
SAS® Visual Data Mining and Machine Learning 8.5: The NETWORK Procedure

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

November 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is licensed under its applicable third-party software license agreement. For license information about third-party software distributed with SAS software, refer to http://support.sas.com/thirdpartylicenses.
Contents

Chapter 1.	What’s New in the NETWORK Procedure in SAS Visual Data Mining and Machine Learning 8.5	1
Chapter 2.	Introduction	5
Chapter 3.	The NETWORK Procedure	11

Index 299
Credits and Acknowledgments

Documentation

Writing Matthew Galati, Steve Harenberg, Yi Liao, Brandon Reese
Editing Anne Baxter, Ed Huddleston
Documentation Support Tim Arnold, Melanie Gratton
Technical Review Charles B. Kelly, Manoj Chari, Ed Hughes, Rob Pratt, Anatoli Melechko, Yu-Min Lin

Software

PROC NETWORK Matthew Galati, Steve Harenberg, Yi Liao, Anatoli Melechko, Brandon Reese

Support Groups

Software Testing Charles B. Kelly, Rui Kang, Yu-Min Lin, Elham Sadeghi
Technical Support Tonya Chapman
Overview

SAS Visual Data Mining and Machine Learning 8.5 contains several new features and performance enhancements in the NETWORK procedure.
Chapter 1: What's New in the NETWORK Procedure in SAS Visual Data Mining and Machine Learning 8.5

NETWORK Procedure Enhancements

Improving computational performance is a continuing theme for all algorithms in the NETWORK procedure. In this release, many enhancements have been made to reduce the computation time for various algorithms.

The following list highlights changes that are related to graph handling for all algorithms:

- The INTERNALFORMAT= option has been deprecated. The best underlying internal structures are chosen for the requested algorithm.
- By default, MULTILINKS=TRUE for algorithms that support multilinks. Previously, this default was determined by the value of the INTERNALFORMAT= option.
- The LOADGRAPH statement enables you to load graph input data tables and build in-memory data structures for subsequent analyses.
- The UNLOADGRAPH statement enables you to delete in-memory data structures that have been loaded with the LOADGRAPH statement.

The following sections contain lists of new features and enhancements specific to a particular algorithm statement.

CENTRALITY Statement

The following new features are specific to centrality algorithms:

- The algorithm for the clustering coefficient metric now reports the graph triangle count in the NUM_TRIANGLES term of the macro variable _NETWORK_ for undirected graphs.
- The degree centrality metric has been generalized to include link weights.

COMMUNITY Statement

The following new features are specific to community detection algorithms:

- The parallel label propagation algorithm now supports undirected graphs.
- You can use the WARMSTART= option to warm start community detection, which can improve run time and community stability across multiple input graphs.
- When specifying ALGORITHM=LOUVAIN or ALGORITHM=LABELPROP, you can use the FIX= option to define groups of nodes to fix together in a community.
CYCLE Statement

The cycle algorithm can now produce a table that contains the sequence of links in the cycles that are found when you specify the OUTCYCLESLINKS= option.

NODESIMILARITY Statement

The following new features are specific to node similarity algorithms:

- You can use the COSINE= option to compute cosine node similarity.
- You can filter node similarity results to include only the highest-scoring pairs, lowest-scoring pairs, or both by using the TOPK=, BOTTOMK=, and ORDERBY= options.
- The data table that you specify in the OUTSIMILARITY= option includes, by default, node pairs where the source node label is less than or equal to the sink node label. You can override this behavior by requesting particular source-sink pairs by using the NODESSUBSET=, SOURCE=, or SINK= options.
- You can specify a convergence threshold value by using the CONVERGENCE= option. The vector node similarity algorithm terminates after reaching the specified convergence value. You can view the convergence values in the output data table that you specify in the OUTCONVERGENCE= option.

PATTERNMATCH Statement

The following new features are specific to pattern matching algorithms:

- You can use the SAS Function Compiler (FCMP) to customize matches at a global level by specifying the MATCHFILTER= option.
- You can use the QUERYKEY= option to define more than one pattern of interest for the same main graph and execute the queries in parallel.
- You can use the VARSMATCH= option in the LINKSQUERYVAR and NODESQUERYVAR statements to directly specify which variables to match exactly.

In addition, the FCMP function options now expect a full specification of the mapping between arguments and columns in the associated data tables. The function specification also accepts scalars. This helps to broaden the flexibility of function specification for customizing pattern matching search. For more information, see the section “Using the SAS Function Compiler to Create Refined Query Filters” on page 164.
PROJECTION Statement (New)

You can now find network projections by using the PROJECTION statement, which creates a single-partition graph from a multiple-partition graph.

SUMMARY Statement

You can now add the triangle count for undirected graphs to the graph summary output by using the CLUSTERINGCOEFFICIENT option.
Chapter 2
Introduction

Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the NETWORK Procedure</td>
<td>5</td>
</tr>
<tr>
<td>About This Book</td>
<td>6</td>
</tr>
<tr>
<td>Chapter Organization</td>
<td>6</td>
</tr>
<tr>
<td>Using CAS Sessions and CAS Engine Librefs</td>
<td>6</td>
</tr>
<tr>
<td>Loading a SAS Data Set onto a CAS Server</td>
<td>7</td>
</tr>
<tr>
<td>Typographical Conventions</td>
<td>8</td>
</tr>
<tr>
<td>Options Used in Examples</td>
<td>9</td>
</tr>
<tr>
<td>Where to Turn for More Information</td>
<td>9</td>
</tr>
<tr>
<td>Online Documentation</td>
<td>9</td>
</tr>
<tr>
<td>SAS Technical Support Services</td>
<td>9</td>
</tr>
</tbody>
</table>

Overview of the NETWORK Procedure

The NETWORK procedure includes a number of graph theory and network analysis algorithms that can augment data mining and machine learning approaches. In many practical applications of data mining and machine learning models, pairwise interaction between the entities of interest in the model often plays an important role. For example, when you are modeling churn in a telecommunications network to support a retention campaign, the influence of individual customers on the other customers—such as friends and acquaintances that they regularly interact with—might contribute to the propensity of other customers to churn. You could likewise imagine a customer being able to influence the propensity of his or her acquaintances to acquire new products. Social networks such as Facebook and Twitter are obvious examples of networks that represent such interactions between individuals.
About This Book

This book assumes that you are familiar with Base SAS software and with the books *SAS Language Reference: Concepts* and *Base SAS Procedures Guide*. It also assumes that you are familiar with basic SAS System concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as the PRINT and SORT procedures) to manipulate SAS data sets.

Chapter Organization

This book is organized as follows:

Chapter 2, this chapter, provides an overview of the NETWORK procedure, describes typographical conventions, and tells you where you can find more information.

Chapter 3 describes the NETWORK procedure and is organized as follows:

- The “Overview” section briefly describes the analysis provided by the procedure.
- The “Getting Started” section provides a quick introduction to the procedure through a simple example.
- The “Syntax” section describes the SAS statements and options that control the procedure.
- The “Details” section discusses methodology and other topics, such as ODS tables.
- The “Examples” section contains examples that use the procedure.
- The “References” section contains references for the methodology.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:
Loading a SAS Data Set onto a CAS Server

Procedures in this book require the input data to reside on a CAS server. To work with a SAS data set, you must first load the data set onto the CAS server. Data loaded on the CAS server are called data tables. This section lists three methods of loading a SAS data set onto a CAS server. In this section, mycas is the name of the caslib that is connected to the mysess CAS session.

- You can use a single DATA step to create a data table on the CAS server as follows:

```sas
data mycas.Sample;
  input from $ to $ @@;
datalines;
A B A C B C
;
```

Note that DATA step operations might not work as intended when you perform them on the CAS server instead of the SAS client.

- You can create a SAS data set first, and when it contains exactly what you want, you can use another DATA step to load it onto the CAS server as follows:

```sas
data Sample;
  input from $ to $ @@;
datalines;
A B A C B C
;
data mycas.Sample;
  set Sample;
run;
```

- You can use the CASUTIL procedure as follows:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named mysess, and the LIBNAME statement creates the mycas CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the mysess session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS statement and the LIBNAME statement, see *SAS Cloud Analytic Services: User’s Guide*. For general information about CAS and CAS sessions, see *SAS Cloud Analytic Services: Fundamentals*.
The CASUTIL procedure can load data onto a CAS server more efficiently than the DATA step. For more information about the CASUTIL procedure, see *SAS Cloud Analytic Services: User’s Guide*.

The mycas caslib stores the Sample data table, which can be distributed across many machine nodes. You must use a caslib reference in procedures in this book to enable the SAS client machine to communicate with the CAS session. For example, the following NETWORK procedure statements use a data table that resides in the mycas caslib:

```sas
proc network links = mycas.Sample;
    ...statements...
run;
```

You can delete your data table by using the DELETE procedure as follows:

```sas
proc delete data = mycas.Sample;
run;
```

The Sample data table is accessible only in the mysess session. When you terminate the mysess session, the Sample data table is no longer accessible from the CAS server. If you want your Sample data table to be available to other CAS sessions, then you must *promote* your data table. For more information about data tables, see *SAS Cloud Analytic Services: User’s Guide*.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the typographical conventions used in this book:

- **roman** is the standard type style used for most text.
- **UPPERCASE ROMAN** is used for SAS statements, options, and other SAS language elements when they appear in text. However, you can enter these elements in your own SAS programs in lowercase, uppercase, or a mixture of the two.
- **UPPERCASE BOLD** is used in the “Syntax” sections’ initial lists of SAS statements and options.
- **oblique** is used in the syntax definitions and in text to represent arguments for which you supply a value.
- **VariableName** is used for the names of variables and data sets when they appear in text.
- **bold** is used for matrices and vectors.
- **italic** is used for terms that are defined in text, for emphasis, and for references to publications.
- **monospace bold** is used for example code. In most cases, this book uses lowercase type for SAS code.
Options Used in Examples

The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documentation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template for an HTML ODS destination as follows:

```
ods html style=HTMLBlue;
```

You can also specify a style template for a PDF ODS destination as follows:

```
ods pdf style=PearlJ;
```

Most of the PDF tables are produced by using the following SAS System option:

```
options papersize=(6.5in 9in);
```

If you run the examples, you might get slightly different output. This is a function of the SAS System options that are used and the precision that your computer uses for floating-point calculations.

Where to Turn for More Information

Online Documentation

You can access the documentation by going to http://support.sas.com/documentation.

SAS Technical Support Services

The SAS Technical Support staff is available to respond to problems and answer technical questions regarding the use of procedures in this book. Go to http://support.sas.com/techsup for more information.
Chapter 3
The NETWORK Procedure

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: NETWORK Procedure</td>
<td>13</td>
</tr>
<tr>
<td>Getting Started: NETWORK Procedure</td>
<td>14</td>
</tr>
<tr>
<td>Road Network Shortest Path</td>
<td>14</td>
</tr>
<tr>
<td>Authority in US Supreme Court Precedent</td>
<td>17</td>
</tr>
<tr>
<td>Syntax: NETWORK Procedure</td>
<td>20</td>
</tr>
<tr>
<td>Functional Summary</td>
<td>21</td>
</tr>
<tr>
<td>PROC NETWORK Statement</td>
<td>28</td>
</tr>
<tr>
<td>BICONNECTEDCOMPONENTS Statement</td>
<td>31</td>
</tr>
<tr>
<td>BY Statement</td>
<td>31</td>
</tr>
<tr>
<td>CENTRALITY Statement</td>
<td>32</td>
</tr>
<tr>
<td>CLIQUE Statement</td>
<td>36</td>
</tr>
<tr>
<td>COMMUNITY Statement</td>
<td>37</td>
</tr>
<tr>
<td>CONNECTEDCOMPONENTS Statement</td>
<td>40</td>
</tr>
<tr>
<td>CORE Statement</td>
<td>41</td>
</tr>
<tr>
<td>CYCLE Statement</td>
<td>41</td>
</tr>
<tr>
<td>DISPLAY Statement</td>
<td>42</td>
</tr>
<tr>
<td>DISPLAYOUT Statement</td>
<td>43</td>
</tr>
<tr>
<td>LINKSQUERYVAR Statement</td>
<td>44</td>
</tr>
<tr>
<td>LINKSVAR Statement</td>
<td>45</td>
</tr>
<tr>
<td>LOADGRAPH Statement</td>
<td>46</td>
</tr>
<tr>
<td>NODESIMILARITY Statement</td>
<td>46</td>
</tr>
<tr>
<td>NODESQUERYVAR Statement</td>
<td>49</td>
</tr>
<tr>
<td>NODESSUBSETVAR Statement</td>
<td>49</td>
</tr>
<tr>
<td>NODESVAR Statement</td>
<td>50</td>
</tr>
<tr>
<td>PATH Statement</td>
<td>51</td>
</tr>
<tr>
<td>PATTERNMATCH Statement</td>
<td>52</td>
</tr>
<tr>
<td>PROJECTION Statement</td>
<td>53</td>
</tr>
<tr>
<td>REACH Statement</td>
<td>55</td>
</tr>
<tr>
<td>SHORTESTPATH Statement</td>
<td>56</td>
</tr>
<tr>
<td>SUMMARY Statement</td>
<td>57</td>
</tr>
<tr>
<td>TRANSITIVECLOSURE Statement</td>
<td>58</td>
</tr>
<tr>
<td>UNLOADGRAPH Statement</td>
<td>58</td>
</tr>
<tr>
<td>Details: NETWORK Procedure</td>
<td>59</td>
</tr>
<tr>
<td>Graph Input Data</td>
<td>59</td>
</tr>
<tr>
<td>Determinism</td>
<td>76</td>
</tr>
<tr>
<td>Execution Modes and Data Movement</td>
<td>76</td>
</tr>
</tbody>
</table>
Chapter 3: The NETWORK Procedure

Persistent Data Structures (In-Memory Graphs) ... 79
Numeric Limitations ... 85
Size Limitations ... 86
Common Notation and Assumptions ... 86
Biconnected Components and Articulation Points 87
Centrality .. 91
Clique Enumeration ... 114
Community Detection .. 117
Connected Components .. 126
Core Decomposition .. 132
Cycle Enumeration .. 136
Node Similarity .. 142
Path Enumeration .. 152
Pattern Matching ... 156
Network Projection .. 185
Reach (Ego) Network .. 189
Shortest Path ... 195
Summary Statistics ... 207
Transitive Closure .. 214
Macro Variable _NETWORK_ ... 216
ODS Table Names ... 218

Examples: NETWORK Procedure ... 220
 Example 3.1: Articulation Points in a Terrorist Network 220
 Example 3.2: Influence Centrality for Project Groups in a Research Department 222
 Example 3.3: Betweenness and Closeness Centrality for Computer Network Topology 226
 Example 3.4: Betweenness and Closeness Centrality for Project Groups in a Research Department 229
 Example 3.5: Eigenvector Centrality for Word Sense Disambiguation 233
 Example 3.6: Community Detection on Zachary’s Karate Club Data 235
 Example 3.7: Recursive Community Detection on Zachary’s Karate Club Data 241
 Example 3.8: Centrality Metrics for an Undirected Graph by Community 243
 Example 3.9: Cycle Enumeration for Kidney Donor Exchange 248
 Example 3.10: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System .. 253
 Example 3.11: Reach Networks for Computing the Market Coverage of a Terrorist Network ... 256
 Example 3.12: Connected Components for US Patent Citations 258
 Example 3.13: Shortest Paths of the New York Road Network 260
 Example 3.14: Shortest Path in a Road Network by Date and Time 261
 Example 3.15: Pattern Matching in a Social Network 265
 Example 3.16: Detection of Value-Added Tax Carousel Fraud 275
 Example 3.17: Node Similarity for Link Prediction 284
 Example 3.18: A Node Similarity Recipe Recommendation Engine 290
 Example 3.19: Using Projection to Recommend Recipe Ingredient Pairings 293

References .. 295
Overview: NETWORK Procedure

The NETWORK procedure includes a number of graph theory and network analysis algorithms that can augment data mining and machine learning approaches. In many practical applications of data mining and machine learning models, pairwise interaction between the entities of interest in the model often plays an important role. For example, when you are modeling churn in a telecommunications network to support a retention campaign, the influence of individual customers on the other customers—such as friends and acquaintances that they regularly interact with—might contribute to the propensity of other customers to churn. You could likewise imagine a customer being able to influence the propensity of his or her acquaintances to acquire new products. Social networks such as Facebook and Twitter are obvious examples of networks that represent such interactions between individuals.

Networks also appear explicitly and implicitly in many other application contexts. Networks are often constructed from certain relationships that are based on natural co-occurrence; examples are relationships among researchers who coauthor articles, actors who appear in the same movie, words or topics that occur in the same document, items that appear together in a shopping basket, terrorism suspects who travel together or are seen in the same location, and so on. In these types of relationship, the strength or frequency of each interaction is modeled as a weight on the corresponding link of the resulting network.

To support the myriad ways in which networks appear in data mining, the NETWORK procedure makes no assumptions about the context or application from which the network arises. PROC NETWORK provides a number of network analysis algorithms (listed in Table 3.1) that take an abstract graph or network as input, help explain the network structure, and compute important network measures. Depending on the application, this type of network analysis can stand on its own and provide independent value, or it can support machine learning models—for example, by providing additional features that are derived from network measures such as node centrality.

Table 3.1 Algorithm Classes in PROC NETWORK

<table>
<thead>
<tr>
<th>Algorithm Class</th>
<th>PROC NETWORK Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biconnected components</td>
<td>BICONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>Centrality</td>
<td>CENTRALITY</td>
</tr>
<tr>
<td>Clique enumeration</td>
<td>CLIQUE</td>
</tr>
<tr>
<td>Community detection</td>
<td>COMMUNITY</td>
</tr>
<tr>
<td>Connected components</td>
<td>CONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>Core decomposition</td>
<td>CORE</td>
</tr>
<tr>
<td>Cycle enumeration</td>
<td>CYCLE</td>
</tr>
<tr>
<td>Node similarity</td>
<td>NODESIMILARITY</td>
</tr>
<tr>
<td>Path enumeration</td>
<td>PATH</td>
</tr>
<tr>
<td>Pattern matching</td>
<td>PATTERNMATCH</td>
</tr>
<tr>
<td>Network projection</td>
<td>PROJECTION</td>
</tr>
<tr>
<td>Reach (ego) networks</td>
<td>REACH</td>
</tr>
<tr>
<td>Shortest path</td>
<td>SHORTESTPATH</td>
</tr>
<tr>
<td>Graph summary</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>Transitive closure</td>
<td>TRANSITIVECLOSURE</td>
</tr>
</tbody>
</table>
As input, the NETWORK procedure expects graph $G = (N, E)$, which is defined over a set N of nodes and a set E of links. A node is an abstract representation of some entity (or object), and a link defines a relationship (or connection) between two nodes. The terms node and vertex are interchangeable in describing an entity. The term link is interchangeable with the term edge or arc in describing a connection. Similarly, the terms graph and network are interchangeable.

Getting Started: NETWORK Procedure

Because graphs are abstract objects, their analyses have applications in many different fields of study, including social sciences, linguistics, biology, transportation, marketing, and so on. This chapter demonstrates a few potential applications through simple examples.

This section presents two introductory examples for getting started with the NETWORK procedure. For more information about the expected input formats and the available algorithms, see the sections “Details: NETWORK Procedure” on page 59 and “Examples: NETWORK Procedure” on page 220.

