 Remote submit the second task.

4 Sort the second data set as one task.

5 Wait for both tasks to complete.

6 Merge the results and continue processing.

Examples Using Compute Services 63

Example 6: MP CONNECT with Piping

Purpose
In this program, the MP CONNECT piping facility uses ports rather than disk
devices for data I/O. The first process writes a data set to Pipe1. The second
process reads the data set from Pipe1, performs a calculation, and directs final
output to a disk device. The P1 and P2 processes execute asynchronously.

Program
signon p1 sascmd='!sascmd'; 1

rsubmit p1 wait=no;

libname outLib sasesock ":pipe1";

data outLib.Intermediate; 2

 do i=1 to 5;
 put 'Writing row ' i;
 output;
 end;
run;
endrsubmit;

signon p2 sascmd='!sascmd'; 3

rsubmit p2 wait=no;

libname inLib sasesock ":pipe1";
libname outLib "/tmp";

data outLib.Final;
set inLib.Intermediate;
 do j=1 to 5;
 put 'Adding data ' j;
 n2 = j*2;
 output;
 end;
run;
endrsubmit;

1 Process P1 in the first DATA step.

2 Create data set and write to pipe.

3 Process P2 in the second DATA step.

64 Chapter 3 / Using Compute Services

Example 7: Prevent Pipes from Closing Prematurely

Purpose
The TIMEOUT= option in the LIBNAME statement can be useful if a considerable
delay is anticipated between the time that one task tries to read from a pipe and the
time when another task starts to write to that pipe.

In this program, task P1 performs several DATA steps, a PROC SORT, and a PROC
RANK, which is the step that writes to the pipe OUTLIB. However, task P2 is idle
before the execution of the DATA step, which reads from the pipe INLIB. Therefore,
a longer time-out is specified in the INLIB LIBNAME statement in order to allow
sufficient time for task P1 to complete its processing before writing its output to the
pipe.

Program
rsubmit p1 wait=no;
 libname outLib sasesock "pipe" timeout=10000;
 data a b;
 do i=1 to 10;
 output;
 end;
 run;
 data c;
 set a b;
 run;
 proc sort data=c out=sorted;
 by i;
 run;
 proc rank data=sorted out=outLib.ranked;
 var i;
 ranks Check;
 run;
 endrsubmit;
 rsubmit p2 wait=no;
 libname inLib sasesock "pipe" timeout=60000;
 data fromPipe;
 set inLib.ranked;
 run;
 proc print; run;
 endrsubmit;

Examples Using Compute Services 65

Example 8: Force Macro Variables to Be Defined
When %SYSRPUT Executes

Purpose
In MP CONNECT processing, by default, macro variables in an RSUBMIT block are
defined only when a synchronization point is encountered. In order to force macro
variables to be defined when the %SYSRPUT macro variable executes, specify
CSYSRPUTSYNC=YES in each RSUBMIT statement.

CAUTION
If the values that are specified in the CSYSRPUTSYNC= option differ between
consecutive RSUBMIT blocks, the latter value supersedes the former value. If
the SYSRPUTSYNC system option is specified, the CSYSRPUTSYNC= option in the
RSUBMIT statement takes precedence. If the CSYSRPUTSYNC= option in an
RSUBMIT block is omitted, the value for the system option is applied.

In the following program, the CSYSRPUTSYNC=YES option is specified in each
RSUBMIT block in order to force macro variables to be defined for each
%SYSRPUT macro variable execution. Without an explicit setting of
CSYSRPUTSYNC=YES in each RSUBMIT block, a default value is provided by the
SYSRPUTSYNC system option. The default is CSYSRPUTSYNC=NO, which
causes macro variables to be defined when synchronization points are encountered.

Program
signon smp sascmd="!sascmd -logparm 'write=immediate' -nosyntaxcheck";
 options cwait=no;

/* ----------- first RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data a;
 do i=1 to 100;
 x=ranuni(0);
 output;
 end;
 run;

 %sysrput done=a;
 endrsubmit;

/* ----------- second RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data b;
 do i=1 to 100;

66 Chapter 3 / Using Compute Services

 x=ranuni(0);
 output;
 end;
 run;

 %sysrput done=b;
 endrsubmit;

/* ----------- third RSUBMIT block ----- */
 rsubmit csysrputsync=yes;
 data c;
 do i=1 to 100;
 x=ranuni(0);
 output;
 end;
 run;

 %sysrput done=c;
 endrsubmit;

 waitfor smp;
 %put done=&done;

Example 9: Use Server Software from a Client
Session

Purpose
Some software might not be available on each computer at your site. In addition, the
software that is available on a server might perform some tasks better than the
software that is available on your client. From a client session, you can use
Compute Services to use software that is available on a server.

This program assumes that SAS/STAT is licensed only on the server. The program
uses SAS/STAT to execute statistical procedures on the server.

Program: SAS/STAT Software
rsubmit;
 /**************************************/
 /* The output from GLM is returned */
 /* to the client SAS listing. */
 /**************************************/
 proc glm data=main.employee
 outstat=results;
 model sex=income;
 run;

Examples Using Compute Services 67

 /**************************************/
 /* Use GLM's output data set RESULTS */
 /* to create macro variables F_STAT */
 /* and PROB, which contain the */
 /* F-statistic PROB>F respectively. */
 /**************************************/
 data _null_; set results
 (where=(_type_= 'SS1'));
 call symput('f_stat',f);
 call symput('prob',prob);
 run;

 /**************************************/
 /* Create macro variables that */
 /* contain the two statistics of */
 /* interest in the client session. */
 /**************************************/
 %sysrput f_statistic=&f_stat;
 %sysrput probability=&prob;
endrsubmit;

Purpose
In the following example, because the server session has access to a fast sorting
utility, it sorts the data and then transfers the sorted data to the client session.

Program: Sorting
rsubmit;
 /**************************************/
 /* Indicate to the server machine that*/
 /* the HOST sort utility should be */
 /* used with PROC SORT. Ask SORT to */
 /* subset out only those observations */
 /* of interest. */
 /**************************************/
 options sortpgm=host;
 proc sort data=tsolib.inventory
 out=out_of_stock;
 where status='Out-of-Stock';
 by orderdt stockid ;
 run;
 /**************************************/
 /* Output results; client will */
 /* receive the listing from PRINT. */
 /**************************************/
 title 'Inventory That Is Currently Out-
 of-Stock';
 title2 'by Reorder Date';
 proc print data=out_of_stock;
 by orderdt;

68 Chapter 3 / Using Compute Services

 run;
endrsubmit;

Examples Using Compute Services 69

70 Chapter 3 / Using Compute Services

4
Using Remote Library Services
(RLS)

Introduction to Remote Library Services . 72
Definition . 72
Client Access to a Single- or Multi-User Server . 72

Advantages . 73

Considerations for Using RLS . 73
Determine the Appropriate Data Access Solution . 73
Compute Services to Access Large Volumes of Data . 74
Data Transfer Services for Multi-Pass Data Processing . 74
Data Transfer Services When Network Response Time Is Delayed 74
RLS When Data Flow through a Network Is Minimal . 74
DTS, RLS, and CS Compared . 75

RLS to Access Types of Data . 75
RLS Support for Data Types . 75
Access a Catalog . 75
Access an External Database . 76
Access a SAS View . 76
Access a SAS Utility File of Type PROGRAM or ACCESS . 76

Use SAS Views with Servers . 77
SAS/ACCESS Views, DATA Step Views, and PROC SQL Views 77
Recommendations for PROC SQL Views . 77

WHERE Processing to Reduce Network Traffic . 78

Example 1: Access Server Data to Print a List of Reports . 79
Purpose . 79
Program . 79

Example 2: Access Server Data By Using the WHERE Statement 80
Purpose . 80
Program . 80

Example 3: Update Server Data . 80
Purpose . 80
Program . 81

71

Example 4: An SCL Program That Uses the WHERE Statement 81
Purpose . 81
Program . 82

Example 5: Update a Server Data Set By Applying a Client
Transaction Data Set . 82

Purpose . 82
Program . 82

Example 6: Subset Server Data for Client Processing and Display 84
Purpose . 84
Program . 84

Introduction to Remote Library Services

Definition
Remote Library Services (RLS) enables you to read, write, and update remote data
as if it were stored on the client's disk. RLS can be used to access SAS data sets
across computers that have different architectures. RLS also provides Read-Only
access to some SAS catalog entry types across computers that have different
architectures.

With RLS, you use a LIBNAME statement to associate a SAS library reference
(libref) with a SAS library on the server.

Client Access to a Single- or Multi-User Server
To access a SAS library on a server that you are already signed on to (using the
SIGNON statement), a single-user server environment is assumed. To identify the
server, specify the remote session ID that was used at sign-on. For details about the
SIGNON statement, see “SIGNON” on page 127.

To access a server that you are not signed on to, a multi-user environment is
assumed. When you connect to a multi-user server, the server must already be
running. Use the SERVER= option in the LIBNAME statement to specify the server
ID.

Therefore, to connect to both a single-user server and a multi-user server from your
client session, and to avoid confusion, assign unique values to the SERVER=
option. The use of the single-user server takes precedence over the multi-user
server.

After you define a libref to a server, avoid clearing and re-assigning the libref
multiple times. Repeating this sequence is inefficient because the client session
disconnects from the server after the last libref that is associated with a server is
cleared. When the same libref is re-issued, the client session must connect to the

72 Chapter 4 / Using Remote Library Services (RLS)

server again. To avoid this overhead, clear the defined librefs only after you have
completed any processing that accesses data that is defined by these librefs.

A server does not automatically terminate after the last LIBNAME statement is
cleared. A multi-user server remains active, awaiting connections from clients until
the server administrator explicitly stops the server by using the PROC OPERATE
statement. For more information, see “OPERATE Procedure” in SAS/SHARE User’s
Guide.

A single-user server remains active, awaiting connections from a client session until
the client uses the SIGNOFF command to terminate the server session. For details,
see “SIGNON” on page 127.

Advantages
If you need to maintain a single copy of the data on a server and keep the
processing on the client, then RLS is the correct choice. In general, RLS is the best
solution in the following situations:

n The amount of data that is needed by the client is small.

n The server data is frequently updated.

n Your data center rules prohibit multiple copies of data.

RLS enables you to access your server data as if it were local. This feature
eliminates the explicit step of coding an upload or download of the data before
processing it. It also permits the GUI of an application to reside at the client while
the data remains at the server (for example, a client FSEDIT session of a server
data set). You can build applications that provide seemingly identical access to
client and server data, without requiring the end user to know where the data
resides.

Using RLS, you can access and update data that is stored in an external database.
RLS enables a client (single user) to access data that is stored in an external
database and to update the data through the server (single user).

Considerations for Using RLS

Determine the Appropriate Data Access Solution
To make the best use of RLS, consider these questions:

n How much data will the application access?

n Is multi-user or single-user data access needed?

n Will the application make a single pass or multiple passes through the data?

Considerations for Using RLS 73

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=n0ttnz4h986urxn1s5zuqo4vdlul.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=n0ttnz4h986urxn1s5zuqo4vdlul.htm&locale=en

n What is the effect of the application's data access on the network load?

Answers to these questions will help you determine whether to use RLS, Data
Transfer Services, Compute Services, or a combination of these services.

Compute Services to Access Large Volumes of
Data

Accessing data through RLS is inefficient when you have large volumes of data.
Compute Services (or a combination of Compute Services and Data Transfer
Services) is preferable for processing large volumes of data on the server.

Data Transfer Services for Multi-Pass Data
Processing

RLS is not efficient for multiple passes through the data. Although the client
accesses data that is on the server, the data is not written to the client's local disk. If
you are running procedures that make multiple passes through the data, or an entire
procedure must be run more than one time against the data, transferring a copy of
the data to the client's local disk is advised. You incur the network traffic cost only
one time rather than paying the cost for each pass through the data.

Data Transfer Services When Network Response
Time Is Delayed

Data Transfer Services is the preferred choice when response time is delayed. This
situation can occur if you are accessing server data that is being updated
simultaneously by other users. If delayed response time is not acceptable, consider
transferring a copy of the data to the client's local disk and keep the data separate
from other applications.

RLS When Data Flow through a Network Is Minimal
Because RLS requires data to flow from the server to the client through a network,
you should design your application to minimize the amount of data that is requested
for client processing.

Both Data Transfer Services and RLS transfer data from the server to the client for
processing. However, the difference between the two services is that Data Transfer
Services writes the data to the client's local disk for subsequent processing. By
contrast, RLS processes the data in client memory, which gets overwritten when the
next data transaction occurs. Subsequent analyses of the same data would require

74 Chapter 4 / Using Remote Library Services (RLS)

the data to be moved through the network each time the client session requests the
data.

DTS, RLS, and CS Compared
Design your application to balance the benefits and costs of the SAS/CONNECT
services.

n Use Data Transfer Services to transfer a copy of the data from the server to the
client and write the data to disk for local data access and processing.

n Use Remote Library Services to transfer records that the client requests for
processing from the server. All of the data remains at the server and selected
records are transferred to the client for local processing.

n Use Compute Services to transfer processing to the server where the data is
stored. Results from server processing are returned to the client.

RLS to Access Types of Data

RLS Support for Data Types
RLS supports access to the following types of data:

n SAS catalog*

n SAS data set and SAS utility file

n SAS view (DATA step, PROC SQL, and SAS/ACCESS views)

n SAS database (MDDB)

n External database (such as Oracle)

*Catalog update is not supported if the computers that the client and the server run
on do not have compatible architectures.

Access a Catalog
In order for a client to use RLS to update a catalog on a server, the architectures of
the computers on which the client and the server run must be compatible. If
computer architectures are incompatible, the following error message is displayed:

ERROR: You cannot open catalog name through
 server ID because write access to
 catalogs is not supported when the user
 machine and server machine have different

RLS to Access Types of Data 75

 data representations.

Access an External Database
RLS and a SAS/CONNECT single-user server support Update access to data that is
stored in an external database. The SAS/ACCESS engines and the SQL engine
recognize the single-user server as one user and therefore enable Update access
for external database sources.

However, SAS/ACCESS engines and the SQL engines prohibit Update access to
external database sources when using RLS and a multi-user server. Updating is
prohibited because of the inability of a multi-user server or a database to detect and
manage conflicting requests from multiple users. A detection facility is necessary in
order to generate audit trails and to guarantee data integrity and security.

Access a SAS View
RLS supports access to SAS views, which include DATA step views, SAS/ACCESS
views, and PROC SQL views.

When the server accesses the library that contains the SAS view, the view is
interpreted at the server by default. The server loads and calls the engine that is
appropriate to the SAS view to read and transform the underlying data. The
processing that is required to generate the SAS view is performed at the server, and
the resulting SAS view is transferred to the client with a minimum cost to the
network. Client resources are not used to interpret the SAS view.

For all PROC SQL views or for any other type of SAS view that is processed
between a client and a server whose computer architectures are compatible, the
SAS view can be interpreted at the client. To interpret a SAS view at the client
instead of at the server, set the RMTVIEW= option to NO in a LIBNAME statement.
Here is an example:

libname payroll rmtview=no server=wntnode;

For DATA step views and SAS/ACCESS views, if the architectures of the computers
that the client and the server run on are different, the views can be interpreted only
at the server.

Access a SAS Utility File of Type PROGRAM or
ACCESS

In order for a client to use RLS to access a SAS utility file of the type PROGRAM or
ACCESS on a server, the architectures of the computers that the client and the
server run on must be compatible. If computer architectures are incompatible, the
following error message is displayed:

ERROR: You cannot open utility file name through
 server ID, because access to utility

76 Chapter 4 / Using Remote Library Services (RLS)

 files is not supported when the user machine
 and server machine have different data
 representations.

A SAS utility file of the type PROGRAM contains compiled DATA step code, which
cannot be processed at the client. The DATA step can be executed at the server if
the DATA step is referenced by a DATA step view that is interpreted at the server.

Use SAS Views with Servers

SAS/ACCESS Views, DATA Step Views, and PROC
SQL Views

RLS can be used with three types of SAS views:

n SAS/ACCESS views

n DATA step views

n PROC SQL views

A SAS view contains no data, but describes other data. A SAS view is processed by
an engine that reads the underlying data and uses the description to return the data
in the requested form. This process is called view interpretation.

When the library that contains the SAS view is accessed through a server, the SAS
view is interpreted in the server's session by default. This means that the engine is
loaded and called by the server to read and transform the underlying data. Only a
small amount of data is moved through the network, and the client processing is
unaware that a SAS view is involved.

If the SAS view is a PROC SQL view or if the client and server computer
architectures are the same, you can cause the SAS view to be interpreted in the
client session. This is done by specifying RMTVIEW=NO in the LIBNAME statement
that is used to define the server library. If the architectures are not the same,
SAS/ACCESS views and DATA step views can be interpreted only in the server
session.

Interpreting a SAS view as data can produce significant processing demands. When
a SAS view is interpreted in the client session, that frequently means that a lot of
data has to flow to the client session. This removes processing demands from the
server session but increases network load.

Recommendations for PROC SQL Views
PROC SQL views are especially good candidates for interpretation in a server
session under these conditions:

Use SAS Views with Servers 77

n The number of observations that are produced by the PROC SQL view is much
smaller than the number of observations that are read by the PROC SQL view.

n The data sets that are read by the PROC SQL view are available to the server.

n The amount of processing that is necessary to build each observation is not
large.

Conversely, PROC SQL views should be interpreted in the client session under the
following conditions:

n The number of observations that are produced by the PROC SQL view is not
appreciably smaller than the number of observations that are read by the PROC
SQL view.

n Some of the data sets that are read by the PROC SQL view can be directly
accessed by the client session.

n A large amount of processing must be performed by the PROC SQL view.

WHERE Processing to Reduce Network
Traffic

When using RLS, one of the best ways to reduce the amount of data that needs to
move through the network to the client session is to use WHERE statement
processing whenever possible. When WHERE statements are used, the WHERE
clause is passed to the server environment and interpreted. Only the data that
meets the selection criteria is transferred to the client environment for processing.

If the data that you are accessing is stored in an external database, the WHERE
statement is passed to the database and evaluated, if possible. If the database
cannot complete the evaluation, the server completes it before returning any of the
data to the client session. For examples of using the WHERE statement, see the
following:

n “Example 2: Access Server Data By Using the WHERE Statement” on page 80,

n “Example 4: An SCL Program That Uses the WHERE Statement” on page 81,

n “Example 6: Subset Server Data for Client Processing and Display” on page 84.

78 Chapter 4 / Using Remote Library Services (RLS)

Example 1: Access Server Data to Print
a List of Reports

Purpose
This code shows a client that uses RLS to access a modest amount of data on a
server in order to print a list of reports. RLS is a good solution for processing a small
number of observations.

Program
libname vcl "/tmp/mylib"; 1

data vcl.request;
 report_name="January";
 copy='Y';
 output;
 report_name="February";
 copy='N';
 output;
 report_name="March";
 copy='Y';
 output;
run;

signon rmthost user='myuserid' password='mypassword';

libname public REMOTE '/tmp/mylib' server=rmthost; 2

 data _null_;
 set public.request;
 if (copy = "Y") then do;
 put "Report " report_name
 " has been requested";
 end;
 run;

1 Creates a data set in the user's home directory.

2 Defines a server library to a client session. The value for SERVER= is the same
as the server session ID that is used in the SIGNON statement.

Example 1: Access Server Data to Print a List of Reports 79

Example 2: Access Server Data By
Using the WHERE Statement

Purpose
In this example, WHERE statement processing modifies the previous example in
order to reduce the amount of data that is being requested and to reduce the
network traffic. The WHERE statement filters only the relevant data for the client to
process. A selective transfer is more efficient than moving every observation to the
client to process and to check the COPY variable for a Y value.

Program
 signon rmthost user='myuserid' password='mypassword';

 libname public '/tmp/mylib' server=rmthost; 1

 data _null_; 2

 set public.request;
 where copy = "Y";
 put "Report " report_name
 " has been requested";
 run;

1 Defines a server library to a client session.

2 Uses the WHERE statement to filter unneeded observations.

Example 3: Update Server Data

Purpose
This example enables you to take advantage of a mainframe's superior data
handling and security features, while at the same time you work in a user-friendly
GUI environment. RLS is used to update server data. This application of RLS

80 Chapter 4 / Using Remote Library Services (RLS)

eliminates the need to transfer a disk copy of the data to the client session before
processing the data. It also involves low-volume transaction processing.

Program
x mkdir Hr.Emp.Data; 1

libname hr 'Hr.Emp.Data';

data hr.employee;
 x=1;
run;

signon remos390 user='myuserid' password='mypassword';

libname rlib REMOTE 'Hr.Emp.Data' server=remos390; 2

proc fsedit data=rlib.employee; 3

run;

signoff remos390;

1 Creates the data set Hr.Emp.Data.

2 Defines the server session human resource library to the client session.

3 Executes a client FSEDIT to update the employee data set that is located on the
z/OS computer.

Example 4: An SCL Program That Uses
the WHERE Statement

Purpose
This example is an excerpt from an SCL program that uses RLS to query a remote
reservation database. Reservations are selected based on the value that is stored in
the variable RESNUM. The use of the WHERE clause in this example is important
because the WHERE clause is applied in the server session before any data is
transferred. As a result, only the observations that meet the criteria are moved to the
client session.

This example is a good use of RLS because (as in the previous example) it involves
transaction-type processing and enables the client GUI to be used for data entry on
the selected observations in the database.

However, if you were to use the SCL LOCATEC function, every observation would
be transferred to the client session and compared against the specified criteria. The

Example 4: An SCL Program That Uses the WHERE Statement 81

response time might be poor. These alternative programming choices emphasize
the importance of being aware of the amount of data that the client session requests
and minimizing this amount when using RLS.

Program
signon apex user='myuserid' password='mypassword';
libname master REMOTE "hq.prod.data" server=apex;

rdsid = open("master.reserv", 'u'); 1

wherecls="resnum=" || "'" || resnum || "'"; 2

 rc = where(rdsid, wherecls);
 call set(rdsid);
 rc = fetchobs(rdsid, 1);
signoff apex;

1 Opens the remote database.

2 Builds and applies the WHERE clause to accelerate retrieval.

Example 5: Update a Server Data Set By
Applying a Client Transaction Data Set

Purpose
In client/server jobs where data must be kept current and the number of updates
that you need to perform is small, RLS can be an effective solution. RLS enables
you to perform a client update to a server data set.

This example creates a data set by remotely submitting a DATA step. Next, it
creates a client transaction data set. Using RLS, it assigns a client libref to the
server library. Finally, the program uses the client transactions to modify the server
data set.

Program
%let rsession=unxhost;
signon rsession user='myuserid' password='mypassword';
 rsubmit;
 data sasuser.my_budget; 1

 length category $ 9;

82 Chapter 4 / Using Remote Library Services (RLS)

 input category $ balance;
 format balance dollar10.2;
 datalines;
 utilities 500
 mortgage 8000
 telephone 1000
 food 3000
 run;

 endrsubmit;

 data bills; 2

 length category $ 9;
 input category $ bill_amount;
 datalines;
 utilities 45.83
 mortgage 649.95
 food 68.21
 run;

 libname rlslib slibref=sasuser server=rsession; 3

 data rlslib.my_budget; 4

 modify rlslib.my_budget bills;
 by category;
 balance=balance-bill_amount;
 run;

 data _null_;
 set rlslib.my_budget; 5

 put 'Balance for ' category @25
 'is: ' balance;
 run;

 signoff rsession; 6

1 Creates the master data set My_Budget in the library Sasuser in the server
session.

2 Creates a client transaction data set Bills for updating the server data set
My_Budget.

3 Assigns the client libref RlsLib to the library Sasuser in the server session.

4 Applies the transaction data set Bills to the server data set My_Budget.

5 Reviews the results. Three observations are updated.

6 Signs off the server. The libref RlsLib is deassigned as part of the sign-off
processing.

Example 5: Update a Server Data Set By Applying a Client Transaction Data Set 83

Example 6: Subset Server Data for Client
Processing and Display

Purpose
If the amount of data that is needed for a processing job is small, RLS is an efficient
way to gather current data that is on a server for client processing and display. This
program subsets the data on the server so that only the data that you need is
transferred. This method saves computing resources on the server and reduces
network traffic while it gives you access to the most current data.

In this example, a large reservations database is located on a server that runs under
the UNIX operating environment. Several client procedures need to be run against a
small subset of the data that is contained in the master reservations database. This
situation is ideal for RLS.

The LIBNAME statement is issued in the client session to define the server library
that contains the data set Reservc. The PROC SORT statement sorts the server
data set and writes the subset data to the client disk.

The WHERE= and KEEP= options are specified in the PROC SORT statement to
reduce the amount of data that moves through the network to the client session for
processing. Only the data that meets the WHERE= and KEEP= criteria is moved
across the network to the client session.

PROC SORT creates the subset data set in the client session and allows all
subsequent processing to run in the client session without additional server CPU
consumption. PROC SUMMARY and PROC REPORT summarize and format the
client data. ODS is used to create an HTML file.

Program

 signon srv1 user='myuserid' password='mypassword';
 libname remlib '/u/user1/reservations' server=srv1; 1

 proc sort data= 2

 remlib.reservc(keep=company origin
 where=(origin='ATLANTA'))
 out=tmp;
 by company;
 run;

 proc summary data=tmp 3
 vardef=n noprint;

84 Chapter 4 / Using Remote Library Services (RLS)

 by company;
 output out=tmp2;
 run;

 ods html body="body.htm"; 4

 proc report ls=74 ps=85 split= 5

 "/" HEADLINE HEADSKIP CENTER NOWD;
 column
 ("Totals" "" "" "" company _freq_);
 define company / group format=$40.
 width=40 spacing=2 left "Company";
 define _freq_ / sum width=14
 spacing=2 right "# Reservations";
 rbreak after /ol dul skip summarize
 color=cyan;
 run;

 ods html close;

 signoff srv1;

1 Executes the LIBNAME statement in the client session to define the server
library.

2 PROC SORT runs in the client session but accesses the server data set
Reservc. A subset of Reservc is written to the client data set TMP. The
WHERE= and KEEP= options are passed to the server session and evaluated
there to minimize the amount of data that must move across the network.

3 Summarizes the client data set.

4 Creates an HTML file.

5 Creates a report using the client summary data set.

Example 6: Subset Server Data for Client Processing and Display 85

86 Chapter 4 / Using Remote Library Services (RLS)

5
Using Data Transfer Services

Introduction to Data Transfer Services . 87

Data Transfer Services: Advantages . 88
Offloads Server Work . 88
Increases the Robustness of a Decision Support Environment 88
Transfers Only Relevant Data . 88
Supports the Model of a Centralized Control Point . 88
Backs Up Client Data . 89
Balances Resources in an Application Development Environment 89

Considerations for Using Data Transfer Services . 90
Use Compute Services to Access Large Data Resources . 90
Use Remote Library Services to Access Small to Medium Data Resources 90
Use a Combination of Services . 90
File Transfer Performance . 91

Transfer Status Window . 92

Non-English Keyboards . 93

Data Transfer Services Tips . 94
Tips for Using PROC DOWNLOAD and PROC UPLOAD . 94
Tips for Using PROC DOWNLOAD Only . 95
Tips for Using PROC UPLOAD Only . 96

Introduction to Data Transfer Services
Data Transfer Services offers the best solution for the transfer of SAS data and
external files between a SAS/CONNECT client and a server.

Data Transfer Services is most useful for data exchanges between a client and a
server that run different operating environments on incompatible computer
architectures (for example, z/OS and Windows) or different SAS software releases
(for example, SAS 8 and SAS 9). Data Transfer Services automatically translates
the internal representations of character and numeric data between the client and
the server computers.

87

Note: The translation algorithm was changed between SAS 6 and SAS 8 and later
releases of SAS. See “File Format Translation Algorithms” on page 462.

You implement Data Transfer Services by using the UPLOAD and DOWNLOAD
procedures. Before Data Transfer Services can be deployed, a client session must
be connected to a server session (for example, by using the SIGNON statement).

Data Transfer Services: Advantages

Offloads Server Work
A major benefit of Data Transfer Services is the ability to offload work from a server
to a client. A redistribution of workload boosts response time for production systems
that run on servers. After the data is downloaded to the client, the client's processor
performs all subsequent data access and processing.

Increases the Robustness of a Decision Support
Environment

Moving a copy of the data to the client adds robustness to your decision support
environment. In the case of a network failure that would temporarily eliminate
access to the server's data, you can continue working with your client copy of the
data.

Transfers Only Relevant Data
You can transfer only the data that you need by using WHERE processing or data
set options (such as the OBS= option) or both to dynamically subset the data as it is
being transferred to the client or the server. WHERE processing reduces network
traffic and gives you only the data that is needed at the client or the server.

Supports the Model of a Centralized Control Point
Data Transfer Services supports the model of a centralized control point, such as a
mainframe, which initiates communication to a network of workstations.

This model enables centralized distribution of data and applications. Automated jobs
that can run during non-peak hours can distribute data and applications to multiple

88 Chapter 5 / Using Data Transfer Services

computers that need the data and the applications for the next day's work. Similarly,
jobs can be set up to query a network of workstations for the purpose of gathering
data and storing it in a centralized repository.

Backs Up Client Data
Data Transfer Services facilitates data backup. Data and applications can be copied
from a client that has limited memory resources to a server that has more memory
resources. This provides a backup in case of loss on the client.

Balances Resources in an Application Development
Environment

In a program development environment, programmers can use Data Transfer
Services to make efficient use of network resources. In the early phase of program
development, the programmer can use client resources for basic programming
activities (such as editing, testing, and debugging) that do not demand high-
performance computing resources. However, when program development demands
a high-performance environment for testing or data access, the programmer might
use Data Transfer Services to relocate the application to the environment that
provides the needed resources.

The development environments at many computing installations often have a higher
number of users who work on one system than on other systems. On the system
with the heaviest load, response time, execution queues, and other performance
factors are less efficient because so many people are running applications
concurrently.

Using Data Transfer Services, you avoid contention for heavily used computer
resources by creating and testing SAS programs on a less busy system (the client),
and then transferring the fully developed and tested program to the heavily loaded
system (the server).

Each time you execute a program at the client for testing purposes, you avoid
adding to the load on the server. This convenient method can result in significant
savings of server resources.

For example, suppose you are developing a SAS program that will run as a
production program on the server. Your program analyzes data from a SAS data set
that is located on the server and creates several reports from the analysis
information. To run many tests of the program before it is final and to avoid the
delays that result from server connections, create and store the SAS program on the
client. Test the program by downloading the SAS data set that is being analyzed by
the program, or test the program by using data that is stored on the client. After the
program is complete and correct, upload the program file to the server.

Data Transfer Services: Advantages 89

Considerations for Using Data Transfer
Services

Use Compute Services to Access Large Data
Resources

Transferring a copy of the data to another file system creates multiple copies of the
data. If the data that is stored on the server is updated frequently, keeping a local
copy of the data that is reasonably current might be impossible. In addition, security
restrictions at your site might prohibit multiple copies of the data. In this case, if the
amount of data that is involved is large, consider using Compute Services instead.

Use Remote Library Services to Access Small to
Medium Data Resources

If the client accesses a small to medium amount of data, Remote Library Services
allows the processing to occur at the client, with data coming from the server as the
execution requests it. If you use a GUI application to access data that requires
transparent access to remote data, you might want to use Remote Library Services.

Use a Combination of Services
There might be situations in which a combination of services is the best choice. For
a list of examples, see the examples sections in DOWNLOAD Procedure on page
255 and UPLOAD Procedure .

90 Chapter 5 / Using Data Transfer Services

File Transfer Performance

Network File Compression
By default, SAS/CONNECT uses network file compression whenever a file is
transferred between a client and a server by using the UPLOAD and DOWNLOAD
procedures.

SAS/CONNECT 8.2 introduced a network file compression algorithm that
significantly improved performance for large data transfers. A large transfer is
defined as a file whose size is 32K bytes or larger. In general, the larger the file, the
greater the potential for a performance gain.

The goal of network file compression is to reduce the number of buffers that must be
sent when uploading and downloading files across a network. In order to reduce the
number of buffers that are used, buffers are packed to capacity for each network
transfer.

The algorithm uses run-length encoding and sliding window compression.
Consecutive occurrences of a single byte are compressed by using run-length
encoding, and patterns of characters are compressed by using a sliding window that
stores an offset to the previously occurring pattern in the compressed data.

However, performance benefits that result from data compression depend on the
data itself. For example, significant compression that yields a performance benefit is
expected for data that contains a regularly repeating pattern. However, for data that
does not contain a regularly repeating pattern, compression would not produce a
significant performance benefit.

To take advantage of the compression algorithm, both the SAS/CONNECT client
and the server must run SAS/CONNECT 8.2 or a later release of SAS software.

Data File Compression to Disk
By contrast, you can specify that a file be compressed when it is written to disk by
using the COMPRESS= data set option. For more information, see SAS Data Set
Options: Reference.

The following statements show how to specify that a data set should be compressed
when it is uploaded to disk:

data tax01 (compress=yes);
proc upload data=state out=fed;

Note: If the COMPRESS=YES data set option is not specified, the data set is not
compressed before it is uploaded.

At the client, the following tasks are implicitly performed:

n The engine decompresses the data set as it is read from disk.

Considerations for Using Data Transfer Services 91

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n PROC UPLOAD compresses the observations in the data set as they are put
into a buffer for transfer to the server.

At the server, the following tasks are implicitly performed:

n PROC UPLOAD receives the buffer and decompresses the data set so that the
observations can be written.

n The engine writes the decompressed data set to disk.

Note: In order to write the compressed data set to disk, you have to specify the
COMPRESS=YES data set option as an argument in the OUT= option. Here is
an example:

proc upload data=state out=fed (compress=yes);

Transfer Status Window
The Transfer Status window displays information about the status of the download
or upload operation. You can specify whether the Transfer Status window is
displayed by specifying CONNECTSTATUS=YES | NO in any of the following
contexts:

n “CONNECTSTATUS” on page 110

n CONNECTSTATUS= system option in the RSUBMIT statement on page 165

n CONNECTSTATUS= sytem option in the SIGNON statement on page 130

n CONNECTSTATUS= system option in the PROC DOWNLOAD statement on
page 259

n CONNECTSTATUS= system option in the PROC UPLOAD statement on page
221

Because the Transfer Status Window displays the progress of the file transfer
dynamically, the information in the window changes as the transfer progresses. The
information in the display includes the following:

n the type of file that is being transferred (SAS data set, SAS catalog, catalog entry
that contains graphics output, external file, or SAS utility file).

n the name of the target SAS data set, SAS catalog, external file, or SAS utility file.
SAS data set names have the form libref.SAS-data-set. SAS catalog names
have the form libref.SAS-catalog. External filenames are displayed with the
complete filename. Utility filenames have the form libref.SAS-utilityfilename.

n the number of bytes being transferred (updated as each new buffer is sent).

n the number of observations being transferred (for SAS data sets only).

n the amount of time that elapsed since the beginning of the transfer, in hh:mm:ss
form.

n an estimate of the amount of time that the transfer will take to complete,
displayed as hh:mm:ss.

92 Chapter 5 / Using Data Transfer Services

n the percentage of the file that has been transferred and a horizontal bar chart
that depicts this percentage.

Note: For some types of files, the percentage completed, the estimated time to
completion, and the bar chart are not always available. Some operating
environments cannot efficiently provide the size of the file, which is necessary to
calculate these estimates. Sometimes, the information that is provided by the
operating environment results in estimates that are greater than the actual time that
is needed for the transfer. Therefore, the percentage completed, the estimated time
to completion, and the bar chart might show exaggerated estimates, but they will
show 100% when the transfer is completed.

The following display is an example of the Transfer Status window during a SAS
data set download. The SAS data set being downloaded is Work.Stt2.

Figure 5.1 Transfer Status Window for Downloading a SAS Data Set

The following display is an example of the Transfer Status window during a SAS
data set upload. The SAS data set being uploaded is Work.Stt2.

Figure 5.2 Transfer Status Window for Uploading a SAS Data Set

The following example shows the Transfer Status window when an external (flat)
text file is being downloaded. The file being downloaded is downfile.txt.

Figure 5.3 Transfer Status Window for Downloading an External File

Non-English Keyboards
If you use a client that has a non-English keyboard, you probably have some
external files that contain non-English characters. If your server runs under the z/OS

Non-English Keyboards 93

operating environment, some specially accented characters might be translated
incorrectly when you use the DOWNLOAD and UPLOAD procedures. This occurs
because of the default translations from ASCII to EBCDIC and from EBCDIC to
ASCII. To solve the problem, you can do one of the following:

n If SAS/CONNECT is used frequently, you should use an alternate EBCDIC to
ASCII translation table (TRANTAB=) on the server. Your SAS support personnel
for the server should create the alternate table.

n If SAS/CONNECT is not used frequently, you can manage problematic
characters by assigning the correct hexadecimal values in DATA step
programming statements after the file is copied.

For example, suppose you have a German keyboard and a z/OS operating
environment. You want a file to contain A-umlaut characters after an upload. By
default, the ASCII representation of A-umlaut, which is X'84', is translated to
EBCDIC X'24'. However, the EBCDIC representation of A-umlaut is X'C0', so
you need to translate EBCDIC X'24' to EBCDIC X'C0'. The following DATA step,
in which NAME is a variable that contains A-umlaut characters, performs this
translation:

data new;
 set old;
 retain to 'C0'x from '24'x;
 drop to from;
 name=translate(name,to,from);
run;

Data Transfer Services Tips

Tips for Using PROC DOWNLOAD and PROC
UPLOAD

n To execute the DOWNLOAD and UPLOAD procedures in the server session,
you must use the RSUBMIT command.

n The rate at which files are transferred varies according to these factors:

o the size and number of files that are being transferred

o the processing load on the server

o the communication access method that is being used

o the network configuration

The Transfer Status window keeps you informed of the progress of the transfer.
For details, see “Transfer Status Window” on page 92.

n You cannot transfer a SAS data set to an external file by using the DATA= or the
INLIB= option.

n You cannot transfer an external file to a SAS data set by using the OUT= option.

94 Chapter 5 / Using Data Transfer Services

n To transfer a text file whose record length is greater than 132 bytes, you must
specify the LRECL= option in the FILENAME statement at both the client and the
server. If you omit the LRECL= option, a data truncation error is reported. For
details about the LRECL= option, see the FILENAME statement under “FILE
Statement: z/OS” in SAS Companion for z/OS.

Note: In SAS 9.4, the default value for LRECL is 32767. If you are using fixed
length records (RECFM=F), the default value for LRECL is 256.

n If PROC DOWNLOAD or PROC UPLOAD successfully completes the file
transfer, the macro variable SYSINFO is set to 0. If the file transfer is not
completed successfully, the macro variable SYSINFO is set to a value greater
than 0. You can pass the value of the SYSINFO macro variable back to the client
by using the %SYSRPUT statement. For details, see “%SYSRPUT” on page
191.

n Statements that define librefs and filerefs in the client session must be executed
in the client session by using the SUBMIT command.

n Statements that define librefs or filerefs in the server session must be executed
in the server session by using the RSUBMIT command or the RSUBMIT
statement. Therefore, if librefs or filerefs are defined before the PROC
statement, these statements can be executed along with PROC DOWNLOAD or
PROC UPLOAD.

Tips for Using PROC DOWNLOAD Only
n When downloading variable block records to a client from a server that is running

under the z/OS environment, you must specify RECFM=U in the server
FILENAME statement that points to the variable block record. For details about
options in the FILENAME statement, see “FILENAME Statement: z/OS” in SAS
Companion for z/OS.

For example, if the file that you are downloading is called MYFILE, you would
use the following code:

rsubmit;
 filename
 myfile 'vb.block.record' recfm=u;
 proc download infile=myfile
 outfile='c:\vb.rec' binary;
 run;
endrsubmit;

After the client's Log window shows the number of bytes that are transferred,
you would issue the following client FILENAME statement by using the RECFM=
and LRECL= options, where the value of LRECL= is the number of bytes that
were transferred:

filename myfile 'c:\vb.rec' recfm=s370vb
 lrecl=xxxx;

The MYFILE fileref would then be used for subsequent access to the file.

Data Transfer Services Tips 95

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0e5aa1mquetdin1m9b9lifcdma8.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0e5aa1mquetdin1m9b9lifcdma8.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en

Tips for Using PROC UPLOAD Only
n If you upload an external file to a server file that is defined with a fixed (F) record

format, all records in the file are padded with blanks to the logical record length.

96 Chapter 5 / Using Data Transfer Services

PART 3

SAS/CONNECT Language Reference

Chapter 6
System Options . 99

Chapter 7
SIGNON and SIGNOFF Statements . 127

Chapter 8
RSPT Statements . 153

Chapter 9
RSUBMIT Statements . 161

Chapter 10
FILENAME Statement . 201

Chapter 11
LIBNAME Statement . 205

Chapter 12
LIBNAME Statement, SASESOCK Engine . 209

Chapter 13
Commands . 213

Chapter 14
UPLOAD Procedure . 217

Chapter 15
DOWNLOAD Procedure . 255

Chapter 16
SAS Component Language (SCL) Functions and Options 287

Chapter 17
SAS/CONNECT Script Statements . 293

97

98

6
System Options

Dictionary . 99
AUTOSIGNON System Option . 99
COMAMID= System Option . 101
CONNECTEVENTS System Option . 102
CONNECTMETACONNECTION System Option . 103
CONNECTOUTPUT= System Option . 106
CONNECTPERSIST System Option . 107
CONNECTREMOTE= System Option . 108
CONNECTSTATUS System Option . 110
CONNECTWAIT System Option . 111
DMR System Option . 112
SASCMD= System Option . 113
SASFRSCR System Option . 115
SASSCRIPT= System Option . 116
SIGNONWAIT System Option . 118
SYSRPUTSYNC System Option . 120
TBUFSIZE= System Option . 121
TCPLISTENTIME= System Option . 124
TCPPORTFIRST= System Option . 125
TCPPORTLAST= System Option . 126

Dictionary

AUTOSIGNON System Option
Automatically signs on the client session to the server session, establishing a client/server connection
when a connection does not already exist.

Client: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

99

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Default: NOAUTOSIGNON

Syntax
AUTOSIGNON | NOAUTOSIGNON

Syntax Description
AUTOSIGNON

automatically signs on the client session to the server session for the
subsequent execution of an RSUBMIT command or statement.

Note: In order to terminate a client/server session after an RSUBMIT has
completed, you can do either of these:

n specify the NOCONNECTPERSIST system option

n issue an explicit SIGNOFF statement

NOAUTOSIGNON
does not automatically sign to the client session on the server session for the
subsequent execution of an RSUBMIT command or statement. In order to
establish a client/server connection, you must specify the SIGNON command or
statement explicitly.

Details
When the AUTOSIGNON system option is specified, the RSUBMIT command or
statement automatically executes a sign-on, and uses any SAS/CONNECT system
options in addition to options that are specified in the RSUBMIT statement. For
example, if you specify either the NOCONNECTWAIT system option or the
NOCONNECTWAIT option in the RSUBMIT command or statement, asynchronous
RSUBMITs will be the default for the entire connection.

For an example of using the AUTOSIGNON option with MP CONNECT, see
“Example 5: MP CONNECT and the WAITFOR Statement” on page 63.

See Also
Statements:

n “RSUBMIT” on page 161

100 Chapter 6 / System Options

n “SIGNON” on page 127

System Options:

n “CONNECTPERSIST” on page 107

COMAMID= System Option
Identifies the primary communications access method to connect a client and a server across a network.

Client: Optional

Server: Optional

Valid in: SAS/CONNECT Client: Configuration file, OPTIONS statement, SAS System Options
window, SAS invocation, SAS/CONNECT Server: Configuration file, SAS invocation,
SAS/SHARE Client and Server: Configuration file, OPTIONS statement, SAS System
Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Defaults: TCP/IP for UNIX and Windows
XMS for z/OS

Syntax
COMAMID=access-method-ID

Syntax Description
access-method-ID

specifies the name of the communications access method that is used by a client
to access a server.

Details
You are not required to define TCP/IP as the communications access method under
UNIX and Windows because TCP/IP is the default access method. However, you
can choose to explicitly define TCP/IP as the access method. If you are running
under z/OS and want to use TCP/IP instead of the default XMS, you must define
TCP/IP as the access method.

If you are using SAS/SHARE under z/OS, the COMAUX1 option enables you to
specify a primary and an alternative access method. For more information, see
“COMAUX1= System Option” in SAS/SHARE User’s Guide.

COMAMID= System Option 101

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=n0cab4d8vws1u8n1nngdzvo9bf54.htm&locale=en

Examples

Example 1: Use COMAMID in an OPTIONS
Statement
The following OPTIONS statement specifies the TCP/IP access method for
connecting to a server:

options comamid=tcp;

Example 2: Use COMAMID in a TYPE Statement
with SAS/CONNECT
For SAS/CONNECT at the server, the TYPE statement in a script file specifies
options that are set when the server session starts.

type "sas (dmr comamid=tcp noterminal no$syntaxcheck)" enter;

CONNECTEVENTS System Option
Specifies whether SAS events are propagated from the CONNECT server through the CONNECT client to
SAS Enterprise Guide or to Add-in for Microsoft Office (AMO).

Client: Optional

Server: Optional

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS system options window

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Requirements: You must specify CONNECTEVENTS on both the CONNECT client and the CONNECT
server for the events to propagate to SAS Enterprise Guide or to AMO.
If a CONNECT client specifies NOCONNECTEVENTS, that CONNECT client will not
receive events from the CONNECT server. Setting NOCONNECTEVENTS on the client
stops events for that client. If NOCONNECTEVENTS is specified on a CONNECT server
invocation, all CONNECT clients that use that server invocation will be prevented from
receiving events.

Syntax
CONNECTEVENTS | NOCONNECTEVENTS

102 Chapter 6 / System Options

Syntax Description
CONNECTEVENTS

allows SAS events to be propagated from a CONNECT server through the
CONNECT client to SAS Enterprise Guide or AMO.

NOCONNECTEVENTS
prevents the propagation of SAS events from a CONNECT server through the
CONNECT client to SAS Enterprise Guide or AMO. The default setting is
NOCONNECTEVENTS.

Details
You can use the CONNECTEVENTS | NOCONNECTEVENTS system option to
specify whether to allow the propagation of SAS events from a CONNECT server
through the CONNECT client to SAS Enterprise Guide or AMO.

This option can be set at start-up or anytime during the SAS Session. Your site
administrator can restrict the modification of this option. NOCONNECTEVENTS is
turned on by default.

See Also
Grid Computing

n Grid Computing in SAS

CONNECTMETACONNECTION System Option
Specifies whether a SAS/CONNECT server is authorized to access a SAS Metadata Server at server sign-
on.

Client: Optional

Server: Optional

Valid in: Configuration file, SAS invocation, OPTIONS statement, SAS system options window

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CMETACONNECTION

Requirement: Grid sign-ons or sign-ons to a SAS/CONNECT server when there is a metadata
connection on the client

CONNECTMETACONNECTION System Option 103

Syntax
CONNECTMETACONNECTION | NOCONNECTMETACONNECTION

Syntax Description
CONNECTMETACONNECTION

allows a SAS/CONNECT server to access a SAS Metadata Server at server
sign-on by providing a one-time supply of sign-on credentials. This option is on
by default.

NOCONNECTMETACONNECTION
prevents the SAS/CONNECT server from automatically accessing the SAS
Metadata Server via a one-time supply of credentials during sign-on. Instead, the
SAS/CONNECT server must be a trusted peer of the SAS Metadata Server or
the credentials must be hardcoded directly in the SAS code to be executed in the
server session.

Details
When a SAS/CONNECT client session has an active metadata server connection
and signs on to a SAS/CONNECT server, the server is automatically given access
to the SAS Metadata Server for the duration of the SAS/CONNECT server session.
The client queries the SAS Metadata Server for the following credentials, which are
passed to the SAS/CONNECT server:

n SAS Metadata Server

n SAS Metadata Server port

n SAS Metadata Server user name

n SAS Metadata Server password (this is a special one-time use password and
not the user’s normal password)

Because these credentials are passed to the server, the server does not have to
meet either of the following requirements:

n to be a trusted peer of the SAS Metadata Server

n to cause the credentials hardcoded in the SAS program to be executed in the
server session

The SAS/CONNECT server uses the temporary credentials to remain connected to
the SAS Metadata Server for the duration of the server session, rather than having
to make multiple connections to the SAS Metadata Server. This option offers
convenience and improves security. Because the option is on by default, it is not
necessary to specify CONNECTMETACONNECTION in your SAS program.
However, if you want to prevent the remote server from automatically connecting to
the metadata server at sign-on, you must specify the
NOCONNECTMETACONNECTION in the options statement. If you do this, you can
still access the metadata server, but you must explicitly specify the user ID and
password in the SAS code (RSUBMIT statement).

Note: If you specify credentials using SAS system options for metadata (for
example, the METASERVER= or METAPORT= system options), these values take

104 Chapter 6 / System Options

precedence over any default values. For more information, see “Overview of System
Options for Metadata” in SAS Language Interfaces to Metadata.

Examples

Example 1: Access Metadata Credentials for a Grid
Execution
Here is an example of SAS code in which the CONNECTMETACONNECTION
system is enabled. The grdsvc_enable() function specifies that all server sessions
be enabled for a grid execution. Also, the SAS Application Server contains the
definition for the logical grid server that manages the grid environment.

Note: The CONNECTMETACONNECTION option could be omitted because it is
the default.

The AUTHDOMAIN= option in the LIBNAME statement specifies the name of the
authentication domain, which is a metadata object that manages the credentials
(user ID and password) that are associated with the specified domain. Specifying
the authentication domain is a convenient way to obtain the metadata-based user
credentials rather than having to explicitly supply them during server sign-on.

%put %sysfunc(grdsvc_enable(_ALL_, server=SASApp));
options CONNECTMETACONNECTION;
signon process=job1;
rsubmit;
libname mylib oracle authdomain=defaultAuth;
endrsubmit;

Example 2: Access Metadata Credentials for a
Server Sign-on
In this example, the CONNECTMETACONNECTION option is used with the
SIGNON statement and the SERVER= option:

options CONNECTMETACONNECTION;
signon process=job1 server=SASApp;

Example 3: Supply Explicit User Credentials for a
Grid Execution
Here is an example in which NOCONNECTMETACONNECTION is used:

%put %sysfunc(grdsvc_enable(_ALL_, server=SASApp));
options NOCONNECTMETACONNECTION;
signon process=job1;
rsubmit;
libname mylib oracle user=tom password=apex;

CONNECTMETACONNECTION System Option 105

http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=sasoptsover.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=sasoptsover.htm&locale=en

endrsubmit;

The user ID and password are explicitly specified in SAS code in order to access
the SAS Metadata Repository.

See Also
Statement

n “RSUBMIT” on page 161

n “SIGNON” on page 127

CONNECTOUTPUT= System Option
For a synchronous RSUBMIT, directs the server's output and log to the client session.

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: COUTPUT

Default: BUFFERED

Syntax
CONNECTOUTPUT=BUFFERED | IMMEDIATE

Syntax Description
BUFFERED

For a synchronous RSUBMIT, directs the server's output and log to the client
session after the server's buffer is full. This is the default.

IMMEDIATE
For a synchronous RSUBMIT, directs the server's output and log as it is
generated to the client session.

106 Chapter 6 / System Options

Details
When the CONNECTOUTPUT= option is specified, the synchronous RSUBMIT
processing can be conveniently viewed from the client session as it occurs in the
server session.

If buffered output is specified, the server output and log are sent to the client
session after the server's buffer is full. If immediate output is specified, the output
and log are sent to the client session as they are generated.

See Also
Statement

n “RSUBMIT” on page 161

CONNECTPERSIST System Option
Specifies whether a connection between a client and a server persists (continues) after the RSUBMIT has
completed.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CPERSIST

Default: CONNECTPERSIST

Syntax
CONNECTPERSIST | NOCONNECTPERSIST

Syntax Description
CONNECTPERSIST

continues a client/server connection after the RSUBMIT (with or without
automatic sign-on) has completed. The server is not automatically signed off
(disconnected from) the client.

CONNECTPERSIST System Option 107

NOCONNECTPERSIST
discontinues a client/server connection after the RSUBMIT (with or without
automatic sign on) has completed. The server is automatically signed off
(disconnected from) the client.

Details
The CONNECTPERSIST option is most useful when automatic sign-on (specified
by using the AUTOSIGNON option) is enabled.

A continued connection after the completion of a current RSUBMIT enables you to
perform subsequent processing tasks within the same client/server session without
having to sign on again. To terminate a persistent connection, you must perform an
explicit SIGNOFF.

In addition to being a system option, CONNECTPERSIST can be set as an option in
the RSUBMIT statement. The option in the RSUBMIT statement or command takes
precedence over the system option.

See Also
Statement

n “AUTOSIGNON” on page 99

System Option

n “RSUBMIT” on page 161

CONNECTREMOTE= System Option
Identifies the server session that a SAS/CONNECT client connects to.

Client: Required

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CREMOTE=, REMOTE=, PROCESS=

108 Chapter 6 / System Options

Syntax
CONNECTREMOTE=server-ID

Syntax Description
server-ID

identifies the specific server session that the client connects to. This ID might
correspond to the name of the machine that the client connects to. If connecting
to a server session on a multiprocessor machine (that is, a machine that is
equipped with SMP hardware), the ID can be a descriptive name that you assign
to the session.

Details
In addition to being a system option, CONNECTREMOTE= can be set as an option
in the RSUBMIT and SIGNON statements. The option in an RSUBMIT or SIGNON
statement or command takes precedence over the system option.

Examples

Example 1: CONNECTREMOTE= in SIGNON
To sign on, include the port in the host macro variable named APEX:

%let apex=fully-qualified-machine-name spawner-port;
signon connectremote=apex user=userId password="password";

After a successful sign on, the CONNECTREMOTE option value is updated.

Example 2: CONNECTREMOTE= in RSUBMIT
In this example, it is assumed that signon to APEX is already done.

rsubmit connectremote=apex;
 code-to-submit;
endrsubmit;

After a successful RSUBMIT, the CONNECTREMOTE option value is updated.

See Also
Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

CONNECTREMOTE= System Option 109

CONNECTSTATUS System Option
Specifies the default setting for the display of the Transfer Status window.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CSTATUS, STATUS

Default: CONNECTSTATUS

Syntax
CONNECTSTATUS | NOCONNECTSTATUS

Syntax Description
CONNECTSTATUS

specifies that the Transfer Status window is displayed during file transfers.

NOCONNECTSTATUS
specifies that the Transfer Status window is not displayed during file transfers.

Details
For synchronous processing, the CONNECTSTATUS system option specifies
whether the Transfer Status window is displayed during a PROC UPLOAD or a
PROC DOWNLOAD. This system option can be overridden by specifying the
CONNECTSTATUS= option in subsequent PROC UPLOAD, PROC DOWNLOAD,
RSUBMIT, and SIGNON statements.

For asynchronous processing (NOCONNECTWAIT), the CONNECTSTATUS
system option and the CONNECTSTATUS= option in a SIGNON statement are
ignored. To enable the Transfer Status window for asynchronous processing, you
must specify CONNECTSTATUS=YES in the PROC UPLOAD, PROC
DOWNLOAD, or RSUBMIT statement.

110 Chapter 6 / System Options

See Also
Conceptual Information:

n “Transfer Status Window” on page 92

Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

Procedures

n DOWNLOAD Procedure on page 255

n UPLOAD Procedure on page 217

CONNECTWAIT System Option
Specifies whether remote submits are executed synchronously or asynchronously.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CWAIT

Default: CONNECTWAIT

Syntax
CONNECTWAIT | NOCONNECTWAIT

Syntax Description
CONNECTWAIT

specifies that RSUBMIT statements are executed synchronously. Synchronous
processing means that server processing must be completed before control is
returned to the client session.

NOCONNECTWAIT
specifies that RSUBMIT statements are executed asynchronously.
Asynchronous processing permits the client or multiple server processes to
execute in parallel. Control is returned to the client session immediately after an

CONNECTWAIT System Option 111

RSUBMIT begins execution to allow for continued processing in the client
session or other server sessions.

Details
The CONNECTWAIT system option specifies whether remote submits are executed
synchronously. The default setting can be overridden by setting the
CONNECTWAIT= option in the SIGNON statement or in subsequent RSUBMIT
statements. The option in the RSUBMIT or SIGNON statement or command takes
precedence over the system option.

If NOCONNECTWAIT is specified, you might also want to specify the CMACVAR=
option in the RSUBMIT statement. Setting CMACVAR= enables you to learn the
status of the current asynchronous RSUBMIT (whether it has completed or is still in
progress).

See Also
Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

DMR System Option
invokes a server session.

Server: Required

Valid in: Configuration file, SAS invocation

Category: Environment Control: Initialization and Operation

PROC
OPTIONS
GROUP=

Environment Control

Syntax
DMR

112 Chapter 6 / System Options

Details
The DMR system option must be specified either in the server CONFIG.SAS file or
in the TYPE statement in a SAS/CONNECT script file that starts a SAS session.
Alternatively, it executes by default when connecting to a spawner.

The server session receives input from the client session and sends log and output
lines to the client's Log and Output windows or files.

SASCMD= System Option
Specifies the command that starts a server session on a symmetric multiprocessing (SMP) computer.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Syntax
UNIX, Windows:

SASCMD=<"SAS-command <SAS-system-options>" | "!SASCMD SAS-system
options">

z/OS:
SASCMD=<":SAS-system-options" | "!SASCMD SAS-system-options">

Details
UNIX Specifics: under the UNIX operating environment, this command starts a
server session on a multiprocessor computer. The TCP/IP access method is used to
connect to the server session. !SASCMD specifies that the same SAS command
that was used to invoke the client session should be used to invoke the server
session. The SAS command can be specified with additional or overriding SAS
system options.

z/OS Specifics: under the z/OS operating environment, this command starts a
server session on a multiprocessor computer, and passes values for the following
SAS system options to the server session: DMR, COMAMID=, REMOTE=,
SASHELP=, SASMSG=, SASAUTOS=, and CONFIG=. You might also specify
additional SAS system options to be passed to the server session. The XMS access
method is used to connect to the server session. The fork command under UNIX is
used to spawn an MVS BPX address space, which inherits the same STEPLIB and
USERID as the client address space.

SASCMD= System Option 113

Windows Specifics: under the Windows operating environment, this command
starts a server session on a multiprocessor computer. The TCP/IP access method is
used to connect to the server session. !SASCMDspecifies that the same SAS
command that was used to invoke the client session should be used to invoke the
server session. The SAS command can be specified with additional or overriding
SAS system options.

SASCMD= is most useful for starting multiple sessions to run asynchronously on
multiprocessor computers. You can also use SASCMD= to develop an application
on a single-processor computer that will be executed later on a multiprocessor
computer.

In addition to being a system option, SASCMD= can be set as an option in the
SIGNON and the RSUBMIT statements or commands. The option in an RSUBMIT
or SIGNON statement or command takes precedence over the system option.

Examples

Example 1
The following OPTIONS statement invokes a SAS session.

options sascmd="sas";

Example 2
The following OPTIONS statement invokes a SAS session with options specified.

options sascmd="sas <options>";

Example 3
The following OPTIONS statement invokes a server session on a computer under
the z/OS operating environment and sets the MEMSIZE= and NONUMBER options.

options sascmd=":memsize=64M nonumber";

Example 4
The following OPTIONS statement invokes a server session on a computer under
the z/OS operating environment with no additional SAS options.

options sascmd="any-string";

114 Chapter 6 / System Options

Example 5
The following OPTIONS statement specifies a script file to invoke SAS.

options sascmd="mysas.bat";

For the preceding example, the following code is contained in the text file
MYSAS.BAT.

cd "C:\Program Files\SAS System\9.0"
mkdir mywork
sas -nosyntaxcheck -work "mywork" %*

Note: The %* positional parameter enables you to specify additional SAS options
when you invoke SAS.

When the SASCMD= option is executed, the MYSAS.BAT script is executed.

See Also
Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

SASFRSCR System Option
Is a Read-Only option that contains the fileref that is generated by the SASSCRIPT= option.

Client: Optional

Server: Optional

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Syntax
SASFRSCR

SASFRSCR System Option 115

Details
The SASFRSCR option is not explicitly specified. A value for SASFRSCR is
generated only if SASSCRIPT is specified. You can read the value for this option in
an application that is written in the SAS Component Language (SCL), which
prompts a user for the correct SAS/CONNECT sign-on script.

SASSCRIPT= System Option
Specifies one or more locations for SAS/CONNECT server sign-on script files.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Default: Varies by operating environment

Syntax
SASSCRIPT= "dir-name" | <"dir-name-1","dir-name-2…"> | "fileref" |
<"fileref-1","fileref-2…">

Syntax Description
"dir-name” | fileref

specifies the name of one or more directories that contain SAS/CONNECT script
files. Enclose the directory name in double or single quotation marks. The
directory name can also be specified as a fileref.

UNIX specifics sas-installation-directory/misc/connect

Windows specifics sas-installation-directory\connect\saslink

z/OS specifics &prefix.CTMISC

Details
If the CSCRIPT= option is specified in the SIGNON statement and the specified
script file is not located in the current directory, then the location that is specified in
the SASSCRIPT= option is used to find the specified script file.

116 Chapter 6 / System Options

If quotation marks are omitted from the value, SAS can misinterpret the value as a
physical filename and an error condition can result. Using quotation marks ensures
that the value is correctly interpreted as a directory path.

The SASSCRIPT= option also enables you to find the location of a script file that
has been configured as a property in the SAS Metadata Repository. The script path
is among the properties of the SAS/CONNECT server component in the SAS
Application Server that is stored in the SAS Metadata Repository.

Note: In order to obtain a script file path from the SAS Metadata Repository, you
must have access to the repository. These SAS options can be used to configure
access to the SAS Metadata Repository: METAAUTORESOURCES=,
METACONNECT=, METAPASS=, METAPORT=, METAPROFILE=,
METAPROTOCOL=, METAREPOSITORY=, METASERVER=, and METAUSER=.

Examples

Example 1: Assign the File Path to SASSCRIPT=
In this example, the SASSCRIPT= option is used to specify an alternative file path
to scripts for server sign-ons under the Windows operating environment.

options sasscript= "c:\my\favorite\scripts";

After the SASSCRIPT= option has been specified, the script can be invoked as
follows:

signon remhost cscript="myscr.scr";

When myscr.scr is not located in the default location, a search for the script will be
made at the location that is specified in the SASSCRIPT= option.

Here is an example in the SAS log of the representation of the SASSCRIPT= option
and the assigned value:

SASSCRIPT=("c:\my\favorite\scripts")

SAS encloses the quoted file path in parentheses.

Note: The SASSCRIPT= option is an alternative to the RLINK fileref that is used in
the FILENAME statement for identifying the location of a script file.

Example 2: Assign a Fileref to SASSCRIPT=
In this example, a FILENAME statement is used to assign the filename TESTFILE to
the fileref Pointer. The OPTIONS statement is used to assign the SASSCRIPT
system option to the value Pointer, which is a fileref to the filename TESTFILE. The
fileref is not enclosed in quotation marks.

filename pointer 'testfile';
options sasscript=pointer;

SASSCRIPT= System Option 117

Example 3: Obtain the Script File Path from the SAS
Metadata Repository
In this example, the path to the server sign-on script has been configured as a
property in the SAS Metadata Repository. Here is the code to access the SAS
Metadata Repository and to find out the script path:

options metaserver="max.apex.na.com";
signon serverv="SASApp";

The METASERVER= option is used to specify the fully qualified domain name of the
computer on which the SAS Metadata Server runs. The SIGNON statement and the
SERVERV= option are used to produce a list of the properties of the
SAS/CONNECT server component in the SAS Application Server that is stored in a
SAS Metadata Repository. The name of the SAS Application Server is "SASApp."

Here is an excerpt of the output that is sent to the SAS Log:

1 options metaserver="max.apex.na.com";
2 signon serverv="SASApp";
NOTE: Server= SASApp - Connect Server
 Remote Session ID= remhost
 ServerComponentID= A5SXFC1R.AU000002
 Remote Host= max.apex.na.com
 Communication Protocol=TCP
 Port= 7551
 Scriptpath= F:\admin\work\favescript.scr
 AuthDomain= DefaultAuth
 Wait= Yes
 SignonWait= Yes
 Status= Yes
 Notify= No

Knowing the script path and the script name, in a client session, you can sign on to
a server session. Here is an example:

options sasscript= "F:\admin\work";
signon remhost cscript="favescript.scr";

Here is an alternative way to sign on to a server session:

signon remhost cscript="F:\admin\work\favescript.scr";

See Also
Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

SIGNONWAIT System Option
Specifies whether a SAS/CONNECT sign-on should be executed asynchronously or synchronously.

118 Chapter 6 / System Options

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CONNECTSWAIT, SWAIT

Default: SIGNONWAIT

Syntax
SIGNONWAIT | NOSIGNONWAIT

Syntax Description
SIGNONWAIT

specifies that a SAS/CONNECT SIGNON statement will execute synchronously.
Synchronous processing means that a sign-on to a server session must
complete before control is returned to the client session.

NOSIGNONWAIT
specifies that a SAS/CONNECT SIGNON statement will execute
asynchronously. Asynchronous processing permits sign-ons to multiple server
sessions to execute in parallel. Control is returned to the client session
immediately after a sign-on when NOSIGNONWAIT is specified.

Details
You can use NOSIGNONWAIT to start multiple server sessions in parallel.
Parallelism reduces the total amount of time that would be used to start individual
connections to server sessions. This time savings allows the client session to do
other processing, such as submitting units of work remotely to a server session, as
soon as sign-on is complete.

If NOSIGNONWAIT is specified, you might also want to specify the CMACVAR=
option in the SIGNON statement. Setting CMACVAR= enables you to learn the
status of the current asynchronous SIGNON (whether it has completed or is still in
progress).

In addition to being a system option, SIGNONWAIT can be set as an option in the
RSUBMIT and SIGNON statements. The option in the RSUBMIT or SIGNON
statement or command takes precedence over the system option.

SIGNONWAIT System Option 119

See Also
Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

SYSRPUTSYNC System Option
Sets %SYSRPUT macro variables in the client session when the %SYSRPUT statements are executed
rather than when a synchronization point is encountered.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Alias: CSYSRPUTSYNC, NOCSYSRPUTSYNC

Default: NOSYSRPUTSYNC

Syntax
SYSRPUTSYNC | NOSYSRPUTSYNC

Syntax Description
SYSRPUTSYNC

specifies that the client session's macro variables is updated when the client
session receives the results of the server session's execution of the %SYSRPUT
macro. The results are delivered in the form of a packet. Specifying YES does
not mean that the client's macro variables are updated immediately after the
server's execution of the %SYSRPUT macro variable. YES means that the
client's macro variables are updated when the client receives the packet from the
server. Therefore, the exact time that the client's macro variables are updated
depends on the availability of the client to receive the packet. If the client is busy,
the server waits until the client is ready to receive the packet.

NOSYSRPUTSYNC
specifies that the client session's macro variables are updated when a
synchronization point is encountered.

120 Chapter 6 / System Options

Details
This option is useful only when executing an asynchronous RSUBMIT, which is
enabled via these methods:

n NOCONNECTWAIT system option

n CONNECTWAIT=NO option in RSUBMIT

n CONNECTWAIT=NO option in SIGNON

In addition to being a system option, CSYSRPUTSYNC= can be specified as an
option in the RSUBMIT statement. The CSYSRPUTSYNC= option in the RSUBMIT
statement or command takes precedence over the system option.

By contrast, a synchronous RSUBMIT is enabled via these methods:

n CONNECTWAIT system option

n CONNECTWAIT=YES option in RSUBMIT

n CONNECTWAIT=YES option in SIGNON

A synchronous RSUBMIT causes macro variables to be updated when a
synchronization point is encountered.

Note: You should not change the value of the SYSRPUTSYNC= option between
consecutive asynchronous RSUBMIT statements. Changing SYSRPUTSYNC=
between asynchronous RSUBMIT statements causes unpredictable results.

See Also
Conceptual information

n “Synchronization Points” on page 193

Statements

n “RSUBMIT” on page 161

n “SIGNON” on page 127

TBUFSIZE= System Option
Specifies the size of the buffer that is used by the SAS application layer for transferring data between a
client and a server across a network.

Client: Optional

Server: Optional

Valid in: Configuration file, OPTIONS statement, SAS System Options window, SAS invocation

Category: Communications: Networking and Encryption

TBUFSIZE= System Option 121

PROC
OPTIONS
GROUP=

Communications

Default: Varies by operating environment. Value is determined by the TCP stack on the host
operating system.

Syntax
TBUFSIZE=buffer-size-in-bytes

Syntax Description
buffer-size-in-bytes

specifies the size of the buffer that SAS/CONNECT uses for transferring data.

Note buffer-size-in-bytes must be specified as a multiple of 1024 bytes. You
can also specify the value in kilobytes using the format nK.

Details
The TBUFSIZE= option defines the buffer for the SAS application layer. The
TCPMSGLEN= option defines another buffer for the SAS communications layer. For
more information about TCPMSGLEN=, which is used only by the TCP/IP
communications access method, see the topic that is appropriate to your operating
environment in .

Table 6.1 Summary of Attributes for the TBUFSIZE= and TCPMSGLEN= Options

System Option Controlling SAS Layer Purpose of Buffer

TBUFSIZE= SAS Application SAS/CONNECT uses the
buffer to transfer data to
the communications layer.

TCPMSGLEN= SAS Communications The TCP/IP access
method uses the buffer to
transfer data to a client or
a server.

The SAS application layer does the following:

1 packs and compresses data records into a buffer until all the data has been
processed or the buffer is full.

2 sends a buffer to the communications layer. Unless it is explicitly set using the
TBUFSIZE= or TCPMSGLEN= options, the default buffer size is determined by
the TCP stack on the host operating system. SAS/CONNECT uses the default

122 Chapter 6 / System Options

TCP stack settings and auto tuning (if implemented on the stack) to ensure
optimal network performance.

Using the TBUFSIZE= option to maximize buffer size for the SAS application layer
reduces the number of calls that the application layer makes to the communications
layer for a data transfer. A reduction of calls to the communications layer saves
resources and improves operating environment and network performance. Other
factors, such as the amount of data and the network bandwidth, must be considered
to optimize buffer performance.

The SAS communications layer does the following:

1 receives a buffer from the SAS application layer.

2 sends a buffer to the client or to the server. Unless it is explicitly set using the
TBUFSIZE= or TCPMSGLEN= options, the default buffer size is determined by
the TCP stack on the host operating system. SAS/CONNECT uses the default
TCP stack settings and auto tuning (if implemented on the stack) to ensure
optimal network performance.

As with the TBUFSIZE= option, an optimal value assigned to TCPMSGLEN= can
save resources and improve network performance. TCPMSGLEN= can be set to
transfer the entire buffer that it receives or to divide the data into multiple transfers.

To change the size of the TCP buffer, the TCPMSGLEN= option is specified at both
the client and the server. If the client and the server do not use identical values for
TCPMSGLEN=, the smaller buffer size is used.

In addition to being a system option, TBUFSIZE= can be set as an option in the
SIGNON statement. The option in the SIGNON statement or command takes
precedence over the system option.

CAUTION
Do not specify the TBUFSIZE= option in the server session.

You should specify the TBUFSIZE= Option only in the Client Session. If you specify
the TBUFSIZE= option in a remote SAS invocation that runs an AUTOEXEC file, the
allocated buffers might be insufficient to complete the processing of the AUTOEXEC
file. Although the client can successfully sign on to the server session, the error
message that would alert you to insufficient buffers might not be written to the server
log immediately. Instead, the error message would be logged following the client's
next request for server processing.

Specify the TBUFSIZE= option in the SIGNON statement in the client session when
signing on the server session.

Example
In the following OPTIONS statement, the TBUFSIZE= option is used to set the
buffer size to 64K:

options tbufsize=65536;
signon;

Alternatively, you can specify tbufsize=64k.

TBUFSIZE= System Option 123

See Also
Statement

n “SIGNON” on page 127

TCPLISTENTIME= System Option
Specifies the amount of time a SAS/CONNECT server listens for a client to connect before terminating the
CONNECT server session.