Road Network Shortest Path

Consider the following road network between a SAS employee’s home in Raleigh, North Carolina, and SAS headquarters nearby in Cary. In this road network (graph), the links are the roads and the nodes are intersections of the roads. For each road, you assign a link attribute in the variable `time_to_travel` to describe the number of minutes that it takes to drive from one node to another. The following data were collected using Google Maps (Google 2011), which gives an approximate number of minutes to travel between two nodes based on the length of the road and the typical speed during normal traffic patterns. These statements assume that the CAS engine libref is named `mycas`, but you can substitute any appropriately defined CAS engine libref.

```plaintext
data mycas.LinkSetInRoadNC10am;
  input start_inter $1-20 end_inter $21-40 miles miles_per_hour;
  time_to_travel = miles * 1/miles_per_hour * 60;
datalines;
   614CapitalBlvd Capital/WadeAve 0.6 25
   614CapitalBlvd Capital/US70W 0.6 25
   614CapitalBlvd Capital/US440W 3.0 45
   Capital/WadeAve WadeAve/RaleighExpy 3.0 40
   Capital/US70W US70W/US440W 3.2 60
   US70W/US440W US440W/RaleighExpy 2.7 60
   Capital/US440W US440W/RaleighExpy 6.7 60
   US440W/RaleighExpy RaleighExpy/US40W 3.0 60
   WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
   RaleighExpy/US40W US40W/HarrisonAve 1.3 55
   US40W/HarrisonAve SASCampusDrive 0.5 25
;
```

Using PROC NETWORK, you want to find the route that yields the shortest path between home (614 Capital Boulevard) and SAS headquarters (SAS Campus Drive). This can be done using the SHORTESTPATH statement as follows:
For more information about shortest path algorithms in PROC NETWORK, see the section “Shortest Path” on page 195. Figure 3.1 displays the output data table mycas.ShortPath, which shows the best route to take to minimize travel time at 10:00 a.m. on a workday. This route is also shown in Google Maps in Figure 3.2.

Figure 3.1 Shortest Path for Road Network at 10:00 A.M.

<table>
<thead>
<tr>
<th>order</th>
<th>start_inter</th>
<th>end_inter</th>
<th>time_to_travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>614CapitalBlvd</td>
<td>Capital/WadeAve</td>
<td>1.4400</td>
</tr>
<tr>
<td>2</td>
<td>Capital/WadeAve</td>
<td>WadeAve/RaleighExpy</td>
<td>4.5000</td>
</tr>
<tr>
<td>3</td>
<td>WadeAve/RaleighExpy</td>
<td>RaleighExpy/US40W</td>
<td>3.0000</td>
</tr>
<tr>
<td>4</td>
<td>RaleighExpy/US40W</td>
<td>US40W/HarrisonAve</td>
<td>1.4182</td>
</tr>
<tr>
<td>5</td>
<td>US40W/HarrisonAve</td>
<td>SASCampusDrive</td>
<td>1.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.5582</td>
</tr>
</tbody>
</table>

Figure 3.2 Shortest Path for Road Network at 10:00 A.M. in Google Maps

Now suppose that it is the evening rush hour (5:00–7:00 p.m.) and the time that it takes to travel this route has changed because of traffic patterns. You want to find the route that is the shortest path for going home from SAS headquarters under different speed assumptions because of rush-hour traffic. The following data table lists approximate travel times and speeds for driving in the opposite direction:

```plaintext
proc network
  links  = mycas.LinkSetInRoadNC10am;
  linksVar
    from = start_inter
    to   = end_inter
    weight = time_to_travel;
  shortestPath
    outPaths = mycas.ShortPath
    source = "614CapitalBlvd"
    sink   = "SASCampusDrive";
run;
```
data mycas.LinkSetInRoadNC5pm;
 input start_inter $1-20 end_inter $21-40 miles miles_per_hour;
 time_to_travel = miles * 1/miles_per_hour * 60;
 datalines;
614CapitalBlvd Capital/WadeAve 0.6 25
614CapitalBlvd Capital/US70W 0.6 25
614CapitalBlvd Capital/US440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 25 /*high traffic*/
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60
Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25;

The following statements are similar to those in the first PROC NETWORK run, except that they use the data
table mycas.LinkSetInRoadNC5pm and the SOURCE= and SINK= option values are reversed:

proc network
 links = mycas.LinkSetInRoadNC5pm;
 linksVar
 from = start_inter
 to = end_inter
 weight = time_to_travel;
 shortestPath
 outPaths = mycas.ShortPath
 source = "SASCampusDrive"
 sink = "614CapitalBlvd";
run;

Now, the output data table mycas.ShortPath, shown in Figure 3.3, shows the best route for going home. Because the traffic on Wade Avenue is usually heavy at this time of day, the best route home is different from the best route to work.

Figure 3.3 Shortest Path for Road Network at 5:00 P.M.

<table>
<thead>
<tr>
<th>order</th>
<th>start_inter</th>
<th>end_inter</th>
<th>time_to_travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SASCampusDrive</td>
<td>US40W/HarrisonAve</td>
<td>1.2000</td>
</tr>
<tr>
<td>2</td>
<td>US40W/HarrisonAve</td>
<td>RaleighExpy/US40W</td>
<td>1.4182</td>
</tr>
<tr>
<td>3</td>
<td>RaleighExpy/US40W</td>
<td>US440W/RaleighExpy</td>
<td>3.0000</td>
</tr>
<tr>
<td>4</td>
<td>US440W/RaleighExpy</td>
<td>US70W/US440W</td>
<td>2.7000</td>
</tr>
<tr>
<td>6</td>
<td>Capital/US70W</td>
<td>614CapitalBlvd</td>
<td>1.4400</td>
</tr>
</tbody>
</table>

This new route is shown in Google Maps in Figure 3.4.
This example looks at the use of precedents in cases before the US Supreme Court. Consider the judge’s problem of identifying precedent court cases that are most relevant and important to the current case. This application of network analysis was published in Fowler and Joen (2008). Because of norms inherited from 19th-century English law, judges are encouraged to follow precedents in order to take advantage of “the accumulated experience of many judges responding to the arguments and evidence of many lawyers” (Landes and Posner 1976). In network analysis, one way to define the importance of a previous case is to look at the network of citations used in related cases. That is, if a particular case A cited case B to help support its argument, then a link exists from A to B in the citation network.

Given such a citation network, you can then use a metric known as authority score to rank the importance of these cases. This metric is explained in more detail in the section “Hub and Authority Scoring” on page 108. Figure 3.5 shows a small representative subset of the citation network for landmark abortion decisions from the example in Fowler and Joen (2008).
The data table mycas.Cases stores a mapping between the case name and the case identifier:

```sas
data mycas.Cases;
  length case_name $80;
  input case_id case_name $ 7-80;
  datalines;
12061 Jacobson v. Massachusetts, 197 U.S. 11 (1905)
25347 Roe vs. Wade, 410 U.S. 113 (1973)
29003 Webster vs. Repro-Health Services, 492 U.S. 490 (1989)
29153 Cruzan v. Director, MO Dept of Health, 497 U.S. 261 (1990)
29155 Georgia v. South Carolina, 497 U.S. 376 (1990)
29459 Planned Parenthood of SE PA vs. Casey, 505 U.S. 833 (1992)
;
```

The data table mycas.LinkSetInCourt provides the citation network between case identifiers:

```sas
data mycas.LinkSetInCourt;
  input from_case to_case @@;
  datalines;
27633 25347 28354 25347 28354 27633 29003 25347 29003 27633
29003 28354 29459 25347 29459 27633 29459 28354 29459 29003
25347 12061 28354 12061 29459 12061 29933 25347 29933 29459
29933 12061 29933 29153 29663 25347 29663 28354 29153 12061
29153 28354 29153 29003 29153 25347 29459 29153 29156 27633
29156 28354 29156 29003 29156 25347 29459 29156
;
```
You can calculate the authority scores of each case by using the CENTRALITY statement with the AUTH= option, as follows:

```latex
proc network
direction = directed
links = mycas.LinkSetInCourt
outNodes = mycas.NodeSetOut;
linksVar
  from = from_case
  to = to_case;
centrality
  auth = unweight;
run;
```

The output data table `mycas.NodeSetOut` contains the authority score for each case (node). Then, the following statements combine the case names and the case identifiers into a local data set called `NodeSetOut` and sort them by score in descending order:

```latex
data NodeSetOut(drop=rc);
  merge mycas.NodeSetOut(rename=(node=case_id)) mycas.Cases;
  by case_id;
run;
proc sort data=NodeSetOut;
  by descending centr_auth_unwt;
run;
```

As expected, `Roe vs. Wade (1973)` has the highest authority ranking, because it is most often cited by other cases.

Figure 3.6 Authority Ranking of Landmark US Supreme Court Cases

<table>
<thead>
<tr>
<th>case_id</th>
<th>centr_auth_unwt</th>
<th>case_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>25347</td>
<td>1.00000</td>
<td>Roe vs. Wade, 410 U.S. 113 (1973)</td>
</tr>
<tr>
<td>28354</td>
<td>0.72262</td>
<td>Thornburgh vs. American College, 476 U.S. 747 (1986)</td>
</tr>
<tr>
<td>12061</td>
<td>0.61717</td>
<td>Jacobson v. Massachusetts, 197 U.S. 11 (1905)</td>
</tr>
<tr>
<td>27633</td>
<td>0.59831</td>
<td>Akron vs. Akron Cntr for Repro-Health, 462 U.S. 416 (1983)</td>
</tr>
<tr>
<td>29003</td>
<td>0.50930</td>
<td>Webster vs. Repro-Health Services, 492 U.S. 490 (1989)</td>
</tr>
<tr>
<td>29153</td>
<td>0.31742</td>
<td>Cruzan v. Director, MO Dept of Health, 497 U.S. 261 (1990)</td>
</tr>
<tr>
<td>29156</td>
<td>0.20968</td>
<td>Hodgson v. Minnesota, 497 U.S. 417 (1990)</td>
</tr>
<tr>
<td>29459</td>
<td>0.10775</td>
<td>Planned Parenthood of SE PA vs. Casey, 505 U.S. 833 (1992)</td>
</tr>
<tr>
<td>29663</td>
<td>0.00000</td>
<td>Madsen v. Women's Health Ctr., 512 U.S. 753 (1994)</td>
</tr>
<tr>
<td>29933</td>
<td>0.00000</td>
<td>Wash. v. Glucksberg, 521 U.S. 702 (1997)</td>
</tr>
<tr>
<td>29155</td>
<td></td>
<td>Georgia v. South Carolina, 497 U.S. 376 (1990)</td>
</tr>
</tbody>
</table>

In such a small example, it is somewhat easy to see which cases have the most influence by looking at the directed graph of citations. As discussed in Fowler and Joen (2008), the real advantage of such an analysis can be seen in examining all the citations for all 30,288 cases available in their data.
Syntax: NETWORK Procedure

PROC NETWORK statements are divided into four main categories:

PROC Statement

```
PROC NETWORK <options> ;
```

The PROC statement invokes the procedure and sets option values that are used across multiple algorithms.

Data Input Statements

```
LINKSQUERYVAR <options> ;
LINKSVAR <options> ;
LOADGRAPH <options> ;
NODESQUERYVAR <options> ;
NODESSUBSETVAR <options> ;
NODESVAR <options> ;
UNLOADGRAPH <options> ;
```

Data input statements control the names of the variables that PROC NETWORK expects in the data input.

Algorithm Statements

```
BICONNECTEDCOMPONENTS ;
CENTRALITY <options> ;
CLIQUE <options> ;
COMMUNITY <options> ;
CONNECTEDCOMPONENTS <options> ;
CORE <options> ;
CYCLE <options> ;
NODESIMILARITY <options> ;
PATH <options> ;
PATTERNMATCH <options> ;
PROJECTION <options> ;
REACH <options> ;
SHORTESTPATH <options> ;
SUMMARY <options> ;
TRANSITIVECLOSURE <options> ;
```

Algorithm statements determine which algorithm is run and set options for each individual algorithm.

Standard Statements

```
BY variables ;
DISPLAY <table-list> </options> ;
DISPLAYOUT table-spec-list </options> ;
```

Standard statements control BY-group processing and manage ODS tables.

The following section provides a quick summary of each statement and its options. Each statement is then described in more detail in its own section. The PROC NETWORK statement is described first, and sections that describe all the other statements are presented in alphabetical order (they are not ordered according to their category).
Functional Summary

Table 3.2 summarizes the statements and options available in the NETWORK procedure.

<table>
<thead>
<tr>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC NETWORK Statement</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Specifies the in-memory graph to use</td>
<td>GRAPH=</td>
</tr>
<tr>
<td>Specifies the links data table</td>
<td>LINKS=</td>
</tr>
<tr>
<td>Specifies the links data table to query</td>
<td>LINKSQUERY=</td>
</tr>
<tr>
<td>Specifies the nodes data table</td>
<td>NODES=</td>
</tr>
<tr>
<td>Specifies the nodes data table to query</td>
<td>NODESQUERY=</td>
</tr>
<tr>
<td>Specifies the nodes subset data table</td>
<td>NODESSUBSET=</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Specifies the links output data table</td>
<td>OUTLINKS=</td>
</tr>
<tr>
<td>Specifies the nodes output data table</td>
<td>OUTNODES=</td>
</tr>
<tr>
<td>Options</td>
<td></td>
</tr>
<tr>
<td>Specifies whether to enforce determinism</td>
<td>DETERMINISTIC=</td>
</tr>
<tr>
<td>Specifies the graph direction</td>
<td>DIRECTION=</td>
</tr>
<tr>
<td>Specifies whether to use a distributed graph</td>
<td>DISTRIBUTED=</td>
</tr>
<tr>
<td>Specifies the index offset for identifiers</td>
<td>INDEXOFFSET=</td>
</tr>
<tr>
<td>Specifies the desired frequency (in number of seconds) between log entries</td>
<td>LOGFREQTIME=</td>
</tr>
<tr>
<td>Specifies the overall log level</td>
<td>LOGLEVEL=</td>
</tr>
<tr>
<td>Specifies whether to include multilinks</td>
<td>MULTILINKS=</td>
</tr>
<tr>
<td>Specifies the maximum number of threads to use for multithreaded processing</td>
<td>NTHREADS=</td>
</tr>
<tr>
<td>Specifies whether to include self-links</td>
<td>SELFLINKS=</td>
</tr>
<tr>
<td>Specifies that the input graph data are in a standardized format</td>
<td>STANDARDIZEDLABELS</td>
</tr>
<tr>
<td>Requests that the output graph data include standardized format</td>
<td>STANDARDIZEDLABELSOUT</td>
</tr>
<tr>
<td>Specifies whether time units are in CPU time or real time</td>
<td>TIMETYPE=</td>
</tr>
</tbody>
</table>

Data Input Statements

LINKSQUERYVAR Statement
Specifies the data variable name for the from nodes in the query graph	FROM=
Specifies the data variable name for the to nodes in the query graph	TO=
Specifies one or more data variables for the link attributes to consider in the query graph	VARS=
Specifies one or more data variables for the link attributes to match in the query graph	VARSMATCH=

LINKSVAR Statement
Specifies the data variable name for the auxiliary link weights	AUXWEIGHT=
Specifies the data variable name for the from nodes	FROM=
Specifies the data variable name for the to nodes	TO=
Specifies one or more data variable for the additional link attributes to carry over to the output results	VARS=
Table 3.2 continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the data variable name for the link weights</td>
<td>WEIGHT=</td>
</tr>
<tr>
<td>LOADGRAPH Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the output data table to contain summary information about in-memory graphs</td>
<td>OUTGRAPHLIST=</td>
</tr>
<tr>
<td>NODESQUERYVAR Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the data variable name for the nodes in the query graph</td>
<td>NODE=</td>
</tr>
<tr>
<td>Specifies one or more data variables for the node attributes to consider in the query graph</td>
<td>VARS=</td>
</tr>
<tr>
<td>Specifies one or more data variables for the node attributes to match in the query graph</td>
<td>VARSMATCH=</td>
</tr>
<tr>
<td>NODESSUBSETVAR Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the data variable name for the nodes</td>
<td>NODE=</td>
</tr>
<tr>
<td>Specifies the data variable name for the reach identifier</td>
<td>REACH=</td>
</tr>
<tr>
<td>Specifies the data variable name for the sink indicator</td>
<td>SINK=</td>
</tr>
<tr>
<td>Specifies the data variable name for the source indicator</td>
<td>SOURCE=</td>
</tr>
<tr>
<td>NODESVAR Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the data variable name for the nodes</td>
<td>NODE=</td>
</tr>
<tr>
<td>Specifies one or more data variables for the additional node attributes to carry over to the output results</td>
<td>VARS=</td>
</tr>
<tr>
<td>Specifies the data variable name for the node weights</td>
<td>WEIGHT=</td>
</tr>
<tr>
<td>UNLOADGRAPH Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the output data table to contain summary information about in-memory graphs</td>
<td>OUTGRAPHLIST=</td>
</tr>
</tbody>
</table>

Algorithm Statements

BICONNECTEDCOMPONENTS Statement

Specifies the output data table for biconnected components

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT=</td>
</tr>
</tbody>
</table>

CENTRALITY Statement

Specifies how to calculate authority centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTH=</td>
</tr>
</tbody>
</table>

Specifies how to calculate betweenness centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETWEEN=</td>
</tr>
</tbody>
</table>

Specifies whether to normalize the betweenness calculation

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETWEENNORM=</td>
</tr>
</tbody>
</table>

Specifies how to calculate closeness centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE=</td>
</tr>
</tbody>
</table>

Specifies a method for accounting for the shortest path distance between two nodes when a path does not exist (disconnected nodes)

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSENOPATH=</td>
</tr>
</tbody>
</table>

Calculates the node clustering coefficient

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTERINGCOEFFICIENT=</td>
</tr>
</tbody>
</table>

Specifies how to calculate degree centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEGREE=</td>
</tr>
</tbody>
</table>

Specifies how to calculate eigenvector centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGN=</td>
</tr>
</tbody>
</table>

Specifies the algorithm to use for eigenvector calculation

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGENALGORITHM=</td>
</tr>
</tbody>
</table>

Specifies the maximum number of iterations for eigenvector calculation

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGENMAXITERS=</td>
</tr>
</tbody>
</table>

Specifies how to calculate hub centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUB=</td>
</tr>
</tbody>
</table>

Specifies how to calculate influence centrality

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFLUENCE=</td>
</tr>
</tbody>
</table>

Specifies how to calculate PageRank centrality metric

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGERANK=</td>
</tr>
</tbody>
</table>

Specifies the damping factor for the PageRank algorithm

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGERANKALPHA=</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Specifies the convergence tolerance for the PageRank algorithm</td>
</tr>
<tr>
<td>CLIQUE Statement</td>
</tr>
<tr>
<td>Specifies the maximum number of cliques to return during clique enumeration</td>
</tr>
<tr>
<td>Specifies the maximum link weight for the cliques found</td>
</tr>
<tr>
<td>Specifies the maximum node weight for the cliques found</td>
</tr>
<tr>
<td>Specifies the maximum size for the cliques found</td>
</tr>
<tr>
<td>Specifies the maximum amount of time to spend finding cliques</td>
</tr>
<tr>
<td>Specifies the minimum link weight for the cliques found</td>
</tr>
<tr>
<td>Specifies the minimum node weight for the cliques found</td>
</tr>
<tr>
<td>Specifies the minimum size for the cliques found</td>
</tr>
<tr>
<td>Specifies the output data table for cliques</td>
</tr>
<tr>
<td>COMMUNITY Statement</td>
</tr>
<tr>
<td>Specifies the community detection algorithm</td>
</tr>
<tr>
<td>Specifies which data variable defines groups of nodes to fix together in a</td>
</tr>
<tr>
<td>community</td>
</tr>
<tr>
<td>Specifies the percentage of small-weight links to be removed</td>
</tr>
<tr>
<td>Specifies the maximum number of iterations for community detection</td>
</tr>
<tr>
<td>Specifies the output data table for intercommunity links</td>
</tr>
<tr>
<td>Specifies the output data table for the community summary</td>
</tr>
<tr>
<td>Specifies the output data table for the community level summary</td>
</tr>
<tr>
<td>Specifies the output data table for the community overlap</td>
</tr>
<tr>
<td>Specifies the random factor in the parallel label propagation algorithm</td>
</tr>
<tr>
<td>Specifies the random seed for the parallel label propagation algorithm</td>
</tr>
<tr>
<td>Applies the recursive option to break large communities</td>
</tr>
<tr>
<td>Specifies the resolution list for community detection</td>
</tr>
<tr>
<td>Specifies the modularity tolerance value for community detection</td>
</tr>
<tr>
<td>Specifies which data variable defines the initial node partition for warm</td>
</tr>
<tr>
<td>starting community detection</td>
</tr>
<tr>
<td>CONNECTED COMPONENTS Statement</td>
</tr>
<tr>
<td>Specifies the algorithm to use for connected components</td>
</tr>
<tr>
<td>Specifies the output data table for connected components</td>
</tr>
<tr>
<td>CORE Statement</td>
</tr>
<tr>
<td>Specifies the maximum amount of time to spend calculating the core</td>
</tr>
<tr>
<td>decomposition</td>
</tr>
<tr>
<td>CYCLE Statement</td>
</tr>
<tr>
<td>Specifies the algorithm to use for cycle enumeration</td>
</tr>
<tr>
<td>Specifies the maximum number of cycles to return during cycle enumeration</td>
</tr>
</tbody>
</table>
Table 3.2 continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the maximum length for the cycles found</td>
<td>MAXLENGTH=</td>
</tr>
<tr>
<td>Specifies the maximum link weight for the cycles found</td>
<td>MAXLINKWEIGHT=</td>
</tr>
<tr>
<td>Specifies the maximum node weight for the cycles found</td>
<td>MAXNODEWEIGHT=</td>
</tr>
<tr>
<td>Specifies the maximum amount of time to spend finding cycles</td>
<td>MAXTIME=</td>
</tr>
<tr>
<td>Specifies the minimum length for the cycles found</td>
<td>MINLENGTH=</td>
</tr>
<tr>
<td>Specifies the minimum link weight for the cycles found</td>
<td>MINLINKWEIGHT=</td>
</tr>
<tr>
<td>Specifies the minimum node weight for the cycles found</td>
<td>MINNODEWEIGHT=</td>
</tr>
<tr>
<td>Specifies the output data table for the links of the cycles</td>
<td>OUTCYCLESLINKS=</td>
</tr>
<tr>
<td>Specifies the output data table for the nodes of the cycles</td>
<td>OUTCYCLESNODES=</td>
</tr>
</tbody>
</table>

NODESIMILARITY Statement

- Specifies whether to calculate Adamic-Adar similarity: ADAMICADAR=
- Specifies the number of lowest-ranked node pairs to output: BOTTOMK=
- Specifies whether to calculate common neighbors similarity: COMMONNEIGHBORS=
- Specifies the convergence threshold for vector similarity: CONVERGENCE=THRESHOLD=
- Specifies whether to calculate cosine similarity: COSINE=
- Specifies the variable names of precomputed vector embeddings: EMBEDDINGS=
- Specifies whether to calculate Jaccard similarity: JACCARD=
- Specifies the maximum similarity score to output: MAXSCORE=
- Specifies the minimum similarity score to output: MINScore=
- Specifies the number of dimensions for vector embeddings: NDIMENSIONS=
- Specifies the number of negative samples per sample used in training the model: NEGATIVESAMPLEFACTOR=
- Specifies the number of training samples for the vector algorithm: NSAMPLES=
- Specifies the similarity measure to use for node pair ranking: ORDERBY=
- Specifies the output data table to contain the convergence curves for vector similarity: OUTCONVERGENCE=
- Specifies the output data table to contain the similarity scores between pairs of nodes: OUTSIMILARITY=
- Specifies the proximity order for the vector similarity algorithm: PROXIMITYORDER=
- Specifies the sink node for similarity calculations: SINK=
- Specifies the source node for similarity calculations: SOURCE=
- Specifies the number of highest-ranked node pairs to output: TOPK=
- Specifies whether to calculate vector similarity: VECTOR=

PATH Statement

- Specifies the maximum length for the paths found: MAXLENGTH=
- Specifies the maximum link weight for the paths found: MAXLINKWEIGHT=
- Specifies the maximum node weight for the paths found: MAXNODEWEIGHT=
- Specifies the maximum amount of time to spend finding paths: MAXTIME=
- Specifies the minimum length for the paths found: MINLENGTH=
- Specifies the minimum link weight for the paths found: MINLINKWEIGHT=
- Specifies the minimum node weight for the paths found: MINNODEWEIGHT=
- Specifies the output data table for path links: OUTPATHSLINKS=}
Table 3.2 continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the output data table for path nodes</td>
<td>OUTPATHSNODES=</td>
</tr>
<tr>
<td>Specifies the sink node for path calculations</td>
<td>SINK=</td>
</tr>
<tr>
<td>Specifies the source node for path calculations</td>
<td>SOURCE=</td>
</tr>
</tbody>
</table>

PATTERNMATCH Statement
- Specifies the FCMP function for link filters: LINKFILTER=
- Specifies the FCMP function for link-pair filters: LINKPAIRFILTER=
- Specifies the FCMP function for a filter that is based on a potential match (that is, any subset of nodes or links or both): MATCHFILTER=
- Specifies the maximum number of matches to return: MAXMATCHES=
- Specifies the maximum amount of time to spend in pattern matching: MAXTIME=
- Specifies the FCMP function for node filters: NODEFILTER=
- Specifies the FCMP function for node-pair filters: NODEPAIRFILTER=
- Specifies the links output data table for matching subgraphs: OUTMATCHLINKS=
- Specifies the nodes output data table for matching subgraph mappings: OUTMATCHNODES=
- Specifies the summary output data table for pattern match queries: OUTSUMMARY=
- Specifies the data variable name for the query key: QUERYKEY=

PROJECTION Statement
- Specifies whether to calculate common neighbors similarity: COMMONNEIGHBORS=
- Specifies whether to calculate cosine similarity: COSINE=
- Specifies whether to calculate Jaccard similarity: JACCARD=
- Specifies the output data table to contain the lists of common neighbors between pairs of nodes: OUTNEIGHBORSLIST=
- Specifies the output data table to contain the links of the projected graph: OUTPROJECTIONLINKS=
- Specifies the output data table to contain the nodes of the projected graph: OUTPROJECTIONNODES=
- Specifies the data variable name for the partition flag: PARTITION=

REACH Statement
- Calculates the directed reach counts: DIGRAPH
- Treats each node as a source in reach calculations: EACHSOURCE
- Specifies the maximum number of links in the reach calculations: MAXREACH=
- Specifies the output data table for reach counts: OUTCOUNTS=
- Specifies the output data table for reach links: OUTREACHLINKS=
- Specifies the output data table for reach nodes: OUTREACHNODES=

SHORTESTPATH Statement
- Specifies the maximum path weight: MAXPATHWEIGHT=
- Specifies the output data table for shortest paths: OUTPATHS=
- Specifies the output data table for shortest path descriptive statistics: OUTSUMMARY=
- Specifies the output data table for shortest path weights: OUTWEIGHTS=
- Specifies the sink node for shortest path calculations: SINK=
- Specifies the source node for shortest path calculations: SOURCE=
Table 3.2 continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY Statement</td>
<td></td>
</tr>
<tr>
<td>Calculates information about biconnected components</td>
<td>BICONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>Calculates information about clustering coefficients</td>
<td>CLUSTERINGCOEFFICIENT</td>
</tr>
<tr>
<td>Calculates information about connected components</td>
<td>CONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>Calculates the approximate diameter and chooses the weight type</td>
<td>DIAMETERAPPROX=</td>
</tr>
<tr>
<td>Includes only finite values when calculating descriptive statistics that are related to shortest paths</td>
<td>FINEPATH</td>
</tr>
<tr>
<td>Specifies the output data table for summary results</td>
<td>OUT=</td>
</tr>
<tr>
<td>Calculates information about shortest paths and chooses the weight type</td>
<td>SHORTESTPATH=</td>
</tr>
<tr>
<td>TRANSITIVECLOSURE Statement</td>
<td></td>
</tr>
<tr>
<td>Specifies the output data table for transitive closure results</td>
<td>OUT=</td>
</tr>
</tbody>
</table>

Table 3.3 lists the supported DIRECTION= option values in the PROC NETWORK statement.

Table 3.3 Supported Input Formats by Statement

<table>
<thead>
<tr>
<th>Statement</th>
<th>DIRECTION=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNDIRECTED</td>
</tr>
<tr>
<td>BICONNECTEDCOMPONENTS</td>
<td>X</td>
</tr>
<tr>
<td>CENTRALITY</td>
<td></td>
</tr>
<tr>
<td>AUTH=, HUB=</td>
<td></td>
</tr>
<tr>
<td>BETWEEN=, CLOSE=, CLUSTERINGCOEFFICIENT, DEGREE=, EIGEN=, INFLUENCE=, PAGERANK=</td>
<td>X</td>
</tr>
<tr>
<td>CLIQUE</td>
<td>X</td>
</tr>
<tr>
<td>COMMUNITY ALGORITHM= LOUVAIN, LABELPROP</td>
<td>X</td>
</tr>
<tr>
<td>PARALLEL LABEL PROP</td>
<td>X</td>
</tr>
<tr>
<td>CONNECTEDCOMPONENTS ALGORITHM= DFS</td>
<td>X</td>
</tr>
<tr>
<td>PARALLEL, UNIONFIND</td>
<td>X</td>
</tr>
<tr>
<td>CORE</td>
<td>X</td>
</tr>
<tr>
<td>CYCLE</td>
<td>X</td>
</tr>
<tr>
<td>NODESIMILARITY</td>
<td>X</td>
</tr>
<tr>
<td>PATH</td>
<td>X</td>
</tr>
<tr>
<td>PATTERNMATCH</td>
<td>X</td>
</tr>
<tr>
<td>PROJECTION</td>
<td>X</td>
</tr>
<tr>
<td>REACH</td>
<td>X</td>
</tr>
<tr>
<td>SHORTESTPATH</td>
<td>X</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
</tr>
<tr>
<td>BICONNECTEDCOMPONENTS</td>
<td>X</td>
</tr>
<tr>
<td>DIAMETERAPPROX=</td>
<td>X</td>
</tr>
<tr>
<td>otherwise</td>
<td>X</td>
</tr>
<tr>
<td>TRANSITIVECLOSURE</td>
<td>X</td>
</tr>
</tbody>
</table>
For each algorithm statement in the NETWORK procedure, Table 3.4 indicates which output data table options you can specify and whether the algorithm populates the data tables that are specified in the OUTNODES= and OUTLINKS= options in the PROC NETWORK statement.

<table>
<thead>
<tr>
<th>Table 3.4 Output Options by Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>BICONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>CENTRALITY AUTH=, CLOSE=,</td>
</tr>
<tr>
<td>CLUSTERINGCOEFFICIENT,</td>
</tr>
<tr>
<td>DEGREE=, EIGEN=, HUB=,</td>
</tr>
<tr>
<td>INFLUENCE=, PAGERANK=</td>
</tr>
<tr>
<td>BETWEEN=</td>
</tr>
<tr>
<td>CLIQUE</td>
</tr>
<tr>
<td>COMMUNITY</td>
</tr>
<tr>
<td>CLUSTERINGCOEFFICIENT,</td>
</tr>
<tr>
<td>DEGREE=, EIGEN=, HUB=,</td>
</tr>
<tr>
<td>INFLUENCE=, PAGERANK=</td>
</tr>
<tr>
<td>BETWEEN=</td>
</tr>
<tr>
<td>CONNECTEDCOMPONENTS</td>
</tr>
<tr>
<td>CORE</td>
</tr>
<tr>
<td>CYCLE</td>
</tr>
<tr>
<td>NODESIMILARITY VECTOR=TRUE</td>
</tr>
<tr>
<td>PATH</td>
</tr>
<tr>
<td>PATTERNMATCH</td>
</tr>
<tr>
<td>PROJECTION</td>
</tr>
<tr>
<td>REACH</td>
</tr>
<tr>
<td>SHORTESTPATH</td>
</tr>
<tr>
<td>SUMMARY</td>
</tr>
<tr>
<td>TRANSITIVECLOSURE</td>
</tr>
</tbody>
</table>
Chapter 3: The NETWORK Procedure

PROC NETWORK Statement

PROC NETWORK < options > ;

The PROC NETWORK statement invokes the NETWORK procedure. You can specify the following options to define the input and output data tables, the log levels, and various other processing controls:

DETERMINISTIC=TRUE | FALSE

specifies whether to enforce determinism. By default, DETERMINISTIC=TRUE, which ensures that each invocation (with the same machine configuration and parameter settings) produces the same final result. For more information about determinism, see the section “Determinism” on page 76.

DIRECTION=DIRECTED | UNDIRECTED

specifies whether the input graph should be considered directed or undirected. You can specify the following values:

- **DIRECTED** considers the input graph to be directed. In a directed graph, each link \((i, j)\) has a direction that defines how something (such as information) can flow over that link. In link \((i, j)\), the flow is from node \(i\) to node \(j\) \((i \rightarrow j)\). Node \(i\) is called the source (tail) node, and node \(j\) is called the sink (head) node.

- **UNDIRECTED** considers the input graph to be undirected. In an undirected graph, each link \(\{i, j\}\) has no direction and the flow can be in either direction. That is, \(\{i, j\} = \{j, i\}\).

By default, DIRECTION=UNDIRECTED. For more information, see the section “Graph Input Data” on page 59.

DISTRIBUTED=TRUE | FALSE

specifies whether to use a distributed graph. By default, DISTRIBUTED=FALSE, which means that a distributed graph is not used. For more information about the algorithms that support distributed graph computation, see the section “Execution Modes and Data Movement” on page 76.

GRAPH=number

specifies the in-memory graph to use. This option can be used with any algorithm that supports in-memory execution.

For more information about using the GRAPH= option, see the section “Persistent Data Structures (In-Memory Graphs)” on page 79.

INDEXOFFSET=number

specifies the index offset for identifiers in the log and results output data tables. For example, if three cycles are found in cycle enumeration, they are labeled cycles 1, 2, and 3 by default. If INDEXOFFSET=4, they are labeled cycles 4, 5, and 6. The value of number must be an integer greater than or equal to 0. By default, INDEXOFFSET=1.

LINKS=CAS-libref.data-table

specifies the input data table that contains the graph link information. \(CAS-libref.data-table\) is a two-level name, where \(CAS-libref\) refers to the caslib and session identifier, and \(data-table\) specifies the name of the input data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

For more information about this input table, see the section “Links Input Data” on page 59.
LINKSQUERY=CAS-libref.data-table

specifies the input data table that contains the graph link information for the query graph. *CAS-libref.data-table* is a two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies the name of the input data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

This option is supported only when used in conjunction with the **PATTERNMATCH** statement. For more information about this input table, see the section “Pattern Matching” on page 156.

LOGFREQTIME=number

LOGFREQUENCYTIME=number

controls the frequency (in **number** of seconds) for displaying iteration logs for some algorithms, where *number* can be any integer greater than or equal to 1. This option is useful for computationally intensive algorithms. Setting *number* too low can hurt algorithm performance. This option is ignored for a single-server setup. By default, LOGFREQTIME=5.

LOGLEVEL=NONE | BASIC | MODERATE | AGGRESSIVE

controls the amount of information that is displayed in the SAS log. You can specify the following values:

- **NONE**
 - turns off all procedure-related messages in the SAS log.
- **BASIC**
 - displays a brief summary of the algorithmic processing.
- **MODERATE**
 - displays a moderately detailed summary of the input, output, and algorithmic processing.
- **AGGRESSIVE**
 - displays a more detailed summary of the input, output, and algorithmic processing.

By default, LOGLEVEL=BASIC.

MULTILINKS=TRUE | FALSE

specifies whether to include or aggregate multilinks when an input graph (specified by the **LINKS=** or **LINKSQUERY=** option) is read. You can specify the following values:

- **FALSE**
 - aggregates multilinks.
- **TRUE**
 - includes multilinks.

By default, MULTILINKS=TRUE for algorithms that support multilinks.

For more information about this option, see the section “Multigraphs” on page 65.

NODES=CAS-libref.data-table

specifies the input data table that contains the graph node information. *CAS-libref.data-table* is a two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies the name of the input data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

For more information about this input table, see the section “Nodes Input Data” on page 63.
Chapter 3: The NETWORK Procedure

NODESQUERY= `CAS-libref.data-table`
specifies the input data table that contains the graph node information for the query graph. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

This option is supported only when used in conjunction with the PATTERNMATCH statement. For more information about this input table, see the section “Pattern Matching” on page 156.

NODESSUBSET= `CAS-libref.data-table`
specifies the input data table that contains the graph node subset information. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

For more information about this input table, see the section “Nodes Subset Input Data” on page 64.

NTHREADS= `number`
specifies the maximum number of threads to use for multithreaded processing. Some of the algorithms can take advantage of multicore machines and can run faster when `number` is greater than 1 (see Table 3.6 for a list). Algorithms that cannot take advantage of this option use only one thread even if `number` is greater than 1. For distributed execution, `number` specifies the maximum number of threads to use on each machine. The value of `number` can be any integer between 1 and 1024, inclusive. The default is the number of cores on the machine that executes the process or the number of cores permissible based on your installation (whichever is less). The number of simultaneously active CPUs is limited by your installation and license configuration.

OUTLINKS= `CAS-libref.data-table`
specifies the output data table to contain the graph link information along with any results from the algorithms that calculate metrics on links. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

For examples of the content of this output data table, see the various algorithm sections.

OUTNODES= `CAS-libref.data-table`
specifies the output data table to contain the graph node information along with any results from the algorithms that calculate metrics on nodes. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

For examples of the content of this output data table, see the various algorithm sections.

SELFINKS= `TRUE | FALSE`
specifies whether to include or remove self-links when an input graph (specified by the LINKS= or LINKSQUERY= option) is read. You can specify the following values:

- **FALSE** removes self-links.
- **TRUE** includes self-links.
By default, SELFLINKS=FALSE.

For more information about this option, see the section “Self-Links” on page 68.

STANDARDIZEDLABELS
specifies that the input graph data are in a standardized format, as described in the section “Standardized Labels Input” on page 72.

STANDARDIZEDLABELSOUT
specifies that the output graph data include standardized format, as described in the section “Standardized Labels Output” on page 74.

TIMETYPE=CPU | REAL
specifies whether CPU time or real time is used for each algorithm’s MAXTIME= option (where applicable). You can specify the following values:

CPU specifies units of CPU time. The time restriction is applied per processing machine (not across all machines).

REAL specifies units of real time.

By default, TIMETYPE=REAL.

BICONNECTEDCOMPONENTS Statement

BICONNECTEDCOMPONENTS ;

The BICONNECTEDCOMPONENTS statement requests that PROC NETWORK find biconnected components and articulation points of an undirected input graph. For more information, see the section “Biconnected Components and Articulation Points” on page 87.

OUT=CAS-libref.data-table
specifies the output data table to contain the biconnected components summary results. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

BY Statement

BY variables ;

You can specify a BY statement in PROC NETWORK to obtain separate analyses of observations in groups that are defined by the values of the BY variables. If you specify more than one BY statement, only the last one specified is used. For more information, see the discussion of BY-group processing in SAS Language Reference: Concepts.