Client: Optional

Valid in: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Default: 300

Syntax
TCPLISTENTIME=listen-time-in-seconds |MIN | MAX

Syntax Description
listen-time-in-seconds

Specifies the amount of time in seconds that a SAS/CONNECT server listens for
a client to connect before terminating the session. listen-time-in-seconds is any
nonnegative integer less than 601. A value of 0 means there is no time limit.

MIN
The minimum value is 0 (no time limit).

MAX
The maximum value is 600.

Details
The TCPLISTENTIME= option is a portable SAS system option that enables you to
control idle and unresponsive sign-on connections. The option enables you to
specify how long (in seconds) a server "listens" for a response from the client during
sign-on before it exits automatically. The default value for the session time-out is
300. The maximum value is 600 seconds.

The following are examples of valid TCPLISTENTIME= values:

124 Chapter 6 / System Options

n TCPLISTENTIME=MIN

n TCPLISTENTIME=1

n TCPLISTENTIME= 90

n TCPLISTENTIME=MAX

TCPPORTFIRST= System Option
Specifies the first value in a range of TCP/IP ports for a client to use to connect to a server.

Server: Optional

Valid in: Configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Syntax
TCPPORTFIRST=n

Syntax Description
n

specifies the first TCP/IP port in a range of ports for a client to use to connect to
a server.

Details

Overview of the TCPPORTFIRST System Option
To assign the range of ports, assign the first port by using the TCPPORTFIRST=
system option and the last port by using the TCPPORTLAST= system option. To
restrict the connection to one port, specify the same value for both options. The
TCPPORTFIRST= option is valid only in a SAS/CONNECT server session.

The TCPPORTFIRST / TCPPORTLAST on page 126 options can be specified on
the SAS/CONNECT client and on the SAS/CONNECT server. The options control
the TCP/IP listening port of the SAS/CONNECT client and server.

TCPPORTFIRST= System Option 125

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more
information, see the SAS documentation for your operating environment, or contact
your system administrator for information about valid values.

TCPPORTLAST= System Option
Specifies the last value in a range of TCP/IP ports for a client to use to connect to a server.

Server: Optional

Valid in: configuration file, SAS invocation

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Syntax
TCPPORTLAST=n

Syntax Description
n

specifies the last TCP/IP port in a range of ports for a client to use to connect to
a server.

Details

Overview of the TCPPORTLAST System Option
To assign the range of ports, assign the first port by using the TCPPORTFIRST=
system option and the last port by using the TCPPORTLAST= system option. To
restrict the connection to one port, specify the same value for both options. The
TCPPORTLAST= option is valid only in a SAS/CONNECT server session.

Operating Environment Information
Valid values for this option are specific to a given operating environment. For more
information, see the SAS documentation for your operating environment, or contact
your system administrator for information about valid values.

126 Chapter 6 / System Options

7
SIGNON and SIGNOFF
Statements

Dictionary . 127
SIGNON Statement . 127
SIGNOFF Statement . 147

Dictionary

SIGNON Statement
Initiates a connection between a client session and a server session.

Valid in: client

Syntax
SIGNON <options>;

Optional Arguments
AUTHDOMAIN=auth-domain | "auth-domain"

specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the
specified domain. Specifying the authentication domain is a convenient way to
obtain the metadata-based user credentials rather than having to explicitly
supply them during server sign-on.

127

An administrator can define an authentication domain by using the User
Manager in SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Requirements The authentication domain and the associated credentials must
be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

Enclose domain names that are not valid SAS names in double
or single quotation marks.

Interaction If you specify AUTHDOMAIN=, do not also specify USERNAME=
and PASSWORD=. Otherwise, sign-on is canceled.

See For complete details about creating and using authentication
domains, see the SAS Intelligence Platform: Security
Administration Guide.

SAS Management Console: Guide to Users and Permissions
and SAS Management Console online Help.

CMACVAR=value
specifies the name of the macro variable in which SAS stores a code indicating
the state of the current sign-on. When a SIGNON is executed, SAS checks the
state of the sign-on and stores a return code of 0, 1, or 2 in the specified
CMACVAR variable. The return code is generated after SIGNON processing is
complete and the name that you specify becomes the default name for the
current server session.. The CMACVAR macro variable can then be
programmatically queried to learn the processing status of the sign-on
(completed, failed, or in progress). See Table 7.4 on page 128 for a description
of what each return code means.

Table 7.1 CMACVAR Macro Variable Values in SIGNON

Value Description

0 The sign-on is complete.

1 The sign-on failed.

2 You have already signed on to the current server
session.

3 The sign-on is in progress.

Note: If the SIGNON command or statement fails because of incorrect syntax,
the macro variable is not set.

Alias MACVAR=

128 Chapter 7 / SIGNON and SIGNOFF Statements

Interactions This default can be overridden only by specifying the CMACVAR=
option in the RSUBMIT statement or command.

If SYSERR is being used and it is already set to 1012 due to a
previous error in a SIGNON, RSUBMIT, or SIGNOFF statement,
then it will not be reset to 0 after submitting a subsequent
successful SIGNON, RSUBMIT, or SIGNOFF statement. Because
SYSERR is reset only at step boundaries, you can reset its value
by performing a valid DATA step or PROC step. For more
information about the SYSERR automatic macro variable, see
“SYSERR” in SAS Macro Language: Reference.

See CMACVAR= option on page 162 in the RSUBMIT statement

Example “Example 5: Use CMACVAR to Test for a Successful Sign-on ” on
page 146.

CONNECTREMOTE=<server-ID>
specifies the name of the server session that you want to sign on to. If only one
session is active, connectremote=server-ID can be omitted. If multiple server
sessions are active, omitting this option causes the program statements to be
run in the most recently accessed server session. The current server session is
identified by the value that is assigned to the CONNECTREMOTE system
option.

You can specify server-ID using the following formats:

process-name
process-name is a descriptive name that you assign to the server session on
a multiprocessor computer when the SASCMD= option is used.

See SASCMD= option on page 138

“"!SASCMD"” on page 139

Example signon connectremote=emp1 sascmd="!sascmd";

computer-name.port-name
computer-name is the name of a server, and port-name is the name of the
port that the spawner service runs on. If the computer name is longer than
eight characters, assign the computer name to a SAS macro variable and
use the macro variable name as the server ID.

In this example, it is assumed that that the SAS Connect spawner was
started with a service name and that name is being used.

Example %let sashost=hrcomputer1.dorg.com;
signon connectremote=sashost.spawner-servicename
 user=userId password="password";

computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION
Specifying computer-name.port-number for the server ID will fail under
these conditions:

SIGNON Statement 129

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1wrevo4roqsnxn1fbd9yezxvv9k.htm&locale=en

n when used in a WAITFOR statement that is used to wait for the
completion of an asynchronous RSUBMIT.

Instead, use a one-level name, such as the computer-with-port

n when used in a LIBNAME statement.

Instead, use a one-level name or a two-level name, such as computer-
name._ _port-number.

Restriction Do not use this format as the value for the <server-ID> in the
SIGNON statement if you are going to specify a LIBNAME statement
on the server. Instead, use the <computer-name._ _port-number>
format for the <server-ID> value in both the LIBNAME statement and
the SIGNON statement.

Example signon connectremote=hrcomp1.2267 user=userId password="password";

computer-with-port
computer-with-port is a macro variable that contains the name of a server
and the port that the spawner service runs on, separated by one or more
spaces. This specification is appropriate in cases where the server-ID must
be specified as a one-level name.

Example %let sashost=hrcomp1.dorg.com 2667;
signon connectremote=sashost user=userId password="password";

computer-name.__port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format should be used to specify the server-ID
value for the SERVER= option in a LIBNAME statement.

See “LIBNAME” on page 205

Example signon connectremote=hrcomp1.__2267 user=userId password="password";
libname myLib server=hrcomp1.__2267;

Alias CREMOTE=, PROCESS=, REMOTE=

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window is displayed for file transfers within
the current server session.

Here are the values for this option:

YES
specifies that the Transfer Status window is displayed for file transfers within
the current server session.

Alias Y

NO
specifies that the Transfer Status window is not displayed for file transfers
within the current server session.

Alias N

If the CONNECTSTATUS= option is omitted from the SIGNON statement, its
value is resolved as follows:

130 Chapter 7 / SIGNON and SIGNOFF Statements

1 If the CONNECTSTATUS system option is specified, the value for the
CONNECTSTATUS system option is used.

2 If the CONNECTSTATUS= option is specified in a subsequent RSUBMIT,
PROC UPLOAD, or PROC DOWNLOAD statement, that value will override
the default value of CONNECTSTATUS= option for SIGNON.

3 Otherwise, the default behavior occurs. The default for a synchronous
RSUBMIT is YES, which displays the Transfer Status window. The default for
an asynchronous RSUBMIT is NO, which does not display the Transfer
Status window.

Alias CSTATUS=, STATUS=

Default YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.

See “Transfer Status Window” on page 92

“CONNECTSTATUS” on page 110

CONNECTWAIT=YES | NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT
must be completed in the server session before control is returned to the client
session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple
server sessions in parallel. Control is returned to the client session immediately
after an RSUBMIT begins execution to allow continued execution in the client
session and in other server sessions.

Here are the values for the CONNECTWAIT= option:

YES
specifies that the RSUBMIT blocks execute synchronously.

Alias Y

NO
specifies that the RSUBMIT blocks execute asynchronously.

Alias N

If the CONNECTWAIT= option in a SIGNON statement is omitted, the value for
the CONNECTWAIT= option is resolved as follows:

1 If the CONNECTWAIT option is specified as an option in the RSUBMIT
statement, then the value specified in the RSUBMIT statement is used.

2 If the CONNECTWAIT option is specified as a system option, then the value
for the system option is used.

3 Otherwise, the default behavior, to execute synchronously, occurs.

Alias CWAIT=, WAIT=

Default YES

Interactions

SIGNON Statement 131

If CONNECTWAIT=NO is specified, you might also specify the
CMACVAR= option. CMACVAR= enables you to programmatically
test the status of the current asynchronous RSUBMIT to find out
whether the task has completed or is still in progress.

When %SYSRPUT executes within a synchronous RSUBMIT, the
macro variable is defined to the client session as soon as it
executes.

When %SYSRPUT is executed within an asynchronous RSUBMIT,
the macro variable is defined in the client session when a
synchronization point is encountered. To override this behavior,
use the SYSRPUTSYNC= system option.

Note If CONNECTWAIT=NO is specified, an automatic sign-off will not
occur unless CONNECTPERSIST=NO is also specified.

See “SYSRPUTSYNC” on page 120

“Synchronization Points” on page 193

“CONNECTWAIT” on page 111

CSCRIPT=file-specification
specifies the SAS/CONNECT script file to be used during sign-on.

When the SIGNON command executes, SAS log messages for the server
session are displayed in the LOG window of the client session.

file-specification
specifies the location of the SAS/CONNECT script file.

Here are the values for file-specification:

”filename”
“fully-qualified-filename"

specifies the name of the script file or specifies the name of the script file
along with its location (pathname). Enclose the filename and fully qualified
filename in double or single quotation marks.

fileref
is the name of the reference file that is associated with the script file. A
previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from the SIGNON command.

"SASSCRIPT-specification"
is the physical location of the SAS/CONNECT script file in the directory
that is specified by the SASSCRIPT system option.

Alias SCRIPT=

Interactions If multiple CSCRIPT= options are specified, the last specification
takes precedence.

When you use the CSCRIPT= option, do not also use the
NOCSCRIPT option. If you use NOCSCRIPT and CSCRIPT=,
sign-on is canceled.

See NOCSCRIPT option on page 135

132 Chapter 7 / SIGNON and SIGNOFF Statements

“Synchronization Points” on page 193

“FILENAME” in SAS Global Statements: Reference

INHERITLIB=(client-libref1<=server-libref1> ... client-librefn<=server-librefn>)
enables libraries that are defined in the client session to be inherited by the
server session for Read and Write access. Also, each client libref can be
associated with a libref that is named differently in the server session. A space is
used to separate each libref pair in a series, which is enclosed in parentheses.

Note: Because the SAS Work library cannot be reassigned in any SAS session,
you cannot reassign it in the server session either.

Restrictions The INHERITLIB= option cannot refer to an SPD Engine library
that was defined with the option TEMP= .

The INHERITLIB= option does not support libraries assigned with
the SASESOCK engine.

The INHERITLIB= option is not supported in either the SIGNON or
the RSUBMIT statements to start a secondary (nested)
SAS/CONNECT session in a remote SAS/CONNECT server
session. If you use the option this way, the secondary session will
continue, but the INHERITLIB= option will be ignored.

Interactions If you use the INHERITLIB= option and the SASCMD= option
when signing on to a server session, then the server session
attempts to access the client library directly rather than to inherit
access to the library via the client session. If the client session and
the server session attempt to access the same file simultaneously,
only one session is granted exclusive access to the file. The other
session's access to the file is denied.

SAS/CONNECT does not support concurrent multi-user access to
the same file. This functionality is supported by SAS/SHARE.

See SASCMD= on page 138

Example This example shows that the libref named Local in the client
session is inherited for use in the server session:
signon job1 inheritlib=(local work=remote);
rsubmit;
 libname local list;
 libname remote list;
 data local.a;
 x=1;
 run;
endrsubmit;

LOG=KEEP | PURGE | file-specification< NEW >
OUTPUT=KEEP | PURGE | file-specification< NEW >

Used only when NOSIGNONWAIT is in effect, these options direct the SAS log
or the SAS output that is generated by the current server session to the backing
store or to a file specification. A backing store is a SAS utility file that is written to
disk in the client SAS Work library.

Here are the values for these options:

SIGNON Statement 133

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en

KEEP
spools log or output lines, as applicable, to the backing store or to the
computer on which the client session is running. The log or output lines can
be retrieved using the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES,
or SIGNOFF statement. This is the default.

PURGE
deletes all the log or output lines that are generated by the current server
session. PURGE is used to save disk resources. If you do not need the data,
you can use PURGE to remove large volumes of log or output data that are
written to the backing store.

file-specification < NEW >
specifies a file as the destination for the log or output lines. The file is opened
for output at the beginning of the asynchronous RSUBMIT and is closed at
the end of the asynchronous RSUBMIT. After the current RSUBMIT has
completed, subsequent RSUBMIT log or output lines can be appended to the
preceding RSUBMIT destination file using the LOG= or OUTPUT= options.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended.

Here are the values for this option:

"filename "
is the physical location of the SAS log file or the SAS output file. Enclose
the filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log
file or the SAS output file.

NEW
specifies that a new file is to be opened for output. If the file already
exists, then it is deleted and re-created. NEW is not the default.

If you specify the NEW option on the RSUBMIT LOG= statement and the
MOD option in the FILENAME statement simultaneously, then the NEW
option will be honored and the specified file will be opened for output
rather than appended.

Default KEEP

Interactions Use the LOG= or OUTPUT= option only when the
SIGNONWAIT=NO option or the NOSIGNONWAIT system option
has been specified. Otherwise, the option is ignored and a
WARNING is displayed in the log.

If you direct the log or output lines to a file and then use RGET or
RDISPLAY to retrieve the contents of an empty backing store, then
you will receive a message such as the following:

WARNING: The LOG option was used to file
log lines for the current SIGNON.
There are no log lines for RGET to process.

If you use both the asynchronous RSUBMIT and the PROC
PRINTTO statements, then you might expect that the PROC
PRINTTO statement causes data from the server session to be
written to the file that is specified in the PROC PRINTTO

134 Chapter 7 / SIGNON and SIGNOFF Statements

statement. However, because the asynchronous RSUBMIT and
the PROC PRINTTO statements execute simultaneously,
predicting which operation will complete first is impossible. The
timing of the completions of these operations determines whether
the results are written to the SIGNON log or to the PROC
PRINTTO log. If PROC PRINTTO is used in this way, then the
LOG= or the OUTPUT= option in the SIGNON statement is
ignored, and no data is written to the backing store or to the
specified file.

Note Do not simultaneously use the asynchronous RSUBMIT and the
PROC PRINTTO statement and redirect output. Redirecting output
by using a LOG= or an OUTPUT= option in the SIGNON statement
and using a locally submitted PROC PRINTTO statement can
cause unpredictable results.

See “SIGNONWAIT” on page 118

NOCSCRIPT
specifies that no SAS/CONNECT script file should be used for sign-on.
NOCSCRIPT accelerates sign-on and conserves memory resources.

Alias NOSCRIPT

Interaction When you use NOCSCRIPT, do not also use SASCMD=,
SERVER=, or CSCRIPT=. If you use NOCSCRIPT with SASCMD=,
NOCSCRIPT is ignored. If you use NOCSCRIPT with SERVER= or
CSCRIPT=, sign-on is canceled.

Tip NOCSCRIPT is useful if SASCMD= has been specified in a
spawner invocation.

See “CSCRIPT=file-specification” on page 132

NOTIFY=YES | NO | "e-mail-address"
specifies whether to notify the user that an asynchronous RSUBMIT has
completed. The notification can be in the form of a message window or an email
message. The NOTIFY option is enabled only at sign-on and remains in effect
for the duration of the server session.

Here are the values for this option:

YES
enables notification via a message window. Here is the format of the default
message: Asynchronous task TASK1 has completed. TASK1 is the server
ID. The message window does not interfere with any other task executions in
progress. To acknowledge the message and to close the window, click OK.

Alias Y

Example Here is an example of enabling notification in a SIGNON
statement:
options sascmd="!sascmd";
signon process1 wait=no notify=yes;
rsubmit;
 %put should get notification window;
endrsubmit;

SIGNON Statement 135

NO
disables notification. This is the default.

Alias N

"e-mail-address"
enables notification via an email message, and specifies the email address of
the recipient for the notification. Email addresses are limited to a maximum of
256 characters. Enclose the email address in double or single quotation
marks. The message includes information about the total time that was used
for the RSUBMIT. If the LOG= and OUTPUT= options are also specified in a
SIGNON statement, the email message identifies the locations of the log file
and output file.

Default NO

Restriction Notification occurs only for asynchronous RSUBMIT statements.

Interactions When you specify the NOTIFY="e-mail-address" option, you can
also specify the SUBJECT="subject-title" option.

If NOTIFY=YES and the NOTERMINAL system option has been
specified, the request for notification is ignored. This message is
displayed:

WARNING: The NOTIFY option is valid
only if a TERMINAL is attached to this
SAS session. Option will be ignored.

However, notification can be directed to an email address,
regardless of whether the TERMINAL or NOTERMINAL system
option has been specified.

If NOTIFY="e-mail address" is specified, but the email message
cannot be sent, notification will occur in the form of a message
window, which is the action that occurs when NOTIFY=YES. This
behavior assumes that the NOTERMINAL system option has not
been specified.

Notification fails if NOTIFY=YES or NOTIFY="e-mail address" and
you specify statements or commands (such as RGET or
SIGNOFF) during the asynchronous RSUBMIT that change
execution from asynchronous to synchronous mode.

If NOTIFY="e-mail address" is specified, the SAS system and the
operating environment that the SAS system runs under must be
configured to support email. Without appropriate configuration,
your attempt to specify notification via email might fail. Contact
your system administrator for details.

See CONNECTWAIT=NO option on page 131

AUTOSIGNON System Option on page 99

LOG= and OUTPUT= options on page 133

SUBJECT= option on page 142

136 Chapter 7 / SIGNON and SIGNOFF Statements

SAS system options that support email configuration: EMAILHOST,
EMAILPORT, and EMAILSY in SAS System Options: Reference.

PASSWORD=password | "encoded-password" | _PROMPT_
specifies the password to be used when connecting to a server. The operating
environment that the server runs under can also affect password naming
conventions. The value for password is replaced by Xs in the SAS log. To protect
your password, use the security software at your site to limit access to the SAS
program statements that create the server session.

password
specifies a user-supplied password that meets the following requirements:

n can be up to 256 characters in length.

n can contain uppercase and lowercase letters.

n can contain periods (.) and spaces.

See For more information about password and user-ID naming
conventions, see “User ID and Password Naming Conventions” on
page 144.

Example Here is an example that uses the PASSWORD= option in the
SIGNON statement:
signon rhost password=abc.1235;

"encoded-password"
specifies an encoded password that was created using the PWENCODE
procedure. Using encoded passwords promotes security and enables you to
store SAS programs that do not contain clear-text passwords. To obtain an
encoded password, use the PWENCODE procedure and specify the clear-
text password as the value for the IN= option in the PROC PWENCODE
statement. To use the generated encrypted password in a SIGNON
statement, specify the entire string, including the key, as the value for the
PASSWORD= option.

Here is an example showing how to encrypt the text password “svrmach”
using the PROC PWENCODE statement:

proc PWENCODE in="svrmach" method=sas004;
run;

The METHOD= option specifies the type of encryption to be used, which in
this example is AES encryption. The encrypted password is generated in the
form {key}encoded-password. The key is used to decode the password. Here
is the log output that is generated by this sample code:

1 proc PWENCODE in=XXXXXXXXX method=sas004;
2 run;

{SAS004}D79E9A1821465E55C2AFF53FCABD37FC20538488398C2264

NOTE: PROCEDURE PWENCODE used (Total process time):
 real time 1.01 seconds
 cpu time 0.31 seconds

In the following example, the password that was generated by the sample
code above is used with the PASSWORD= option to sign on:

signon rhost

SIGNON Statement 137

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

 password="{SAS004}D79E9A1821465E55C2AFF53FCABD37FC20538488398C2264";

Note: The encoded password is case-sensitive.

See “PWENCODE Procedure” in Encryption in SAS

PROMPT
causes SAS to prompt the user for a valid password. This value enforces
security.

Alias PASSWD=, PASS=, PWD=, PW=

SASCMD="SAS-command" | SASCMD" | SASCMDV"
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when
client and server sessions run on SMP hardware.

"SAS-command"
specifies a user-defined command that is used to start a SAS process.
SAS/CONNECT adds the proper options to make the SAS session a
SAS/CONNECT server session. The command file that starts the SAS
session is specific to your operating environment. File extensions vary
according to operating environment. Windows filenames use .bat and .cmd
as file extensions. UNIX extensions include .sh, .csh, and .ksh.

z/OS Specifics: The SASCMD= option does not support z/OS command
files, so a z/OS host command file cannot be used as the value for the
SASCMD option. However, you can specify SAS invocation options using the
SASCMD option. To do this, use a colon followed by the desired options as
shown in the following example:

 sascmd=":ls=256"

Windows Specifics: On Windows, the TCP/IP access method appends the
-COMAMID tcp, -ICON, -NOSPLASH, and -NOTERMINAL options

n Windows example:

signon session1 sascmd="c:\Program Files\SASHome\SASFoundation\9.4\sas";

n UNIX example:

signon session1 sascmd="sas -nosyntaxcheck";

n z/OS example:

Because the SASCMD option does not support z/OS command files, a
z/OS host command file is not specified as the value for the SASCMD
option. However, SAS invocation options can be specified using the
SASCMD option. To do this, use a colon (:) followed by the desired
options:

sascmd=":ls=256"

For more information about SASCMD sign-ons in a z/OS operating
environment, see “MP Connections on z/OS” on page 374.

Note: Commands that contain spaces must be enclosed in double quotation
marks.

138 Chapter 7 / SIGNON and SIGNOFF Statements

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

The TCP/IP access method automatically adds options, such as -DMR, to the
server session's SAS command.

Interactions the SASCMD= option that is specified in the SIGNON
statement takes precedence over the SASCMD= system
option.

When you use SASCMD=, do not also use NOCSCRIPT.
Otherwise, NOCSCRIPT is ignored.

See “SASCMD=” on page 113

"!SASCMD"
signs on to a server session using the same command that was used to start
the client session. For example, if the SAS client session was started using
the command

sas -memsize 1024

then specifying "!sascmd" as the value for the SASCMD= option in a server
sign-on causes the server session to be started using "sas" as the start-up
command and –MEMSIZE as the start-up option.

There are some SAS invocation options that are not passed to the server
session when the "!SASCMD" value is specified. In SAS 9.4M3 and later
releases, the METAUSER, METAPASS, and LOGCONFIGLOC options are
not passed to server sign-on sessions that are created using the "!SASCMD"
value.

For example, if you started the SAS client session using the command

sas -memsize 1024 -metapass xyz -metauser abc

and you perform a server sign-on by specifying

signon session1 sascmd="!sascmd -tbufsize 2048"

then the only options that will be effective in the server sign-on are the
-MEMSIZE and -TBUFSIZE options.

"!SASCMDV"
signs on to a server session using the same command that was used to start
the client session and writes the SAS invocation to the SAS log. The “!
SASCMDV” value is identical to the “!SASCMD” option value except that it
also writes the SAS invocation to the SAS log. Here is an example showing
the SASCMDV option specified in the SIGNON statement:

SERVER="SAS-application-server"
in a SAS Intelligence Platform deployment, specifies the name of a SAS
Application Server that contains a SAS/CONNECT server component in its
grouping. The SAS Application Server has been defined in the SAS Metadata
Repository using SAS Deployment Wizard. The SAS Application Server is
configured using a set of system resources, including a SAS/CONNECT server
component and properties that start a SAS/CONNECT server session. The
server properties are equivalent to the options that can be specified in the
SIGNON statement.

"SAS-application-server"
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

SIGNON Statement 139

When you use the SERVER= option, certain system resources must be
configured before you can access a SAS Metadata Server. For details, see
“Metadata Server-based Sign-ons” on page 18.

Requirements Enclose the name of the SAS Application Server in double or
single quotation marks.

If the specified SAS Application Server does not contain a
SAS/CONNECT server component, the server sign-on fails.

Interactions When you use SERVER=, do not specify any other options in the
SIGNON statement. If other options are specified, sign-on is
canceled and this message is displayed:

ERROR: Additional options are not valid
with the SERVER option on the SIGNON command.
These options should be specified in the server definition.

See “SERVERV="SAS-application-server" | _ALL_” on page 140

SAS Management Console: Guide to Users and Permissions
and SAS Management Console online Help

SERVERV="SAS-application-server" | _ALL_
displays a verbose list of the properties that specify a SAS/CONNECT server
sign-on. The server sign-on properties are equivalent to the options that can be
specified in the SIGNON statement. The sign-on properties are associated with a
SAS/CONNECT component, which is included in a set of system resources for
the SAS Application Server.

When you use the SERVERV= option, certain system resources must be
configured before you can access a SAS Metadata Server. Also, one or more
SAS Application Servers should be configured and should contain one or more
SAS/CONNECT components. For details, see “Metadata Server-based Sign-
ons” on page 18.

"SAS-application-server"
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

ALL
displays the sign-on properties for all SAS Application Servers that have
been defined in the SAS Metadata Repository.

Here is an example that displays the values for the SAS/CONNECT component
that is contained in the SAS Application Server SASApp.

signon serverv="sasmain";

Here is the output:

Server= hrmach1 — SAS/CONNECT Server
Remote Session ID= sashost
ServerComponentID= A5Z3NRQF.AR00005L
Remote Host= hrmach1.dorg.com
Communication Protocol= TCP
Service/Port= sasconnect
Port= 2267
Scriptpath= tcpunix.scr
Tbufsize= 4096
Wait= No

140 Chapter 7 / SIGNON and SIGNOFF Statements

SignonWait= No
Status= No
Notify= "joe@apex.com"
Subject= "hrmach1 task completed"

Requirement Enclose the name of the SAS Application Server in double or
single quotation marks.

Interactions When you use SERVERV=, do not specify any other options in
the SIGNON statement. If other options are specified, sign-on is
canceled and this message is displayed:

ERROR: Additional options are not
valid with the SERVERV option on the
SIGNON command. These options should be specified
in the server definition.

See SAS Management Console: Guide to Users and Permissions and
SAS Management Console online Help

SIGNONWAIT=YES | NO
specifies whether a sign-on to a server session is to be executed synchronously
or asynchronously.

YES
specifies synchronous sign-on. A synchronous sign-on causes the client
session to wait until the sign-on to a server session has completed before
control is returned to the client session for continued execution. YES is the
default.

Alias Y

NO
specifies an asynchronous sign-on. An asynchronous sign-on to a server
session begins execution and control is returned to the client session
immediately for continued execution. Asynchronous sign-on allows multiple
tasks (including other sign-ons) to be executed in parallel. Asynchronous
sign-ons reduce the total amount of time that would be used to execute
individual sign-ons to multiple server sessions. Using the saved time, the
client session can execute more statements.

Alias N

Default YES

Interactions The SIGNONWAIT= option in the SIGNON statement takes
precedence over the SIGNONWAIT system option.

If SIGNONWAIT is specified as a system option and
SIGNONWAIT= is not specified as an option in the SIGNON
statement, then the system option will apply to the SIGNON
statement.

If SIGNONWAIT= NO is specified, then the USERID= and
PASSWORD= options cannot be set to _PROMPT_.

SIGNON Statement 141

Tip To find out if sign-on has completed, use the LISTTASK statement
or check the value of the macro variable specified on the
CMACVAR= option in the SIGNON statement.

See “CMACVAR=value” on page 128

“LISTTASK” on page 197

SUBJECT="subject-title"
specifies the subject title for the email notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of
256 characters.

Here is an example showing how to specify a subject using email notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com" subject="First task completed on &SYSHOSTNAME";
rsubmit wait=no;
 code-to-be-executed
endrsubmit;

Restriction If NOTIFY="e-mail-address" is not specified, SUBJECT= will be
ignored.

Interactions If SUBJECT= is specified in the SIGNON statement, then the
subject title will be used in email notifications for asynchronous
RSUBMIT statements unless the SUBJECT= option is specified in
the RSUBMIT statement.

If no SUBJECT= is specified, then the following default subject title
is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.

See “NOTIFY=YES | NO | "e-mail-address"” on page 135

“RSUBMIT” on page 161

TBUFSIZE=buffer-size-in-bytes
specifies the size of the buffer that SAS/CONNECT uses for transferring data
between a client session and a server session.

buffer-size-in-bytes
specifies the size of the buffer that SAS/CONNECT uses for transferring
data. The value must be a number whose value is greater than 0 and is a
multiple of 1024.

Default 32768 bytes

Interactions The TBUFSIZE= option in the SIGNON statement takes
precedence over the TBUFSIZE= system option.

If TBUFSIZE= is specified as a system option in the client session
and in the server session, the value in the client session takes
precedence.

142 Chapter 7 / SIGNON and SIGNOFF Statements

If TBUFSIZE= is specified as a system option in the client session
but is not specified in the SIGNON statement, the system option
value will be used.

Do not specify TBUFSIZE= system option in the server session. If
the TBUFSIZE= system option is included in the server's SAS
invocation, then an update to the server log might be delayed until
the next client request for server processing has completed.

See “TBUFSIZE=” on page 121

USERNAME=user-ID | _PROMPT_
specifies the user ID to be used when connecting to a server session. Here are
the values that can be assigned to USERNAME=:

user-ID
specifies the name to be used when signing on. For details about a valid user
ID, see “User ID and Password Naming Conventions” on page 144.

PROMPT
specifies that SAS prompt the user for a valid user ID. This value enforces
security.

Alias USER=, USERID=, UID=

Details

Difference between the SIGNON Command and
Statement
The primary difference between the command and the statement is that the
SIGNON command can be issued only from the command line in any client SAS
windowing environment window or in a DM statement. The SIGNON statement must
be followed by a semicolon (;) and can be used in any client session.

Difference between Synchronous and Asynchronous
SIGNONs
A sign-on is executed either synchronously or asynchronously.

synchronous
Client session control is not regained until after the sign-on has completed.
Synchronous processing is the default processing mode.

asynchronous
Client session control is regained immediately after the client issues the
SIGNON statement. Subsequent programs can execute in the client session and
in the server sessions while a sign-on is in progress.

Synchronous sign-ons display results and output in the client session. If the
SIGNON is asynchronous, you can use the RGET and RDISPLAY commands and
statements and the LOG= and OUTPUT= options to retrieve and view the results.

SIGNON Statement 143

Difference between SIGNON and AUTOSIGNON
You can explicitly execute the SIGNON statement to establish a connection
between the client session and the server session. A sign-on entails accessing the
computer that the server session will run on and then invoking a SAS/CONNECT
server session.

An automatic sign-on is an implicit sign-on to the server when the client issues a
remote submit request for server processing. When the AUTOSIGNON system
option is set, the RSUBMIT command or statement automatically executes a sign-
on and uses any SAS/CONNECT system options in addition to any connection
options that are specified with RSUBMIT. For example, if you specify either the
NOCONNECTWAIT system option or the CONNECTWAIT=NO option in the
RSUBMIT command or statement, asynchronous RSUBMIT command or
statements will be the default for the entire connection.

User ID and Password Naming Conventions
Each user ID and password is limited to 256 characters that follow these
conventions:

n Mixed case is allowed.

user=joe password=Born2run;

n Periods (.) and spaces are allowed.

n A null value, which is no value, that is delimited with contiguous quotation marks
is allowed.

user=joe password='';

n Quotation marks must enclose values that contain one or more spaces.

user='joe black' password='Born 2 run';

n Quotation marks must enclose values that contain one or more special
characters.

 user='joe?black' password='Born 2 run';

n Quotation marks must enclose values that contain one or more quotation marks.

user='"happy joe"' pw=_prompt_;

n Quotation marks must enclose values that begin with a numeric value.

user='apexdomain\joe' password='2bornot2b';

n Quotation marks must enclose values that do not conform to rules for user-
supplied SAS names. For details about rules, see “Rules for User-Supplied SAS
Names” in SAS Language Reference: Concepts.

z/OS Specifics: SAS/CONNECT supports passwords that have mixed case on
z/OS, and it supports the IBM standard for password phrases that have a length of
up to 100 characters. For information about the IBM standard for password phrases,
see Allowing Mixed-Case Passwords (IBM) and Assigning password phrases (IBM).

144 Chapter 7 / SIGNON and SIGNOFF Statements

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
https://www.ibm.com/support/knowledgecenter/SSB27U_7.1.0/com.ibm.zvm.v710.icha7/amcp.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.icha700/asgpp.htm

Examples

Example 1: Sign On Using a SAS/CONNECT Script
The %LET macro statement stores the remote host name and port number in the
macro variable rhost. The OPTIONS statement specifies the server-ID rhost, and
the FILENAME statement identifies the SAS/CONNECT sign-on script. The
SIGNON statement initiates the connection. The TCP/IP access method is assumed
by default.

%let rhost=rcomputer1.dorg.com 7551;
options remote=rhost;
filename rlink 'external-file-name';
signon;

Example 2: Secured Sign-on Using an Encoded
Password
The USERNAME= and PASSWORD=options in a SIGNON statement ensure a
secured sign-on. At sign-on, the user is prompted for a user name and password,
which is automatically supplied in its encoded form. For details, see the
PASSWORD= option on page 137.

signon rhost
 password="{SAS004}AC8E81601E4BAC347510EEA3ADDDE43F96C21DB9F114A691";

Example 3: Create a Sign-on Windows Command
File
If you use MP CONNECT, you might want each server session to execute on a
different disk. You can use the SASCMD= option to specify a command file that
contains a command to change to a specific disk for the server session to run on.
An example follows of creating a Windows script named mysas.bat

set userdrive=%1
%userdrive%
mkdir \sassdir
cd \sassdir
"C:\Program Files\SASHome\SASFoundation\9.4\sas" -nosyntaxcheck
-work "mywork" %*

To execute the command file, specify its name as the value for SASCMD=.

signon sascmd="mysas.bat";

Example 4: Sign On to Two Server Sessions for
Remote Processing
You want to run SAS programs on two server sessions and download data to your
client session. The configuration follows:

n The client session runs under UNIX.

SIGNON Statement 145

n A server session named TSO runs under z/OS.

From the client session, you can submit the following program from the Program
Editor window in interactive or non-interactive line mode:

 options comamid=tcp;
 %let wnt=xyz.mydomain.com 7551;
1 signon wnt;

 /**/
 /* initiates connection to a z/OS server host */
 /**/
2 filename tsoscr '!sasroot/misc/connect/tcptso9.scr';
 signon tso cscript=tsoscr;

3 /**/
 /* submit statements to a Windows server */
 /**/
 rsubmit wnt wait=no;
 statements to be processed by Windows server
 endrsubmit;
4 /**/
 /* submit statements to z/OS server */
 /**/
 rsubmit tso wait=no;
 statements to be processed by z/OS server
 endrsubmit;
5 waitfor _ALL_ wnt tso;
 /**/
 /* ends both connections */
 /**/
6 signoff tso cscript=tsoscr;
 signoff wnt;

1 The client signs on to the server session WNT.

2 The client uses a SAS/CONNECT script to sign on to the server session TSO.

3 The WNT server session asynchronously processes the statements that are
enclosed by the RSUBMIT and ENDRSUBMIT statements.

4 The TSO server session asynchronously processes the statements that are
enclosed by the RSUBMIT and ENDRSUBMIT statements.

5 The client session waits for both RSUBMIT statements to complete.

6 The client uses scripts to sign off from both server sessions.

Example 5: Use CMACVAR to Test for a Successful
Sign-on
The following example illustrates that the macro variable from a successful sign-on
will be used if an unsuccessful attempt is made.

/**/
/* signon successful, rhost1 will be */
/* set to 0 to indicate success. */
/**/

146 Chapter 7 / SIGNON and SIGNOFF Statements

signon rhost macvar=rhost1;
/**/
/* signon fails because we have already */
/* signed on to this server session, */
/* so rhost2 will be set to 2 to */
/* indicate this, but rhost1 will */
/* still be the MACVAR associated */
/* with rhost. */
/**/
signon rhost macvar=rhost2;
rsubmit rhost wait=no;
 data a;
 x=1;
 run;
endrsubmit;
/**/
/* rhost1 is still the default and */
/* will indicate the progress of any */
/* subsequent RSUBMITs. */
/**/
%put &rhost1;

SIGNOFF Statement
Ends the connection between a client session and a server session.

Valid in: Client session

Syntax
SIGNOFF <options>;

Optional Arguments
ALL

ends all client/server connections in parallel.

If multiple server sessions are active, and _ALL_ is not specified, then the most
recently signed on server session is signed off.

If you use a script for sign-on without using the URL or FTP options, then the
script file will be used to perform the sign-off. For information about the URL and
FTP options in the FILENAME statement, see “FILENAME” on page 201.

If the CMACVAR= option is specified in the SIGNON statement, but not in the
SIGNOFF _ALL_ statement, the macro variable will be updated during the
execution of SIGNOFF _ALL_.

If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only
that macro variable is updated. Any macro variables that were specified in the
SIGNON statement will be ignored.

SIGNOFF Statement 147

See Table 7.5 on page 148 for values that can be returned when you use the
CMACVAR= option for individual task IDs when signing off.

See Table 7.6 on page 148 for values that can be returned when you use the
CMACVAR= _ALL_ option when signing off.

When you run multiple and independent SAS sessions (asynchronous tasks) on
the same multiprocessor machine and a SIGNOFF command is issued, the
asynchronous tasks are converted to synchronous tasks and are completed
before the completion of the signoff.

CMACVAR=value
specifies the name of the macro variable to associate with the sign-off. When
CMACVAR= is specified, SAS generates a return code that provides information
about the state of the sign-off. Except for this condition, the macro variable is set
after the SIGNOFF command is completed.

Note: If the SIGNOFF command fails because of incorrect syntax, then the
macro variable is not set.

Table 7.2 CMACVAR Macro Variable Values in SIGNOFF for Individual Task IDs

Value Description

0 Indicates that the sign-off was successful

1 Indicates that the sign-off failed

2 Indicates that the sign-off was unnecessary

If the CMACVAR= option is specified in the SIGNOFF _ALL_ statement, only
that macro variable is updated.

Table 7.3 CMACVAR Macro Variable Values in SIGNOFF with _ALL_ Option Specified

Value Description

0 Indicates that all sign-offs were successful

1 Indicates that at least one sign-off failed

2 Indicates that the sign-offs were unnecessary

Alias MACVAR=

Interaction If SYSERR is being used and it is already set to 1012 due to a
previous error in a SIGNON, RSUBMIT, or SIGNOFF statement,
then it will not be reset to 0 after submitting a subsequent
successful SIGNON, RSUBMIT, or SIGNOFF statement. Because
SYSERR is reset only at step boundaries, you can reset its value by
performing a valid DATA step or PROC step. For more information

148 Chapter 7 / SIGNON and SIGNOFF Statements

about the SYSERR automatic macro variable, see “SYSERR” in
SAS Macro Language: Reference.

Example “Example 5: Use CMACVAR to Test for a Successful Sign-on ” on
page 146.

CONNECTREMOTE=server-ID
server-ID

specifies the name of the server session that you want to sign off from. If only
one session is active, connectremote=server-ID can be omitted. If multiple
server sessions are active, omitting this option signs off the most recently
accessed server session. You can find out which server session is current by
examining the value assigned to the CONNECTREMOTE= system option.

Alias CREMOTE=, REMOTE=, PROCESS=

CSCRIPT=fileref | 'filespec'
specifies the script file to be used during sign-off. CSCRIPT can be specified as
a fileref or a fully qualified pathname that is enclosed in parenthesis. If multiple
CSCRIPT= options are specified, the last specification takes precedence.

fileref
is the name of the reference file that is associated with the script that ends
the connection. A previously executed FILENAME statement must define the
fileref.

If the fileref that you define for the script is the default fileref RLINK, you can
omit this specification from the SIGNOFF command.

You might use the same script to start and end a connection. If you use one
script to start and end a connection, assign only one fileref.

'filespec'
is the name of the SAS/CONNECT script that you want to execute. If you
have not defined a fileref for the script that you want to execute, use the
filespec in the SIGNOFF command. The filespec can be either a fully
qualified filename or the name of a file in the current working directory.

Do not specify both a fileref and a filespec.

Alias SCRIPT=

NOCSCRIPT
specifies that no SAS/CONNECT script should be used for sign-off.
NOCSCRIPT is useful if you have defined the RLINK fileref but do not want to
use it during sign-off. NOCSCRIPT accelerates sign-off and saves memory
resources.

Alias NOSCRIPT

Details
The SIGNOFF command and the SIGNOFF statement end a connection between a
client and a server session, and execute a script if you are using an access method
that requires a script file. You can issue the SIGNOFF command from the command
line in any client SAS windowing environment window or in a DM statement. You
can also issue a SIGNOFF statement from the client session, which is especially

SIGNOFF Statement 149

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1wrevo4roqsnxn1fbd9yezxvv9k.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1wrevo4roqsnxn1fbd9yezxvv9k.htm&locale=en

useful for interactive line mode sessions or non-interactive jobs. The SIGNOFF
command and the SIGNOFF statement run synchronously.

Examples

Example 1: Check for Sign-off Failures
In this example, a macro variable is assigned at sign-on. Therefore, if the sign-off
fails, the macro variable will be set for this server session.

 /* Sign-on successful, rhost1 will be */
 /* set to 0 to indicate success, and */
 /* macro variable rhost1 is now */
 /* associated with this server */
 /* session. * /
signon rhost cmacvar=rhost1;
 /* Sign-off will fail, and rhost2 */
 /* will be set to 1 to indicate this, */
 /* but because it was unsuccessful, */
 /* rhost1 is still the default macro */
 /* variable associated with this */
 /* server session. */
signoff rhost cmacvar=rhost2
 cscript='noexist.scr';

Example 2: Simple Sign-off for a Single Session
The following FILENAME statement assigns the fileref RLINK to a SAS/CONNECT
script that is named external-file-name:

filename rlink 'external-file-name';

Because the client is connected to only one server session, a short form of the
SIGNOFF statement can be used to end the connection:

signoff;

Example 3: Sign Off from a Specific Session
If multiple server sessions are executing, you can specify the server-ID of the server
from which to sign off.

signoff ahost;

Example 4: Sign Off from Session Using Specific
Script Fileref
The following FILENAME statement assigns another fileref, which is not the default,
to the SAS/CONNECT script:

filename endit 'external-file-name';

150 Chapter 7 / SIGNON and SIGNOFF Statements

In this case, you must specify the fileref in the SIGNOFF statement because it is not
the default script fileref.

signoff cscript=endit;

Example 5: Sign Off By Using a File Specification
When Multiple Sessions Are Running
If you do not assign a fileref to the SAS/CONNECT script, you must specify the
filespec in the SIGNOFF command.

signoff all cscript='external-file-name';

Example 6: Sign Off without a Script
If you do not want to perform any special processing when you sign off, you can
omit the script that is used for signing off.

signoff noscript;

SIGNOFF Statement 151

152 Chapter 7 / SIGNON and SIGNOFF Statements

8
RSPT Statements

Dictionary . 153
RSPT Statement . 153

Dictionary

RSPT Statement
Statements used for remote SQL pass-through.

Valid in: client session

Syntax
CONNECT TO dbms-name <AS alias> <(dbms-argument-1=value <dbms-
argument-2=value>…)>;

SELECT . . . FROM CONNECTION TO dbms-name | alias (dbms-query);

EXECUTE (SQL-statement) BY dbms-name | alias;

DISCONNECT FROM dbms-name | alias;

CONNECT TO REMOTE <AS alias>
(SERVER=serverid <SAPW=server-access-password>
<DBMS=dbms-name>

<PT2DBPW=passthrough-to-DBMS-password>
<DBMSARG=(dbms-argument-1=value <dbms-argument-2=value>…)>);

SELECT . . . FROM CONNECTION TO REMOTE | alias (dbms-query);

153

EXECUTE (SQL-statement) BY REMOTE | alias;

DISCONNECT FROM REMOTE | alias;

Syntax Description
SERVER=server-ID

identifies the name of the SAS server. If the SAS/SHARE multi-user server is
used, server-ID is the name specified for the ID= option in the PROC SERVER
statement. If the SAS/CONNECT single-user server is used, server-ID specifies
the server session. In either case, server-ID should be the same name that is
specified in the SERVER= option in a LIBNAME statement.

SAPW=server-access-password
specifies the password for controlling user access to a multi-user server as
specified in the UAPW= option in the PROC SERVER statement. If UAPW= is
specified when the server is started, you must specify SAPW= in a CONNECT
TO REMOTE statement that specifies that server.

DBMS=dbms-name
identifies the remote DBMS to connect to. This is the same name that you would
specify in a CONNECT TO statement if you were connecting directly to the
DBMS. This option is used if you want to connect to a remote DBMS instead of
the remote SAS SQL processor.

PT2DBPW=passthrough-to-DBMS-password
specifies the password for controlling pass-through access to remote DBMS
databases that are specified by using the PT2DBPW= option in the PROC
SERVER statement. If PT2DBPW= is specified when the server is started, you
must specify PT2DBPW= in a CONNECT TO REMOTE statement that specifies
the same server and specifies DBMS=.

DBMSARG=(dbms-argument-1=value ... <dbms-argument-n=value>)
specifies the arguments that are required by the remote DBMS to establish the
connection. These are the same arguments that you would specify in a
CONNECT TO statement if you were connecting directly to the DBMS.

FROM CONNECTION TO REMOTE | alias (dbms-query);
specifies the connection to the remote SAS SQL processor or the remote DBMS
as the source of data for the SELECT statement and the recipient of the dbms-
query. For remote SAS data that is accessed through the PROC SQL view
engine, dbms-query is any valid SELECT statement in PROC SQL. For a remote
DBMS, dbms-query is the same SQL query that you would specify if you were
connected directly to the DBMS.

EXECUTE (SQL-statement) BY REMOTE | alias;
specifies an SQL statement to be executed by the SAS SQL processor or by the
remote DBMS in the server session. For remote SAS data that is accessed
through the PROC SQL view engine, SQL-statement is any valid PROC SQL
statement except SELECT. For a remote DBMS that is accessed through a
single-user server in a SAS/CONNECT session, SQL-statement is the same
SQL statement that you would specify if you were connected directly to the
DBMS. For a remote DBMS, this statement might not be used if the DBMS is
accessed through a remote multi-user server.

DISCONNECT FROM REMOTE | alias;
ends the connection to the remote DBMS or to the SAS SQL processor in the
server session.

154 Chapter 8 / RSPT Statements

Details

Compute Services and RSPT
Remote SQL pass-through (RSPT) gives you control of where SQL processing
occurs. RSPT enables you to pass SQL statements to a remote SAS SQL
processor by passing them through a remote SAS server. You can also use RSPT
to pass SQL statements to a remote DBMS by passing them through a remote SAS
server and a Remote access engine that supports pass-through.

You can use RSPT to reduce network traffic and to shift CPU load by sending
queries for remote data to a server session. (If the server is a SAS/CONNECT
single-user server that you can also RSUBMIT queries to achieve the same goals.)

For example, this code contains the libref SQL that points to a server library that is
accessed through a SAS/CONNECT or a SAS/SHARE server. Each row in the table
EMPLOYEE must be returned to the client session in order for the summary
functions AVG() and FREQ() to be applied to them.

select employee_title as title, avg(employee_years),
 freq(employee_id)
 from sql.employee
 group by title
 order by title;

However, this code contains a query that is passed through the SAS server to the
SAS SQL processor, which processes each row of the table and returns only the
summary rows to the client session.

select * from connection to remote
 (select employee_title as title,
 avg(employee_years),
 freq(employee_id)
 from sql.employee
 group by title
 order by title);

You can also use RSPT to join server data with client data. For example, you can
specify a subquery against the DB2 data that is sent through the SAS server to the
DB2 server. The rows for the divisions in the southeast region are returned to your
client session, where they are joined with the corresponding rows from the local
data set MyLib.Sales08.

libname mylib 'c:\sales';
proc sql;
 connect to remote
 (server=tso.shr1 dbms=db2
 dbmsarg=(ssid=db2p));
 select * from mylib.sales08,
 connection to remote
 (select qtr, division,
 sales, pct
 from revenue.all08
 where region='Southeast')
 where sales08.div=division;

RSPT Statement 155

If your server is a SAS/CONNECT single-user server, you can also use RSPT to
send non-query SQL statements to a remote DBMS. For example, this code sends
the SQL DELETE statement through the SAS server to the remote Oracle server.

proc sql;
 connect to remote
 (server=sunserv dbms=oracle dbmsarg=(user=scott password=tiger);
 execute (delete from parts.inventory
 where part_bin_number='093A6')
 by remote;

For more information about remote SQL pass-through, see Figure 1.2 on page 8.

Examples

Example 1: RSPT Services: Query a Table in DB2
This example shows how to query a DB2 table that is located on a server by using
SQL statements issued from a client session.

This code is used in a z/OS client session to connect to DB2 and query the
table SYSIBM.SYSTABLES:

connect to db2 (ssid=db2p);

select * from connection to db2
 (select name, creator, colcount
 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

The same connection and query could be performed in a Windows client
session by using RSPT by means of a z/OS server session:

connect to remote
 (server=rmt dbms=db2 dbmsarg=(ssid=db2p));
select * from connection to remote
 (select name, creator, colcount
 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

Using the AS alias clause in the CONNECT TO statement gives the connection
name to the remote DBMS as if connected directly to it. Using this alias
enables you to use queries without changing the FROM CONNECTION TO
clause:

connect to remote as db2
 (server=rmt dbms=db2 dbmsarg=(ssid=db2p));

select * from connection to db2
 (select name, creator, colcount
 from sysibm.systables
 where creator='THOMPSON' or
 creator='JONES');

156 Chapter 8 / RSPT Statements

Example 2: RSPT Services: Subset Remote SAS
Data
Four variations of the code are used to generate a PROC SQL view named
Sales08, which presents sales data for fiscal year 2008. Here are the variations:

n “RSPT: Server Processing and Client Viewing” on page 157

n “RSPT: Client Processing and Viewing” on page 157

n “RSPT: Server Processing and Viewing” on page 158

n “RLS: Client Processing and Viewing” on page 158

RSPT: Server Processing and Client Viewing
The data set is subsetted in the server session where summary function (SUM) is
applied. Only the summary row is returned to the client session.

Processing this view is relatively fast because the data is summarized in the
server session and only the resulting view is returned to the client session.

create view servlib.sales08 as
 select customer, sum(amount) as amount
 from sales
 where year=2008 and
 salesrep='L. Peterson'
 group by customer
 order by customer;

RSPT: Client Processing and Viewing
The client uses RSPT to process server data in the client session and to create the
final view in the client session.

This code creates a PROC SQL view in a SAS library in the client session, which
uses RSPT to access the remote SAS data from the server session:

Note: The libref ServLib can be defined for the server SAS library either in the client
or the server session. In this example, a LIBNAME statement is executed in the
client session to access the library that is located on the server. Alternatively, you
could remotely submit a LIBNAME statement to define the library in the server
session.

libname mylib 'C:\sales';

libname servlib '/dept/sales/revenue' server=servername;

proc sql;
connect to remote
 (server=servername);

RSPT Statement 157

create view mylib.sales08 as
 select * from connection to remote
 (select customer, sum(amount) as amount
 from servlib.sales
 where year=2008 and
 salesrep='L. PETERSON'
 group by customer
 order by customer);

RSPT: Server Processing and Viewing
The client uses RSPT to process server data in the server session and to present
the final view in the server session.

In the server session, you might want to create a view that can be used by many
people. By modifying the previous example to include all sales representatives, the
view satisfies the needs of users who are interested in the sales that are made by
more than one sales representative.

This example creates a view in the server session that summarizes the data
by customer for all sales representatives:

libname servlib '/dept/sales/revenue'
 server=servername;

proc sql;
connect to remote
 (server=servername);

execute
 (create view servlib.cust08 as
 select customer,
 sum(amount) as amount from sales
 where year=2008
 group by customer) by remote;

RLS: Client Processing and Viewing
The client uses RLS to process server data in the client session and to create the
final view in the client session. Using RLS, you can access the server data, and then
subset and summarize the data and create the final view in the client session. The
disadvantage of this method is the inefficient use of network resources to access the
remote data and then to process the data in the client session.

libname mylib 'C:\sales';

libname servlib '/dept/sales/revenue'
 server=servername;

create view mylib.sales08 as
 select customer, sum(amount) as amount
 from servlib.sales

158 Chapter 8 / RSPT Statements

 where year=2008 and
 salesrep='L. PETERSON'
 group by customer
 order by customer;

RSPT Statement 159

160 Chapter 8 / RSPT Statements

9
RSUBMIT Statements

Dictionary . 161
RSUBMIT Statement . 161
ENDRSUBMIT Statement . 181
RDISPLAY Statement . 182
RGET Statement . 183
%SYSLPUT Statement . 184
%SYSRPUT Statement . 191
WAITFOR Statement . 195
LISTTASK Statement . 197
KILLTASK Statement . 198

Dictionary

RSUBMIT Statement
Marks the beginning of a block of statements that a client session submits to a server session for
execution.

Valid in: client session

Syntax
RSUBMIT <options>;

ENDRSUBMIT <CANCEL>;
RDISPLAY <CONNECTREMOTE=> <server-ID;>
RGET <CONNECTREMOTE=> <server-ID>;
%SYSRPUT macro-variable=value;

161

%SYSLPUT macro-variable=value </REMOTE=server-ID>;
WAITFOR <_ANY_ | _ALL_> task1 task2… <TIMEOUT=seconds>;
LISTTASK <_ALL_ | task> ;
KILLTASK <_ALL_ | task1task2>…;

Optional Arguments
AUTHDOMAIN=auth-domain | "auth-domain"

specifies the name of an authentication domain, which is a metadata object that
manages the credentials (user ID and password) that are associated with the
specified domain. Specifying the authentication domain is a convenient way to
obtain the metadata-based user credentials rather than having to explicitly
supply them during server sign-on.

An administrator can define an authentication domain by using the User
Manager in SAS Management Console.

Examples:

authdomain=DefaultAuth
authdomain="SAS/CONNECT Auth Domain"

Restriction Use the AUTHDOMAIN= option only when the AUTOSIGNON
system option has been specified and a sign-on has not yet
occurred.

Requirements The authentication domain and the associated credentials must
be stored in a metadata repository, and the metadata server
must be running in order to resolve the metadata object
specification.

Enclose domain names that are not valid SAS names in double
or single quotation marks.

Interaction If you specify AUTHDOMAIN=, do not also specify USERNAME=
and PASSWORD=. Otherwise, sign-on is canceled.

See For complete details about creating and using authentication
domains, see the SAS Intelligence Platform: Security
Administration Guide.

SAS Management Console: Guide to Users and Permissions
and SAS Management Console online Help

CMACVAR=value
specifies the name of the macro variable in which SAS stores a code indicating
the state of the current RSUBMIT. When an RSUBMIT is executed, SAS checks
the state of the RSUBMIT and stores a return code of 0, 1, or 2 in the specified
CMACVAR variable.

Specifying CMACVAR= in an individual RSUBMIT restricts the macro variable to
that RSUBMIT block. If multiple asynchronous RSUBMIT statements execute in
the same server session, and each RSUBMIT contains a CMACVAR=
specification, each macro variable will be restricted to its respective RSUBMIT
block.

162 Chapter 9 / RSUBMIT Statements

Note: If RSUBMIT fails because of incorrect syntax, then the macro variable is
not set.

The CMACVAR macro variable can contain the following return code values:

Table 9.1 CMACVAR Macro Variable Values in RSUBMIT

Value Description

0 The RSUBMIT is complete.

1 The RSUBMIT failed to execute.

2 The RSUBMIT is still in progress.

Alias MACVAR=

Interactions If the CMACVAR= option is not specified in the RSUBMIT
statement but it is specified in the SIGNON statement, then the
CMACVAR= option on the sign-on will be used.

The CMACVAR= option in the current RSUBMIT block will override
the CMACVAR= that is specified at sign-on.

If SYSERR is being used and it is already set to 1012 due to a
previous error in a SIGNON, RSUBMIT, or SIGNOFF statement, it
will not be reset to 0 after submitting a subsequent successful
SIGNON, RSUBMIT, or SIGNOFF statement. Because SYSERR is
reset only at step boundaries, you can reset its value by
performing a valid DATA step or PROC step.

See “CMACVAR=value” on page 128 in the SIGNON statement

Example “Example 3: The CMACVAR= Option with MP CONNECT” on page
59.

CONNECTPERSIST=YES | NO
specifies whether a connection persists (continues) or is automatically
terminated after an RSUBMIT has completed. A connection results from a sign–
on to the server session.

Here are the values for this option:

YES|Y specifies that a connection to the server session continues. A sign-
off is not automatically performed after the RSUBMIT has
completed. CONNECTPERSIST maintains the connection for
subsequent RSUBMIT statements.

NO|N specifies that a connection to the server session terminates. A
sign-off is automatically performed after the RSUBMIT has
completed. Setting NO requires that you sign on to the server
session again before you perform the next RSUBMIT.

Alias CPERSIST=, PERSIST=

RSUBMIT Statement 163

Default YES

Interaction If the CONNECTPERSIST system option is also specified, the
CONNECTPERSIST= option that is specified in the RSUBMIT
statement takes precedence over the system option.

See “CONNECTPERSIST” on page 107

CONNECTREMOTE=<server-ID>
specifies the name of the server session that the RSUBMIT statements are
executed in. If only one session is active, connectremote=server-ID can be
omitted. If multiple server sessions are active, omitting this option causes the
program statements to be run in the most recently accessed server session. The
current server session is identified by the value that is assigned to the
CONNECTREMOTE system option.

You can specify server-ID using the following formats:

computer-name.port-name
computer-name is the name of a server, and port-name is the name of the
port that the spawner service runs on. If the computer name is longer than
eight characters, assign the computer name to a SAS macro variable and
use the macro variable name as the server ID.

This example assumes that the SAS Connect spawner was started with a
service name and that name is being used.

Example %let sashost=hrmach1.dorg.com;
 rsubmit connectremote=sashost.spawner-servicename;

computer-name.port-number
computer-name is the name of a server, and port-number is the port that the
spawner service runs on.

CAUTION
Specifying computer-name.port-number for the server ID will fail under
these conditions:

n when used in a WAITFOR statement that is used to wait for the
completion of an asynchronous statement remote submit.

Instead, use a one-level name, such as the computer-with-port

n when used in a LIBNAME statement.

Instead, use a one-level name or a two-level name, such as computer-
name.__port-number.

This example assumes that the user id and the password are provided during
the signon.

Example rsubmit connectremote=hrmach1.2267;

computer-with-port
computer-with-port is a macro variable that contains the name of a server
and the port that the spawner service runs on, separated by one or more
spaces. This specification is appropriate in cases where the server-ID must
be specified as a one-level name.

164 Chapter 9 / RSUBMIT Statements

This example assumes that the user id and the password are provided during
the signon.

Example %let sashost=hrmach1.dorg.com 2667;
 rsubmit connectremote=sashost;

computer-name.__port-number
computer-name is the name of a server and port-number is the port that the
spawner service runs on. This format can be used to specify the server-ID
value for the SERVER= option in a LIBNAME statement.

This example assumes that the user id and the password are provided during
the signon.

Example rsubmit connectremote=hrmach1.__2267;

Alias CREMOTE=, PROCESS=, REMOTE=

See “CONNECTREMOTE=” on page 108

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window is displayed for file transfers within
the current RSUBMIT.

Here are the values for this option:

YES|Y specifies that the Transfer Status window is displayed for file
transfers within the current RSUBMIT.

NO|N specifies that the Transfer Status window is not displayed for file
transfers within the current RSUBMIT.

If the CONNECTSTATUS= option is omitted from the RSUBMIT statement, its
value is resolved as follows:

1 If the CONNECTSTATUS= option is specified in the SIGNON statement,
the value for the CONNECTSTATUS= option in the SIGNON statement
is used.

2 If the CONNECTSTATUS system option is specified, the value for the
CONNECTSTATUS system option is used.

3 Otherwise, the default behavior occurs. The default for a synchronous
RSUBMIT is YES, which displays the Transfer Status window. The
default for an asynchronous RSUBMIT is NO, which does not display the
Transfer Status window.

Alias CSTATUS=, STATUS=

Default YES for synchronous RSUBMITs. NO for asynchronous RSUBMITs.

Interaction If the CONNECTSTATUS= option is omitted from the RSUBMIT
statement, its value is resolved as follows:

See “Transfer Status Window” on page 92

“CONNECTSTATUS” on page 110

CONNECTWAIT=YES | NO
specifies whether RSUBMIT blocks execute synchronously or asynchronously.
Synchronous RSUBMIT statements are executed sequentially. An RSUBMIT

RSUBMIT Statement 165

must be completed in the server session before control is returned to the client
session.

For asynchronous RSUBMIT statements, you can execute tasks in multiple
server sessions in parallel. Control is returned to the client session immediately
after an RSUBMIT begins execution to allow continued execution in the client
session and in other server sessions.

Here are the values for this option:

YES|Y specifies that the RSUBMIT blocks execute synchronously.

NO|N specifies that the RSUBMIT blocks execute asynchronously.

If the CONNECTWAIT= option in RSUBMIT is omitted, the value for the
CONNECTWAIT= option is resolved as follows:

1 If the CONNECTWAIT= option is specified in the SIGNON statement (or
if the AUTOSIGNON system option has been specified because a sign-
on has not yet occurred), the value for the CONNECTSTATUS= option in
the SIGNON statement is used.

2 If the CONNECTWAIT system option is specified, the value for the
CONNECTWAIT system option is used.

3 If the CONNECTWAIT= option is not specified in the SIGNON statement
or if the CONNECTWAIT system option is not specified, the default for
the CONNECTWAIT= option is used. The default is YES, which is to
execute synchronously.

Alias CWAIT=, WAIT=

Default YES

Interactions

If the AUTOSIGNON system option has been specified and a sign-
on has not yet occurred, any options that are specified in
RSUBMIT are in effect for the entire connection. For example, if
you specify CONNECTWAIT=NO in RSUBMIT and the
AUTOSIGNON system has been specified, asynchronous
RSUBMIT statements will be the default for the entire connection.
However, the CONNECTWAIT= value can be overridden in
individual RSUBMIT blocks. A connection is terminated using the
SIGNOFF statement.

If CONNECTWAIT=NO is specified, you might also specify the
CMACVAR= option. CMACVAR= enables you to programmatically
test the status of the current asynchronous RSUBMIT to find out
whether the task has completed or is still in progress.

When %SYSRPUT is executed within a synchronous RSUBMIT,
the macro variable is defined in the client session as soon as it
executes.

When %SYSRPUT is executed within an asynchronous RSUBMIT,
the macro variable is defined in the client session when a
synchronization point is encountered. To override this behavior,
use the SYSRPUTSYNC system option.

166 Chapter 9 / RSUBMIT Statements

If you sign on using the AUTOSIGNON system option with both
CONNECTWAIT=NO and CONNECTPERSIST=NO, then an
automatic sign-off will occur.

If an asynchronous SIGNON is followed by an asynchronous
RSUBMIT, then the RSUBMIT statement is blocked until the
asynchronous SIGNON is completed.

See “SYSRPUTSYNC” on page 120

“Synchronization Points” on page 193

“CONNECTWAIT” on page 111

“Example 5: MP CONNECT and the WAITFOR Statement” on
page 63

CSCRIPT=file-specification
specifies the script file to use in an RSUBMIT when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

file-specification
specifies the location of the script file.

Here are the values for file-specification:

"filename"
is the physical location of the script file in the current working directory.
Enclose the filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the script
file. A previously executed FILENAME statement must define the fileref.

If the fileref that you define for the script is the default fileref RLINK, you
can omit this specification from RSUBMIT.

"fully-qualified-filename"
is the full path to the script file. Enclose the fully qualified filename in
double or single quotation marks.

"SASSCRIPT-specification"
is the physical location of the script file in the directory that is specified by
the SASSCRIPT system option.

Alias SCRIPT=

Restriction Use the CSCRIPT= option only when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

Interactions If multiple CSCRIPT= options are specified, the last specification
takes precedence.

When you use the CSCRIPT= option, do not also use the
NOCSCRIPT option. If you use NOCSCRIPT and CSCRIPT=,
sign-on is canceled.

See “ NOCSCRIPT” on page 171

“AUTOSIGNON” on page 99

RSUBMIT Statement 167

FILENAME statement in SAS DATA Step Statements: Reference
and the companion that is appropriate for your operating
environment.

CSYSRPUTSYNC=YES | NO
specifies whether to synchronize the client session's macro variables when the
client session receives results from the server session or when a synchronization
point is encountered. Macro variables are updated in the client session using the
%SYSRPUT macro in an asynchronous RSUBMIT.

Note: The %SYSRPUT macro is executed in the server session.

Here are the values for this option:

YES |
Y

specifies that the client session's macro variables will be updated
when the client session receives the results of the server session's
execution of the %SYSRPUT macro. The results are delivered in
the form of a packet. Specifying YES does not mean that the
client's macro variables will be updated immediately after the
server session's execution of the %SYSRPUT macro variable. YES
means that the client's macro variables will be updated when the
client receives the packet from the server session. Therefore, the
exact time at which the client session's macro variables are
updated will depend on the availability of the client session to
receive the packet from the server session. If the client session is
busy, the server session must wait until the client session is ready
to receive the packet.

NO |
N

specifies that the client session's macro variables will be updated
when a synchronization point is encountered. This is the default.

Alias SYSRPUTSYNC=

Default NO

Interactions If the SYSRPUTSYNC system option is specified, the
CSYSRPUTSYNC= option in RSUBMIT takes precedence over
the system option.

If the SYSRPUTSYNC system option is specified and the
CSYSRPUTSYNC= option in RSUBMIT is not specified, the
system option will apply to the RSUBMIT statement.

Changing the value assigned to the SYRPUTSYNC= option
between consecutive asynchronous RSUBMIT statements causes
unpredictable results. You are advised not to change the value
between asynchronous RSUBMIT statements.

See “Synchronization Points” on page 193

SASCSCRIPT system option on page 120

“FILENAME” in SAS Global Statements: Reference for an example
of how to prevent SYSRPUTSYNC= option overrides.

168 Chapter 9 / RSUBMIT Statements

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en

INHERITLIB=(client-libref1 <=server-libref1> ... client-librefn <=server-librefn>)
enables libraries that are defined in the client session to be inherited by the
server session for Read and Write access. As an option, each client libref can be
associated with a libref that is named differently in the server session. If the
server libref is omitted, the client libref name is used in the server session. A
space is used to separate each libref pair in a series, which is enclosed in
parenthesis.

Note: Because the SAS Work library cannot be reassigned in any SAS session,
you cannot reassign the SAS Work library in the server session either.

Restriction The INHERITLIB= option is not supported in either the SIGNON or
the RSUBMIT statements to start a secondary (nested)
SAS/CONNECT session in a remote SAS/CONNECT server
session. If you use the option this way, the secondary session will
continue, but the option will be ignored and a WARNING is sent to
the SAS log.

Interactions If you use the INHERITLIB= option and the SASCMD= option
when signing on to a server session, then the server session
attempts to access the client library directly rather than to inherit
access to the library via the client session. If the client session and
the server session attempt to access the same file simultaneously,
only one session is granted exclusive access to the file. The other
session's access to the file is denied.

SAS/CONNECT does not support concurrent multi-user access to
the same file. This functionality is supported by SAS/SHARE.

See SASCMD= on page 174

SAS/SHARE User’s Guide

Example This example shows that the libref named Local in the client
session is inherited for use in the server session.

rsubmit job1 inheritlib=(local work=remote);
 libname local list;
 libname remote list;
 data local.a;
 x=1;
 run;
endrsubmit;

LOG=KEEP | PURGE | file-specification< NEW >
OUTPUT=KEEP | PURGE | file-specification< NEW >

directs the SAS log or the SAS output that is generated by the current server
session to the backing store or to the specified file. A backing store is a SAS
utility file that is written to the client SAS Work directory.

Here are the values for these options:

KEEP
spools log or output lines, as applicable, to the backing store or to the
computer on which the client session is running. The log or output lines can
be retrieved using the RGET, RDISPLAY, RSUBMIT CONNECTWAIT=YES,
or SIGNOFF statements. This is the default.

RSUBMIT Statement 169

http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

PURGE
deletes all the log or output lines that are generated by the current server
session. PURGE is used to save disk resources. If you do not need the data,
you can use PURGE to remove large volumes of log or output data that are
written to the backing store.

file-specification < NEW >
specifies a file as the destination for the log or output lines. The file is opened
for output at the beginning of the asynchronous RSUBMIT and is closed at
the end of the asynchronous RSUBMIT. After the current RSUBMIT has
completed, subsequent RSUBMIT log or output lines can be appended to the
preceding RSUBMIT destination file using the LOG= or OUTPUT= options. If
you specify the same filename for multiple RSUBMIT statements and you do
not specify the NEW or MOD options, then the log data will be appended to
the current file by default.

Note: Directing output to the same file for multiple concurrent asynchronous
RSUBMIT statements is not recommended

Here are the values for this option:

"filename "
is the physical location of the SAS log file or the SAS output file. Enclose
the filename in double or single quotation marks.

fileref
is a SAS name that is associated with the physical location of the SAS log
file or the SAS output file.

Note Use the MOD option in the FILENAME statement to open the
referenced file for an append. The MOD option is an external I/O
statement option.

NEW
specifies that the file will be opened for new log output. For example, if the
file already exists from previous RSUBMIT sessions, it is deleted and re-
created rather than appended to the current output log file.

The NEW option takes precedence over any options specified in the
FILENAME statement. For example, the MOD option in the FILENAME
statement in SAS causes output to be appended to an existing file. If you
specify the MOD in the FILENAME statement with the NEW option in the
RSUBMIT statement simultaneously, then the NEW option will be honored
and the specified file will be opened for new output rather than appended.

filename myLog "d:\reports";
SIGNON session1 sascmd="!sascmd -nosyntaxcheck -noterminal
 -noconnectwait";
 rsubmit wait=no log=myLog new;
 data a;
 t=1;
 run;
 endrsubmit;
signoff session1;

Default KEEP

170 Chapter 9 / RSUBMIT Statements

Restriction Use the LOG= and the OUTPUT= options only when executing an
asynchronous RSUBMIT. Otherwise, a WARNING will be displayed
in the log and the options will be ignored.

Interactions If you use both the asynchronous RSUBMIT and the PROC
PRINTTO statements at the same time, the statements will
execute simultaneously making it impossible to predict which
operation will complete first. If the PROC PRINTTO executes first
so that data from the server session can be written to the specified
PROC PRINTTO file, then the LOG= (or the OUTPUT=) option in
the SIGNON statement is ignored, and no data is written to the
specified file.

However, because the asynchronous RSUBMIT and the PROC
PRINTTO statements execute simultaneously, predicting which
operation will complete first is impossible. The timing of the
completions of these operations determines whether the results
are written to the SIGNON log or to the PROC PRINTTO log.

If you direct the log or output lines to a file and then use RGET or
RDISPLAY to retrieve the contents of an empty backing store, this
message is displayed:

WARNING: The LOG option was used to file
log lines for the current RSUBMIT.
There are no log lines for RGET to process.

Note Do not simultaneously use an asynchronous RSUBMIT and the
PROC PRINTTO statement to redirect output. Results are
unpredictable when you use a LOG= or an OUTPUT= option to
redirect output in an asynchronous RSUBMIT and then use the
PROC PRINTTO statement in the client session.

See CONNECTWAIT= option on page 165

“Example 8: Force Macro Variables to Be Defined When
%SYSRPUT Executes” on page 66

NOCSCRIPT
specifies that no script file should be used for sign-on. NOCSCRIPT accelerates
sign-on and conserves memory resources.

Alias NOSCRIPT

Restriction Use the NOCSCRIPT option only when the AUTOSIGNON system
option has been specified and a sign-on has not yet occurred.

Interaction When you use NOCSCRIPT, do not also use SASCMD=,
SERVER=, or CSCRIPT=. If you use NOCSCRIPT with SASCMD=,
NOCSCRIPT is ignored. If you use NOCSCRIPT with SERVER= or
CSCRIPT=, sign-on is canceled.

WARNING: The LOG option was used to
file log lines for the current RSUBMIT.There are no
log lines for RGET to process.

See “AUTOSIGNON” on page 99

“CSCRIPT=file-specification” on page 167

RSUBMIT Statement 171

NOTIFY=YES | NO | "e-mail-address"
specifies whether to notify the user that an asynchronous RSUBMIT has
completed. The notification can be in the form of a message window or an email
message. The NOTIFY option is enabled only at sign-on and remains in effect
for the duration of the server session.

Here are the values for this option:

YES|Y enables notification via a message window. Here is the format
of the default message: Asynchronous task TASK1 has
completed.TASK1 is the server ID. The message window
does not interfere with any other task executions in progress.
To acknowledge the message and to close the window, click
OK.

NO|N disables notification. This is the default.

"e-mail-
address"

enables notification via an email message, and specifies the
email address of the recipient for the notification. Email
addresses are limited to a maximum of 256 characters.
Enclose the email address in double or single quotation marks.
The message includes information about the total time that
was used for the asynchronous RSUBMIT. If the LOG= and
OUTPUT= options are also specified in an asynchronous
RSUBMIT statement, the email message identifies the
locations of the log file and output file.

Here is an example of enabling notification for an asynchronous RSUBMIT:

options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=yes;
 %put should get notification window;
endrsubmit;

To disable notification, you must sign off from the server session and then sign
on to the server session again. When you sign on again, either omit the
NOTIFY= option or specify NOTIFY=NO in the RSUBMIT statement.

Here is an example of disabling notification for the next asynchronous RSUBMIT:

signoff process1;
options autosignon sascmd="!sascmd";
rsubmit process1 wait=no notify=no;
 code-to-be-executed-in-server-session
endrsubmit;

Default NO

Restrictions Notification occurs only for asynchronous RSUBMIT statements.

If NOTIFY=YES or NOTIFY="e-mail-address" is specified in a
synchronous RSUBMIT block, notification fails. Notification is valid
only for an asynchronous RSUBMIT.

Use the NOTIFY= option in RSUBMIT only when the
AUTOSIGNON system option has been specified (because a sign-
on has not yet occurred).

If NOTIFY= is specified in RSUBMIT when the AUTOSIGNON
system option has been specified, but a sign-on has previously
occurred, NOTIFY= has no effect.

172 Chapter 9 / RSUBMIT Statements

Interactions When you specify the NOTIFY="e-mail-address" option, you can
also specify the SUBJECT="subject-title" option.

If NOTIFY=YES and the NOTERMINAL system option has been
specified, the request for notification is ignored. This message is
displayed:

WARNING: The NOTIFY option is valid
only if a TERMINAL is attached
to this SAS session. Option will be ignored.

However, notification can be directed to an email address,
regardless of whether the TERMINAL or NOTERMINAL system
option has been specified.

If NOTIFY="e-mail address" is specified, but the email message
cannot be sent, notification will occur in the form of a message
window, which is the action that occurs when NOTIFY=YES. This
behavior assumes that the NOTERMINAL system option has not
been specified.

If NOTIFY="e-mail address" is specified, the SAS system and the
operating environment that the SAS system runs under must be
configured to support email. Without appropriate configuration,
your attempt to specify notification via email might fail. Contact
your system administrator for details.

Notification fails if NOTIFY=YES or NOTIFY="e-mail address" and
you specify statements or commands (such as RGET or
SIGNOFF) during the asynchronous RSUBMIT that change
execution from asynchronous to synchronous mode.

This message is displayed when the NOTIFY= option is specified
in the RSUBMIT statement:

WARNING: The NOTIFY option is applied
only during SIGNON, but remains in effect for the
entire connection until SIGNOFF.

This message is also displayed for an RSUBMIT for which an
automatic sign-on has occurred.

See CONNECTWAIT=NO option on page 165

AUTOSIGNON System Option on page 99

LOG= and OUTPUT= options on page 133

“SUBJECT="subject-title"” on page 177

EMAILHOST, EMAILPORT, and EMAILSY system options in SAS
System Options: Reference

PASSWORD=password | "encoded-password" | _PROMPT_
specifies the password to use in order to sign on to a server session. The
operating environment that the server session runs under can affect password
naming conventions. For details about password-naming conventions according
to operating environment, see UNIX on page 339, z/OS on page 361, and
Windows on page 383.

RSUBMIT Statement 173

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Here are the values for this option:

password
The value for this option is replaced by Xs in the log. To protect this
password, you should use the security software at your site to limit access to
the SAS program statements that create the server.

See For details about valid passwords and user IDs, see “User ID and
Password Naming Conventions” on page 144.

"encoded-password"
is an encoded version of a password. Using encoded passwords promotes
security and enables you to store SAS programs that do not contain clear-
text passwords.

To obtain an encoded password, specify the clear-text password as input to
the PWENCODE procedure. For information about using PROC
PWENCODE to create an encoded password, see the PASSWORD= on
page 137 option in the SIGNON statement.

Here is an example of code for obtaining an encoded password:

 proc PWENCODE in="srvmach";
run;
{sas001}c2Vydm1hY2g=

The clear-text password srvmach is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password.
sas001 is the key, which is used to decode the encoded password to its
clear-text form when the password is needed.

Note: The encoded password is case sensitive. Use the entire generated
output string, including the key.

Use the output from the PROC PWENCODE statement as the value for
encoded-password in the appropriate statement.

PROMPT specifies that SAS prompt the user for a valid password. This
value enforces security.

Alias PASSWD=, PASS=, PWD=, PW=

Restriction Use the PASSWORD= option only when the AUTOSIGNON system
option has been specified (because a sign-on has not yet occurred).

See “AUTOSIGNON” on page 99

SASCMD="SAS-command" | sascmd" | sascmdv" | "host-command-file"
signs on to the server session on the same symmetric multiprocessing (SMP)
computer that the client session is running on. This option is most useful when
client and server sessions run on SMP hardware.

"SAS command"
n For UNIX and Windows: specifies the SAS command that is used to sign

on to a server session.

Here is a typical example:

sascmd="sas"

174 Chapter 9 / RSUBMIT Statements

As another example, commands that contain spaces must be enclosed in
double quotation marks.

sascmd='"c:\Program Files\SAS\SAS System\9.2\sas.exe"';

n For z/OS: specifies a colon that is followed by any SAS invocation
options.

sascmd=":ls=256"

Here is an example:

!sascmd
For UNIX and Windows, signs on to a server session by using the same
command that was used to start the client session.

!sascmdv
For UNIX and Windows, signs on to a server session by using the same
command that was used to start the client session. The SAS invocation is
written to the SAS log.

"host-command-file"
To execute additional commands before SAS is invoked, you can write a
command file that is specific to your operating environment. Here are the file
extensions according to operating environment: Windows filenames use
the .bat and .cmd extensions. UNIX extensions include .sh, .csh, and .ksh.
The SASCMD= option does not support z/OS command files.

The TCP/IP access method adds options, such as -DMR, to the server session's
SAS command.

For Windows, the TCP/IP access method also appends these options:

n -COMAMID TCP

n -ICON

n -NOSPLASH

n -NOTERMINAL

NODETACH causes a sign-on to occur in a subprocess of the parent's process,
which can use excessive resources. If NODETACH is specified, try setting the
DETACH system option, which causes sign-ons to occur as detached processes
rather than as subprocesses.

Restriction For z/OS, a command file cannot be used. Therefore, use a
semicolon followed by options for the server's SAS invocation.

Requirement SAS commands that contain spaces must be enclosed in double
or single quotation marks.

Interactions If the SASCMD= system option is already specified, the
SASCMD= option that is specified in the RSUBMIT statement
block takes precedence over the system option.

When you use SASCMD=, do not also use NOCSCRIPT.
Otherwise, NOCSCRIPT is ignored.

See “SASCMD=” on page 113

SYNTAXCHECK= and NOSYNTAXCHECK= system options in
SAS System Options: Reference

RSUBMIT Statement 175

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

ICON, NOSPLASH, and NOTERMINAL system options in SAS
Companion for Windows

“COMAMID=” on page 101

“ NOCSCRIPT” on page 171

SERVER="SAS-application-server"
specifies the name of a SAS Application Server that contains a SAS/CONNECT
server component in its grouping. The SAS Application Server has been defined
in the SAS Metadata Repository using SAS Management Console. The SAS
Application Server is configured using a set of system resources, including a
SAS/CONNECT server component and properties that start a SAS/CONNECT
server session. The server properties are equivalent to the options that can be
specified in the SIGNON statement.

When you use the SERVER= option, certain system resources must be
configured before you can access a SAS Metadata Server. For details, see
“Metadata Server-based Sign-ons” on page 18.

"SAS-application-server"
specifies a SAS Application Server that contains a SAS/CONNECT server
component, which has been defined in a SAS Metadata Repository.

Requirements Enclose the name of the SAS Application Server in double or
single quotation marks.

If the specified SAS Application Server does not contain a
SAS/CONNECT server component, the server sign-on fails.

Interactions SERVER= is used in an RSUBMIT when an automatic sign-on is
in effect via the AUTOSIGNON system option rather than when
an explicit sign-on is specified via the SIGNON statement.

When you use SERVER=, do not also use these RSUBMIT
options: NOCSCRIPT, NOTIFY=, PASSWORD=, REMOTE=,
SASCMD=, SCRIPT=, SIGNONWAIT=, or USERNAME=. Here
is an example of a warning:

WARNING: NOTIFY= and SERVER= are mutually exclusive.
Please choose only one of them.

If any of these options is also specified, the entire RSUBMIT
code block will be ignored. Although the AUTOSIGNON system
option might be in effect, a server sign-on will fail.

When you use SERVER=, you can also specify any of these
options in RSUBMIT: CMACVAR=, CONNECTPERSIST=,
CSTATUS=. CWAIT=, INHERITLIB=, LOG=, OUTPUT=,
OUTPUT=, or SYSRPUTSYNC=. These options, when specified
in an RSUBMIT, take precedence over the equivalent options in
the SAS/CONNECT component of the SAS Application Server.

If you use NOCSCRIPT and SERVER=, sign-on is canceled.

The CONNECTPERSIST= and SYSRPUTSYNC= options are
available only in the RSUBMIT statement. They cannot be
specified as sign-on properties for the SAS/CONNECT
component that is contained in the SAS Application Server.

176 Chapter 9 / RSUBMIT Statements

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

See “SERVERV="SAS-application-server" | _ALL_” on page 140 in
SIGNON

“AUTOSIGNON” on page 99

SAS Management Console: Guide to Users and Permissions
and SAS Management Console online Help

SIGNONWAIT=YES | NO
specifies whether a sign-on to a server session is to be executed synchronously
or asynchronously. You can sign on using the SIGNON statement or the
AUTOSIGNON system option.

Here are the values for this option:

YES |
Y

specifies a synchronous sign-on. A synchronous sign-on causes
the client session to wait until the sign-on to a server session has
completed before control is returned to the client session for
continued execution. YES is the default.

NO | N specifies an asynchronous sign-on. An asynchronous sign-on to a
server session begins execution and control is returned to the
client session immediately for continued execution. Asynchronous
sign-on allows multiple tasks (including other sign-ons) to be
executed in parallel. Asynchronous sign-ons reduce the total
amount of time that would be used to execute individual sign-ons
to multiple server sessions. Using the saved time, the client
session can execute more RSUBMIT statements.

Default YES

Interactions If the SIGNONWAIT system option is also specified, the
SIGNONWAIT= option takes precedence over the system option.

If SIGNONWAIT is specified as a system option and the
SIGNONWAIT= option is not specified, the system option will apply
to the RSUBMIT statement.

If SIGNONWAIT=NO is specified, the USERID= and
PASSWORD= options cannot be set to _PROMPT_.

See “SIGNONWAIT” on page 118

“AUTOSIGNON” on page 99

“SIGNON” on page 127

SUBJECT="subject-title"
specifies the subject title for the email notification message that is sent after an
asynchronous RSUBMIT completes. A subject title is limited to a maximum of
256 characters.

Here is an example of specifying a subject using email notification:

options remote=myhost sascmd="!sascmd";
signon notify="joe.smith@apex.com";
rsubmit wait=no subject="First task completed on &SYSHOSTNAME";
 code-to-be-executed
endrsubmit;

RSUBMIT Statement 177

Restriction Use the SUBJECT= option only when the NOTIFY="e-mail-
address" option is in effect.

Interaction If the SUBJECT= option is specified at sign-on, but not specified in
the RSUBMIT statement, then the subject title that is specified at
sign-on is used in the email message for the RSUBMIT. If no
SUBJECT= is specified, the default subject title is used:

SAS/CONNECT task TASK1 has completed.

TASK1 is the server ID.

See “ NOTIFY=YES | NO | "e-mail-address"” on page 172

“NOTIFY Script” on page 298

SAS system options that support email configuration: and
“EMAILPORT” in SAS System Options: Reference in SAS System
Options: Reference

USERNAME=user-ID | _PROMPT_
specifies the user ID to be used when connecting to a server session.

user-ID
specifies the name to be used when using the RSUBMIT statement to submit
code to a remote server session.For details about a valid user ID, see “User
ID and Password Naming Conventions” on page 144.

PROMPT
specifies that SAS prompt the user for a valid user ID. This value enforces
security.

Alias USERID=, USER=, UID=

Restriction Use the USERNAME= option only when the AUTOSIGNON system
option has been specified (because a sign-on has not yet occurred).

See “AUTOSIGNON” on page 99

For details about a valid user ID, see “User ID and Password
Naming Conventions” on page 144.

Details

Table of Procedure Tasks and Examples

Task Statement

Mark the end of a block of statements that a client
session submits to a server session for execution

“ENDRSUBMIT” on page
181

Create a Log window to display the lines from the log.
Create an Output window to list the output generated

“RDISPLAY” on page 182

178 Chapter 9 / RSUBMIT Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0719qq0gsyyuln1b2vuwyk1ylu6.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

from the execution of the statement within an
asynchronous RSUBMIT block

Retrieve the log and output that are created by an
asynchronous RSUBMIT and merge them into the Log
and Output windows of the client session

“RGET” on page 183

Assign a value from the server session to a macro
variable in the client session

“%SYSRPUT” on page
191

Create a macro variable in the server session “%SYSLPUT” on page
184

Cause the client session to wait for the completion of one
or more tasks (asynchronous RSUBMITs) that are in
process

“WAITFOR” on page 195

List all active connections or tasks and identify the
execution status of each connection or task

“LISTTASK” on page 197

For an asynchronous task, force one or more active tasks
or server sessions to terminate immediately

“KILLTASK” on page 198

Difference between SUBMIT and RSUBMIT
The RSUBMIT command and statement cause SAS programming statements that
are entered in a client session to run in a server session. The difference between
the RSUBMIT and the SUBMIT commands is the location of program execution
(client session or server session). Although RSUBMIT executes tasks in a server
session, results and output are delivered to the client session as if they were
executed in the client session.

Difference between the RSUBMIT Statement and
Command
The primary difference between the RSUBMIT command and the statement is that
the command can be used only from a windowing environment session or in the DM
statement. The RSUBMIT statement is used in a client session.

You can use the RSUBMIT command in these environments:

n the command line of the Program Editor window in a client session.

n a DM statement, which uses commands as if they were issued from a command
line in a windowing environment.

n Windows only: the KEYS window in which you assign the RSUBMIT command
to a key. For details, see the SAS Companion for Windows.

RSUBMIT Statement 179

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Difference between Synchronous and Asynchronous
RSUBMITs
An RSUBMIT is executed either synchronously or asynchronously.

synchronous
Client session control is not returned until the RSUBMIT has completed.
Synchronous execution is the default execution mode.

asynchronous
Client session control is returned immediately after an RSUBMIT is sent to a
server session. Program execution can occur in a client session and in one or
more server sessions in parallel.

A synchronous RSUBMIT displays results and output in the client session. If the
RSUBMIT is asynchronous, you can use the RGET and RDISPLAY commands and
statements and the LOG= and OUTPUT= options to retrieve and view the results.

Execute Statements in the RSUBMIT Block
The RSUBMIT command can be used to execute most types of SAS programs in
the server session, except windowing procedures (such as SAS/FSP or SAS/AF
procedures).

The RSUBMIT statement can be used to run SAS/CONNECT from the SAS
windowing environment, an interactive line mode session, or a batch job. The
RSUBMIT and the ENDRSUBMIT statements together constitute the RSUBMIT
block. This RSUBMIT block enables you to separate the server-session statements
from the client-session statements when both are used in the same program. The
statements that are enclosed in the RSUBMIT block are executed in the server
session. All the other statements are executed in the client session when you run
the program.

The following template can be used to build a file that includes statements for both
the client and the server sessions in the same program:

statements for client session
rsubmit;
 statements for server session
endrsubmit;
 statements for client session

Note: The DOWNLOAD and the UPLOAD procedures must be executed by using
the RSUBMIT command or the RSUBMIT statement. You cannot execute UPLOAD
and DOWNLOAD by using the SUBMIT command.

RSUBMIT and ENDRSUBMIT Parsing
When SAS encounters an RSUBMIT statement, it sends the SAS statements in the
RSUBMIT block to SAS/CONNECT. SAS/CONNECT continues parsing the
statements until it encounters the semicolon that follows the ENDRSUBMIT
statement.

The SAS statements within an RSUBMIT block can contain the start of a quoted
string. A second RSUBMIT block can contain the end of the quoted string. Here is

180 Chapter 9 / RSUBMIT Statements

an example of two RSUBMIT blocks in which a quoted string starts in the first
RSUBMIT block and ends in the second RSUBMIT block:

rsubmit;
data _null_;
newmacro='mend;
endrsubmit;
rsubmit;
endrsubmi' || 't; ' ;
put newmacro;
run;
endrsubmit;

If the preceding statements were changed to have "newmacro='mend;
endrsubmit;';" (instead of it being broken between the two RSUBMIT blocks),
parsing of the RSUBMIT block would end with "endrsubmit;" . RSUBMIT block
processing ends after the ENDRSUBMIT statement. The second quotation mark is
processed in the client SAS session, so another quotation mark will need to be
entered before SAS reports an error. Here is an excerpt of the error message:

newmacro = 'mend; endrsubmit;'
 -
ERROR : Statement is not valid or it is used out of proper order.

Avoid including the ENDRSUBMIT statement in a quoted string.

ENDRSUBMIT Statement
Marks the end of a block of statements that a client session submits to a server session for execution.

Valid in: client session

Syntax
ENDRSUBMIT <CANCEL>;

Syntax Description
CANCEL

This option is useful in an interactive line mode session if you see an error in a
previously entered statement, and you want to cancel the step.

Details
The ENDRSUBMIT statement signals the end of a block of statements that begins
with either of the following lines of code:

dm 'rsubmit';

or

ENDRSUBMIT Statement 181

rsubmit;

The server session executes the statements between either of these statements
and the ENDRSUBMIT statement.

Note: Do not use the ENDRSUBMIT statement when using the RSUBMIT
command. Use it only when you use the RSUBMIT statement or the DM RSUBMIT
statement.

The ENDRSUBMIT statement can be used in any type of client session: a SAS
windowing environment, an interactive line mode session, or a batch job. The
RSUBMIT and ENDRSUBMIT statements enable you to include in the same file
statements that are executed in the client session and statements that are executed
in the server session. The statements to be executed in the server session are
enclosed between the RSUBMIT and ENDRSUBMIT statements.

All of the other statements in the program are executed in the client session when
you run the program. Here is a template for the arrangement of statements for the
server and client sessions in the same program:

statements for client session
rsubmit;
 statements for server session
endrsubmit;
more statements for client session

Note: Do not put a comment between the ENDRSUBMIT statement and the
semicolon. Doing so will cause an error message to be displayed in the SAS Log
and can cause unexpected results in your output.

RDISPLAY Statement
Creates a Log window to display the lines from the log and an Output window to list the output generated
from the execution of the statements within an asynchronous RSUBMIT block.

Valid in: client session

Syntax
RDISPLAY <CONNECTREMOTE=server-ID>;

Syntax Description
CONNECTREMOTE=server-IDserver-ID

specifies the name of the server session that the asynchronous RSUBMIT is
executing in or has executed in. If only one session is active, you can omit
server-ID. If multiple server sessions are active and you omit this option, the
spooled log and output statements from the most recently accessed server
session are displayed.

182 Chapter 9 / RSUBMIT Statements

Alias CREMOTE=, PROCESS=, REMOTE=

Details
The RDISPLAY command and the RDISPLAY statement create a Log window to
display the spooled log and an Output window to display the output that is
generated by an asynchronous RSUBMIT.

When an asynchronous RSUBMIT executes, the log and the output are not merged
into the client Log and Output windows. Instead, they are spooled until they are
retrieved at a later time. RDISPLAY enables you to view the spooled log and output
statements that are created by the asynchronous RSUBMIT. The RGET command
and the RGET statement must be used to merge the spooled statements into the
client Log and Output windows.

The primary difference between the RDISPLAY command and the RDISPLAY
statement is that the command can be used only from a windowing environment
session or within a DM statement. The RDISPLAY statement is used in a client
session.

RGET Statement
Retrieves the log and output that are created by an asynchronous RSUBMIT and merges them into the Log
and Output windows of the client session.

Valid in: client session

Syntax
RGET <<CONNECTREMOTE=> server-ID>;

Syntax Description
CONNECTREMOTE=server-IDserver-ID

specifies the name of the server session that generated the spooled log and
output to be retrieved. If only one session is active, server-ID can be omitted. If
multiple server sessions are active and the option is omitted, the spooled log and
output statements from the most recently accessed server session are retrieved
and merged into the client Log and Output windows. You can find out which
server session is the current session by examining the value that is assigned to
the CONNECTREMOTE system option.

Alias CREMOTE=, PROCESS=, REMOTE=

See “CONNECTREMOTE=” on page 108

RGET Statement 183

Details
The RGET command and the RGET statement cause all the spooled log and output
from the execution of an asynchronous RSUBMIT to be merged into the client Log
and Output windows. When an asynchronous RSUBMIT executes, the log and
output are not merged into the client Log and Output windows immediately. Instead,
the log and output are spooled and retrieved later.

If the RGET command or RGET statement is executed while the asynchronous
RSUBMIT is still in progress, all currently spooled log and output statements are
retrieved and merged into client Log and Output windows. The RSUBMIT continues
execution as if it were submitted synchronously. Control is returned to the client
session after the RSUBMIT has completed.

If you do not want RSUBMIT to become synchronous, but you want to check its
progress, use the CMACVAR= option in the RSUBMIT or the SIGNON statement.
CMACVAR= enables you to monitor the progress of an asynchronous RSUBMIT
without causing it to execute synchronously.

Note: For an overview about monitoring SAS tasks, see “Monitor MP CONNECT
Tasks” on page 38.

Note: For asynchronous RSUBMIT statements, the SAS system option _LAST_,
which is used to find out the name of the most recently created data set, is not
updated. Also, if RGET is used to change RSUBMIT execution from asynchronous
to synchronous, the system option _LAST_ is not updated. For more information
about _LAST_, see SAS System Options: Reference.

%SYSLPUT Statement
Creates a single macro variable in the server session or copies a specified group of macro variables to the
server session.

Valid in: client session

Syntax
Form 1: %SYSLPUT macro-variable=value </REMOTE=server-ID>;

Form 2: %SYSLPUT _ALL_ | _AUTOMATIC_ | _GLOBAL_ | _LOCAL_ | _USER_
</LIKE=‘character-string’><REMOTE=server-ID>;

Syntax Description
ALL

copies all user-generated and automatic macro variables to the server session.

184 Chapter 9 / RSUBMIT Statements

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

AUTOMATIC
copies all automatic macro variables to the server session. The automatic
variables copied depend on the SAS products installed at your site and on your
operating system. The scope is identified as AUTOMATIC.

GLOBAL
copies all user-generated global macro variables to the server session. The
scope is identified as GLOBAL.

/LIKE=<‘character-string’ >
Specifies a subset of macro variables whose names match a user-specified
character sequence, or pattern. Only this identified group of variables with
names matching the pattern will be copied to the server session.

Note: The LIKE= option is not case sensitive.

‘character-string’
Specifies the sequence of characters, or pattern, to be used as the criteria for
determining which macro variables are to be copied to the server session.
Character patterns can consist of the following:

n any sequence of characters, A-Z

n any sequence of digits, 0-9

n a single wildcard character in the form of an asterisk (*)

The wildcard character (*) cannot be embedded or used more than once in
the character string. The examples below illustrate how the LIKE= option
works with the wildcard character. For these examples, assume that the
following macro variables are defined in the client session: rc1, rc2, unixHost,
and winHost:

like='rc*'; Wildcard at the end:

returns rc1 and rc2.

like='*Host'; Wildcard at the beginning:

returns unixHost and winHost.

like='*host'; Wildcard at the beginning and
lowercase "h" in name:

returns unixHost and winHost.

like='r*c'; Wildcard in the middle:

is not valid and returns a syntax error.

like='*rc*'; More than one wildcard (at beginning
and end):

is not valid and returns a syntax error.

like='rc'; Wildcard not specified:

returns nothing (no match)

like=' '; Wildcard not specified and ‘character-
string’ is empty:

%SYSLPUT Statement 185

returns nothing (no macro variables are
copied)

Restrictions The wildcard (*) cannot be embedded in the character-string.

The wildcard (*) can be specified only once in the character-
string.

Requirement The wildcard (*) must be used at either the beginning or the
end of the character-string.

Interaction The /REMOTE= and /LIKE= options are independent of each other
and can be specified on the same %SYSLPUT statement,
regardless of order.

Notes Macro variables in the same server session are over-written each
time they are submitted.

Read-Only system options in the remote server are not over written.

Tip To copy all macro variables to the server session without specifying
LIKE= , use the _ALL_ special word in the %SYSLPUT statement.

LOCAL
copies all user-generated local macro variables to the server session. The scope
is the name of the currently executing macro.

macro-variable
specifies the name of a macro variable to be created in the server session.

value
specifies the macro variable reference, a macro invocation, or the character
value to be assigned to the server macro-variable. The character value
should not contain nested quotation marks.

Requirement Values containing special characters, such as the forward
slash (/) or single quotation mark (‘), must be masked using
the %BQUOTE function so that the macro processor correctly
interprets the special character as part of the text and not as
an element of the macro language. See “Example 3: Mask
Character Values with %BQUOTE (Form 1)” on page 189 for
an example of how to use the %BQUOTE function. For more
information about Macro Quoting in general, see “Macro
Quoting” in SAS Macro Language: Reference.

/REMOTE=server-ID
specifies the name of the server session that the macro variable will be created
in. If only one server session is active, the server-ID can be omitted. If multiple
server sessions are active, omitting this option causes the macro to be created in
the most recently accessed server session. You can find out which server
session is currently active by examining the value that is assigned to the
CONNECTREMOTE system option.

Interactions The /REMOTE= option that is specified in the %SYSLPUT macro
statement overrides the CONNECTREMOTE= system option.

186 Chapter 9 / RSUBMIT Statements

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p07u5itr1teq0dn1bx0lli1ri5dy.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p07u5itr1teq0dn1bx0lli1ri5dy.htm&locale=en

The /REMOTE= and /LIKE= options are independent of each other
and can be specified on the same %SYSLPUT statement,
regardless of order.

See “CONNECTREMOTE=” on page 108

USER
copies all user-generated global and local macro variables to the server session.
The scope is identified either as GLOBAL, or as the name of the macro in which
the macro variable is defined.

Details

%SYSLPUT Macro Statement
The %SYSLPUT statement is a macro statement used in SAS/CONNECT that
enables you to do the following:

n create a new macro variable in the server session and assign it a value from the
client session (form 1).

n copy a specified group of existing macro variables and their values from the
client to the server session (form 2).

Note: Unlike the %SYSRPUT statement that is submitted within the RSUBMIT
block of code and processed in the server session, the %SYSLPUT statement is
submitted outside the RSUBMIT code block and processed in the client session.

Create a Single Macro Variable to Be Used in the
Server Session (Form 1)
The %SYSLPUT statement is a macro statement that is submitted in the client
session to create and assign a value to a macro variable in the server session.

If you are signed on to multiple server sessions, %SYSLPUT submits the macro
assignment statement to the most recently used server session. If you are signed on
to only one server session, %SYSLPUT submits the macro assignment statement to
that server session. If you are not signed on to any session, an error condition
results.

When you use asynchronous SIGNONs and RSUBMITs, the implicit last-used
session ID might not always be correct. Use the /REMOTE=option.

For examples of how to use this form of the %SYSLPUT statement, see “Example
1: Create a Macro Variable with %SYSLPUT (Form 1)” on page 188, “Example 2:
Use the Macro Statement with %SYSLPUT (Form 1)” on page 188, and “Example 3:
Mask Character Values with %BQUOTE (Form 1)” on page 189.

%SYSLPUT Statement 187

Copy a Group of Macro Variables (Form 2)
The %SYSLPUT statement also enables you to copy a specified group of existing
macro variables from the client to the server session. The arguments used with this
form enable you to define the group of macro variables to be copied based on
variable type (automatic or user-defined), variable scope (global or local), and
variable name. To copy all macro variables, regardless of type, scope, or name, use
the _ALL_ argument in the %SYSLPUT statement.

You can also use the AUTOSIGNON system option with the %SYSLPUT statement
to automatically sign on to a server session and copy specified macro variables to
that server session. When the %SYSLPUT statement is specified with the
AUTOSIGNON system option, the RSUBMIT command or statement automatically
executes a sign-on and honors all macro variables defined in the %SYSLPUT
statement for that session. For an example of using the AUTOSIGNON system
option with the %SYSLPUT macro statement, see “Example 7: Use %SYSLPUT
with the AUTOSIGNON Option” on page 190. For more information about the
AUTOSIGNON system option, see “AUTOSIGNON” on page 99.

For examples of how to use this form of the %SYSLPUT statement to copy groups
of macro variables, see “Example 4: Copy a Group of Variables to the Server
Session (Form 2)” on page 189, “Example 5: Specify a Group of Variables Using
LIKE= (Form 2)” on page 190, “Example 6: Overwrite Variables in the Same Server
Session (Form 2)” on page 190, and “Example 7: Use %SYSLPUT with the
AUTOSIGNON Option” on page 190.

Examples

Example 1: Create a Macro Variable with
%SYSLPUT (Form 1)
This example creates the macro variable FLAG in the current server session and
assigns a value of 1 to it.

%syslput flag=1;

Example 2: Use the Macro Statement with
%SYSLPUT (Form 1)
%SYSLPUT enables you to dynamically assign values to variables that are used by
macros that are executed in a server session. The macro statement %SYSLPUT is
used to create the macro variable REMID in the server session and to use the value
of the client macro variable RUNID. The REMID variable is used by the %DOLIB
macro, which is executed in a server session, to find out which operating system-
specific library assignment should be used in the server session.

Example Code 9.1 Use %SYSLPUT to Find Out Which Libraries Can Be Used in the
Server Session

%macro assignlib (runid);
 signon rem&runid;
 %syslput remid=&runid;

188 Chapter 9 / RSUBMIT Statements

 rsubmit rem&runid;
 %macro dolib;
 %if (&remid eq 1) %then %do;
 libname mylib 'h:';
 %end;
 %else %if (&remid eq 2) %then %do;
 libname mylib '/afs/some/unix/path';
 %end;
 %mend;
 %dolib;
 endrsubmit;
%mend;

Example 3: Mask Character Values with %BQUOTE
(Form 1)
Because the forward slash is a macro language special character that has a special
meaning to the macro processor, using it in the %SYSLPUT statement, either
directly or indirectly (as a macro variable reference), will cause an error to be
generated. This example uses the %BQUOTE function around the macro variable
reference &pathineed, to mask the forward slashes in a UNIX pathname.

Example Code 9.2 Use %BQUOTE to Mask Character Values That Are Used in a
%SYSLPUT Statement

 %let pathineed=/abc/xyz;
 %syslput pathineed=%bquote(&pathineed);
 rsubmit;
NOTE: Remote submit to computer commencing.
 %put &pathineed
 endrsubmit;
 %put &pathineed /abc/xyz
NOTE: Remote submit to computer complete.

Example 4: Copy a Group of Variables to the Server
Session (Form 2)
This example uses _ALL_ in the %SYSLPUT statement to copy two macro
variables, rc1 and rc2, to the server session. The %PUT statement in the RSUBMIT
block uses variable references, &rc1 and &rc2, to display these variables and their
values in the SAS log. When the %PUT statements execute, the macro processor
resolves the expressions rc1=&rc1 and rc2=&rc2 to rc1=rem1 and rc2=rem2,
respectively, and displays them in the SAS log.

%let rc1=rem1;
%let rc2=rem2;

%syslput _all_;
rsubmit host;
 %put rc1=&rc1
 %put rc2=&rc2
endrsubmit;

%SYSLPUT Statement 189

Example 5: Specify a Group of Variables Using
LIKE= (Form 2)
By specifying _USER_ followed by LIKE=’rc*’ in the %SYSLPUT statement below,
only the user-defined macro variables whose names begin with the letters "rc" are
copied to the server session. Because the macro variable unixHost does not meet
the pattern-matching criteria, it is not recognized by the %PUT statement in the
server session and a warning is displayed in the log. The %PUT statements cause
the expressions rc1=&rc1 and rc2=&rc2 to be displayed as rc1=rem1 and rc2=rem2
in the SAS log.

signon foo sascmd="sas";
 %let rc1=rem1;
 %let rc2=rem2;
 %let unixHost=rem3;

 %syslput _user_/like='rc*' remote=host;
 rsubmit host;
 %put rc1=&rc1 /* writes rc1=rem1 to the log */
 %put rc2=&rc2 /* writes rc2=rem2 to the log */
 %put unixHost=&unixHost; /* generates WARNING: Apparent
symbolic */
 /* reference UNIXHOST not
resolved. */
 endrsubmit;

Example 6: Overwrite Variables in the Same Server
Session (Form 2)

signon foo sascmd="sas";
%let rc1=rem1;
%syslput _global_/like='rc*' remote=host;
rsubmit host;
 %put rc1=&rc1
endrsubmit;

 %let rc1=changeValue;

 rsubmit host;
 %put rc1=&rc2
 endrsubmit;

Example 7: Use %SYSLPUT with the
AUTOSIGNON Option

options autosignon=yes sascmd="sas";
%let rc1=rem1;
%let rc2=rem2;
%syslput _global_/like='rc*' remote=host;

190 Chapter 9 / RSUBMIT Statements

Example 8: Use %SYSLPUT with the
AUTOSIGNON Option in Multi-task Processes

options autosignon;
options sascmd="sas";
%let rc1=rem1;
%let rc2=rem2;
%let trc1=test1;
%let trc2=test2;
%syslput _global_/like='rc*' remote=host1;
%syslput _global_/like='trc*' remote=host2;
Rsubmit host1;
 %put rc1=&rc1;
 %put rc2=&rc2;
Endrsubmit;
Rsubmit host2;
 %put trc1=&trc1;
 %put trc2=&trc2;
Endrsubmit;

%SYSRPUT Statement
Assigns a value from the server session to a macro variable in the client session.

Valid in: server session

Syntax
Form 1: %SYSRPUT macro-variable=value;

Form 2: %SYSRPUT _USER_
</LIKE=‘character-string’>;

Syntax Description
macro-variable

specifies the name of a macro variable in the client session.

value
is a macro variable reference, a macro invocation, or a character string in the
server session that is assigned to the macro-variable in the client session.

/LIKE=<‘character-string’ >
specifies a subset of macro variables whose names match a user-specified
character sequence, or pattern. Only this identified group of variables with
names matching the pattern will be copied to the client session.

Note: The LIKE= option is not case sensitive.

%SYSRPUT Statement 191

‘character-string’
specifies the sequence of characters, or pattern, to be used as the criteria for
determining which macro variables are to be copied to the client session.
Character patterns can consist of the following:

n any sequence of characters, A-Z

n any sequence of digits, 0-9

n a single wildcard character in the form of an asterisk (*)

The wildcard character (*) cannot be embedded or used more than once in
the character string. The examples below illustrate how the LIKE= option
works with the wildcard character. For these examples, assume that the
following macro variables are defined in the client session: rc1, rc2,
linuxHOST, and myHOST:

like='rc*'; Wildcard at the end:

returns rc1 and rc2.

like='*Host'; Wildcard at the beginning:

returns linuxHOST and myHOST.

like='*host'; Wildcard at the beginning and
lowercase "h" in name:

returns linuxHOST and myHOST.

like='r*c'; Wildcard in the middle:

is not valid and returns a syntax error.

like='*rc*'; More than one wildcard (at beginning
and end):

is not valid and returns a syntax error.

like='rc'; Wildcard not specified:

returns nothing (no match)

like=' '; Wildcard not specified and ‘character-
string’ is empty:

returns nothing (no macro variables are
copied)

Restrictions The wildcard (*) cannot be embedded in the character-string.

The wildcard (*) can be specified only once in the character-
string.

Requirement The wildcard (*) must be used at either the beginning or the
end of the character-string.

USER
copies all remote user-defined macro variables from the remote host to the local
host at the same time.

192 Chapter 9 / RSUBMIT Statements

Details

Overview
The %SYSRPUT macro statement is remotely submitted to the server session in
order to assign a value that is available in the server session to a macro variable
that can be accessed from the client session.

Like the %LET statement, the %SYSRPUT statement assigns a value to a macro
variable. Unlike %LET, the %SYSRPUT statement assigns a value to a variable in
the client session, not in the server session where the statement is executed. The
%SYSRPUT statement stores the macro variable in the Global Symbol Table in the
client session.

A synchronization point identifies the time (during an asynchronous RSUBMIT) at
which the macro variable that is specified in the %SYSRPUT statement is defined to
the client session and is available for execution in the client session.

Synchronization Points
Here are the three possible synchronization points:

1 when the RGET statement is executed.

At this time, all macro variables that were specified by using %SYSRPUT are
defined in the client session and are available for execution.

2 when a synchronous RSUBMIT is started in the same server session that an
asynchronous RSUBMIT is already running in.

3 when the SIGNOFF statement is executed.

All macro variables that were specified using %SYSRPUT are defined in the
client session and are available for execution.

All currently spooled log and output statements are retrieved and merged into the
client Log and Output windows. RSUBMIT continues from then on as if it were
synchronous. Control is returned to the client session after the RSUBMIT has
completed. In addition, %SYSRPUT macro variables that have been generated
during the asynchronous RSUBMIT up to that point are defined in the client session.
Thereafter, RSUBMIT becomes synchronous, and macro variables are
synchronized immediately when they are executed.

To override the default for an asynchronous RSUBMIT, you can specify the
SYSRPUTSYNC= option in the RSUBMIT statement. Macro variables are set at the
time of execution rather than at a synchronization point in the client session.

Examples

Example 1: %SYSRPUT
The %SYSRPUT statement is useful for capturing the value that is returned in the
SYSINFO macro variable and for passing that value to the client session. The

%SYSRPUT Statement 193

SYSINFO macro variable contains return-code information that is provided by SAS
procedures.

This example shows how to download a file and to return information about the
success of the step from a batch job.

Example Code 9.3 Using %SYSRPUT to Find Out Whether a Download Is Successful

signon rhost;
rsubmit;
 proc download data=remote.mydata
 out=local.mydata;
 run;
 %sysrput retcode=&sysinfo;
endrsubmit;
%macro checkit;
 %if &retcode=0 %then %do;
 code-to-be-executed-in-client–session
 %end;
%mend checkit;
%checkit;

The %SYSRPUT statement occurs after a PROC DOWNLOAD statement. The
value that is returned by &SYSINFO indicates the success of the PROC
DOWNLOAD statement. After execution in the server session has completed, the
value of the return code that is stored in RETCODE is checked. If server execution
is successful, execution continues in the client session.

If SIGNON, RSUBMIT, or SIGNOFF fails, a SAS/CONNECT batch job returns a
nonzero system condition code. To find out the status of an RSUBMIT execution,
use the %SYSRPUT statement. This macro checks the value of the automatic
macro variable SYSERR. For details, see SAS Macro Language: Reference.

Example 2: %SYSRPUT
This example shows the execution of an asynchronous RSUBMIT. The
SYSRPUTSYNC= option is specified in order to set the client session's macro
variable when %SYSRPUT executes rather than when a synchronization point is
encountered. The value of the macro variable STATUS can be checked to monitor
the progress of the asynchronous RSUBMIT.

Example Code 9.4 Using %SYSRPUT to Monitor the Progress of an Asynchronous
RSUBMIT

rsubmit wait=no csysrputsync=yes;
 %sysrput status=start;
 proc download inlib=sales outlib=tmp;
 run;
 %sysrput status=salescomplete;
 proc download inlib=inventory outlib=tmp;
 run;
 %sysrput status=inventorycomplete;
 proc upload data=sales.store10;
 run;
 %sysrput status=storecomplete;
endrsubmit;

194 Chapter 9 / RSUBMIT Statements

Example 3: %SYSRPUT
This example shows how to identify the server session that the client session is
signed on to:

rsubmit;
%sysrput rhost=&sysscp;
endrsubmit;

WAITFOR Statement
Causes the client session to wait for the completion of one or more tasks (asynchronous RSUBMIT
statements) that are in progress.

Valid in: client session

Syntax
WAITFOR <_ANY_|_ALL_> task task2… <TIMEOUT=seconds>;

Syntax Description
ANY

causes the client session to wait for the completion of any of the specified tasks
(a logical OR of the completion task states).

ALL
causes the client session to wait for the completion of all of the specified tasks (a
logical AND of the completion task states).

task...taskn
identifies one or more asynchronous tasks to be completed. The task
corresponds with the server–ID that is associated with the CONNECTREMOTE=
option when the RSUBMIT is submitted.

TIMEOUT=seconds
allots the interval, in seconds, to wait for one or more asynchronous tasks to
complete. If the specified tasks have not completed by time-out, then the
WAITFOR statement is terminated, control is returned to the client session, and
the asynchronous tasks continue to execute until they are completed. The
SYSRC system macro variable will have a nonzero status.

If the specified tasks are completed before time-out, the WAITFOR statement
returns control to the client session as soon as the specified tasks are
completed.

Note: Specifying TIMEOUT=0 is equivalent to providing no TIMEOUT value.
Specifying a value of 0 causes the client session to wait indefinitely for the
asynchronous tasks to complete before control is returned to the client session.

WAITFOR Statement 195

Default 0

See “CONNECTREMOTE=” on page 108

Details
The WAITFOR statement causes the client session to wait for the completion of one
or more tasks that are in progress in the server session as specified by the options
ANY or _ALL_. WAITFOR synchronizes dependent tasks. You can use WAITFOR
only for asynchronously executing tasks. If you use WAITFOR and there are no
asynchronous tasks executing, the WAITFOR statement does not enforce a wait
condition. Instead, execution continues in the client session.

The name of the task corresponds with the server-ID.

The WAITFOR statement can wait for the completion of one or more tasks. If more
than one task is specified and neither _ANY_ nor _ALL_ is specified, _ANY_ is
implied. The client session will wait for any of the listed tasks to complete before
resuming control. This is not an error condition.

If more than one task is specified, and the _ANY_ option is specified, then the client
session waits for the completion of any of the specified tasks (a logical OR of the
completion task states). If the _ALL_ option is specified, the client session waits for
the completion of all the specified tasks (a logical AND of the completion task
states). The WAITFOR statement does not support complex logical statements,
such as A OR (B AND C).

Invalid tasks that are specified in the WAITFOR statement are ignored but are
identified in notes in the SAS log.

Examples

Example 1: Example 1: WAITFOR
The following example shows the suspension of the client session until both tasks
have completed or 300 seconds (5 minutes) pass, whichever occurs first.

waitfor _all_ remhost printjb timeout=300;

Example 2: Example 2: WAITFOR
The following WAITFOR statement causes the client session to wait for either the
REMHOST or FORMATJB task to complete.

waitfor _any_ remhost formatjb;

196 Chapter 9 / RSUBMIT Statements

LISTTASK Statement
Lists all active connections or tasks and identifies the execution status of each connection or task.

Valid in: client session

Syntax
LISTTASK <<_ALL_> | <task>|>;

Syntax Description
ALL

provides status information about all current tasks.

task
provides status information for the specified task. Identifies the specific task by a
name that corresponds to the server-ID that is associated with the
CONNECTREMOTE= option in the RSUBMIT or SIGNON statement or
command.

See

Details
The LISTTASK statement lists information about all tasks in the current server
session or about a single active task by name. If neither _ALL_ nor task is specified,
information about all current tasks is listed.

Examples

Example 1: Example 1: LISTTASK
The following LISTTASK statement lists information for all tasks. The appearance of
the output varies by operating environment.

listtask _all_;
"REMHOST" - - - - - - - - -
 Type: SAS/CONNECT Process
 State: RUNNING ASYNCHRONOUSLY
"TASK1" - - - - - - - - - -
 Type: SAS/CONNECT Process
 State: COMPLETE

LISTTASK Statement 197

Example 2: Example 2: LISTTASK
The following LISTTASK statement lists information for the REMHOST task only.
The appearance of the output varies by operating environment.

listtask remhost;
"REMHOST" - - - - - - - - - -
 Type: SAS/CONNECT Process
 State: COMPLETE

KILLTASK Statement
For asynchronous tasks, forces one or more active tasks or server sessions to terminate immediately.

Valid in: client session

Syntax
KILLTASK _ALL_ | task1...taskn;

Syntax Description
ALL

terminates all active asynchronous tasks.

task
terminates a specific task by a name that corresponds to the server-ID that is
associated with the CONNECTREMOTE= option in the RSUBMIT statement.

Restriction Use the KILLTASK statement only when executing an
asynchronous RSUBMIT.

See “CONNECTREMOTE=” on page 108

Details
The KILLTASK statement enables users to terminate one or more tasks or server
sessions that are executing asynchronously. The KILLTASK statement is useful
only for an asynchronous RSUBMIT.

Note: KILLTASK should be used for asynchronous tasks that seem to be hung or to
be having a problem. KILLTASK ends the server session. However, do not
substitute KILLTASK for SIGNOFF. Use SIGNOFF to terminate server sessions that
are functioning normally.

198 Chapter 9 / RSUBMIT Statements

KILLTASK causes any log or output lines, as applicable, that have accumulated in
the backing store to be sent to the parent Log and Output windows. Before the data
is sent to the parent Log and Output windows, this message is displayed:

NOTE: Process TASK1 was terminated by KILLTASK statement.

KILLTASK removes the specified task from the list of active tasks and from the
LISTTASK output. If KILLTASK is executed for a completed task, this message is
displayed and the task will not be terminated:

NOTE: Transaction TASK2 was not killed because it is not running asynchronously.

Task termination also deletes the content of the Work library of the server session.

Comparisons
After you use the KILLTASK statement to kill a server session that runs under z/OS,
you must also sign off from the server session. If you do not also sign off from the
server session, your user ID will still be connected to the server session. Here are
the methods for signing off a server session:

n From the same SAS session from which you issued the KILLTASK statement,
sign on to the server session, using your user ID. Then, sign off. The most
recently accessed server session is assumed, by default.

signon user-ID;
signoff user-ID;

n Log on to your user ID, and then cancel the user ID using the CANCEL option.

n Request that an operator cancel your TSO session.

Consult your z/OS documentation for details about logging on and logging off the
z/OS operating environment.

KILLTASK Statement 199

200 Chapter 9 / RSUBMIT Statements

10
FILENAME Statement

Dictionary . 201
FILENAME Statement . 201

Dictionary

FILENAME Statement
Associates a SAS fileref with an external file.

Valid in: client and server session

See: “FILENAME: Windows” in SAS Companion for Windows, “FILE Statement: UNIX” in SAS
Companion for UNIX Environments, and “FILENAME Statement: z/OS” in SAS
Companion for z/OS.

Syntax
FILENAME fileref 'filespec' <access-method> <operating-environment-options>;

Optional Arguments
fileref

specifies the name of a file reference to an external file.

'filespec'
specifies the physical name of an external file so that the external file is
recognized by the operating environment.

201

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chfnoptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0upngkius4n84n17wt1u5znj2de.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0upngkius4n84n17wt1u5znj2de.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en

access-method
specifies a remote file access via a specific access method. For details, see the
access methods that are supported in the FILENAME statement in SAS DATA
Step Statements: Reference.

operating-environment-options
specifies details, such as file attributes and processing attributes, that are
specific to the operating environment.

Details

Overview of the FILENAME Statement
The FILENAME statement associates a SAS fileref (a file reference name) with a
filespec. The fileref must conform to SAS naming rules. The form of the filespec
varies according to operating environment. Some environments require a fully
qualified filename; other environments might permit partial pathnames.

Filerefs are a shorthand method for specifying a file in SAS statements and
commands. After you define a fileref, you can use the fileref in place of the longer
file specification to reference the file throughout a SAS session or program.

A fileref remains associated with an external file only for the duration of the SAS
session. The association is not permanent. Also, a fileref must be defined and the
FILENAME statement must be executed before a SAS statement or command that
uses the fileref can execute.

Use the FILENAME RLINK Statement for Script
Files
A common use of the FILENAME statement is to define filerefs for SAS/CONNECT
script files. A script's fileref can then be specified in SIGNON and SIGNOFF
commands to identify the SAS/CONNECT script that starts or ends the connection.

You can define a default fileref for a script file in a FILENAME statement. The
default script fileref is RLINK. If you specify RLINK as the fileref for your script, you
do not need to specify a fileref or a filespec in SIGNON and SIGNOFF commands or
statements. When SAS executes a SIGNON or a SIGNOFF command without a
specified fileref or a filespec, SAS automatically searches for a file that is defined
with RLINK as the fileref. If RLINK has been defined, SAS executes the
corresponding script.

Use a FILENAME Statement in the SAS Autoexec
File
You can insert a FILENAME statement in the SAS autoexec file to automatically
start and end a SAS/CONNECT server session. An autoexec file contains SAS
statements and commands that you set up to execute automatically each time you
invoke SAS. Its purpose is to automate the execution of statements, commands,
and entire programs that you use routinely in SAS processing. If you use an
autoexec file that contains a FILENAME statement that defines your script's fileref,

202 Chapter 10 / FILENAME Statement

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

you do not have to enter and execute the FILENAME statement each time you want
to establish a connection.

For details about setting up an autoexec file, see the appropriate SAS Companion
documentation for your environment and SAS Language Reference: Concepts.

Use a FILENAME Statement with the UPLOAD and
DOWNLOAD Procedures
You can combine the FILENAME statement with the UPLOAD and DOWNLOAD
procedures to copy external files between SAS sessions. For example, in the client
session, use the FILENAME statement to assign a fileref. The fileref defines the
target location for the external file copy. In the server session, use the FILENAME
statement to assign a fileref to the file to be downloaded to the client session.

Examples

Example 1: Use a FILENAME Statement for a Script
File
If a SAS/CONNECT script is written and copied to a directory in your client
environment, you could use the FILENAME statement to define the default fileref
RLINK for the script, as follows:

filename rlink 'external-file-name';

Because you defined RLINK as the script's fileref, you can use the shortest form of
the SIGNON and SIGNOFF commands or statements. For example, to start the
connection, enter the following:

signon;

If you use one script to start the connection and another script to end the
connection, you must define a unique fileref for each script. For example:

filename rlink 'start-link-script-file';
filename endit 'end-link-script-file';

Subsequently, to start the connection, enter the following command or statement,
which uses the default fileref RLINK for the sign-on script:

signon;

To end the connection, enter the following:

signoff endit;

Example 2: Use a FILENAME Statement with the
UPLOAD and DOWNLOAD Procedures
Suppose you want to download an external file from a server session to a client
session that runs in a directory-based operating environment. Submit the following
FILENAME statement to assign the fileref in the client session:

FILENAME Statement 203

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

filename lhost 'client-file-name';

Then remotely submit the following statements to assign the fileref in the server
session and to perform the download:

rsubmit;
filename rhost 'server-file-name';
 proc download infile=rhost outfile=lhost;
 run;
endrsubmit;

204 Chapter 10 / FILENAME Statement

11
LIBNAME Statement

Dictionary . 205
LIBNAME Statement . 205

Dictionary

LIBNAME Statement
Associates a libref (a shortcut name) with a SAS library that is located on the server for client access.

Valid in: client session

Category: Data Access

Operating
environment:

“LIBNAME Statement: UNIX” in SAS Companion for UNIX Environments, “LIBNAME:
Windows” in SAS Companion for Windows, and “LIBNAME Statement: z/OS” in SAS
Companion for z/OS.

See: Base SAS “LIBNAME” in SAS Global Statements: Reference.

Syntax
LIBNAME libref <engine> <'SAS-library'> SERVER=server-ID <options>
<engine/operating environment-options>;

205

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

Required Arguments
libref

specifies the name of a library reference to a SAS library that is located on the
server. The libref that you specify is presumed to be the server libref for an
existing server library. As alternatives, you could use the SLIBREF= option or the
physical name of the data library.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

'SAS-library'
specifies the physical name for the SAS library on the server to access. If you
specify a server library either as the libref or as the value for the SLIBREF=
option, you must omit the physical name.

If you specify 'SAS-library', the name must be a valid physical name, and it must
be enclosed in single or double quotation marks. For details about specifying a
SAS library, see the documentation that is appropriate to your operating
environment.

SERVER=server-ID
specifies the ID of the server (where the SAS library is located) that you
previously signed on to. The server-ID is the value of the remote-session-ID that
is specified in the SIGNON statement on page 127. A server name must be 8
characters or less and start with an alphabetic character. To specify a server
name that contains more than eight characters, you must store the name in a
macro variable.

Do not use the <computer-name.port-number> format to specify the <server-ID>
value in the SIGNON statement if you are going to specify a LIBNAME statement
on the server. Instead, use the <computer-name._ _port-number> format for the
server-ID value in both the LIBNAME statement and the SIGNON statement.

signon hrcomp1._ _2267;
libname myLib server=hrcomp1._ _2267;

Optional Arguments
ACCESS=READONLY

controls a client's Read access to a SAS library on the server. If you specify this
option, you can read but not update data in the library.

engine
specifies the name of a valid SAS engine for a client to access the server library.
You should not use this option because the client automatically determines
which engine to use for accessing a server. Specify this option only to override
the SAS default for a specific server, or to reduce the time that is needed to
determine which engine to use to access a specific server.

For example, if the server library is located on a server that is running SAS 9 or
later, you could specify the REMOTE engine. Specifying an explicit engine might
improve performance slightly.

For a list of valid engines, see the SAS documentation for your operating
environment. For background information about engines, see SAS Language
Reference: Concepts.

The engine argument is positional. If you use it, it must follow the libref.

206 Chapter 11 / LIBNAME Statement

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

CAUTION
Do not confuse the ENGINE argument with the RENGINE= option. An engine
is used by a client to access a server. The RENGINE= option is used by the server to
access its SAS library.

SLIBREF=server-libref
specifies an existing server libref that you want to reference from the client. Use
this option when you want to reference an existing server libref, but you want to
use a different name for that libref on the client. If you specify the SLIBREF=
option, you do not need to specify the physical name for the SAS library on the
server. SLIBREF= server-libref and 'SAS-library' are mutually exclusive.

Engine and Operating Environment Options
RENGINE=engine-name

specifies the engine for the server session to use to access the SAS library on
the server. Using this option is usually unnecessary because the server
automatically determines the engine to use for processing the data library.
Specify this option only to override the SAS default for a specific library, or to
reduce the time that is used by the server to determine the engine to use.

CAUTION
Do not confuse the RENGINE= option with the ENGINE argument. The
RENGINE= option is used by the server to access its SAS library. The ENGINE
argument is used by a client to access a server.

ROPTIONS="option=value<option=value> ..."
specifies remote options and options that are specific to an operating
environment, which the client passes to the engine on the server that processes
the SAS library. ROPTIONS can be specified for either the default engine or an
alternative engine that is specified by using the RENGINE= option. You can
specify one or more options in the form option=value. Use a blank to separate
the options. You can use the ROPTIONS= option to pass any valid option for the
targeted engine. For information about the options that are supported by a
specific engine, see the documentation for the engine that you use. For details
about options that are specific to an operating environment, see the
documentation that is appropriate for your operating environment.

RMTVIEW=YES | NO
determines whether SAS views are interpreted in the server session or the client
session. SAS views include DATA step views, in addition to views that are
created by using the SQL procedure and the ACCESS procedure (in
SAS/ACCESS software).

SAS views, like SAS data sets, are accessed through an engine. Where a SAS
view is interpreted determines where the view engine is loaded and used. DATA
step views use the SASDSV engine, and PROC SQL views use the SQLVIEW
engine. SAS creates a product-specific engine for each SAS/ACCESS interface
product that the SAS/ACCESS views use for that interface.

When SAS views are interpreted in the server session, the server session might
require large amounts of processor time and storage. However, the amount of
data that is transferred to the client session might be reduced. Conversely,
preventing view processing in the server session might increase the amount of
data that is transferred between the server and the client, but minimizes server
processing time.

LIBNAME Statement 207

Setting the RMTVIEW= option to NO causes SAS views to be interpreted at the
client.

Default YES, which causes views to be interpreted in the server session.

Examples

Example 1: Assign and Define a Libref to Access a
Library on a Server
The following statement associates the libref Sqldslib with the SAS library
Sasxyz.Viewlib.Sasdata. This library is accessed through the server MVSHOST,
which is running in a server session.

libname sqldslib 'sasxyz.viewlib.sasdata' server=mvshost;

Example 2: Associate a Client Libref with a Server
Libref
The following statement associates the client libref Applib with the server libref
Servlib. This library is accessed through the server MYHOST.

libname applib slibref=servlib server=myhost;

Example 3: Specify a Server in the LIBNAME
Statement
The following example shows a spawner invocation on a computer named
MYHOST.MY.NET.WORK. The -SERVICE option specifies that the spawner listens
for client connections on port 2323.

cntspawn -c tcp -service 2323

In the following example, a client uses the TCP/IP access method to connect to a
server session by using a spawner. The name of the computer that the spawner
runs on and the number of the port that the spawner listens on are assigned to the
macro variable REMNAME.

Note: Use a space to separate the computer name from the port number.

A client signs on to the server at the specified port that is defined by REMNAME.
The LIBNAME statement establishes the libref ScorCard to point to a library via the
server and port that are defined by REMNAME.

options comamid=tcp;
%let remname=myhost.my.net.work 2323; /* space between computer */
signon remname; /* name and port number
libname scorcard '.' server=remname;

208 Chapter 11 / LIBNAME Statement

12
LIBNAME Statement,
SASESOCK Engine

Dictionary . 209
LIBNAME Statement: SASESOCK Engine . 209

Dictionary

LIBNAME Statement: SASESOCK Engine
Associates a libref with a TCP/IP pipe (instead of a physical disk device) for processing input and output.
The SASESOCK engine is required for SAS/CONNECT applications that implement MP CONNECT with
piping.

Valid in: client session and server session

Category: Data Access

Operating
environment:

“LIBNAME Statement: UNIX” in SAS Companion for UNIX Environments, “LIBNAME:
Windows” in SAS Companion for Windows, and “LIBNAME Statement: z/OS” in SAS
Companion for z/OS.

See: Base SAS “LIBNAME” in SAS Global Statements: Reference

Syntax
LIBNAME libref SASESOCK "port-specifier" <TIMEOUT=time-in-seconds>;

209

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

Required Arguments
libref

specifies a reference to a TCP/IP pipe instead of to a physical disk device.

The libref that you specify must be a valid SAS name, and it must be the first
argument in the LIBNAME statement.

SASESOCK "port-specifier"
identifies the SASESOCK engine to process input to and output from a TCP/IP
port instead of a physical disk device.

"port-specifier" can be represented in these ways:

":explicit-port"
is a hardcoded port number that specifies an explicit port on the computer
where the asynchronous RSUBMIT is executing. The port number specified
must be between 1 and 65,535.

Example:

LIBNAME payroll SASESOCK ":256";

Range 1–65,535

Requirement If the port number that you specify is in use, access will be
denied until it is available again.

":port service"
specifies the name of the port service on the computer where the
asynchronous RSUBMIT is executing.

Example:

LIBNAME payroll SASESOCK ":pipe1";

Requirements If you specify a port service, it must be configured in the
SERVICES file of the computers at which the client and
server sessions are running.

If the port service that you specify is in use, access will be
denied until it is available again.

See For details about configuring port services in the SERVICES
file, see “Configure the TCP/IP Services File” on page 309.

"computer-name:port-number"
specifies an explicit port number on the computer that is specified by
computer-name.

Example:

LIBNAME payroll SASESOCK "apex.finance.com:256";

Requirement If the port number that you specify is in use, access will be
denied until it is available again.

"computer-name:port service"
specifies the name of the port service on the computer that is specified by
computer-name.

Example:

210 Chapter 12 / LIBNAME Statement, SASESOCK Engine

LIBNAME payroll SASESOCK "apex.finance.com:pipe1";

Requirements If you specify a port service, it must be configured in the
SERVICES file of the computers at which the client and
server sessions are running.

If the port service that you specify is in use, access will be
denied until it is available again.

See For details about configuring port services in the SERVICES
file, see “Configure the TCP/IP Services File” on page 309..

"implicit-port"
is an alias that refers to an implicit port number that SAS dynamically selects
from a pool of available ports when the asynchronous RSUBMIT begins
execution. The actual port that SAS selects is stored automatically in the SAS
Metadata Server without your knowledge of the port's identity. Because the
alias is mapped to the port and is stored in the metadata server, you can
always use the alias without concern about the actual port number.

Example:

LIBNAME payroll SASESOCK "mypipe";

If you use an alias that specifies an implicit port, the client and server
sessions must have access to the SAS Metadata Server. The port number
that is assigned to the alias that you specify is stored in the SAS Metadata
Server. To have access to a SAS Metadata Server, several metadata
properties must be configured via selected SAS options in the SAS session.
Here is an example:

options metaserver="a123.us.company.com"
 metaport=9999
 metauser="metaid"
 metapass="metapwd"
 metaprotocol=bridge
 metarepository="myrepos";

Requirements

If you use an implicit port, do not configure the alias in the
SERVICES file.

See If you specify an implicit port, see SAS system options
METASERVER, METAPORT, METAUSER, METAPASS,
METAPROTOCOL, and METAREPOSITORY in SAS
Language Interfaces to Metadata.

Optional Argument
TIMEOUT=time-in-seconds

specifies the amount of time, in seconds, that a SAS process will wait to
successfully connect to another process. The value for time-in-seconds should
be a positive integer that does not contain symbols, such as +, commas, or
decimal points. Valid time-in-seconds values are 1 to 86,400, inclusively.
Negative values, zero, and non-numeric values will generate a warning and set
the time-out to 10 seconds.

LIBNAME Statement: SASESOCK Engine 211

http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Default 10

Range 1–86400, inclusive

See For an explanation of MP CONNECT using piping, see “Pipeline
Parallelism” on page 33.

For an example of a SAS/CONNECT application that implements MP
CONNECT using piping, see “Example 6: MP CONNECT with Piping”
on page 64.

Example libname in1 sasesock ":pipe1" timeout=50;

212 Chapter 12 / LIBNAME Statement, SASESOCK Engine

13
Commands

Dictionary . 213
SIGNON Command . 213
SIGNOFF Command . 214
RDISPLAY Command . 214
RSUBMIT Command . 214

Dictionary

SIGNON Command
Initiates a connection between a client session and a server session.

Valid in: client

Syntax
SIGNON <options>

Details
For more details, see “SIGNON” on page 127

213

SIGNOFF Command
Ends the connection between a client session and a server session.

Valid in: Client session

Syntax
SIGNOFF <options>

Details
For more details, see “SIGNOFF” on page 147

RDISPLAY Command
Creates a Log window to display the lines from the log and an Output window to list the output generated
from the execution of the statements within an asynchronous RSUBMIT block.

Valid in: client session

Syntax
RDISPLAY <CONNECTREMOTE=server-ID>

Details
For more details, see “RDISPLAY” on page 182

RSUBMIT Command
Marks the beginning of a block of statements that a client session submits to a server session for
execution.

Valid in: client session

214 Chapter 13 / Commands

Syntax
RSUBMIT <options>

Details
For more details, see “RSUBMIT” on page 161

RSUBMIT Command 215

216 Chapter 13 / Commands

Chapter 14
UPLOAD Procedure

Overview: UPLOAD Procedure . 217
Introduction . 218

Syntax: UPLOAD Procedure . 218
PROC UPLOAD Statement . 219
WHERE Statement . 234
EXCLUDE Statement . 235
SELECT Statement . 237
TRANTAB Statement . 238

Usage: UPLOAD Procedure . 239
Using: UPLOAD Procedure . 239

Results: UPLOAD Procedure . 240
Results: UPLOAD Procedure . 240

Examples: UPLOAD Procedure . 240
Example 1: Transfer Specific Member Types . 240
Example 2: The MEMTYPE= Option in the PROC UPLOAD Statement 241
Example 3: Transfer Specific Catalog Entry Types . 241
Example 4: The ENTRYTYPE= Option in the SELECT Statement

in PROC UPLOAD . 242
Example 5: Long Member Names in Catalog Transfers . 242
Example 6: Use LIBRARY Transfers to Transfer Data Set Generations 243
Example 7: Use a SELECT Statement to Transfer Generations 244
Example 8: Transfer Single Data Sets Using PROC UPLOAD 244
Example 9: The DROP= Option in the PROC UPLOAD Statement 245
Example 10: The INLIB= Option in the PROC UPLOAD Statement 245
Example 11: The EXTENDSN= and V6TRANSPORT Options in

the PROC UPLOAD Statement . 245
Example 12: Transfer SAS Utility Files . 246
Example 13: The MEMTYPE= Option in the PROC UPLOAD Statement 246
Example 14: The MEMTYPE= Option in the SELECT Statement 247
Example 15: The MEMTYPE= Option in the EXCLUDE Statement 247
Example 16: Distribute an .EXE File from the Server to Multiple

Clients: UPLOAD . 247
Example 17: Distribute an .EXE File from the Server to Multiple

Clients: DOWNLOAD . 248
Example 18: Create an Index with OUT= Using PROC UPLOAD 248
Example 19: Transfer Data Sets with Extended Attributes 249

217

Example 20: Compute Services and Data Transfer Services
Combined: Macro Capabilities . 250

Example 21: RLS and UPLOAD/DOWNLOAD Combined:
Distribution of Reports over a Network . 252

Overview: UPLOAD Procedure

Introduction
After a SAS/CONNECT client connects to a SAS/CONNECT server, you can
transfer files between a client session and a server session by using the UPLOAD
procedure.

Using PROC UPLOAD in SAS/CONNECT, you can do the following:

n transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC UPLOAD step.

n upload specific entries in a catalog or specific members in a library by using the
SELECT and EXCLUDE statements.

n use WHERE processing and SAS data set options when uploading individual
SAS data sets.

n replicate selected data set attributes when uploading a data set.

n transfer data sets and catalog entries that have been modified on or after the
specified date.

n specify which translation table should be used when uploading a SAS catalog.

See Chapter 5, “Using Data Transfer Services,” on page 87 for more information
about using data transfer services with SAS/CONNECT.

Syntax: UPLOAD Procedure
PROC UPLOAD

<data-set-options>
<catalog-options>
<library-options>
<external-file-options>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 <logical-operator where-expression-n>;
EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;

218 Chapter 14 / UPLOAD Procedure

SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;
TRANTAB NAME=translation-table-name <TYPE=(etype-list)> <OPT=DISP |
SRC>;

PROC UPLOAD Statement
Transfers files from the client to the server.

Alias: none

Syntax
PROC UPLOAD

<data-set-options>
<catalog-options>
<library-options>
<external-file-options>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Data Set Options

CAUTION
Do not confuse the PROC UPLOAD data set options with the SAS data set
options. The PROC UPLOAD data set options are valid only in the context of PROC
UPLOAD. However, two of the PROC UPLOAD data set options (DATA= and OUT=) can
be further characterized by SAS data set options. For details, see the descriptions for
the DATA= on page 222 option and the OUT= on page 227 option.

data-set-options can be one or more of the following:

n “CONSTRAINT=YES | NO” on page 221

n “DATA=client-SAS-data-set <(SAS-data-set-options)>” on page 222

n “DATECOPY” on page 222

n “EXTENDSN=YES | NO” on page 222

n “INDEX=YES | NO” on page 223

n “OUTLIB=server-SAS-data-set <(SAS-data-set-options)>|OUT=” on page 227

n “V6TRANSPORT” on page 228

n “XATTR=YES | NO” on page 229

Catalog Options
catalog-options can be one or more of the following:

n “ENTRYTYPE=etype ” on page 222

PROC UPLOAD Statement 219

n “EXTENDSN=YES | NO” on page 222

n “INCAT=client-SAS-catalog” on page 223

n “OUTCAT=server-SAS-catalog” on page 226

Library Options
library-options can be one or more of the following:

n “CONSTRAINT=YES | NO” on page 221

n “EXTENDSN=YES | NO” on page 222

n “GEN=YES | NO” on page 223

n “INDEX=YES | NO” on page 223

n “INLIB=client-SAS-library ” on page 226

n “MEMTYPE=(mtype-list) ” on page 226

n “OUTLIB=server-SAS-library ” on page 228

n “VIEWTODATA” on page 228

n “V6TRANSPORT” on page 228

External File Options
external-file-options are the following:

n “BINARY” on page 221

n “INFILE=client-file-identifier” on page 224

n “OUTFILE=server-file-identifier” on page 226

Optional Arguments
AFTER=date

specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use
results in data sets or catalog entries being transferred only if they have been
modified on or after the specified date.

The AFTER= option is also valid for external file transfers between most
computers. If a computer is unable to perform the transfer, this message is
displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step
 because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11 TS040, and
later.

220 Chapter 14 / UPLOAD Procedure

For example, the following statement causes the transfer of any data sets or
catalog entries in the library Accts only if they have been modified on or after
December 30, 2001.

proc upload inlib=accts outlib=accts
 after='30dec01'd status=no;

If your client session is using an earlier release of SAS that does not support this
option, PROC UPLOAD produces the following message:

Warning: AFTER= option not supported by earlier
 release; option will be ignored.

Note: If the client is running SAS 6.11 TS020 or SAS 6.08 TS415 through SAS
6.08 TS430, the option is ignored, but no warning is displayed.

BINARY
specifies an upload of a binary image (an exact copy) of an external client file.
Use this option only for uploading external files.

Note: External files are files that are not SAS files.

By default, if the client and server run in different operating environments (for
example, UNIX and Windows), PROC UPLOAD transfers a file from the client to
the server, translating the file from UNIX representation to Windows
representation. Furthermore, PROC UPLOAD inserts record delimiters that are
appropriate for the target environment.

You do not always want to translate a file. For example, you might need to
upload executable files from the client to the server and later download them to
the same or a different client. Binary file format also conserves resources for
users who store their own files and for system backups. The BINARY option
prevents delimiters from being inserted for each file record that is created at the
server. In addition, if the client and server use a different method of data
representation, the BINARY option prevents any data translation between ASCII
and EBCDIC.

Example “Example 16: Distribute an .EXE File from the Server to Multiple
Clients: UPLOAD” on page 247.

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the server when a SAS
data set that has integrity constraints defined is uploaded. You can specify this
option with the DATA= option (if you omit the OUT= option) or with the INLIB=
and OUTLIB= options.