The specified BY variables must come from the LINKS= data table. The BY statement in PROC NETWORK is not supported when multiple input data tables are used. Two examples of using BY-group processing
are shown in “Example 3.8: Centrality Metrics for an Undirected Graph by Community” on page 243 and “Example 3.14: Shortest Path in a Road Network by Date and Time” on page 261.

All parameter settings apply to each individual group independently (not to the entire process as a whole). For example, when a stopping criterion such as the MAXTIME= option is specified for a particular algorithm, this limit pertains to each individual group as it is processed.

CENTRALITY Statement

```
CENTRALITY < options > ;
```

The CENTRALITY statement enables you to select which centrality metrics to calculate for the specified input graph. It also enables you to specify options for particular metrics. The resulting metrics are included in the node output data table (specified in the OUTNODES= option) or the link output data table (specified in the OUTLINKS= option).

For more information about centrality metrics, see the section “Centrality” on page 91.

You can specify the following `options`:

AUTH=WEIGHT | UNWEIGHT | BOTH

specifies how to calculate authority centrality. You can specify the following values:

- `WEIGHT` calculates authority centrality by using the weighted graph.
- `UNWEIGHT` calculates authority centrality by using the unweighted graph.
- `BOTH` calculates authority centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then AUTH=WEIGHT and AUTH=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). This centrality metric can be used only for directed graphs. For more information about the authority centrality metric, see the section “Hub and Authority Scoring” on page 108.

BETWEEN=WEIGHT | UNWEIGHT | BOTH

specifies how to calculate betweenness centrality for node betweenness or link betweenness. You can specify the following values:

- `WEIGHT` calculates betweenness centrality by using the weighted graph.
- `UNWEIGHT` calculates betweenness centrality by using the unweighted graph.
- `BOTH` calculates betweenness centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then BETWEEN=WEIGHT and BETWEEN=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). If the OUTNODES= option is specified in the PROC NETWORK statement, the node betweenness metric is produced. If the OUTLINKS= option is specified, the link betweenness metric is produced. For more information about the betweenness centrality metric, see the section “Betweenness Centrality” on page 102.
BETWEENNORM=TRUE | FALSE
specifies whether to normalize the betweenness centrality metrics. You can specify the following values:

TRUE normalizes the betweenness metrics.
FALSE does not normalize the betweenness metrics.

For more information about the normalization factor for betweenness centrality, see the section “Betweenness Centrality” on page 102. By default, BETWEENNORM=TRUE.

CLOSE=WEIGHT | UNWEIGHT | BOTH
specifies how to calculate closeness centrality. You can specify the following values:

WEIGHT calculates closeness centrality by using the weighted graph.
UNWEIGHT calculates closeness centrality by using the unweighted graph.
BOTH calculates closeness centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then CLOSE=WEIGHT and CLOSE=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). For more information about the closeness centrality metric, see the section “Closeness Centrality” on page 99.

CLOSENOPATH=DIAMETER | HARMONIC | NNODES | ZERO
specifies a method for accounting for the shortest path distance between two nodes when a path does not exist (disconnected nodes). You can specify the following values:

DIAMETER uses the graph diameter (plus one) as the shortest path distance between disconnected nodes.
HARMONIC uses the harmonic formula for calculating closeness centrality.
NNODES uses the number of nodes as the shortest path distance between disconnected nodes. You cannot specify this option when CLOSE=WEIGHT or CLOSE=BOTH.
ZERO uses zero as the shortest path distance between disconnected nodes.

For each option, there is a slight variation in the formula for the closeness centrality metric. For more information about these differences, see the section “Closeness Centrality” on page 99. By default, CLOSENOPATH=DIAMETER.

CLUSTERINGCOEFFICIENT
CLUSTERINGCOEF calculates the node clustering coefficient. For more information about clustering coefficients, see the section “Clustering Coefficient” on page 95.

DEGREE=WEIGHT | UNWEIGHT | BOTH
specifies how to calculate degree centrality. You can specify the following values:

WEIGHT calculates degree centrality by using the weighted graph.
UNWEIGHT calculates degree centrality by using the unweighted graph.
BOTH calculates degree centrality by using both the weighted and unweighted graphs.
If the input graph does not contain weights, then DEGREE=WEIGHT and DEGREE=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). For more information about the degree centrality metric, see the section “Degree Centrality” on page 91.

EIGEN=WEIGHT | UNWEIGHT | BOTH

specifies how to calculate eigenvector centrality. You can specify the following values:

- **WEIGHT** calculates eigenvector centrality by using the weighted graph.
- **UNWEIGHT** calculates eigenvector centrality by using the unweighted graph.
- **BOTH** calculates eigenvector centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then EIGEN=WEIGHT and EIGEN=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). For more information about the eigenvector centrality metric, see the section “Eigenvector Centrality” on page 105.

EIGENALGORITHM=AUTOMATIC | JACOBIDAVIDSON | POWER

specifies the algorithm to use in calculating centrality metrics that require solving eigensystems—that is, when the EIGEN, PAGERANK, HUB, or AUTH option (or some combination) is specified. You can specify the following values:

- **AUTOMATIC** automatically determines the eigensolver to use.
- **JACOBIDAVIDSON | JD** uses a variant of the Jacobi-Davidson algorithm for solving eigensystems (Sleijpen and van der Vorst 2000). This algorithm is not supported for PageRank calculations.
- **POWER** uses the power method to calculate eigenvectors.

By default, EIGENALGORITHM=AUTOMATIC.

EIGENMAXITERS=number

specifies the maximum number of iterations to use for eigenvector calculations in order to limit the amount of computation time spent when convergence is slow. By default, EIGENMAXITERS=10,000.

HUB=WEIGHT | UNWEIGHT | BOTH

specifies how to calculate hub centrality. You can specify the following values:

- **WEIGHT** calculates hub centrality by using the weighted graph.
- **UNWEIGHT** calculates hub centrality by using the unweighted graph.
- **BOTH** calculates hub centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then HUB=WEIGHT and HUB=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). This centrality metric can be used only for directed graphs. For more information about the hub centrality metric, see the section “Hub and Authority Scoring” on page 108.
INFLUENCE=WEIGHT | UNWEIGHT | BOTH
specifies how to calculate influence centrality. You can specify the following values:

WEIGHT calculates influence centrality by using the weighted graph.
UNWEIGHT calculates influence centrality by using the unweighted graph.
BOTH calculates influence centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then INFLUENCE=WEIGHT and INFLUENCE=UNWEIGHT both produce the same results (if you use 1.0 for each link or node weight). For more information about the influence centrality metric, see the section “Influence Centrality” on page 94.

PAGERANK=WEIGHT | UNWEIGHT | BOTH
specifies how to calculate PageRank centrality. You can specify the following values:

WEIGHT calculates PageRank centrality by using the weighted graph.
UNWEIGHT calculates PageRank centrality by using the unweighted graph.
BOTH calculates PageRank centrality by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then PAGERANK=WEIGHT and PAGERANK=UNWEIGHT both produce the same results (if you use 1.0 for each link or node weight). For more information about the PageRank centrality metric, see the section “PageRank Centrality” on page 111.

PAGERANKALPHA=number
specifies the damping factor to use in the PageRank algorithm. The value of number must be between 0 and 1 (inclusive). The default is 0.85, which means that a random web surfer has a 15% chance of jumping to any other node in the network at any time. The algorithm usually takes more iterations to converge (or does not converge at all) as the damping factor is set closer to 1. See the section “PageRank Centrality” on page 111 for an example that uses this option.

PAGERANKTOL=number
specifies the convergence tolerance value for the PageRank algorithm. The value of number must be a positive number; the default value is 1E–9. The algorithm stops power iterations when the gap between the PageRank scores of the current iteration and the previous iteration is less than or equal to number.
CLIQUE Statement

CLIQUE < options >

The CLIQUE statement invokes an algorithm that finds maximal cliques in the input graph. For more information about maximal cliques, see the section “Clique Enumeration” on page 114.

You can specify the following options:

- **MAXCLQUIES=**number | ALL
 specifies the maximum number of cliques for clique enumeration to return. You can specify either a number (which can be any 32-bit integer greater than or equal to 1) or ALL (which represents the maximum that can be represented by a 32-bit integer). By default, MAXCLQUIES=1.

- **MAXLINKWEIGHT=**number
 specifies the maximum sum of link weights in a clique. Any clique whose sum of link weights is greater than number is removed from the results. In the case of a multigraph, all of the links in the induced subgraph are included in the sum. The default is the largest number that can be represented by a double, which causes no cliques to be removed from the results.

- **MAXNODEWEIGHT=**number
 specifies the maximum sum of node weights in a clique. Any clique whose sum of node weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no cliques to be removed from the results.

- **MAXSIZE=**number
 specifies the maximum number of nodes in a clique. Any clique whose size is greater than number is removed from the results. The default is the largest number that can be represented by a 32-bit integer, which causes no cliques to be removed from the results.

- **MAXTIME=**number
 specifies the maximum amount of time to spend finding cliques. The type of time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement. The default is the largest number that can be represented by a double.

- **MINLINKWEIGHT=**number
 specifies the minimum sum of link weights in a clique. Any clique whose sum of link weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no cliques to be removed from the results.

- **MINNODEWEIGHT=**number
 specifies the minimum sum of node weights in a clique. Any clique whose sum of node weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no cliques to be removed from the results.

- **MINSIZE=**number
 specifies the minimum number of nodes in a clique. Any clique that has fewer nodes than number is removed from the results. By default, MINSIZE=1 and no cliques are removed from the results.
The `OUT=` option specifies the output data table to contain the maximal cliques. The `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

COMMUNITY Statement

```
COMMUNITY < options > ;
```

The `COMMUNITY` statement invokes an algorithm that detects communities in the input graph. For more information about community detection, see the section “Community Detection” on page 117.

You can specify the following `options`:

- **ALGORITHM=** `LOUVAIN | LABELPROP | PARALLELLABELPROP`
 - Specifies the algorithm to use for community detection. You can specify the following values:
 - **LOUVAIN**
 - Uses the Louvain algorithm proposed in Blondel et al. (2008).
 - **LABELPROP**
 - Uses the label propagation algorithm proposed in Raghavan, Albert, and Kumara (2007).
 - **PARALLELLABELPROP**
 - Uses the parallel (distributed and threaded) label propagation algorithm developed by SAS. This can also be enabled by setting `DISTRIBUTED=TRUE` on the `PROC NETWORK` statement.

 By default, `ALGORITHM=LOUVAIN`.

- **FIX=** `column`
 - Specifies which data variable defines groups of nodes to fix together in a community. Each value of the variable must be a 32-bit integer greater than or equal to 0 or missing. You cannot use the `FIX=` option when `ALGORITHM=PARALLELLABELPROP`.

- **LINKREMOVALRATIO=** `number`
 - Specifies the percentage of small-weight links to be removed around each node neighborhood. A link is usually removed if its weight is relatively smaller than the weights of the neighboring links. Suppose that node A links to node B and to node C, link A → B has weight of 100, and link A → C has weight of 1. When nodes are grouped into communities, link A → B is much more important than link A → C because it contributes much more to the overall modularity value. Therefore, link A → C can be dropped from the network if dropping it does not disconnect node C from the network. If you specify this option, then the links that are incident to each node are examined. If the weight of any link is less than \((number/100) * max_link_weight\), where `max_link_weight` is the maximum link weight among all links incident to this node, the link is removed provided that its removal does not disconnect any node from the network. This option can often dramatically improve the running time for large graphs. The valid range is between 0 and 100. By default, `LINKREMOVALRATIO=10`.

MAXITERS=
specifies the maximum number of iterations that the algorithm can run. By default, MAXITERS=20 when **ALGORITHM=LOUVAIN** or MAXITERS=100 when **ALGORITHM=LABELPROP** or **ALGORITHM=PARALLELLABELPROP**.

OUTCOMMLINKS=
specifies the output data table to describe the links between communities. **CAS-libref.data-table** is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTCOMMUNITY=
specifies the output data table to contain properties about each community. **CAS-libref.data-table** is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTLEVEL=
specifies the output data table to contain community information at different resolution levels. **CAS-libref.data-table** is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTOVERLAP=
specifies the output data table to describe the intensity of each node. **CAS-libref.data-table** is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

RANDOMFACTOR=
specifies the random factor for the parallel label propagation algorithm. At each iteration, **number** × 100% of the nodes are randomly selected to skip the label propagation step. Specify a **number** between 0 and 1. The default is 0.15, which means that 15% of nodes skip the label propagation step at each iteration.

RANDOMSEED=
specifies the random seed for the parallel label propagation algorithm. At each iteration, some nodes are randomly selected to skip the label propagation step, based on the value that you specify in the **RANDOMFACTOR=** option. To choose a different set of random samples, specify a **number** in the **RANDOMSEED=** option. By default, **RANDOMSEED=1234**.

RECURSIVE (options)
breaks down large communities into smaller ones until the specified conditions are satisfied. This option starts with the keyword **RECURSIVE** followed by any combination of three suboptions enclosed in parentheses—for example, **RECURSIVE (MAXCOMMSIZE=500)** or **RECURSIVE (MAXCOMMSIZE=1000 MAXDIAMETER=3 RELATION=AND)**.

You can specify the following **options**:
COMMUNITY Statement ◆ 39

MAXCOMMSIZE= specifies the maximum number of nodes to be contained in any community. The default is the largest number that can be represented by a 32-bit integer.

MAXDIAMETER= specifies the maximum number of links on the shortest paths between any pair of nodes in any community. The MAXDIAMETER= option is ignored when you specify `ALGORITHM=PARALLELLABELPROP`. The default is the largest number that can be represented by a 32-bit integer.

RELATION= the relationship between the values of MAXCOMMSIZE= and MAXDIAMETER= options. If RELATION=AND, then recursive splitting continues until both of the MAXCOMMSIZE and MAXDIAMETER conditions are satisfied. If RELATION=OR, then recursive splitting continues until either the MAXCOMMSIZE or the MAXDIAMETER condition is satisfied.

RESOLUTIONLIST= specifies a list of resolution values (positive numbers) that are separated by spaces (for example, 4.3 2.1 1.0 0.6 0.2). The NETWORK procedure interprets the RESOLUTIONLIST= option differently depending on the value of the `ALGORITHM=` option:

- When `ALGORITHM=LOUVAIN`, specifying multiple resolution values enables you to see how communities are merged at various resolution levels. A larger parameter value indicates a higher resolution. For example, resolution 4.3 produces more communities than resolution 0.2. If you also specify the `RECURSIVE` option, PROC NETWORK ignores the RESOLUTIONLIST= option and uses the default value of 1.0.
- When `ALGORITHM=LABELPROP`, PROC NETWORK ignores the RESOLUTIONLIST= option and uses the default value of 1.0.
- When `ALGORITHM=PARALLELLABELPROP`, specifying multiple resolution values requests that PROC NETWORK perform community detection multiple times, each time with a different resolution value. By default, RESOLUTIONLIST=0.001. In this case, the RESOLUTIONLIST= option is fully compatible with the RECURSIVE option.

For more information about the use of the RESOLUTIONLIST= option, see the section “Large Communities” on page 119.

TOLERANCE= specifies the tolerance value for when to stop iterations. When you specify `ALGORITHM=LOUVAIN`, the algorithm stops iterations when the fraction of modularity gain between two consecutive iterations is less than `number`. When you specify `ALGORITHM=LABELPROP` or `ALGORITHM=PARALLELLABELPROP`, the algorithm stops iterations when the fraction of label changes for all nodes in the graph is less than `number`. The valid range is strictly between 0 and 1. By default, TOLERANCE=0.001 when you specify `ALGORITHM=LOUVAIN` or `ALGORITHM=LABELPROP`, and TOLERANCE=0.01 when `ALGORITHM=PARALLELLABELPROP` is specified.
WARMSTART=column

specifies which data variable defines the initial node partition for warm starting community detection. Each value of the variable must be a 32-bit integer greater than or equal to 0 or missing.

CONNECTEDCOMPONENTS Statement

CONNECTEDCOMPONENTS < options > ;

The CONNECTEDCOMPONENTS statement invokes an algorithm that finds the connected components of the input graph. For more information about connected components, see the section “Connected Components” on page 126. You can specify the following **options**:

ALGORITHM=
specifies the algorithm to use for calculating connected components. You can specify the following values:

- **AUTOMATIC** uses the union-find algorithm for undirected graphs and the depth-first search algorithm for directed graphs.
- **DFS** uses the depth-first search algorithm for connected components.
- **PARALLEL** uses the distributed parallel union-find algorithm for connected components. You can specify this value when the number of machines in your session is greater than 1. You can use this algorithm only with undirected graphs. You can also enable this functionality by specifying `DISTRIBUTED=TRUE` in the PROC NETWORK statement.
- **UNIONFIND** uses the union-find algorithm for connected components. You can use this algorithm only with undirected graphs.

By default, `ALGORITHM=UNIONFIND` for undirected graphs, and `ALGORITHM=DFS` for directed graphs.

OUT=
specifies the output data table to contain the connected components summary results. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”
CORE Statement

CORE < option > ;

The CORE statement invokes an algorithm that finds the core decomposition of the input graph. For more information about core decomposition, see the section “Core Decomposition” on page 132.

You can specify the following option:

MAXTIME=number

specifies the maximum amount of time to spend calculating the core decomposition. The type of time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement. The default is the largest number that can be represented by a double.

CYCLE Statement

CYCLE < options > ;

The CYCLE statement invokes an algorithm that finds the cycles (or the existence of a cycle) in the input graph. For more information about cycles, see the section “Cycle Enumeration” on page 136.

You can specify the following options:

ALGORITHM=BACKTRACK | BUILD

specifies which algorithm to use in enumerating cycles. You can specify the following values:

- **BACKTRACK** uses a backtracking algorithm based on Johnson (1975).

By default, ALGORITHM=BACKTRACK for MAXLENGTH greater than 20; otherwise, ALGORITHM=BUILD.

MAXCYCLES=number | ALL

specifies the maximum number of cycles for cycle enumeration to return. You can specify either a number (which can be any 32-bit integer greater than or equal to 1) or ALL (which represents the maximum that can be represented by a 32-bit integer). By default, MAXCYCLES=1.

MAXLENGTH=number

specifies the maximum number of links in a cycle. Any cycle whose length is greater than number is removed from the results. The default is the largest number that can be represented by a 32-bit integer, which causes no cycles to be removed from the results.

MAXLINKWEIGHT=number

specifies the maximum sum of link weights in a cycle. Any cycle whose sum of link weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no cycles to be removed from the results.
MAXNODEWEIGHT=number
specifies the maximum sum of node weights in a cycle. Any cycle whose sum of node weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no cycles to be removed from the results.

MAXTIME=number
specifies the maximum amount of time to spend finding cycles. The type of time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement. The default is the largest number that can be represented by a double.

MINLENGTH=number
specifies the minimum number of links in a cycle. Any cycle that has fewer links than number is removed from the results. By default, MINLENGTH=1 and no cycles are removed from the results.

MINLINKWEIGHT=number
specifies the minimum sum of link weights in a cycle. Any cycle whose sum of link weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no cycles to be removed from the results.

MINNODEWEIGHT=number
specifies the minimum sum of node weights in a cycle. Any cycle whose sum of node weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no cycles to be removed from the results.