By default, integrity constraints are re-created only when you upload a SAS
library or when you upload a single SAS data set and omit the OUT= option. If
you specify the OUT= option with the DATA= option, the integrity constraints are
not re-created.

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a
transfer. By default, the UPLOAD procedure displays the “Transfer Status
Window” on page 92 (CONNECTSTATUS=YES)

Alias CSTATUS=, STATUS=

PROC UPLOAD Statement 221

Default YES

DATA=client-SAS-data-set <(SAS-data-set-options)>
specifies a SAS data set to upload from the client to the server. If the data set is
a permanent SAS data set, you must define a libref before the PROC UPLOAD
statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data
is uploaded to the server, not to the view definition.

If you do not specify the DATA=, INCAT=, INLIB=, or INFILE= option, the last
SAS data set that was created on the client during your SAS session is
uploaded.

Requirement When you specify the DATA= option, you must either specify the
OUT= option or omit all other output file options.

Interaction The data set is characterized by SAS data set options that were
specified when the data set was created. For example, specifying
the COMPRESS=YES data set option would cause all
observations in the data set to be compressed. You use SAS data
set options to change the data set's characteristics or to apply
new characteristics.

See “OUTLIB=server-SAS-data-set <(SAS-data-set-options)>|OUT=”
on page 227

SAS Data Set Options: Reference

Example “Specify Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 231

DATECOPY
retains the date on which a SAS data set was created and the date on which a
SAS data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be uploaded. Examples of catalog entry types
include DATA and FORMAT.

Alias ETYPE=, ET=

Requirement To use this option, you must also specify the INCAT= and
OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8
bytes) when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the server.

The behavior of the EXTENDSN= option varies according to the SAS release
that is used.

n If both the client and the server run SAS 8 or a later release, and the
V6TRANSPORT option is specified, then the default is to promote the length

222 Chapter 14 / UPLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

of a numeric variable whose length is less than 8 bytes. This is consistent
with SAS 6 behavior. To override this behavior, specify EXTENDSN=NO
along with the V6TRANSPORT option in the UPLOAD statement.

n If either the client or the server runs SAS 6, neither the V6TRANSPORT nor
the EXTENDSN= option is supported or recognized.

n If the client runs SAS 6 and the server runs SAS 8 or a later release, a
numeric variable whose length is less than 8 bytes is promoted , by default.
In this case, specify EXTENDSN=NO in order to override the SAS 6 default
and to prevent the promotion.

See “File Format Translation Algorithms” on page 462 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.

Default NO

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default YES

INCAT=client-SAS-catalog
names a SAS catalog that you want to upload from the client to the server. If the
catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC UPLOAD statement, and you must specify the catalog's
two-level name.

To upload all of the catalogs in a SAS library, specify INCAT=libref._ALL_.

If you specify this form for the INCAT= option, you must specify the same form
for the OUTCAT= option.

You can transfer catalogs with entries that contain graphics output as well as
other catalog entries.

CAUTION
Some catalog entry types are not compatible between SAS releases. If you
attempt to upload a catalog entry from a client to a server and they run different SAS
releases, then the client catalog entry that is being uploaded might not be supported
at the server. In this case, the catalog entry will not be transferred and the following
error message is displayed:

WARNING: FILEFMT entries

INDEX=YES | NO
specifies whether to allow for the upload or download of indexes that are defined
on a SAS data set. This option is turned on by default (set to YES) in PROC
UPLOAD and PROC DOWNLOAD. The INDEX=YES option is invalid when the
OUT= option is specified. If INDEX=YES is specified with the OUT= option, then
INDEX=YES is ignored and a WARNING is sent to the SAS log.

To re-create an index on the server, you can specify INDEX=YES when using
the DATA= option (if you omit the OUT= option) or when using the INLIB= and

PROC UPLOAD Statement 223

OUTLIB= options. Indexes are re-created with the INDEX= procedure option
only when you upload a SAS data set and omit the OUT= option.

An index will be re-created in the server session by default under these
conditions:

n if you do not specify the INDEX= option, you upload a single data set, and
you omit the OUT= option in PROC UPLOAD

n if you do not specify the INDEX= option, and you upload an entire SAS library

For information about PROC UPLOAD options and the default behavior of data
set options on data sets being transferred, see Table 14.9 on page 232.

Do not confuse the PROC UPLOAD data set option, INDEX=, with the SAS data
set option, INDEX=. Both options can be used in the PROC UPLOAD statement,
but they have different roles. The INDEX=<data-set-name> option is used in the
OUT= statement of PROC UPLOAD to create an index on the server data set
during the upload.

The INDEX=YES|NO data set option is a PROC UPLOAD procedure data set
option that is used to allow or deny the upload of an existing index.

Default YES

Restriction If the INDEX=YES and the OUT= option are used together in a
PROC UPLOAD statement, indexes defined on the DATA= data
set will not be re-created on the server.

Requirement If you choose to re-create an index for the data set being
uploaded (using the INDEX= data set option), you must specify
one or more variables to be indexed.

See For syntax information about the SAS data set option INDEX=,
see “INDEX= Data Set Option” in SAS Data Set Options:
Reference.

For conceptual information about SAS data set indexing, see
“Understanding SAS Indexes” in SAS Language Reference:
Concepts.

Example “Example 18: Create an Index with OUT= Using PROC UPLOAD”
on page 248.

INFILE=client-file-identifier
specifies the external file that you want to upload to the server from the client.

If you use the INFILE= option, you must also use the OUTFILE= option.

client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a
single file. You must define the fileref before specifying the PROC UPLOAD
statement.

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location, such as a directory.

member
specifies one or more files in that aggregate storage location. You can use
the asterisk character (*) as a wildcard in the member specification to

224 Chapter 14 / UPLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en

upload multiple files via a single PROC UPLOAD statement. The *
matches zero or more characters.

You must define the fileref before specifying the PROC UPLOAD statement.

Note: The transfer of hidden files is not supported when using the (*)
wildcard

The following examples demonstrate the use of the wildcard character. The
fileref in the examples is loc.

Table 14.1 Examples: The Wildcard Character in PROC UPLOAD

infile=loc('*') A single asterisk specifies all of the
files in the aggregate location.

all files

infile=loc('*dat') A leading asterisk specifies all files
that end with the same characters.

The example selects all files that
end with dat.

testfile.dat
report.old.dat

infile=loc('test*') A trailing asterisk specifies all files
that begin with the same characters.

The example selects all files that
begin with test.

test.dat
testfile.history
test.tar.gz

infile=loc('t*file') An embedded asterisk specifies all
files that have both the same
beginning and ending characters.
The example selects all files that
begin with t and end with file.

tst_1_file
tst_2_file

infile=loc('f*.txt') An asterisk can represent the NULL
string.

f.txt

The example below shows how to use a wildcard to transfer all files whose
filename starts with the letter f and which have an extension of .sas. The
specified files will be downloaded from the /user/progs directory on a UNIX
server to the c:\Users\test directory on a Windows client.

See “FILENAME” on page 201

Example filename locHost 'c:\Users\test';
rsubmit;
 filename remHost '/user/progs';
 proc download infile=remHost('f*.sas')
 outfile=locHost;
 run;
endrsubmit;

Example “Example 2: Use a FILENAME Statement with the UPLOAD and
DOWNLOAD Procedures ” on page 203.

PROC UPLOAD Statement 225

'external-file-name'
is used to explicitly define the file that is to be uploaded.

infile='filename.txt'

INLIB=client-SAS-library
specifies a SAS library to upload from the client to the server. This option must
be used with the OUTLIB= option. Before using this option, you must define the
libref that is used for client-SAS-library.

Alias IN=, INDD=

MEMTYPE=(mtype-list)
specifies one or more member types to be uploaded.

Here are the valid member types:

n ALL

n CATALOG

n DATA

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options.

OUTCAT=server-SAS-catalog
names the SAS catalog that you want to upload to. If you want to create a
permanent SAS catalog, you must define the libref before specifying the PROC
UPLOAD statement, and you must specify a two-level SAS catalog name. To
upload all of the catalogs in a SAS library, specify OUTCAT=libref._ALL_.

TIP If you transfer a catalog that contains entries of type PROGRAM,
you must compile the entries on the target operating environment before
execution. To compile all the PROGRAM entries in a catalog, submit (or
remotely submit) the following statements:

proc build cat=libref.member-name batch;
 compile;
run;

libref identifies the SAS library that contains the catalog, and member-
name identifies the catalog.

Requirement If you use the OUTCAT= option, you must also use the INCAT=
option. If you specify the _ALL_ option in OUTCAT=, you must
also specify _ALL_ in the INCAT= option.

OUTFILE=server-file-identifier
specifies an external file in the server session to which the file in the client
session will be transferred.

Here are the values for server-file-identifier:

226 Chapter 14 / UPLOAD Procedure

"external-filename"
is the physical location of the file in the server session to which the file in the
client session is transferred.

Note: Enclose the filename in double or single quotation marks.

fileref
is the SAS filename that is associated with the physical location of a single
file in the server session.

Note: You must define the fileref before you can specify it in the PROC
UPLOAD statement.

fileref(member)
is the fileref that is associated with an aggregate storage location, such as a
directory or a partitioned data set, in the server session. member specifies
the file in the aggregate storage location that will be transferred.

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory.

Requirement If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=server-SAS-data-set <(SAS-data-set-options)>
OUT=

specifies the SAS data set in the server session that you want the uploaded data
set written to. If you want to create a permanent SAS data set, you must define
the libref before specifying the PROC UPLOAD statement, and you must specify
a two-level SAS data set name.

The transfer of a long name that might be assigned to a data set is restricted by
the SAS release that you are using. SAS releases after SAS 6 support long
names assigned to a data set. If a data set that has a long name is transferred to
a server that runs SAS 6 or earlier, the long name is truncated. For details about
long names, see SAS Language Reference: Concepts.

The OUT= option is a valid form of the OUTLIB= option. The UPLOAD
procedure determines the meaning of the OUT= option as follows:

n If you specify the DATA= option and the OUT= option, the OUT= option
names the output SAS data set.

For example, if the USER= option is set to MyLib, then the following
statement uploads the data set A from the library MyLib on the client to the
library MyLib on the server:

proc upload data=a out=a;
run;

n If you specify only the OUTLIB= option, the UPLOAD procedure uploads the
last SAS data set that was created on the client.

For example, the following statement uploads the last data set that was
created on the client to the data set MyData in the library MyLib on the server
(assuming USER=MyLib).

proc upload out=mydata;

PROC UPLOAD Statement 227

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

run;

n If you specify the INLIB= option and the OUTLIB= option, the OUTLIB=
option specifies the name of a SAS library.

For example, the following statement uploads all of the data sets and
catalogs that are in the library A on the client to the library RmtLib on the
server.

proc upload inlib=a outlib=rmtlib;
run;

For details about the effect of omitting the OUTLIB= option, see “Default Naming
Conventions for Uploaded Data Sets” on page 230.

Interaction Most SAS data set options that were used to characterize the data
set when it was created will not be inherited when the OUT= option
is used. Only the LABEL= and TYPE= data set options are
inherited. However, you can explicitly specify SAS data set options
as arguments to the OUT= option when uploading a data set. For
example, specifying the COMPRESS=YES data set option would
cause all observations in the data set to be compressed. You use
SAS data set options to change the data set's characteristics or to
apply new characteristics.

See “DATA=client-SAS-data-set <(SAS-data-set-options)>” on page 222

SAS Data Set Options: Reference

Example “Specify Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 231

OUTLIB=server-SAS-library
names the destination SAS library on your server where the uploaded data sets
and catalogs from the client are stored. Before using this option, you must define
the libref that is used for server-SAS-library.

Note: The OUTLIB= form of this option is the same as the OUT= option that is
used to specify a SAS data set. When you use the OUTLIB= option, the
UPLOAD procedure determines whether the input option was DATA= or INLIB=
and processes the uploaded objects appropriately.

Alias OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data
sets instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you
would have to perform two separate transfers. If you attempt to use this option
for a single data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 “File Format
Translation Algorithms” on page 462. Specify this option only when you want to
use the SAS 6 translation style explicitly and both the client and the server run
SAS 8 or a later release.

228 Chapter 14 / UPLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length,
you can use the EXTENDSN=NO option along with the V6TRANSPORT option.

XATTR=YES | NO
specifies whether to allow for the upload or download of extended attributes that
are defined on a SAS data set or SAS library. This option is turned on by default
in PROC UPLOAD and PROC DOWNLOAD. The XATTR=YES option is invalid
when the OUT= option is specified.

If XATTR=YES is specified with the OUT= option, then XATTR=YES is ignored
and a WARNING is sent to the SAS log. For example, the following statement
will cause a WARNING to be sent to the SAS log and no extended attributes will
be transferred:

proc upload data=inlib.sales out=outlib.sales xattr=y;
run;

Extended Attributes are not transferred when the OUT= option is specified with
DATA= on PROC DOWNLOAD or PROC UPLOAD. If the XATTR= option is not
specified but the DATA= and OUT= options are, then the data set will be
transferred, but no extended attributes will be transferred. For example, the
following PROC UPLOAD statement will cause the data set Sales to be
transferred without its extended attributes:

proc download data=inlib.sales out=outlib.sales;
run;

If neither the XATTR= nor the OUT= option is specified on PROC UPLOAD or
PROC DOWNLOAD then extended attributes will be transferred. For example,
the following PROC UPLOAD statement will cause the data set Sales to be
uploaded along with its extended attributes:

proc upload data=inlib.sales;
run;

For information about PROC UPLOAD options and the default behavior of data
set options on data sets being transferred, see Table 14.9 on page 232.

Default YES

Restriction If the XATTR=YES and the OUT= option are used together in a
PROC UPLOAD statement, then extended attributes defined on the
variables in the DATA= data set will not be re-created on the server.

Example “Example 19: Transfer Data Sets with Extended Attributes” on page
249

PROC UPLOAD Statement 229

Details

Default Naming Conventions for Uploaded Data
Sets
If you omit the OUT=<output-data-set> option, from the UPLOAD statement, SAS
follows these rules to determine the name for the data set:

n If the input data set (the data set that is specified in the DATA= option) has a
two-level name and the same libref that is defined for the input data set is also
defined in the server session, the data set is uploaded to the library on the server
that is associated with that libref. The data set has the same member name on
the server.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;

If you remotely submit the following statements, the data set Orders.Qtr1 is
uploaded to Orders.Qtr1 on the server.

 /***/
 /* The libref ORDERS is defined in both */
 /* operating environments. */
 /***/
libname orders
 server-SAS-library;
proc upload data=orders.qtr1;
run;

n If the input data set has a two-level name but the libref for the input data set is
not also defined in the server session, then the data set is uploaded to the
default library on the server. This is usually the Work library, but the library might
also be defined by using the User libref.

The data set retains the same data set name that it had on the client. For
example, if you remotely submit the following statement, the data set is uploaded
to Work.Qtr2 on the server.

 /***/
 /* The libref ORDERS is defined only on */
 /* the client. */
 /***/
proc upload data=orders.qtr2;
run;

n If the input data set has a one-level name and the default libref on the client also
exists on the server, the data set is uploaded to that library.

For example, suppose you submit the following statements:

libname orders
 client-SAS-library;
options user=orders;

If you remotely submit the following statements, the data set Orders.Qtr1 is
uploaded to Orders.Qtr1 on the server.

 /***/

230 Chapter 14 / UPLOAD Procedure

 /* The libref ORDERS is defined in both */
 /* operating environments. */
 /***/
libname orders
 server-SAS-library;
libname remote
 server-SAS-library;
 /************************************/
 /* This option has no effect in */
 /* this case. */
 /************************************/
options user=remote;
proc upload data=qtr1;
run;

n If the input data set has a one-level name and the default libref on the client
does not exist on the server, then the data set is uploaded to the default library
on the server. That is, the User libref on the server is used only if the User libref
on the client does not exist on the server.

For example, suppose you submit these statements:

libname orders
 client-SAS-library;
options user=orders;

When you remotely submit the following statements, the data set Orders.Qtr1 is
uploaded to Remote.Qtr1 on the server.

 /***/
 /* The libref ORDERS is defined only on */
 /* the server. */
 /***/
libname remote
 server-SAS-library;
options user=remote;
proc upload data=qtr1;
run;

n If you omit the DATA= option, the last data set that was created on the client
during the SAS session is uploaded to the server, as follows:

proc upload;
run;

The naming conventions on the server follow one of the previously described
rules, based on how the last data set was created.

Specify Data Set Options for the DATA= and OUT=
Options in PROC UPLOAD and PROC
DOWNLOAD

Restrictions on Using Data Set Options
PROC UPLOAD and PROC DOWNLOAD permit you to specify SAS data set
options in the DATA= and OUT= options. However, SAS data set options are not
supported when using the INLIB= and OUTLIB= options, even when you upload

PROC UPLOAD Statement 231

only data sets. You can specify SAS data set options only in the DATA= and OUT=
options of the PROC UPLOAD statement.

You cannot specify SAS data set options in the INLIB= and OUTLIB= options, even
when uploading a single data set. A data set option must be associated with a
specific SAS data set.

An uploaded SAS data set inherits characteristics from the selected SAS data set
options that are listed in this table under any of these conditions:

n DATA= option is used

n INLIB= and OUTLIB= options are used

n DATA=, INLIB=, and OUTLIB= are not used

Table 14.2 Default SAS Data Set Options for Data Set Uploads

SAS Data Set
Option Definition

Inherited When
PROC UPLOAD
DATA= Is Used

Inherited
When PROC
UPLOAD
OUT= Is Used

ALTER= Specifies a password for
ALTER protection.

Yes No

COMPRESS Specifies whether to
compress observations, or
specifies the compression
method.

Yes No

DROP= For an input data set,
excludes the specified
variables from processing;
for an output data set,
excludes the specified
variables from being written
to the data set.

Yes No

GENMAX= Specifies the maximum
number of generations.

Yes No

INDEX= Specifies whether to index a
data set.

The index for an uploaded
SAS data set is created on
the server, not transferred
from the client. To prevent
the creation of the index, you
can specify the INDEX=NO
option in the PROC
UPLOAD statement.

Yes No

KEEP= For an input data set,
specifies the variables to
process; for an output data

Yes No

232 Chapter 14 / UPLOAD Procedure

SAS Data Set
Option Definition

Inherited When
PROC UPLOAD
DATA= Is Used

Inherited
When PROC
UPLOAD
OUT= Is Used

set, specifies the variables to
write to the data set.

LABEL= Specifies whether to label a
data set.

Yes Yes

READ= Specifies a password for
read protection.

Yes No

RENAME= Changes the name of a
variable.

Yes No

REUSE= Specifies whether to reuse
free space in compressed
data sets.

Yes No

SORTEDBY= Specifies the variables by
which the data set is sorted.

Yes No

TYPE= Specifies the data set type. Yes Yes

WRITE= Specifies the password for
WRITE protection.

Yes No

Examples

Example 1: KEEP= Option
In this example, the KEEP= SAS data set option is used as an argument to the
DATA= option in PROC UPLOAD. Because the OUT= option is omitted, the
uploaded data set inherits the characteristics of the input data set, including a
default action to re-create the index. For details about the KEEP= data set option
and a complete list of SAS data set options, see SAS Data Set Options: Reference.

proc upload data=study(keep=age score1 score2);
run;

Example 2: OUT= Option
In this example, because the OUT= option is specified, the uploaded data set does
not inherit the characteristics of the input data set study. Instead, the data set is
renamed as results in the server session. The uploaded data set also inherits only
the LABEL= and TYPE= data set options. For details about the LABEL= and TYPE=
SAS data set options, see SAS Data Set Options: Reference.

PROC UPLOAD Statement 233

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

proc upload data=study out=results;
run;

Example 3: KEEP= and OUT= Options
In this example, the KEEP= SAS data set option is used as an argument to the
OUT= option in PROC UPLOAD. Because the OUT= option is specified, the
uploaded data set does not inherit the characteristics of the input data set study.
Instead, the data set is renamed as results in the server session. The uploaded
data set also inherits only the LABEL= and TYPE= data set options. The
INDEX=NO data set option specifies that the index will not be re-created in the
server session.

For details about the LABEL=, TYPE=, and KEEP= SAS system options, see SAS
Data Set Options: Reference.

proc upload data=study out=results(keep=age score1 score2) index=no;
run;

WHERE Statement
Selects observations from SAS data sets.

Restriction: The UPLOAD procedure processes WHERE statements when you transfer a single SAS
data set.

See: SAS Data Set Options: Reference.

Syntax
WHERE where-expression-1 <logical-operator where-expression-n>;

Syntax Description
where-expression-1

is a WHERE expression.

logical-operator
is one of the following logical operators:

n AND

n AND NOT

n OR

n OR NOT

where-expression-n
is a WHERE expression.

WHERE statements allow multiple WHERE expressions that are joined by
logical operators.

234 Chapter 14 / UPLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

You can use SAS functions in a WHERE expression. Also, note that a DATA step
or a PROC step attempts to use an available index to optimize the selection of
data when an indexed variable is used in combination with one of the following:

n CONTAINS operator

n LIKE operator

n colon modifier with a comparison operator

n TRIM function

n SUBSTR function (in some cases)

To understand when using the SUBSTR function causes an index to be used,
look at the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
 ='character-string';

An index is used in processing when all of the following conditions are met:

n position is equal to 1

n length is less than or equal to the length of variable

n length is equal to the length of character-string

The following example illustrates using a WHERE statement with the UPLOAD
procedure. The uploaded data set contains only the observations that meet the
WHERE condition.

proc upload data=revenue out=new;
 where origin='Atlanta' and revenue < 10000;
run;

For details, see the SAS Data Set Options: Reference.

EXCLUDE Statement
Excludes library members or catalog entries from uploading.

Restriction: You cannot use the EXCLUDE and SELECT statements in the same PROC UPLOAD
step.

Syntax
EXCLUDE lib-member-list </ MEMTYPE=mtype >;
EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB= and
OUTLIB= options in the PROC UPLOAD statement. Use the format cat-entry-list </

EXCLUDE Statement 235

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the PROC
UPLOAD statement.

lib-member-list
specifies which library members to exclude from uploading. You can name each
member explicitly or use one of the following forms:

prefix
specifies all members whose names begin with the character string prefix.
For example, if you specify TEST:, all members with names that begin with
the letters TEST are excluded.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.

Restriction first and last must begin with identical character strings and
must end in a number.

cat-entry-list
specifies which catalog entries to exclude from uploading. Each element of cat-
entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from uploading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from uploading.

Here are the valid member types:

n ALL

n CATALOG

n DATA

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from uploading. Examples of catalog
entry types include FORMAT and DATA.

Alias ETYPE=, ET=

Requirement To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC UPLOAD statement.

236 Chapter 14 / UPLOAD Procedure

SELECT Statement
Selects specific library members or catalog entries to upload.

Restriction: You cannot use the EXCLUDE and SELECT statements in the same PROC UPLOAD
step.

Syntax
SELECT lib-member-list </ MEMTYPE=mtype>;
SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB= and
OUTLIB= options in the PROC UPLOAD statement. Use the format cat-entry-list </
ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the PROC
UPLOAD statement.

lib-member-list
specifies which library members to exclude from uploading. You can name each
member explicitly or use one of the following forms:

prefix
specifies all members whose names begin with the character string prefix.
For example, if you specify TEST:, all members with names that begin with
the letters TEST are excluded.

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.

Restriction first and last must begin with identical character strings and
must end in a number.

cat-entry-list
specifies which catalog entries to exclude from uploading. Each element of cat-
entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from uploading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from uploading.

Here are the valid member types:

n ALL

SELECT Statement 237

n CATALOG

n DATA

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options in the PROC UPLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from uploading. Examples of catalog
entry types include FORMAT and DATA.

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output because entries are
uploaded into the server SAS catalog on the order in which you specify them in
the SELECT statement.

Alias ETYPE=, ET=

Requirement To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC UPLOAD statement.

TRANTAB Statement
Specifies the translation table to use when translating character data for an upload from a SAS/CONNECT
client to a SAS/CONNECT server.

Restriction: You can specify only one translation table per TRANTAB statement. To specify additional
translation tables, use additional TRANTAB statements.

Requirement: To use the TRANTAB statement, you must specify the INCAT= and OUTCAT= options in
the PROC UPLOAD statement.

See: SAS Data Set Options: Reference.

Syntax
TRANTAB NAME=translation-table-name
<options>;

238 Chapter 14 / UPLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Usage: UPLOAD Procedure

Using: UPLOAD Procedure

VALIDMEMNAME and VALIDVARNAME
System Options
If the data that you are transferring contains an invalid SAS name, such as a name
containing special characters, national characters, or embedded blanks, then you
can specify VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND before the sign-
on statement to successfully transfer the files. The following types of data can
contain nonstandard SAS names when you use the VALIDVARNAME and
VALIDMEMNAME system options with PROCS UPLOAD and DOWNLOAD:

n a SAS data set

n a SAS library

n a SAS variable

n a DBMS table

n a DBMS table column heading

Note: You must specify the VALIDMEMNAME and VALIDVARNAME system
options before the SIGNON statement.

For more information about these Base SAS system options, see SAS System
Options: Reference.

Usage: UPLOAD Procedure 239

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Results: UPLOAD Procedure

Results: UPLOAD Procedure
The UPLOAD procedure writes a series of informative messages to the SAS log
when it executes. Examples of these messages are shown in this output:

Output 14.1 SAS Log Messages from the UPLOAD Procedure

NOTE: Remote submit to B commencing.
 1 proc upload infile='client-external-file'
 2 outfile='server-external-file';run;

 NOTE: TEXT upload in progress from infile=client-external-file
 to outfile=server-external-file
 NOTE: Uploaded 4 records and 136 bytes.
 NOTE: 4 records were read from the file client-external-file
 The maximum record length was 65.
 The minimum record length was 0.
 NOTE: 136 bytes were transferred at 68 bytes/second.
 NOTE: The PROCEDURE UPLOAD used 0.04 CPU seconds and 1431K.

 NOTE: Remote submit to B complete.
$

Examples: UPLOAD Procedure

Example 1: Transfer Specific Member Types
If you specify the INLIB= and OUTLIB= options in the PROC UPLOAD or PROC
DOWNLOAD statements, you can specify which member types to transfer by using
the MEMTYPE= option in one of the following statements:

n PROC UPLOAD

n PROC DOWNLOAD

n SELECT

240 Chapter 14 / UPLOAD Procedure

n EXCLUDE

Valid values for the MEMTYPE= option are DATA, CATALOG, MDDB view, FDB,
and ALL. If you use this option in the SELECT or EXCLUDE statement, you can
specify only one value. If you use this option in the PROC UPLOAD or the PROC
DOWNLOAD statement, you can specify a list of MEMTYPE values enclosed in
parentheses. This example uploads all data sets and catalogs that are in the library
This on the client and stores them in the library That on the server.

rsubmit;
 proc upload inlib=this outlib=that
 memtype=(data catalog);
endrsubmit;

Example 2: The MEMTYPE= Option in the PROC
UPLOAD Statement

This example uploads all catalogs and data sets that are in the library Loclib on the
client, except the data sets that are named Z4, Z5, Z6, and Z7. It then stores them in
the library Remlib on the server:

rsubmit;
 proc upload inlib=loclib outlib=remlib mt=all;
 exclude z4-z7 / memtype=data;
 run;
endrsubmit;

Example 3: Transfer Specific Catalog Entry Types
When you include the INCAT= and OUTCAT= options in the PROC UPLOAD or
PROC DOWNLOAD statement, you can specify which entry types to transfer by
using the ENTRYTYPE= option in one of the following statements:

n PROC UPLOAD

n PROC DOWNLOAD

n SELECT

n EXCLUDE

This example uploads all Slist catalog entries from the Cat catalog in the library
Loclib on the client and stores them in the catalog Upcat in the library Remlib on the
server:

rsubmit;
 proc upload incat=loclib.cat
 outcat=remlib.upcat entrytype=slist;
 run;
endrsubmit;

Example 3: Transfer Specific Catalog Entry Types 241

Example 4: The ENTRYTYPE= Option in the
SELECT Statement in PROC UPLOAD

If the default library is Work, this example uploads the FORMAT catalog entries XYZ
and ABC, the INFMT catalog entry Grades, and the SCL entries A and B that are in
the Work.Locfmt catalog on the client. It then stores them in the Work.Remfmt
catalog on the server: If you omit the ENTRYTYPE= option and also omit the
SELECT and EXCLUDE statements, all catalog entries are transferred.

proc format lib=work.locfmt;
 invalue grades 'one'=1;
 value abc 1='one';
 value xyz 1='one';
run;
rsubmit;
 proc upload incat=locfmt outcat=remfmt;
 select xyz.format grades
 abc (et=format) / et=infmt;
 select a b / et=scl;
 run;
endrsubmit;

Example 5: Long Member Names in Catalog
Transfers

This example uses PROC UPLOAD to transfer entire catalogs by using both the
INCAT= and OUTCAT= options:

rsubmit;
 proc upload
 incat=loclib.monthlysalary
 outcat=monthlyupdate;
 run;
 proc upload
 incat=loclib.employeedata
 outcat=remlib.cat;
 run;

 proc upload incat=sasuser.base
 outcat = remlib.basecatalog;
 run;

endrsubmit;

242 Chapter 14 / UPLOAD Procedure

Example 6: Use LIBRARY Transfers to Transfer
Data Set Generations

Generation data sets are historical versions of SAS data sets, SAS views, and
SAS/ACCESS files. They enable you to keep a historical record of the changes that
you make to these files. There are two data set options that are useful when
manipulating generations of SAS data sets: GENMAX (maximum number of
generations) and GENNUM (generation number). GENMAX specifies how many
generations to keep, and GENNUM is used to access a specific version of a
generation group. SAS/CONNECT transfers generations of SAS data sets by
default during library transfers. The base data set, as well as all of its historical
versions, are transferred. If you do not want all generations to be transferred, you
should do one of the following:

n transfer a library using the GEN=NO option.

n transfer single data sets. Only the specified data set is transferred.

This example transfers the client data set Local.Sales as well as its generations to
the server library Remote. If the data set Sales already exists in the output library,
the base and all existing generations are deleted and replaced by those that are
uploaded.

data local.sales(genmax=3);
 input store sales95 sales96 sales97;
 datalines;
 1 221325.85 214664.02 212644.60
 2 134511.96 159369.47 317808.48
 3 321662.42 244789.33 236782.59
 ;
run;

data local.sales;
 input store sales95 sales96 sales97;
 datalines;
 1 251325.25 217662.16 222614.60
 2 144512.11 179369.47 327808.48
 3 329682.43 249989.93 256782.59
 ;
run;

data local.sales;
 input store sales95 sales96 sales97;
 datalines;
 1 261325.33 218862.16 222614.60
 2 145012.11 189339.47 328708.71
 3 330682.46 259919.92 258722.52
 ;
run;

 /* PROC DATASETS will show that the */
 /* base data set as well as two */
 /* generations exist in the library. */

Example 6: Use LIBRARY Transfers to Transfer Data Set Generations 243

proc datasets lib=local;
quit;

rsubmit;
 proc upload in=local out=remote cstatus=no;
 run;
endrsubmit;

Example 7: Use a SELECT Statement to Transfer
Generations

Specific generations of data sets cannot be specified in the SELECT or the
EXCLUDE statements for library transfers. When the SELECT statement is
specified for the library transfer, the selected base data set as well as all of its
historical versions are transferred. Similarly, when the EXCLUDE statement is
specified for the library transfer and the GEN=NO option is not specified, the
selected base data set as well as all of its historical versions are excluded from the
transfer.

In the following example, the data set Local.Sales as well as all of its generations
are uploaded.

data local.sales(genmax=3); x=1; run;
data local.sales; x=2; run;
data local.sales ; x=3; run;
data local.x; x=1; run;
rsubmit;
 proc upload in=local out=remote;
 select sales (mt=data);
 run;
endrsubmit;

Example 8: Transfer Single Data Sets Using PROC
UPLOAD

A specific generation of data set can be transferred by specifying the GENNUM=
data set option for a single data set transfer. In the following example, a specific
historical version is uploaded by specifying GENNUM=1.

rsubmit;
 proc upload data=local.sales(gennum=1);
 run;
endrsubmit;

244 Chapter 14 / UPLOAD Procedure

Example 9: The DROP= Option in the PROC
UPLOAD Statement

This example uploads the SAS data set Loc in the library Work on the client to the
library Work on the server. The variable One is dropped from the output data set.
Any non-referential integrity constraints that are defined for the input data set that
do not include the variable One are inherited by the output data set.

rsubmit;
 proc upload data=loc(drop=one);
 run;
endrsubmit;

Example 10: The INLIB= Option in the PROC
UPLOAD Statement

This example uploads all SAS data sets in the library Sasuser on the client and
stores them in the library Work on the server. Any non-referential integrity
constraints that are defined for each of the input data sets are inherited by the
corresponding output data set.

rsubmit;
 proc upload inlib=sasuser outlib=work;
 run;
endrsubmit;

Example 11: The EXTENDSN= and
V6TRANSPORT Options in the PROC UPLOAD
Statement

For SAS releases prior to SAS 8, when you transfer short numerics (length less than
8), the length of these numerics is automatically increased to preserve precision. In
SAS 8, the length of these numerics is not increased by default unless the
V6TRANSPORT option is specified. Using the V6TRANSPORT and EXTENDSN=
options in PROC UPLOAD and PROC DOWNLOAD statements, you can choose
whether to promote the length of numerics.

This example uploads the data set A in the directory Work on the client to the
directory Remote on the server. The V6TRANSPORT option causes the short
numerics to be promoted. Therefore, EXTENDSN=NO must be specified to override
this default, so that numerics will not be promoted.

rsubmit;
 proc upload data=a out=remote

Example 11: The EXTENDSN= and V6TRANSPORT Options in the PROC UPLOAD
Statement 245

 v6transport extendsn=no;
 run;
endrsubmit;

Example 12: Transfer SAS Utility Files
You can use the INLIB= and OUTLIB= options with PROC UPLOAD or PROC
DOWNLOAD to transfer multiple SAS files in a single step. This capability enables
you to transfer an entire library or selected members of a library. Make sure that the
INLIB= option must be used with the OUTLIB= option. You can specify which
member types to transfer by using the MEMTYPE= option in one of the following
statements: PROC UPLOAD, PROC DOWNLOAD, SELECT, and EXCLUDE. If you
use the MEMTYPE= option in the SELECT or the EXCLUDE statement, you can
specify only one value. If you use the MEMTYPE= option in the PROC UPLOAD or
the PROC DOWNLOAD statement, you can specify a list of MEMTYPE values
enclosed in parenthesis. Here are the valid values for the MEMTYPE= option:

n DATA (SAS data sets)

n CATALOG (SAS catalogs)

n VIEW (SQL views)

n MDDB (MDDB files)

n ALL (all of the preceding values)

This example uploads all SAS data sets, catalog files, SQL views, and MDDB files
in the library Work on the server and stores them in the library Work on the client:

rsubmit;
 proc upload inlib=work outlib=work;
 run;
endrsubmit;

Example 13: The MEMTYPE= Option in the PROC
UPLOAD Statement

This example uploads all MDDB and FDB files that are in the library. This on the
client and stores them in the library That on the server:

rsubmit;
 proc upload inlib=this outlib=that
 memtype=(mddb view);
 run;
endrsubmit;

246 Chapter 14 / UPLOAD Procedure

Example 14: The MEMTYPE= Option in the
SELECT Statement

This example uploads the MDDB files Test1 and Test2 and the SAS data set Test3
that are in the library Work on the server and stores them in the library Local on the
client:

rsubmit;
 proc upload inlib=work outlib=local;
 select test1 test2 test3(mt=data)/memtype=mddb;
 run;
endrsubmit;

Example 15: The MEMTYPE= Option in the
EXCLUDE Statement

This example uploads all SAS data sets, catalog files, MDDB files, FDB files, and
SQL views that are in the library Local on the client, except the SQL views A1, A2,
A3. If then stores them in the library Remote on the server:

rsubmit;
 proc upload inlib=local outlib=remote memtype=all;
 exclude a1-a3/memtype=view;
 run;
endrsubmit;

Example 16: Distribute an .EXE File from the Server
to Multiple Clients: UPLOAD

SAS/CONNECT facilitates the distribution of information to multiple clients. Rather
than distributing files on CD-ROMs, you can make one central file available on the
server that each client can access and copy. For example, suppose that you want to
distribute an updated executable to other Windows computers in your organization.
You decide that the most efficient way to update all computers is to upload
PROGRAM.EXE to the server, and notify each person who uses this software on
their workstations that the file is available and should be downloaded. This method
enables all clients to quickly access the updated software, and eliminates the need
to share a physical CD-ROM among client users.

Note: Such a SAS/CONNECT application, in which an external nontext file is
uploaded and then downloaded, requires the BINARY option in the DOWNLOAD
and UPLOAD procedures. The BINARY option transfers files without any character
translation (for example, EBCDIC to ASCII) or insertion of record delimiters.

Example 16: Distribute an .EXE File from the Server to Multiple Clients: UPLOAD 247

The INFILE= and OUTFILE= options are specified in the PROC UPLOAD statement
in order to upload an external file. To upload a SAS data set, the DATA= and OUT=
options should be used.

The PROGRAM.DLL module must first be uploaded to an external file on the server.
This example uses a SAS FILENAME statement to identify the target file on the
server.

rsubmit;
 filename rfile 'server-file';
 proc upload infile='a:\program.dll'
 outfile=rfile binary;
 run;
endrsubmit;

Example 17: Distribute an .EXE File from the Server
to Multiple Clients: DOWNLOAD

With the PROGRAM.DLL module available on the server, each client at the
installation can acquire the updated module by downloading it from the server.

The process for downloading the PROGRAM.DLL module is like the process for
uploading, except that the DOWNLOAD procedure is invoked, and the target file is
on the server, not on the client. The following example copies the PROGRAM.DLL
module to directory \SAS\SASEXE.

This example uses a SAS FILENAME statement to identify the target file on the
server. The INFILE= and OUTFILE= options are used in the PROC DOWNLOAD
statement.

rsubmit;
 filename rfile 'server-file';
 proc download infile=rfile
 outfile='\sas\sasexe\program.dll' binary;
 run;
endrsubmit;

Example 18: Create an Index with OUT= Using
PROC UPLOAD

The purpose of the INDEX=YES|NO procedure option is to preserve indexes on data
sets that are being transferred to a server session during a PROC UPLOAD. When
OUT= is specified, the indexes are not transferred.

In this example, the INDEX=YES option specifies that an index will be re-created in
the server session. However, because OUT= is specified, the indexes defined on
the DATA= data set will not be created and a WARNING will be issued in the log.
The INDEX=Region data set option causes an index file to be created and
associated with the DATA set Sales in the server session. The index file identifies all
the observations that contain the variable Region and its associated values.

248 Chapter 14 / UPLOAD Procedure

rsubmit;
 proc upload index=yes data=sales out=sales(index=(region));
 run;
endrsubmit;

proc contents data=sales;
run;

Output 14.2 Partial PROC CONTENTS Output for INDEX= and OUT= with PROC
UPLOAD

Example 19: Transfer Data Sets with Extended
Attributes

In the following example, the extended attributes will not be transferred because the
OUT= option is specified. The variable Purchase will be successfully dropped.

signon;
rsubmit;
 libname inlib "/path/to/inlib";
endrsubmit;
rsubmit;
 libname outlib "/path/to/outlib";
endrsubmit;

 data inlib.sales;
 purchase = "car";
 age = 10;
 income = 20000;
 kids = 3;
 cars = 4;
 run;
 /* Create the Extended Attributes */
 proc datasets lib=inlib nolist;
 modify sales;
 /* changing from the default of 200 */
 xattr options maxchunk=100;
 xattr add ds role="train" attrib="table" numAttribute=12345;
 xattr add var purchase (role="target" level="nominal")
 age (role="reject"
 numAttribute1=1234567890123456789012345678901234567890
 numAttribute2=-1234567890123456789012345678901234567890)

Example 19: Transfer Data Sets with Extended Attributes 249

 income (role="input" level="interval");
 run;
 quit;
 rsubmit;
 proc upload data=inlib.sales out=outlib.sales(drop=purchase);
 run;
 endrsubmit;

Example 20: Compute Services and Data Transfer
Services Combined: Macro Capabilities

Regardless of the motivation for reducing the amount of data that is transferred,
incorporating Compute Services will achieve your goal. Compute Services enables
you to format and pre-process data into a subset or a summarized form in the server
session before transferring the subsequent smaller amount of data to the client
session. This balances the use of CPU cycles between the client and server
sessions and minimizes the amount of data contributing to network traffic.
SAS/CONNECT is fully functional from within the macro facility. Both the UPLOAD
and the DOWNLOAD procedures can update the macro variable SYSINFO and set
it to a nonzero value if the procedure terminates because of errors. You can also
use the %SYSRPUT macro statement in the server session to send the value of the
SYSINFO macro variable back to the client session. Thus, you can submit a job to
the server and test whether a PROC UPLOAD or a PROC DOWNLOAD step
successfully completed before beginning another step in either the client or server
session.

This program includes a transaction file that is located on the client, which will be
uploaded to a server in order to update a master file. You can test the results of the
PROC UPLOAD step in the server session by checking the value of the SYSINFO
macro variable. The SYSINFO macro variable can be used to determine whether
the transaction file was successfully uploaded. If successful, the master file is
updated with the new information. If the upload was not successful, you receive a
message that explains the problem. You can use the %SYSRPUT macro statement
to send the return code from the server session back to the client session. The client
session can test the results of the upload and, if it is successful, use the DATASETS
procedure to archive the transaction data set.

1 libname trans
'client-SAS-library';
 libname backup
'client-SAS-library'; 2

 rsubmit; 3

 proc upload data=trans.current out=current;
 run;
4

 %sysrput upload_rc=&sysinfo;
 %macro update_employee;
5

 %if &sysinfo=0 %then %do;
 libname perm
'server-SAS-library';
 data perm.employee;
 update perm.employee current;

250 Chapter 14 / UPLOAD Procedure

 by employee_id;
 run;
 %end;
6

 %else %put ERROR: UPLOAD of CURRENT
 failed. Master file was
 not updated.;
 %mend update_employee; 7

 %update_employee;
 endrsubmit;
8

 %macro check_upload; 9

 %if &upload_rc=0 %then %do; 10

 proc datasets lib=trans;
 copy out=backup;
 run;
 %end;
 %mend check_upload; 11

 %check_upload;

1 Associates a libref with the SAS library that contains the transaction data set and
backup data in the client session.

2 Sends the PROC UPLOAD statement and the UPDATE_EMPLOYEE macro to
the server session for execution.

3 Because a single-level name for the OUT= argument is specified, the PROC
UPLOAD step stores CURRENT in the default library (usually Work) in the
server session.

4 If the PROC UPLOAD step successfully completes, the SYSINFO macro
variable is set to 0. The %SYSRPUT macro statement creates the UPLOAD_RC
macro variable in the client session, and puts the value that is stored in the
SYSINFO macro variable into UPLOAD_RC. The UPLOAD_RC macro variable
is passed to the client session and can be tested to determine whether the
PROC UPLOAD step was successful.

5 Tests the SYSINFO macro variable in the server session. If the PROC UPLOAD
step is successful, the transaction data set is used to update the master data set.

6 If the SYSINFO macro variable is not set to 0, the PROC UPLOAD step has
failed, and the server session sends messages to the SAS log (which appear in
the client session) notifying you that the step has failed.

7 Executes the UPDATE_EMPLOYEE macro in the server session.

8 The CHECK_UPLOAD macro is defined in the client session because it follows
the ENDRSUBMIT statement.

9 Tests the value of the UPLOAD_RC macro variable that was created by the
%SYSRPUT macro statement in the server session to determine whether the
PROC UPLOAD step was successful.

10 When the transaction data set has been successfully uploaded and added to the
master data set, the transaction file can be archived in the client session by
using the COPY statement in the DATASETS procedure.

11 Executes the CHECK_UPLOAD macro in the client session.

Example 20: Compute Services and Data Transfer Services Combined: Macro
Capabilities 251

Example 21: RLS and UPLOAD/DOWNLOAD
Combined: Distribution of Reports over a Network

When the amount of information that is needed from a server is small (for example,
the value of one variable for 12 records or less), Remote Library Services (RLS) can
be used to move the data to the client session. When the data is located at the
client, the data can be used in a larger processing task, and the results (for
example, reports) can be transferred by using PROC UPLOAD across the network
as required.

This SCL program fragment enables the distribution of production reports from a
company's headquarters location to each of its franchise offices, based on the
information that is contained in the control data set that is maintained by each of the
franchise offices. This application was implemented by using the macro facility to
enable the mainframe to connect with each of the franchise workstations, and to
transfer a set of reports to the franchise offices based on selection criteria.

 /************************************/
 /* Name: DISTREPORT.SCL */
 /* */
 /* This program distributes reports */
 /* to the franchise offices. */
 /************************************/
 length rc 8;

 submit continue;
 /************************************/
 /* set up distribution macro */
 /************************************/
 %macro distribution; 1

2

 %let franchise_city=Atlanta NYC LA Dallas Chicago;
 %let franchise_host=
 tsoatl unixnyc unixla wntdal cmshq;
3

 %let j=1;
 %do %while(%scan(&franchise_city,&j) ne);
 %let nextfran=%scan(&franchise_city,&j);
 %let nextrem=%scan(&franchise_host,&j);
 %let j=%eval(&j+1);
options remote=&nextrem 4

comamid=communication-access-method;
 filename rlink 'script-file-name';
 signon;
5

 x "alloc fi(xferrpt)
 da('sasinfo.sugi18.xferrpt') shr";
6

 rsubmit;
 filename frptlib
 "d:\counter\reports\prod";

252 Chapter 14 / UPLOAD Procedure

 endrsubmit;

 /************************************/
 /* use SAS/CONNECT server */
 /************************************/
 libname rpt "d:\counter\reports" 7

server=&nextrem; 8

 data _null_;
 set rpt.preport end=finish;
 file xferrpt;
 if _n_ =1 then put "rsubmit;";

 /*********************************/
 /* transfer reports */
 /* named by variable name in */
 /* reports data set */
 /*********************************/

 if (copy="Y") then do; 9

 put "proc upload infile=
 'sasinfo.sugi18."name"'";
 put "outfile=frptlib("name")
 status=no;run;";
 end;
 if finish then put "endrsubmit;";
 run;

 /************************************/
 /* upload reports that you want */
 /************************************/
 %include xferrpt; 10

 signoff;
 %end;

 %mend;

 /************************************/
 /* invoke macro to distribute */
 /* reports */
 /************************************/
 %distribution; 11

 endsubmit;

 status='H';

 return;

1 Declares the distribution macro definition.

2 Initializes the list of remote franchise offices (franchise_city) and their node
names (franchise_host) to be used as the REMOTE= value.

3 Scans to the next office and node name to be processed.

4 Specifies the remote office NODENAME as the REMOTE= value and sign on to
the remote franchise.

5 Allocates a z/OS file that will contain generated UPLOAD statements.

Example 21: RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over a
Network 253

6 Remotely submits a fileref to define the PC library to which reports will be
uploaded.

7 Connects to a server to access the library that contains the report-selection data
set.

8 Executes the DATA step to evaluate report-selection data (RPT.PREPORT) and
creates UPLOAD statements to transfer reports (XFERRPT).

9 If the selection criterion is YES, creates the appropriate PROC UPLOAD
statement for the specified report.

10 Includes the generated SAS job in the client session for execution.

11 Invokes the macro.

254 Chapter 14 / UPLOAD Procedure

Chapter 15
DOWNLOAD Procedure

Overview: DOWNLOAD Procedure . 255
Introduction . 256

Syntax: DOWNLOAD Procedure . 256
PROC DOWNLOAD Statement . 257
WHERE Statement . 269
EXCLUDE Statement . 270
SELECT Statement . 271
TRANTAB Statement . 272

Usage: DOWNLOAD Procedure . 273
Using: DOWNLOAD Procedure . 273

Results: DOWNLOAD Procedure . 274
Results: DOWNLOAD Procedure . 274

Examples: DOWNLOAD Procedure . 274
Example 1: DTS: Transfer Data Using WHERE Statements 274
Example 2: DTS: The MEMTYPE= Option in the SELECT Statement 275
Example 3: The ENTRYTYPE= Option in the EXCLUDE

Statement in PROC DOWNLOAD . 275
Example 4: The ENTRYTYPE= Option in Two SELECT

Statements in PROC DOWNLOAD . 276
Example 5: Inherit Generation Specific Attributes . 276
Example 6: Transfer Long Member Names . 277
Example 7: Transfer Data By Using Data Set Options and Attributes 277
Example 8: Transfer Data Set Integrity Constraints . 278
Example 9: The INDEX=NO Option in the PROC DOWNLOAD Statement 278
Example 10: The EXTENDSN= Option in the PROC DOWNLOAD Statement . . . 279
Example 11: Combining Data from Multiple Server Sessions 279
Example 12: Compute Services and Data Transfer Services

Combined: Process in the Client and Server Sessions 282
Example 13: Compute Services and Data Transfer Services

Combined: Sort and Merge Data . 284

255

Overview: DOWNLOAD Procedure

Introduction
After you have started SAS/CONNECT, you can transfer SAS files between your
client session and the server. The DOWNLOAD procedure copies SAS files that are
stored on the server to the client.

Using PROC DOWNLOAD, you can do the following:

n transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=
options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC DOWNLOAD step.

n download specific entries in a catalog or specific members in a library by using
the SELECT and EXCLUDE statements.

n use WHERE processing and SAS data set options when downloading individual
SAS data sets.

n replicate selected data set attributes when downloading a data set.

n transfer data sets and catalog entries that have been modified on or after the
specified date.

n specify the translation table to be used when you download a SAS catalog.

See Chapter 5, “Using Data Transfer Services,” on page 87 for information about
data transfer services in SAS/CONNECT.

Syntax: DOWNLOAD Procedure
PROC DOWNLOAD

<data-set-options>
<catalog-options>
<library-options>
<external-file-options>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

WHERE where-expression-1 <logical-operator where-expression-n>;
EXCLUDE list </MEMTYPE=mtype | ENTRYTYPE=etype>;
SELECT </MEMTYPE=mtype | ENTRYTYPE=etype>;
TRANTAB NAME=translation-table-name <TYPE=(etype-list)>
<OPT=DISP | SRC>;

256 Chapter 15 / DOWNLOAD Procedure

PROC DOWNLOAD Statement
Transfers files from the server to the client.

Alias: none

Syntax
PROC DOWNLOAD

<data-set-options>
<catalog-options>
<library-options>
<external-file-options>
<AFTER=date>
<CONNECTSTATUS=YES | NO>;

Data Set Options

CAUTION
Do not confuse the PROC DOWNLOAD data set options with the SAS data set
options. The PROC DOWNLOAD data set options are valid only in the context of
PROC DOWNLOAD. However, two of the PROC DOWNLOAD data set options (DATA=
and OUT=) can be further characterized by SAS data set options. For details, see the
descriptions for the DATA= on page 222 option and the OUT= on page 227 options.

data-set-options can be one or more of the following:

n “CONSTRAINT=YES | NO” on page 259

n “DATA=server-SAS-data-set <(SAS-data-set-options)>” on page 260

n “DATECOPY” on page 260

n “EXTENDSN=YES | NO” on page 260

n “INDEX=YES | NO” on page 261

n “OUT=client-SAS-data-set <(SAS-data-set-options)>” on page 264

n “V6TRANSPORT” on page 266

n “XATTR=YES | NO” on page 266

Catalog Options
catalog-options can be one or more of the following:

n “ENTRYTYPE=etype ” on page 260

n “EXTENDSN=YES | NO” on page 260

n “INCAT=server-SAS-catalog” on page 261

PROC DOWNLOAD Statement 257

n “OUTCAT=client-SAS-catalog” on page 264

Library Options
library-options can be one or more of the following:

n “CONSTRAINT=YES | NO” on page 259

n “EXTENDSN=YES | NO” on page 260

n “GEN=YES | NO” on page 261

n “INDEX=YES | NO” on page 261

n “INLIB=server-SAS-library” on page 263

n “MEMTYPE=(mtype-list) ” on page 263

n “OUTLIB=client-SAS-library ” on page 265

n “VIEWTODATA” on page 266

n “V6TRANSPORT” on page 266

External File Options
external-file-options are the following:

n “BINARY” on page 259

n “INFILE=server-file-identifier” on page 262

n “OUTFILE=client-file-identifier” on page 265

Optional Arguments
AFTER=date

specifies a modification date in the form of a numeric date value or a SAS date
constant.

This option is valid for transferring data sets, catalogs, and libraries. Its use
results in data sets or catalog entries being transferred only if they have been
modified on or after the specified date.

The AFTER= option is also valid for external file transfers between most
computers. If a computer is unable to perform the transfer, this message is
displayed:

ERROR: AFTER= not supported on this platform.
NOTE: The SAS System stopped processing this step
 because of errors.

Note: The AFTER= option is available in SAS 6.09E, SAS 6.11, TS040, and
later.

For example, the following statements cause the transfer of data sets only if they
were modified within the last week.

 /************************************/
 /* Download all data sets that have */

258 Chapter 15 / DOWNLOAD Procedure

 /* been modified in the last week. */
 /************************************/
rsubmit;
 data _null_;
 today=date();
 lastweek=today-7;
 call symput('lastweek',lastweek);
 run;
 proc download in=perm out=work
 after=&lastweek memtype=data;
 run;
endrsubmit;

If your client session is using an earlier release of SAS that does not support the
AFTER= option, then PROC DOWNLOAD still executes this option because the
server has the input data set.

BINARY
specifies a download of a binary image (an exact copy) of an external server file.
Use this option only for downloading external files.

Note: External files are files that are not SAS files.

By default, if the client and server run in different operating environments (for
example, UNIX and Windows), then PROC DOWNLOAD transfers a file from the
client to the server, translating the file from UNIX representation to Windows
representation. PROC DOWNLOAD also inserts record delimiters that are
appropriate for the target environment.

You do not always want to translate a file. For example, you might need to
download executable files from the server to the client and later upload them
back to the server. Binary file format also saves resources for users who store
their own files and for system backups. The BINARY option prevents delimiters
from being inserted for each file record that is created at the client. In addition, if
the client and server use a different method of data representation, the BINARY
option prevents any data translation between ASCII and EBCDIC.

For an example of using the BINARY option, see “Example 16: Distribute
an .EXE File from the Server to Multiple Clients: UPLOAD” on page 247.

CONNECTSTATUS=YES | NO
specifies whether the Transfer Status window should be displayed during a
transfer. By default, the DOWNLOAD procedure displays the “Transfer Status
Window” on page 92.

Alias CSTATUS=, STATUS=

Default YES

CONSTRAINT=YES | NO
specifies if integrity constraints should be re-created on the client when a SAS
data set that has integrity constraints defined is downloaded. You can specify
this option with the DATA= option (if you omit the OUT= option) or with the
INLIB= and OUTLIB= options.

By default, integrity constraints are re-created only when you download a SAS
library or when you download a single SAS data set and omit the OUT= option. If
you specify the OUT= option with the DATA= option, the integrity constraints are
not re-created.

PROC DOWNLOAD Statement 259

DATA=server-SAS-data-set <(SAS-data-set-options)>
specifies a SAS data set that you want to download from the server to the client.
If the data set is a permanent SAS data set, you must define a libref before the
PROC DOWNLOAD statement and specify the two-level name of the data set.

If you specify the name of a data view in the DATA= option, the materialized data
is downloaded to the client, not to the view definition.

If you do not specify the DATA=, INCAT=, INFILE=, or INLIB= option, the last
SAS data set that was created on the server during your SAS session is
downloaded.

Requirement If you specify the DATA= option, you must either use the OUT=
option or omit all other options.

See “Specify Data Set Options for the DATA= and OUT= Options in
PROC UPLOAD and PROC DOWNLOAD” on page 231

SAS Data Set Options: Reference

“OUT=client-SAS-data-set <(SAS-data-set-options)>” on page
264

DATECOPY
retains the date on which a SAS data set was created and the date on which a
SAS data set was last modified for each data set that is transferred.

ENTRYTYPE=etype
specifies a catalog entry type to be downloaded. Examples of catalog entry types
include DATA and FORMAT.

Alias ETYPE=, ET=

Requirement To use this option, you must also specify the INCAT= and
OUTCAT= options.

EXTENDSN=YES | NO
specifies whether to promote the length of short numerics (length less than 8
bytes) when transferring.

NO
indicates that the length of numeric variables is not promoted.

YES
indicates that 1 will be added to the length of any numeric variable that has a
length of less than 8 bytes before it is transferred to the client computer.

The behavior of the EXTENDSN= option varies according to the SAS release
that is used.

n If both the client and the server run SAS 8 or a later release, and the
V6TRANSPORT option is specified, then the default is to promote the length
of the numeric variable whose length is less than 8 bytes. This is consistent
with SAS 6 behavior. To override this behavior, specify EXTENDSN=NO
along with the V6TRANSPORT option in the DOWNLOAD statement.

n If either the client or the server runs SAS 6, neither the V6TRANSPORT nor
the EXTENDSN= option is supported or recognized.

n If the client runs SAS 6 and the server runs SAS 8 or a later release, a
numeric variable whose length is less than 8 bytes is promoted by default. In

260 Chapter 15 / DOWNLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

this case, specify EXTENDSN=NO in order to override the SAS 6 default and
to prevent the promotion.

See “File Format Translation Algorithms” on page 462 for information about
translating file formats between a client and server that run on computers whose
internal representations are incompatible.

Default NO

GEN=YES | NO
specifies that data set generations are to be sent during library transfers.

YES
specifies that data set generations are sent during library transfers.

NO
specifies that data set generations are not sent during library transfers.

Default YES

INCAT=server-SAS-catalog
names a SAS catalog that you want to download from the server to your client. If
the catalog is stored in a permanent SAS library, you must define a libref before
specifying the PROC DOWNLOAD statement, and you must specify the
catalog's two-level name.

To download all of the catalogs in a SAS library, specify INCAT=libref._ALL_.

If you specify this form for the INCAT= option, you must specify the same form
for the OUTCAT= option.

You can transfer catalogs with entries that contain graphics output as well as
other catalog entries.

CAUTION
Some catalog entry types are not compatible between SAS releases. If you
attempt to download a catalog entry from a server to a client that is running a
different SAS release, then the client catalog entry that is being downloaded might
not be supported at the client. In this case, the catalog entry will not be transferred
and the following error message is displayed:

WARNING: FILEFMT entries

INDEX=YES | NO
specifies whether to re-create an index at the client when you download a SAS
data set. You can specify this option when using the DATA= option (if you omit
the OUT= option) or when using the INLIB= and OUTLIB= options.

If you download a single data set and omit the OUT= option, or if you download
a SAS library, the index is re-created by default.

If you specify the OUT= option and the DATA= option, the index is not re-
created.

Default YES

Restriction If the INDEX=YES and the OUT= option are used together in a
PROC DOWNLOAD statement, indexes defined on the DATA= data
set will not be re-created on the client.

See “INDEX=YES | NO” on page 223

PROC DOWNLOAD Statement 261

For syntax information about the SAS data set option INDEX=, see
“INDEX= Data Set Option” in SAS Data Set Options: Reference.

For conceptual information about SAS data set indexing, see
“Understanding SAS Indexes” in SAS Language Reference:
Concepts.

Example “Example 7: Transfer Data By Using Data Set Options and
Attributes” on page 277.

INFILE=server-file-identifier
specifies the external file that you want to download from the server to the client.

If you use the INFILE= option, you must also use the OUTFILE= option.

server-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the server that is associated with a
single file. You must define the fileref before specifying the PROC
DOWNLOAD statement.

fileref(member)
is used if you have defined a fileref on the server that is associated with an
aggregate storage location, such as a directory or a partitioned data set.

member
specifies one or more files in that aggregate storage location. You can use
the asterisk character (*) as a wildcard in the member specification to
download multiple files via a single PROC DOWNLOAD statement. The *
matches zero or more characters.

You must define the fileref before specifying the PROC DOWNLOAD
statement.

Note: The transfer of hidden files is not supported when using the (*)
wildcard

The following examples demonstrate the use of the wildcard character. The
fileref in the examples is loc.

Table 15.1 Examples: The Wildcard Character in PROC DOWNLOAD

infile=loc('*') A single asterisk specifies all of the
files in the aggregate location.

all files

infile=loc('*dat') A leading asterisk specifies all files
that end with the same characters.

The example selects all files that
end with dat.

testfile.dat
report.old.dat

infile=loc('test*') A trailing asterisk specifies all files
that begin with the same characters.

The example selects all files that
begin with test.

test.dat
testfile.history
test.tar.gz

262 Chapter 15 / DOWNLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en

infile=loc('t*file') An embedded asterisk specifies all
files that have both the same
beginning and ending characters.
The example selects all files that
begin with t and end with file.

tst_1_file
tst_2_file

infile=loc('f*.txt') An asterisk can represent the NULL
string.

f.txt

The example below shows how to use a wildcard to transfer all files whose
filename starts with the letter f and which have an extension of .sas. The
specified files will be downloaded from the /user/progs directory on a UNIX
server to the c:\Users\test directory on a Windows client.

See “FILENAME” on page 201

Example filename locHost 'c:\Users\test';
rsubmit;
 filename remHost '/user/progs';
 proc download infile=remHost('f*.sas')
 outfile=locHost;
 run;
endrsubmit;

Example “Example 2: Use a FILENAME Statement with the UPLOAD and
DOWNLOAD Procedures ” on page 203.

'external-file-name'
is used to explicitly define the file that is to be downloaded.

 infile='filename.txt'

INLIB=server-SAS-library
specifies a SAS library to download from the server to the client. All three forms
of this option are equivalent. This option must be used with the OUTLIB= option
(in any of its forms). Before using this option, you must define the libref that is
used for server-SAS-library.

Alias INDD=, IN=

MEMTYPE=(mtype-list)
specifies one or more member types to be downloaded.

Here are the valid member types:

n ALL

n CATALOG

n DATA

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options.

PROC DOWNLOAD Statement 263

OUT=client-SAS-data-set <(SAS-data-set-options)>
names the SAS data set on the client that you want the downloaded data set
written to. If you want to create a permanent SAS data set, you must define the
libref before specifying the PROC DOWNLOAD statement, and you must specify
a two-level SAS data set name.

The OUT= option is a valid form of the OUTLIB= option. The DOWNLOAD
procedure determines the meaning of the OUT= option as follows:

n If you specify the DATA= option and the OUT= option, the OUT= option
names the output SAS data set.

For example, if the USER= option is set to Mylib, the following statement
downloads the data set A from the library Mylib on the server to the library
Mylib on the client:

proc download data=a out=a;
run;

n If you specify only the OUT= option, the DOWNLOAD procedure downloads
the last SAS data set that was created on the server.

For example, the following statement downloads the last data set that was
created on the server to the data set Mydata in the library Mylib on the client
(assuming USER=Mylib).

proc download out=mydata;
run;

n If you specify the INLIB= option and the OUT= option, the OUT= option
specifies the name of a SAS library.

For example, the following statement downloads all of the data sets and
catalogs that are in the library A on the server to the library RmtLib on the
client:

proc download inlib=a out=rmtlib;
 run;

For details about the effect of omitting the OUT= option, see “Details” on page
267.

See “Specify Data Set Options for the DATA= and OUT= Options in PROC
UPLOAD and PROC DOWNLOAD” on page 231

SAS Data Set Options: Reference

“DATA=server-SAS-data-set <(SAS-data-set-options)>” on page 260

OUTCAT=client-SAS-catalog
names the SAS catalog on the client that you want the downloaded catalog
written to. If you want to create a permanent SAS catalog, you must define the
libref before specifying the PROC DOWNLOAD statement, and you must specify
a two-level SAS catalog name. To download all of the catalogs in a SAS library,
specify OUTCAT=libref._ALL_.

264 Chapter 15 / DOWNLOAD Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

TIP If you transfer a catalog that contains entries of type PROGRAM,
you must compile the entries on the target operating environment before
execution. To compile all the PROGRAM entries in a catalog, submit (or
remotely submit) the following statements:

proc build cat=libref.member-name batch;
 compile;
run;

libref identifies the SAS library that contains the catalog and member-
name identifies the catalog.

Requirement If you specify the OUTCAT= option, you must also specify the
INCAT= option. If you specify _ALL_ in the OUTCAT= option, you
must also specify _ALL_ in the INCAT= option.

OUTFILE=client-file-identifier
identifies an external file on the client that you want a downloaded external file
written to.

client-file-identifier can be one of the following:

fileref
is used if you have defined a fileref on the client that is associated with a
single file. You must define the fileref before specifying the PROC
DOWNLOAD statement.

fileref(member)
is used if you have defined a fileref on the client that is associated with an
aggregate storage location such as a directory. member specifies which file in
that aggregate storage location should be transferred. You must define the
fileref before specifying the PROC DOWNLOAD statement. For details about
filerefs for your operating environment, see the appropriate operating
environment companion documentation.

Note: If a wildcard (*) is used in the INFILE= option, then OUTFILE=fileref
should point to an aggregate storage location such as a directory.

'external-file-name'
is used to explicitly define the file that is to be downloaded.

Requirement If you use the OUTFILE= option, you must also use the INFILE=
option.

OUTLIB=client-SAS-library
names the destination SAS library on your client where the downloaded data
sets and catalogs from the server are stored. All three forms of this option are
equivalent. Before using this option, you must define the libref that is used for
client-SAS-library.

Note: The OUT= form of this option is the same as the OUT= option that is used
to specify a SAS data set. When you use the OUTLIB= option, the DOWNLOAD
procedure determines whether the input option was DATA= or INLIB= and
processes the downloaded objects appropriately.

PROC DOWNLOAD Statement 265

The OUTLIB= option must be used with the INLIB= option, but you can use any
form of the OUTLIB= option with any form of the INLIB= option. See the
description of the INLIB= option for examples that illustrate some valid pairs of
these options.

Alias OUTDD=, OUT=

VIEWTODATA
for a library transfer only, causes view descriptor files to be transferred as data
sets instead of as view files, which is the default. If you want some views to be
transferred as view files and other views to be transferred as data sets, you
would have to perform two separate transfers. If you attempt to use this option
for a single data set transfer (by using the DATA= option), an error results.

V6TRANSPORT
specifies that data should be translated by using the SAS 6 “File Format
Translation Algorithms” on page 462. Specify this option only when you want to
use the SAS 6 translation style explicitly, and both the client and the server run
SAS 8 or a later release of SAS.

When V6TRANSPORT is specified, the default behavior is to promote a numeric
variable whose length is less than 8 bytes. To prevent a promotion of this length,
you can use the EXTENDSN=NO option along with the V6TRANSPORT option.

XATTR=YES | NO
specifies whether to allow for the upload or download of extended attributes that
are defined on a SAS data set or SAS library. This option is turned on by default
in PROC UPLOAD and PROC DOWNLOAD. The XATTR=YES option is invalid
when the OUT= option is specified.

If XATTR=YES is specified with the OUT= option, then XATTR=YES is ignored
and a WARNING is sent to the SAS log. For example, the following statement
will cause a WARNING to be sent to the SAS log and no extended attributes will
be transferred:

proc download data=inlib.sales out=outlib.sales xattr=y;
run;

Extended Attributes are not transferred when the OUT= option is specified with
DATA= on PROC DOWNLOAD or PROC UPLOAD. If the XATTR= option is not
specified but the DATA= and OUT= options are, then the data set will be
transferred, but no extended attributes will be transferred. For example, the
following statement will cause the data set Sales to be transferred without its
extended attributes:

proc download data=inlib.sales out=outlib.sales;
run;

If neither the XATTR= nor the OUT= option is specified on PROC UPLOAD or
PROC DOWNLOAD, then extended attributes will be transferred. For example,
the following PROC DOWNLOAD statement will cause the data set Sales to be
transferred along with its extended attributes:

proc download data=inlib.sales;
run;

For information about PROC DOWNLOAD options and the default behavior of
data set options on data sets being transferred, see Table 14.9 on page 232.

266 Chapter 15 / DOWNLOAD Procedure

Default YES

Restriction If the XATTR=YES and the OUT= option are used together in a
PROC DOWNLOAD statement, then extended attributes defined on
the variables in the DATA= data set will not be re-created on the
client.

Details

Default Naming Conventions for Downloaded Data
Sets
If you omit the OUT= option, which specifies the name of the output data set, from
the DOWNLOAD statement, SAS follows these rules to determine the name for the
data set:

n If the input data set (the data set that is specified in the DATA= option) has a
two-level name and the same libref that is defined for the input data set is also
defined in the client environment, then the data set is downloaded to the library
on the client that is associated with that libref. The data set has the same
member name on the client.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;

If you remotely submit the following statements, the data set Orders.Qtr1 is
downloaded to Orders.Qtr1 on the client.

 /***/
 /* The libref ORDERS is defined on both */
 /* the client and server. */
 /***/
libname orders
 server-SAS-library;
proc download data=orders.qtr1;
run;

n If the input data set has a two-level name but the libref for the input data set is
not also defined in the client environment, then the data set is downloaded to the
default library on the client. This is usually the Work library, but the library might
also be defined by using the USER libref.

The data set retains the same data set name that it had on the server. For
example, if you remotely submit the following statements, the data set is
downloaded to Work.Qtr2 on the client.

 /***/
 /* The libref ORDERS is defined only on */
 /* the server. */
 /***/
libname orders
 server-SAS-library;
proc download data=orders.qtr2;

PROC DOWNLOAD Statement 267

run;

n If the input data set has a one-level name and the default libref on the server
also exists on the client, the data set is downloaded to that library.

For example, suppose you submit the following statement:

libname orders
 client-SAS-library;
libname local
 client-SAS-library;
 /************************************/
 /* This option has no effect in */
 /* this case. */
 /************************************/
options user=local;

If you remotely submit the following statements, the data set Orders.Qtr1 is
downloaded to Orders.Qtr1 on the client.

 /***/
 /* The libref ORDERS is defined on both */
 /* hosts. */
 /***/
libname orders
 server-SAS-library;
options user=orders;
proc download data=qtr1;
run;

n If the input data set has a one-level name and the default libref on the server
does not exist on the client, then the data set is downloaded to the default library
on the client. That is, the USER libref on the client is used only if the USER libref
on the server does not exist on the client.

For example, suppose you submit these statements:

libname local
 client-SAS-library;
options user=local;

When you remotely submit the following statements, the data set Orders.Qtr1 is
downloaded to Local.Qtr1 on the client.

 /***/
 /* The libref ORDERS is defined only on */
 /* the servers. */
 /***/
libname orders
 server-SAS-library;
options user=orders;
proc download data=qtr1;
run;

n If you omit the DATA= option, the last data set that was created on the server
during the SAS session is downloaded to the client, as follows:

proc download;
run;

The naming conventions on the client follow one of the previously described
rules, based on how the last data set was created.

268 Chapter 15 / DOWNLOAD Procedure

WHERE Statement
Selects observations from SAS data sets.

Restriction: The DOWNLOAD procedure processes WHERE statements when you transfer a single
SAS data set.

See: SAS DATA Step Statements: Reference.

Syntax
WHERE where-expression-1 <logical-operator where-expression-n>;

Required Arguments
where-expression-1

is a WHERE expression.

logical-operator
is one of the following logical operators:

n AND

n AND NOT

n OR

n OR NOT

where-expression-n
is a WHERE expression.

To understand when using the SUBSTR function causes an index to be used,
look at the format of the SUBSTR function in a WHERE statement:

where substr(variable, position, length)
 = 'character-string';

An index is used in processing when all of the following conditions are met:

n position is equal to 1

n length is less than or equal to the length of variable

n length is equal to the length of character-string

The following example illustrates using a WHERE statement with the
DOWNLOAD procedure. The downloaded data set contains only the
observations that meet the WHERE condition.

proc download data=revenue out=new;
 where origin='Atlanta' and revenue < 10000;
run;

For details, see SAS DATA Step Statements: Reference.

WHERE Statement 269

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

EXCLUDE Statement
Excludes library members or catalog entries from downloading.

Syntax
EXCLUDE lib-member-list </ MEMTYPE=mtype >;
EXCLUDE cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB= and
OUTLIB= options in the PROC DOWNLOAD statement. Use the format cat-entry-list </
ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the PROC
DOWNLOAD statement.

lib-member-list
specifies which library members to exclude from downloading. You can name
each member explicitly or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix.
For example, if you specify TEST:, all members with names that begin with
the letters TEST are excluded.

first -last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are excluded.

Restriction first and last must begin with identical character strings and
must end in a number.

cat-entry-list
specifies which catalog entries to exclude from downloading. Each element of
cat-entry-list has the form entry.type.

entry
is the name of an entry in the catalog to exclude from downloading.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to exclude from downloading.

Here are the valid member types:

n ALL

n CATALOG

n DATA

270 Chapter 15 / DOWNLOAD Procedure

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options in the PROC DOWNLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to exclude from downloading. Examples of catalog
entry types include FORMAT and DATA.

Alias ETYPE=, ET=

Requirement To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC DOWNLOAD statement.

SELECT Statement
Selects specific library members or catalog entries to download.

Restriction: You cannot use both the EXCLUDE and SELECT statements in the same PROC
DOWNLOAD step.

Note: The SELECT statement also enables you to maintain an ordering and grouping of
catalog entries that contain graphics output, because entries are downloaded into the
client SAS catalog in the order in which you specify them in the SELECT statement.

Syntax
SELECT lib-member-list </ MEMTYPE=mtype>;
SELECT cat-entry-list </ ENTRYTYPE=etype>;

Syntax Description
Use the format lib-member-list </ MEMTYPE=mtype> when you specify the INLIB= and
OUTLIB= options in the PROC DOWNLOAD statement. Use the format cat-entry-list </
ENTRYTYPE=etype> when you specify the INCAT= and OUTCAT= options in the PROC
DOWNLOAD statement.

lib-member-list
specifies which library members to download. You can name each member
explicitly or use one of the following forms:

prefix:
specifies all members whose names begin with the character string prefix.
For example, if you specify TEST:, all members with names that begin with
the letters TEST are selected for downloading.

SELECT Statement 271

first-last
specifies all members whose names have a value between first and last. For
example, if you specify TEST1-TEST3, any files that are named TEST1, TEST2,
or TEST3 are selected for downloading.

Restriction first and last must begin with identical character strings and
must end in a number.

cat-entry-list
specifies which catalog entries to download. Each element of cat-entry-list has
the form entry.type.

entry
is the name of an entry in the catalog to download.

.type
is the type of the catalog entry. This part of the name is optional.

MEMTYPE=mtype
specifies a member type to download.

Here are the valid member types:

n ALL

n CATALOG

n DATA

n MDDB

n VIEW

Alias MTYPE=, MT=

Requirement To use this option, you must also specify the INLIB= and
OUTLIB= options in the PROC DOWNLOAD statement.

ENTRYTYPE=etype
specifies a catalog entry type to download. Examples of catalog entry types
include FORMAT and DATA.

Note: The SELECT statement also enables you to maintain an ordering and
grouping of catalog entries that contain graphics output, because entries are
downloaded into the client SAS catalog in the order in which you specify them in
the SELECT statement.

Alias ETYPE=, ET=

Requirement To use this option, you must specify the INCAT= and OUTCAT=
options in the PROC DOWNLOAD statement.

TRANTAB Statement
Specifies the translation table to use when translating character data for a download from the server to the
client.

272 Chapter 15 / DOWNLOAD Procedure

Restriction: You can specify only one translation table per TRANTAB statement. To specify additional
translation tables, use additional TRANTAB statements.

Requirement: To use the TRANTAB statement, you must specify the INCAT= and OUTCAT= options in
the PROC DOWNLOAD statement.

See: SAS National Language Support (NLS): Reference Guide

Syntax
TRANTAB NAME=translation-table-name
<options>;

Usage: DOWNLOAD Procedure

Using: DOWNLOAD Procedure

VALIDMEMNAME and VALIDVARNAME
System Options
If the data that you are transferring contains an invalid SAS name, such as a name
containing special characters, national characters, or embedded blanks, then you
can specify VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND before the sign-
on statement to successfully transfer the files. The following types of data can
contain nonstandard SAS names when you use the VALIDVARNAME and
VALIDMEMNAME system options with PROCS UPLOAD and DOWNLOAD:

n a SAS data set

n a SAS library

n a SAS variable

n a DBMS table

n a DBMS table column heading

Note: You must specify the VALIDMEMNAME and VALIDVARNAME system
options before the SIGNON statement.

For more information about these Base SAS system options, see
“VALIDMEMNAME=” in SAS System Options: Reference and “VALIDVARNAME=”
in SAS System Options: Reference.

Usage: DOWNLOAD Procedure 273

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

Results: DOWNLOAD Procedure

Results: DOWNLOAD Procedure
The DOWNLOAD procedure writes a series of informative messages to the SAS log
when it executes. Examples of these messages are shown in the following output.

Output 15.1 SAS Log Messages from the DOWNLOAD Procedure

NOTE: Remote submit to B commencing.
 1 proc download outfile='client-external-file'
 2 infile='server-external-file';run;
 NOTE: TEXT download in progress from
 infile=server-external-file to
 outfile=client-external-file
 NOTE: Downloaded 4 records and 136 bytes.
 NOTE: 4 records were written to the file client-external-file.
 The maximum record length was 65.
 The minimum record length was 0.
 NOTE: 136 bytes were transferred at 136 bytes/second.
 NOTE: The PROCEDURE DOWNLOAD used 0.05 CPU seconds and 1455K.

 NOTE: Remote submit to B complete.
$

Examples: DOWNLOAD Procedure

Example 1: DTS: Transfer Data Using WHERE
Statements

The UPLOAD and DOWNLOAD procedures process WHERE statements and the
WHERE= data set option when you transfer a single SAS data set. Because the
transferred data set contains only the observations that meet the WHERE condition,
transfer time is minimized.

signon foo sascmd="!sascmd -nosyntaxcheck";

274 Chapter 15 / DOWNLOAD Procedure

data school;
length name $ 20 class $1;
input name class amount;
cards;
Tom K 30
Sue 1 10
Ab K 3
;

rsubmit status=no;
 proc upload data=school out=kindergarten;
 where class='K';
 run;
endrsubmit;

Example 2: DTS: The MEMTYPE= Option in the
SELECT Statement

This example downloads the catalogs Names and Salary and the data set Media in
the data library Remlib on the server and stores them in the library Loclib on the
client:

rsubmit;
 proc download inlib=remlib outlib=loclib;
 select names salary media(mt=data) / memtype=cat;
 run;
endrsubmit;

Example 3: The ENTRYTYPE= Option in the
EXCLUDE Statement in PROC DOWNLOAD

This example downloads all catalog entries that are in the catalog
Remote.Main_Formats on the server, except the format entries XYZ and GRADES.
It then stores them in the catalog Local.Secondary_Formats on the client:

rsubmit;
 proc format lib=remote.main_formats;
 value grades 1='one';
 value aformat 1='one';
 value xyz 1='one';
 run;
 proc download incat=remote.main_formats
 outcat=local.secondary_formats;
 exclude xyz grades / entrytype=format;
 run;
endrsubmit;

Example 3: The ENTRYTYPE= Option in the EXCLUDE Statement in PROC
DOWNLOAD 275

Example 4: The ENTRYTYPE= Option in Two
SELECT Statements in PROC DOWNLOAD

This example maintains the original ordering and grouping when transferring catalog
entries that contain graphics output. Assume that you have a catalog named
FINANCE that has two entries that contain graphics output, Income and Expense.
You want to download the two catalog entries that contain graphics output in the
order in which they are stored on the server. That is, you want Income to appear
before Expense, not alphabetically as the DOWNLOAD procedure would normally
transfer them. In addition, you have some catalog entries that are grouped by the
name Group1, and you want to preserve the grouping when the entries are
downloaded.

Remotely submit the following program to transfer these entries in the order that you
specify in the first SELECT statement and in the group that you specify in the
second SELECT statement:

rsubmit;
 proc catalog cat=mylib.finance;
 copy out=work.remcat entrytype=grseg;
 run;
 proc catalog cat=work.remcat;
 change G3D= income /entrytype=grseg;
 change GPLOT=expense/et=grseg;
 change TEMPLATE=GROUP1/et=grseg;
 run;
 proc download incat=work.remcat outcat=work.loccat;
 select income expense entrytype=grseg;
 select group1 et=grseg;
 run;
endrsubmit;
proc catalog cat=work.loccat;
 contents;
run;

Example 5: Inherit Generation Specific Attributes
During library transfers and single data set transfers when OUT= is not specified,
data set attributes are inherited in the output data set. In SAS releases after SAS 6,
the maximum number of generations is a new inherited attribute. In addition, the
next generation number attribute is inherited ONLY when a library transfer occurs.
This attribute is inherited only when the generations are actually transferred, and
therefore it is NOT inherited for any single data set transfers. In the following
example, both the maximum number of generations and the next generation number
attributes are inherited in the output data set, because this is a library transfer.

rsubmit;
 proc download in=remote out=local;
 select sales(mt=data);

276 Chapter 15 / DOWNLOAD Procedure

 run;

In the following example, only the maximum number of generations attribute
is inherited. The next generation number attribute is not inherited, because
this is a single data set transfer, and therefore no generations are transferred.
In the following example, only the maximum number of generations attribute is
inherited. The next generation number attribute is not inherited, because this is a
single data set transfer, and therefore no generations are transferred.

 proc download data=remote.sales;
 run;
endrsubmit;

Example 6: Transfer Long Member Names
SAS/CONNECT supports the transfer of long member names, as long as the
operating environment supports long member names. This example uses PROC
UPLOAD to transfer a data set and a catalog that have long member names, and
uses PROC DOWNLOAD to transfer a data set that has a long member name.

rsubmit;
 proc upload in=work out=sasuser;
 select longdatasetname(mt=data)
 cat longcatalogname/mt=cat;
 run;
endrsubmit;

data x.sas_institute_employee_data;
set empdata;
run;

rsubmit;
 proc download inlib=x outlib=work;
 run;
endrsubmit;

Example 7: Transfer Data By Using Data Set
Options and Attributes

PROC UPLOAD and PROC DOWNLOAD permit you to specify SAS data set
options in the DATA= and OUT= options. Note that SAS data set options are not
supported when using the INLIB= and OUTLIB= options, even when you upload
only data sets. The data set options must be associated with a specific SAS data
set, so they must be used in the DATA= or OUT= options. For details about
additional restrictions, see UPLOAD Procedure on page 217 and DOWNLOAD
Procedure on page 255.

Note: Because the OUT= option is not specified, the transferred data set inherits all
the characteristics of the input data set except for the index (because the
INDEX=NO option is specified).

Example 7: Transfer Data By Using Data Set Options and Attributes 277

This example illustrates using the DATA= option and the INDEX=NO option. It also
shows the use of the RENAME= and DROP= SAS data set options.

rsubmit;
 data survey(compress=yes index=(comments));
 r='response';
 comments='comments';
 x=1;
 run;

 proc download data=survey
 (rename=(r=response) drop=comments)
 index=no;
 run;
endrsubmit;

Example 8: Transfer Data Set Integrity Constraints
Integrity constraints are a set of data validation rules that preserve the consistency
and correctness of the stored data. These rules are defined by the applications
programmer and are enforced by SAS for each request to modify the data.

PROC UPLOAD and PROC DOWNLOAD permit a transferred SAS data set to
inherit the characteristics of the input data set. If the OUT= option is omitted when
transferring a specific SAS data set, the transferred data set inherits the
characteristics of the input data set. A transferred data set also inherits the
characteristics of the input data set if it is part of a library transfer. For details about
the INLIB= and OUTLIB= options for PROC UPLOAD, see UPLOAD Procedure on
page 217. For details about PROC DOWNLOAD, see DOWNLOAD Procedure on
page 255. PROC UPLOAD and PROC DOWNLOAD apply integrity constraints to
the transfer of data sets. As with other data set characteristics, integrity constraints
are inherited by a transferred data set under specific conditions. The only exception
is that, if the input file has an index defined and the user specifies the INDEX=NO
option, any integrity constraints that are defined for the input file are not inherited.
Also, referential integrity constraint types are not transferred when the referential
constraints reside in a different library

This example downloads the SAS data set Rem in the library Work on the server to
the library Work on the client. Any non-referential integrity constraints that are
defined for the input data set are inherited by the output data set.

rsubmit;
 proc download data=rem;
 run;
endrsubmit;

Example 9: The INDEX=NO Option in the PROC
DOWNLOAD Statement

This example downloads the SAS data set Students in the library Work on the
server to the library Work on the client. Any non-referential integrity constraints that

278 Chapter 15 / DOWNLOAD Procedure

are defined for the input data set are inherited by the output data set unless there
are indexes defined on the input data set. In that case, no integrity constraints are
defined for the output data set.

rsubmit;
 proc download data=students index=no;
 run;
endrsubmit;

Example 10: The EXTENDSN= Option in the PROC
DOWNLOAD Statement

This example downloads the catalog SCAT in the directory Remote on the server to
the directory Work on the client. By default, catalog transfers promote the length of
short numerics within SCREEN entry types. This behavior can be overridden by
specifying EXTENDSN=NO on the catalog transfer download. The EXTENDSN=
option is supported by catalog transfer of SCREEN entry types only.

Note: The V6TRANSPORT option is unnecessary when transferring a catalog.

rsubmit;
 proc download incat=remote.scat outcat=work.scat
 extendsn=no;
 run;
endrsubmit;

Example 11: Combining Data from Multiple Server
Sessions

Using SAS/CONNECT to connect to multiple servers, you can access data on
several servers, combine that data on the client, and analyze the combined data.
For example, if you have data that is stored under z/OS in a DB2 database and
related data that is stored in an Oracle database under UNIX, you can use
SAS/CONNECT in combination with SAS/ACCESS to combine that data on your
client. This example uses salary and employee data gathered from two servers to
illustrate the process. This example signs on to two servers, downloads data from
both servers, and performs analyses of the data on the client. The program uses the
SIGNON and RSUBMIT statements.

Note: Bullets through apply to downloading both DB2 and Oracle data.

 /*************************************/
 /* connect to z/OS */
 /*************************************/
1 options comamid=tcp;
 filename rlink

Example 11: Combining Data from Multiple Server Sessions 279

 '!sasext0\connect\saslink\tcptso.scr';
 signon zoshost;
 /*************************************/
 /* download DB2 data views using */
 /* SAS/ACCESS engine */
 /*************************************/
2 rsubmit zoshost;
3 libname db db2;
4 proc download data=db.employee
 out=db2dat;
 run;
5 endrsubmit;

 /*************************************/
 /* connect to UNIX */
 /*************************************/
6 options
 remote=hrunix comamid=tcp;
 filename rlink
 '!sasext0\connect\saslink\tcpunix.scr';
 signon;

 /*************************************/
 /* download Oracle data using */
 /* SAS/ACCESS engine */
 /*************************************/
2 rsubmit hrunix;
3 libname oracle user=scott password=tiger;
4 proc download
 data=oracle.employee out=oracdat;
 run;
5 endrsubmit;

 /*************************************/
 /* sign off both links */
 /*************************************/
7 signoff hrunix;
 signoff zoshost cscript=
 '!sasext0\connect\saslink\tcptso.scr';

 /*************************************/
 /* join data into SAS view */
 /*************************************/
8 proc sql;
 create view joindat as
 select * from db2dat, oracdat
 where oracdat.emp=db2dat.emp;

 /*************************************/
 /* create summary table */
 /*************************************/
9 proc tabulate data=joindat
 format=dollar14.2;
 class workdept sex;
 var salary;
 table workdept*(mean sum) all,

280 Chapter 15 / DOWNLOAD Procedure

 salary*sex;
 title1 'Worldwide Inc. Salary Analysis
 by Departments';
 title2 'Data Extracted from Corporate
 DB2 Database';
 run;

/* display graphics */
10 proc gchart data=joindat;
 vbar workdept/type=sum
 sumvar=salary
 subgroup=sex
 ascending
 autoref
 width=6
 ctext=cyan;
 pattern1 v=s c=cyan;
 pattern2 v=s c=magenta;
 format salary dollar14.;
 title1 h=5.5pct f=duplex
 c=white
 'Worldwide Inc. Salary Analysis';
 title2 h=4.75pct f=duplex
 c=white
 'Data Extracted from Corporate DB2
 Database';
 run;
 quit;

1 To sign on to a server, you need to provide several items of information:

n the server-ID, which is specified in a REMOTE= system option or as an
option in the SIGNON statement.

n the communications access method, which is specified by using the
COMAMID= system option in an OPTIONS statement.

n the script file to use when signing on to the server. This script file is usually
associated with the fileref RLINK. Using this fileref is the easiest method for
accessing the script file.

After you provide all the necessary information, you can submit the SIGNON
statement. You can specify the server-ID in the SIGNON statement. If you omit
the server-ID from the RSUBMIT statement, the statements are submitted to the
server session that was identified most recently in a SIGNON statement, in an
RSUBMIT statement or command, or in a REMOTE= system option.

2 After you connect to two or more sessions, you can remotely submit statements
to any of the servers by simply identifying in the RSUBMIT statement which
server should process the statements. After the server-ID has been specified by
a previous statement or option, you are not required to specify it again in the
REMOTE statement. However, this example includes the server-ID in the
RSUBMIT statements, even though the server-ID is not required, to clarify which
server is processing each group of statements.

3 Associate a libref with the library that contains the DB2 database on the server.

4 The data from the DB2 database can then be downloaded to the client. Note that
when you download a view of a database, a temporary SAS data set is

Example 11: Combining Data from Multiple Server Sessions 281

materialized from the view and downloaded to the client. In this example, the
output data set on the client is a temporary SAS data set.

5 The ENDRSUBMIT statement ends the block of statements that are submitted to
the server.

6 To establish a second server session, set the REMOTE= and COMAMID=
options to values that are appropriate for the second server. You also need to set
the fileref RLINK again to associate it with the script file for the second server.

7 Terminate the links to both the UNIX server and the z/OS server. Use the
CSCRIPT= option to identify the script file for signing off the z/OS server.

8 On the client, you can now use the SQL procedure to join into a single view the
two SAS data sets that were created when you downloaded the views from the
server.

9 To analyze the joined data, use the name of the view on the client in a PROC
TABULATE step.

10 If you have SAS/GRAPH on your client, you can also use graphics procedures to
analyze the view that is created from the two server databases.

Example 12: Compute Services and Data Transfer
Services Combined: Process in the Client and
Server Sessions

Regardless of the motivation for reducing the amount of data that is transferred,
incorporating Compute Services will achieve your goal. Compute Services enables
you to format and pre-process data into a subset or a summarized form in the server
session before transferring the subsequent smaller amount of data to the client
session. This balances the use of CPU cycles between the client and server
sessions and minimizes the amount of data contributing to network traffic. If you
need information from data that is stored on a remote computer, and you do not
want to move a copy of the data to the client, you can benefit from combining
Compute Services and Data Transfer Services. Reasons for not moving a copy of
the data might include the following: The amount of data is too large, the data is
frequently updated, and data duplication is to be avoided.The SAS/CONNECT
statements SIGNON, SIGNOFF, RSUBMIT, and ENDRSUBMIT enable you to
submit statements from a client session to a server session. You can include these
statements in a SAS program and do both client and server processing within a
single SAS program. This program can be run in an interactive line mode SAS
session, in a non-interactive SAS session, or by including the program in a client
session. In each case, the program executes statements in both the client and
server sessions.This program processes data on a server, downloads the resulting
SAS data set, creates a permanent data set in the client session, and prints a report
in the client session. You have several choices for running this program:

n Type and submit each line in an interactive line mode SAS session. All of the
statements between the RSUBMIT and ENDRSUBMIT statements are submitted
to the server session for processing. All other statements are processed in the
client session.

282 Chapter 15 / DOWNLOAD Procedure

Note: When statements are submitted to the server session, several statements
can be grouped into a single packet of data that is sent to the server session.
Therefore, a line that is remote submitted is not necessarily processed
immediately after you enter it in the client session.

n Build a file that contains all these statements, and use a %INCLUDE statement
to include the file in an interactive line mode session. The file is processed
immediately.

n Build a file that contains all these statements and run a non-interactive SAS job
to process the statements as follows:

 sas file-containing-program

n Build a file that contains all these statements, and use an INCLUDE command to
include the file. You must submit the included statements from the windowing
environment.

n Build a file and issue the SUBMIT command from the Explorer window. For
details, see “Use SAS Explorer to Monitor SAS/CONNECT Tasks” on page 40.

 /*************************************/
 /* prepare to sign on */
 /*************************************/ 1

 options
 comamid=tcp
 remote=netpc; 2

 libname lhost 'c:\sales\reg1';

 /*************************************/
 /* sign on and download data set */
 /*************************************/ 3

 signon; 4

 rsubmit; 5

 libname rhost 'd:\dept12'; 6

 proc sort data=rhost.master
 out=rhost.sales;
 where gross > 5000;
 by lastname dept;
 run;
7

 proc download data=rhost.sales
 out=lhost.sales;
 run; 8

 endrsubmit;

9

 /*************************************/
 /* print data set in client session */
 /*************************************/
 proc print data=lhost.sales;
 run;

1 Specifies the COMAMID= and the REMOTE= system options in an OPTIONS
statement. These two system options define the connection between the client
and server sessions.

2 Defines a libref for the SAS library in the client session to identify the location of
the data set to be downloaded.

Example 12: Compute Services and Data Transfer Services Combined: Process in the
Client and Server Sessions 283

3 Signs on to the server session. The server-ID was specified in the preceding
OPTIONS statement.

Note: A script file is not used.

4 Uses the RSUBMIT and ENDRSUBMIT statements to define statements to send
to the server for processing. If the client session is connected to multiple active
server sessions, specifying the server ID in the RSUBMIT statement clarifies
which server session should process the block of statements. If server-ID is
omitted, RSUBMIT directs the statements to the most recently identified server
session.

5 Defines the libref for the SAS library in the server session.

6 Creates the Rhost.Sales data set as a sorted subset of the Rhost.Master data
set.

7 Transfers the Sales data from the library in the server session (Rhost) to the
library in the client session (LHOST).

8 Marks the end of the block of statements to be submitted to the server session.
Statements that follow the ENDRSUBMIT statement are processed in the client
session.

9 Reads and prints the SAS data set that was downloaded in the PROC
DOWNLOAD step.

Example 13: Compute Services and Data Transfer
Services Combined: Sort and Merge Data

When multiple client sessions need to access a single data set on the server, Data
Transfers Services can be used to distribute the subset of data that is needed by
each session. Each client session receives only the data that it needs, and uses
Compute Services to process its data in its session. When you use this method,
client sessions do not continually access the data set on the server.

This SCL program fragment distributes a data set that contains reservations data
from a server that is located at a central office to clients at several franchise offices.
The program enables distribution of selected reservations to a franchise office by
using a WHERE statement.

submit continue;
signon atlanta;

 rsubmit;
 libname mres "d:\counter";
 libname backup "d:\counter\backup";
1

 proc upload data=mres.reserv
 out=combine status=no;
 where origin="Atlanta";
 run;
2

 proc sort data=combine;

284 Chapter 15 / DOWNLOAD Procedure

 by resnum;
 run;
3

 proc copy in=mres out=backup;
 select reserv;
 run;
4

 data mres.reserv;
 update mres.reserv combine;
 by resnum;
 run;
 endrsubmit;

signoff;

1 Uploads all reservations for a particular location.

2 Sorts uploaded data sets for merging.

3 Backs up existing data set.

4 Merges new and existing data sets.

Example 13: Compute Services and Data Transfer Services Combined: Sort and Merge
Data 285

286 Chapter 15 / DOWNLOAD Procedure

16
SAS Component Language
(SCL) Functions and Options

Use SCL to Locate and Store Sample Script Files . 287

Dictionary . 288
COMAMID SCL Function . 288
RLINK SCL Function . 289
RSESSION SCL Function . 290
RSTITLE SCL Function . 291

Use SCL to Locate and Store Sample
Script Files

The system option SASSCRIPT= defines the location of the SAS/CONNECT script
files. The value of the SASSCRIPT= system option is a logical name or one or more
aggregate storage locations (such as directories or partitioned data sets). Setting
the SASSCRIPT= system option automatically generates the SAS system option,
SASFRSCR. SASFRSCR is set to the value of a fileref that is used to build a list of
scripts for SCL applications. When you establish a link while using SAS/ASSIST,
this product uses the information provided by the SASFRSCR option to provide a list
of available scripts. You can also build a similar menu of script files for user-written
applications by accessing the SASFRSCR system option from an SCL program.

The following SCL program obtains the value of the SASFRSCR system option and
uses it to create a list of scripts. For information about the SCL functions that are
used in this example, see SAS Component Language: Reference.

INIT;
return;

MAIN:
 /* Get internally-assigned fileref. */

287

 fileref=optgetc('sasfrscr');

 /* Open the directory (aggregate storage */
 /* location). */
 dirid=dopen(fileref);

 /* Get the number of files. */
 numfiles=dnum(dirid);

 /* Define a custom selection list the */
 /* length of the number of files and */
 /* allowing users to make one choice. */
 call setrow(numfiles,1);
return;

TERM:
 /* Close the directory. */
 rc=dclose(dirid);
return;

GETROW:
 /* Display the list of filenames. */
 filename=dread(dirid,_currow_);
return;

PUTROW:
 /* Get directory pathname. */
 fullname=pathname(fileref);

 /* Concatenate filename that user selects*/
 /* with directory pathname. */
 name=fullname ||'/'|| filename;
 /* Other SCL statements to use complete */
 /* filename stored in name. */
return;

Dictionary

COMAMID SCL Function
Returns a string that contains all of the communications access methods that are valid for the operating
environment that the SCL code executes under.

Client: Optional

Server: Optional

288 Chapter 16 / SAS Component Language (SCL) Functions and Options

Syntax
cval=COMAMID();

Syntax Description
cval

a string that contains all of the communications access methods that are valid for
the specific operating system.

Details
The COMAMID function returns a string that contains all of the communications
access methods that are valid for the operating environment that the SCL code
executes under. Each value is separated by a blank. This function is useful for
providing a list of communications access methods for users. The list is displayed as
determined by the developer. The function merely returns a string of values.

Example
The following program fragment gets the string of communications access methods
that are valid for the operating environment that this SCL program executes under.
After the string is returned, one way to display the values would be in a list box.
Although this example does not include it, you would specify that the list box be
filled with the text string cval.

comlist=makelist();
 str=comamid();
 do i=1 to 10;
 com=scan(str,i,' ');
 if com^=' ' then
 comlist=insertc(comlist,com,i);
 end;

RLINK SCL Function
Verifies whether a connection was established between a SAS/CONNECT client and a server session.

Client: Optional

Server: Optional

RLINK SCL Function 289

Syntax
rc=RLINK('server-ID');

Syntax Description
rc

is the return code.

'server-ID'
is the name of the server session (specified by REMOTE= server-ID) that is
being tested.

Details
The RLINK function verifies whether a connection was established between the
SAS/CONNECT client and server sessions.

Example
The following statements use the RLINK function and the server ID REMSESS.

rc=rlink('REMSESS');
if (rc=0) then
 msg='No link exists.';
else
 msg='A link exists.';

RSESSION SCL Function
Returns the name, description, and SAS version of a SAS/CONNECT server session.

Client: Optional

Server: Optional

Syntax
cval=RSESSION(n);

Syntax Description
cval

is the character string that contains the following information:

290 Chapter 16 / SAS Component Language (SCL) Functions and Options

characters 1 through 17
are the session identifier (REMOTE= server-ID).

characters 18 through 57
are the description.

characters 58 through 61
are the number of the server session to get session information for. If no
connection exists, the returned value is blank. If a connection exists but no
description was specified, characters 58 through 61 in the returned value are
blanks.

Details
The RSESSION function returns the session identifier and the corresponding
description for a SAS/CONNECT server session. You must have previously defined
the description by using the RSTITLE function.

Example
This example loops through four sessions and obtains the server session and
description, which is returned by using the RSESSION function. The program puts
the descriptions in separate arrays for later use (for example, to display a choice of
server sessions to upload to).

do i=1 to 4;
 word=rsession(i);
 if word ^=' ' then do;
 remote=substr(word,1,17);
 desc=(substr(word,18,57));
 if rlink(remote) then do;
 if desc=' ' then desc = remote;
 cnt=cnt + 1;
 entrys{cnt}=remote;
 comam{cnt}=desc;
 end;
 end;
end;

RSTITLE SCL Function
Defines a description for an existing connection to a SAS/CONNECT server session.

Client: Optional

Server: Optional

RSTITLE SCL Function 291

Syntax
sysrc=RSTITLE(session-ID, description);

Syntax Description
sysrc

is 0 if the description was saved or nonzero if the operation failed.

session-ID
is the name of the server session (specified by CONNECTREMOTE= server-ID).
The string can contain a maximum of eight characters.

description
is a description to associate with the server session. The string can contain a
maximum of 40 characters.

Details
The RSTITLE function saves the session identifier and description for an existing
connection to a server session. This information can be retrieved by using the
RSESSION function to build a list of connections. The list can then be used to select
a connection when submitting statements to a server.

Example
The following statements define the description z/OS Payroll Data for the remote
session by using the identifier A:

session='A';
descrip='z/OS Payroll Data';
rc=rstitle(session,descrip);

292 Chapter 16 / SAS Component Language (SCL) Functions and Options

17
SAS/CONNECT Script
Statements

Dictionary . 293
ABORT Script Statement . 293
CALL Script Statement . 294
ECHO Script Statement . 294
GOTO Script Statement . 295
IF Script Statement . 295
INPUT Script Statement . 296
LOG Script Statement . 297
NOTIFY Script Statement . 298
RETURN Script Statement . 298
SCANFOR Script Statement . 299
STOP Script Statement . 299
TRACE Script Statement . 300
TYPE Script Statement . 300
WAITFOR Script Statement . 302

Dictionary

ABORT Script Statement
Stops execution of a script immediately and signals an error condition.

Syntax
ABORT;

293

Details
The ABORT statement immediately stops execution of a script and terminates the
SIGNON or the SIGNOFF function. ABORT prevents other script statements from
executing when the communication link has not been established successfully.
When it executes, the ABORT statement signals an error condition, and an error
message is issued and displayed in the SAS Log window. To terminate execution of
a script under normal conditions, use the STOP statement.

UNIX Specifics: test

CALL Script Statement
Invokes a routine.

Syntax
CALL label;

Syntax Description
label

identifies the starting point for executing a block of statements until a Return
statement is reached.

Details
The CALL statement causes the statements that are specified after label to be
executed until a RETURN statement is encountered. When a RETURN statement is
reached, script processing resumes at the statement that is specified after the CALL
statement.

ECHO Script Statement
Controls the display of characters that are sent from the server while a WAITFOR statement executes.

Syntax
ECHO ON | OFF;

294 Chapter 17 / SAS/CONNECT Script Statements

Syntax Description
ON

specifies that the characters are displayed.

OFF
specifies that the characters are not displayed. This is the default.

Details
The ECHO statement is useful when you are debugging a script.

GOTO Script Statement
Redirects execution of a script to the specified script statement.

Syntax
GOTO label;

Syntax Description
label

specifies a labeled statement that is located elsewhere in the script.

Details
The GOTO statement can also be written as GO TO.

IF Script Statement
Checks conditions of labeled script statements before they execute.

Syntax
IF condition GOTO label;

IF NOT condition GOTO label;

IF Script Statement 295

Syntax Description
condition

is the test that is performed to determine whether a set of statements should be
executed.

label
specifies a labeled statement in the script.

Details
The IF statement conditionally jumps to another statement in the script. The IF
statement can check two conditions: connection type and whether the script has
been called by the SIGNON or the SIGNOFF command.

If the statement is testing for sign-on or sign-off, condition should be one of the
following:

SIGNON
specifies that the SIGNON command invoked this script.

SIGNOFF
specifies that the SIGNOFF command invoked this script.

If the statement is testing for connection type, condition should be either FULL
SCREEN or one of the values for the COMAMID= system option.

The value FULLSCREEN can be used to detect any full-screen 3270 connection.
The remaining values correspond to values for the COMAMID= system option.

label must specify a labeled statement in the script. For example, in the following IF
statement, ENDIT is a label that is followed by one or more statements that
terminate the link when the user has issued a SIGNOFF command:

if signoff then goto endit;

INPUT Script Statement
Displays a prompt to the user that requests a response for the server.

Syntax
INPUT <NODISPLAY> 'prompt';

Syntax Description
NODISPLAY

is an optional parameter that is used to indicate that the input will not be
displayed on the screen. This parameter is commonly used when a user is

296 Chapter 17 / SAS/CONNECT Script Statements

prompted to provide a password so that the password is not displayed as it is
entered.

'prompt'
is a character string and must be enclosed in quotation marks.

Details
The INPUT statement specifies a character string that is displayed to the user when
the script executes. The specified string should be a prompt that requests a
response from the user, who must respond by pressing Enter or Return (as a
minimum response), before script execution can continue. For example, in
automatic sign-on scripts, the INPUT statement is used to prompt the user for the
user ID and the password that are needed for signing on to the server.

The INPUT statement does not automatically transmit a carriage return or an Enter
key. Therefore, when writing a script, if you want to transmit a carriage return or
Enter key to the server, you must use a TYPE statement after an INPUT statement.

LOG Script Statement
Sends a message to the client SAS log.

Syntax
LOG 'message';

Syntax Description
'message'

is a text string that must be enclosed in quotation marks.

Details
The LOG statement specifies a message that is written to the SAS log. You can use
this statement to issue informative notes or error messages to the user as the script
executes. For example, the sample scripts in SAS use the following LOG statement
to inform users that the SIGNOFF completed successfully:

log 'NOTE: SAS/CONNECT conversation terminated.';

LOG Script Statement 297

NOTIFY Script Statement
Sends a message in a window to the client session.

Syntax
NOTIFY 'message';

Syntax Description
'message'

is a text string that must be enclosed in quotation marks.

Details
The NOTIFY statement sends a message to the user on the client by creating a
window that displays the message. The user must select Continue to clear the
window. The NOTIFY statement is similar to the LOG statement, but it enables you
to highlight messages that might not be noticed in the log.

RETURN Script Statement
Signals the end of a routine.

Syntax
RETURN;

Details
The RETURN statement indicates the end of a group of statements that form a
routine in a script. The routine begins with a statement label and is invoked by a
CALL statement.

298 Chapter 17 / SAS/CONNECT Script Statements

SCANFOR Script Statement
Specifies a pause until conditions are met (an alias for WAITFOR).

Syntax
SCANFOR pause-specification-1 <pause-specification-2>…;

Syntax Description
pause-specification

See the description of pause-specification in the WAITFOR statement.

Details
The SCANFOR statement is an alias for the WAITFOR statement. See the
description of the WAITFOR statement.

STOP Script Statement
Stops execution of a script under normal conditions.

Syntax
STOP;

Details
The STOP statement is used to terminate script execution under normal conditions.
Usually, you use the STOP statement at the end of a group of statements that
perform sign-on tasks or sign-off tasks.

To halt the execution of scripts under abnormal conditions, use the ABORT
statement.

STOP Script Statement 299

TRACE Script Statement
Controls the display of script statements in the Log window as they execute.

Syntax
TRACE ON | OFF;

Syntax Description
ON

specifies that statements are displayed in the Log window.

OFF
specifies that statements are not displayed in the Log window. This is the default.

Details
The TRACE statement is most useful when debugging a script.

You can set the TRACE statement on or off several times in a script in order to trace
execution of selected statements.

TYPE Script Statement
Sends characters to the server as if they were entered at a personal computer.

Syntax
TYPE text;

Syntax Description
text

is the user-specified string of characters sent to the server.

300 Chapter 17 / SAS/CONNECT Script Statements

Details

Overview of the TYPE Statement
The TYPE statement sends characters to the server as if they had been entered on
a personal computer that is attached to that operating environment. For example, in
a script that automatically signs on to the server, you use a TYPE statement to issue
the server sign-on command.

text can be any combination of the following:

n literal string(s) that are enclosed in quotation marks, such as 'any string'.

n hexadecimal character string(s) that are enclosed in quotation marks, such as
'01020304X'.

n 3270 key mnemonics if you have a 3270 connection.

If you use TYPE statements in the script and some characters that are specified by
the statement are not entered, then try using the WAITFOR statement to establish a
pause in script execution between TYPE statements.

To use a TYPE statement that has more than 80 characters in a sign-on script,
divide the TYPE statement into two or more TYPE statements. To divide the TYPE
statement, insert a hyphen (-) at the division point. For example, consider the
following TYPE statement:

type "sas options ('dmr comamid=tcp')"
enter;

To divide this statement, change it as follows:

type "sas options ('dmr comamid=-" enter;
type "tcp')" enter;

Note: Do not insert spaces before or after the hyphen.

ASCII Control Character Mnemonics
To specify an ASCII control character in the TYPE statement, use a mnemonic
representation of the character. The following table lists the ASCII control characters
and the corresponding mnemonics, decimal codes, and hexadecimal values.

n Do not enclose an ASCII mnemonic in quotation marks.

n In the TYPE statement, use only the values from decimal 0 to 127 (hexadecimal
0 to 7F). Do not use any of the extended ASCII characters whose values are
greater than 127 (decimal).

Table 17.1 ASCII Character Mnemonics

ASCII Control Character

Mnemonic
Representat
ion

Decimal
Value Hexadecimal Value

Line feed LF or CTL_J 10 0A

TYPE Script Statement 301

ASCII Control Character

Mnemonic
Representat
ion

Decimal
Value Hexadecimal Value

Carriage return CR or
CTL_M

13 0D

WAITFOR Script Statement
Specifies a pause until specific conditions are met.

Syntax
WAITFOR pause-specification-1<pause-specification-2>…;

Syntax Description
pause-specification

is the criteria used to determine when the pause is terminated for the WAITFOR
statement and processing continues.

The value of pause-specification can be either of the following:

time-clause<:timeout-label>

time-clause
specifies a time period in the form n SECONDS.

n is the number of seconds that the client waits before processing continues.
If you specify 0 SECONDS, a time-out occurs almost immediately. In most
cases, you should specify a value greater than 0. You can specify only one
time clause in a WAITFOR statement.

:timeout-label
specifies the label of a statement that exists later in the script. The label must
be preceded by a colon (:). When you specify a label, script execution passes
to the labeled statement after a time-out occurs. If no label is specified,
execution proceeds with the statement that is specified after the WAITFOR
statement.

text-clause<:text-label>
text-clause

specifies a string that the client waits to receive from the server. The string
can be the following

n a character string that is enclosed in quotation marks

n a hexadecimal string that is enclosed in quotation marks

302 Chapter 17 / SAS/CONNECT Script Statements

When text-clause is specified, SAS on the client reads input from the server,
searching for the specified string. With 3270 connections, SAS on the client
scans the server screen (instead of reading characters sequentially).

:text-label
specifies the label of a statement that exists later in the script. The label must
be preceded by a colon (:). When you specify a label, script execution passes
to the labeled statement after a time-out (if the label follows a time clause) or
after the specified string has been read (if the label follows a text clause). If
no label is specified, execution proceeds with the statement that is specified
after the WAITFOR statement.

Details
The WAITFOR statement directs SAS on the client to do one of the following:

n pause for a specified time

n pause for a specified time or until specified characters from the server are
received

n pause until specified characters from the server are received

Usually, a WAITFOR statement is used after a TYPE statement sends input to the
server that causes the client to wait for the server's response to the input. For
example, in the sample scripts, a WAITFOR statement follows the TYPE statement
that invokes SAS on the server.

You can include one or more pause specifications in a WAITFOR statement. When
you include more than one pause specification, use commas to separate the
clauses.

Comparisons

n You must specify either a time clause or a text clause in the WAITFOR
statement. Or you can specify multiple text clauses or combine a time clause
and one or more text clauses. Labels and screen location specifications are
optional.

n If the only specification in the WAITFOR statement is a time clause, there is a
pause during the script's execution. When the specified time has elapsed,
control passes to the next statement in the script. For example, the following
WAITFOR statement causes a 2-second pause in script execution:

waitfor 2 seconds;

n If the WAITFOR statement contains a time clause followed by a label, a pause
occurs and control passes to the labeled statement. The following WAITFOR
statement causes a 2-second pause and then passes control to the script
statement labeled STARTUP:

waitfor 2 seconds :startup;

n If the WAITFOR statement contains a time clause and a text clause, the client
waits the specified time for the specified characters from the server. If the client
does not receive the expected characters before the time expires, then a time-

WAITFOR Script Statement 303

out occurs and control passes to the next statement or to the labeled statement
(if a label is specified by the time clause). For example, when the following
WAITFOR statement executes, the client pauses for 5 seconds and reads any
input sent by the server:

waitfor 'Enter your password',
 5 seconds :nohost;

If the following string is sent by the server within 5 seconds, no time-out occurs
and control passes to the next statement in the script:

Enter your password

If the string is not received within 5 seconds, a time-out occurs and control
passes to the statement labeled NOHOST.

n You can specify labels for both text clauses and time clauses. For example:

waitfor 'Enter your password' :startlnk,
 5 seconds :nohost;

This WAITFOR statement is the same as the preceding example except that a
label is specified after the text clause. Therefore, if the following string is sent by
the server within 5 seconds, no time-out occurs and control passes to the
statement labeled STARTLNK:

Enter your password

If the string is not received within 5 seconds, a time-out occurs and control
passes to the statement labeled NOHOST, as in the previous example.

n If you do not specify a time clause (that is, if you specify only a text clause), a
time-out cannot occur, and the client waits indefinitely for the specified text
response from the server. Usually, you should specify a time clause to avoid
being trapped in an infinite wait.

n If you specify multiple text clauses in a WAITFOR statement, the commas that
separate the clauses imply a logical OR operator, so only one of the text clauses
needs to be satisfied (true).

304 Chapter 17 / SAS/CONNECT Script Statements

PART 4

Administration

Chapter 18
Access Methods . 307

Chapter 19
The SAS/CONNECT Spawner . 319

Chapter 20
UNIX Operating Environment . 339

Chapter 21
z/OS Operating Environment . 361

Chapter 22
Windows Operating Environment . 383

Chapter 23
SAS/CONNECT Files . 405

305

306

18
Access Methods

Access Methods Supported by SAS/CONNECT . 307
Overview . 307
TCP/IP Access Method . 308
Configure the TCP/IP Services File . 309

Configure SAS/CONNECT for Use with a Firewall . 312
Firewall Concepts . 312
Requirements for Using a Firewall . 312
Firewall Configurations . 313

Access Methods Supported by
SAS/CONNECT

Overview
A communications access method is the interface between SAS and the network
protocol that you use to connect two operating environments. You must use a
communications access method with SAS/CONNECT. The communications access
method that you choose is determined by the network protocols that you have
available at your site and the operating environments that you are connecting.

SAS/CONNECT uses the TCP/IP access method by default for the UNIX and
Windows operating environments to establish client/server network connections.
The z/OS operating environment can also use TCP/IP. However, by default, the
z/OS operating system uses the XMS access method. The XMS access method
allows communication only between clients and servers that run within a single z/OS
operating environment.

Use the COMAMID= option if you want to use TCP/IP for z/OS or if you choose to
explicitly specify TCP/IP for UNIX or Windows. For more information, see
“COMAMID=” on page 101.

307

The following are descriptions of these access methods:

TCP/IP (Transmission Control Protocol/Internet Protocol)
is a program-to-program interface that is supported on hardware from multiple
vendors. TCP/IP is supported under the UNIX, z/OS, and Windows operating
environments.

XMS (Cross-Memory Services)
is an interface that is part of the z/OS operating environment and is used by
programs that run within a single z/OS environment.

For more information, see “MP Connections on z/OS” on page 374.

Note: Before using TCP/IP on z/OS, you must configure your system to run SAS
under TCP/IP. Complete the steps outlined in the sections, “System Configuration
for Using SAS with TCP/IP” and “Post-Installation Configuration for SAS/CONNECT
Software” in the Configuration Guide for SAS 9.4 for Foundation on z/OS.

For more information using TCP/IP, see “TCP/IP Access Method” on page 308.

For information about using TCP/IP in each of the supported SAS/CONNECT
operating environments, see the following:

n UNIX on page 341

n z/OS on page 363

n Windows on page 384

TCP/IP Access Method

Overview
TCP/IP is a set of layered protocols that enable processes on the same computer to
communicate or processes on different computers to communicate across a
network.

Although you might refer to a computer by using its host name, TCP/IP applications
refer to computers by using their IP addresses. To facilitate the use of host names in
a network, the Domain Name System translates host names to IP addresses. This
Domain Name System provides host-to-IP address mapping through network server
hosts, which are called domain name servers. The Domain Name System also
provides other information about server hosts and networks, such as the TCP/IP
services that are available to the server host and the location of the domain name
servers in the network.

About TCP/IP Addressing
TCP/IP applications refer to networked computers via their fully qualified domain
names (FQDN) and their IP addresses. Because IP addresses can change easily,

308 Chapter 18 / Access Methods

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf

SAS applications that contain hardcoded IP addresses are prone to maintenance
problems. To avoid such problems, use an FQDN instead of an IP address. The
name-resolution system that is part of the TCP/IP protocol is responsible for locating
the IP address that is associated with the FQDN.

SAS 9.2 introduced support for the Internet Protocol, IPv6, which is the successor to
Internet Protocol, IPv4. Rather than replacing IPv4 with IPv6, SAS now supports
both protocols. There will be a lengthy transition period during which the two
protocols will coexist. A primary reason for the new protocol is that the limited supply
of 32-bit IPv4 address spaces was being depleted. IPv6 uses a 128-bit address
scheme, which provides more IP addresses than does IPv4.

Here are examples of an FQDN, an IPv6 address, and an IPv4 address:

FQDN address example: d6292.us.company.com

IPv6 address example: db8::01

IPv4 address example: 10.23.2.3

Configure the TCP/IP Services File

Overview
The SERVICES file defines port resources that are used when TCP/IP is used to
connect client/server sessions.

A service for each SAS/CONNECT server session must be defined in the
SERVICES file on the server and on each client computer that connects to it.

The -SERVICE Option
The -SERVICE option is a spawner start-up option that can be used to specify a
defined numeric port value or service name for the spawner being started.

If the spawner is started with the -SERVICE=<service-name><port-number> syntax,
then the service-name value or the port-number value that was used to start the
spawner on the server must be used by the client to sign on.

For information about the -SERVICE option, see -SERVICE.

Note: The spawner service name and port number can be configured in the client's
SERVICES file, but this is not a requirement. The port information (service or port)
can be defined in metadata or clients can explicitly specify the port information
about the command line or in the SIGNON statement.

Access Methods Supported by SAS/CONNECT 309

Services That Require an Entry in the
Services File
Here are some examples of port services that require configuration in the services
file:

n Telnet service

n spawner ports

n firewall computer port

n dedicated TCP/IP port service that is used for MP CONNECT piping

Note: If you have access to a UNIX operating environment, see the services
manual page for more information about this file.

Location of the Services File
The location of the services file depends on the operating environment. Typical
locations for the TCP/IP services file are the following:

Operating System Location

UNIX and z/OS /etc/services

See the “services” manual page for more
information about this file and its location.

Windows C:\Windows\System32\drivers\etc\services

Rules for Updating TCP/IP Port Numbers
and Service Names
To configure your TCP/IP services file to use with the SAS/CONNECT spawner, add
an entry to the services file for each SAS server (either local or remote) that you
have configured.

Here are the rules for adding the entry:

n The port number that you use should be an unused port number greater than
1024. Any port number equal to or less than 1024 is reserved.

n The protocol must always be TCP.

310 Chapter 18 / Access Methods

n The server name can be up to eight characters.

n The first character must be a letter or an underscore.

n Subsequent characters can be letters, numeric digits, underscores, the dollar ($)
sign, or the at (@) sign.

Here is the syntax for a typical services file.

<official-service-name> <port-number/protocol-name >
<alias-name> <service-description>

Here a sample services file:

Figure 18.1 Sample Services File

Note: You must enter a blank line (press the ENTER key) at the end of the
services file. If a blank line is not at the end of the file, the final line in the file is not
detected. For example, if you run a SAS script that contains the name of the
configured SAS/SHARE service sea, this error message is displayed:

Cannot find TCP service 'sea'

Here is an explanation of each field in the example above:

service-name
specifies the name of the service. Service names must meet the criteria for a
valid SAS name. (For details about SAS naming rules, see “Rules for Words and
Names in the SAS Language” in SAS Language Reference: Concepts.) For
example, you can create a service named SPAWNER for the UNIX spawner
program. You need the Telnet service when signing on to any server that does
not use a PC or a UNIX spawner program.

You use the service name as the value for the REMOTE= option or in the
SIGNON statement to perform a server sign-on.

port-number
is a unique number that is associated with the service name. Each reference to
that service in other node services files must match the service's port number
exactly. Port numbers 0 through 1023 are reserved for system use. Port
numbers that are greater than 1023 are available for user-created services.

protocol-name
identifies the protocol. udp and tcp are examples of protocol names.

alias-name
is an optional synonym for the service. Alias names can be application- or user-
dependent. For example, one application can refer to the server as sea and
another application can refer to the same server as biscuit.

Note: Each client and server must configure the alias in its services file before
the alias can be used successfully. For example, the service name, sea and the

Access Methods Supported by SAS/CONNECT 311

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en

alias biscuit must be configured in the services file of each client and server
that uses the alias.

service-description
describes the service.

Configure SAS/CONNECT for Use with a
Firewall

Firewall Concepts
firewall

is a controlled gateway between two networks. A firewall limits external client
connections to a set of restricted ports on one or more computers that are inside
the firewall.

Web servers and other network applications can also use firewalls to limit access
to servers. SAS/CONNECT permits TCP/IP connections between clients outside
a firewall to a spawner that runs on a SAS/CONNECT server inside a firewall.

socket inheritance
enables the server session to inherit the socket that the spawner uses to
communicate with the client session. The socket is then used for subsequent
communications between the client and the server session. Socket inheritance is
significant because a single port can be used for starting an unlimited number of
server sessions.

Before this innovation, a separate port was opened for each client that
connected to a server by using a spawner. Socket inheritance limits the number
of ports that are used for connections through a firewall, which improves the
security of a firewall configuration and simplifies administration of a firewall
configuration.

Requirements for Using a Firewall
n The external clients and the servers within the firewall must be running SAS 6.12

TS065 or later.

n The TCP/IP communications access method must be used for establishing a
network connection between clients and servers.

n Firewall software must be installed on the server that maintains the separation
between the internal network and the Internet.

312 Chapter 18 / Access Methods

n A port must be defined on the firewall server to be used as a gateway between
external clients and the internal network. The firewall software must route the
firewall server port to the predefined server port.

n A spawner must be running on a server inside the firewall. For complete details
about the spawner program, see “Introduction to the SAS/CONNECT Spawner”
on page 319.

Firewall Configurations

Overview of Firewall Configurations
The supported firewall configurations are distinguished by these characteristics:

n A range of restricted ports is available for client/server connections across a
firewall.

n A single port is available for all client/server connections across a firewall.

Set Up a Firewall Configuration That Uses
Restricted Ports
The example configuration includes an external SAS client, a firewall, and a
SAS/CONNECT server session and a spawner program that run on the local area
network. Each external client connects to the server using a range of restricted
ports.

Figure 18.2 Firewall Configuration That Uses Restricted Ports

Here are the steps for setting up a firewall configuration:

Configure SAS/CONNECT for Use with a Firewall 313

1 At each external SAS client, the user must configure the firewall port, 5010, in its
services file.

fireport 5010/tcp # Firewall computer port

FIREPORT is a defined service in the client's services file that is associated with
port 5010. FIREPORT is the single port through which all external SAS clients
will access SAS servers in the internal network.

2 The administrator of the firewall server must configure these ports:

n the restricted ports that are used by the external SAS clients and a mapping
to the equivalent port numbers on the SAS/CONNECT server

n the firewall port, 5010, and a mapping to 5010 on the SAS/CONNECT server
or another port number on the SAS/CONNECT server

Note: Restricted ports are implemented using the TCPPORTFIRST= and
TCPPORTLAST= system options that are specified in the SAS start-up file. (See
step 4.)

For example, if the external SAS clients use restricted ports 2040 through 2044,
the administrator of the firewall server must configure those ports on the firewall
server. Also, the administrator must map those ports to the same port numbers
on the SAS/CONNECT server.

Specific details about configuring and mapping ports on the firewall server vary
according to the specific firewall software that is used.

3 The administrator of the SAS/CONNECT server must configure these ports in its
services file:

n the port that is used by the external SAS client to communicate with the
spawner

n the ports that are used by the spawner to communicate with the
SAS/CONNECT server

Here is an example of these entries in the services file:

spawnport 5060/tcp # Port for external SAS client to spawner
servport 5080/tcp # Port for spawner and SAS/CONNECT server

SPAWNPORT is a defined service in the services file that is associated with port
5060. SERVPORT is associated with port 5080.

4 The administrator of the SAS/CONNECT server must configure one or more
restricted ports in the SAS start-up file that executes when the spawner starts
the SAS/CONNECT session.

 sas.exe -tcpportfirst 2040 -tcpportlast 2040 %*

In this example, SAS is started and the restricted port is 2040. All
communications between external SAS clients and the SAS/CONNECT server
are restricted to port 2040.

A range of ports could be specified by increasing the values assigned to the
TCPPORTFIRST= and TCPPORTLAST= system options.

5 The administrator of the SAS/CONNECT server must start the spawner using a
command that disables socket inheritance:

 cntspawn -noinheritance -service spawnport -sasdaemonservice servport
 -sascmd mysas.cmd

314 Chapter 18 / Access Methods

The restricted port that is used by the SAS client and the SAS/CONNECT server
is specified in the mysas.cmd script via the TCPPORTFIRST= and
TCPPORTLAST= system options.

Here is an explanation of the spawner command example above:

Table 18.1 Explanation of Spawner Command

Command Description

cntspawn Starts the spawner

-noinheritance Specifies that sockets
cannot be inherited

-service spawnport Specifies that the spawner
service will be named
‘spawnport,’ and that the
spawner will listen for
requests from SAS clients
at port 5060 for
connections to a
SAS/CONNECT server.

-sasdaemonservice servport Specifies the service or
port, 5080, through which
the spawner relays the
SAS client's request to
connect to the
SAS/CONNECT server.

-sascmd mysas.cmd Specifies the script that
starts the SAS/CONNECT
session. The script might
contain SAS options that
restrict ports.

For details about spawner options, see “Spawner Options” on page 326.

6 To test the configuration, start a SAS session on a computer that is outside the
firewall and sign on to the server that is inside the firewall. Here is an example:

options comamid=tcp;
signon firewall.fireport username="myuser" password="mypass";

Set Up a Firewall Configuration That Uses
a Single Port
The example configuration includes an external SAS client, a firewall, and a
SAS/CONNECT SAS/CONNECTxternal client connects to the server using a single
port, which is enabled by socket inheritance.

Configure SAS/CONNECT for Use with a Firewall 315

Figure 18.3 Firewall Configuration That Uses a Single Port

Here are the steps for setting up a firewall configuration:

1 At each external SAS client, the user must configure the firewall port, 5010, in its
services file.

fireport 5010/tcp # Firewall computer port

FIREPORT is a defined service in the TCP/IP services file that is associated with
port 5010. FIREPORT is the single port through which all external SAS clients
will access SAS servers in the internal network.

Note: The firewall server does not necessarily have to run SAS software.

2 The administrator of the firewall server must configure the firewall port, 5010,
and map it to another port number on the SAS/CONNECT server.

Specific details about configuring and mapping ports on the firewall server vary
according to the specific firewall software that is used.

3 The administrator of the SAS/CONNECT server must configure these ports in its
services file:

n the port that is used by the external SAS client to communicate with the
spawner

n the ports that are used by the spawner to communicate with the
SAS/CONNECT server

Here is an example of these entries in the services file:

spawnport 5060/tcp # Port for external SAS client to spawner
servport 5080/tcp # Port for spawner and SAS/CONNECT server

SPAWNPORT is a defined service in the services file that is associated with port
5060. SERVPORT is associated with port 5080.

4 The administrator of the SAS/CONNECT server starts the spawner:

cntspawn -service spawnport -sasdaemonservice servport
-sascmd mysas.cmd

316 Chapter 18 / Access Methods

Note: The command to start the SAS/CONNECT spawner is CNTSPAWN.

Here is an explanation of the spawner command:

Table 18.2 Explanation of Spawner Command

Command Description

cntspawn Starts the spawner.

-service spawnport Specifies the service or its port, 5060, at
which the spawner listens for requests
from SAS clients to connect to a
SAS/CONNECT server.

-sasdaemonservice servport Specifies the service or port, 5080,
through which the spawner relays the
SAS client's request to connect to the
SAS/CONNECT server.

-sascmd mysas.cmd Specifies the script that starts the
SAS/CONNECT session.

For details about spawner options, see “Spawner Options” on page 326.

5 To test the configuration, start a SAS session on a computer that is outside the
firewall and sign on to the server that is inside the firewall. Here is an example:

options comamid=tcp;
signon firewall.fireport username="myuser" password="mypass";

Configure SAS/CONNECT for Use with a Firewall 317

318 Chapter 18 / Access Methods

19
The SAS/CONNECT Spawner

Introduction to the SAS/CONNECT Spawner . 319
Definition . 319
Operating Environment Support for Spawners . 320
Benefits of Using a Spawner to Sign On to a Server . 320
Use SAS Management Console to Manage the SAS/CONNECT Spawner 321
Use PROC IOMOPERATE to Manage the SAS/CONNECT Spawner 322

Spawner Options . 326
Introduction . 326
General Spawner Options . 326
Security Options . 331
Windows-only Service Options . 333

Spawner Examples . 336
Scripted Sign-on to a UNIX Spawner (Server) . 336
Scripted Sign-on to a UNIX Spawner (Client) . 336
Scriptless Sign-on to a Windows Spawner That Runs as a Service (Server) 337
Scriptless Sign-on to a Windows Spawner That Runs as a Service (Client) 337
Encrypted Sign-on to a z/OS Spawner (Server) . 338
Encrypted Sign-on to a SAS/CONNECT Spawner (Client) . 338

Introduction to the SAS/CONNECT
Spawner

Definition
A SAS spawner is a program that starts a SAS session on the server on behalf of a
connecting client. The SAS/CONNECT spawner runs on the SAS/CONNECT
server, listens for requests, and opens a connection to the server on behalf of the

319

client. Signing on to the SAS/CONNECT spawner is an alternative to signing on to a
server by using a Telnet daemon.

The SAS/CONNECT spawner can listen for requests on multiple ports that are
defined in metadata and on a single port that is defined on the spawner invocation
command. Starting with SAS 9.4, you can associate multiple SAS/CONNECT
servers with a single spawner that is listening on multiple ports.

Spawner invocation options enable you to start and manage the SAS/CONNECT
spawner. For more information about these options, see “Spawner Options” on page
326.

For more information about defining multiple ports in metadata using the SAS
Deployment Manager, see Add a New Logical Server in an Existing SAS Application
Server in the SAS Intelligence Platform Server Administration Guide.

For information about the SAS/CONNECT spawner for SAS Viya, see SAS/
CONNECT Server and Spawner.

Operating Environment Support for Spawners
SAS 9.4 supports TCP/IP spawners under the UNIX, Windows, and z/OS operating
environments. Information about setting up and using the SAS/CONNECT spawner
for each of these operating environments can be found in the following locations in
this document:

n Chapter 20, “UNIX Operating Environment,” on page 339

n Chapter 21, “z/OS Operating Environment,” on page 361

n Chapter 22, “Windows Operating Environment,” on page 383

For a list of all available spawner invocation options, see “Spawner Options” on
page 326.

Benefits of Using a Spawner to Sign On to a Server

Protects Client's User ID and Password
By default, the spawner encrypts the client's user ID and password during sign-on.
Without encryption, the user ID and password would pass through the network as
clear, readable text, which presents a security risk.

To encrypt all data that flows through the network after sign-on (such as data being
processed by remote submits and data transfers), you must use a security service.
For details about security services that are supported in SAS 9.4, see Encryption in
SAS.

320 Chapter 19 / The SAS/CONNECT Spawner

http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n10005intelplatform00srvradm.htm
http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n10005intelplatform00srvradm.htm
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.3&docsetId=calsrvpgm&docsetTarget=n00005viyaprgmsrvs00000admin.htm
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.3&docsetId=calsrvpgm&docsetTarget=n00005viyaprgmsrvs00000admin.htm
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Controls Client Access to the Server in a
Firewall Configuration
A spawner can be used to control the number of ports that clients outside a firewall
can use to access a server that is inside the firewall. Controlled client access
facilitates a computer's security and economizes resources. For details, see
“Configure SAS/CONNECT for Use with a Firewall” on page 312.

Eliminates the Need for a Sign-On Script
The primary purpose of a sign-on script is to do the following:

n send the user ID and password to the server

n supply the SAS command for starting the SAS session on the server

Because the user ID and password can be directly specified as options in the
SIGNON statement (or command), and the spawner controls the start-up of a SAS
session on the server, the need for a sign-on script is eliminated.

Use SAS Management Console to Manage the
SAS/CONNECT Spawner

Overview
SAS Management Console is the primary administrative user interface for
administering SAS servers in the SAS Intelligence Platform. SAS Management
Console includes a variety of plug-ins that are used to create and maintain various
resources available in the SAS Intelligence Platform. The Server Manager plug-in is
used to manage the SAS/CONNECT spawner and SAS/CONNECT server.

Complete documentation for SAS Management Console and the Server Manager
plug-in can be found in the following SAS Intelligence Platform documents:

n SAS Intelligence Platform: Overview

n SAS Intelligence Platform: System Administration Guide

n SAS Management Console: Guide to Users and Permissions

n SAS Intelligence Platform: Application Server Administration Guide

These documents can be found on the SAS Intelligence Platform Product
Documentation page at http://support.sas.com/documentation/onlinedoc/
intellplatform/.

Introduction to the SAS/CONNECT Spawner 321

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html
http://support.sas.com/documentation/onlinedoc/intellplatform/index.html
http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

Use PROC IOMOPERATE to Manage the
SAS/CONNECT Spawner

Overview
You can use the IOMOPERATE procedure to manage the SAS/CONNECT spawner
and server. See the IOMOPERATE Procedure in SAS Intelligence Platform:
Application Server Administration Guide for syntax and detailed information about
PROC IOMOPERATE.

PROC IOMOPERATE commands that are used to administer the SAS/CONNECT
spawner require a connection to the server. To establish a connection, use the
CONNECT command in PROC IOMOPERATE and specify the spawner
management port in the URI= option. Once connected, all subsequent PROC
IOMOPERATE commands apply to that server until a DISCONNECT or STOP
SERVER command is executed. The examples below demonstrate how you can
perform various administrative tasks on the SAS/CONNECT spawner and server
using PROC IOMOPERATE.

For more information about the SAS/CONNECT spawner -MGMTPORT= option,
see “-MGMTPORT <port-number>|<‘service-name’>” on page 328.

TIP After you connect to a server, you can invoke LIST COMMANDS to
determine which commands can be run on the server.

Example 1: List Valid PROC
IOMOPERATE Commands
The following example demonstrates how you might use the IOMOPERATE
procedure, LIST statement, and COMMANDS option to obtain a list of valid
commands that can be used in the IOMOPERATE procedure on the specified
server. The URI= option in the CONNECT statement specifies the server that you
want to connect to and takes the form iom://hostname:port.

%let cmd=list commands;
proc iomoperate;
 connect uri="iom://hostA:7543;Bridge;USER=jdoe,PASS=abc123";
 &cmd;
quit;

322 Chapter 19 / The SAS/CONNECT Spawner

http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n20000intelplatform00srvradm.htm

Example 2: Display a List of Spawned
Servers
The following example demonstrates how you might use the IOMOPERATE
procedure, LIST statement, and SPAWNED SERVERS option to show what servers
are currently active through the spawner and to show information about clients that
are signed on.

%let cmd=list spawned servers;
%let spnode=<host-name>;
%let mgmtport=<mgmtport>;
%let mgmtpwd=<password>
%let username=<user-ID>;
/* NOTE: some commands, such as STOP SERVER, require the user-id
*/
/* that is associated with the spawner process, service, or started
task */

proc iomoperate;
 connect uri="iom://
&spnode:&mgmtport;Bridge;USER=&username,PASS=&mgmtpwd";
 &cmd;
quit;

SAS returns output similar to the following:

NOTE: The CONNECT command completed.
 &cmd;
Non-server Scriptless SIGNON
 Server class : 028E4060-D545-11D5-880D-AA0004006D06
 Process owner : sascnn1:61303 (comp.na.abc.com)
 Server id : 1F97A800-B875-11E4-98DC-F0F6F5C5C1F6
NOTE: The LIST SPAWNED SERVERS command completed.
27 quit;

Example 3: Display Spawner Information
The following example demonstrates how you might use the IOMOPERATE
procedure, LIST statement, and INFORMATION option to display information about
the SAS/CONNECT spawner.

%let cmd=list information;
%let spnode=<host-name>;
%let mgmtport=<mgmtport>;
%let mgmtpwd=<password>
%let username=<user-id>;
/* NOTE: some commands, such as STOP SERVER, require the user-id
*/

Introduction to the SAS/CONNECT Spawner 323

/* that is associated with the spawner process, service, or started
task */

proc iomoperate;
 connect uri="iom://
&spnode:&mgmtport;Bridge;USER=&username,PASS=&mgmtpwd";
 &cmd;
quit;

SAS returns output similar to the following:

NOTE: The CONNECT command completed.
 &cmd;
36 Information
 CNTSPAWN.Encryption.Algorithms :
 CNTSPAWN.Encryption.FIPS : FALSE
 CNTSPAWN.Encryption.Parameters :
 CNTSPAWN.SpawnerMetadataName :
 CNTSPAWN.UseSecurity : TRUE
 CNTSPAWN.Version.BuildDate : Feb 11 2015
 CNTSPAWN.Version.BuildTime : 20:24:29
 CNTSPAWN.Version.Major : 9
 CNTSPAWN.Version.Minor : 40
 IOM.ClassBase : F917284A-D088-4B97-91F6-BF80B6E7B24D
 IOM.ClassLatest : F917284A-D088-4B97-91F6-BF80B6E7B24D
 IOM.LastCounterReset : 19FEB2015:20:20:19
 IOM.ServerPort : 9700
 IOM.ServerState : Running
 IOM.UniqueIdentifier : B939DC04-B874-11E4-98DC-F0F6F5C5C1F6
 IOM.UpTime : 19FEB2015:20:20:19
 Server.CPUCount : 6
 Server.Command : SAS
 Server.DNSName : COMPA
 Server.FullyQualifiedDNSName : compA.abc.sas.com
 Server.HostKnownBy : comp.abc.sas.com
 Server.ProcessIdentifier : 16844823
 Server.ProcessOwner : JDOE
 Server.Version : 9.4
 Server.VersionLong : 9.04.01M3P02112015
NOTE: The LIST INFORMATION command completed.
37 quit;

Example 4: Display Spawner Attributes
The following example demonstrates how you might use the IOMOPERATE
procedure, LIST statement, and ATTRIBUTES option to determine the number of
connections made since the SAS/CONNECT spawner started, to determine the
number still active, and to determine the number of sign-on failures.

%let cmd=list attributes;
%let spnode=<host-name>;
%let mgmtport=<mgmtport>;
%let mgmtpwd=<password>
%let username=<user-id>;
/* NOTE: some commands, such as STOP SERVER, require the user-id
*/
/* that is associated with the spawner process, service, or started
task */

324 Chapter 19 / The SAS/CONNECT Spawner

proc iomoperate;
 connect uri="iom://
&spnode:&mgmtport;Bridge;USER=&username,PASS=&mgmtpwd";
 &cmd;
quit;

SAS returns output similar to the following:

NOTE: The CONNECT command completed.
 &cmd;
68 Counters
 CNTSPAWN.ActiveConnectClients : 3
 CNTSPAWN.ActiveConnectMgmtClients : 0
 CNTSPAWN.ActiveConnectServers : 3
 CNTSPAWN.TotalAuthenticationFailures : 0
 CNTSPAWN.TotalConnectClients : 7
 CNTSPAWN.TotalConnectConnections : 7
 CNTSPAWN.TotalConnectServers : 7
 IOM.CounterResets : 0
 IOM.CurrentClients : 1
 IOM.CurrentMemoryUsage : 15716352
 IOM.CurrentThreadCount : 11
 IOM.HighestMemoryUsage : 16056320
 IOM.HighestThreadCount : 12
 IOM.IdleTime : 522.419
 IOM.TimeInCalls : 0
 IOM.TotalCalls : 0
 IOM.TotalClients : 8
NOTE: The LIST ATTRIBUTES command completed.
69 quit;

Example 5: Stop and Re-Start the
Spawner
The following example demonstrates how you might use the PROC IOMOPERATE
procedure to stop and re-start the SAS/CONNECT spawner.

%let cmd=stop spawned server id=<server-id>;
%let spnode=<host-name>;
%let mgmtport=<mgmtport>;
%let mgmtpwd=<password>
%let username=<user-id>;
/* NOTE: some commands, such as STOP SERVER, require the user-id*/
/* that is associated with the spawner process, service, or started
task */

proc iomoperate;
 connect uri="iom://
&spnode:&mgmtport;Bridge;USER=&username,PASS=&mgmtpwd";
 &cmd;
quit;

Introduction to the SAS/CONNECT Spawner 325

Spawner Options

Introduction
Spawner invocation options consist of SAS/CONNECT spawner options and SAS
system options that you can use to run and configure the spawner from the
command line. You can use these commands when you invoke the spawner using
the CNTSPAWN command in Windows or UNIX, or in a z/OS PARMS file.
SAS/CONNECT spawner options fall into 3 categories:

n “General Spawner Options”

n “Security Options”

n “Windows-only Service Options”

If you have a planned deployment of SAS or you used the SAS Deployment Wizard
to install any of the SAS Intelligence Platform software, you can also manage the
SAS/CONNECT spawner using the PROC IOMOPERATE procedure, beginning
with SAS 9.4.

For more information about this procedure, see the IOMOPERATE Procedure in the
SAS Intelligence Platform: Application Server Administration Guide.

General Spawner Options
Use the following general options with the CNTSPAWN spawner start-up command:

-BINDADDR <IP_address>
Specifies an IP address override for the CONNECT Spawner to bind all its
listening ports to.

The CONNECT spawner passes the IP address bind override to the CONNECT
server that it starts.

If the CONNECT spawner uses its BINDADDR value, then it passes it to the
CONNECT server’s environment by setting the TCPBINDADDR environment
variable for the launched session. The launched CONNECT server then uses
this IP address to bind all of its listening ports to.

It is used in multi-NIC (Network Interface Card) environment.

-CLEARTEXT

IMPORTANT With the June 2023 hot fix, the -CLEARTEXT option has
been deprecated and is no longer available. For more information, see
SAS Note 70114.

326 Chapter 19 / The SAS/CONNECT Spawner

http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n20000intelplatform00srvradm.htm
https://support.sas.com/kb/70/114.html

allows sign-ons from clients that do not support user ID and password
encryption. This option allows clients that are running older releases (prior to
SAS 6.09E and SAS 6.11 TS040, which do not support user ID and password
encryption) to sign on to the spawner program. Use this option only when
absolutely necessary because credentials are transmitted unencrypted. The
default encodes all communications.

-DEBUG
turns on debug level output.

-HELP
specifies to print the Help message.

-LOG | -LOGFILE <filename>
specifies the filename to use for spawner log output if you are not using the
-LOGCONFIGLOC option. The -LOG option should not be used with the -
LOGCONFIGLOC option. If both options are specified, then the
-LOGCONFIGLOC option takes precedence.

You can specify the -DEBUG or -TRACE options with the -LOG <filename>
option, so that the detailed spawner log messages are sent to a log file.

Example The following example specifies CNTSPAWN to start the
SAS/CONNECT spawner and specifies that debug-level log
messages are sent to a file named unxspawner.log.
cntspawn -start -debug -log unxspawner.log

-LOGCONFIGLOC <filename>
enables the SAS logging facility for SAS servers and names the location of the
configuration file that is used by the SAS logging facility to create spawner log
output. The configuration file is an XML file that specifies and configures loggers
and appenders for the SAS/CONNECT spawner.

In a planned deployment, the SAS Deployment Wizard automatically creates an
initial logging configuration file named logconfig.xml that you can modify as
needed to adjust the spawner’s logging configuration. This file is located in the
sas-installation-directory/Lev-n/ConnectSpawner/ directory on UNIX and the
sas-installation-directory\Lev-n\ConnectSpawner\ directory on Windows. The
file contains the pattern layout for the messages that are generated and
automatically directed to an output device, such as a console or a log file.
Relevant log data for the Windows spawner might include the date and time, the
log level, the thread ID, and the logger.