OUTCYCLES=CAS-libref.data-table
specifies the output data table to contain the links of the cycles found. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTCYCLESNODES=CAS-libref.data-table
OUT=CAS-libref.data-table
specifies the output data table to contain the nodes of the cycles found. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

DISPLAY Statement

DISPLAY < table-list > < / options > ;

The DISPLAY statement enables you to specify a list of display tables to display or exclude. This statement is similar to the ODS SELECT, ODS EXCLUDE, and ODS TRACE statements. However, the DISPLAY statement can improve performance when a large number of tables could be generated (such as in BY-group processing). The procedure processes the DISPLAY statement on a CAS server and thus sends only a subset of ODS tables to the SAS client. Because ODS statements are processed on a SAS client, first all the generated display tables are sent to the client, and then the client creates a subset.

If you use both DISPLAY and ODS statements together, the DISPLAY statement takes precedence over the ODS statements. Note that the ODS EXCLUDE statement processes tables that are sent to the client after
they have been filtered by the DISPLAY statement. In some cases, it might appear that the ODS EXCLUDE statement is taking precedence because it can further filter the tables. For more information about ODS, see *SAS Output Delivery System: Procedures Guide.*

You can specify the *table-list* as a list of table names, paths, partial pathnames, and regular expressions.

The table names that you can specify are listed in the section “ODS Table Names” on page 218. A path is a table name that is prefixed with dot-separated grouping information. For example, a SelectionSummary table that a procedure produces during a selection routine might have the path `Bygroup1.Summary.SelectionSummary`. A partial pathname does not include all groups; for example, `SelectionSummary` and `Summary.SelectionSummary` are partial pathnames for `Bygroup1.Summary.SelectionSummary`.

When you specify a table name or partial pathname, all display tables whose paths end in the specified name are selected for display or exclusion. For example, both `SelectionSummary` and `Summary.SelectionSummary` select `Bygroup1.Summary.SelectionSummary`.

A regular expression is enclosed in forward slashes (/). For example, specifying “/tions/” selects all pathnames that contain the substring “tions”; in particular, the `Bygroup1.Summary.SelectionSummary` table is selected. Specifying “!/tions/” selects all pathnames that do not contain the substring “tions”; in particular, the `Bygroup1.Summary.SelectionSummary` table is not selected.

You can specify the following *options* after a slash (/):

- **CASESENSITIVE**
 - performs a case-sensitive comparison of table names in the *table-list* to display table names when tables are subsetted for display. To preserve case, you must enclose table names in the *table-list* in quotation marks.

- **EXCLUDE**
 - displays all display tables except those that you specify in the *table-list*.

- **EXCLUDEALL**
 - suppresses display of all tables. This option takes precedence over the other options.

- **TRACE**
 - displays the display table names, labels, and paths.

DISPLAYOUT Statement

DISPLAYOUT *table-spec-list* < / *options*> ;

The DISPLAYOUT statement enables you to create CAS output tables from your displayed output. This statement is similar to the ODS OUTPUT statement. For more information about ODS, see *SAS Output Delivery System: Procedures Guide.*

The *table-spec-list* specifies a list of CAS output tables to create. Each entry in the list has either a *key*=*value* format or a *key* format:

- **key=value**
 - specifies *key* as the ODS table name, path, or partial pathname, and specifies *value* as the CAS output table name.

- **key**
 - specifies *key* as the ODS table name and also as the CAS output table name.
The ODS table names that you can specify are listed in the section “ODS Table Names” on page 218. You cannot specify the ODS table named OutputCasTables in the table-spec-list.

Table names and partial pathnames are discussed under the DISPLAY statement. The DISPLAYOUT statement does not support regular expressions.

You can specify the following options after a slash (/):

- **INCLUDEALL**
 creates output CAS tables for all display tables. The name of the created output CAS table is the same as the corresponding display table name. If you specify this option, the table-spec-list specification is ignored.

- **NOREPLACE**
 does not replace any existing CAS output table of the same name.

- **REPEATED**
 replicates all CAS output tables on all nodes.

The output tables that the NETWORK procedure produces when you use the DISPLAYOUT statement are a transposed version of the displayed tables. This allows for easier use in subsequent analyses, especially when it is used together with BY-group processing. Two examples of using the DISPLAYOUT statement are shown in “Example 3.8: Centrality Metrics for an Undirected Graph by Community” on page 243 and “Example 3.14: Shortest Path in a Road Network by Date and Time” on page 261.

LINKSQUERYVAR Statement

LINKSQUERYVAR < options > ;

The LINKSQUERYVAR statement enables you to explicitly specify the data variable names for PROC NETWORK to use when it reads the data table that you specify in the LINKSQUERY= option in the PROC NETWORK statement. This option is supported only when used in conjunction with the PATTERNMATCH statement. For more information about this input table, see the section “Pattern Matching” on page 156.

You can specify the following options:

- **FROM=column**
- **FROMVAR=column**
 specifies the name of the data variable for the from nodes. The value of the variable can be numeric or character.

- **TO=column**
- **TOVAR=column**
 specifies the name of the data variable for the to nodes. The value of the variable can be numeric or character.
VARS=(columns)
specifies the names of one or more data variables to consider in the query graph. The value of the variables can be numeric or character.

VARSMATCH=(columns)
specifies the names of one or more data variables to match in the query graph. The value of the variables can be numeric or character. By default, the variables to match are the same as the variables to consider (as specified in the VARS= option). A common use case of the VARSMATCH= option is when you want to use query graph link attributes in a filter function without forcing an exact attribute match. To do this, specify these variables in the VARS= option but not in the VARSMATCH= option.

LINKSVAR Statement

LINKSVAR < options > ;

The LINKSVAR statement enables you to explicitly specify the data variable names for PROC NETWORK to use when it reads the data table that you specify in the LINKS= option in the PROC NETWORK statement. For more information about the format of the links input data table, see the section “Links Input Data” on page 59.

You can specify the following options:

AUXWEIGHT=column
 specifies the name of the data variable for the auxiliary link weights. The value of the variable must be numeric.

FROM=column
FROMVAR= option
 specifies the name of the data variable for the from nodes. The value of the variable can be numeric or character.

TO=column
TOVAR= option
 specifies the name of the data variable for the to nodes. The value of the variable can be numeric or character.

VARS=(columns)
specifies the names of one or more additional data variables to carry over to the output results. The value of the variables can be numeric or character.

WEIGHT=column
 specifies the name of the data variable for the link weights. The value of the variable must be numeric.
Chapter 3: The NETWORK Procedure

LOADGRAPH Statement

LOADGRAPH < options > ;

The LOADGRAPH statement reads the input graph from tables that are specified by the LINKS= option or the NODES= option (or both) in the PROC NETWORK statement, and it retains the graph in memory (within the current CAS session). The LOADGRAPH statement is described further in the section “Persistent Data Structures (In-Memory Graphs)” on page 79.

You can specify the following options:

OUTGRAPHLIST=CAS-libref.data-table

specifies the output data table to contain summary information about in-memory graphs.

NODESIMILARITY Statement

NODESIMILARITY < options > ;

The NODESIMILARITY statement invokes an algorithm that calculates how similar the neighborhoods of pairs of nodes are in an input graph. The node similarity problem is described in the section “Node Similarity” on page 142.

You can specify the following options:

ADAMICADAR=TRUE | FALSE

specifies whether to calculate Adamic-Adar node similarity. You can specify the following values:

TRUE

calculates Adamic-Adar node similarity and saves the results in the output table that is specified in the OUTSIMILARITY= option.

FALSE

does not calculate Adamic-Adar node similarity.

By default, ADAMICADAR=FALSE.

BOTTOMK=number

specifies the maximum number of lowest-ranked similarity pairs to output in the OUTSIMILARITY= table, where number can be any integer greater than or equal to 0. If more than one similarity measure is requested, you must use the ORDERBY= option to specify which similarity measure to use for ranking.

COMMONNEIGHBORS=TRUE | FALSE

specifies whether to calculate common neighbors node similarity. You can specify the following values:

TRUE

calculates common neighbors node similarity and saves the results in the output table that is specified in the OUTSIMILARITY= option.

FALSE

does not calculate common neighbors node similarity.

By default, COMMONNEIGHBORS=FALSE.
CONVERGENCE_THRESHOLD=number

specifies the convergence threshold for vector similarity. If the convergence value drops below this threshold before the procedure completes the number of samples that are requested in the NSAMPLES= option, the vector embeddings training phase terminates early. By default, CONVERGENCE_THRESHOLD=0.01.

COSINE=TRUE | FALSE

specifies whether to calculate cosine node similarity. You can specify the following values:

- **TRUE** calculates cosine node similarity and saves the results in the output table that is specified in the OUTSIMILARITY= option.
- **FALSE** does not calculate cosine node similarity.

By default, COSINE=FALSE.

EMBEDDINGS=(columns)

specifies the names of one or more data variables to be used as precalculated vector embeddings. The value of the variables can be numeric only. Each variable must exist in the input table that is specified in the NODES= option, and a nonmissing value must exist for each variable for each node that appears in the graph. This option is ignored unless VECTOR=TRUE is specified.

JACCARD=TRUE | FALSE

specifies whether to calculate Jaccard node similarity. You can specify the following values:

- **TRUE** calculates Jaccard node similarity and saves the results in the output table that is specified in the OUTSIMILARITY= option.
- **FALSE** does not calculate Jaccard node similarity.

By default, JACCARD=TRUE.

MAXSCORE=number

specifies the maximum similarity score to output in the OUTSIMILARITY= table, where number must be in the range [0, 1]. The MAXSCORE= option is supported only for the Jaccard and vector similarity measures; it does not apply to the Adamic-Adar, common neighbors, or cosine similarity measures. By default, MAXSCORE=1.

MINSCORE=number

specifies the minimum similarity score to output in the OUTSIMILARITY= table, where number must be in the range [0, 1]. The MINSCORE= option is supported only for the Jaccard and vector similarity measures; it does not apply to the Adamic-Adar, common neighbors, or cosine similarity measures. By default, MINSCORE=0.

NDIMENSIONS=number

specifies the number of dimensions for node-embedding vectors. By default, NDIMENSIONS=100.
NEGATIVESAMPLEFACTOR=number
specifies a multiplier for the number of negative training samples for the vector algorithm. By default, NEGATIVESAMPLEFACTOR=5 x s, where s is the number of samples specified in the NSAMPLES= option.

NSAMPLES=number
specifies the number of training samples for the vector algorithm. By default, NSAMPLES=1000 x |E|, where |E| is the number of links in the input graph. For distributed execution, this number of training samples is processed per machine.

ORDERBY=JACCARD | COMMONNEIGHBORS | ADAMICADAR | VECTOR | COSINE
specifies the similarity measure to use for ranking the similarity pairs to output in the OUTSIMILARITY= table. This option is ignored if neither the TOPK= option nor the BOTTOMK= option is specified.

OUTCONVERGENCE=CAS-libref.data-table
specifies the output data table to contain the convergence curves for vector similarity. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTSIMILARITY=CAS-libref.data-table
specifies the output data table to contain the similarity scores between pairs of nodes. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

PROXIMITYORDER=FIRST | SECOND
specifies the type of proximity to use in the vector algorithm. You can specify the following values:

 FIRST uses first-order proximity in the vector algorithm.
 SECOND uses second-order proximity in the vector algorithm.

By default, PROXIMITYORDER=SECOND.

SINK=sink-node
specifies the sink node for node similarity calculations.

SOURCE=source-node
specifies the source node for node similarity calculations.

TOPK=number
specifies the maximum number of highest-ranked similarity pairs to output in the OUTSIMILARITY= table, where number can be any integer greater than or equal to 0. If more than one similarity measure is requested, you must use the ORDERBY= option to specify which similarity measure to use for ranking.
VECTOR=TRUE | FALSE

specifies whether to calculate vector node similarity. You can specify the following values:

TRUE calculates vector node similarity and saves the results in the output table that is specified in the OUTSIMILARITY= option.
FALSE does not calculate vector node similarity.

By default, VECTOR=FALSE.

NODESQUERYVAR Statement

NODESQUERYVAR < options > ;

The NODESQUERYVAR statement enables you to explicitly specify the data variable names for PROC NETWORK to use when it reads the data table that you specify in the NODESQUERY= option in the PROC NETWORK statement. This option is supported only when used in conjunction with the PATTERNMATCH statement. For more information about this input table, see the section “Pattern Matching” on page 156.

You can specify the following options:

NODE=column

specifies the name of the data variable for the nodes. The value of the variable can be numeric or character.

VARS=(columns)

specifies the names of one or more data variables to consider in the query graph. The value of the variables can be numeric or character.

VARSMATCH=(columns)

specifies the names of one or more data variables to match in the query graph. The value of the variables can be numeric or character. By default, the variables to match are the same as the variables to consider (as specified in the VARS= option). A common use case of the VARSMATCH= option is when you want to use query graph node attributes in a filter function without forcing an exact attribute match. To do this, specify these variables in the VARS= option but not in the VARSMATCH= option.

NODESSUBSETVAR Statement

NODESSUBSETVAR < options > ;

The NODESSUBSETVAR statement enables you to explicitly specify the data variable names for PROC NETWORK to use when it reads the data table that you specify in the NODESSUBSET= option in the PROC NETWORK statement. For more information about the format of the node subset input data table, see the section “Nodes Input Data” on page 63.

You can specify the following options:
NODE=column
 specifies the name of the data variable for the nodes. The value of the variable can be numeric or
classer.

REACH=column
 specifies the name of the data variable for the reach identifier. The value of the variable must be
numeric.

SINK=column
 specifies the name of the data variable for the sink indicator. The value of the variable must be numeric.

SOURCE=column
 specifies the name of the data variable for the source indicator. The value of the variable must be
numeric.

NODESVAR Statement

 NODESVAR < options > ;

The NODESVAR statement enables you to explicitly specify the data variable names for PROC NETWORK
to use when it reads the data table that you specify in the NODES= option in the PROC NETWORK statement.
For more information about the format of the node input data table, see the section “Nodes Input Data” on
page 63.

You can specify the following options:

 NODE=column
 specifies the name of the data variable for the nodes. The value of the variable can be numeric or
character.

 VARS=(column(s))
 specifies the names of one or more additional data variables to carry over to the output results. The
value of the variables can be numeric or character.

 WEIGHT=column
 specifies the name of the data variable for the node weights. The value of the variable must be numeric.
PATH Statement

PATH < options > ;

The PATH statement invokes an algorithm that finds the paths in the input graph. For more information about paths, see the section “Path Enumeration” on page 152.

You can specify the following options:

MAXLENGTH=number
specifies the maximum number of links in a path. Any path whose length is greater than number is removed from the results. The default is the largest number that can be represented by a 32-bit integer, which causes no paths to be removed from the results.

MAXLINKWEIGHT=number
specifies the maximum sum of link weights in a path. Any path whose sum of link weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no paths to be removed from the results.

MAXNODEWEIGHT=number
specifies the maximum sum of node weights in a path. Any path whose sum of node weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no paths to be removed from the results.

MAXTIME=number
specifies the maximum amount of time to spend finding paths. The type of time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement. The default is the largest number that can be represented by a double.

MINLENGTH=number
specifies the minimum number of links in a path. Any path that has fewer links than number is removed from the results. By default, MINLENGTH=1 and no paths are removed from the results.

MINLINKWEIGHT=number
specifies the minimum sum of link weights in a path. Any path whose sum of link weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no paths to be removed from the results.

MINNODEWEIGHT=number
specifies the minimum sum of node weights in a path. Any path whose sum of node weights is less than number is removed from the results. The default is the largest (in magnitude) negative number that can be represented by a double, which causes no paths to be removed from the results.

OUTPATHSLINKS=CAS-libref.data-table
OUTPATHS=CAS-libref.data-table
specifies the output data table to contain the path links. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”
OUTPATHSNODES=CAS-libref.data-table
 specifies the output data table to contain the path nodes. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

SINK=sink-node
 specifies the sink node for path calculations. This setting overrides the use of the variable sink in the data table that you specify in the NODESSUBSET= option in the PROC NETWORK statement.

SOURCE=source-node
 specifies the source node for path calculations. This setting overrides the use of the variable source in the data table that you specify in the NODESSUBSET= option in the PROC NETWORK statement.

PATTERNMATCH Statement

PATTERNMATCH < options > ;

The PATTERNMATCH statement invokes an algorithm that searches for subgraph patterns in an input graph. The pattern matching problem is described in the section “Pattern Matching” on page 156.

You can specify the following options:

LINKFILTER=function-name
 specifies the FCMP function for link filters.

LINKPAIRFILTER=function-name
 specifies the FCMP function for link-pair filters.

MATCHFILTER=function-name
 specifies the FCMP function for a filter that is based on a potential match (that is, any subset of nodes or links or both).

MAXMATCHES=number | ALL
 specifies the maximum number of matches for the pattern matching algorithm to return. You can specify either a number (which can be any 32-bit integer greater than or equal to 1) or ALL (which represents the maximum that can be represented by a 32-bit integer). By default, MAXMATCHES=ALL.

MAXTIME=number
 specifies the maximum amount of time to spend in the pattern matching algorithm. The type of time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement. The default is the largest number that can be represented by a double.

NODEFILTER=function-name
 specifies the FCMP function for node filters.
NODEPAIRFILTER=function-name
specifies the FCMP function for node-pair filters.

OUTMATCHLINKS=CAS-libref.data-table
specifies the links output data table for matching subgraphs. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTMATCHNODES=CAS-libref.data-table
specifies the nodes output data table for matching subgraph mappings. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTSUMMARY=CAS-libref.data-table
specifies the summary output data table for pattern match queries. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

QUERYKEY=column
specifies the name of the data variable for the query key. The value of the variable can be numeric or character.

PROJECTION Statement

PROJECTION < options > ;

The PROJECTION statement invokes an algorithm that calculates the network projection of the multiple-partition input graph and produces a single-partition output graph. The network projection problem is described in the section “Network Projection” on page 185.

You can specify the following options:

COMMONNEIGHBORS=TRUE | FALSE
specifies whether to calculate common neighbors node similarity. You can specify the following values:

TRUE calculates common neighbors node similarity and saves the results in the output table that is specified in the OUTPROJECTIONLINKS= option.

FALSE does not calculate common neighbors node similarity.

By default, COMMONNEIGHBORS=FALSE.
COSINE=TRUE | FALSE
specifies whether to calculate cosine node similarity. You can specify the following values:

TRUE calculates cosine node similarity and saves the results in the output table that is specified in the OUTPROJECTIONLINKS= option.
FALSE does not calculate cosine node similarity.

By default, COSINE=FALSE.

JACCARD=TRUE | FALSE
specifies whether to calculate Jaccard node similarity. You can specify the following values:

TRUE calculates Jaccard node similarity and saves the results in the output table that is specified in the OUTPROJECTIONLINKS= option.
FALSE does not calculate Jaccard node similarity.

By default, JACCARD=FALSE.

OUTNEIGHBORSLIST=CAS-libref.data-table
specifies the output data table to contain the lists of common neighbors between pairs of nodes. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTPROJECTIONLINKS=CAS-libref.data-table
specifies the output data table to contain the links of the projected graph. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTPROJECTIONNODES=CAS-libref.data-table
specifies the output data table to contain the nodes of the projected graph. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

PARTITION=column
specifies the name of the data variable for the partition flag. The value of the variable must be 0, 1, or missing. The input graph is projected onto the set of nodes that have a partition flag of 1. The projected graph has links between node pairs that are connected via a common neighbor among the set of nodes that have a partition flag of 0. Nodes that have a missing value for the partition flag are excluded from the calculation.
REACH Statement

REACH < options > ;

The REACH statement invokes an algorithm that calculates the reach (ego) network in an input graph. For more information about the reach network, see the section “Reach (Ego) Network” on page 189.