If you have a SAS Foundation installation, you can copy this file and customize it
to your needs.

See “Sample Logging Configuration File” on page 423 for an example of a
spawner log configuration file in the UNIX environment.

The file specification that defines the location of the XML configuration file must
be a valid filename or a path and filename for your operating environment. If the
path contains spaces, enclose the file specification in quotation marks.

Note: If LOGCONFIGLOC is specified, spawner messages are routed by
default to the App.Connect.Spawner logger.

See “SAS Logging Facility” on page 421

Example “Sample Logging Configuration File” on page 423

Spawner Options 327

-METAPASS <password>
specifies the password of the user who connects to the metadata server.

-METAPORT <port>
specifies the port to connect to on the metadata server.

-METASERVER <host-name> | <IP-address>’
specifies the name or IP address of the metadata server.

-METAUSER <user-id>
specifies the user ID of the user who connects to the metadata server.

-MGMTPORT <port-number> | <‘service-name’>
enables you to specify the service name or number of the TCP/IP port that
listens for operator connections. Operator connections are used to connect to
the server to perform administrative tasks on the SAS/CONNECT spawner and
server. For example, you can use the IOMOPERATE procedure with the
spawner operator port to perform the following tasks:

n determine what servers are currently active through the SAS/CONNECT
spawner and display information about the connected clients

n display information about the spawner

n display the number of connections made since the spawner started, the
number of connections that are still active, and the number of sign-on failures
to the server

n pause and re-start the spawner

For more information and a list of examples showing how to perform the tasks
listed above, see “Use PROC IOMOPERATE to Manage the SAS/CONNECT
Spawner” on page 322.

SAS automatically creates a spawner operator port and by default sets the port
to 7541. Therefore, if you do not specify the -MGMTPORT option when starting
the spawner, and port 7541 is already in use by another application, then the
spawner will fail to start.

CAUTION
Do not specify the same port for both the -SERVICE option and the
-MGMTPORT option. The spawner fails to start if both the -SERVICE and -
MGMTPORT options are using the same port.

Default 7541

Range 1- 65535

Requirement A management port is required when setting up the
SAS/CONNECT spawner. When starting the spawner, you must
specify the -MGMTPORT option to set the spawner’s operator
port to a port other than the port used for the -SERVICE
parameter. Otherwise, the spawner fails to start if both -SERVICE
and -MGMTPORT are using the same port.

-NOCLEARTEXT
prevents sign-ons from clients that do not support user ID and password
encryption. This option prevents clients that are running older releases (prior to
SAS 6.09E and SAS 6.11 TS040, which do not support user ID and password
encryption) from signing on to the spawner program. However, the default
permits both encrypted and plaintext user IDs and passwords.

328 Chapter 19 / The SAS/CONNECT Spawner

-NOINHERITANCE
disables socket inheritance. Socket inheritance enables SAS/CONNECT servers
to use the socket connection that is established between the SAS/CONNECT
client and the spawner. Socket inheritance saves resources and is easier to
configure when clients connect to a server that is within a firewall. Socket
inheritance is enabled by default.

-NOSCRIPT
prevents sign-on from clients that use scripts, and allows sign-on only from
clients that do not use scripts.

-NOSCRIPT can be useful if you want to limit SAS start-up commands to the use
of the -SASCMD option or to commands defined in metadata. Specifying -
NOSCRIPT restricts clients from specifying additional options in SAS start-up
commands or script files. When -NOSCRIPT is specified, either -SASCMD must
also be specified or logical Connect Servers must be defined in metadata.

Note: In a SAS metadata server-based environment, if a scriptless server
defined in metadata does not have a valid spawner SASCMD value, the logical
server will be ignored.

-SASCMD | -CMD <command>

Windows
specifies the SAS command or a command file that invokes SAS when a
client attempts to connect to a server.

n invoke SAS from a directory that is not the default location

n specify different SAS start-up command options

n execute other statements before invoking SAS

The -DMR, -COMAMID, -NOSPLASH, -ICON, and -NOTERMINAL options
are supplied by default when you sign on using the SAS/CONNECT spawner.

In Windows, you can use either a batch file, which is signified by the .bat
extension, or a command file, which is signified by the .cmd extension. Here
is an example of a batch file:

cd !sasroot
sas.exe %*

The first line changes to the directory where the SAS executable is stored.
The second line starts SAS. Add options as needed at this SAS start-up
command.

UNIX
specifies the SAS command or a command file that is specific to the UNIX
operating environment that starts a SAS session when you sign on without a
script. If the client does not specify a script file at sign-on, the -SASCMD
option must be specified when starting the spawner.

cntspawn -sascmd "/u/username/mystartup"

Here is a sample UNIX command file named mystartup:

#!/bin/ksh
#----------------------------------
mystartup
#----------------------------------

Spawner Options 329

. ~/.profile
sas -noterminal -nosyntaxcheck $*
#------------------------------

Note: The $* positional parameter enables you to specify additional SAS
options when you invoke SAS.

z/OS
specifies a UNIX System Services (USS) shell script for starting a SAS
session. You must use -SASCMD and a shell script if you do not specify a
sign-on script in the client session using an RLINK fileref. The script
interprets the command arguments and environment variables and builds a
TSO command that invokes a SAS session. A sample USS shell script for
starting a SAS session can be found in '&previx.BAMISC(SPNCSHEL)'.

For more information about using a shell script to start the z/OS spawner, see
Figure 21.1 on page 364.

-SASDAEMONSERVICE service-name
specifies the service name or port number that the SAS/CONNECT server uses
to listen for SAS child process connections. When socket inheritance is enabled,
the SAS client and the SAS/CONNECT server communicate via this port. If you
use a service, its name must be configured in the SERVICES file on the
computer that the SAS/CONNECT server session runs on.

-SASSPAWNERCN <name>
specifies the name of the spawner definition to retrieve from the SAS Metadata
Server.

If the -SASSPAWNERCN option is specified, you must either specify the -
XMLCONFIGFILE option or you must specify the -METASERVER, -METAPORT,
-METAUSER, and -METAPASS options. The -XMLCONFIGFILE option specifies
the filename to use to get SAS Metadata Server access information. This file
configures how the SAS/CONNECT Spawner connects to the SAS Metadata
Server to retrieve its configuration information.

For details about generating a SAS/CONNECT spawner definition for the SAS
Metadata Server, see the Help for the SAS/CONNECT spawner server type in
the Server Manager of SAS Management Console.

-SERVICE <port-number | service-name>
specifies the service name or port number to use to listen for client connections.

The -SERVICE option values that are used to start the spawner determine what
is used by the client to sign on.

In the following example, the spawner is started by specifying the port-number
as the value of the -SERVICE option during spawner start-up:

“SAS-installation-directory\SASHome\SASFoundation\9.4\cntspawn.exe”
 -service 5020

The client can then sign on by specifying the explicit port-number in the SIGNON
statement:

%let myHost=<spawner-host> 5020;
signon myHost;

Note If the -SERVICE option is not specified, the spawner listens on Telnet port
(23).

330 Chapter 19 / The SAS/CONNECT Spawner

See For information about the TCP/IP services file, see “Configure the TCP/IP
Services File” on page 309.

-SHELL
specifies that the started SAS/CONNECT servers allows X commands.

Without specifying the -SHELL option to the spawner, X command processing is
disabled by default. For details about running X commands from your SAS
session, see SAS Companion for Windows.

-SSPI | -NOSSPI
identifies support for the Security Support Provider Interface for single sign-on
connections to the spawner. If the client and the server run under Windows and if
the client does not supply a user ID and password to the server, SSPI (Security
Support Provider Interface) is used to perform client authentication. SSPI
authentication is disabled by default. To enable SSPI authentication, you must
specify -SSPI in the spawner start-up command. In versions prior to SAS 9.4,
SSPI was enabled by default.

Default -NOSSPI

-TRACE | VERBOSE
turns on trace level output.

-XMLCONFIGFILE "fully-qualified-path"
specifies the filename to use to get SAS Metadata Server access information. A
path that includes one or more spaces must be enclosed in quotation marks.

If -XMLCONFIGFILE is used, -SASSPAWNERCN must also be used.

Alias -OMRCONFIGFILE

Security Options
-ENCRYPTFIPS

specifies that the SAS/SECURE and TLS security services use FIPS 140-2
validated algorithms.

Note If the ENCRYPTFIPS option is specified on the command line or FIPS
encryption is specified in metadata, then all encryption algorithms that
are specified on the command line or in metadata must be either AES
or SSL. Any other encryption algorithms result in errors.

See “ENCRYPTFIPS” in Encryption in SAS

Example The following example enables SSL and AES encryption.
“SAS-installation-directory\SASHome\SASFoundation\9.4\cntspawn.exe”
 –encryptfips

-METAENCRYPTALG algorithm | NONE
specifies the type of encryption algorithm to use when communicating with the
metadata server. The following algorithms can be used: RC2, RC4, TripleDES,
SAS Proprietary, and AES.

-METAENCRYPTLEVEL <level>
specifies the level of encryption when communicating with the metadata server.

Spawner Options 331

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0u9r9lj96m3txn1gxsbuqwt41im.htm&locale=en

-NETENCRYPT
specifies that network encryption is required.

See “NETENCRYPT” in Encryption in SAS

-NETENCRYPTALGORITHM
specifies the algorithm or algorithms to be used for encrypted client/server data
transfers.

See “NETENCRYPTALGORITHM=” in Encryption in SAS

Note: If you are running SAS/CONNECT in a SAS Intelligence Platform
environment using the SAS Metadata Server and configured encryption using SAS
Management Console, you can specify only one encryption algorithm. For more
information, see “ERROR: Cannot Negotiate Encryption Algorithm” in Encryption in
SAS .

-NETENCRYPTKEYLEN
specifies the key length that is used by the encryption algorithm for encrypted
client/server data transfers.

See “NETENCRYPTKEYLEN=” in Encryption in SAS

-SSLCALISTLOC <filename>
UNIX and z/OS only: specifies the name of the file that contains the list of trusted
certificate authorities.

See “SSLCALISTLOC=” in Encryption in SAS

-SSLCERTISS <issuer>
Windows only: specifies the name of the issuer of the digital certificate that SSL
should use.

See “SSLCERTISS=” in Encryption in SAS

-SSLCERTLOC <filname>
UNIX and z/OS only: specifies the name of the file that contains the public
certificate to use for SSL.

See “SSLCERTLOC=” in Encryption in SAS

-SSLCERTSERIAL<serial>
Windows only: specifies the serial number of the digital certificate that SSL
should use.

See “SSLCERTSERIAL=” in Encryption in SAS

-SSLCERTSUBJ <subject>
Windows only: specifies the subject name of the digital certificate that SSL
should use.

See “SSLCERTSUBJ” in Encryption in SAS

-SSLCLIENTAUTH
specifies whether a server should perform client authentication.

See “SSLCLIENTAUTH” in Encryption in SAS

332 Chapter 19 / The SAS/CONNECT Spawner

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p1cw4hgwl2dfctn11izko4a2c026.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n13sxrs027e4gjn1od2ufsgzl4w7.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n08n82uvqodes0n1xhulpbayzk7l.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n08n82uvqodes0n1xhulpbayzk7l.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1nwew7p25ckson1xswh15om9q7a.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0pul4j64w0mg0n1h1k6z8zhfvaf.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gs6e7rexc1i7n12dwg2tey6hkt.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0tf9rqkhca02sn1sxfrrsnynuao.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p1dadisoyyyjo5n1aw22jxfwo4gx.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p1w2c1ewch1xo3n1oeam0trfmyrn.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0b9h9d3pn5b9cn1bx458vq6ke76.htm&locale=en

-SSLCRLCHECK
specifies whether a Certificate Revocation List (CRL) is checked when a digital
certificate is validated.

See “SSLCRLCHECK” in Encryption in SAS

-SSLCRLLOC
UNIX and z/OS only: specifies the location of a Certificate Revocation List
(CRL).

See “SSLCRLLOC=” in Encryption in SAS

-SSLPKCS12LOC
UNIX and z/OS only: specifies the location of the PKCS12 encoding package
file.

See “SSLPKCS12LOC=” in Encryption in SAS

-SSLPKCS12PASS
UNIX and z/OS only: specifies the password that TLS requires to decrypt the
PKCS12 file.

See “SSLPKCS12PASS=” in Encryption in SAS

-SSLPVTKEYLOC
UNIX and z/OS only: specifies the location of the private key that corresponds to
the digital certificate.

See “SSLPVTKEYLOC=” in Encryption in SAS

-SSLPVTKEYPASS
UNIX and z/OS only: specifies the password that TLS requires for decrypting the
private key.

See “SSLPVTKEYPASS=” in Encryption in SAS

Windows-only Service Options
Use the following service options to create, modify, and remove SAS/CONNECT
spawner service definitions in the Windows operating environment:

-INSTALL <options>
causes an instance of a spawner to be installed as a Windows service. Each
spawner instance is assigned a name by default in the following form:

SAS Connect Spawner

You can install each instance of the spawner by using the following command:

"sas-installation-directory\SASHome\SASFoundation\9.4\cntspawn.exe” -install

You can assign a different name to the spawner by using the -SERVICENAME
option. If you try to install a second spawner without specifying the
-SERVICENAME option, the attempt will fail and you will get an error.

The alias for the -INSTALL option is -I.

Spawner Options 333

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p1215eq9y9ax6tn1fnc3bbmndf8i.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p13g3cabbspxn5n1s5cy0os87elm.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1uf5cv1cbd1q1n1obzfxuvtowly.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0jv9hreon6qcwn12g5b0gwl9sns.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0zvb5ge26jdchn1aoc6pn00fcql.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p03fwwsk4397w4n1p907zp9najn6.htm&locale=en

-INSTALLDEPENDENCIES service-name

service-name
specifies the name of the dependent Windows service that must be
started before the spawner service can be started. This dependency can
be viewed using the Microsoft Windows Services Manager plug-in
(services.msc).

Valid in -INSTALL option statement

Alias -IDEP

-SERVICEDESCRIPTION ‘service-description’

‘service-description’
specifies the description that you assign to the spawner that is installed
and started as a Windows service using the -INSTALL option. The
description can be viewed using the Microsoft Windows Services plug-in
(services.msc). A specified spawner description cannot exceed 256
characters and must be enclosed in quotation marks if it contains one or
more spaces. The following command installs a spawner named “SAS
spawner 5” and specifies a description for the service:

"sas-installation-directory\SASHome\SASFoundation\9.4\cntspawn.exe”
 -install -servicename "SAS spawner 5"
-servdesc "A SAS process that listens for
 requests to spawn SAS/Connect servers"

Valid in -INSTALL option statement only

Length 1-256

Alias -SERVDESC

Requirement must be enclosed in quotation marks if it contains one or more
spaces

-SERVICEDIRECTORY directory

directory
specifies the directory in which to run the Windows service.

Valid in -INSTALL option statement only

Alias -SERVDIR

-SERVICENAME ‘service-name’

‘service-name’
specifies the name that you assign to the spawner that is installed, or
uninstalled, and started as a service in the Windows operating
environment. A specified name overrides the default name that is
automatically assigned when the -INSTALL option is used without
specifying -SERVICENAME.

When you install a spawner without specifying -SERVICENAME, it is
installed as SAS Connect Spawner. If you try to install a second spawner
without specifying the -SERVICENAME option, the attempt will fail and
you will get an error.

334 Chapter 19 / The SAS/CONNECT Spawner

Valid in -INSTALL option statement only

Length 1-80

Alias -NAME

Requirement must be enclosed in quotation marks if it contains one or more
spaces

Example The following example shows how to install an explicitly
named spawner as a service:
"SAS-installation-directory\SASHome\SASFoundation\9.4\
cntspawn.exe" –install -servicename "Doug's spawner"

-SERVICEPASS password

password
specifies the password for the user account that the spawner will run
under as a service when you specify the -INSTALL option.

Alias -SERVPASS

See “Using TLS for Encryption of a SAS/CONNECT Windows Spawner:
Example ” in Encryption in SAS

-SERVICEUSER=user-ID

user-ID
specifies a user name that the Windows service will run under, when you
also specify the -INSTALL option.

"sas-installation-directory\SASHome\SASFoundation\9.4\cntspawn ” -install

Alias -SERVUSER

See -UNINSTALL on page 335

-UNINSTALL <-SERVICENAME ‘service-name’>
instructs the spawner to uninstall as a Windows service, which was previously
installed and started by using the -INSTALL option.

If you used the -SERVICENAME option with the -INSTALL option to install a
spawner, you can use the -SERVICENAME option with the -UNINSTALL option
to identify the spawner to be removed. The following example shows how to
uninstall an explicitly named Windows spawner by using the -UNINSTALL
command. Use quotation marks around the pathname and command, as well as
the spawner service name. Here is an example:

"SAS-installation-directory\SASHome\SASFoundation\9.4\cntspawn.exe"
 -uninstall -servicename "Doug's spawner"

Alias -DEINSTALL or -DI

Spawner Options 335

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&locale=en

Spawner Examples

Scripted Sign-on to a UNIX Spawner (Server)
From the UNIX node that the server runs on, specify the following command to start
the spawner.

cntspawn -service spawn1 -mgmtport 5030

The -MGMTPORT option specifies the operator port to be used for administrative
purposes. The -SERVICE option specifies the name of the service, spawn1, that
listens for incoming server requests. The -service option can specify a defined
TCP/IP service or a numeric port value. What is used when the spawner is started
determines what will be used by the client. In the following example the-SERVICE
option is used to specify the numeric port value of the service during spawner start-
up:

cntspawn -service 5020 -mgmtport 5030

A user can then sign on using the same port-number in the SIGNON statement:

filename rlink '!sasroot\connect\saslink\tcpunx.scr';
signon rmthost.5020;

The -SERVICE option values used to start the spawner determine what will be used
by the client to sign on.

As in the first example, the -MGMTPORT option specifies the operator port to be
used for administrative purposes.

Scripted Sign-on to a UNIX Spawner (Client)
At a Windows client, the statements in the example below are used to sign on to the
UNIX node RMTHOST. The script file, tcpunx.scr, which is assigned to the RLINK
fileref, prompts the user at the client for the user ID and password. The user ID and
password are needed to sign on to the UNIX server.

filename rlink '!sasroot\connect\saslink\tcpunx.scr';
signon rmthost.spawn1;

The server name (in this example, RMTHOST) is either the name of the UNIX node or
a macro variable that contains the IP address or the name of the UNIX node that
runs the spawner.

The SIGNON statement contains the ID of the server session, which is specified as
a two-level name: the node name and the service name. A two-level name is
needed when signing on to a UNIX node that runs a spawner.

336 Chapter 19 / The SAS/CONNECT Spawner

Scriptless Sign-on to a Windows Spawner That
Runs as a Service (Server)

The following command installs the spawner service on a Windows computer:

cntspawn -install

For this example, note the following:

n The spawner is being installed as a Windows service, but since the -SERVICE
option is not used to specify the port number or name, the spawner will listen on
the default Telnet port (23) and be named SAS Connect Spawner by default.

n Because a sign-on script is not being used and the -SASCMD= option is not
specified letting the spawner know how to start SAS, the spawner will look for
the SAS executable in the SAS installation directory. See “SAS/CONNECT Files”
on page 407 for information about the names and location of default files related
to SAS/CONNECT software.

n Since the -MGMTPORT is not specified, the operator port will default to 7541.

After the service is installed, it must be started before it can be used. You can start
the service using either of the following:

n the NET START command

net start "SAS Connect Spawner"

n the services applet

n a reboot of the computer

n the ConnectSpawner.bat script file command

Scriptless Sign-on to a Windows Spawner That
Runs as a Service (Client)

From any client, the following statements connect to the spawner program by using
the TCP/IP access method. The SIGNON statement specifies the ID of the server
session REMNODE. This ID must be the name of the Windows computer or a
macro variable that contains the IP address of the Windows computer that the
spawner runs on. The user ID and password to the server are specified as options
in the SIGNON statement. The value _PROMPT_ in the SIGNON statement causes
SAS to prompt for the password.

signon remnode user=joeblack password=_prompt_;

For Windows users, if SSPI has been enabled, then you do not need to specify the
user ID and password in the SIGNON statement. See “Use SSPI to Access a
Secured Server” on page 387 for more information about SSPI.

Note: The password is displayed as Xs in the SAS log.

Spawner Examples 337

Encrypted Sign-on to a z/OS Spawner (Server)
The following z/OS command starts the z/OS spawner.

START SPAWNER

This command activates the started task procedure. SPAWNER is the name of the
service that is defined in the started task procedure.

PARMFILE contains the options that start the spawner. For example:

-netencryptalgorithm rc2
-sascmd "/usr/local/bin/spawnsas.sh" -nosasuser -mgmtport=7451

1 The -MGMTPORT option specifies port 7451 as the port for operator
connections.

2 -NETENCRYPTALGORITHM option – specifies that the spawner is started using
the RC2 encryption algorithm.

3 -SASCMD option – specifies a UNIX System Services shell script that starts
SAS. This command assumes that a shell script named spawnsas.sh is installed
in /usr/local/bin.

4 -NOSASUSER - specifies that a user's SASUSER file should not be allocated. -
NOSASUSER enables a client to sign on to a server multiple times using the
same user ID and password.

Note: A sample started task procedure can be found in
‘&prefix.BAMISC(SPNCCNTL)’.

Encrypted Sign-on to a SAS/CONNECT Spawner
(Client)

In the following Example, the client specifies user ID and password encryption by
setting the RC2 encryption algorithm. In this example, the two-level name, which
represents the node name and the service name, specifies the ID of the server
session in the SIGNON statement. A two-level name is needed when signing on to a
z/OS operating environment that runs a spawner. You must supply a valid user ID
and password as values for the USER= and PASSWORD= options in the SIGNON
statement.

options netencryptalgorithm=rc2;
signon rmthost.spawner user=joeblack password=born2run;

338 Chapter 19 / The SAS/CONNECT Spawner

20
UNIX Operating Environment

Overview . 340
Overview . 340

Network Requirements . 341
Tasks . 341
Environment Variables . 341
System Options for TCP/IP . 344

Spawner Connections on UNIX . 345
Set Up the Spawner on UNIX . 345
Sign On to the SAS/CONNECT Spawner . 348

SASCMD Connections on UNIX . 354
Sign On to the Same Multiprocessor Computer . 354

Telnet Connections on UNIX . 356
Tasks . 356
Specify the Server . 357
Specify a Sign-on Script . 357
Sign On to the Server Session . 357

Examples . 358
Example 1: Sign On to a z/OS Server from a UNIX Client . 358
Example 2: Start the SAS/CONNECT Spawner on UNIX . 358

339

Overview

Overview

What Is Covered
This section describes how to use SAS/CONNECT in a SAS Foundation
environment for UNIX. If you are using SAS/CONNECT as part of a SAS
Intelligence Platform Deployment (for example, SAS Business Intelligence Server or
SAS Data Integration Server), refer to the SAS Intelligence Platform Documentation
at http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html.

For a list of resources specifically related to using SAS/CONNECT in a SAS
Intelligence Platform environment, see “SAS/CONNECT in a SAS Intelligence
Platform Environment” on page 5. More detailed information describing the scope of
this document can be found in the section “Document Scope” on page 4.

Types of Connections
This section contains information about how to use three types of connections that
are available when using SAS/CONNECT software in a SAS Foundation
environment:

n Spawner connections on page 345

n SASCMD connections on page 354

n Telnet connections on page 356

Regardless of the type of connection you are using, this document assumes that
you have completed the configuration steps as outlined in the Configuration Guide
for SAS 9.4 for Foundation on UNIX.

340 Chapter 20 / UNIX Operating Environment

http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf

Network Requirements

Tasks
Before you begin using the SAS/CONNECT spawner on UNIX, you must complete
the following steps:

n Verify that Base SAS and SAS/CONNECT are installed on both the client and
the server.

n Complete the steps as outlined in Post-Installation Configuration for User
Authentication and Identification in Configuration Guide for SAS 9.4 Foundation
for UNIX Environments.

n Set environment variables for TCP/IP connections, as needed.

n Set SAS system options for TCP/IP, if needed.

Environment Variables
The following environment variables are available for configuring your TCP/IP
connections. Environment variables can be set in a UNIX shell, in a configuration
file, or in the OPTIONS statement with the SET system option. Examples in this
section use the SET system option.

For more information about configuring environment variables in a UNIX
environment, see “Defining Environmental Variables” in SAS Companion for UNIX
Environments.

CONNECTWDWAIT
used to limit the possibility that a client session disconnect might orphan a
runaway DMR mode session. To ensure the responsiveness of the spawner,
SAS starts a 'watchdog' thread to monitor the connection. CONNECTWDWAIT
can be specified on the CONNECT server session. The default interval is five
seconds. If a disconnect occurs, CONNECTWDWAIT checks 18 times and then
terminate the DMR thread (for a default elapsed time of 90 seconds). Setting the
CONNECTWDWAIT value to zero means the process does not monitor the
connection.

Defaults interval: 5 seconds

total elapsed time: 90 seconds

Examples In the following example, the option is set to 10, so the process waits
for 180 seconds and then terminates the thread.
-set CONNECTWDWAIT 10

Network Requirements 341

http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf#page=11
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf#page=11
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n09yufm73q93yzn12nz78mpitlps.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n09yufm73q93yzn12nz78mpitlps.htm&locale=en

In the following example, the option is set to 0, so the process does
not monitor the connection:
-set CONNECTWDWAIT 0

In the following MP CONNECT example, the option is set to 0, so the
process does not monitor the connection.
signon t1 sascmd="!sascmd -set CONNECTWDWAIT 0";

TCP_POLL_INTERVAL
used to ensure responsiveness of SAS spawners and servers to various
conditions outside of normal request processing. When idle, servers and
spawners periodically awaken to check for requests. The interval in seconds for
this check is governed by the TCP_POLL_INTERVAL environment variable.
Generally, the default setting of 60 seconds should be acceptable. However, if
you want to configure the interval, set it in the TKMVSENV file by specifying the
TCP_POLL_INTERVAL variable. A value of zero means the server remains idle
and awakens only for request processing.

Example In the following example, the option is set to 50, so the process
checks every 50 seconds for a connection.
-set TCP_POLL_INTERVAL 50

TCPIPMCH
specifies the IBM TCP/IP stack name to set the stack affinity for z/OS systems
that are running more than one TCP/IP stack. This environment variable alters
default processing for TCP/IP initialization.

Example -set TCPIPMCH <stack-name>

TCPMSGLEN n
defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN, and issues the
number of send and receive messages that are necessary to complete the
message transaction.

The value for TCPMSGLEN must be set at both the client and the server. If the
values that are set for TCPMSGLEN at the client and at the server are different,
the smaller value of the two is used during the SAS/CONNECT session. If the
TCPMSGLEN environment variable is not set, SAS uses the TCP stack’s default
size and allows autotuning if implemented by the stack.

A value of zero means the server remains idle and awakens only for request
processing. An idle server might be subject to S522 (Job Wait Time-out) abend.
However, a spawner defined as an MVS started task or as a UNIX System
Services daemon process should not be subject to idle wait termination.

Client Optional

Server Optional

See “TBUFSIZE=” on page 121

Example -set TCPMSGLEN 65536

342 Chapter 20 / UNIX Operating Environment

TCPPROXYLIST
used to support HTTP_CONNECT so that SAS clients outside of the cloud can
sign on to SAS/CONNECT spawners. By setting the TCPPROXYLIST
environment variable, you can connect to different clouds from the same client.

If you provide a proxy list delimited by semicolons, the system parses the list and
connects to the first proxy host or port. All subsequent proxies are sent an HTTP
CONNECT request to create the tunnel on the final host or port.

Client Optional

Example -set TCPPROXYLIST "http://machine-name-1:port-number;
http://machine-name-2:port-number"

CONNECTKEEPALIVE
Prevents a SAS/CONNECT client connection to the SAS/CONNECT server from
being terminated.

Setting this environment variable in the server session prevents firewalls from
terminating a connection between a client and server when there are long
periods of inactivity on the connection. A keepalive packet is sent from a thread
that is started by the server session for the specified number of seconds.

Example The value of 5 causes the keepalive packet to be sent every 5
seconds to prevent connection termination.
-set CONNECTKEEPALIVE 5

TCPBINDADDR<IP_address>
Specifies an IP address override for all listening ports to bind to.

It can be specified on a SAS/CONNECT client or SAS/CONNECT server
invocation.

If the spawner uses its BINDADDR value, it passes this to the SAS/CONNECT
server’s environment by setting the TCPBINDADDR environment variable for the
launched session. Then the launched SAS/CONNECT server uses this IP
address to bind all of its listening ports to.

Default Listens on all IP addresses available for the host, if the variable is not
specified.

Example ./sas -set TCPBINDADDR 10.20.16.48

When TCPBINDADDR is specified on the client using the grid SIGNON, the IP
address is used by the grid server to connect back to the client instead of
connecting to the hostname of the client.

In Platform LSF grids, LSF (Load Sharing Facility) copies the client environment
variables to the execution host. The TCPBINDADDR environment variable
should be unset in the grid server configuration to prevent the execution host
trying to bind its listening ports to the client IP value.

Add the following to the grid usermods file:

For a Linux grid, the changes are added in comfig_dir/LevX/
SASApplicationServerName/GridServer/grid_usermods.cfg

unset TCPBINDADDR

For a Windows grid, the changes are added in comfig_dir\LevX
\SASApplicationServerName\GridServer\grid_usermods.cfg.cmd

Network Requirements 343

set "TCPBINDADDR="

System Options for TCP/IP
The following options can be used to control how SAS/CONNECT uses TCP/IP to
establish connections:

TCPPORTFIRST= port-number
TCPPORTFIRST= port-number

restricts the range of TCP/IP ports that clients can use to remotely access
servers. Within the range of 0 through 32767, assign a beginning value to
TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the range
of ports to only one port, set the values for TCPPORTFIRST and
TCPPORTLAST to the same number. Consult with your network administrator
for advice about these settings.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS start-
up command or in the configuration file.

In the example below, the server is restricted to the TCP/IP ports 4020 through
4050:

Server Optional

See “TCPPORTFIRST=” on page 125

Example options tcpportfirst=4020;
options tcpportlast=4050;

TCPTN3270 (set at the client)
supports connections to z/OS servers that use the full-screen 3270 Telnet
protocol. The script file TCPTSO32.SCR is provided.

For a list of sign-on scripts, see Table 23.3 on page 409.

You can set the TCPTN3270 option only in the SAS configuration file. If you do
not set this option, the TCP/IP access method uses the Telnet line-mode protocol
by default.

Client Optional

Example -set TCPTN3270 1

344 Chapter 20 / UNIX Operating Environment

Spawner Connections on UNIX

Set Up the Spawner on UNIX

Overview
This section contains the steps for setting up the SAS/CONNECT spawner in a SAS
Foundation environment for UNIX.

If you have installed SAS/CONNECT as part of a planned deployment or as part of
a SAS Intelligence Platform deployment, then most of this setup has been done for
you by the SAS Deployment Wizard and you do not need to complete these tasks.

Information about configuring and managing the SAS/CONNECT spawner in a
planned deployment can be found in the SAS Intelligence Platform Documentation.
See “SAS/CONNECT in a SAS Intelligence Platform Environment” on page 5 for a
list of resources for using SAS/CONNECT in the SAS Intelligence Platform
environment.

Note: In this document, all references to the “spawner” or “spawner program” are
intended to mean the SAS/CONNECT spawner or the SAS/CONNECT spawner
program.

Tasks
n Verify that Base SAS and SAS/CONNECT are installed on both the client and

the server.

n Start the spawner.

n Stop the spawner.

Network Security
If you are connecting to a UNIX server using the SAS/CONNECT spawner,
SAS/CONNECT uses the default authentication mechanism to verify the user-ID
and password of the client signing on.

See Post-Installation Configuration for User Authentication and Identification in
Configuration Guide for SAS 9.4 Foundation for UNIX Environments for information

Spawner Connections on UNIX 345

http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf#page=11

about configuring SAS to perform authentication and user validation in a UNIX
operating environment.

Location of the SAS/CONNECT Spawner
on UNIX
The SAS/CONNECT spawner executable file, cntspawn.exe, is located by default in
the following directory:

SAS-installation-directory/utilities/bin/cntspawn

Start the Spawner
To start the SAS/CONNECT spawner on the UNIX server, specify the spawner
invocation command as shown here:

 cntspawn <options>

Example 1:

 cntspawn -sascmd "/u/username/mystartup"

Example 2:

 cntspawn -service 5020

In Example 1, the -SASCMD option is a spawner start-up option that is used to tell
the spawner how to start SAS on the UNIX server. In Example 2, the -SERVICE
option specifies the spawner’s listening port.

For a complete list of other available spawner invocation options, see “Spawner
Options” on page 326.

In a SAS Intelligence Platform deployment, or a planned deployment, you can use
the following command to install the spawner on UNIX:

ConnectSpawner.sh -install

This file and others are created by default when you install and configure SAS
servers using the SAS Deployment Wizard. Then a spawner .sh file is created in the
spawner’s configuration directory. For more information, see Configuration Files for
SAS Object Spawners and SAS/CONNECT Spawners in SAS Intelligence Platform:
System Administration Guide.

Specify the Spawner Port or Service Name
To accept connection requests from SAS/CONNECT clients using TCP/IP, the
spawner must be listening on a designated port. Therefore, a port number or TCP/IP
service name is needed to be used as the spawner’s listening port. The spawner’s
listening port is specified on spawner start-up using the -SERVICE option:

cntspawn -service <port-number> | <service-name> <options>

346 Chapter 20 / UNIX Operating Environment

http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#p1n3ivrea2b8fgn1at5j88gyteqj.htm
http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#p1n3ivrea2b8fgn1at5j88gyteqj.htm

Example:

cntspawn -service 7551

port–number is the port that the spawner listens on for client requests on the UNIX
server.

service–name is the name of the spawner service

If you want to use a TCP/IP service name for the spawner’s listening port instead of
referring to the spawner using its explicit port number, you can set up a TCP/IP
service name in the services file on the server. The TCP/IP service name
corresponds to the spawner’s listening port.

The TCP/IP service name is an arbitrary name that provides a convenient way for
you to reference the spawner. The services file is a plain text file that provides a
mapping between service names and their assigned ports. The services file is
typically located in /etc/services directory on UNIX systems. Here are the steps
for setting up the spawner TCP/IP service name:

1 Specify a service–name in the cntspawn spawner start-up command.

cntspawn -service mySpawner

2 Update the TCP/IP services file on the UNIX server by adding the name of the
spawner service, its port number, and the communications protocol type (TCP).

For more information about the services file, see “Configure the TCP/IP Services
File” on page 309.

In the following example, assume that the TCP/IP services file was updated to
define a SAS/CONNECT spawner named mySpawner that is listening on port 5020.
The following command starts the spawner and allows clients to connect using the
TCP/IP service name, mySpawner, or the explicit port number.

 cntspawn -service mySpawner -mgmtport 7555 -sascmd "/u/username/mystartup"

The -MGMTPORT spawner option specifies a spawner port for operator
connections, to be used for administrative purposes.

Note: If the SERVICE option is not specified when the spawner is started, the
spawner attempts to listen on Telnet port 23 and the service name is SAS Connect
Spawner by default

Stop the Spawner
To end the spawner, type CTRL-C to kill the process.

Specify Encryption Options for Data
Security
If you want to specify an encryption method other than the default SAS Proprietary
Encryption, you can specify SAS system options for encryption on the spawner

Spawner Connections on UNIX 347

start-up command. For example, you can specify the NETENCRYPTALGORITHM
option on the spawner start-up command to specify various encryption algorithms
such as RC2, DES, and SSL.

SAS proprietary encryption, which is enabled by default with SAS, provides a
medium level of security and includes encryption for passwords used for
communications in configuration files, encryption for login passwords, encryption for
internal account passwords, and encryption of general traffic between clients and
remote hosts. For more information about SAS Proprietary Encryption, see “SAS
Proprietary Encryption” in Encryption in SAS . For more information about security
options used with the SAS/CONNECT spawner, see “Security Options” on page
331.

In the following example, the cntspawn command starts a spawner named unxspawn
and uses the -NETENCRYPTALGORITHM option to specify that data is encrypted
using AES encryption:

cntspawn -service unxspawn -netencryptalgorithm aes

For more encryption examples, see the following sections in Encryption in SAS:

n “SAS/CONNECT Server on UNIX” in Encryption in SAS

n “ Start-up of a UNIX Spawner on a SAS/CONNECT Server” in Encryption in SAS

n “Using TLS for Encryption of a SAS/CONNECT UNIX Spawner: Example ” in
Encryption in SAS

For a complete list of encryption options that can be used on the spawner start-up
command, see “SAS System Options for Encryption” in Encryption in SAS.

Sign On to the SAS/CONNECT Spawner

Overview
This section contains the steps for signing on using the SAS/CONNECT spawner in
a SAS Foundation environment.

Tasks
To sign on using the SAS/CONNECT spawner, complete the following steps:

1 Ensure that the spawner is running on the server.

2 Specify the server name and spawner port number or service name.

3 Sign on to the spawner using a script or sign on without a script.

348 Chapter 20 / UNIX Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n068jbx2qz2bmcn1kbv8dcds6rfj.htm&docsetTargetAnchor=p17q1ncd91s7kjn13ephjumwt8ih&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p19dcckxvwpllfn1t66brsugcsiu.htm&docsetTargetAnchor=p1c2i4saf8730hn1xc6ufnufjppy&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p19dcckxvwpllfn1t66brsugcsiu.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p19dcckxvwpllfn1t66brsugcsiu.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0bmaslhpevq8gn1l614jmbd63wi.htm&locale=en

Ensure That the Spawner Is Running on
the Server
The server administrator must configure and start the spawner on the server before
you can sign on using the spawner. The spawner cannot be started on the server by
the client. For information about configuring and starting the SAS/CONNECT
spawner on a UNIX server, see “Set Up the Spawner on UNIX” on page 345.

Specify the Server and the Spawner Port
or Service Name
To sign on to a remote UNIX server that is running the SAS/CONNECT spawner,
specify the name of the remote server, followed by the spawner port number or
TCP/IP service name that is associated with the spawner port. You can specify the
name of the server and the port number or service name in an OPTIONS statement
or in a SIGNON statement. Here is the syntax for the OPTIONS statement:

OPTIONS REMOTE=node-name[.port-number] | [service-name];

Here is the syntax for the SIGNON statement:

SIGNON node-name[.port-number] | [service-name];

Example:

%let myNode=unixserv.us.123.com 5020;;
signon myNode;

n node-name is based on the remote UNIX server that you are connecting to.
node-name must be a valid SAS name that is 1 to 8 characters in length and is
one of the following:

o the short name of the remote server that you are connecting to. The short
host name must be defined in the HOSTS file in the client operating
environment or in your Domain Name Server (DNS).

o a macro variable that represents either the IP address of the host or the Fully
Qualified Domain Name (FQDN) of the host that you are connecting to.
Because FQDNs do not meet SAS naming requirements, you must assign
the FQDN to a macro variable that meets these requirements. Here is an
example:

%let remhost=pc.rem.us.com;
signon remhost.5050;

n port-number is the TCP/IP port that the spawner is listening on for client
connections.

n service-name is the name associated with the port that the spawner is listening
on.

You can specify the TCP/IP service name instead of the explicit port number to sign
on to the spawner if the spawner has been set up to run on the server as a service.

Spawner Connections on UNIX 349

To specify the spawner’s TCP/IP service name when signing on, specify the name
of the spawner service (service-name) in the SIGNON statement as follows:

%let myHost=pc.rem.us.com;
signon myHost.mySpawner;

The spawner service name and port number can be configured in the client's
services file, but this is not a requirement. If you do configure the client’s services
file, the port number in the client services file must be identical to the spawner’s
listening port.

See “Specify the Spawner Port or Service Name” on page 346 for information about
setting up the spawner to run as a service. For information about configuring the
TCP/IP services file, see “Configure the TCP/IP Services File” on page 309.

Note: If you are using SAS/CONNECT with a metadata server, the spawner port
number and service name can be defined in the metadata configuration file.

For more examples of signing on using the SAS/CONNECT spawner, see “Spawner
Examples” on page 336.

Sign On Without a Script
If you are not using a sign-on script, then you must provide a user-ID and password
to sign on to a secured server. Specify the USERNAME= and PASSWORD= options
in the SIGNON statement.

Example:

%let rmthost=pc.rem.us.com;
options comamid=tcp;
signon rmthost.cntspwn1 user=_prompt_;

In the example, a client connects to a UNIX server by using a spawner without a
script. In the SIGNON statement rmthost is the name of the server on which the
spawner is running and cntspwn1 is the name of the spawner service. The
PROMPT value in the USER= option causes a dialog box to appear so that a
user-ID and a password can be provided.

In this scenario, assume that the server administrator has started the
SAS/CONNECT spawner on a secured server using the -SERVICE option on the
spawner start-up command as follows:

cntspawn -service cntspwn1

Since the spawner was started as cntspwn1, connecting clients must specify
cntspwn1 (or the associated port number) when signing on.

Sign On Using a Script
You can use a SAS/CONNECT sign-on script to sign on to a server that is running
the spawner. The sign-on script is executed by the SIGNON statement and prompts
for the client user-ID and password by default.

350 Chapter 20 / UNIX Operating Environment

Note: If you do not use a sign-on script when connecting to a secured server, then
you must supply a user-ID and password when signing on.

To sign on using a script, use the FILENAME statement with the default fileref,
RLINK, to associate RLINK with the script that you want to use. Then, specify the
SIGNON statement (without the fileref argument).

If you use the default SAS fileref, RLINK, you do not need to specify a fileref in the
SIGNON statement. When the SIGNON executes, SAS automatically searches for a
file that is defined using RLINK as the fileref and executes the script that is
associated with it.

Example 1:

filename rlink "/misc/connect/tcpunix.scr";
signon;

Example 2:

filename rlink 'c:\Program Files\SASHome\SASFoundation\9.4\connect\saslink\
 tcptunix.scr';
options remote=rmtnode;
signon;

In the second example, a UNIX client executes the tcpunix.scr script to connect to
a remote UNIX server. The FILENAME statement identifies the script file on the
client machine that is used to sign on to the server. The script file was configured to
contain a user-ID and a password that are valid on the server. The REMOTE=
system option specifies the server rmtnode.

For more information about using RLINK in the FILENAME statement, see “Example
1: Use a FILENAME Statement for a Script File” on page 203.

Sample script files are provided with SAS/CONNECT for signing on and signing off.
The script that you choose is based on the server that you are connecting to. The
following table lists the names and locations of the scripts that are provided with
SAS/CONNECT.

Table 20.1 SAS/CONNECT Sign-on Scripts for TCP/IP

Server/Operating System Script Name Location of Script File on Client

UNIX tcpunix.scr !sasroot/misc/connect/

TSO under z/OS tcptso.scr prefix.CTMISC

TSO under z/OS, SAS 9 or
later

tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (full-screen 3270 Telnet
protocol)

tcptso32.scr

Windows tcpwin.scr ‘!sasroot\connect\saslink\’

Spawner Connections on UNIX 351

Note: If the spawner was started using the -NOSCRIPT option, then you cannot
use a script to sign on to the spawner. Assigning the fileref RLINKin a FILENAME
statement is used only when signing on using a script.

For more information about using SAS/CONNECT script files and SAS/CONNECT
script statements, see “SAS/CONNECT Sign-on Script Files” on page 408 and
“Simple SAS/CONNECT Scripts for Sign On and Sign Off” on page 412.

For more information about the FILENAME statement, see “FILENAME” on page
201.

Specify Data Encryption Options for Sign-
ons
Encryption is the process of transforming plaintext into a less readable form (called
ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext. SAS proprietary encryption, which is
enabled by default with SAS, provides a medium level of encryption, including
encryption for passwords used for communications in configuration files, passwords
for login objects, login passwords, internal account passwords, and encryption of
general traffic between clients and remote hosts. If you want to specify an
encryption algorithm that is different from the default SAS Proprietary encryption,
you can specify SAS system options for encryption.

For more information about security options used with the SAS/CONNECT spawner,
see “Security Options” on page 331.

For more information about SAS Proprietary Encryption, see “SAS Proprietary
Encryption” in Encryption in SAS .

In the following example, the NETENCRYPT option specifies the AES algorithm in
the SAS OPTIONS statement:

options netencrypt=aes;
signon;

Here are more examples showing how to sign on using encryption:

n “Connection of a SAS/CONNECT Client to a UNIX Spawner” in Encryption in
SAS

n “SAS/CONNECT Client on UNIX” in Encryption in SAS

For a list of SAS system options for Encryption, see “Spawner Options” on page
326.

Spawner Sign-on Examples
The following table contains examples of spawner sign-ons to a remote UNIX host.
For all of the examples, assume that the spawner was configured and started on the
remote host. The CLIENT column contains valid sign-on statements that can be
used to sign on to the remote UNIX host machine.

352 Chapter 20 / UNIX Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p19dcckxvwpllfn1t66brsugcsiu.htm&docsetTargetAnchor=n1gbaycifcvj9tn1wkys9u36ft3x&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p19dcckxvwpllfn1t66brsugcsiu.htm&docsetTargetAnchor=n1gbaycifcvj9tn1wkys9u36ft3x&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n068jbx2qz2bmcn1kbv8dcds6rfj.htm&docsetTargetAnchor=p1am11hs3wle2vn13xbbkdtgcpon&locale=en

Table 20.2 Spawner Sign-on Examples

CLIENT Description

%let r=pc.rem.us.com;
signon r.7551;

In this example, the client signs on using the host name
r and the explicit port number 7551 that was used to
start the spawner on the UNIX remote host. The fully
qualified domain name of the remote host is assigned to
the macro variable r. The explicit port number (7551) is
specified with the host name in the SIGNON statement.

Note that the REMOTE= or CONNECTREMOTE=
option is implicit in the SIGNON statement.

%let r=pc.rem.us.com 7551;
signon r user=abc123 pass=******;

In this example, the client signs on by specifying the
remote host name, the user ID, and the password in the
SIGNON statement. The fully qualified domain name of
the remote host and the explicit port number (7551) are
both stored in the macro variable r. The user ID and
password are specified in the SIGNON statement.

%let r=pc.rem.us.com 7551;
options remote=r;
signon user=abc123 pass=_prompt_;

In this example, the client signs on by specifying the
remote host name in the OPTIONS statement. The fully
qualified domain name of the remote host and the port
number 7551 are both stored in the macro variable r.
The user ID and password are specified in the SIGNON
statement. The value for the PASSWORD option
(_prompt_) causes the server to prompt the user for the
password during the sign-on.

%let r=pc.rem.us.com;
signon r._ _7551 user=abc123 pass=******;
libname myLib server=r._ _7551;

Again, the fully qualified domain name of the UNIX
remote host is assigned to the macro variable r. The
host name and port number are specified in the
SIGNON statement using the “computer-name.__port-
number” format. A libref is defined on the server using
the LIBNAME SERVER= statement. When a LIBNAME
statement is used in a sign-on, the double underscore
format must be used to specify the server ID for both the
SERVER= option in the LIBNAME statement and the
SERVER= option in the SIGNON statement.

%let r=10.5.55.14 7551;
signon r user=abc123 pass=******;

The IP address of the UNIX remote host and its port
(7551) are assigned to the macro variable r. The host
name (r), user ID, and password are specified in the
SIGNON statement.

%let r=pc.rem.us.com;
filename rlink ‘C:\Program Files\
 SASHome\SASFoundation\9.4\
 connect\saslink\tcpunix.scr’;
signon r;

This example shows a scripted spawner sign-on from a
Windows client machine to a remote UNIX server. The
fully qualified domain name of the UNIX host is assigned
to the macro variable r. The FILENAME RLINK
statement is used to specify the sign-on script. The
FILENAME statement assigns the default fileref, RLINK,
to the script file located in C:\Program Files\SASHome
\SASFoundation\9.4\connect\saslink\ on the client
machine.

Spawner Connections on UNIX 353

CLIENT Description

filename rlink ‘..’;
signon mvshost._ _7551;

This example shows a scripted spawner sign-on from a
UNIX client machine to a remote UNIX server. The
FILENAME RLINK statement specifies the parent of the
current folder as the path for the script file.

The UNIX host name and port number are specified in
the SIGNON statement using the “computer-
name.__port-number” format.

SASCMD Connections on UNIX

Sign On to the Same Multiprocessor Computer

Tasks
If your client computer is equipped with SMP, you can run one or more server
sessions from the local session on the same computer. Here are the steps for
creating one or more server sessions on your local computer:

1 Specify the server session.

2 Specify the SASCMD option to start SAS.

3 Sign on.

Specify the Name of the Server Session
You can specify the name of the server session using either of the following
methods:

n in an OPTIONS statement using the REMOTE= system option:

Example:

options remote=session1;

Note: REMOTE= is an alias for the CONNECTREMOTE= system option.

n in a SIGNON statement using the REMOTE= option:

Example:

354 Chapter 20 / UNIX Operating Environment

signon remote=session1;

Specifying the -REMOTE= option in the SIGNON statement is optional since the
option is implied in the SIGNON statement:

signon session1;

Specify the SASCMD Option to Start SAS
Use the SASCMD option to specify the command to start a SAS session and any
additional options that you want to use to start the session. The SASCMD option
can be specified in an OPTIONS statement or in the SIGNON statement.

n Here is the syntax for the SASCMD= system option in the OPTIONS statement:

SASCMD=<"SAS-command <SAS-system-options>" | "!SASCMD <SAS-system options"> >

Example 1:

options sascmd="sas -nosyntaxcheck -noterminal";

Example 2:

options sascmd="!sascmd -nosyntaxcheck -noterminal";

n Here is the syntax for the SASCMD= option in the SIGNON statement:

sascmd="SAS-command" | "!sascmd" | "!SASCMDV" | "host-command-file"

Example 1:

signon sascmd="start_sas" <options>;

n !sascmd tells SAS to start the server session using the same command that was
used to start the local SAS session.

n host-command-file represents a sign-on script file that contains SAS start-up
commands. These commands should be customized for your operating
environment. For more information about the host-command-file value in the
SASCMD option, see “"SAS-command"” on page 138.

For more information, see SASCMD= system option in the OPTIONS statement and
SASCMD= option in the SIGNON statement.

Sign On
If you did not use the SIGNON statement as shown in the previous step to specify
the server session and start-up command, then you must specify the SIGNON
statement to complete the sign-on:

signon;

In the following example, the session name and the SAS start-up command are both
specified in the OPTIONS statement, so a simple SIGNON statement without
arguments can be used:

Example 1:

options process="session1" sascmd="start_sas";
signon;

SASCMD Connections on UNIX 355

Example 2:

In the following example, the value for the SASCMD= option is set in the OPTIONS
statement and the name of the session is set in the SIGNON statement. The
SASCMD= option specifies sas as the command to start the SAS server session.

options sascmd="sas";
signon session2;

The NOSYNTAXCHECK System Option
You can specify the NOSYNTAXCHECK system option when signing on to a server
session on the same symmetric multiprocessing (SMP) computer that the client
session is running on. This option is most useful when client and server sessions
run on SMP hardware.

NOSYNTAXCHECK enables continuous processing of statements regardless of
syntax error conditions. When SYNTAXCHECK is enabled, SAS uses additional
resources to validate SAS statements while producing limited results.

For example, the first instance of a syntax error triggers syntax checking, which
automatically sets the value of the OBS= system option to 0. Consequently, no
observations can be created by subsequent SAS statements in the program. When
executing SASCMD sign-ons or when executing debugged production programs
that are unlikely to encounter errors, consider using the NOSYNTAXCHECK option.

Here is an example of a SAS invocation that runs on the same computer at which
the client session runs:

signon smp sascmd="sas -nosyntaxcheck -noterminal";

Telnet Connections on UNIX
IMPORTANT With the June 2023 hot fix, Telnet is deprecated and it is
recommended that you use SAS/CONNECT Spawner for client sign-ons. The
-CLEARTEXT option has been deprecated and is no longer available. For
more information, see SAS Note 70114.

Tasks
When signing on using a Telnet daemon, specify the server name and a sign-on
script. The script file is executed by the SIGNON statement. By default, the script
prompts for the user ID and password. Here are the tasks for signing on using a
Telnet daemon:

1 Specify the server name.

356 Chapter 20 / UNIX Operating Environment

https://support.sas.com/kb/70/114.html

2 Specify a sign-on script.

3 Sign on.

Specify the Server
The name of the server can be specified in the SIGNON statement or in the
OPTIONS statement. Here is the syntax for specifying the server name in an
OPTIONS statement:

OPTIONS remote=<computer-name>;

Here is the syntax for specifying the server name in the SIGNON statement:

SIGNON <computer-name>;

For more information about the REMOTE= system option, see
CONNECTREMOTE= system option on page 108. For more information about the
SIGNON statement, see SIGNON statement on page 127.

Specify a Sign-on Script
If you are signing on by using a script, you must specify the script that you want to
use. The script file is executed by the SIGNON statement or command. By default,
the script prompts for user ID and password. For more information, see “Sign On
Using a Script” on page 350.

Sign On to the Server Session
Use the SIGNON statement to sign on to a remote server session.

In the following example, a UNIX client connects to a z/OS server using the TCP/IP
access method. The FILENAME statement identifies the script file that you use to
sign on to a server. The script file contains a prompt for a user ID and a password
that are valid on the server. The COMAMID= option specifies the TCP/IP
communications access method for connecting to the RMTNODE server, which is
specified in the REMOTE= option.

filename rlink '!sasroot/misc/connect/tcptso.scr';
options comamid=tcp remote=rmtnode;
signon;

Note: REMOTE= is an alias for the CONNECTREMOTE= system option.

Telnet Connections on UNIX 357

Examples

Example 1: Sign On to a z/OS Server from a UNIX
Client

In this example, a client session that runs under UNIX uses the TCP/IP access
method to connect to a z/OS server. The FILENAME statement specifies the script
file, tcptso.scr, to use to sign on to the server. The script file contains a prompt for
a user-ID and a password. The COMAMID= option specifies the TCP/IP
communications access method for connecting to the server rmtnode, which is
specified in the REMOTE= option.

UNIX example:

filename rlink '!sasroot/misc/connect/tcptso.scr';
options remote=rmtnode;
signon;

Note: REMOTE= is an alias for the CONNECTREMOTE= option.

Example 2: Start the SAS/CONNECT Spawner on
UNIX

The following command starts the SAS/CONNECT spawner on a UNIX server:

cntspawn -service spawner -mgmtport 7555 -sascmd "/u/username/mystartup"
-netencryptalgorithm ssl

n The -SERVICE option specifies that the service named spawner listens for
incoming connections. This example assumes that the SERVICES file on the
server was updated to include an entry for spawner with an assigned port.

n The -MGMTPORT option specifies the port number for operator (administrative)
connections.

n The -SASCMD option specifies the path to the mystartup command file, which
starts SAS on the server.

n The NETENCRYPTALGORITHM option specifies the SSL encryption algorithm.

Note: In order for the UNIX spawner to locate the appropriate server digital
certificate for SSL encryption, you must specify the -SSLCERTLOC and
-SSLPVTKEYLOC system options or the SSLPKCS12LOC and

358 Chapter 20 / UNIX Operating Environment

SSLPKCS12PASS system options in the script that is specified by the -SASCMD
option.

Examples 359

360 Chapter 20 / UNIX Operating Environment

21
z/OS Operating Environment

Overview . 362
What Is Covered . 362
Types of Connections . 362

Spawner Connections on z/OS . 363
Product Requirements . 363
Set Up the Spawner on z/OS . 363
Sign On to the Spawner . 368
Ensure That the Spawner Is Running on the Remote Host . 368
Specify the Access Method . 369
Sign On Using the Host Name and Spawner Port Number . 369
Specify the TCP/IP Service Name (Optional) . 370
Specify a Sign-on Script (Optional) . 371
Specify a User ID and Password . 372
Submit the Sign-on Code . 372
Sign-on Examples . 372
Enable Encryption for Spawner Sign-ons . 374

MP Connections on z/OS . 374
Overview . 374
Product Requirements for the XMS Access Method . 375
Sign On Using MP Connect . 375

Telnet Connections on z/OS . 377
Product Requirements for Telnet Connections . 377
Sign On Using a Telnet Connection . 377

Environment Variables . 379

361

Overview

What Is Covered
This section describes how to use SAS/CONNECT in a SAS Foundation
environment for z/OS.

If you are using SAS/CONNECT as part of a SAS Intelligence Platform Deployment
(for example, SAS Business Intelligence Server or SAS Data Integration Server),
refer to the SAS Intelligence Platform Documentation at http://support.sas.com/
documentation/onlinedoc/intellplatform/tabs/admin94.html.

For a list of resources specifically related to using SAS/CONNECT in a SAS
Intelligence Platform environment, see “SAS/CONNECT in a SAS Intelligence
Platform Environment” on page 5.

More detailed information describing the scope of this document can be found in the
section “Document Scope” on page 4.

Types of Connections
This section contains information about how to use three types of connections that
are available when using SAS/CONNECT software in a SAS Foundation
environment:

n Spawner connections

n MP Connect (SASCMD) connections

n Telnet connections

Regardless of the type of connection you are using, this document assumes that
you have completed the configuration steps as outlined in the Configuration Guide
for SAS 9.4 for Foundation on z/OS.

Note: In this document, all references to the “spawner” or “spawner program” are
intended to mean the SAS/CONNECT spawner or the SAS/CONNECT spawner
program.

362 Chapter 21 / z/OS Operating Environment

http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html
http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html

Spawner Connections on z/OS

Product Requirements
Before you begin using the SAS/CONNECT spawner on z/OS, you must complete
the following steps:

n Configure SAS to use TCP/IP as outlined in System Configuration for Using SAS
with TCP/IP in Configuration Guide for SAS 9.4 Foundation for z/OS.

n Install the SASCP TSO command as outlined in Implementing SAS TSO Support
in Configuration Guide for SAS 9.4 Foundation for z/OS.

n Complete the post-installation configuration for SAS/CONNECT Software as
outlined in Post-Installation Configuration for SAS/CONNECT Software in
Configuration Guide for SAS 9.4 Foundation for z /OS. These steps include
configuring SAS/CONNECT spawner security, setting up the started task
procedure, and defining the SAS startup shell script.

n Ensure that the SAS SVC routine has been installed as outlined in Installing the
SAS 9.4 SVC Routine in Configuration Guide for SAS 9.4 Foundation for z/OS.

n Specify spawner options and environment variables .

n Ensure that Base SAS and SAS/CONNECT software have been installed on
both the client and the host machines.

Set Up the Spawner on z/OS

Steps
Here are the tasks that are associated with setting up the SAS/CONNECT spawner
on z/OS:

n Complete the steps as outlined in the previous section.

n Configure TCP/IP ports.

n Specify a spawner TCP/IP service name, as needed.

n Specify other spawner invocation options, as needed.

n Start the spawner.

n Stop the spawner.

Spawner Connections on z/OS 363

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=27
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=27
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=8
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=91
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=93
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=94
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=94
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=95
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47

Spawner Components on z/OS
The SAS/CONNECT spawner runs as a z/OS started task and uses z/OS UNIX
System Services (USS) to spawn each user’s SAS/CONNECT server session. Each
server session runs in a BPXAS address space, executing the UNIX USS /bin/tso
command to run the SAS REXX start-up command. Therefore, to start the
SAS/CONNECT spawner, you need to first configure the started task procedure in
the system PROCLIB library. The spawner uses TCP/IP socket services for inter-
process communications.

A sample USS script file can be found in ‘&prefix.BAMISC(SPNCSHEL)’.

Note: The /bin/tso command mentioned above is used by default in the UNIX
shell script. If you need to run authorized commands in SAS 9.3 and later releases,
use the /bin/tsocmd command instead. See Usage Note 54530 for information
about setting the /bin/tsocmd command in the UNIX shell script.

If you have satisfied the product requirements as outlined in the section Post-
Installation Configuration for SAS/CONNECT Software in the Configuration Guide
for SAS 9.4 Foundation for z /OS, then you should have already configured the
spawner started task procedure and PARMS options. A sample started task
procedure can be found in ‘&prefix.BAMISC(SPNCCNTL)’.

The SAS/CONNECT spawner module is named CNTSPAWN and it is located in the
SAS load library. This library is allocated by default to the STEPLIB DD in the
spawner started task procedure. Alternatively, the library can be installed in LPA or
LINKLIST. The spawner started task requires a PARMS file for specifying spawner
invocation options. A sample PARMS file can be found in
‘&prefix.BAMISC(SPNCPARM)’.

Here is a conceptual diagram showing the components discussed here and their
relationship to one another:

Figure 21.1 Components of the SAS/CONNECT Spawner on z/OS

The -SERVICE and the -MGMTPORT options must be specified in the spawner’s
started task procedure or in the PARMS file for the spawner to start correctly.

364 Chapter 21 / z/OS Operating Environment

http://support.sas.com/kb/54/530.html
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=91
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=91

Configure TCP/IP Ports
n -SERVICES Option (Listening Port)

To accept connection requests from SAS/CONNECT clients using TCP/IP, the
spawner must be listening on a designated port. Therefore, a port or TCP/IP
service name is needed to be used as the spawner’s listening port. The
spawner’s listening port is specified using the -SERVICE option in the started
task procedure JCL. Alternatively, the -SERVICE PARM can be moved to the
started task procedure’s PARMS file. Here is the syntax for the -SERVICE
option:

-SERVICE <port-number> | <service-name>

n -MGMTPORT Option (Operator Port)

On z/OS, a SAS/CONNECT spawner TCP/IP operator port is defined on the
remote host by default. The operator port is set by default to 7541. If you want
the operator port to use a port other than the default port, then change the -
MGMTPORT PARM in the started task procedure JCL. Alternatively, the -
MGMTPORT PARM can be moved to the PARMS file. Here is the syntax for the
-MGMTPORT option:

-MGMTPORT <port-number> | <service-name>

Note: On z/OS, you can specify a service-name for the MGMTPORT option starting
with the third maintenance release of SAS 9.4. For releases prior to this, you can
specify the port-number only for the -MGMTPORT option.

For more information about the -SERVICE option, see -SERVICE on page 330. For
more information about the -MGMTPORT option, see -MGMTPORT on page 328.

Specify a Spawner TCP/IP Service Name
(Optional)
Note: If you intend to start the spawner using an explicit port number as described
in “Configure TCP/IP Ports” on page 365, you do not need to perform this step.

If you want to use a TCP/IP service name for the spawner’s listening port instead of
referring to the spawner using its explicit port number, you can set up a TCP/IP
service name that corresponds to the spawner’s listening port. The TCP/IP service
name is an arbitrary name that provides a convenient way for users to reference the
spawner. The services file is a plain text file that maps service names to port
numbers. Here are the steps for setting up the spawner TCP/IP service name:

1 Add the TCP/IP service name to the -SERVICE option in the started task
procedure JCL or PARMS file.

-SERVICE mySpawner

Spawner Connections on z/OS 365

2 Update the TCP/IP services file on the remote host by adding the name of the
TCP/IP service, its port number, and the protocol type (TCP). For more
information about updating the TCP/IP service file, see “Configure the TCP/IP
Services File” on page 309.

Specify Other Spawner Options (Optional)
SAS/CONNECT spawner start-up options are specified in the PARMS file, which is
used by the spawner started task procedure to start the spawner. The following
table lists some of the more commonly used spawner options. For a complete list of
spawner invocation options, see “Spawner Options” on page 326.

Table 21.1 Commonly Used SAS/CONNECT Spawner Options on z/OS

-MGMTPORT (required in SAS 9.4 and later releases) specifies the
TCP/IP service name or port number that the
spawner listens on for operator connections. Operator
connections are used for spawner administrative
tasks. In SAS 9.4 and later releases, if you do not
specify the operator port using the -MGMTPORT
option, SAS defaults to using TCP port 7541. If that
port is in use, the SAS/CONNECT spawner fails to
start. On z/OS, the ability to use a service-name
rather than the explicit port number when defining the
spawner operator port applies to SAS versions later
than the third maintenance release of SAS 9.4.

-SERVICE specifies the TCP/IP port number or TCP/IP service
name that the spawner listens on for client requests.
For more information about the -SERVICE option, see
“Spawner Options” on page 326.

-NOSCRIPT prevents sign-ons from clients that use scripts, and
allows sign-ons only from clients that do not use
scripts.

-NOCLEARTEXT prevents sign-ons from clients that do not support
user ID and password encryption. SAS releases prior
to SAS 6.09E (MVS) and SAS 6.12 (Windows and
UNIX) do not support user ID and password
encryption. If the spawner is started with the
NOCLEARTEXT option specified, then clients running
these versions of SAS will not be able to connect to
the SAS/CONNECT spawner.

-SASCMD specifies a UNIX System Services shell script that
starts SAS.

-TRACE | VERBOSE used with the -LOG | -LOGFILE option to specify the
level of logging for the SAS/CONNECT spawner.

366 Chapter 21 / z/OS Operating Environment

Specifying either option causes the log output to be
more detailed.

-NETENCRYPTALGORITHM specifies the type of encryption to use if you do not
want to use the default SAS Proprietary encryption.
SAS proprietary encryption is enabled by default with
SAS and provides a medium level of encryption. For
more information about security options that are used
with the SAS/CONNECT spawner, see “Security
Options” on page 331.

Note: SAS/SECURE is now part of Base SAS.

For more information about SAS Proprietary Encryption, see “SAS Proprietary
Encryption” in Encryption in SAS .

Note: In SAS 9.4 and later releases, the -INHERITANCE option is no longer a valid
spawner option. If -INHERITANCE is set in your PARMS file and you are running SAS
9.4 or later release, you will get an error when starting the SAS/CONNECT spawner
procedure. You should remove the -INHERITANCE from your PARMS file and restart
your SAS/CONNECT spawner.

Start the Spawner
If you have configured the started task procedure, use the following syntax to start
the spawner on z/OS:

START <started-task-procedure>

Example:

START SPAWNER

This command starts the SPAWNER started task procedure. The spawner continues to
run until it is stopped.

Stop the Spawner
To stop the spawner, enter the following command:

STOP <started-task-procedure>

Example:

STOP SPAWNER

Spawner Connections on z/OS 367

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en

Specify Encryption for Spawner Start-up
If you want to specify an encryption method other than the default SAS Proprietary
Encryption, you can specify SAS system options for encryption on the spawner
start-up command. For example, you can specify the NETENCRYPTALGORITHM
option in the PARMS file to specify various encryption algorithms such as RC2,
DES, and SSL, to name just a few.

SAS proprietary encryption, which is enabled by default with SAS, provides a
medium level of security and includes encryption for passwords used for
communications in configuration files, encryption for login passwords, encryption for
internal account passwords, and encryption of general traffic between clients and
remote hosts. For more information about SAS Proprietary Encryption, see “SAS
Proprietary Encryption” in Encryption in SAS. For more information about security
options used with the SAS/CONNECT spawner, see “Security Options” on page
331.

Sign On to the Spawner

Task List
Here are the steps for signing on to the SAS/CONNECT spawner that is running on
a z/OS host:

1 Ensure that the spawner is running on the remote host.

2 Specify TCP/IP as the access method (applies to z/OS clients only).

3 Specify the host name and TCP/IP port number or service name.

4 Specify the sign-on script (optional).

5 Specify a user-ID and password for the sign-on.

6 Submit the sign-on code.

Ensure That the Spawner Is Running on the
Remote Host

Before you can access the spawner, the spawner program must be running on the
host machine.

If you are a SAS administrator and need information about setting up and starting
the SAS/CONNECT spawner on z/OS, see “Set Up the Spawner on z/OS” on page
363.

368 Chapter 21 / z/OS Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en

Specify the Access Method
TCP/IP is the default communications access method for the Windows and UNIX
operating environments. On z/OS, XMS is the default access method. Therefore, if
you are signing on from a z/OS client session, you need to specify TCP/IP as the
access method using the COMAMID system option as follows:

options comamid=tcp;

Sign On Using the Host Name and Spawner Port
Number

To sign on to the spawner, you must know the name of the remote host computer
that you are connecting to and the TCP/IP port number (or service name) that the
spawner is listening on. The value of the port number that you specify in the sign-on
statement should be identical to the port number that was specified as the
spawner’s listening port on the remote host.

Note: Instead of specifying the explicit TCP/IP port number, you can specify the
port’s TCP/IP service name. For information about specifying the TCP/IP service
name on the client host, see Specify the TCP/IP Service Name on page 370.

When signing on, the name of the remote host and spawner port number (or TCP/IP
service name) can be specified in an OPTIONS statement or in a SIGNON
statement. The syntax for the OPTIONS statement is as follows:

OPTIONS REMOTE=node-name[.port-number | service-name>] <more options>;

The syntax for the SIGNON statement is as follows:

SIGNON node-name[.port-number | service-name >] <more options>;

port-number is the TCP/IP port on the remote host that the spawner is listening on
for client requests.

service-name is the TCP/IP service name on the client machine.

node-name is based on the host that you are connecting to. node-name must be a
valid SAS name that is 1 to 8 characters in length and is one of the following:

n the short name of the remote host that you are connecting to. This short host
name must be defined in the client’s HOSTS file where the short name is
mapped to the IP address of the host machine or defined in your Domain Name
Server (DNS).

n a macro variable that represents either the IP address of the host or the Fully
Qualified Domain Name (FQDN) of the host that you are connecting to. Because
FQDNs do not meet SAS naming requirements, you must assign the FQDN to a
macro variable that meets these requirements. Here is an example:

%let remhost=zos.rem.us.com;
signon remhost.5050;

Spawner Connections on z/OS 369

SAS evaluates the node-name in the following manner:

1 If node-name is a macro variable, the value of the macro variable is passed to
the operating environment's getnameinfo() function.

2 If node-name is not a macro variable or the value of the macro variable does not
produce a valid value, node-name is passed to the getnameinfo() function.

3 If getnameinfo() fails to resolve node-name to an IP address, an error message
is returned and the sign-on fails.

Note: The order in which the getnameinfo() function calls the DNS or searches
the HOSTS file to resolve node-name varies based on the operating
environment’s implementation of TCP/IP.

In the following example, the FQDN of the remote host is zos.rem.us.com, which is
not a valid SAS name. Therefore, the macro variable remhost is assigned to the
host name using the %LET macro statement. The host name that is specified in the
SIGNON statement uses the macro variable remhost to sign on. The port number
5050 is also specified in the SIGNON statement:

%let remhost=zos.rem.us.com;
signon remhost.5050;

You can also include the port number in the definition of the macro variable. Here is
an example:

%let remhost=zos.rem.us.com 5050;
signon remhost;

Specify the TCP/IP Service Name (Optional)
You can use a TCP/IP service name for spawner signons rather than referring to the
spawner using its port number. The TCP/IP services file on the host machine must
be configured to map the port-number to the TCP/IP service name. You can update
the TCP/IP services file on the client machine to map the TCP/IP service name to
the spawner’s port number but this is not a requirement.

If you do configure the client’s services file, the port number that is mapped to the
TCP service name must match the port number that was used for the spawner start-
up on the remote host. Here is the syntax:

SIGNON node-name.service-name;

The TCP/IP services file is a plain text file that maps TCP/IP service names to port
numbers. You can use a text editor to add an entry to the services file. The entry
must include the name of the TCP/IP service, the port number that is associated
with that service, and the communications protocol being used (TCP).

For more information about updating the TCP/IP service file, see “Configure the
TCP/IP Services File” on page 309.

Note: Remember, this step is optional. You can always start the spawner or sign on
to it using the spawner’s explicit port number.

370 Chapter 21 / z/OS Operating Environment

Specify a Sign-on Script (Optional)
If you want to override the default launch command that is specified in the PARMS
file by the -SASCMD PARM, you can use a sign-on script to sign on to the remote
host. If you are signing on using a script, you must specify the script that you want to
use and you must customize the script to match the logon process to your remote
host.

The script file is executed by the SIGNON statement. By default, the script prompts
for user ID and password. If you do not use a sign-on script and the spawner is
running secured, you must supply a user ID and password when signing on using
the spawner.

To use one of the sample script files that are supplied with SAS/CONNECT for
signing on and signing off, assign the default fileref RLINK to the appropriate script
file. The script that you choose is based on the remote host that you are connecting
to. On z/OS client machines, the sample scripts are installed in &prefix.CTMISC.
You can determine the location of script files on UNIX and Windows client machines
by executing the following OPTIONS procedure in your local UNIX or Windows SAS
session:

proc options option=sasscript;

To specify a script, use the FILENAME statement as follows:

FILENAME RLINK 'script-file-location';

script-name specifies the appropriate script file for the server. The following table
lists SIGNON scripts that are supplied with SAS software.

Note: Script filenames on z/OS do not have a .scr extension.

Table 21.2 SAS/CONNECT Sign-on Scripts for Using TCP/IP under z/OS

Type Name of Script File

TSO under z/OS tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (direct logon) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

UNIX tcpunx.scr

Windows tcpwin.scr

Note: You cannot sign on to a spawner using a script file if the spawner was started
using the -NOSCRIPT PARM. If the FILENAME RLINK script file is allocated to the

Spawner Connections on z/OS 371

client SAS session, it will be used automatically and can cause conflict with PARMS
options specified in the SIGNON statement, such as USER= and PASS=.

Specify a User ID and Password
If you are signing on to the spawner without using a script and the spawner is
running secured, then you must submit a password and user ID in the SIGNON
statement to connect to the remote z/OS host:

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Submit the Sign-on Code
In the following example, a client connects to a remote host through a spawner
without using a script file. In the SIGNON statement, rmthost.spawner specifies the
node, rmthost, and the TCP/IP service name, spawner.

Specifying USER=_PROMPT_ causes a logon dialog box to appear so that a user
ID and a password can be provided.

options comamid=tcp;
signon rmthost.spawner user=_prompt_;

Sign-on Examples
The following table contains examples of valid spawner signons. For all of the
examples, assume that the spawner has been configured and started on the server.
The CLIENT column contains valid sign-on statements that can be used to sign on
to the remote host.

Table 21.3 Spawner Sign-on Examples

CLIENT Description

%let r=zos.rem.us.com;
signon r.7551;

The fully qualified domain name of the remote host is assigned
to the macro variable r. The services file is not configured on the
remote host. The client signs on using the host name r and the
explicit port number 7551 that was used to start the spawner on
the remote host.

Note: Because an explicit port number is specified, this
example is not valid if you are signing on and using remote
library services (RLS). To use RLS and sign-on using an explicit
port number, you must specify the port number using the
“computer-name.__port-number” format.

372 Chapter 21 / z/OS Operating Environment

CLIENT Description

%let r=zos.rem.us.com 7551;
signon r user=abc123 pass=****;

The fully qualified domain name of the remote host and the port
number 7551 are both assigned to the macro variable r. The
host name, the user ID, and the password are specified in the
SIGNON statement.

Note: Because an explicit port number is specified, this
example is not valid if you are signing on and using remote
library services (RLS). To use RLS and sign-on using an explicit
port number, you must specify the port number using the
“computer-name.__port-number” format.

%let r=zos.rem.us.com 7551;
options remote=r;
signon user=abc123 pass=******;

The fully qualified domain name of the remote host and the port
7551 are both assigned to the macro variable r. The host name
is specified in the OPTIONS statement. The user ID and
password are specified in the SIGNON statement.

Note: Because an explicit port number is specified, this
example is not valid if you are signing on and using remote
library services (RLS). To use RLS and sign-on using an explicit
port number, you must specify the port number using the
“computer-name.__port-number” format.

%let r=zos.rem.us.com;
signon r._ _7551
user=abc123 pass=******;

The fully qualified domain name of the remote host is assigned
to the macro variable r. The host name and port number are
specified in the SIGNON statement using the “computer-
name.__port-number” format.

%let r=10.5.55.14 7551;
signon r user=abc123 pass=******;

The IP address of the remote host and port 7551 are assigned to
the macro variable r. The host name, user ID, and password are
specified in the SIGNON statement.

Note: Because an explicit port number is specified, this
example is not valid if you are signing on and using remote
library services (RLS). To use RLS and sign-on using an explicit
port number, you must specify the port number using the
“computer-name.__port-number” format.

signon zoshost._ _7551
user=abc123 pass=******;

The fully qualified domain name of the host and the port number
are specified in the SIGNON statement using the “computer-
name.__port-number” format.

%let r=zos.rem.us.com;
filename rlink ‘ .’;
signon r;

The fully qualified domain name of the host is assigned to the
macro variable r. The FILENAME RLINK statement specifies the
current folder as the path for the script file.

filename rlink ‘ ..’;
signon mvshost._ _7551;

The FILENAME RLINK statement specifies the parent of the
current folder as the path for the script file.

The host name and port number are specified in the SIGNON
statement using the “computer-name.__port-number” format.

Spawner Connections on z/OS 373

Enable Encryption for Spawner Sign-ons
If you want to specify an encryption method other than the default SAS Proprietary
Encryption, you can specify SAS system options for encryption in the PARMS file.
For example, you can specify the NETENCRYPTALGORITHM option in the PARMS
file to specify various encryption algorithms such as RC2, DES, and SSL to name
just a few.

SAS proprietary encryption, which is enabled by default with SAS, provides a
medium level of security and includes encryption for passwords used for
communications in configuration files, encryption for login passwords, encryption for
internal account passwords, and encryption of general traffic between clients and
remote hosts. For more information about SAS Proprietary Encryption, see “SAS
Proprietary Encryption” in Encryption in SAS. For more information about security
options used with the SAS/CONNECT spawner, see “Security Options” on page
331.

In the following example, the client specifies user ID and password encryption by
setting the RC2 encryption algorithm. The two-level name, which represents the
node name and the service name, specifies the ID of the remote host session in the
SIGNON statement. A two-level name is needed when signing on to a z/OS
operating environment that runs a spawner. You must supply a valid user ID and
password as values for the USER= and PASSWORD= options in the SIGNON
statement.

options netencryptalgorithm=rc2;
signon rmthost.spawner user=joeblack password=born2run;

For details about encryption services, see the Encryption in SAS, located in the
Base SAS Help and Documentation. For a complete list of SAS encryption options,
see “SAS System Options for Encryption” in Encryption in SAS.

MP Connections on z/OS

Overview
Multi-Process Connect (or MP Connect) is a feature of SAS/CONNECT software
that enables you to run multiple SAS sessions in parallel on the same
multiprocessing computer. MP Connect sessions, therefore, run on symmetric
multiprocessing (SMP) systems that support multiprocessing within a single
operating environment.

On z/OS, the XMS access method enables SAS/CONNECT to run these types of
sessions in parallel within a single z/OS environment. To use the XMS access
method with SAS/CONNECT, both the client and remote host sessions must run on
the same computer (or node).

374 Chapter 21 / z/OS Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n1iasv5icz0x59n1mjwjfdvpfk8k&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0bmaslhpevq8gn1l614jmbd63wi.htm&locale=en

In addition, to run XMS on z/OS, you must satisfy the network requirements that are
outlined in “Product Requirements for the XMS Access Method” on page 375
Configuration Guide for SAS Foundation for z /OS before you can use XMS to
complete SMP connections.

Product Requirements for the XMS Access Method

Tasks
Before you begin using XMS with SAS/CONNECT, you must perform the following
tasks:

n Complete the steps for configuring your system for the Cross-Memory Access
Method as outlined in the section System Configuration for the Cross-Memory
Access Method in Configuration Guide for SAS 9.4 Foundation for z /OS.

n Complete the steps for configuring SAS/CONNECT for connections on the same
multiprocessor machine as outlined in the section SAS/CONNECT to the Same
Multi-Process Machine on z/OS in Configuration Guide for SAS 9.4 Foundation
for z /OS.

n Ensure that the SAS SVC routine has been installed as outlined in Installing the
SAS 9.4 SVC Routine in Configuration Guide for SAS 9.4 Foundation for z /OS.

n Verify that Base SAS software and SAS/CONNECT software have been installed
on both the client and the remote host machines.

Sign On Using MP Connect

Tasks
1 Specify XMS as the communications access method by specifying the

COMAMID in an OPTIONS statement:

options comamid=xms;

Note: Since XMS is the default communications access method for SMP
connections to a z/OS operating environment, you do not have to explicitly
specify the access method.

2 Specify the name of the remote host session in the SIGNON statement:

SIGNON session-ID;

You can also specify the remote host session in an OPTIONS statement:

OPTIONS PROCESS=session-ID;

MP Connections on z/OS 375

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=123
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=123
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=97
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=97
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47

Note: PROCESS= is an alias for the CONNECTREMOTE= system option.

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is
the name that you assign to the remote host session on the multiprocessor
computer.

3 Start SAS by specifying the SASCMD= system option. The SASCMD= option
can be specified in either an OPTIONS statement or in a SIGNON statement.

n Specify the SASCMD= system option in an OPTIONS statement:

options sascmd=": nonumber";

SASCMD specifies a colon that is followed by any SAS invocation options.

n Specify the SASCMD= option in a SIGNON statement:

signon sascmd=":ls=256"

Note: The -DMR option is automatically appended to the command. If !
SASCMD is specified, SAS/CONNECT starts SAS on the remote host by using
the same command that was used to start SAS for the current (parent) session.

Note: To execute additional commands before starting SAS, you can write a script
that contains the SAS start-up commands that are appropriate for the operating
environment. Specify this script as the value in the SASCMD= option.

Examples for Signing On Using MP
Connect
Example 1

In the following example, XMS is the access method, SAS1 is the name of the
host session, and the MEMSIZE= option is used when starting SAS on a
multiprocessor computer.

options comamid=xms;
signon sas1 sascmd=":sort=6";

Example 2:
In the following example, OPTIONS statements set the values for the
COMAMID= , the SASCMD=, and the PROCESS= options. The SASCMD=
option is a non-blank value that causes the same CLIST that was used to start
the client session to be used to start the host session. The PROCESS= option
identifies the host session on the same multiprocessor computer. Because the
SASCMD= and the PROCESS= options are defined, only a simple SIGNON
statement is needed.

options comamid= xms sascmd="abc";options process=sas1;signon;

Here is a summary of the language elements used to sign on with MP Connect:

n COMAMID – specifies the access method. For more information, see
“COMAMID=” on page 101 .

376 Chapter 21 / z/OS Operating Environment

n PROCESS – specifies the host session name (alias CONNECTREMOTE). For
more information, see For information about the PROCESS= system option, see
“CONNECTREMOTE=” on page 108.

n SIGNON – signs you on to the host session. For more information, see
“SIGNON” on page 127.

n SASCMD – starts SAS. For more information, see “SASCMD=” on page 113.

Telnet Connections on z/OS
IMPORTANT With the January 2024 hot fix, Telnet is deprecated and it is
recommended that you use SAS/CONNECT Spawner for client sign-ons. The
-CLEARTEXT option has been deprecated and is no longer available. For
more information, see SAS Note 70114.

Product Requirements for Telnet Connections

Task List
n Complete the steps for setting up SAS Foundation for TCP/IP on z/OS as

outlined in System Configuration for Using SAS with TCP/IP in Configuration
Guide for SAS 9.4 for Foundation on z/OS.

n Verify that Base SAS software and SAS/CONNECT software have been installed
on both the client and the host machines.

n Verify that Telnet is enabled on both the local and remote hosts.

n Specify the name of the remote host.

n Specify a sign-on script.

Sign On Using a Telnet Connection

Specify the Host
The name of the remote host can be specified in an OPTIONS statement:

OPTIONS REMOTE=<node-name>;

Telnet Connections on z/OS 377

https://support.sas.com/kb/70/114.html
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=27

Or, you can specify it directly in the SIGNON statement or command:

SIGNON <node-name>;

Specify a Sign-on Script
To specify a sign-on script, use the FILENAME statement with the fileref, RLINK
followed by the SIGNON statement. The SIGNON statement initiates the script in
the RLINK file.

filename rlink '!sasroot/misc/connect/tcptso9.scr';
options comamid=tcp remote=rmtnode;
signon;

You must specify a sign-on script when connecting using Telnet.

Several sign-on scripts that enable you to connect and log on to the remote host are
shipped with SAS/CONNECT software. Table 21.2 on page 371 describes the
purpose and location of the sample sign-on scripts that are shipped with SAS.

For information about creating and customizing SAS/CONNECT script files, see
“SAS/CONNECT Sign-on Script Files” on page 408.

Note: The script files that are shipped with SAS must be customized to match the
logon process to your remote host. Connecting to the remote host via Telnet outside
of SAS is recommended to see the necessary screens and messages that need to
be handled by the script.

Example: Sign On to a Remote z/OS Host
Session
In the following example, you specify the statements at a z/OS client to use the
TCP/IP access method to connect to a remote host. The FILENAME statement
identifies the script file that you use to sign on to the remote z/OS host. The script
file contains a prompt for a user ID and a password that are valid on the remote
host. The COMAMID= option specifies the TCP/IP communications access method
for connecting to the remote host rmtnode, which is specified in the REMOTE=
option.

filename rlink 'prefix.CTMISC(tcptso9.scr)';
options comamid=tcp remote=rmtnode;
signon;

378 Chapter 21 / z/OS Operating Environment

Environment Variables
SAS environment variables on z/OS can be specified in the SAS data set
TKMVSENV. If you use SAS environment variables, you must store them in the
TKMVSENV file allocated for the appropriate SAS session. Alternatively, you can
use the SET= system option. The use of these variables depends on the type of
connection that you are establishing. For example, the TCP_POLL_INTERVAL
variable is set for spawner connections only and the TCPMSGLEN variable can be
set for either Telnet or spawner connections. The Valid In section in each of the
following environment variables provides this information.

Here is a list of SAS environment variables that can be specified in the TKMVSENV
file:

CONNECTWDWAIT
used to limit the possibility that a client session disconnect might orphan a
runaway DMR mode session. To ensure the responsiveness of the spawner,
SAS starts a 'watchdog' thread to monitor the connection. The default interval is
five seconds. If a disconnect occurs, CONNECTWDWAIT will check 18 times
and then terminate the DMR thread (for a default elapsed time of 90 seconds).
Setting the CONNECTWDWAIT value to zero means the process will not
monitor the connection.

Valid in spawner connections

Defaults interval: 5 seconds

total elapsed time: 90 seconds

Examples In the following example, the option is set to 10, so the process will
wait 180 seconds then terminate the thread.
set CONNECTWDWAIT=10

In the following example, the option is set to 0, so the process will
not monitor the connection:
set CONNECTWDWAIT=0

TCP_POLL_INTERVAL
used to ensure responsiveness of SAS spawners and hosts to various conditions
outside of normal request processing. When idle, hosts and spawners
periodically awaken to check for requests. The interval in seconds for this check
is governed by the TCP_POLL_INTERVAL environment variable. Generally, the
default setting of 60 seconds should be acceptable. However, if you want to
configure the interval, set it in the TKMVSENV file by specifying the
TCP_POLL_INTERVAL variable.

A value of zero means the host will remain idle and awaken only for request
processing. An idle host might be subject to S522 (Job Wait Time-out) abend.
However, a spawner defined as a z/OS started task or as a UNIX System
Services daemon process should not be subject to idle wait termination.

Valid in spawner connections

Environment Variables 379

Example In the following example, the option is set to 50, so the process
checks every 50 seconds for a connection.
set TCP_POLL_INTERVAL=50

TCPIPMCH
TCPIPMCH specifies the IBM TCP/IP stack name to set the stack affinity for
z/OS systems that are running more than one TCP/IP stack. This environment
variable alters default processing for TCP/IP initialization.

Valid in Telnet and spawner connections

Example set TCPIPMCH=<stack-name>

TCPMSGLEN <n>
defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN, and issues the
number of send and receive messages that are necessary to complete the
message transaction.

The value for TCPMSGLEN must be set at both the client and the host. If the
values that are set for TCPMSGLEN at the client and at the host are different,
the smaller value of the two is used during the SAS/CONNECT session. If the
TCPMSGLEN environment variable is not set, SAS uses the TCP stack’s default
size and allows autotuning if implemented by the stack.

A value of zero means the host will remain idle and awaken only for request
processing. An idle host might be subject to S522 (Job Wait Time-out) abend.
However, a spawner defined as an MVS started task or as a UNIX System
Services daemon process should not be subject to idle wait termination.

Client Optional

Server Optional

Valid in Telnet and spawner connections

See “TBUFSIZE=” on page 121

Example set TCPMSGLEN=65536

TCPPROXYLIST
used to support HTTP_CONNECT so that SAS clients outside of the cloud can
sign on to SAS/CONNECT spawners. By setting the TCPPROXYLIST
environment variable, you can connect to different clouds from the same client.

If you provide a proxy list delimited by semicolons, the system parses the list and
connects to the first proxy host or port. All subsequent proxies are sent an HTTP
CONNECT request to create the tunnel on the final host or port.

Client Optional

Example set TCPPROXYLIST="http://machine-name-1:port-number;
http://machine-name-2:port-number"

380 Chapter 21 / z/OS Operating Environment

CONNECTKEEPALIVE
Prevents a SAS/CONNECT client connection to the SAS/CONNECT server from
being terminated.

Setting this environment variable in the server session prevents firewalls from
terminating a connection between a client and server when there are long
periods of inactivity on the connection. A keepalive packet is sent from a thread
that is started by the server session for the specified number of seconds.

Example The value of 5 causes the keepalive packet to be sent every 5
seconds to prevent connection termination.
-set CONNECTKEEPALIVE=5

TCPTN3270
supports connections to a z/OS host that uses the full-screen 3270 Telnet
protocol. The sample sign-on script, tcptso32.scr, can be used as a template
for these types of Telnet connections. See Table 23.3 on page 409 for a
complete list of sign-on scripts.

You can set the TCPTN3270 variable only in the SAS CLIST. To set the
TCPTN3270 variable, follow these steps:

n Set the TCPTN3270 CLIST variable at the client.

n Add TCPTN3270(1) to the SAS CLIST.

If you do not set this variable, the TCP/IP access method uses the Telnet line
mode protocol by default.

Valid in Telnet connections

Note TCPTN3270 is set at the client.

See “Invoking SAS under TSO: the SAS CLIST” in SAS Companion for
z/OS.

TKOPT_SVCNO=
specifies the number that corresponds to the type of SVC routine that was
installed. The default value is 109 for the ESR SVC 109. If you are using the
“user” SVC instead of the ESR SVC, this option should be set to the SVC
number that was defined during installation of the SVC routine (SVC routines
200–255). To set this variable, use the following syntax:

set TKOPT_SVCNO=200

See Installing the SAS 9.4 SVC Routine in Configuration Guide for SAS
Foundation for z /OS for information about installing the SVC routine.

Valid in spawner connections

‘&prefix.TKMVSENV(TKMVSENV)’ data set

Used by XMS access method

TKOPT_SVCR15=
species the routing code that was chosen when the SAS 9.4 SVC routine was
installed into your operating system. This option applies only if the SAS 9.4 SVC
was installed as an ESR Type 4 SVC. The default is 4 for compatibility with
previous releases of SAS 9.4. To set this variable, use the following syntax:

set TKOPT_SVCR15=

Environment Variables 381

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0m1fwogu1px51n16i7cfy7zugzk.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0m1fwogu1px51n16i7cfy7zugzk.htm&locale=en
http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47

See Installing the SAS 9.4 SVC Routine in Configuration Guide for SAS
Foundation for z /OS for information about installing the SVC routine.

Valid in spawner connections

‘&prefix.TKMVSENV(TKMVSENV)’ data set

Used by XMS access method

382 Chapter 21 / z/OS Operating Environment

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=47

22
Windows Operating Environment

Overview . 383
What Is Covered . 383
Types of Connections . 384

Network Requirements . 384
Tasks . 384
User Context in a Secured Server . 385
The Simulated Logon Method to Access a Secured Server . 386
Use SSPI to Access a Secured Server . 387
SAS/CONNECT Options for TCP/IP . 388
SAS/CONNECT Environment Variables for TCP/IP . 388

Spawner Connections on Windows . 390
Set Up the Spawner on Windows . 390
Sign On Using the Spawner . 395

SASCMD Connections on Windows . 400
Sign On to the Same Multiprocessor Machine . 400

Telnet Connections on Windows . 402
Tasks . 402

Overview

What Is Covered
This section describes how to use SAS/CONNECT in a SAS Foundation
environment for Windows. If you are using SAS/CONNECT as part of a SAS
Intelligence Platform Deployment (for example, SAS Business Intelligence Server or
SAS Data Integration Server), refer to the SAS Intelligence Platform Documentation
at http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html.

383

http://support.sas.com/documentation/onlinedoc/intellplatform/tabs/admin94.html

For a list of resources specifically related to using SAS/CONNECT in a SAS
Intelligence Platform environment, see “SAS/CONNECT in a SAS Intelligence
Platform Environment” on page 5. More detailed information describing the scope of
this document can be found in the section “Document Scope” on page 4.

Types of Connections
This section contains information about how to use three types of connections that
are available when using SAS/CONNECT software in a SAS Foundation
environment:

n Spawner connections on page 390

n SASCMD connections on page 400

n Telnet connections on page 402

Regardless of the type of connection you are using, this document assumes that
you have completed the configuration steps as outlined in the Configuration Guide
for SAS 9.4 for Foundation on Windows or the Configuration Guide for SAS 9.4 for
Foundation on Windows for x64 (depending on your environment).

Network Requirements

Tasks
Before you begin using the SAS/CONNECT spawner on Windows, you must
complete the following steps:

n Verify that Base SAS and SAS/CONNECT are installed on both the client and
the server.

n Complete the steps as outlined in SAS/CONNECT Configuration in Configuration
Guide for SAS 9.4 Foundation for Windows Environments.

n If running the SAS/CONNECT server secured, familiarize yourself with the two
methods for authenticating clients. See simulated logon method on page 386
and SSPI on page 387 for more information.

n Set the appropriate “SAS/CONNECT Options for TCP/IP”, if needed.

Note: In this document, all references to the “spawner” or “spawner program” are
intended to mean the SAS/CONNECT spawner or the SAS/CONNECT spawner
program.

384 Chapter 22 / Windows Operating Environment

http://support.sas.com/documentation/installcenter/en/ikfdtnwinsr/67228/PDF/default/sreq.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnwinsr/67228/PDF/default/sreq.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnwx6cg/66385/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnwx6cg/66385/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnwx6cg/66385/PDF/default/config.pdf#page=30

User Context in a Secured Server

Definition
User context is the identifying credentials of the client who is attempting to access a
secured server. Identifying credentials include the user ID, password, and file
access permissions. Users can specify their own user context or a different user
context when accessing a server.

Users can specify different user contexts when logging on to a server by using
someone else's user ID and password. Supplying someone else's user ID and
password gives permission to users to access files that they might otherwise be
denied access to. A system administrator's user ID and password is an example of
a different user context that might be specified. Such a context does not belong to
the user but can be granted to the user for access to specific files.

Access a Secured Server Using Your Own
Context
To access a secured server by using your own user context, specify your user ID
and password.

Note: Note: If SSPI is available, you must specify the user ID explicitly in a sign-on
script or as an option in the SIGNON statement for SAS/CONNECT or in the
LIBNAME statement for SAS/SHARE. For details, see “Use SSPI to Access a
Secured Server” on page 387.

Access a Server Using a Different Context
To access a server by using a different context, specify the appropriate user ID and
password.

Note: If SSPI is available, you must specify the user ID explicitly in a sign-on script
or as an option in the SIGNON statement for SAS/CONNECT or in the LIBNAME
statement for SAS/SHARE. For details, see “Use SSPI to Access a Secured Server”
on page 387.

Network Requirements 385

Server Security Using Client Authentication
Security for a SAS/CONNECT server's resources can be enforced only by
authenticating the identity of the user who runs the client session that is accessing
the server session.

Authentication is the act of verifying the identity of the user who is attempting to
access a machine—that is, the machine that either the client session or the server
session runs on. Authentication is performed so that a machine can use the identity
information to make decisions about the user's authority to access protected
resources. Under Windows, the user ID, password, and access permissions make
up a user context.

Resources on a SAS/CONNECT server are considered to be protected when both
of the following conditions are met:

n The server requires that the client provide its identity.

n The client presents an identity that is successfully authenticated.

After the client's identity is authenticated, the client is given the appropriate
permissions to access the server's resources.

Under Windows, two methods are available for authenticating a client's identity:

n simulated logon method

n SSPI

The Simulated Logon Method to Access a Secured
Server

Overview
The simulated logon method is the most commonly used method of authentication
and is available in all SAS supported operating environments. In a simulated logon,
the client provides a user ID and password that are checked by the server.

You use a simulated logon in the following situations:

n The client or the server (or both) does not run on a Windows machine.

n The user who runs the client machine is not a trusted user at the server
machine.

n The user who runs the client machine wants to log on by using a different user
context.

386 Chapter 22 / Windows Operating Environment

Requirements for Using Simulated Logon
with SAS/CONNECT
To authenticate user credentials (user ID and password) of SAS/CONNECT or
SAS/SHARE clients, the administrator of the computers that the SAS/CONNECT
client and server sessions or the SAS/SHARE client and server sessions run on
must assign the appropriate rights to users.

Here are the requirements for SAS/CONNECT and SAS/SHARE:

n assignment of the “Log on as batch job” right to users in client sessions that
access SAS/CONNECT server sessions.

n assignment of the “Act as part of the operating system” right to users who start
SAS/SHARE servers or SAS/CONNECT spawners.

Here are the requirements for SAS/CONNECT only:

n assignment of the “Increase quotas” right to users who start a SAS/CONNECT
spawner.

n assignment of the “Replace a process level token” right to users who start a
SAS/CONNECT spawner.

Note: Because the SAS/CONNECT spawner usually runs as a service under
the LocalSystem account, these permissions are already set by default and user
rights do not need to be changed.

Use SSPI to Access a Secured Server

Overview of SSPI
Security Support Provider Interface (SSPI), also referred to as Integrated Windows
Authentication (IWA), enables transparent authentication for connections between
Windows computers. Users that are members of a trusted domain are authenticated
automatically, and user context information is transferred to the server.

Windows attempts to use SSPI for authentication whenever a user ID is not
explicitly supplied.

SSPI is available only when the client and the server sessions both run on Windows
computers, and the user who runs the client computer is a member of a domain that
is trusted at the server computer.

Network Requirements 387

SSPI Requirement for SAS/CONNECT
In versions prior to SAS 9.4, SSPI is enabled by default. To disable it, specify
-NOSSPI on the spawner command. In SAS 9.4 and later, -SSPI is not enabled by
default, and you must specify -SSPI on the spawner start-up command to enable it.

Note: If you used the SAS Deployment Wizard to configure and deploy SAS in a
planned deployment, the -SSPI option is automatically added to the
ConnectSpawner.bat and ConnectSpawner.sh script files. To disable it, edit the
script files and remove the -SSPI option from the script, or use the -NOSSPI option
when you sign on.

SAS/CONNECT Options for TCP/IP
TCPPORTFIRST= <port-number>
TCPPORTLAST= <port-number>

restrict the range of TCP/IP ports that clients can use to remotely access
servers. Within the range of 0 through 32767, assign a beginning value to
TCPPORTFIRST and an ending value to TCPPORTLAST. To restrict the range
of ports to only one port, set the values for TCPPORTFIRST and
TCPPORTLAST to the same number. Consult with your network administrator
for advice about these settings.

At the server, you can set TCPPORTFIRST and TCPPORTLAST in a SAS start-
up command or in the configuration file.

In the example below, the server is restricted to the TCP/IP ports 4020 through
4050.

Server Optional

Valid in SAS start-up command or SAS configuration file

See “TCPPORTFIRST=” on page 125

Example options tcpportfirst=4020;
options tcpportlast=4050;

SAS/CONNECT Environment Variables for TCP/IP
The following environment variables are available for configuring your TCP/IP
connections. You can define an environment variable in a configuration file using the
SET system option, using the Windows SET command, or using the System dialog
box. Examples in this section use the SET system option in the configuration file.

388 Chapter 22 / Windows Operating Environment

For more information about configuring environment variables in a Windows
environment, see “Using External Files under Windows” in SAS Companion for
Windows.

CONNECTWDWAIT
used to limit the possibility that a client session disconnect might orphan a
runaway DMR mode session. To ensure the responsiveness of the spawner,
SAS starts a 'watchdog' thread to monitor the connection. The default interval is
five seconds. If a disconnect occurs, CONNECTWDWAIT will check 18 times
and then terminate the DMR thread (for a default elapsed time of 90 seconds).
Setting the CONNECTWDWAIT value to zero means the process will not
monitor the connection.

Defaults interval: 5 seconds

total elapsed time: 90 seconds

Examples In the following example, the option is set to 10, so the process will
wait 180 seconds then terminate the thread.
-set CONNECTWDWAIT 10

In the following example, the option is set to 0, so the process will
not monitor the connection:
-set CONNECTWDWAIT 0

TCP_POLL_INTERVAL
used to ensure responsiveness of SAS spawners and servers to various
conditions outside of normal request processing. When idle, servers and
spawners periodically awaken to check for requests. The interval in seconds for
this check is governed by the TCP_POLL_INTERVAL environment variable.
Generally, the default setting of 60 seconds should be acceptable. However, if
you want to configure the interval, set it in the TKMVSENV file by specifying the
TCP_POLL_INTERVAL variable. A value of zero means the server will remain
idle and awaken only for request processing.

Example In the following example, the option is set to 50, so the process will
check every 50 seconds for a connection.
-set TCP_POLL_INTERVAL 50

TCPMSGLEN n
defines the size of the buffer (in bytes) that the TCP/IP access method uses for
breaking up a message that it sends to or receives from the SAS/CONNECT
application layer during a SAS/CONNECT session. The application layer uses a
message size that is stored in the TBUFSIZE option that you can specify in the
SIGNON statement or as a SAS option.

If TBUFSIZE is larger than TCPMSGLEN, the TCP/IP access method breaks the
message into a buffer whose size is defined by TCPMSGLEN, and issues the
number of send and receive messages that are necessary to complete the
message transaction.

The value for TCPMSGLEN must be set at both the client and the server. If the
values that are set for TCPMSGLEN at the client and at the server are different,
the smaller value of the two is used during the SAS/CONNECT session. If the
TCPMSGLEN environment variable is not set, SAS uses the TCP stack’s default
size and allows autotuning if implemented by the stack.

A value of zero means the server will remain idle and awaken only for request
processing. An idle server might be subject to S522 (Job Wait Time-out) abend.

Network Requirements 389

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1sad89bnuaugyn1mkyz8d5b4dp3.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1sad89bnuaugyn1mkyz8d5b4dp3.htm&locale=en

However, a spawner defined as an MVS started task or as a UNIX System
Services daemon process should not be subject to idle wait termination.

Client Optional

Server Optional

See “TBUFSIZE=” on page 121

Example -set TCPMSGLEN 65536

TCPPROXYLIST
used to support HTTP_CONNECT so that SAS clients outside of the cloud can
sign on to SAS/CONNECT spawners. By setting the TCPPROXYLIST
environment variable, you can connect to different clouds from the same client.

If you provide a proxy list delimited by semicolons, the system parses the list and
connects to the first proxy host or port. All subsequent proxies are sent an HTTP
CONNECT request to create the tunnel on the final host or port.

Client Optional

Example -set TCPPROXYLIST "http://machine-name-1:port;
http://machine-name-2:port"

CONNECTKEEPALIVE
Prevents a SAS/CONNECT client connection to the SAS/CONNECT server from
being terminated.

Setting this environment variable in the server session prevents firewalls from
terminating a connection between a client and server when there are long
periods of inactivity on the connection. A keepalive packet is sent from a thread
that is started by the server session for the specified number of seconds.

Example The value of 5 causes the keepalive packet to be sent every 5
seconds to prevent connection termination.
-set CONNECTKEEPALIVE=5

Spawner Connections on Windows

Set Up the Spawner on Windows

Overview
This section contains the steps for setting up the SAS/CONNECT spawner in a SAS
Foundation environment.

390 Chapter 22 / Windows Operating Environment

If you have installed SAS/CONNECT as part of a planned deployment or as part of
a SAS Intelligence Platform deployment, then most of this setup has been done for
you by the SAS Deployment Wizard and you do not need to complete these tasks.

Information about configuring and managing the SAS/CONNECT spawner in a
planned deployment of SAS can be found in the SAS Intelligence Platform
Documentation. See “SAS/CONNECT in a SAS Intelligence Platform Environment”
on page 5 for a list of resources for using SAS/CONNECT in the SAS Intelligence
Platform environment.

Note: In this document, all references to the “spawner” or “spawner program” are
intended to mean the SAS/CONNECT spawner or the SAS/CONNECT spawner
program.

Task List
1 Verify that Base SAS and SAS/CONNECT are installed on both the client and

the server.

2 Assign user rights.

3 Install the spawner as a Windows service.

4 Start the spawner.

5 Stop the spawner.

6 Uninstall the spawner service.

Assign User Rights for a Server That Is
Running Secured
By default, when the SAS/CONNECT spawner is installed as a Windows service, it
runs under the LocalSystem User ID, which has all the required User Rights for
running the SAS/CONNECT spawner. Those user rights requirements are as
follows:

n “act as part of the operating system” for the user who runs the spawner

n “increase quotas” for the user who runs the spawner

n “replace process level tokens” for the user who runs the spawner

n “log on as batch job” for all clients who need to connect to the server

If you do not install the SAS/CONNECT spawner as a Windows service (that is, if
you run it from your system prompt), the Windows User ID that is used to start the
SAS/CONNECT spawner must be the local Administrator of the machine and must
have the following User Rights:

n “bypass traverse checking” (the default is everyone)

Spawner Connections on Windows 391

n “log on locally”(the default is everyone) for all clients who need to connect to the
server

n “act as part of the operating system” for the user who runs the spawner

n “increase quotas” or the user who runs the spawner

n “replace a process level token” or the user who runs the spawner

The Windows user ID specified at sign-on needs only the User Right “log on as a
batch job.”

Install the Spawner on Windows
The SAS/CONNECT spawner executable file, cntspawn.exe, is located in the
directory in which SAS is installed at your site or on your computer. The spawner
executable is installed by default in the following location:

 SASHome\SASFoundation\9.4\cntspawn.exe

Here is an example of the spawner location in a typical SAS Foundation installation
on Windows:

 C:\Program Files\SASHome\SASFoundation\9.4\cntspawn.exe

The spawner start-up command, cntspawn.exe, is copied by default to the
\SASFoundation\9.4\ directory when you install SAS, but it is not installed by
default. You must install the SAS/CONNECT spawner in the Windows operating
environment before you can start the spawner.

To install the SAS/CONNECT spawner on a Windows server, specify cntspawn
-install from the Windows command line, using the full pathname to the
executable in quotation marks, as shown here:

 “<SAS-installation-directory>\SASFoundation\9.4\cntspawn.exe” –install

After running this command, Windows installs the SAS/CONNECT spawner as a
service and assigns the default name SAS Connect Spawner, to the spawner
service. You can assign a different name to the spawner service by using the
-SERVICENAME option with the -INSTALL option on the CNTSPAWN command.

cntspawn -install -servicename "mySpawner"

For more information about using the Windows -SERVICENAME option, see -
SERVICENAME.

In a SAS Intelligence Platform deployment (planned deployment), you can use the
following command to install the spawner on Windows:

ConnectSpawner.bat -install

This file and others are created by default when you install and configure SAS
servers using the SAS Deployment Wizard. Then a spawner batch file,
ConnectSpawner.bat, is created in the spawner’s configuration directory. For more
information, see Configuration Files for SAS Object Spawners and SAS/CONNECT
Spawners in SAS Intelligence Platform: System Administration Guide.

392 Chapter 22 / Windows Operating Environment

http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#p1n3ivrea2b8fgn1at5j88gyteqj.htm
http://support.sas.com/documentation/cdl/en/bisag/67481/HTML/default/viewer.htm#p1n3ivrea2b8fgn1at5j88gyteqj.htm

Start the Spawner
Once you have installed the spawner, you can start it using one of the following
methods:

n specify the NET START command with the spawner service name:

NET START "SAS Connect Spawner"

n use the Windows Services Manager plug-in to start the spawner service.

Specify the Spawner Port or Service Name
The spawner runs as a TCP/IP service. By default, if you do not specify a port
number for the spawner, it listens on port 23. If you want the spawner to run on a
port other than port 23, then you must specify the -SERVICE option when you install
the spawner. Here is the syntax for specifying the TCP/IP port number or service
name:

 cntspawn -install -service <port-number> | <service-name> <options>

Example:

"c:\Program Files\SASHome\SASFoundation\9.4\cntspawn.exe" -install -service 5110

If you want to use a TCP/IP service name for the spawner’s listening port instead of
referring to the spawner using its explicit port number, then you must configure the
spawner service name in the TCP/IP services file on the Windows server.

The TCP/IP services file is a configuration file that maps port numbers to named
services. This mapping allows programs to access ports by name as well as by port
number.

In Windows, the default location of the TCP/IP services file is c:\Windows
\System32\drivers\etc. To configure the spawner service, use a text editor to add
the connection service name, the port number, and the communications protocol to
the services file. Here are the steps for setting up the spawner to run as a service on
Windows:

1 Specify a service name in the cntspawn spawner start-up command.

 cntspawn -service mySpawner

2 Update the TCP/IP services file on the Windows server by adding the name of
the spawner service, its port number, and the communications protocol type
(TCP).

If you do not specify a port number and port 23 is in use, then the spawner will not
install and you get the following error message: “The spawner cannot listen on port
23."

See “Configure the TCP/IP Services File” on page 309 for information about
configuring the spawner as a TCP/IP service.

Spawner Connections on Windows 393

Stop the Spawner
Once the spawner is installed and started, it can be stopped using any one of the
following methods:

n specify the NET STOP command with the spawner service name:

NET STOP "SAS Connect Spawner"

n use the Windows Services Manager plug-in stop the spawner service.

n type CTRL-C or double-click in the upper left corner of the window in which the
spawner is running.

Uninstall the Spawner Service
You can uninstall the spawner by specifying the -UNINSTALL option with the
CNTSPAWN command. Specify the full pathname to the CNTSPAWN executable in
quotation marks, as shown here:

 “SASHome\SASFoundation\9.4\cntspawn.exe” –uninstall

If you used the -SERVICENAME option with the -INSTALL option when you installed
the spawner to explicitly name the spawner service, then you must use the
-SERVICENAME option with the -UNINSTALL option to uninstall it. Use quotation
marks around the full pathname and around the spawner service name.

 "SAS-installation-directory\SASFoundation\9.4\cntspawn.exe" -uninstall
 -servicename "mySpawner"

For more information about using the Windows -UNINSTALL option, see -
UNINSTALL.

Specify Encryption Options for Data
Security
You can use options in the spawner invocation for encrypting SAS client/server data
transfers.

If an encryption service is set up in your environment, specify the SAS system
options that are appropriate for the encryption service that is being used. SAS
system options for encryption can be set when you start the SAS/CONNECT
spawner or when you sign on to a remote server session.

See “Start-Up of a Windows Spawner on a Single-User SAS/CONNECT Server” in
Encryption in SAS for an example of specifying encryption options when starting the
SAS/CONNECT spawner on Windows.

For a list of security options to specify on the spawner invocation command, see
“Security Options” on page 331.

For more information about SAS encryption in general, see Encryption in SAS.

394 Chapter 22 / Windows Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=n1lyj3ix33bpgen1bhatlrzsbxu7&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=n1lyj3ix33bpgen1bhatlrzsbxu7&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Example
The following command starts the SAS/CONNECT spawner on Windows:

cntspawn -service spawner -mgmtport 7555
 -sascmd "c:\Temp\start_sas.bat" -netencryptalgorithm aes

n The -SERVICE option specifies that the service named spawner listens for
incoming connections. This example assumes that the SERVICES file on the
server was updated to include an entry for spawner with an assigned port.

n The -MGMTPORT option specifies the port number for operator (administrative)
connections.

n The -SASCMD option specifies the path to the start_sas command file, which
starts SAS on the server.

n The -NETENCRYPTALGORITHM option specifies the AES encryption algorithm.

Sign On Using the Spawner

Tasks
1 Ensure that the spawner is running on the server.

2 Specify the server and the spawner service name or port number.

3 Sign on using a script or sign on without a script.

4 Specify a user ID and password.

Ensure That the Spawner Is Running on
the Server
Before you can access the spawner, the system administrator for the machine that
the spawner runs on must start the spawner. The spawner program on the server
cannot be started by the client.

Spawner Connections on Windows 395

Specify the Server and the Spawner
Service Name or Port Number
If you are running the SAS/CONNECT spawner as a service, you can sign on by
specifying the spawner’s service name in the OPTIONS statement. Verify that the
SAS/CONNECT spawner is configured in the SERVICES file and use the following
syntax to sign on:

options remote=<host-name>.<port-number> | <service-name>

The spawner service can be configured in the client's SERVICES file, but this is not
a requirement. The spawner can use a port number or have the port information
(service or port) defined in metadata. You can explicitly specify the port on the
command line and in the SIGNON statement.

The name of the server can be specified in an OPTIONS statement:

OPTIONS REMOTE=node-name[.service-name | .port-number];

You can also specify it directly in the SIGNON statement or command:

%LET myNode=node-name | port-number;
SIGNON myNode;

node-name is based on the name of the server that you are connecting to. node-
name must be a valid SAS name that is 1 to 8 characters in length and is either of
the following:

n the short machine name of the server that you are connecting to. This name
must be defined in the HOSTS file in the client operating environment or in your
Domain Name Server (DNS).

n a macro variable that contains either the IP address or the name of the server
that you are connecting to.

For information about configuring the SERVICES file, see “Configure the TCP/IP
Services File” on page 309.

You specify service-name when connecting to a server that runs a spawner program
that is listening on a port other than the Telnet port. If the spawner was started by
using the -SERVICE spawner option, you must specify an explicit service-name.
The value of service-name and the value of the -SERVICE spawner option must be
identical. Alternatively, you can specify the explicit port number that is associated
with service-name.

Note: If you install more than one spawner as a service on the same machine, then
you must use the -NAME option to give each spawner service a unique name.

In the following example, REMHOST is the name of the node that the spawner runs
on, and PORT1 is the name of the service that is defined at the client. The client
service PORT1 must be assigned to the same port that the spawner is listening on.

%let myNode=pc.rem.us.com;
signon myNode.port1;

In the following example, the macro variable REMHOST is assigned to the fully
qualified name of the machine that the server runs on. This server has a spawner

396 Chapter 22 / Windows Operating Environment

that was started using the following command: cntspawn -service 5050 Therefore,
the spawner is listening on port 5050. The server session that is specified in the
SIGNON statement uses the node name REMHOST and the value 5050, which is
the explicit port value.

%let remhost=pc.rem.us.com;
signon remhost.5050;

You can also assign a specific port number by including the port number in the
definition of the macro variable. For example:

%let remhost=pc.rem.us.com 5050;
signon remhost;

Sign On
In this example, the spawner connects the client to the spawner named spawner
that runs on the UNIX node RMTHOST. If there is no script file, the user ID and
password are specified as options in the SIGNON statement. The value _PROMPT_
for PASSWORD causes SAS to prompt for a password at sign-on. The SIGNON
statement makes the connection and starts a SAS session on the server.

signon rmthost.spawner user=name pass=1234;

The table contains examples of valid spawner signons to a remote Windows host.
For all of the examples, assume that the spawner was configured and started on the
remote host. The CLIENT column contains valid sign-on statements that can be
used to sign on to the remote Windows host machine.

Table 22.1 Spawner Sign-on Examples

CLIENT Description

%let r=pc.rem.us.com;
signon r.7551;

In this example, the client signs on using the host name
r and the explicit port number 7551 that was used to
start the spawner on the Windows remote host. The fully
qualified domain name of the remote host is assigned to
the macro variable r. The explicit port number (7551) is
specified with the host name in the SIGNON statement.

Note that the REMOTE= or CONNECTREMOTE=
option is implicit in the SIGNON statement.

%let r=pc.rem.us.com 7551;
signon r user=abc123 pass=******;

In this example, the client signs on by specifying the
remote host name, the user ID, and the password in the
SIGNON statement. The fully qualified domain name of
the remote host and the explicit port number (7551) are
both stored in the macro variable r. The user ID and
password are specified in the SIGNON statement.

%let r=pc.rem.us.com 7551;
options remote=r;
signon user=abc123 pass=_prompt_;

In this example, the client signs on by specifying the
remote host name in the OPTIONS statement. The fully
qualified domain name of the remote host and the port
number 7551 are both stored in the macro variable r.
The user ID and password are specified in the SIGNON

Spawner Connections on Windows 397

CLIENT Description

statement. The value for the PASSWORD option
(_prompt_) causes the server to prompt the user for the
password during the sign-on.

%let r=pc.rem.us.com;
signon r._ _7551 user=abc123 pass=******;
libname myLib server=r._ _7551;

Again, the fully qualified domain name of the Windows
remote host is assigned to the macro variable r. The
host name and port number are specified in the
SIGNON statement using the “computer-name.__port-
number” format.

A libref is defined on the server using the LIBNAME
SERVER= statement. When a LIBNAME statement is
used in a sign-on, the double underscore format must
be used to specify the server ID for both the SERVER=
option in the LIBNAME statement and the SERVER=
option in the SIGNON statement.

%let r=10.5.55.14 7551;
signon r user=abc123 pass=******;

The IP address of the UNIX remote host and its port
(7551) are assigned to the macro variable r. The host
name (r), user ID, and password are specified in the
SIGNON statement.

%let r=pc.rem.us.com;
filename rlink ‘C:\Program Files\
 SASHome\SASFoundation\9.4\
 connect\saslink\tcpunix.scr’;
signon r;

This example shows a scripted spawner sign-on from a
Windows client machine to a remote Windows server.
The fully qualified domain name of the Windows host is
assigned to the macro variable r. The FILENAME
RLINK statement is used to specify the sign-on script.
The FILENAME statement assigns the default fileref,
RLINK, to the script file located in C:\Program Files
\SASHome\SASFoundation\9.4\connect\saslink\ on
the client machine.

filename rlink ‘..’;
signon mvshost._ _7551;

This example shows a scripted spawner sign-on from a
UNIX client machine to a remote Windows server. The
FILENAME RLINK statement specifies the parent of the
current folder as the path for the script file.

The Windows host name and port number are specified
in the SIGNON statement using the “computer-
name.__port-number” format.

Sign On Using a Script
You can use a sign-on script to sign on to the spawner, or you can sign on to the
spawner without a script. If you are signing on by using a script, you must specify
the script that you want to use. The script file is executed by the SIGNON statement
or command. To use one of the sample script files that are provided with
SAS/CONNECT for signing on and signing off, use the FILENAME statement to
assign the fileref RLINK to the appropriate script file:

398 Chapter 22 / Windows Operating Environment

FILENAME RLINK '!sasroot\connect\saslink\script-name.scr';

The script name is based on the server that you are connecting to. The sample
scripts are installed in the !sasroot\CONNECT\SASLINK directory. The following table
lists the scripts that are provided in SAS software.

Note: If the spawner is started by using the -NOSCRIPT option, then you cannot
sign on by using a script. If there is no script, you do not need to assign the fileref
RLINK in a FILENAME statement.

Table 22.2 SAS/CONNECT Sign-on Scripts for TCP/IP under Windows

Server Script Name

TSO under z/OS tcptso.scr

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270 Telnet protocol) tcptso32.scr

OpenVMS tcpvms.scr

UNIX tcpunix.scr

Windows tcpwin.scr

Specify a User ID and Password
If you use a script when connecting to a spawner, script file processing passes the
user ID and password to the server. By default, the script prompts for a user ID and
password. If you sign on to a secured spawner without a script, you might be
required to supply a user ID and password. If you do not use a script file, you can
use the USERID= and PASSWORD= options in the SIGNON statement to send the
user ID and password values to the server. Here is an example of using the
USERID= and PASSWORD= options to connect to the spawner:

OPTIONS REMOTE=spawner-ID;
SIGNON USER=user-ID password=password;

SIGNON USER=user-ID | _PROMPT_ [PASSWORD=password | _PROMPT_];

Here is an example:

options remote=rmthost.spawn;
signon user=slim password=_prompt_;

In this example, the TCP/IP access method is used by default. The spawner
connects the client to the spawner named SPAWN that runs on the UNIX node
RMTHOST. If there is no script file, the user ID and password are specified as
options in the SIGNON statement. The value _PROMPT_ for PASSWORD causes

Spawner Connections on Windows 399

SAS to prompt for a password at sign-on. The SIGNON statement makes the
connection and starts a SAS session on the server.

Specify Data Encryption Options for Client
Sign-ons
Encryption is the process of transforming plaintext into a less readable form (called
ciphertext) by using a mathematical process. The ciphertext is translated back to
plaintext for anyone who can supply the appropriate key, which is necessary for
decrypting (or unlocking) the ciphertext.

If an encryption service is available and is configured at the client, you can specify
SAS options to encrypt the data that is transferred between your client session and
your remote server session. The encryption options can be specified when you sign
on to a server session.

In the following example, the NETENCRYPTALGORITHM option specifies the RC2
encryption algorithm is to be used for data transfers.

options netencryptalgorithm=rc2;

Here is a list of examples that show how to sign on using encryption options:

n “Connection of a SAS/CONNECT Client to a Windows Spawner on a
SAS/CONNECT Server” in Encryption in SAS

n “Start-Up of a Windows Spawner on a Single-User SAS/CONNECT Server” in
Encryption in SAS

For a list of SAS system options for Encryption, see “Spawner Options” on page
326.

SASCMD Connections on Windows

Sign On to the Same Multiprocessor Machine

Tasks
SASCMD signons can be established when you want to run multiple, independent
SAS sessions asynchronously and in parallel on the same multiprocessor machine.
Here is an example of a SASCMD sign-on:

1 Specify the server session.

2 Specify the SASCMD option to start SAS.

3 Sign on to the server session.

400 Chapter 22 / Windows Operating Environment

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=p0xq81ta7es9pen1me7sod99l57d&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=p0xq81ta7es9pen1me7sod99l57d&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=n1lyj3ix33bpgen1bhatlrzsbxu7&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n172i2bacscovhn1k5741i7i1wox.htm&docsetTargetAnchor=n1lyj3ix33bpgen1bhatlrzsbxu7&locale=en

Specify the Server Session
You can specify the server session in an OPTIONS statement or in the SIGNON
statement. Here is the syntax for using the OPTIONS statement to specify the
server session:

OPTIONS REMOTE=session-ID;

Here is the syntax for using the SIGNON statement to specify the server session:

SIGNON session-ID;

session-ID must be a valid SAS name that is 1 to 8 characters in length, and is the
name that you assign to the server session on the same multiprocessor machine.
For details about the SIGNON statement, see “SIGNON” on page 127.

Specify the SASCMD Option to Start SAS
Use the SASCMD option to specify the SAS command and any additional options
that you want to use to start SAS in the server session on the same multiprocessor
machine.

The SASCMD option can be specified in an OPTIONS statement or in the SIGNON
statement. Here is the syntax for specifying the SASCMD system option in an
OPTIONS statement:

OPTIONS SASCMD="SAS-command" | "!SASCMD";

Here is the syntax for specifying the SASCMD option in the SIGNON statement:

SIGNON name SASCMD="SAS-command" | "!SASCMD";

For details, see “SASCMD=” on page 113 and “SIGNON” on page 127.

Sign On to the Server Session
The following example shows how to create multiple SASCMD sessions using the
SIGNON statement and the SASCMD option. In the example, SAS1 is the name of
the server session and sas is the command that starts SAS on the same
multiprocessor machine.

options comamid=tcp;
signon sas1 sascmd='sas';

In the following example, TCP is the access method, SAS1 is the name of the server
session, and sas is the command that starts SAS on the same multiprocessor
machine.

options comamid=tcp;
signon sas1 sascmd='sas';

SASCMD Connections on Windows 401

The NOSYNTAXCHECK System Option
You can specify the NOSYNTAXCHECK system option when signing on to a server
session on the same symmetric multi-processing (SMP) computer that the client
session is running on. This option is most useful when client and server sessions
run on SMP hardware.

NOSYNTAXCHECK enables continuous processing of statements regardless of
syntax error conditions. When SYNTAXCHECK is enabled, SAS uses additional
resources to validate SAS statements while producing limited results.

For example, the first instance of a syntax error triggers syntax checking, which
automatically sets the value of the OBS= system option to 0. Consequently, no
observations can be created by subsequent SAS statements in the program. When
executing SASCMD sign-ons or when executing debugged production programs
that are unlikely to encounter errors, consider using the NOSYNTAXCHECK option.

Here is an example of a SAS invocation that runs on the same computer on which
the client session runs:

signon smp sascmd="sas -nosyntaxcheck -noterminal";

Telnet Connections on Windows
IMPORTANT With the June 2023 hot fix, Telnet is deprecated and it is
recommended that you use SAS/CONNECT Spawner for client sign-ons. The
-CLEARTEXT option has been deprecated and is no longer available. For
more information, see SAS Note 70114.

Tasks
n Ensure that the Telnet service is installed and enabled on the Windows client

and server.

n Specify the server name.

n Specify a sign-on script.

n Sign on using the SIGNON statement.

Example:

filename rlink '!sasroot\connect\saslink\tcpwin.scr';
options comamid=tcp remote=rmtnode;
signon;

For a list of sign-on scripts, see sign-on scripts on page 409 .

402 Chapter 22 / Windows Operating Environment

https://support.sas.com/kb/70/114.html

Note: When you install Windows Server 2008, the files that make up the Telnet
Server service are copied to your computer, but the Telnet service is disabled by
default.

Telnet Connections on Windows 403

404 Chapter 22 / Windows Operating Environment

23
SAS/CONNECT Files

SAS/CONNECT Files and Directories . 405
Directory Names . 405
SAS/CONNECT Files . 407

SAS/CONNECT Sign-on Script Files . 408
Introduction to SAS/CONNECT Script Files . 408
Location of Sample Scripts Included with SAS . 409
Using Script Files to Sign On . 409
Purpose of a Sign-on Script . 410
Passwords in a Script File . 411
SAS/CONNECT Script Statements . 411
Simple SAS/CONNECT Scripts for Sign On and Sign Off . 412

SAS/CONNECT Files and Directories

Directory Names
SAS/CONNECT runs in a variety of environments including single-user desktop
configurations, single-server SAS Foundation installations, and multi-server,
distributed environments. The type of environment you have, whether it is a planned
deployment or simply a single-server SAS Foundation installation, determines what
files are created automatically when SAS is installed and what files you should use
when setting up SAS/CONNECT.

This document provides information about the SAS/CONNECT files that are
provided with a SAS Foundation installation. For information about SAS/CONNECT
files in a SAS Intelligence Platform environment, see Initial Configuration of the
SAS/CONNECT Server in SAS 9.4 Intelligence Platform: Application Server
Administration Guide.

The following terms are used throughout this documentation:

405

http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n04012intelplatform00srvradm.htm
http://support.sas.com/documentation/cdl/en/biasag/63854/HTML/default/viewer.htm#n04012intelplatform00srvradm.htm

SASHOME Directory
SASHOME is the default installation directory for all SAS products that are installed
on your system, including SAS Foundation products, SAS Intelligence Platform
products, and any other SAS products.

!SASROOT Directory
!SASROOT is a shorthand way of representing the subdirectory within the
SASHOME directory that is the “root” of each SAS Foundation product. For
example, SASHome/SASFoundation/9.x is the default directory for !SASROOT
on UNIX, and c:\Program Files\SASHOME\SASFoundation\9.4 is the default
directory for !SASROOT on Windows.

n UNIX: SASHome/SASFoundation/9.x

n Windows: C:\Program Files\SASHome\SASFoundation\9.x

Figure 23.1 Windows Example Showing SASHOME and !SASROOT Default Folders

There is a SAS/CONNECT product folder in !SASROOT named connect.

SAS Foundation Installation
an installation consisting of SAS Foundation and related software. Generally, this
type of installation does not have a configured metadata server and does not
require a customized deployment plan. A basic SAS Foundation installation runs
SAS server software (along with SAS/CONNECT in this case) on a single
machine in a client/server environment.

Planned Deployment
a deployment that involves the installation and configuration of SAS servers
based on an individualized plan. SAS Enterprise BI Server and SAS Data
Integration Server are examples of products that are deployed using a
deployment plan. In this document, “SAS Intelligence Platform” and “planned
deployment” are sometimes used interchangeably.

406 Chapter 23 / SAS/CONNECT Files

SAS/CONNECT Files
Table 23.1 SAS/CONNECT Files in a SAS Foundation Installation

Name Description Default Location

SASHome the default directory for all
SAS products that are
installed on your system.

location is site-specific

!SASROOT represents the subdirectory
within the SASHOME
directory that contains the
“root” of each SAS
Foundation product (including
SAS/CONNECT).

Windows: SASHome\SASFoundation
\9.x\

UNIX: SASHome/
SASFoundation/9.x/

cntspawn the SAS/CONNECT spawner
executable used to install,
start and stop the
SAS/CONNECT spawner.
The file is executed by
specifying the CNTSPAWN
command along with
SAS/CONNECT spawner
start-up options. This file is
created when you install
SAS/CONNECT. See
“Spawner Options” on page
326 to see the options that
you can specify with the
spawner start-up file.

Windows: !SASROOT\cntspawn.exe

UNIX: !SASROOT/utilities/bin/
cntspawn

z/OS: located in the SAS load
module library.

logconfig.xml

(sample on page 423)

an XML file used with the
SAS Logging Facility that
specifies and configures
loggers and appenders for the
SAS/CONNECT spawner.
Once created, this file should
be saved in the server’s
configuration directory. For a
sample logconfig.xml file, see
“Sample Logging
Configuration File” on page
423.

Note: This file is not created
automatically when you install
SAS/CONNECT in a SAS
Foundation installation. You can use
this sample file and customize it
according to your environment. For
more information about this file, see
“-LOGCONFIGLOC <filename>” on
page 327.

SERVICES file

(sample on page 311)

an ASCII file that provides a
mapping between service
names and their assigned
ports. It also includes the
protocol name, alias name,

UNIX: /etc/services

Windows: %WINDIR%
\system32\drivers\etc\services

z/OS: ETC.SERVICES

SAS/CONNECT Files and Directories 407

Name Description Default Location

and a description of the
service.

sign-on script files

(samples on page 409)

sample script files provided
with SAS/CONNECT software
that can be used to start and
stop SAS/CONNECT.

Windows: !SASROOT\connect
\saslink

UNIX: !SASROOT/misc/connect

z/OS: prefix.CTMISC

Table 23.2 z/OS Sample Files for the SAS/CONNECT Spawner

Location Name

‘&prefix.BAMISC(SPNCCNTL)’ Spawner started task procedure that
defines PARMS options and executes the
UNIX System Services /bin/tso
command to start SAS.

'&prefix.BAMISC(SPNCPARM)’ PARMS file that specifies spawner start-
up options

'&previx.BAMISC(SPNCSHEL)' USS Shell Script creates the REXX
command to start SAS.

SAS/CONNECT Sign-on Script Files

Introduction to SAS/CONNECT Script Files
A SAS/CONNECT script is a SAS program that is stored in a file on the client.
However, the programming statements in a script are not the usual SAS
programming statements. Scripts use a specialized set of SAS statements called
script statements.

Scripts are executed to start or to stop SAS/CONNECT sessions. Scripts that start
the connection are executed by submitting the SIGNON statement, and scripts that
stop the connection are executed by submitting the SIGNOFF statement. In most
cases, the same script is used to sign on and sign off.

408 Chapter 23 / SAS/CONNECT Files

Location of Sample Scripts Included with SAS
You can start and stop SAS/CONNECT by using the supplied sample scripts, which
are located in the following default directories where your SAS software is installed.

Table 23.3 SAS/CONNECT Sample Sign-on Scripts

Server/Operating System Script Name Location

TSO under z/OS tcptso.scr prefix.CTMISC

TSO under z/OS, SAS 9 or later tcptso9.scr

z/OS (without TSO) tcpmvs.scr

z/OS (using full-screen 3270
Telnet protocol)

tcptso32.scr

UNIX tcpunix.scr !SASROOT/misc/connect/

Windows tcpwin.scr !SASROOT\connect
\saslink\

All sample scripts start and stop SAS/CONNECT. A sign-on script prompts you for a
user ID and password to sign on to a server. You must sign on to the server before
you can run a manual sign-on script.

Script names are derived from the access method and the operating environment
that the server session runs under. Fr example, TCPTSO.SCR identifies the TCP/IP
access method and a TSO server.

See “!SASROOT Directory” on page 406 for more information about the !SASROOT
directory.

Using Script Files to Sign On
There are several SAS/CONNECT language elements that you can use to specify
the names and locations of sign-on scripts.

n CSCRIPT option

specifies the SAS/CONNECT script file to use during sign-on.

signon rhost cscript=”myScript.scr”;

n SASSCRIPT system option

specifies one or more locations for SAS/CONNECT server sign-on script files
and provides an alternative to the RLINK fileref that is used in the FILENAME
statement for identifying the location of a script file.

SAS/CONNECT Sign-on Script Files 409

options sasscript= "c:\my\scripts"; signon cscript=”myScript.scr”;

n RLINK FILENAME statement

uses the RLINK system fileref to identify the script file to SAS. The SIGNON
statement initiates the script in the RLINK file.

options remote=rhost;
filename rlink " \connect\saslink\tcpwinx.scr"; signon rhost;

n SCL functions

describes how to use SAS Component Language functions to manage sample
SAS/CONNECT files.

Purpose of a Sign-on Script
A sign-on script can be a simple, short program or a long, complex program,
depending on what you want the script to do. The basic functions of all scripts are
the following:

1 invoke SAS on the server (by using the SAS command).

2 set the appropriate options for the server session in the SAS command. For the
server session, the script sets the “DMR”.

3 determine when the server session is ready for communications with the client
session. In most cases, the script waits for messages from the server session.

Sign-on scripts might also perform the following tasks:

n issue the server sign-on command and prompt the user for a user ID and a
password.

n issue informative messages to the user about whether script execution is
proceeding successfully.

n combine the SIGNON and SIGNOFF functions.

n conditionally execute labeled portions of the script so that one script can
accommodate multiple types of connections (for example, TCP/IP connections to
both a spawner and a Telnet daemon).

n issue server commands, such as commands that set session features or define
server files.

n define any response that is expected from the server.

n conditionally execute script subroutines to handle successful operations and
error conditions.

Note: Scripts that sign on to the server include information that is specific to the
computing installation. The scripts might need minor modifications to work with your
sign-on sequence.

410 Chapter 23 / SAS/CONNECT Files

Passwords in a Script File
Passwords can be specified for a script file in any of these forms:

n a clear-text password that is hardcoded into the script

n a prompt for a user-supplied password as input to the script

n an encoded password that replaces a clear-text password in the script is
supported only for the SAS/CONNECT Spawner.

The first and second forms offer the least security. The last form promotes security
and enables you to store SAS programs that do not contain clear-text passwords.

To obtain an encoded password, specify the clear-text password in the PROC
PWENCODE statement. For complete details about PROC PWENCODE, see
“PWENCODE Procedure” in Encryption in SAS in Base SAS Procedures Guide.

Here is an example of code that is used to obtain an encoded password:

proc PWENCODE in="My2008PW";run;
{sas001}TXkyMDAzUFc=

The clear-text password My2008PW is specified in the PROC PWENCODE
statement. The output is generated in the form {key}encoded-password, where
sas001 is the key and TXkyMDAzUFc= is the encoded password that is generated.
SAS/CONNECT uses the key to decode the encoded password to its clear-text form
when the password is needed.

Note: The encoded password is case-sensitive. Use the entire generated output
string, including the key.

Substitute the encoded password for the clear-text password in a script. The
encoded password is the output that is generated from the PROC PWENCODE
statement.

Note: Macro variables can also be used in script files to capture different user IDs
and passwords. This eliminates the need for prompting the user for this information.
Enclose the macro variable in double quotation marks in the script.

SAS/CONNECT Script Statements
SAS/CONNECT script statements can be used to write customized sign-on scripts
or to update existing sample script files that are supplied with SAS. If the available
sample scripts do not meet your requirements, you can write your own script. For
script statement syntax, see “SAS/CONNECT Script Statements” on page 293.

Here is a table that provides a summary of SAS/CONNECT script statements.

SAS/CONNECT Sign-on Script Files 411

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

Table 23.4 Summary of SAS/CONNECT Script Statements

Statement Purpose

ABORT on page 293 Stops execution of a script immediately and signals an error condition.

CALL on page 294 Invokes a routine.

ECHO on page 294 Controls the display of characters that are sent from the server session
while a WAITFOR statement executes.

GOTO on page 295 Redirects execution to the specified script statement.

IF on page 295 Checks conditions before the execution of labeled script statements.

INPUT on page 296 Displays a prompt to the user that requests a response for the server
session.

LOG on page 297 Sends a message to the client session SAS LOG window.

NOTIFY on page 298 Sends a message in a window to the client session.

RETURN on page 298 Signals the end of a routine.

SCANFOR on page 299 Specifies a pause until conditions are met (an alias for WAITFOR).

STOP on page 299 Stops execution of a script under normal conditions.

TRACE on page 300 Displays script statements as they execute.

TYPE on page 300 Sends characters to the server session as if they were entered at a
terminal.

WAITFOR on page 302 Specifies a pause until conditions are met.

Simple SAS/CONNECT Scripts for Sign On and
Sign Off

Overview
When you write or modify existing SAS/CONNECT scripts, use the WAITFOR and
TYPE statements to specify the sequence of prompts and responses for the server.

The simplest method for determining the sequence is to manually reproduce on the
server the process that you want to capture in the WAITFOR and TYPE statements.

412 Chapter 23 / SAS/CONNECT Files

For each display on the server, choose a word from that display for the WAITFOR
statement. Whatever information you enter to respond to a display should be
specified in a TYPE statement. Be sure to note all carriage returns or other special
keys.

If the server runs under z/OS and you need to use a TYPE statement that has more
than 80 characters in a sign-on script, divide the TYPE statement into two or more
TYPE statements. To divide the TYPE statement, insert a hyphen (-) at the division
point. The z/OS server interprets the hyphen as the continuation of the TYPE
statement from the previous line. For example, here is how to divide the following
TYPE statement:

type
"sas options ('dmr comamid=tcp')"
enter;

change it to the following:

type "sas options ('dmr comamid=-" enter;
type "tcp')" enter;

Note: Do not insert spaces before or after the hyphen.

Syntax Rules for SAS/CONNECT Script
Statements
To write a SAS/CONNECT script, you need to read about the specific information for
each statement in the script. This section contains general rules that apply to some
or all script statements.

n Each script line is limited to 8192 characters.

n All script statements must end with a semicolon.

n Script statements have a free format, which means that there are no spacing or
indention requirements. A statement can be split across several lines, or one line
can contain one or more statements. Statement keywords can be specified in
uppercase, lowercase, or mixed-case characters.

n Text strings that are enclosed in quotation marks are case sensitive. For
example, if your script defines a text string in a WAITFOR statement, ensure that
the uppercase and lowercase characters in the text string exactly match the text
string from the server.

n Any script statement can include a label specification. The label must be a valid
SAS name and not exceed a maximum of eight characters. The first character
must be an alphabetic character or underscore. A label must be followed
immediately by a colon (:) and must be defined only one time in the script.

n Some script statements specify a time in seconds. The form of the time
specification is as follows:

n SECONDS;

n can be any number; this number might include decimal fractions. For example,
all of the following time specifications are valid:

SAS/CONNECT Sign-on Script Files 413

o 0 SECONDS;

o 0.25 SECONDS;

o 1 SECOND;

o 3.14 SECONDS;

Note: SECOND is an alias for SECONDS.

n If a script statement specifies a quoted string, such as a server command, you
can use either single or double quotation marks. To embed quotation marks in
script statements, follow the same rules that you use for embedded quotation
marks in SAS statements.

Debug a SAS/CONNECT Script
When writing SAS/CONNECT scripts, you can take advantage of programming
techniques to simplify debugging a new or a modified script. Examples of debugging
statements follow:

n The ECHO statement causes server messages to be displayed while a
WAITFOR statement executes. This enables you to monitor activity on the
server during the WAITFOR pause.

n The TRACE statement enables you to specify that some or all script statements
be displayed as the script executes. This capability can help you isolate the
source of a script problem.

Example SAS/CONNECT Script for a
TCP/IP Connection to UNIX

/* trace on; */
/* echo on; */
 /

/
 /* Copyright (C)
1990 */
 /* by SAS Institute Inc., Cary
NC */
 /
*
*/
 /* name:
tcpunix.scr */
 /
*
*/
 /* purpose: SAS/CONNECT SIGNON/SIGNOFF script for connecting to
any */

414 Chapter 23 / SAS/CONNECT Files

 /* UNIX operating environment via the TCP/IP access
method */
 /
*
*/
 /* notes: This script might need to be modified for
your */
 /* UNIX environment. The logon procedure should
mimic */
 /* the tasks that you execute when connecting
to */
 /* the same UNIX operating
environment. */
 /
*
*/
 /* assumes: The command to execute SAS in your remote
(UNIX) */
 /* environment is "sas". If this is incorrect for
your */
 /* site, change the contents of the line that
contains */
 /* type
'sas ... */
 /
* */
 /
*
*/
 /

/

 1 log "NOTE: Script file
 'tcpunix.scr' entered.";

 if not tcp then goto notcp;
 2 if signoff then goto signoff;

 /***/
 /* TCP/IP SIGNON */
 /***/

 3 waitfor 'login:', 120 seconds: noinit;

 /***/
 /* UNIX LOGON */
 /* LF is required to turn the line */
 /* around after the login name has */
 /* been typed. (CR will not do) */
 /***/
 4 input 'Userid?';
 type LF;
 5 waitfor 'Password', 30 seconds : nolog;
 input nodisplay 'Password?';
 type LF;

SAS/CONNECT Sign-on Script Files 415

unx_log:
 /***/
 /* Common prompt characters are $,>,%,} */
 /***/
 6 waitfor '$', '>', '%', '}',
 'Login incorrect' : nouser,
 'Enter terminal type' : unx_term,
 30 seconds : timeout;

 log 'NOTE: Logged onto UNIX...
 Starting remote SAS now.';

 /**/
 /* Invoke SAS on the server. */
 /**/
 type 'sas -dmr -comamid tcp -device
 -noterminal -nosyntaxcheck' LF;
 waitfor 'SESSION ESTABLISHED',
 90 seconds : nosas;

 log 'NOTE: SAS/CONNECT
 conversation established.';
 stop;

 /***/
 /* TCP/IP SIGNOFF */
 /***/
10 signoff:
waitfor '$', '>', '%', '}',
 30 seconds;

 type 'logout' LF;
 log 'NOTE: SAS/CONNECT conversation
 terminated.';
 stop;

 /***/
 /* SUBROUTINES */
 /***/
unx_term:

 /**/
 /* Some UNIX systems want the */
 /* terminal-type. Indicate a basic */
 /* tele-type. */
 /**/
 type 'tty' LF;
 goto unx_log;

 /***/
 /* ERROR ROUTINES */
 /***/
 11 timeout:
 log 'ERROR: Timeout waiting for remote

416 Chapter 23 / SAS/CONNECT Files

 session response.';
 abort;

nouser:
 log 'ERROR: Unrecognized userid or
 password.';
 abort;

notcp:
 log 'ERROR: Incorrect communications
 access method.';
 log 'NOTE: You must set "OPTIONS
 COMAMID=TCP;" before using
 this script file.';
 abort;

noinit:
 log 'ERROR: Did not understand remote
 session banner.';

nolog:
 log 'ERROR: Did not receive userid or
 password prompt.';
 abort;

nosas:
 log 'ERROR: Did not get SAS software
 startup messages.';
 abort;

1 The LOG statement sends the message that is enclosed in quotation marks to
the log file or the log window of the client session. Although it is not necessary to
include LOG statements in your script file, the LOG statements keep the user
informed about the progress of the connection.

2 The IF/THEN statement detects whether the script was called by the SIGNON
command or statement or the SIGNOFF command or statement. When you are
signing off, the IF/THEN statement directs script processing to the statement
labeled SIGNOFF. See step 10.

3 The WAITFOR statement waits for the server's logon prompt and specifies that if
that prompt is not received within 120 seconds, the script processing should
branch to the statement labeled NOINIT.

4 The INPUT statement displays a window with the text Userid? to allow the user
to enter a server logon user ID. The TYPE statement sends a line feed to the
server to enter the user ID to the server.