You can specify the following options:

DIGRAPh

- calculates the directed reach counts when computing the reach networks and includes the directed counts in the resulting output data table, which is specified in the OUTCOUNTS= option. This option requires MAXREACH=1.

EACHSOURCE

- treats each node as a source and calculates a reach network from each one.

MAXREACH=number

- specifies the maximum number of links from each source node in a reach network. By default, MAXREACH=1.

OUTCOUNTS=CAS-libref.data-table

- specifies the output data table to contain the node counts in each reach network. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTREACHLINKS=CAS-libref.data-table

- specifies the output data table to contain the links in each reach network. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

OUTREACHNODES=CAS-libref.data-table

- specifies the output data table to contain the nodes in each reach network. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

SHORTESTPATH Statement

```
SHORTESTPATH < options > ;
```

The SHORTESTPATH statement invokes an algorithm that calculates shortest paths between pairs of nodes in the input graph. By default, PROC NETWORK finds a shortest path for each possible combination of source and sink nodes. For more information about the shortest path algorithm, see the section “Shortest Path” on page 195.

You can specify the following options:

- **MAXPATHWEIGHT=number**
 specifies the maximum path weight. Any shortest path whose sum of link weights is greater than number is removed from the results. The default is the largest number that can be represented by a double, which causes no paths to be removed from the results.

- **OUTPATHS=**CAS-libref.data-table
 specifies the output data table to contain the shortest paths. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

- **OUTSUMMARY=**CAS-libref.data-table
 specifies the output data table to contain descriptive statistics of the finite shortest paths for each source. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

- **OUTWEIGHTS=**CAS-libref.data-table
 specifies the output data table to contain the total weight of the shortest path for each source-sink pair. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

- **SINK=sink-node**
 specifies the sink node for shortest path calculations. This setting overrides the use of the variable sink in the data table that you specify in the NODESSUBSET= option in the PROC NETWORK statement.

- **SOURCE=source-node**
 specifies the source node for shortest path calculations. This setting overrides the use of the variable source in the data table that you specify in the NODESSUBSET= option in the PROC NETWORK statement.
The SUMMARY statement invokes an algorithm that calculates various summary metrics for an input graph. For more information about summary metrics, see the section “Summary Statistics” on page 207.

You can specify the following options:

BICONNECTEDCOMPONENTS
- Calculates information about biconnected components. You can use this option only for an undirected graph.

CLUSTERINGCOEFFICIENT
CLUSTERINGCOEF
- Calculates information about clustering coefficients. You can use this option only for an undirected graph.

CONNECTEDCOMPONENTS
- Calculates information about connected components.

DIAMETERAPPROX=WEIGHT | UNWEIGHT | BOTH
- Calculates information about the approximate diameter and specifies which type of calculation to perform. Use this option when calculating the exact diameter (by calculating all shortest paths) is too computationally expensive. You can specify the following values:
 - **WEIGHT** calculates the approximate diameter by using the weighted graph.
 - **UNWEIGHT** calculates the approximate diameter by using the unweighted graph.
 - **BOTH** calculates the approximate diameter by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then DIAMETERAPPROX=WEIGHT and DIAMETERAPPROX=UNWEIGHT both produce the same results (if you use 1.0 for each link weight). This option works only for undirected graphs.

FINITEPATH
- Includes only finite values when calculating descriptive statistics that are related to shortest paths (eccentricity, diameter, and so on).

OUT=CAS-libref.data-table
- Specifies the output data table to contain the summary results. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”
Chapter 3: The NETWORK Procedure

SHORTESTPATH=WEIGHT | UNWEIGHT | BOTH

Calculates information about shortest paths and specifies which type of calculation to perform. You can specify the following values:

- **WEIGHT**: Calculates shortest paths by using the weighted graph.
- **UNWEIGHT**: Calculates shortest paths by using the unweighted graph.
- **BOTH**: Calculates shortest paths by using both the weighted and unweighted graphs.

If the input graph does not contain weights, then **SHORTESTPATH=WEIGHT** and **SHORTESTPATH=UNWEIGHT** both produce the same results (if you use 1.0 for each link weight).

TRANSITIVECLOSURE Statement

TRANSITIVECLOSURE < option > ;

The TRANSITIVECLOSURE statement invokes an algorithm that calculates the transitive closure of an input graph. For more information about transitive closure, see the section “Transitive Closure” on page 214.

You can specify the following **option**:

OUT= `CAS-libref.data-table`

Specifies the output data table to contain the transitive closure results. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 6 in Chapter 2, “Introduction.”

UNLOADGRAPH Statement

UNLOADGRAPH < options > ;

The UNLOADGRAPH statement deletes the in-memory graph that is specified in the **GRAPH=** option in the PROC NETWORK statement. The UNLOADGRAPH statement is described further in the section “Persistent Data Structures (In-Memory Graphs)” on page 79.

You can specify the following **options**:

OUTGRAPHLIST= `CAS-libref.data-table`

Specifies the output data table to contain summary information about in-memory graphs.
Details: NETWORK Procedure

Graph Input Data

This section describes how to input a graph for analysis by PROC NETWORK. Let $G = (N, E)$ define a graph that contains a set N of nodes and a set E of links. Consider the directed graph shown in Figure 3.7.

![Directed Graph](image)

Notice that each node and link has associated attributes: a node label and a link weight.

Links Input Data

The LINKS= option in the PROC NETWORK statement defines the data table that contains the list of links in the graph. A link is represented as a pair of nodes, which are defined by using either numeric or character labels. The links data table is expected to contain the following possible variables:

- **from**: the *from* node (can be numeric or character)
- **to**: the *to* node (can be numeric or character)

The links data table can also contain some combination of the following built-in variables (attributes):

- **auxweight**: the auxiliary link weight (must be numeric)
- **from**: the *from* node (can be numeric or character)
- **to**: the *to* node (can be numeric or character)
- **weight**: the link weight (must be numeric)
As described for the **DIRECTION=** option, if the graph is undirected, the **from** and **to** labels are interchangeable. If the weights are not given for algorithms that require link weights, they are all assumed to be 1.

The data variable names can have any values that you want. If you use nonstandard names for a built-in variable, you must identify the variables by using the LINKSVAR statement, as described in the section “**LINKSVAR Statement**” on page 45.

In addition, the links data table can contain any number of user-defined additional variables (attributes). The attributes that are defined in the **VARS=** option in the **LINKSVAR** statement are carried over to the resulting output data tables.

For example, the two data tables that are created by the following DATA steps identify the same graph:

```plaintext
data mycas.LinkSetInA;
  input from $ to $ weight;
  datalines;
  A B 1
  A C 2
  A D 4
;

data mycas.LinkSetInB;
  input source_node $ sink_node $ value;
  datalines;
  A B 1
  A C 2
  A D 4
;
```

You can present these data tables to PROC NETWORK by using the following equivalent statements:

```plaintext
proc network
  links = mycas.LinkSetInA;
run;

proc network
  links = mycas.LinkSetInB;
  linksVar
    from = source_node
    to = sink_node
    weight = value;
run;
```

The directed graph G that is shown in **Figure 3.7** can be represented by the links data table, mycas.LinkSetIn, that is created by the following DATA step:

```plaintext
data mycas.LinkSetIn;
  input from $ to $ weight @@;
  datalines;
  A B 1 A C 2 A D 4 B C 1 B E 2
  B F 5 C E 1 D E 1 E D 1 E F 2
  F G 6 G H 1 G I 1 H G 2 H I 3
;```
The following statements read in this graph, declare it as a directed graph, and output the resulting links and nodes data tables. These statements do not run any algorithms, so the resulting output contains only the input graph.

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut
outLinks = mycas.LinkSetOut;
run;
```

The output data table `mycas.NodeSetOut`, shown in Figure 3.8, now contains the nodes that are read from the input links data table. The variable `node` shows the label associated with each node.

**Figure 3.8** Nodes Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
</tbody>
</table>

The output data table `mycas.LinkSetOut`, shown in Figure 3.9, contains the links that were read from the input links data table. The variables `from` and `to` show the associated node labels.

**Figure 3.9** Links Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>G</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>I</td>
<td>3</td>
</tr>
</tbody>
</table>

If you define this graph as undirected, then reciprocal links (for example, \( D \rightarrow E \) and \( D \leftarrow E \)) are treated as the same link, and multilinks are removed by default. PROC NETWORK aggregates the attributes of each
multilink by taking the minimum value for each attribute. By default, DIRECTION=UNDIRECTED, so you can simply remove this option to declare the graph as undirected.

The following statements read in this graph, declare it as an undirected graph, and output the resulting links and nodes data tables:

```plaintext
proc network
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut
 outLinks = mycas.LinkSetOut;
run;
```

The progress of the procedure is shown in Figure 3.10. The log shows the number of links that were declared as multilinks and aggregated.

Figure 3.10  PROC NETWORK Log: Links Data Table of an Undirected Graph

| NOTE:------------------------------------------------------------------------------------------ |
| NOTE: Running NETWORK.                                                                 |
| NOTE: The number of nodes in the input graph is 9.                                      |
| NOTE: The number of links in the input graph is 15.                                      |
| NOTE: The Cloud Analytic Services server processed the request in 0.052269 seconds.    |
| NOTE: The data set MYCAS.NODESETOUT has 9 observations and 1 variables.                  |
| NOTE: The data set MYCAS.LINKSETOUT has 15 observations and 3 variables.                |

The output data table mycas.NodeSetOut is equivalent to the one shown in Figure 3.8. However, the new links data table mycas.LinkSetOut, shown in Figure 3.11, contains two fewer links than before, because multilinks are aggregated.

Figure 3.11  Links Data Table of an Undirected Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>G</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>I</td>
<td>3</td>
</tr>
</tbody>
</table>

The MULTILINKS= option can be used to include (rather than aggregate) multilinks. For more information about this option, see the section “Multigraphs” on page 65.
Nodes Input Data

The NODES= option in the PROC NETWORK statement defines the data table that contains the list of nodes in the graph. This data table is used to assign node attributes.

The nodes data table is expected to contain the following variable:

- **node**: the node label (can be numeric or character)

The nodes data table can also contain the following built-in variable (attribute):

- **node**: the node label (can be numeric or character)
- **weight**: the node weight (must be numeric)

If weights are not given for algorithms that require node weights, all weights are assumed to be 1.

You can specify any value that you want for the data table variable name. If you use a nonstandard name for a built-in variable, you must identify the variable by using the NODESVAR statement, as described in the section “NODESVAR Statement” on page 50.

In addition, the nodes data table can contain any number of user-defined additional variables (attributes). The attributes that are defined in the VARS= option in the NODESVAR statement are carried over to the resulting output data tables.

The data table that you specify in the LINKS= option defines the set of nodes that are incident to some link. If the graph contains a node that has no links (called a *singleton* node), then you must define this node in the NODES= data table. The following statements produce a graph that has three links but four nodes, including the singleton node D:

```sas
data mycas.NodeSetIn;
 input node $ @@;
datalines;
 A B C D
;

data mycas.LinkSetInS;
 input from $ to $ weight;
datalines;
 A B 1
 A C 2
 B C 1
;
```

If you specify duplicate entries in the nodes data table, PROC NETWORK issues an error message and stops.

The graph is defined as the union of the set of nodes that are specified in the nodes data table and the links data table. The associated attributes for nodes in the links data table that are not specified in the nodes data table default to 0 (for numeric attributes) or to an empty character string (for character attributes).
Nodes Subset Input Data

For some algorithms, you might want to process only a subset of the nodes that appear in the input graph. You can accomplish this by using the NODESUBSET= option in the PROC NETWORK statement. You can use the nodes subset data table in conjunction with the PATH, SHORTESTPATH, NODESIMILARITY, or REACH statement. (See the sections “Path Enumeration” on page 152, “Shortest Path” on page 195, “Node Similarity” on page 142, and “Reach (Ego) Network” on page 189, respectively.) The nodes subset data table is expected to contain some combination of the following variables:

- **node**: the node label (can be numeric or character)
- **source**: whether to process this node as a source node in (shortest) path algorithms or node similarity (must be numeric)
- **sink**: whether to process this node as a sink node in (shortest) path algorithms or node similarity (must be numeric)
- **reach**: for the reach algorithm, the index of the source subgraph for processing (must be numeric)

Table 3.5 shows how PROC NETWORK processes nodes for each algorithm type. The missing indicator (.) can also be used in place of 0 to designate that a node is not to be processed.

<table>
<thead>
<tr>
<th>Algorithm Type</th>
<th>Variable Designations</th>
<th>Example Shown In:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Shortest) path,</td>
<td>A value of 1 for the source variable designates that the node is to be processed as a</td>
<td>The section “Shortest Path” on page 195 or “Example 3.17: Node Similarity for Link Prediction” on page 284</td>
</tr>
<tr>
<td>Node similarity</td>
<td>source; a value of 0 (or missing) represents no specification. The same values must be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>used for the sink variable to designate whether the node is to be processed as a sink.</td>
<td></td>
</tr>
<tr>
<td>Reach</td>
<td>A value greater than 0 defines a marker for the source subgraph to which this node belongs.</td>
<td>The section “Reach (Ego) Network” on page 189</td>
</tr>
<tr>
<td></td>
<td>All nodes that have the same marker are processed together as source nodes. A value of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (or missing) for the reach variable designates that the node is not to be processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The reach identifiers must be consecutive integers starting from 1.</td>
<td></td>
</tr>
</tbody>
</table>

The following code, which creates a nodes subset data table, might be used with the graph in Figure 3.7:

```plaintext
data mycas.NodeSubSetIn;
 input node $ reach source sink;
datalines;
 A 1 1 .
 F 2 . 1
 E 2 1 .
;
```
The data table mycas.NodeSubSetIn indicates that you want to process the following:

- the reach network from the subgraph defined by node A
- the reach network from the subgraph defined by nodes F and E
- the (shortest) paths (or node similarity) for the source-sink pairs in \( \{A, E\} \times \{F\} \) (the crossproduct of subsets \( \{A, E\} \) and \( \{F\} \))

**Multigraphs**

A *multigraph* is a graph that allows multiple (also called parallel) links between nodes (called *multilinks*). A graph that has no multilinks is called a *simple* graph (or just a graph). You can specify whether to include multilinks (MULTILINKS=TRUE) or to aggregate them (MULTILINKS=FALSE) when an input graph is read. For MULTILINKS=FALSE, each multilink is aggregated into one link that uses the minimum of each attribute value. That is, a multigraph is transformed into a simple graph. By default, MULTILINKS=TRUE (multilinks are included for algorithms that support them).

Aggregating links (MULTILINKS=FALSE) implies a performance cost. When multilinks are aggregated into a simple graph, the in-memory graph representation requires more memory and can take longer to build, relative to using MULTILINKS=TRUE. However, if your data contain many redundant parallel links, then using MULTILINKS=FALSE can improve overall performance by reducing the size of the working graph.

For certain algorithms in PROC NETWORK, multigraphs are not supported. The algorithms that are specified by the following options use MULTILINKS=FALSE by default and issue an error message if you set MULTILINKS=TRUE:

- CLIQUE
- CORE
- CYCLE

Consider the directed multigraph shown in Figure 3.12.
The links data table is created by the following DATA step:

```latex
\begin{verbatim}
data mycas.LinkSetIn;
 input from $ to $ weight;
datalines;
A B 1
A B 2
A B 3
A C 5
C D 4
D C 3
E D 1
E D 2
E C 5
;
\end{verbatim}
```

The following statements read in this graph, declare it as a directed (simple) graph, and output the resulting links:

```latex
\begin{verbatim}
proc network
 direction = directed
 multiLinks = false
 links = mycas.LinkSetIn
 outLinks = mycas.LinkSetOut;
run;
\end{verbatim}
```

The progress of the procedure is shown in Figure 3.13. The log now shows the number of links that were declared as multilinks and aggregated.
Figure 3.13  PROC NETWORK Log: Links Data Table of a Directed Graph

NOTE: Running NETWORK.
NOTE: Multilink aggregation removed 3 links from the input graph.
NOTE: The number of nodes in the input graph is 5.
NOTE: The number of links in the input graph is 6.
NOTE: The Cloud Analytic Services server processed the request in 0.043533 seconds.
NOTE: The data set MYCAS.LINKSETOUT has 6 observations and 3 variables.

The output data table mycas.LinkSetOut, shown in Figure 3.14, contains the transformed (simple) graph from the input multigraph with attribute values aggregated (using the minimum attribute).

Figure 3.14  Links Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>D</td>
<td>1</td>
</tr>
</tbody>
</table>

The following statements read in this graph, declare it as a directed multigraph, and output the resulting links:

```
proc network
direction = directed
multiLinks = true
links = mycas.LinkSetIn
outLinks = mycas.LinkSetOut;
run;
```

The progress of the procedure is shown in Figure 3.15. In this case, no links are aggregated and the resulting output data table mycas.LinkSetOut is equivalent to the input data table mycas.LinkSetIn.

Figure 3.15  PROC NETWORK Log: Links Data Table of a Directed Multigraph

NOTE: Running NETWORK.
NOTE: The number of nodes in the input graph is 5.
NOTE: The number of links in the input graph is 9.
NOTE: The Cloud Analytic Services server processed the request in 0.04294 seconds.
NOTE: The data set MYCAS.LINKSETOUT has 9 observations and 3 variables.

When you want to transform your multigraph into a simple graph with finer control over how the aggregation step is performed, one possible approach is to use the FEDSQL procedure. The following statements use PROC FEDSQL to aggregate multilinks by summing their weights:
Chapter 3: The NETWORK Procedure

proc fedsql sessref=mysess;
create table LinkSetAgg as
    select "from", "to", sum(weight) as weight
    from LinkSetIn
    group by "from", "to";
quit;

The resulting output data table mycas.LinkSetAgg, shown in Figure 3.16, can now be used as a simple graph in a subsequent PROC NETWORK call. Using PROC FEDSQL to do the transformation of a multigraph to a simple graph provides greater flexibility in defining how the aggregation step is performed. For example, in place of the sum operator, you can use any of the operators that PROC FEDSQL supports. For more information about PROC FEDSQL, see SAS Viya: FedSQL Programming for SAS Cloud Analytic Services.

![Figure 3.16 Links Data Table after Aggregation](image)

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>C</td>
<td>5</td>
</tr>
</tbody>
</table>

**Self-Links**

A self-link is a link for which the from node and to node are the same. You can specify whether to include self-links (SELFLINKS=TRUE) or to remove them (SELFLINKS=FALSE) when an input graph is read. By default, self-links are removed.

Consider the directed graph shown in Figure 3.17.
The links data table is created by the following DATA step:

```sas
data mycas.LinkSetIn;
 input from $ to $;
 datalines;
 A A
 A B
 A C
 A D
 B C
 D D
 ;
```

The following statements read in this graph, declare it as a directed graph that does not allow self-links, and output the resulting links:

```sas
proc network
direction = directed
selfLinks = false
links = mycas.LinkSetIn
outLinks = mycas.LinkSetOut;
run;
```

The progress of the procedure is shown in Figure 3.18. The log shows the number of self-links that were ignored and therefore removed.
Chapter 3: The NETWORK Procedure

**Figure 3.18** PROC NETWORK Log: Links Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

The following statements read in the graph that is shown in Figure 3.17, declare it as a directed graph that allows self-links, and output the resulting links:

```plaintext
proc network
direction = directed
selfLinks = true
links = mycas.LinkSetIn
outLinks = mycas.LinkSetOut;
run;
```

The progress of the procedure is shown in Figure 3.20. In this case, no links are removed and the resulting output data table mycas.LinkSetOut is equivalent to the input data table mycas.LinkSetIn.
Output Carryover Variables

Any link or node attribute can be carried over to the output results table by using the VARS= option in the LINKSVAR or NODESVAR statement. This is supported for all output tables except the table that is specified in the OUTNODES= option when used in conjunction with a distributed graph algorithm. The list of algorithms that operate on a distributed graph is described in the section “Execution Modes and Data Movement” on page 76.

The following DATA step creates a graph that has four nodes (with two additional attributes) and three links (with a weight attribute and two additional attributes):

```plaintext
data mycas.NodeSetIn;
 input node $ attrStr $ attrNum;
datalines;
 A ThisIsA 13
 B B 1
 C LabelC 55.5
 D NodeD 7;

data mycas.LinkSetIn;
 input from $ to $ weight attrStr1 $ attrStr2 $12.;
datalines;
 A B 1 Link1 555-789-1234
 A C 2 Link2 556-453-7456
 B C 1 Link3 800-123-7787;
;
```

The following statements read in this graph and output the resulting nodes and links data tables (including the carryover variables):

```plaintext
proc network
 nodes = mycas.NodeSetIn
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut
 outLinks = mycas.LinkSetOut;
 nodesVar
 vars = (attrStr attrNum);
 linksVar
 vars = (attrStr1 attrStr2);
run;
```

The nodes data table mycas.NodeSetOut, shown in Figure 3.21, contains the carryover variables that are defined in the VARS= option in the NODESVAR statement.

**Figure 3.21** Nodes Data Table with Carryover Variables

<table>
<thead>
<tr>
<th>Obs</th>
<th>node</th>
<th>attrStr</th>
<th>attrNum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>ThisIsA</td>
<td>13.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>LabelC</td>
<td>55.5</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>NodeD</td>
<td>7.0</td>
</tr>
</tbody>
</table>

The links data table mycas.LinkSetOut, shown in Figure 3.22, contains the carryover variables that are defined in the VARS= option in the LINKSVAR statement, as well as the built-in variable weight.
As another example, consider the authority centrality calculation in the section “Authority in US Supreme Court Precedent” on page 17. Rather than performing a merge to combine the authority score with the case names, you can use the following statements to carry the case names directly to the output table:

```sas
proc network
 direction = directed
 nodes = mycas.Cases
 links = mycas.LinkSetInCourt
 outNodes = mycas.NodeSetOut;
 linksVar
 from = from_case
 to = to_case;
 nodesVar
 node = case_id
 vars = (case_name);
 centrality
 auth = unweight;
run;
```

The output table `mycas.NodeSetOut` contains the same results that are shown in Figure 3.6 without requiring the additional merge step.

**Standardized Labels Input**

For large-scale graphs, the processing stage that reads the nodes and links into memory can be time-consuming. Under the following assumptions, you can use the STANDARDIZEDLABELS option in the PROC NETWORK statement to speed up this stage:

1. The links data table variables from and to are numeric.
2. The node and nodes subset data table variable node is numeric.
3. The node labels start from 0 and are consecutive nonnegative integers.

Consider the following links data table that uses numeric labels:

```sas
data mycas.LinkSetIn;
 input from to weight;
datalines;
 0 1 1
 3 0 2
 1 5 1
;
```

Using default settings, the following statements echo link and nodes data tables that contain three links and four nodes, respectively:
proc network
  links = mycas.LinkSetIn
  outNodes = mycas.NodeSetOut
  outLinks = mycas.LinkSetOut;
run;

The log is shown in Figure 3.23.

**Figure 3.23** PROC NETWORK Log: Undirected Graph

NOTE: Running NETWORK.
NOTE: The number of nodes in the input graph is 4.
NOTE: The number of links in the input graph is 3.
NOTE: The Cloud Analytic Services server processed the request in 0.04252 seconds.
NOTE: The data set MYCAS.NODESETOUT has 4 observations and 1 variables.
NOTE: The data set MYCAS.LINKSETOUT has 3 observations and 3 variables.

The output data table mycas.NodeSetOut, shown in Figure 3.24, contains the unique numeric node labels, \{0, 1, 3, 5\}.

**Figure 3.24** Nodes Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Using standardized labels, the same input data table defines a graph that has six (not four) nodes:

proc network
  standardizedLabels
  links = mycas.LinkSetIn
  outNodes = mycas.NodeSetOut
  outLinks = mycas.LinkSetOut;
run;

The log that results from using standardized labels is shown in Figure 3.25.

**Figure 3.25** PROC NETWORK Log: Undirected Graph Using Standardized Labels

NOTE: Running NETWORK.
NOTE: The number of nodes in the input graph is 6.
NOTE: The number of links in the input graph is 3.
NOTE: The Cloud Analytic Services server processed the request in 0.045233 seconds.
NOTE: The data set MYCAS.NODESETOUT has 6 observations and 1 variables.
NOTE: The data set MYCAS.LINKSETOUT has 3 observations and 3 variables.
The output data table mycas.NodeSetOut, shown in Figure 3.26, now contains all node labels from 0 to 5, based on the assumptions when you use the STANDARDIZEDLABELS option.

**Figure 3.26** Nodes Data Table of a Directed Graph

<table>
<thead>
<tr>
<th>Obs</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

**Standardized Labels Output**

You can specify the STANDARDIZEDLABELSOUT option in the PROC NETWORK statement to generate a mapping between node labels and node identifiers that satisfies the requirements needed to use the STANDARDIZEDLABELS option in subsequent calls. Specifying the STANDARDIZEDLABELSOUT option can be useful to avoid repeated calls to the processing stage where the mapping is created. The standardized labels are written to the output links data table (or to the output nodes data table or to both) that you specify in the OUTLINKS= (OUTNODES=) option in the PROC NETWORK statement.

The OUTLINKS= data table contains the following columns in addition to the variables that are described in the section “Links Input Data” on page 59:

- `fromId`: the `from` node identifier (a mapping to the label in the `from` column)
- `toId`: the `to` node identifier (a mapping to the label in the `to` column)

The OUTNODES= data table contains the following column in addition to the variables that are described in the section “Nodes Input Data” on page 63:

- `nodeId`: the node identifier (a mapping to the label in the `node` column)

Consider the following nodes and links data tables:

```plaintext
data mycas.NodeSetIn;
 input node $;
 datalines;
 Z;
;
da mycas.LinkSetIn;
 input from $ to $;
 datalines;
 B C
 B D
 X Y
;
```

The following statements create the standardized mapping and output the results in the data tables mycas.NodeSetSLabels and mycas.LinkSetSLabels:
The output data table mycas.NodeSetSLabels, shown in Figure 3.27, contains the node mapping.

**Figure 3.27** Nodes Data Table with Standardized Label Mapping

<table>
<thead>
<tr>
<th>Obs</th>
<th>node</th>
<th>nodeId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Z</td>
<td>5</td>
</tr>
</tbody>
</table>

The output data table mycas.LinkSetSLabels, shown in Figure 3.28, contains the node mapping that is applied to each link.

**Figure 3.28** Links Data Table with Standardized Label Mapping

<table>
<thead>
<tr>
<th>Obs</th>
<th>from</th>
<th>to</th>
<th>fromId</th>
<th>toId</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>D</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>Y</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

In subsequent calls, the mapping can be used with the STANDARDIZEDLABELS option, and the LINKSVAR (and NODESVAR) statements, to avoid the expense of the input processing stage. It also might be useful to use the VARS= option in the LINKSVAR (and NODESVAR) statements, as described in the section “Output Carryover Variables” on page 71, to carry over the mapping, as follows:

```plaintext
proc network
 standardizedLabels
 nodes = mycas.NodeSetSLabels
 links = mycas.LinkSetSLabels
 outNodes = mycas.NodeSetOut
 outLinks = mycas.LinkSetOut;
 nodesVar
 node = nodeId
 vars = (node);
 linksVar
 from = fromId
 to = toId
 vars = (from to);
 connectedComponents;
run;
```
The output data table mycas.NodeSetOut, shown in Figure 3.29, contains the assignments of nodes to connected components, in addition to the label (identifier) mappings.

**Figure 3.29** Nodes Data Table Including Connected Components and Mappings

<table>
<thead>
<tr>
<th>Obs</th>
<th>nodeId</th>
<th>node</th>
<th>concomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Y</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Z</td>
<td>3</td>
</tr>
</tbody>
</table>

The output data table mycas.LinkSetOut, shown in Figure 3.30, contains the assignments of links to connected components, in addition to the label (identifier) mappings.

**Figure 3.30** Links Data Table Including Connected Components and Mappings

<table>
<thead>
<tr>
<th>Obs</th>
<th>fromId</th>
<th>toId</th>
<th>from</th>
<th>to</th>
<th>concomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>B</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>X</td>
<td>Y</td>
<td>2</td>
</tr>
</tbody>
</table>

**Determinism**

Many algorithms are sensitive to the order in which PROC NETWORK loads the data. Reading data tables in the same order at each invocation is not guaranteed. If the order of the nodes or links is different, the final result might change. By default, PROC NETWORK ensures that each invocation (with the same machine configuration and parameter settings) produces the same final result. However, this comes at a performance cost, which can be avoided by specifying DETERMINISTIC=FALSE in the PROC NETWORK statement. Specifying DETERMINISTIC=FALSE might improve performance, but the final results might differ. In some cases, this difference is simply a permutation of identifiers (for example, connected components). In other cases, when the algorithm uses local optimization (for example, community detection), the final result might be a local (or alternative) solution.

**Execution Modes and Data Movement**

When you run PROC NETWORK, the algorithmic execution mode and the underlying data movement that must be implemented to support that execution mode depend on which algorithm you select.

The data movement and execution modes for each algorithm are listed in Table 3.6. The following abbreviations are used in Table 3.6 for processing mode:

- SM: single machine
- MM: multiple machines
- **MT**: multithreaded execution

For a single-machine CAS server, there is no data movement. The algorithm runs on the same machine where the data reside. For a multiple-machine CAS server, the assumption is that the data reside in parts on one or more of the machines in the server. The following phrases are used in Table 3.6 to describe data movements for a multiple-machine CAS server:

- **Moved to SM**: Some algorithms run only in single-machine mode. In such cases, one particular machine (chosen randomly) is assigned the role of the processing machine, and the data from all the other machines are moved over to this processing machine.

- **Repeated on MM**: Some algorithms use multiple machines, but each machine requires a global view of the input data. In such cases, each data part is repeated on all machines. Each machine processes a portion of the work across the entire graph. The resulting output tables are distributed tables.

- **Shuffled across MM**: Some algorithms use multiple machines and require only a portion of the data (distributed graphs). However, because the original data are usually randomly distributed, the first step is to shuffle data between machines such that the data are appropriately aligned for the particular algorithm’s needs. When the data are aligned correctly, each machine processes a part of the data and then iteratively merges results across the grid to obtain the final result. Again, the resulting output tables are distributed tables.

- **None**: Some algorithms require no data movement and process the original data (randomly distributed) directly.

### Table 3.6  Execution Modes and Data Movement

<table>
<thead>
<tr>
<th>Statement and Options</th>
<th>Data Movement</th>
<th>Processing Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC NETWORK (input/output only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTED=FALSE</td>
<td>Moved to SM (MT)</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>DISTRIBUTED=TRUE</td>
<td>None</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>BICONNECTEDCOMPONENTS</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
<tr>
<td>BY</td>
<td>Shuffled across MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>CENTRALITY</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>BETWEEN=, CLOSE=</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
<tr>
<td>CLUSTERINGCOEFFICIENT, AUTH=, HUB=, EIGEN=, PAGERANK=, DEGREE=, INFLUENCE=</td>
<td>Moved to SM</td>
<td>MM</td>
</tr>
<tr>
<td>DEGREE= (with DISTRIBUTED=TRUE)</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CLIQUE</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>COMMUNITY ALGORITHM= LOUVAIN, LABELPROP</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
<tr>
<td>PARALLELABELPROP†</td>
<td>Shuffled across MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>CONNECTEDCOMPONENTS ALGORITHM= DFS, UNIONFIND</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
<tr>
<td>PARALLEL†</td>
<td>None</td>
<td>MM</td>
</tr>
<tr>
<td>CORE</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
</tbody>
</table>
Table 3.6  continued

<table>
<thead>
<tr>
<th>Statement and Options</th>
<th>Data Movement</th>
<th>Processing Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLE ALGORITHM= BACKTRACK</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>BUILD</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>NODESIMILARITY</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>PATH</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>PATTERNMATCH with QUERYKEY=</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>without QUERYKEY=</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>PROJECTION</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>REACH</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>SHORTESTPATH</td>
<td>Repeated on MM</td>
<td>MM (MT)</td>
</tr>
<tr>
<td>SUMMARY (other than shortest path)</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>SHORTESTPATH=</td>
<td>Moved to SM</td>
<td>SM (MT)</td>
</tr>
<tr>
<td>TRANSITIVECLOSURE</td>
<td>Moved to SM</td>
<td>SM</td>
</tr>
</tbody>
</table>

† To specify a distributed graph algorithm, you can also set DISTRIBUTED=TRUE in the PROC NETWORK statement.

In addition, on each machine, some algorithms (in addition to the input phase) take advantage of multicore chip technology by executing on multiple threads simultaneously. You can use the NTHREADS=number option in the PROC NETWORK statement to specify the number of threads to use. The default is the number of cores on the machine that executes the process or the number of cores permissible based on your installation (whichever is less). Specifying a number greater than the number of available cores might hurt performance. Specifying a high number does not guarantee shorter solution time; the actual change in solution time depends on the computing hardware and the scalability of the underlying algorithms. In some circumstances, the NETWORK procedure might use fewer threads than the specified number because the procedure’s internal algorithms have determined that a smaller number is preferable.

In the case of BY-group processing, the data must first be partitioned such that each observation within a BY group resides on the same machine. If the data are not already partitioned, PROC NETWORK shuffles the data appropriately as a first step. When the data are partitioned, the selected algorithm runs against the groups (on each machine) by using multiple threads (one group per thread). If the algorithm itself is a multithreaded algorithm, then it uses multiple threads (on each group) if and only if the value of the NTHREADS= option exceeds the number of groups assigned to the processing machine. In this case, the resulting output tables are distributed tables (partitioned by group). You can partition your input data in advance by using the PARTITION= option in a DATA step. Partitioning in advance avoids the need for PROC NETWORK to shuffle the data.

Because of communication costs, increasing the number of machines does not guarantee faster execution, especially when you are dealing with small graphs. For all the documentation examples, the CAS session is configured for four worker nodes, each having 32 cores, unless otherwise noted. For general information about CAS sessions, see SAS Cloud Analytic Services: Fundamentals.
Persistent Data Structures (In-Memory Graphs)

For large-scale graphs, loading the graph input data tables and building in-memory data structures can be computationally expensive. When the input data are not changing frequently and your workflow consists of multiple analyses, it might be more efficient to retain the in-memory data structures. You can do this by using the LOADGRAPH statement along with any other options that define the graph input. The options that define the graph input include the DIRECTION=, LINKS=, NODES=, MULTILINKS=, SELFLINKS=, and STANDARDIZEDLABELS options in the PROC NETWORK statement, in addition to the LINKSVAR and NODESVAR statements.

Loading and Unloading the Graph

Loading the graph (via the LOADGRAPH statement) consists of reading the graph input data tables and storing a standard representation of the graph in memory as part of the current CAS session. The resulting macro variable, _NETWORK_, includes GRAPH, which is a reference identifier for the in-memory graph. You can then use this identifier in the GRAPH= option in the PROC NETWORK statement for subsequent calls to any supporting algorithm without needing to read from tables. Subsequent calls that include the GRAPH= option directly use the in-memory graph that was defined in the loading stage. This means that you cannot use options that are related to defining the graph in conjunction with the GRAPH= option.

When the GRAPH= option is used, additional data structures might need to be built, depending on the algorithm chosen, when a particular algorithm is first invoked. In some cases, this is an additional one-time expense. Subsequent calls can then use these data structures directly. For this reason, a first call that includes the GRAPH= option to some algorithms can sometimes take longer than subsequent calls.

You can load any number of graph input tables into memory. You can delete an in-memory graph and its persistent data structures by using the UNLOADGRAPH statement or by closing the CAS session.

OUTGRAPHLIST= Option

The OUTGRAPHLIST= option in the LOADGRAPH and UNLOADGRAPH statements produces a data table that contains summary information about the in-memory graphs that are currently loaded (or unloaded) in the current CAS session. This data table contains the following columns:

- graph: in-memory graph identifier
- createTime: the creation time of the in-memory graph
- loaded: 1 if the graph has been loaded; 0 if the graph has been unloaded
- direction: the direction of the in-memory graph
- nodes: the number of nodes in the in-memory graph
- links: the number of links in the in-memory graph
- multiLinks: 1 if the in-memory graph load used MULTILINKS=TRUE; 0 otherwise
- selfLinks: 1 if the in-memory graph load used SELFLINKS=TRUE; 0 otherwise
- standardizedLabels: 1 if the in-memory graph load used STANDARDIZEDLABELS; 0 otherwise
**Supported Algorithms**

The section “Execution Modes and Data Movement” on page 76 describes the execution modes for each algorithm and feature combination. Using persistent data structures is supported for all algorithms where data are moved to a single machine (Moved to SM) or repeated on multiple machines (Repeated on MM). Persistence of data structures is not supported when data are shuffled across multiple machines (Shuffled across MM) nor for algorithms that move no data (None).

**Using Persistent Data Structures with the Shortest Path Algorithm**

As an example, consider the road network that is described in the section “Road Network Shortest Path” on page 14 and is defined by the data table mycas.LinkSetInRoadNC10am. To find the route that yields the shortest path between source="614CapitalBlvd" and sink="SASCampusDrive", you can use the following statements:

```plaintext
proc network
 logLevel = aggressive
 links = mycas.LinkSetInRoadNC10am;
 linksVar
 from = start_inter
 to = end_inter
 weight = time_to_travel;
 shortestPath
 outPaths = mycas.ShortPath
 source = "614CapitalBlvd"
 sink = "SASCampusDrive";
run;
```

These statements read the graph input from the table mycas.LinkSetInRoadNC10am, build the in-memory data structures that are required to run the shortest path algorithm, calculate the shortest path, and then delete the in-memory data structures that were needed to represent the graph data.

Next, you might want to calculate the shortest path between two other locations—for example, source="US70W/US440W" and sink="SASCampusDrive". In this case, you would use the following statements:

```plaintext
proc network
 logLevel = aggressive
 links = mycas.LinkSetInRoadNC10am;
 linksVar
 from = start_inter
 to = end_inter
 weight = time_to_travel;
 shortestPath
 outPaths = mycas.ShortPath
 source = "US70W/US440W"
 sink = "SASCampusDrive";
run;
```

These statements read the graph input from the table mycas.LinkSetInRoadNC10am, build the in-memory data structures, calculate the shortest path, and then delete the in-memory data structures. In this case, the graph input table and the in-memory data structures that are built are the same in both executions.
The processing time that is needed to execute the second call can be reduced by using the LOADGRAPH statement to store the in-memory data structures.

First, load the graph by using the following statements:

```plaintext
proc network
 logLevel = aggressive
 links = mycas.LinkSetInRoadNC10am;
 linksVar
 from = start_inter
 to = end_inter
 weight = time_to_travel;
loadGraph
 outGraphList = mycas.OutGraphList;
run;
%put &_NETWORK_;
```

The macro variable result is written to the log, as shown in Figure 3.31.

**Figure 3.31** PROC NETWORK Log: Loading Graph into Memory

```
NOTE: ---
NOTE: Running NETWORK.
NOTE: Reading the links data.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 10.
NOTE: The number of links in the input graph is 11.
NOTE: The Cloud Analytic Services server processed the request in 0.144729 seconds.
NOTE: The data set MYCAS.OUTGRAPHLIST has 1 observations and 9 variables.
STATUS=OK PROBLEM_TYPE=LOADGRAPH SOLUTION_STATUS=OK GRAPH=0 CREATETIME=23OCT2019:12:01:20
CPU_TIME=0.17 REAL_TIME=0.14
```

The macro variable indicates that the graph identifier (GRAPH) for the in-memory graph is 0. The following statements extract the identifier from the `_NETWORK_` macro variable into the `_GRAPH_` macro variable:

```plaintext
%macro GetValue(mac=, item=);
 %let prs = %sysfunc(prxparse(m/&item=/i));
 %if %sysfunc(prxmatch(&prs, &&&mac)) %then %do;
 %let prs = %sysfunc(prxparse(s/.*&item=(\[^ \]+).*/$1/i));
 %let return_val = %sysfunc(prxchange(&prs, 1, &&&mac));
 &return_val
 %end;
 %else %do;
 %put ERROR: Cannot find &item!;
 %end;
%mend GetValue;
%let _GRAPH_ = %GetValue(mac=_NETWORK_, item=GRAPH);
```
The graph identifier and several other pieces of summary information about the in-memory graph are also contained in the output data table `mycas.OutGraphList`, as shown in Figure 3.32.

**Figure 3.32** Summary Information about the In-Memory Graphs

<table>
<thead>
<tr>
<th>graph</th>
<th>createTime</th>
<th>loaded</th>
<th>direction</th>
<th>nodes</th>
<th>links</th>
<th>multiLinks</th>
<th>selfLinks</th>
<th>standardizedLabels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23OCT2019:12:01:20</td>
<td>1</td>
<td>Undirected</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Next, the following statements use the in-memory graph that was loaded in the previous PROC NETWORK call to find the route that yields the shortest path between `source="614CapitalBoulevard"` and `sink="SASCampusDrive"`:

```sas
proc network
 logLevel = aggressive
 graph = &_GRAPH_;
 shortestPath
 outPaths = mycas.ShortPath
 source = "614CapitalBldv"
 sink = "SASCampusDrive";
run;
```

These statements point to the in-memory graph that is referenced by identifier `_GRAPH_=0`, build any additional data structures needed (since this is the first call to the shortest path algorithm), and then calculate the shortest path. The progress of the procedure is shown in Figure 3.33.

**Figure 3.33** PROC NETWORK Log: Shortest Path Using an In-Memory Graph

```
NOTE: Running NETWORK.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 10.
NOTE: The number of links in the input graph is 11.
NOTE: Processing the shortest paths problem between 1 source nodes and 1 sink nodes.
Real
Algorithm Sources Complete Time
shortestPath 1 100% 0.01
```

Figure 3.34 displays the output data table `mycas.ShortPath`, which shows the best route to take to minimize travel time between 614 Capital Boulevard and SAS Campus Drive.
Figure 3.34  Shortest Path for Road Network between 614 Capital Boulevard and SAS Campus Drive

<table>
<thead>
<tr>
<th>order</th>
<th>start_inter</th>
<th>end_inter</th>
<th>time_to_travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>614CapitalBlvd</td>
<td>Capital/WadeAve</td>
<td>1.4400</td>
</tr>
<tr>
<td>2</td>
<td>Capital/WadeAve</td>
<td>WadeAve/RaleighExpy</td>
<td>4.5000</td>
</tr>
<tr>
<td>3</td>
<td>WadeAve/RaleighExpy</td>
<td>RaleighExpy/US40W</td>
<td>3.0000</td>
</tr>
<tr>
<td>4</td>
<td>RaleighExpy/US40W</td>
<td>US40W/HarrisonAve</td>
<td>1.4182</td>
</tr>
<tr>
<td>5</td>
<td>US40W/HarrisonAve</td>
<td>SASCampusDrive</td>
<td>1.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11.5582</td>
</tr>
</tbody>
</table>

Next, to calculate the shortest path between `source="US70W/US440W"` and `sink="SASCampusDrive"`, use the following statements:

```
proc network
 logLevel = aggressive
 graph = &_GRAPH_;
 shortestPath
 outPaths = mycas.ShortPath
 source = "US70W/US440W"
 sink = "SASCampusDrive";
run;
```

These statements again point to the same in-memory graph (with no additional setup work required) and calculate the shortest path. The progress of the procedure is shown in Figure 3.35.

Figure 3.35  PROC NETWORK Log: Shortest Path Using an In-Memory Graph

NOTE:	------------------------------------------------------------------------------------------			
NOTE:	------------------------------------------------------------------------------------------			
NOTE:	Running NETWORK.			
NOTE:	------------------------------------------------------------------------------------------			
NOTE:	The number of nodes in the input graph is 10.			
NOTE:	The number of links in the input graph is 11.			
NOTE:	Processing the shortest paths problem between 1 source nodes and 1 sink nodes.			
Real	Algorithm	Sources	Complete	Time
shortestPath		1	100%	0.00

NOTE: Processing the shortest paths problem used 0.00 (cpu: 0.00) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.044361 seconds.
NOTE: The data set MYCAS.SHORTPATH has 4 observations and 6 variables.

Figure 3.36 displays the output data table mycas.ShortPath, which shows the best route to take to minimize travel time between US70W/US440W and SAS Campus Drive.
The following statements load an additional graph, from the table mycas.LinkSetInRoadNC5pm:

```
proc network
logLevel = aggressive
links = mycas.LinkSetInRoadNC5pm;
linksVar
 from = start_inter
to = end_inter
weight = time_to_travel;
loadGraph
outGraphList = mycas.OutGraphList;
run;
```

The summary information about the in-memory graphs is contained in the output data table mycas.OutGraphList, as shown in Figure 3.37.

```
graph createTime loaded direction nodes links multiLinks selfLinks standardizedLabels
0 23OCT2019:12:01:20 1 Undirected 10 11 1 0 0
1 23OCT2019:12:01:31 1 Undirected 10 11 1 0 0
```

Now, you can directly execute any supported algorithm for either graph (GRAPH=0 or GRAPH=1), without reading in the links table again.

Finally, to delete the first in-memory graph (GRAPH=0), you can use the following statements:

```
proc network
graph = &_GRAPH_;
unloadGraph
 outGraphList = mycas.OutGraphList;
run;
```

The output data table mycas.OutGraphList, shown in Figure 3.38, now indicates that the in-memory graph that has identifier 0 is no longer loaded.

```
graph createTime loaded direction nodes links multiLinks selfLinks standardizedLabels
0 23OCT2019:12:01:20 0
1 23OCT2019:12:01:31 1 Undirected 10 11 1 0 0
```
Numeric Limitations

Extremely large or extremely small numerical values might cause computational difficulties for some of the algorithms in PROC NETWORK. For this reason, each algorithm restricts the magnitude of the data values to a particular threshold number. If the user data values exceed this threshold, PROC NETWORK issues an error message. The value of the threshold limit is different for each algorithm and depends on the operating environment. The threshold limits are listed in Table 3.7, where \( M \) is defined as the largest number that can be represented by a double.

<table>
<thead>
<tr>
<th>Statement (and Options)</th>
<th>Graph Links</th>
<th>Graph Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>auxweight</td>
<td>weight</td>
</tr>
<tr>
<td>CENTRALITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTH=, EIGEN=, HUB=, PAGERANK=</td>
<td>1E20</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>BETWEEN=, CLOSE=</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>DEGREE=</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>INFLUENCE=</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>CLIQUE</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>COMMUNITY</td>
<td>1E50</td>
<td></td>
</tr>
<tr>
<td>CYCLE</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>NODESIMILARITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTOR=TRUE</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>PATH</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>REACH</td>
<td></td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>SHORTESTPATH</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
<td>( \sqrt{M} )</td>
</tr>
<tr>
<td>DIAMETERAPPROX=, SHORTESTPATH=</td>
<td>( \sqrt{M} )</td>
<td>( \sqrt{M} )</td>
</tr>
</tbody>
</table>

To obtain these limits, use the SAS function \texttt{constant}. For example, the following DATA step assigns \( \sqrt{M} \) to a variable \( x \) and prints that value to the log:

```sas
data _null_;
x = constant('SQRTBIG');
put x=;
run;
```

Missing Values

For all the algorithms in PROC NETWORK, there is no valid interpretation for a missing value. If the user data contain a missing value, PROC NETWORK issues an error message.
Negative Link Weights

For certain algorithms in PROC NETWORK, a negative link weight is not allowed. The following algorithms issue an error message if you provide a negative link weight:

- CENTRALITY (AUTH=, BETWEEN=, CLOSE=, EIGEN=, HUB=, PAGERANK=)
- COMMUNITY

Zero Link Weights

For the community detection algorithm, a zero-valued link weight is not allowed. If a zero-valued link weight is provided, the community detection algorithm issues an error message.

Size Limitations

PROC NETWORK can handle any graph whose numbers of nodes and links are each less than or equal to 2,147,483,647 (the maximum that a 32-bit integer can represent). This maximum also applies to 64-bit systems. For graphs that contain two billion nodes (or links), memory restrictions also become a limiting factor.

If the data from your problem require a graph that contains more than two billion nodes (or links), there is usually a heuristic way to break the network into smaller networks based on problem-specific attributes. Then, using DATA steps (or a BY statement), you can process each of the smaller networks iteratively through repeated calls to PROC NETWORK. By using DATA steps (or a BY statement), you can also often work around memory limitations, because the full graph never resides in memory.

Exceptions to this limitation are: the parallel union-find algorithm for finding connected components, the parallel label propagation algorithm for community detection, and distributed degree centrality. These algorithms are limited to 2,147,483,647 links per machine in your session configuration (rather than total links). These algorithms are still limited to 2,147,483,647 total nodes.

Common Notation and Assumptions

This section briefly introduces some common notation and assumptions that are used throughout the chapter. Let \( G = (N, E) \) define a graph (or multigraph) that contains a set \( N \) of nodes and a set \( E \) of links. Table 3.8 provides a list of commonly used notation.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \delta_i )</td>
<td>The set of links that are incident to node ( i )</td>
</tr>
<tr>
<td>( \delta^\text{out}_i )</td>
<td>The set of outgoing links that are connected from node ( i )</td>
</tr>
<tr>
<td>( \delta^\text{in}_i )</td>
<td>The set of incoming links that are connected to node ( i )</td>
</tr>
<tr>
<td>( \text{from}(e) )</td>
<td>The from node of link ( e )</td>
</tr>
<tr>
<td>( \text{to}(e) )</td>
<td>The to node of link ( e )</td>
</tr>
</tbody>
</table>
Table 3.8 continued

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_i$</td>
<td>The set of neighbors (that is, unique nodes that are connected by links incident with node $i$)</td>
</tr>
<tr>
<td>$\tilde{N}_i$</td>
<td>The multiset of neighbors (that is, nodes that are connected by links incident with node $i$)</td>
</tr>
<tr>
<td>$\hat{N}_i$</td>
<td>The set of neighbors excluding node $i$ itself (that is, unique nodes that are connected by links, excluding self-links, incident with node $i$)</td>
</tr>
<tr>
<td>$N^\text{out}_i$</td>
<td>The set of out-neighbors (that is, unique nodes that are connected by outgoing links from node $i$)</td>
</tr>
<tr>
<td>$\tilde{N}^\text{out}_i$</td>
<td>The multiset of neighbors (that is, nodes that are connected by links incident with node $i$)</td>
</tr>
<tr>
<td>$\hat{N}^\text{out}_i$</td>
<td>The set of out-neighbors excluding node $i$ itself (that is, unique nodes that are connected by outgoing links, excluding self-links, from node $i$)</td>
</tr>
<tr>
<td>$N^\text{in}_i$</td>
<td>The set of in-neighbors (that is, unique nodes that are connected by incoming links to node $i$)</td>
</tr>
<tr>
<td>$\tilde{N}^\text{in}_i$</td>
<td>The set of in-neighbors excluding node $i$ itself (that is, unique nodes that are connected by incoming links, excluding self-links, to node $i$)</td>
</tr>
</tbody>
</table>

A complete graph on node set $N$ is a simple graph (with no self-links) in which every pair of nodes in $N$ is connected by a link. The number of links in a complete graph on node set $N$ is

$$K(N) = \frac{|N|^2 - |N|}{2}$$

when DIRECTION=UNDIRECTED, or

$$K(N) = |N|^2 - |N|$$

when DIRECTION=DIRECTED.

**Biconnected Components and Articulation Points**

A biconnected component of a graph $G = (N, E)$ is a connected subgraph that you cannot break into disconnected pieces by deleting any single node (and its incident links). An articulation point of a graph is a node whose removal would cause an increase in the number of connected components. Articulation points can be important when you analyze any graph that represents a communications network. Consider an articulation point $i \in N$ that, if removed, breaks the graph into two components, $C^1$ and $C^2$. All paths in $G$ between some nodes in $C^1$ and some nodes in $C^2$ must pass through node $i$. In this sense, articulation points are critical to communication. Examples where articulation points are important include airline hubs, electric circuits, network wires, protein bonds, traffic routers, and many other industrial applications.

In PROC NETWORK, you can find biconnected components and articulation points of an input graph by using the BICONNECTEDCOMPONENTS statement. This algorithm works only with undirected graphs.

The results of the biconnected components algorithm are written to the output links data table that you specify in the OUTLINKS= option in the PROC NETWORK statement. For each link in the links data table, the variable biconcomp identifies its component. The component identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK statement. The results of the articulation points are written to the output nodes data table that you specify in the OUTNODES= option in...
the PROC NETWORK statement. For each node in the nodes data table, the variable artpoint is either 1 (if the node is an articulation point) or 0 (otherwise).

The algorithm that PROC NETWORK uses to compute biconnected components is a variant of the depth-first search algorithm (Tarjan 1972). This algorithm runs in time $O(|V| + |E|)$ and therefore should scale to very large graphs.

### Output Data Tables

Depending on the specified options, the biconnected components algorithm produces an additional output data table as described in the following section.

#### OUT= Data Table

The OUT= data table describes the number of links in each biconnected component. This data table contains the following columns:

- **biconcomp**: biconnected component identifier
- **links**: number of links that are contained in the biconnected component

### Biconnected Components of an Undirected Graph

This section illustrates the use of the biconnected components algorithm on the undirected graph $G$ that is shown in Figure 3.39.

![Undirected Graph $G$](image)

The undirected graph $G$ can be represented by the following links data table, mycas.LinkSetInBiCC:
The following statements calculate the biconnected components and articulation points for $G$ and output the results in the data tables mycas.LinkSetOut, mycas.NodeSetOut, and mycas.BiConCompOut:

```sas
proc network
 links = mycas.LinkSetInBiCC
 outLinks = mycas.LinkSetOut
 outNodes = mycas.NodeSetOut;
 biconnectedComponents
 out = mycas.BiConCompOut;
run;
```

The output data table mycas.LinkSetOut contains the biconnected components of the input graph, as shown in Figure 3.40.

**Figure 3.40** Biconnected Components of an Undirected Graph

<table>
<thead>
<tr>
<th>from to</th>
<th>biconcomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>I</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

The output data table mycas.NodeSetOut contains the articulation points of the input graph, as shown in Figure 3.41.

**Figure 3.41** Articulation Points of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>artpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
</tr>
</tbody>
</table>
The output data table mycas.BiConCompOut contains the number of links in each biconnected component of the input graph, as shown in Figure 3.42.

**Figure 3.42** Summary for the Biconnected Components of an Undirected Graph

<table>
<thead>
<tr>
<th>biconcomp</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

The biconnected components are shown graphically in Figure 3.43 and Figure 3.44.

**Figure 3.43** Biconnected Components $C^1$ and $C^2$
For a more detailed example, see “Example 3.1: Articulation Points in a Terrorist Network” on page 220.

Centrality

In general terms, the centrality of a node or link in a graph gives some indication of its relative importance within the graph. In the field of network analysis, many different types of centrality metrics are used to better understand levels of prominence. For a good review of centrality metrics, see Newman (2010).

You can use the CENTRALITY statement in PROC NETWORK to calculate several of these metrics. The options for this statement are described in the section “CENTRALITY Statement” on page 32.

Let $G = (N, E)$ define a graph that contains nodes $N$ and links $E$. The following sections describe each of the possible centrality metrics that you can calculate in PROC NETWORK.

Degree Centrality

The (unweighted) degree (valency) of a node $j$ in an undirected graph is the number of links that are incident to node $j$, with self-links counted twice. The out-degree of a node in a directed graph is the number of out-links incident to that node; the in-degree is the number of in-links incident to that node. For an undirected graph, the terms degree and out-degree are interchangeable. Degree centrality is simply the in- or out-degree of a node and can be interpreted as some form of the node’s relative importance to a network. For example, in a network where nodes are people and you are tracking the flow of a virus, the degree centrality gives some idea of the magnitude of the risk of spreading the virus. People who have a higher out-degree can lead to faster and more widespread transmission. In a friendship network, in-degree often indicates popularity.

The weighted degree of a node is a generalization of degree; it is the sum of the link weights incident to that node. For unweighted graphs, the default weight of each link is 1.
For undirected graphs, degree centrality is

\[ C_d(i) = \sum_{e \in \delta_i} w^E_e \]

where \( \delta_i \) represents the set of links that are incident to node \( i \), and \( w^E_e \) is the weight of link \( e \).

For directed graphs, out-degree centrality of node \( i \) is

\[ C_{d_{\text{out}}}(i) = \sum_{e \in \delta^\text{out}_i} w^E_e \]

where \( \delta^\text{out}_i \) represents the set of outgoing links that are connected from node \( i \).

For directed graphs, in-degree centrality of node \( i \) is

\[ C_{d_{\text{in}}}(i) = \sum_{e \in \delta^\text{in}_i} w^E_e \]

where \( \delta^\text{in}_i \) represents the set of incoming links that are connected to node \( i \).

The overall degree centrality for a directed graph is calculated as

\[ C_d(i) = C_{d_{\text{out}}}(i) + C_{d_{\text{in}}}(i) \]

Degree centrality is calculated using the value of the DEGREE= option in the CENTRALITY statement. To specify a distributed graph algorithm, you can set DISTRIBUTED=TRUE in the PROC NETWORK statement.

The algorithm that PROC NETWORK uses to compute degree centrality runs in time \( O(|N|) \), and therefore should scale to very large graphs.

**OUTNODES= Data Table**

The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the degree centrality of each node. This data table contains the following column:

- **node**: the node label

If the graph is undirected and you specify DEGREE=UNWEIGHT or DEGREE=BOTH, the following column also appears in the nodes output data table:

- **centr_degree_out**: the unweighted degree centrality of the node

If the graph is undirected and you specify DEGREE=WEIGHT or DEGREE=BOTH, the following column also appears in the nodes output data table:
• centr_degree_out_wt: the weighted degree centrality of the node

If the graph is directed and you specify DEGREE=UNWEIGHT or DEGREE=BOTH, the following columns also appear in the nodes output data table:

• centr_degree_in: the unweighted in-degree centrality of the node
• centr_degree_out: the unweighted out-degree centrality of the node
• centr_degree: the sum of the unweighted in- and out-degree centrality of the node

If the graph is directed and you specify DEGREE=WEIGHT or DEGREE=BOTH, the following columns also appear in the nodes output data table:

• centr_degree_in_wt: the weighted in-degree centrality of the node
• centr_degree_out_wt: the weighted out-degree centrality of the node
• centr_degree_wt: the sum of the weighted in- and out-degree centrality of the node

**Degree