5 The WAITFOR statement waits for the server's password prompt and branches
to the NOLOG label if it is not received within 30 seconds. The INPUT statement
that follows the WAITFOR statement displays a window for the user to enter a
password. The NODISPLAY option is used so that the password is not displayed
on the screen as it is entered.

6 The WAITFOR statement waits for one of several common UNIX prompts and
branches to various error handles if a prompt is not seen. Verify that the
WAITFOR statement in the script looks for the correct prompt for your site.

7 This TYPE statement invokes SAS on the server. The -DMR option is necessary
to invoke a special processing mode for SAS/CONNECT. The -COMAMID option

SAS/CONNECT Sign-on Script Files 417

specifies the access method that is used to make the connection. The -
NOTERMINAL system option suppresses prompts from the server session. The
-NOSYNTAXCHECK option prevents the remote session from going into syntax
checking mode when a syntax error is encountered.

8 The phrase SESSION ESTABLISHED is displayed when a SAS session is started
on the server by using the options -DMR and -COMAMID TCP. The WAITFOR
statement looks for the words SESSION ESTABLISHED to be issued by the server
session to know that the connection has been established. If the SESSION
ESTABLISHED response is received within 90 seconds, processing continues with
the next LOG statement. If the SESSION ESTABLISHED response does not occur
within 90 seconds, the script assumes that the server session has not started
and processing branches to the statement labeled NOSAS.

9 When the connection has been successfully established, you must stop the rest
of the script from processing. Without this STOP statement, processing of the
remaining statements in the script continues.

10 This section of code is executed when the script is invoked to end the
connection. The second IF statement (see step 2) sends processing to this
section of the script when the script is invoked by a SIGNOFF command or
statement. Note that this section waits for a server prompt before entering
LOGOUT in order to log off from the server. The script then issues a LOG
statement to notify the user that the connection is terminated and stops script
processing.

11 These statements are processed only if the prompts expected in the previous
steps are not received. This section of the script issues messages to the local
SAS log and abnormally ends (from the ABORT statement) the processing of the
script as well as the sign-on.

418 Chapter 23 / SAS/CONNECT Files

PART 5

Logging and Debugging

Chapter 24
Administering Logging for SAS/CONNECT . 421

Chapter 25
TCP/IP Troubleshooting . 429

Chapter 26
Sign-On Troubleshooting . 431

Chapter 27
Compute Services Troubleshooting . 435

Chapter 28
Data Transfer Services Troubleshooting . 439

419

420

24
Administering Logging for
SAS/CONNECT

SAS Logging Facility . 421
About the SAS Logging Facility . 421
The SAS Logging Facility . 422
How to Change the Logging Level of the SAS/CONNECT Spawner 422
Sample Logging Configuration File . 423
Triggers for Log Events . 424
Example of a Log Event . 424

SAS Console Log . 424
Definition . 424
SAS Console Log Messages for Windows . 425
SAS Console Log Messages for UNIX . 425
SAS Console Log Messages for z/OS . 426

SAS Logging Facility

About the SAS Logging Facility
The SAS/CONNECT server and the SAS/CONNECT spawner use the SAS logging
facility as the standard debugging tool in a SAS Foundation environment and in a
SAS Intelligence Platform deployment. To make the logging facility functional, you
must define a logging configuration, which configures appenders and loggers. You
can define the configuration by setting up an XML file or by using SAS language
elements.

In a planned deployment, the SAS Deployment Wizard creates logconfig.xml files
for the SAS/CONNECT server and the SAS/CONNECT spawner. You can modify
these configuration files as needed to adjust your logging configuration. See About

421

https://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=bisag&docsetTarget=n1162ioc4910wvn1n0bdojd5809i.htm

Server Logging for more information about administering logging in a SAS
Intelligence Platform environment.

If you have a SAS Foundation installation, you can create your own logging
configuration file using the example shown in Example Code 24.1 on page 423.

The SAS Logging Facility
1 Define your logging configuration.

To use the SAS logging facility, you must set up your logging environment by
defining a logging configuration. The logging configuration can be in the form of
an XML file or a set of SAS program statements that configure how log events
are processed. The logging configuration enables you to configure appenders
and to specify which categories and levels of log events are written to each
appender.

2 Enable the logging facility.

To enable logging in a SAS Foundation environment, specify the -
LOGCONFIGLOC system option in the SAS invocation and specify the name
and location of the logging configuration file as the value for the -
LOGCONFIGLOC system option:

Here is the syntax for the -LOGCONFIGLOC option:

-LOGCONFIGLOC <file-specification>

Here is an example showing the -LOGCONFIGLOC option specified on the SAS
start-up command:

sas -logconfigloc winlog.xml

Note: In a planned deployment, the SAS/CONNECT spawner automatically
enables logging in the ConnectSpawner.sh script file, and the SAS/CONNECT
server enables logging in the sasv9.cfg file.

In the example, the -LOGCONFIGLOC option is used to specify the location of
the logging configuration file named winlog.xml, which is used to initialize the
SAS logging facility. The file specification that defines the location of the logging
configuration file must be a valid filename or a path and filename for your
operating environment.

How to Change the Logging Level of the
SAS/CONNECT Spawner

By default, the SAS/CONNECT spawner does not write much information to its log
file. Therefore, to debug SIGNON problems, you might need to change the logging
level so that it reports more detailed information. You can change the spawner’s
logging level either dynamically using spawner start-up options or you can do it
permanently by updating the logging configuration file. To do this dynamically,

422 Chapter 24 / Administering Logging for SAS/CONNECT

https://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=bisag&docsetTarget=n1162ioc4910wvn1n0bdojd5809i.htm

specify either the -DEBUG or the -TRACE (–VERBOSE) option on the spawner
start-up command as shown here:

cntspawn –verbose -logfile /local/u/sasusr/mytest/spawner.log -service unxspawn

To change the logging level permanently, update the logging configuration file. Open
the spawner's logging configuration file and change the value of the logger’s level
tag:

<logger name="App">
<level value="Trace">
</logger>

For more information, see “-DEBUG” on page 327 and “-TRACE|VERBOSE” on
page 331 spawner options.

CAUTION
Excessive logging can degrade performance. Therefore, you should use the
TRACE and DEBUG logging levels cautiously.

Sample Logging Configuration File
Here is a typical configuration file that defines the spawner logging components:

Note: In a planned deployment, the SAS Deployment Wizard automatically creates
an initial logging configuration file, named logconfig.xml, for each of your servers.
If you have a Foundation-only deployment or your deployment is not a planned
deployment in which the SAS Deployment Wizard was used, you can copy the
sample logconfig.xml file and change it to meet your needs.

Example Code 24.1 Sample Logging Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<log4sas:configuration xmlns:log4sas="http://www.sas.com/rnd/Log4SAS/"
debug="true">
 <appender name="LOG" class="FileAppender"> 1

 <param name="File" value="c:\v9\spawner.log" /> 2

 <layout>
 <param name="ConversionPattern" value="%d %-5p [%t] %c
(%F:%L) - %m" />
 </layout>
 <param name="threshold" value="all" />
 </appender>
<root> 3

 <appender-ref ref="LOG" />
 <level value="info" />
</root>
</log4sas:configuration>

1 CLASS="FileAppender" indicates that the log events are written to the file path
c:\v9\spawner.log.

2 The ConversionPattern parameter specifies a pattern layout that formats log
messages. It identifies the type of data, the order of the data, and the format of

SAS Logging Facility 423

the data that is generated in a log event and is delivered as output. In this
example, the date and time, the log level, the thread ID, and the logger
constitute the log event.

3 The root logger controls the entire SAS log event and is at the highest level in
the logger hierarchy. If any other loggers are included in the logging
configuration file, they are located beneath the ROOT logger in the hierarchy. All
other loggers inherit the specified appender and threshold value of the root
logger.

Triggers for Log Events
Log events are triggered for various activity in SAS/CONNECT under these
circumstances:

n server sign-on via the SIGNON statement and the SAS/CONNECT spawner
invocation

n the beginning of the RSUBMIT statement and the occurrence of the
ENDRSUBMIT statement

n server sign-off via the SIGNOFF statement and the SAS/CONNECT spawner
termination

Example of a Log Event
The data and the format of the log event are defined in the conversion pattern that is
specified in the configuration file.

Here is an example of a log event:

 2008-06-25-10:24:22,234; WARN; 3; Appender.File; (yn14.sas.c:149);
Numeric maximum was larger than 8, am setting to 8.

SAS Console Log

Definition
The SAS console log is a file that is created when the regular SAS log is not active.
The SAS console log is used for recording information, such as warnings and error
messages that occur before the regular SAS log as been initialized. Therefore, the
SAS console log might contain error messages that were sent because SAS failed
to start on the server.

424 Chapter 24 / Administering Logging for SAS/CONNECT

SAS Console Log Messages for Windows
In Windows, any error message that SAS issues before the regular SAS log is
initialized is written to a file that is located in the user's Application Data Directory.
The name of the file is written as a record to the Windows Application Event Log.

You can use the Windows Event Viewer to see the application events on the
computer where the server session was being executed. A warning event is logged
for each initialization failure for a single server session. For multiple events, the user
ID and the time of the event are included in the warning event.

For more information about the failing event, you can select the warning event from
the viewer window. Another window is displayed that contains detailed event
information, including the name of the file that contains the SAS console log. To
open the Windows Application Event Viewer, submit eventvwr from the Run dialog
box.

SAS Console Log Messages for UNIX
On UNIX, the SAS console log is written to the standard output location for the SAS
process. The location for the standard output varies according to the sign-on
method that was used.

Table 24.1 Location of the SAS Console Log on UNIX Based on the Sign-on Method

Sign-on
Method SAS Console Log Location

SASCMD= Standard output is piped to the SAS session that issued the sign-on
statement. The standard output messages are written to the SAS log
on the SAS session. Each message contains a prefix that identifies the
server session (the server ID) that was being created.

Spawner The standard output location for the SAS session that is started via the
spawner is piped to the standard output location of the spawner. The
command that is used to start the spawner should ensure that standard
output is redirected to a specific location. Here is an example of
redirecting standard output to a log file in UNIX:

cntspawn -nocleartext > spawner.log

SAS console log messages will be directed to the standard output
location. For details about the UNIX spawner, see “Spawner
Connections on UNIX” on page 345.

Telnet
daemon

The standard output location for the SAS session is the script
processor in the SAS session that issued the SIGNON command. If the
script processor does not receive a SESSION STARTED message from
the server session, a sign-on failure is assumed. However, error

SAS Console Log 425

Sign-on
Method SAS Console Log Location

messages that are directed to the SAS console log on the server
session might not be displayed. To display error messages in the server
session, include the echo on statement in the sign-on script.

SAS Console Log Messages for z/OS
The SAS console log receives messages that are intended for the SAS log but must
be written before the SAS log is opened. Thus, it is normally empty because no
such messages are written in a successful session.

The main use of the SAS console log is for error diagnostics when SAS terminates
without ever opening the SAS log. For example, if an invalid command-line option
prevents SAS from completing initialization, error messages would be sent to the
SAS console log.

The SAS console log is written to the SASCLOG ddname. In a local interactive
session, SASCLOG is normally allocated to the terminal. A remote session has no
terminal, so SASCLOG has to be allocated differently.

Table 24.2 Location of the SAS Console Log on z/OS Based on Sign-on Method

Sign-on
Method

SAS Console Log Location

SASCMD= Standard output is piped to the SAS session that issued the sign-on
statement. The standard output messages are written to the SAS log
on the SAS session. Each message contains a prefix that identifies the
server session (the server ID) that was being created.

Spawner SAS console log output is written to the SAS/CONNECT spawner log
by default. For the output to be written to a file that is owned by the
user instead of by the spawner, edit the shell script that is specified on
the spawner's -SASCMD option and add the -CLOG option to the SAS
command. For example, the following command can be added to the
shell script file:

cmd="$cmd -clog connect.sasclog"

Note: the data set name (or UFS name) must be one that will be
writable for all users. Do not use a fully qualified name.

Telnet
daemon

The SASCLOG ddname is directed to the script processor in the SAS
session that issued the SIGNON command. If the script processor does
not receive a SESSION STARTED message from the server session, a
sign-on failure is assumed. However, error messages that are directed
to the SAS console log in the server session might not be displayed. To

426 Chapter 24 / Administering Logging for SAS/CONNECT

display error messages in the server session, include the ECHO ON
statement in the sign-on script.

SAS Console Log 427

428 Chapter 24 / Administering Logging for SAS/CONNECT

25
TCP/IP Troubleshooting

UNIX: TCP/IP Access Method . 429
SAS/CONNECT Error Messages under UNIX . 429

z/OS: TCP/IP Access Method . 430
SAS/CONNECT Error Messages under z/OS . 430

Windows: TCP/IP Access Method . 430
SAS/CONNECT Error Messages under Windows . 430

UNIX: TCP/IP Access Method

SAS/CONNECT Error Messages under UNIX
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

n The remote side is not listening.

n The maximum number of connections has been reached.

429

z/OS: TCP/IP Access Method

SAS/CONNECT Error Messages under z/OS
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

n The remote side is not listening.

n The packet sequence is out of order, which can indicate that the routers are not
working properly.

n The maximum number of connections has been reached.

n There is a flow problem, which indicates that too many packets are being sent to
the remote side at the same time.

Under z/OS, use the NETSTAT utility to show active sockets and to show who is
waiting for a socket.

Windows: TCP/IP Access Method

SAS/CONNECT Error Messages under Windows
For TCP/IP, if SAS/CONNECT is unable to connect to the TCP/IP port, the following
system message appears:

connection refused

The connection might fail at sign-on for the following reasons:

n The remote side is not listening.

n The maximum number of connections has been reached.

430 Chapter 25 / TCP/IP Troubleshooting

26
Sign-On Troubleshooting

Troubleshooting Sign-On Problems . 431
Host-Not-Active Message . 431
Absence of SAS Software Start-Up Messages . 432
Requested-Link-Not-Found Message . 432
SAS/CONNECT Server Session Initialization Errors . 432
Cannot-Start-Remote-Process Message . 433

Troubleshooting Sign-On Problems

Host-Not-Active Message
While signing on to a server session, you receive the following message:

 ERROR: Did not get Host prompt.
 Host not active.

If you are signing on to computer via a TCP/IP connection, one of the following
actions might overcome the problem:

n Look at the script that you used for signing on. Ensure that the character string in
the WAITFOR statement that tests for the server session system prompt exactly
matches the character string that normally appears in the server session. The
WAITFOR statement is case sensitive.

n Look at the value of the REMOTE= option in the client session to be sure it
specifies the correct IP address.

n If you do not find any errors after checking the two preceding items, modify the
script file by adding a TRACE ON statement and an ECHO ON statement at the
beginning of the script file. These statements send a copy of the remote screen
to the Log window or to a file in the client session. You can examine the SAS log
on the client session to see what is displayed by the server session when the
WAITFOR statement executes.

431

Absence of SAS Software Start-Up Messages
While signing on to a server session, you receive the following message:

ERROR: Did not get SAS software startup messages

This message occurs if the command to invoke the server session is not correct in
the script file that is being used for signing on. Look at your script file and make sure
that the TYPE statement that invokes SAS in the server session uses the correct
SAS command for your site. At some sites, the command to invoke SAS is not the
default command name SAS.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 432.

Requested-Link-Not-Found Message
When you sign on to a server session from a client session that runs under z/OS,
you receive the following message:

ERROR: XMS Communication Failure:
 requested-link XVT not found.

This error occurs if XMS has not been configured correctly. For details about XMS
configuration, see Configuration Guide for SAS® 9.4 Foundation for z /OS.

For more information about recovery from this error, see “SAS/CONNECT Server
Session Initialization Errors” on page 432.

SAS/CONNECT Server Session Initialization Errors
The method that you used to sign on to a server session correctly executed the SAS
command to start the server session. However, errors prevent SAS from initializing.
Possible explanations for initialization failure include the following:

n An invalid option name or value might have been specified in the SAS command.

n The user might not be authorized by the computer that the server session runs
on to execute the SAS program modules or to access the Sashelp, Sasuser, or
SASWork libraries

n The sign-on command might try to execute an autoexec file that does not exist.

In order to recover from the initialization failure, you need to view the content of the
SAS console log. The location of the SAS console log varies according to the
operating environment that the server session runs under.

432 Chapter 26 / Sign-On Troubleshooting

http://support.sas.com/documentation/installcenter/en/ikfdtnmvscg/66194/PDF/default/config.pdf#page=95

Cannot-Start-Remote-Process Message
While signing on to a server session, you receive the following message:

Error: Cannot start remote process

This message might occur if a SAS Viya spawner is used with the -nolocallaunch
option and the client does not support it.

Troubleshooting Sign-On Problems 433

434 Chapter 26 / Sign-On Troubleshooting

27
Compute Services
Troubleshooting

Problems and Solutions When Using the RSUBMIT Statement 435
Invalid Option . 435
Dialog Box Appears despite NOTERMINAL Option Setting . 436
Remotely Submitted Statements Following a Syntax Error Are Not Processed . . . 436
Square Bracket Keys Not Supported . 436
No Terminal Connected to SAS Session . 437
Piping Problems . 437
Request for Setup of Link for Communication Subsystem Partner Fails 437

Problems and Solutions When Using the
RSUBMIT Statement

Invalid Option
The first time that you remote submit a PROC statement, you receive the following
message:

 ERROR 2-12: Invalid option.

The remote AUTOEXEC.SAS file contains an OPTIONS statement that has not
been closed by a semicolon (;). To recover from the problem, add the semicolon (;)
to the OPTIONS statement in the remote AUTOEXEC.SAS file.

435

Dialog Box Appears despite NOTERMINAL Option
Setting

Despite your setting the NOTERMINAL option to suppress the display of a dialog
box in the server session, a dialog box appears when you use the RSUBMIT
statement and the WAIT= option.

To prevent the appearance of a dialog box, specify the SAS system option
NOFILEPROMPT in the server session.

Remotely Submitted Statements Following a Syntax
Error Are Not Processed

When a SAS/CONNECT session is started and the NOTERMINAL option is set, the
internal option SYNTAXCHECK is automatically set. If you remote-submit a
statement that follows a syntax error, the statement is parsed but is not processed.

An example of the problem and recovery follows:

 data a;
 do i=1 to 10;
 outpt;
 end;
 run;
 data b;
 x=1;
 run;

Data set A is not created because of the syntax error that is caused by the
misspelling of the word "OUTPUT." Data set B is not created because SAS is in
syntax check mode from the previous syntax error. Only the DATA step will be
parsed.

To prevent this problem, add the NOSYNTAXCHECK option to the server session
SAS invocation options in the script file.

Square Bracket Keys Not Supported
You cannot remotely submit code that uses square brackets because the local
computer's keyboard does not support these characters.

The less than (<) and greater than (>) symbols can be used in place of square
brackets. Use < for the left square bracket ([), and use > for the right square bracket
(]).

436 Chapter 27 / Compute Services Troubleshooting

No Terminal Connected to SAS Session
After remotely submitting code that generates a full screen, you receive the
following message:

 ERROR: No terminal connected to the SAS session.

SAS/CONNECT does not support remote submission of a window. You might be
able to issue a LIBNAME statement, and use the windowing product in the client
session while accessing the remote data.

Piping Problems
MP CONNECT pipeline processing can fail if the procedure that reads from the pipe
(output pipe) finishes processing before the procedure that writes to the pipe (input
pipe). The premature termination of the pipe causes the procedure that writes to the
pipe to fail.

The error message varies according to the specific procedure that is being
performed.

To prevent a pipe from terminating prematurely, assign sufficient processing time for
each procedure by specifying the TIMEOUT= option in the LIBNAME statement.
Furthermore, if the OBS= option in the appropriate procedure is used to limit the
amount of data that is read from a large data set that is being written, processing will
finish for the read procedure before the write procedure. To prevent the pipe from
terminating, assign a longer time-out for the read procedure than the write
procedure. For a program example, see “Example 7: Prevent Pipes from Closing
Prematurely” on page 65.

Request for Setup of Link for Communication
Subsystem Partner Fails

When you attempt to connect to a server session, you receive the following error
message:

ERROR: A communication subsystem partner link setup request failure has occurred.

A possible explanation for the failure is that the spawner has not been started on the
remote computer that you are trying to sign on to. For details about starting a
spawner, see Chapter 19, “The SAS/CONNECT Spawner,” on page 319.

Another possibility is that you have used the same task name for multiple jobs that
you have submitted for asynchronous processing on the same host or on a different
host across the network. Task names must be unique.

Problems and Solutions When Using the RSUBMIT Statement 437

438 Chapter 27 / Compute Services Troubleshooting

28
Data Transfer Services
Troubleshooting

Troubleshooting the UPLOAD and DOWNLOAD Procedures 439
Symbol Is Not Recognized . 439
Variable-Block Binary File LRECL Value Exceeds 256 . 440
Fixed-Block Binary File LRECL Value Exceeds 256 . 440
EBCDIC CC-Control Is Not Downloaded . 441

Troubleshooting the UPLOAD and
DOWNLOAD Procedures

Symbol Is Not Recognized
During a PROC DOWNLOAD or a PROC UPLOAD step, you receive the following
error message:

ERROR 200-322: The symbol is not recognized.

This problem occurs if the file on the server that is being referenced by the INFILE=
or the OUTFILE= option begins with a special character and is specified as
FILEREF(filename). For example:

PROC UPLOAD INFILE=pcflref
 OUTFILE=hstflref($filname);
 run;

To avoid the problem, enclose the filename in single quotation marks, as shown in
the following example:

PROC UPLOAD INFILE=pcflref
 OUTFILE=hstflref('$filname');

439

 run;

Variable-Block Binary File LRECL Value Exceeds
256

You transfer a variable-block binary file that has a record length (LRECL) that is
greater than 256 bytes, and SAS/CONNECT segments the file into multiple 256-
byte records. For example, downloading a binary file that has an LRECL of 1024
results in four 256- byte records.

The data is not lost when the file is segmented by SAS/CONNECT. Using the
LRECL option in the FILENAME statement that is processed at the client or the
server does not prevent the problem. To solve the problem, follow these steps:

1 Define the z/OS FILENAME statement by using the RECFM=U parameter.

FILENAME VFILE 'VARIABLE.BLOCK.FILE' RECFM=U;

2 Use the DOWNLOAD procedure with the BINARY option to transfer the file.
Information about the transfer that is displayed in the local Log windows shows
how many bytes were transferred. For example:

NOTE: 1231 bytes were transferred at
1231 bytes/second.

3 At the client, use the RECFM= and the LRECL= options in the INFILE statement
that is used to read in the transferred file, where RECFM= is set to S370VB and
LRECL= is set to the number of bytes that are transferred.

Note: In SAS 9.4, the default value for LRECL is 32767. If you are using fixed
length records (RECFM=F), the default value for LRECL is 256.

Fixed-Block Binary File LRECL Value Exceeds 256
You transfer a fixed-block binary file that has a record length (LRECL) that is greater
than 256 bytes, and SAS/CONNECT segments the file into multiple 256–byte
records. For example, downloading a binary file that has an LRECL of 1024 results
in four 256- byte records.

The data is not lost when the file is segmented by SAS/CONNECT. Using the
LRECL= option in the FILENAME statement at the client or the server does not
prevent the problem. To solve the problem, follow these steps:

1 Use the DOWNLOAD procedure with the BINARY option to transfer the file.

2 The INFILE statement that is used to read the transferred file must contain the
options RECFM=F and LRECL=xxxx, where xxxx is equal to the LRECL
parameter at the server.

440 Chapter 28 / Data Transfer Services Troubleshooting

Note: In SAS 9.4, the default value for LRECL is 32767. If you are using fixed
length records (RECFM=F), the default value for LRECL is 256.

Note: The RECFM= and LRECL= options in the FILENAME statement are
supported only under z/OS operating environments. For details, see the “FILENAME
Statement: z/OS” in SAS Companion for z/OS.

EBCDIC CC-Control Is Not Downloaded
When you use PROC DOWNLOAD on a print file, the EBCDIC carriage-control
character 'F1'x is not downloaded.

To avoid the problem, change the SAS system option FILECC to NOFILECC.

Note: The FILECC system option is supported only under z/OS operating
environments. For details, see “FILECC System Option: z/OS” in SAS Companion
for z/OS.

The NOFILECC option indicates that the data in column 1 of a printer file should be
treated as data and not carriage control. Releases of SAS later than SAS 6 use
FILECC as the default setting, which you must change to NOFILECC in order to
successfully download 'F1'x. In addition, the DCB characteristics of the print file
must include a value for RECFM= of FBA or VBA.

Troubleshooting the UPLOAD and DOWNLOAD Procedures 441

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n06xm17q99z0x6n1tskpswfrgp27.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1rzoq32w1rqhfn11d0vtc3fo14s.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1rzoq32w1rqhfn11d0vtc3fo14s.htm&locale=en

442 Chapter 28 / Data Transfer Services Troubleshooting

PART 6

Appendix

Appendix 1
Cross-Architecture Issues . 445

Appendix 2
SAS/CONNECT Cross-Version Issues . 451

443

444

Appendix 1
Cross-Architecture Issues

Translation of SAS Data between Computers That Represent Data Differently . 445
Overview of Data Translation between Computers . 445
Remote Library Services . 446
Data Transfer Services . 447

Translation of Floating-Point Numbers between Computers 448
Loss of Numeric Precision and Magnitude . 448
Avoiding Loss of Precision . 448
Significance of Loss of Magnitude . 448
Example . 449

Encoding Compatibility between SAS/CONNECT Client and Server Sessions . . 449

Translation of SAS Data between
Computers That Represent Data
Differently

Overview of Data Translation between Computers
SAS/CONNECT clients and servers can access SAS data and programs from each
other, despite differences in how data is represented on computers that the client
and server SAS sessions run on. For example, a SAS/CONNECT client that runs on
a PC can download a SAS data set from a mainframe for processing in the client
session.

Numeric data (floating-point representation) and character data are dynamically
translated in each client/server transfer. This process bypasses the explicit creation
of an intermediate transport file without the user's knowledge of the underlying
translation activities.

445

Remote Library Services
Remote Library Services (RLS) performs dynamic data translation. SAS/CONNECT
use RLS to access SAS files in remote SAS libraries. SAS/CONNECT clients
access remote files by using the LIBNAME statement.

Note: You can also use the CONNECT TO statement in PROC SQL to access
remote files.

If the server data is accessed and processed to produce a single result at the client,
only one translation occurs: from the representation of the server computer to the
representation of the client computer.

If the server data is processed on the client and the results are updated on the
server, two translations occur.

n When the data is accessed from the server, it is translated from the
representation of the server computer to the representation of the client
computer.

n When the data is updated (and stored) on the server, it is translated from the
representation of the client computer back to the representation of the server
computer.

Depending on the characteristics of the data, translation can cause a loss of some
degree of numeric precision and magnitude.

The LIBNAME statement can be used to identify the server library to be accessed.
Various SAS statements can be used to process the data, specifying the location of
the server data and methods of data processing. These examples show that data is
read (and translated) from the server and processed, and that the results are copied
to a client location.

libname serv-libref 'server-library'
server=server-ID;
libname client-libref 'client-library';
proc copy in=serv-libref
out=client-libref;

Note: Using RLS in a SAS/CONNECT session is not the most efficient method to
move large quantities of server data. RLS is used here to illustrate the possibility for
the loss of precision across computers that represent numeric data differently.

For details about how to access a remote file system, see Chapter 4, “Using
Remote Library Services (RLS),” on page 71.

446 Appendix 1 / Cross-Architecture Issues

Data Transfer Services

Overview
Data Transfer Services (DTS) performs dynamic data translation. SAS/CONNECT
uses DTS to upload and download complete or partial SAS files in a client/server
environment.

For an upload, the client sends data to the server for processing. For a download,
the client requests the transfer of data from the server to the client for processing.

For more information, see Chapter 5, “Using Data Transfer Services,” on page 87.

The translation process for transferring data varies according to the SAS release.

Translation of SAS 8 and Later Releases
In SAS 8 and later releases, translation occurs only once for each data transfer
between a client and a server that run on computers whose architectures are
different from each other. SAS/CONNECT dynamically translates incompatible file
formats for each file upload or file download transaction, bypassing the explicit
creation of a transport file.

LIBNAME statements are used to identify the server library to be accessed and the
client library that the server data is written to. PROC DOWNLOAD reads the data
from the server and translates and copies it to a specified client location.

libname client-libref ' client-library';
rsubmit;
 libname serv-libref ' server-library';
 proc download
data=server-libref.data-set
 out=client-libref.data-set;
endrsubmit;

SAS 6 Translation
In SAS 6, translation occurs twice for each data transfer between a client and a
server that run on computers whose architectures are different from each other.

1 The data is translated from the source computer's native format to transport
format.

2 The data that is represented in transport format is translated to the target
computer's native format.

Translation of SAS Data between Computers That Represent Data Differently 447

LIBNAME statements are used to identify the server library to be accessed and the
client library that the server data is written to. PROC DOWNLOAD translates the
data from the server into transport format, which is next translated to the client
computer format when copied to a specified client location.

libname client-libref ' client-library';
rsubmit;
 libname serv-libref ' server-library';
 proc download
data=server-libref.data-set
 out=client-libref.data-set;
endrsubmit;

Translation of Floating-Point Numbers
between Computers

Loss of Numeric Precision and Magnitude
If you move SAS data between a client and a server session that run on computers
that have different architectures, numeric precision or magnitude can be lost.
Precision can be lost when the data value in the source representation contains
more significant digits than the target representation can store. A loss of magnitude
results when data values exceed the range of values that an operating environment
can store.

For complete details about how SAS stores numeric values, see SAS Language
Reference: Concepts.

Avoiding Loss of Precision
To avoid loss of precision, do not store numeric values in short variables. Instead,
store numeric values using longer numeric variables (up to 8 bytes) according to the
number of significant digits that the target representation can store.

Significance of Loss of Magnitude
When you lose magnitude, SAS produces the following warning:

WARNING: The magnitude of at least one numeric value
was decreased to the maximum the target representation allows,
due to representation conversion.

448 Appendix 1 / Cross-Architecture Issues

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

A loss of magnitude is unlikely in many applications. If you have data with extremely
large values or extremely small fractions, then you might experience a loss of
magnitude during cross-architecture access. When you lose magnitude, SAS
changes the values that are out of range to the maximum or minimum value that the
operating environment can represent.

Table A13.1 Approximate Value Ranges by Operating Environment

Operating Environment Minimum Value Maximum Value

UNIX 2.3E-308 1.8E+308

Windows 2.3E-308 1.8E+308

z/OS 5.4E-79 7.2E+75

Example
You create a data set under UNIX that contains the value 8.93323E+105. If you copy
the file to a z/OS operating environment, magnitude is lost and the value changes to
7.23701E+75, which is the maximum value that z/OS can represent.

Encoding Compatibility between
SAS/CONNECT Client and Server
Sessions

To successfully use SAS/CONNECT programming services, the encodings of the
client and server sessions must be compatible. Transport data has an encoding
family dependency, so the encodings of the client and server session should be
compatible in order to ensure the data will not be corrupted during the transmission.
Compatible encodings share a common character set. For example, client and
server sessions that each use the UTF-8 encoding should be compatible with each
other.

Beginning with version 9.4, SAS/CONNECT supports connections between the
client and the server in which one session is using UTF-8 and the other is using
non-UTF-8. However, if one session's encoding is not compatible with the other
session's encoding, then SAS issues a NOTE stating that data might not have been
transmitted correctly. In the case where one session is using UTF-8 and the other
session has an unknown, or unsupported encoding, an error is issued and the
connection is not made. Similarly, Japanese characters and Chinese characters are
both defined in the Unicode standard, but because their code points are different in

Encoding Compatibility between SAS/CONNECT Client and Server Sessions 449

Unicode, the Japanese SAS session is not compatible with the Simplified Chinese
SAS session.

In some cases, a client session can connect to a server session even though each
session runs in a different locale and neither uses the UTF-8 encoding. If each
session's encoding contains all the characters of each locale's native language, then
the sessions are compatible and a connection occurs. For example, a Windows
client session that uses the Wlatin1 encoding that is associated with the Spanish
Mexico locale is compatible with a UNIX server session that uses Latin1 encoding
that is associated with the Italian Italy locale. All the characters used in the Italian
and Spanish languages are present in both the Wlatin1 and the Latin1 encoding.

However, SAS/CONNECT programming services might not successfully run in
incompatible client and server sessions. For example, a client session that uses the
Wlatin2 encoding that is associated with the Czech Republic locale is incompatible
with the server session that uses the open_ed-1141 z/OS encoding that is
associated with the German Germany locale. The Wlatin2 encoding and the
open_ed-1141 encodings are not compatible because many German characters are
not present in the Wlatin2 encoding and many Czech characters are not present in
the open-ed-1141 encoding. The operation might not be successful and a note such
as the following might be sent to the log:

Note: The client session encoding Wlatin2 is not compatible with the
server session encoding open-ed-1141.
Data may not be transmitted correctly.

For information about locales and encodings, see the SAS National Language
Support (NLS): Reference Guide.

450 Appendix 1 / Cross-Architecture Issues

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Appendix 2
SAS/CONNECT Cross-Version
Issues

Factors Affecting Access to SAS Files . 452

Features Exclusive to SAS Releases after SAS 6 . 452
New Features Incompatible with SAS 6 . 452
SAS File Format Features . 453
File Transfer Services: Truncating Long Names and Labels . 453

RLS: Access SAS Files in a Mixed Cross-Version Library . 455
Separate Older SAS Files from Newer SAS Files . 455
Specify an Engine to Locate Release-Specific Files in a Mixed Library 455
Determine the Version of SAS Used to Create a SAS File . 456
Concatenate Libraries . 456

Access SAS Data Sets . 457
Limitations . 457
SAS 6 Client Accessing a SAS 8 (or later) Server . 457
SAS 8 (or Later) Client Accessing a SAS 6 Server . 458

Access SAS Views . 459
Limitations . 459
SAS 6 Client Accessing a SAS 8 (or Later) Server . 459
SAS 8 (or Later) Client Accessing a SAS 6 Server . 460

Access Catalogs . 460
Limitations . 460
SAS 6 Client Accessing a SAS 8 (or Later) Server . 461
SAS 8 (or Later) Client Accessing a SAS 6 Server . 462

File Format Translation Algorithms . 462
SAS 6 Translation . 462
SAS 8 (and Later) Translation . 463

451

Factors Affecting Access to SAS Files
SAS files (data and applications) that were created by using SAS releases later than
SAS 6 are interchangeable in a SAS/CONNECT client/server environment because
their file formats are identical.

However, because the SAS file formats of the newer SAS releases (after SAS 6) are
dramatically different from older SAS releases (SAS 6 and earlier), the ability to
access older SAS files from newer SAS releases (or newer SAS files from older
SAS releases) in a SAS/CONNECT client/server environment is limited. Access is
determined by the following factors:

n SAS version

n SAS member type

o Data set

o Catalog

o View

n SAS/CONNECT service

o Remote Library Services (RLS)

CAUTION
RLS in SAS/CONNECT 9 and later is not backward compatible with SAS
6 files. SAS/CONNECT 9 clients cannot use RLS with SAS 6 SAS/CONNECT
servers. SAS 6 SAS/CONNECT clients cannot use RLS with SAS/CONNECT 9
servers.

o Compute Services

o File Transfer Services

For SAS release information that relates to single-user SAS mode, see the SAS
Language Reference: Concepts.

Features Exclusive to SAS Releases
after SAS 6

New Features Incompatible with SAS 6
These new features in SAS cannot be modified to make SAS files compatible with
SAS 6:

452 Appendix 2 / SAS/CONNECT Cross-Version Issues

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n generation data sets

n integrity constraints

Any attempt to access SAS files that contain these features will fail. For complete
details about new features, see SAS Language Reference: Concepts.

SAS File Format Features
The file format features of newer SAS releases and SAS 6 are incompatible. Here
are the file format features of the newer releases:

n long data set labels

n long variable labels

n long variable names

However, in order to maintain the ability to transfer data sets between the newer and
older SAS releases, SAS/CONNECT applies truncation rules to data set attributes.
Truncation enables you to take advantage of the features of the newer SAS
releases while continuing to access SAS 6 files in a mixed-version environment.

File Transfer Services: Truncating Long Names and
Labels

The newer SAS releases support longer names and labels than the maximum
length supported in SAS 6. The longer names and labels are stored in SAS 8 (or
later) data sets, which make those data sets incompatible with SAS 6 data sets.
SAS/CONNECT implements a set of truncation rules to convert data sets that
contain long names and labels into SAS 6 data sets.

The UPLOAD or DOWNLOAD procedures apply the truncation rules when
performing these types of transfers of SAS files

n from a SAS 8 (or later) SAS session to a SAS 6 SAS session

n between two sessions (each running SAS 8 or later) to produce a SAS 6 data
set.

Note: To produce a SAS 6 data set explicitly, specify VALIDVARNAME=V6 in
the SAS session that the data set is created in. A setting of VALIDVARNAME=V6
overrides any other engine specification in the SAS session, causing truncation
to be applied to long names.

SAS/CONNECT applies the following truncation rules to data sets that have long
data set labels, long variable labels, or long variable names. In each case, the
length is truncated to the maximum length that is supported in SAS 6.

Features Exclusive to SAS Releases after SAS 6 453

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Table A14.1 SAS 6 Truncation Lengths

Label or Name Truncation Length (in characters)

Data set label 40

Variable label 40

Variable name 8

Note: If the variable label field is empty, the long variable name is copied to the
label field.

The truncation algorithm that is used to produce the 8-character variable name also
resolves conflicting variable names. Here are some additional truncation rules:

Table A14.2 Truncation Rules to Resolve Conflicting Variable Names

Truncation Rule Example

The first name that has more than eight
characters is truncated to eight
characters.

STOCKNUMBER53 is truncated to
STOCKNUM.

The next name that has more than eight
characters is truncated to eight
characters. If it conflicts with an existing
variable name, it is truncated to seven
characters, and a suffix of 2 is added.

STOCKNUMBER54 is truncated to
STOCKNU2.

The suffix is increased by one for each
truncated name that results in a conflict. If
the suffix reaches 9, the next conflicting
variable name is truncated to 6
characters, and a suffix of 10 is added.

STOCKNUMBER63 is truncated to
STOCKN10.

454 Appendix 2 / SAS/CONNECT Cross-Version Issues

RLS: Access SAS Files in a Mixed
Cross-Version Library

Separate Older SAS Files from Newer SAS Files
Whenever possible, keep older SAS files (SAS 6) and newer SAS files (created
using SAS releases after SAS 6) in separate physical locations. Segregation of
release-specific files avoids confusion about what files can be accessed when using
RLS.

Specify an Engine to Locate Release-Specific Files
in a Mixed Library

Your ability to access a specific SAS file in a library depends on the engine that is
associated with that library. You can explicitly specify the engine in the LIBNAME
statement, or you can allow SAS to select the appropriate engine according to the
version of SAS being used and the format of the SAS files in the directory. If the
library is homogenous (for example, all data files are SAS 9 files), the V9 engine is
used, by default.

Note: The V9 and V8 engines provide identical functionality.

However, if a physical library contains a mixture of SAS 6 files and SAS 8 files, a
SAS session that runs a newer release of SAS can use the V6 engine to access
only the SAS 6 files in that library.

CAUTION
A SAS 9 session cannot access SAS 6 files in a mixed library.

If a library contains newer and older SAS files and the V9 or V8 engine is specified,
only the SAS 9 or SAS 8 files can be accessed. The SAS 6 files are not recognized
in the SAS 9 or SAS 8 session.

However, if the V6 engine is specified, the SAS 6 files can be accessed. The SAS 9
or SAS 8 files are not recognized.

In the following example, the libref V8LIB accesses only SAS 9 or SAS 8 files.

libname v8lib v8 'SAS-library';

In the following example, the libref V9Lib accesses only SAS 9 or SAS 8 files.

libname v9lib v9 'SAS-library';

RLS: Access SAS Files in a Mixed Cross-Version Library 455

In the following example, the libref V6Lib accesses only SAS 6 files.

libname v6lib v6 'SAS-library';

Determine the Version of SAS Used to Create a
SAS File

To determine the version of the SAS engine that was used to create a SAS file,
examine the file extension.

Here are the file extensions for files that are created under the Windows operating
environment:

Table A14.3 File Extensions Supported under the Windows Operating Environment

File Type SAS 6 File Extension
SAS 9 or SAS 8 File
Extension

Data Set sd2 sas7bdat

Catalog sc2 sas7bcat

View sv2 sas7bvew

Concatenate Libraries
In order to expand the scope of SAS file access from a single library to multiple
libraries, use library concatenation. With an expanded scope, you can perform
operations on either SAS 6 data files or SAS 9 data files that span multiple libraries.

Here is an example of library concatenation:

libname v6lib v6 'SAS-library';
libname v9lib v9 'SAS-library';
libname catlib (v9lib v6lib);

Note: SAS-library must be the physical name that is recognized by the operating
environment.

The first LIBNAME statement assigns the libref V6Lib to a SAS library that is
accessed using the V6 engine. The V6 engine recognizes only files that are
appended with a SAS 6 file extension.

The second LIBNAME statement assigns the libref V9Lib to a SAS library that is
accessed using the V9 engine. The V9 engine recognizes only files that are
appended with a SAS 9 file extension.

456 Appendix 2 / SAS/CONNECT Cross-Version Issues

The third LIBNAME statement assigns the libref CATLIB to concatenated SAS
libraries that are referenced by the librefs V9Lib and V6Lib. The order of the librefs
identifies the sequence in which the libraries are searched. The SAS operation uses
the first occurrence of a specified file.

For example, if the same SAS file exists in both SAS libraries and you delete that
SAS file, the SAS file in the first library (for example, STOCK.SAS7BDAT in V9Lib)
is deleted. If V6Lib precedes V9Lib in the library concatenation statement (for
example, STOCK.SD2 in V6Lib), that SAS file is deleted. If the specified SAS file
exists in only one SAS library, that SAS file is deleted.

Access SAS Data Sets

Limitations
Accessing data that is stored in a SAS data set is a fundamental operation in SAS.
Be aware of any limitations or restrictions when accessing data sets in a cross-
version environment. Access to the data files is based on the SAS/CONNECT
service that is used, and whether the data files use any new features that are in
SAS releases after SAS 6.

SAS 6 Client Accessing a SAS 8 (or later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS data sets
on a SAS 8 (or later) server in a cross-version environment.

Table A14.4 Limitations for Accessing SAS Data Sets on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

Remote Library Services No access is permitted
between a SAS 6 client
and a SAS 9 server.

If SAS 8 data sets on a
SAS 8 server do not
implement new features, a
SAS 6 client can read,
write, or update SAS 8
data sets on a SAS 8
server.

Data Transfer Services All file formats are automatically converted when
uploading or downloading a SAS 6 data set to a SAS 9
or SAS 8 target.

If SAS 9 or SAS 8 data sets do not contain new
features, they can be downloaded to a SAS 6 target.
Truncation rules are applied.

Access SAS Data Sets 457

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

Compute Services A SAS 6 client can remotely submit a SAS program to a
SAS 9 or SAS 8 server. The data sets that are
referenced in the remote submit blocks can be SAS 9,
SAS 8, or SAS 6 data sets.

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses data
sets on a SAS 6 server in a cross-version environment.

Table A14.5 Limitations for Accessing Data Sets on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client
and a SAS 6 server.

If SAS 6 data files do not
implement new features, a
SAS 8 client can read,
write, or update SAS 6
data files on a SAS 6
server.

Data Transfer Services All data formats are automatically converted when
uploading or downloading a SAS 6 file to a SAS 9 or
SAS 8 target.

If SAS 9 or SAS 8 data files do not contain new features,
they can be uploaded to a SAS 6 target. Truncation
rules are applied.

Compute Services A SAS 9 or SAS 8 client can remote submit a SAS
program to a SAS 6 server. The data files that are
referenced in the remote submit blocks can be formatted
only as SAS 6 files.

458 Appendix 2 / SAS/CONNECT Cross-Version Issues

Access SAS Views

Limitations
There are limitations and restrictions when accessing SAS views in a cross-version
environment. Here are the types of SAS views:

n DATA step

n PROC SQL

n SAS/ACCESS

Note: SAS/CONNECT uses the data that the SAS view references, but not the SAS
view itself.

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses SAS views on
a SAS 8 (or later) server in a cross-version environment.

Table A14.6 Limitations for Accessing SAS Views on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

Remote Library Services No access is permitted
between a SAS 6 client
and a SAS 9 server.

For SAS 8 DATA step
views, the SAS 6 client
has only Read access.

For SAS 8 SAS/ACCESS
views, the SAS 6 client
has Read, Write, and
Update access.

Data Transfer Services For PROC SQL views, a SAS 6 client can upload a
PROC SQL view between a SAS 9 or SAS 8 server by
using the INLIB= option to specify the library that is
associated with the view to transfer. The DATA= option
can be used, but a data set will be created.

Compute Services For SAS views, a Version 6 client can remote submit a
SAS program that references SAS views to a SAS 9 or
SAS 8 server. The SAS views that are referenced in

Access SAS Views 459

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 8 Server

remote submit blocks can be SAS 9, SAS 8, or SAS 6
data files.

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses SAS
views on a SAS 6 server in a cross-version environment.

Table A14.7 Limitations for Accessing SAS Views on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client
and a SAS 6 server.

For SAS 6 DATA step
views and SAS 6 PROC
SQL views, if the view is
processed at the server
(RMTVIEW=YES in the
LIBNAME statement), the
SAS 8 client has Read
access only for DATA step
views.

Data Transfer Services A SAS 9 or SAS 8 client can upload data that is
associated with a SAS view to a SAS 6 server.

Names of files that are transferred to a SAS 6 server are
truncated, following truncation rules.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS
program that references SAS 6 views to a SAS 6 server.

Access Catalogs

Limitations
There are limitations and restrictions when accessing catalogs in a cross-version
environment.

460 Appendix 2 / SAS/CONNECT Cross-Version Issues

CAUTION
A SAS 9 or SAS 8 SAS session cannot read SAS 6 catalogs on AIX RS/6000.
Use the CPORT and CIMPORT procedures to migrate SAS 6 catalogs into a SAS 9 or
SAS 8 environment on AIX.

SAS 8 (or later) catalog entry types (alphabetized horizontally) that are compatible
with SAS 6 include:

AFCBT AFGO DEVMAP

FONT FONTLIST KEYMAP

KEYS LOG OUTPUT

SOURCE TEMPLATE TRANTAB

SAS 6 Client Accessing a SAS 8 (or Later) Server
This table summarizes the limitations of a SAS 6 client that accesses catalogs on a
SAS 8 (or later) server in a cross-version environment.

Table A14.8 Limitations for Accessing Catalogs on SAS 8 (or Later) from SAS 6

SAS/CONNECT Service
SAS 6 Client Connecting
to SAS 9 Server

SAS 6 Client Connecting
to SAS 9 Server

Remote Library Services No access is permitted
between a SAS 9 client
and a SAS 6 server.

A SAS 6 client can read a
SAS 6 catalog on a SAS 8
server.

A SAS 6 client can read,
write, and update a SAS 8
catalog that does not
contain new features.

Data Transfer Services A SAS 6 client can upload a SAS 6 catalog to a SAS 9
or SAS 8 server. The uploaded catalog is converted to
SAS 9 or SAS 8 format.

A SAS 6 client can download a SAS 9 or SAS 8 catalog
if the entry type does not contain new features.

Compute Services A SAS 6 client can remotely submit a SAS program that
references a SAS catalog to a SAS 9 or SAS 8 server.

Access Catalogs 461

SAS 8 (or Later) Client Accessing a SAS 6 Server
This table summarizes the limitations of a SAS 8 (or later) client that accesses
catalogs on a SAS 6 server in a cross-version environment.

Table A14.9 Limitations for Accessing Catalogs on SAS 6 from SAS 8 (or Later)

SAS/CONNECT Service
SAS 9 Client Connecting
to a SAS 6 Server

SAS 8 Client Connecting
to a SAS 6 Server

Remote Library Services No access is permitted
between a SAS 9 client
and a SAS 6 server.

A SAS 8 client can read
from and write to a SAS 6
catalog on a SAS 6 server.

A SAS 8 client can write a
SAS 6 catalog from one
SAS 6 library to another
SAS 6 library by using
PROC COPY.

Data Transfer Services A SAS 9 or SAS 8 client can download a Version 6
catalog from a SAS 6 server.

A SAS 9 or SAS 8 server can upload a SAS 6 catalog
from a SAS 9 or Version 8 server if the entry type does
not contain new features.

A SAS 9 or SAS 8 client cannot create a SAS 6 catalog
entry by using PROC UPLOAD.

Compute Services A SAS 9 or SAS 8 client can remotely submit a SAS
program that references a SAS catalog to a SAS 6
server.

File Format Translation Algorithms

SAS 6 Translation
In SAS 6, translation occurs twice for each data transfer between a client and a
server that run on computers whose architectures are incompatible.

1 The data is translated from the source computer's native file format to transport
format.

462 Appendix 2 / SAS/CONNECT Cross-Version Issues

2 The data that is represented in transport format is translated to the target
computer's native file format.

SAS 8 (and Later) Translation
In SAS 8 and later releases of SAS, translation occurs only once for each data
transfer between a client and a server that run on computers whose architectures
are incompatible. SAS/CONNECT dynamically translates incompatible file formats
for each file upload or file download transaction, bypassing the explicit creation of a
transport file.

File Format Translation Algorithms 463

464 Appendix 2 / SAS/CONNECT Cross-Version Issues

	Contents
	Stylistic Conventions
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	What's New in SAS/CONNECT 9.4
	Overview
	New CONNECTEVENTS System Option
	Enhanced RSUBMIT Command with NEW Statement Option
	New XATTR= Data Set Option in PROC UPLOAD and PROC DOWNLOAD
	New SAS/CONNECT Spawner Start-Up Options and New Management
Interface
	Enhanced Logging and Messaging
	Enhanced Data Transfer of Encoded Data
	Added Flexibility for Password and User ID Naming
	Enhanced Password Support on z/OS
	Support for New Base SAS Language Elements
	Support for Extended Attributes
	Support for the New Default Values of the LRECL= Option
	New Locked-Down State Restrictions
	Enhanced INFILE= Option in PROC UPLOAD and PROC DOWNLOAD
	Document Enhancements
	New Authinfo File Support for Credentials
	New TCPPROXYLIST Environment Variable
	Changed Default Value for the TCPLISTENTIME Option
	New NOCLEARTEXT Default Spawner Behavior
	New Error Message for Sign-ons from Workspace Servers That
Allow Numeric Session-ids
	Added _USER_ Option to %SYSRPUT Statement
	Deprecation of Telnet and CLEARTEXT option

	Introduction to SAS/CONNECT
	Introduction
	About This Book
	Overview
	Document Scope
	Administrative Sections
	Usage and Language Reference Sections

	SAS/CONNECT in a SAS Intelligence Platform Environment

	What is SAS/CONNECT?
	Overview
	Features
	Services

	Compute Services
	Compute Services That Use RSUBMIT
	Compute Services That Use Remote SQL Pass-Through

	Remote Library Services
	Data Transfer Services

	Access Methods
	Encryption Providers

	Using SAS/CONNECT
	Signing On
	Types of Sign-ons
	Overview
	Non-Metadata Server-based Sign-ons
	Spawner Sign-ons
	SASCMD (MP Connect) Sign-ons
	Telnet Sign-ons

	Metadata Server-based Sign-ons
	SAS Metadata Server
	Logical SAS/CONNECT Server Sign-ons
	SAS Grid Server Sign-ons

	Where to Find More Information

	Interfaces for Using SAS/CONNECT
	Types of Interfaces for Using SAS/CONNECT
	The SAS Windowing Environment with SAS/CONNECT
	The Sign-on Window
	The Sign-off Window

	The Program Editor Window with SAS/CONNECT
	Use the Program Editor Window to Sign On SAS/CONNECT
	Use the Program Editor Window to Sign Off SAS/CONNECT

	Use the Autoexec File with SAS/CONNECT

	Locked-Down SAS Sessions
	Sign On to Locked-Down SAS Sessions
	Overview
	SASCMD Sign-ons
	Scripted Sign-ons
	Server Security
	Logging

	Using Compute Services
	Overview of Compute Services
	MP CONNECT
	MP CONNECT
	Independent Parallelism
	Overview
	Considerations for Independent Parallelism
	Single Input Data Source
	I/O Activity in the Work Library of Each SAS Session

	Pipeline Parallelism
	Overview of Pipeline Parallelism
	Limitation of Pipeline Parallelism
	Considerations for Piping

	Benefits of MP CONNECT
	Scalability with MP CONNECT
	Overview of Scalability
	Parallel Threads and Parallel Processes
	Parallel Processes
	Parallel Threads
	Scaling Up
	Scaling Out
	Multiple Threads and Multiple Processors

	Monitor MP CONNECT Tasks
	Overview of Monitoring MP CONNECT Tasks
	Manage MP CONNECT Log and Output Results
	MP CONNECT Task Completion

	Use SAS Explorer to Monitor SAS/CONNECT Tasks
	Compute Services and the Output Delivery System
	Use the SAS Windowing Environment to Control Remote Processing
	Overview of Remote Processing Control Using the SAS Windowing
Environment
	Remote Submit
	Remote Get
	Remote Display

	Use the Macro Facility with SAS/CONNECT
	Overview
	Submit Code Remotely Using a Macro
	MPRINT and MLOGIC Macro System Options
	The %NRSTR Function
	The %SYSLPUT and %SYSRPUT Statements

	Use SYSPROCESSMODE to Display the Run Mode or Server Type
	Compute Services and Break Windows
	Overview
	SAS/CONNECT Attention Handler Window
	Communication Services Break Handler Window

	Examples Using Compute Services
	Example 1: MP CONNECT for a Long-Running Remote Task
	Purpose
	Program

	Example 2: Administer Server Data Sets from a Client
	Purpose
	Program

	Example 3: The CMACVAR= Option with MP CONNECT
	Purpose
	Program

	Example 4: The Output Delivery System with SAS/CONNECT
	Purpose
	Program

	Example 5: MP CONNECT and the WAITFOR Statement
	Purpose
	Program

	Example 6: MP CONNECT with Piping
	Purpose
	Program

	Example 7: Prevent Pipes from Closing Prematurely
	Purpose
	Program

	Example 8: Force Macro Variables to Be Defined When %SYSRPUT
Executes
	Purpose
	Program

	Example 9: Use Server Software from a Client Session
	Purpose
	Program: SAS/STAT Software
	Purpose
	Program: Sorting

	Using Remote Library Services (RLS)
	Introduction to Remote Library Services
	Definition
	Client Access to a Single- or Multi-User Server

	Advantages
	Considerations for Using RLS
	Determine the Appropriate Data Access Solution
	Compute Services to Access Large Volumes of Data
	Data Transfer Services for Multi-Pass Data Processing
	Data Transfer Services When Network Response Time Is Delayed
	RLS When Data Flow through a Network Is Minimal
	DTS, RLS, and CS Compared

	RLS to Access Types of Data
	RLS Support for Data Types
	Access a Catalog
	Access an External Database
	Access a SAS View
	Access a SAS Utility File of Type PROGRAM or ACCESS

	Use SAS Views with Servers
	SAS/ACCESS Views, DATA Step Views, and PROC SQL Views
	Recommendations for PROC SQL Views

	WHERE Processing to Reduce Network Traffic
	Example 1: Access Server Data to Print a List of Reports
	Purpose
	Program

	Example 2: Access Server Data By Using the WHERE Statement
	Purpose
	Program

	Example 3: Update Server Data
	Purpose
	Program

	Example 4: An SCL Program That Uses the WHERE Statement
	Purpose
	Program

	Example 5: Update a Server Data Set By Applying a Client Transaction
Data Set
	Purpose
	Program

	Example 6: Subset Server Data for Client Processing and Display
	Purpose
	Program

	Using Data Transfer Services
	Introduction to Data Transfer Services
	Data Transfer Services: Advantages
	Offloads Server Work
	Increases the Robustness of a Decision Support Environment
	Transfers Only Relevant Data
	Supports the Model of a Centralized Control Point
	Backs Up Client Data
	Balances Resources in an Application Development Environment

	Considerations for Using Data Transfer Services
	Use Compute Services to Access Large Data Resources
	Use Remote Library Services to Access Small to Medium Data
Resources
	Use a Combination of Services
	File Transfer Performance
	Network File Compression
	Data File Compression to Disk

	Transfer Status Window
	Non-English Keyboards
	Data Transfer Services Tips
	Tips for Using PROC DOWNLOAD and PROC UPLOAD
	Tips for Using PROC DOWNLOAD Only
	Tips for Using PROC UPLOAD Only

	SAS/CONNECT Language Reference
	System Options
	Dictionary
	AUTOSIGNON System Option
	COMAMID= System Option
	CONNECTEVENTS System Option
	CONNECTMETACONNECTION System Option
	CONNECTOUTPUT= System Option
	CONNECTPERSIST System Option
	CONNECTREMOTE= System Option
	CONNECTSTATUS System Option
	CONNECTWAIT System Option
	DMR System Option
	SASCMD= System Option
	SASFRSCR System Option
	SASSCRIPT= System Option
	SIGNONWAIT System Option
	SYSRPUTSYNC System Option
	TBUFSIZE= System Option
	TCPLISTENTIME= System Option
	TCPPORTFIRST= System Option
	TCPPORTLAST= System Option

	SIGNON and SIGNOFF Statements
	Dictionary
	SIGNON Statement
	SIGNOFF Statement

	RSPT Statements
	Dictionary
	RSPT Statement
	RSPT: Server Processing and Client Viewing
	RSPT: Client Processing and Viewing
	RSPT: Server Processing and Viewing
	RLS: Client Processing and Viewing

	RSUBMIT Statements
	Dictionary
	RSUBMIT Statement
	ENDRSUBMIT Statement
	RDISPLAY Statement
	RGET Statement
	%SYSLPUT Statement
	%SYSRPUT Statement
	WAITFOR Statement
	LISTTASK Statement
	KILLTASK Statement

	FILENAME Statement
	Dictionary
	FILENAME Statement

	LIBNAME Statement
	Dictionary
	LIBNAME Statement

	LIBNAME Statement, SASESOCK Engine
	Dictionary
	LIBNAME Statement: SASESOCK Engine

	Commands
	Dictionary
	SIGNON Command
	SIGNOFF Command
	RDISPLAY Command
	RSUBMIT Command

	UPLOAD Procedure
	Overview: UPLOAD Procedure
	Introduction

	Syntax: UPLOAD Procedure
	PROC UPLOAD Statement
	WHERE Statement
	EXCLUDE Statement
	SELECT Statement
	TRANTAB Statement

	Usage: UPLOAD Procedure
	Using: UPLOAD Procedure
	VALIDMEMNAME and VALIDVARNAME System Options

	Results: UPLOAD Procedure
	Results: UPLOAD Procedure

	Examples: UPLOAD Procedure
	Example 1: Transfer Specific Member Types
	Example 2: The MEMTYPE= Option in the PROC UPLOAD Statement
	Example 3: Transfer Specific Catalog Entry Types
	Example 4: The ENTRYTYPE= Option in the SELECT Statement in PROC UPLOAD
	Example 5: Long Member Names in Catalog Transfers
	Example 6: Use LIBRARY Transfers to Transfer Data Set Generations
	Example 7: Use a SELECT Statement to Transfer Generations
	Example 8: Transfer Single Data Sets Using PROC UPLOAD
	Example 9: The DROP= Option in the PROC UPLOAD Statement
	Example 10: The INLIB= Option in the PROC UPLOAD Statement
	Example 11: The EXTENDSN= and V6TRANSPORT Options in the PROC UPLOAD Statement
	Example 12: Transfer SAS Utility Files
	Example 13: The MEMTYPE= Option in the PROC UPLOAD Statement
	Example 14: The MEMTYPE= Option in the SELECT Statement
	Example 15: The MEMTYPE= Option in the EXCLUDE Statement
	Example 16: Distribute an .EXE File from the Server to Multiple Clients:
UPLOAD
	Example 17: Distribute an .EXE File from the Server to Multiple Clients:
DOWNLOAD
	Example 18: Create an Index with OUT= Using PROC UPLOAD
	Example 19: Transfer Data Sets with Extended Attributes
	Example 20: Compute Services and Data Transfer Services Combined: Macro
Capabilities
	Example 21: RLS and UPLOAD/DOWNLOAD Combined: Distribution of Reports over
a Network

	DOWNLOAD Procedure
	Overview: DOWNLOAD Procedure
	Introduction

	Syntax: DOWNLOAD Procedure
	PROC DOWNLOAD Statement
	WHERE Statement
	EXCLUDE Statement
	SELECT Statement
	TRANTAB Statement

	Usage: DOWNLOAD Procedure
	Using: DOWNLOAD Procedure
	VALIDMEMNAME and VALIDVARNAME System Options

	Results: DOWNLOAD Procedure
	Results: DOWNLOAD Procedure

	Examples: DOWNLOAD Procedure
	Example 1: DTS: Transfer Data Using WHERE Statements
	Example 2: DTS: The MEMTYPE= Option in the SELECT Statement
	Example 3: The ENTRYTYPE= Option in the EXCLUDE Statement in PROC DOWNLOAD
	Example 4: The ENTRYTYPE= Option in Two SELECT Statements in PROC DOWNLOAD
	Example 5: Inherit Generation Specific Attributes
	Example 6: Transfer Long Member Names
	Example 7: Transfer Data By Using Data Set Options and Attributes
	Example 8: Transfer Data Set Integrity Constraints
	Example 9: The INDEX=NO Option in the PROC DOWNLOAD Statement
	Example 10: The EXTENDSN= Option in the PROC DOWNLOAD Statement
	Example 11: Combining Data from Multiple Server Sessions
	Example 12: Compute Services and Data Transfer Services Combined: Process
in the Client and Server Sessions
	Example 13: Compute Services and Data Transfer Services Combined: Sort
and Merge Data

	SAS Component Language (SCL) Functions and Options
	Use SCL to Locate and Store Sample Script Files
	Dictionary
	COMAMID SCL Function
	RLINK SCL Function
	RSESSION SCL Function
	RSTITLE SCL Function

	SAS/CONNECT Script Statements
	Dictionary
	ABORT Script Statement
	CALL Script Statement
	ECHO Script Statement
	GOTO Script Statement
	IF Script Statement
	INPUT Script Statement
	LOG Script Statement
	NOTIFY Script Statement
	RETURN Script Statement
	SCANFOR Script Statement
	STOP Script Statement
	TRACE Script Statement
	TYPE Script Statement
	WAITFOR Script Statement

	Administration
	Access Methods
	Access Methods Supported by SAS/CONNECT
	Overview
	TCP/IP Access Method
	Overview
	About TCP/IP Addressing

	Configure the TCP/IP Services File
	Overview
	The -SERVICE Option
	Services That Require an Entry in the Services File
	Location of the Services File
	Rules for Updating TCP/IP Port Numbers and Service Names

	Configure SAS/CONNECT for Use with a Firewall
	Firewall Concepts
	Requirements for Using a Firewall
	Firewall Configurations
	Overview of Firewall Configurations
	Set Up a Firewall Configuration That Uses Restricted Ports
	Set Up a Firewall Configuration That Uses a Single Port

	The SAS/CONNECT Spawner
	Introduction to the SAS/CONNECT Spawner
	Definition
	Operating Environment Support
for Spawners
	Benefits of Using a Spawner to
Sign On to a Server
	Protects Client's User ID
and Password
	Controls Client Access to the
Server in a Firewall Configuration
	Eliminates the Need for a Sign-On
Script

	Use SAS Management Console to
Manage the SAS/CONNECT Spawner
	Overview

	Use PROC IOMOPERATE to Manage
the SAS/CONNECT Spawner
	Overview
	Example 1: List Valid PROC IOMOPERATE
Commands
	Example 2: Display a List of
Spawned Servers
	Example 3: Display Spawner Information
	Example 4: Display Spawner Attributes
	Example 5: Stop and Re-Start
the Spawner

	Spawner Options
	Introduction
	General Spawner Options
	Security Options
	Windows-only Service Options

	Spawner Examples
	Scripted Sign-on to a UNIX Spawner
(Server)
	Scripted Sign-on to a UNIX Spawner
(Client)
	Scriptless Sign-on to a Windows
Spawner That Runs as a Service (Server)
	Scriptless Sign-on to a Windows
Spawner That Runs as a Service (Client)
	Encrypted Sign-on to a z/OS Spawner
(Server)
	Encrypted Sign-on to a SAS/CONNECT
Spawner (Client)

	UNIX Operating Environment
	Overview
	Overview
	What Is Covered
	Types of Connections

	Network Requirements
	Tasks
	Environment Variables
	System Options for TCP/IP

	Spawner Connections on UNIX
	Set Up the Spawner on UNIX
	Overview
	Tasks
	Network Security
	Location of the SAS/CONNECT Spawner on UNIX
	Start the Spawner
	Specify the Spawner Port or Service Name
	Stop the Spawner
	Specify Encryption Options for Data Security

	Sign On to the SAS/CONNECT Spawner
	Overview
	Tasks
	Ensure That the Spawner Is Running on the Server
	Specify the Server and the Spawner Port or Service Name
	Sign On Without a Script
	Sign On Using a Script
	Specify Data Encryption Options for Sign-ons
	Spawner Sign-on Examples

	SASCMD Connections on UNIX
	Sign On to the Same Multiprocessor Computer
	Tasks
	Specify the Name of the Server Session
	Specify the SASCMD Option to Start SAS
	Sign On
	The NOSYNTAXCHECK System Option

	Telnet Connections on UNIX
	Tasks
	Specify the Server
	Specify a Sign-on Script
	Sign On to the Server Session

	Examples
	Example 1: Sign On to a z/OS Server from a UNIX Client
	Example 2: Start the SAS/CONNECT Spawner on UNIX

	z/OS Operating Environment
	Overview
	What Is Covered
	Types of Connections

	Spawner Connections on z/OS
	Product Requirements
	Set Up the Spawner on z/OS
	Steps
	Spawner Components on z/OS
	Configure TCP/IP Ports
	Specify a Spawner TCP/IP Service Name (Optional)
	Specify Other Spawner Options (Optional)
	Start the Spawner
	Stop the Spawner
	Specify Encryption for Spawner Start-up

	Sign On to the Spawner
	Task List

	Ensure That the Spawner Is Running on the Remote Host
	Specify the Access Method
	Sign On Using the Host Name and Spawner Port Number
	Specify the TCP/IP Service Name (Optional)
	Specify a Sign-on Script (Optional)
	Specify a User ID and Password
	Submit the Sign-on Code
	Sign-on Examples
	Enable Encryption for Spawner Sign-ons

	MP Connections on z/OS
	Overview
	Product Requirements for the XMS Access Method
	Tasks

	Sign On Using MP Connect
	Tasks
	Examples for Signing On Using MP Connect

	Telnet Connections on z/OS
	Product Requirements for Telnet Connections
	Task List

	Sign On Using a Telnet Connection
	Specify the Host
	Specify a Sign-on Script
	Example: Sign On to a Remote z/OS Host Session

	Environment Variables

	Windows Operating Environment
	Overview
	What Is Covered
	Types of Connections

	Network Requirements
	Tasks
	User Context in a Secured Server
	Definition
	Access a Secured Server Using Your Own Context
	Access a Server Using a Different Context
	Server Security Using Client Authentication

	The Simulated Logon Method to Access a Secured Server
	Overview
	Requirements for Using Simulated Logon with SAS/CONNECT

	Use SSPI to Access a Secured Server
	Overview of SSPI
	SSPI Requirement for SAS/CONNECT

	SAS/CONNECT Options for TCP/IP
	SAS/CONNECT Environment Variables for TCP/IP

	Spawner Connections on Windows
	Set Up the Spawner on Windows
	Overview
	Task List
	Assign User Rights for a Server That Is Running Secured
	Install the Spawner on Windows
	Start the Spawner
	Specify the Spawner Port or Service Name
	Stop the Spawner
	Uninstall the Spawner Service
	Specify Encryption Options for Data Security
	Example

	Sign On Using the Spawner
	Tasks
	Ensure That the Spawner Is Running on the Server
	Specify the Server and the Spawner Service Name or Port Number
	Sign On
	Sign On Using a Script
	Specify a User ID and Password
	Specify Data Encryption Options for Client Sign-ons

	SASCMD Connections on Windows
	Sign On to the Same Multiprocessor Machine
	Tasks
	Specify the Server Session
	Specify the SASCMD Option to Start SAS
	Sign On to the Server Session
	The NOSYNTAXCHECK System Option

	Telnet Connections on Windows
	Tasks

	SAS/CONNECT Files
	SAS/CONNECT Files and Directories
	Directory Names
	SAS/CONNECT Files

	SAS/CONNECT Sign-on Script Files
	Introduction to SAS/CONNECT Script Files
	Location of Sample Scripts Included with SAS
	Using Script Files to Sign On
	Purpose of a Sign-on Script
	Passwords in a Script File
	SAS/CONNECT Script Statements
	Simple SAS/CONNECT Scripts for Sign On and Sign Off
	Overview
	Syntax Rules for SAS/CONNECT Script Statements
	Debug a SAS/CONNECT Script
	Example SAS/CONNECT Script for a TCP/IP Connection to UNIX

	Logging and Debugging
	Administering Logging for SAS/CONNECT
	SAS Logging Facility
	About the SAS Logging Facility
	The SAS Logging Facility
	How to Change the Logging Level of the SAS/CONNECT Spawner
	Sample Logging Configuration File
	Triggers for Log Events
	Example of a Log Event

	SAS Console Log
	Definition
	SAS Console Log Messages for Windows
	SAS Console Log Messages for UNIX
	SAS Console Log Messages for z/OS

	TCP/IP Troubleshooting
	UNIX: TCP/IP Access Method
	SAS/CONNECT Error Messages under UNIX

	z/OS: TCP/IP Access Method
	SAS/CONNECT Error Messages under z/OS

	Windows: TCP/IP Access Method
	SAS/CONNECT Error Messages under Windows

	Sign-On Troubleshooting
	Troubleshooting Sign-On Problems
	Host-Not-Active Message
	Absence of SAS Software Start-Up Messages
	Requested-Link-Not-Found Message
	SAS/CONNECT Server Session Initialization Errors
	Cannot-Start-Remote-Process Message

	Compute Services Troubleshooting
	Problems and Solutions When Using the RSUBMIT
Statement
	Invalid Option
	Dialog Box Appears despite NOTERMINAL Option Setting
	Remotely Submitted Statements Following a Syntax Error Are
Not Processed
	Square Bracket Keys Not Supported
	No Terminal Connected to SAS Session
	Piping Problems
	Request for Setup of Link for Communication Subsystem Partner
Fails

	Data Transfer Services Troubleshooting
	Troubleshooting the UPLOAD and DOWNLOAD Procedures
	Symbol Is Not Recognized
	Variable-Block Binary File LRECL Value Exceeds 256
	Fixed-Block Binary File LRECL Value Exceeds 256
	EBCDIC CC-Control Is Not Downloaded

	Appendix
	 Cross-Architecture Issues
	Translation of SAS Data between Computers That Represent Data
Differently
	Overview of Data Translation between Computers
	Remote Library Services
	Data Transfer Services
	Overview
	Translation of SAS 8 and Later Releases
	SAS 6 Translation

	Translation of Floating-Point Numbers between Computers
	Loss of Numeric Precision and Magnitude
	Avoiding Loss of Precision
	Significance of Loss of Magnitude
	Example

	Encoding Compatibility between SAS/CONNECT Client and Server
Sessions

	SAS/CONNECT Cross-Version Issues
	Factors Affecting Access to SAS Files
	Features Exclusive to SAS Releases after SAS 6
	New Features Incompatible with SAS 6
	SAS File Format Features
	File Transfer Services: Truncating Long Names and Labels

	RLS: Access SAS Files in a Mixed Cross-Version Library
	Separate Older SAS Files from Newer SAS Files
	Specify an Engine to Locate Release-Specific Files in a Mixed
Library
	Determine the Version of SAS Used to Create a SAS File
	Concatenate Libraries

	Access SAS Data Sets
	Limitations
	SAS 6 Client Accessing a SAS 8 (or later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Access SAS Views
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	Access Catalogs
	Limitations
	SAS 6 Client Accessing a SAS 8 (or Later) Server
	SAS 8 (or Later) Client Accessing a SAS 6 Server

	File Format Translation Algorithms
	SAS 6 Translation
	SAS 8 (and Later) Translation

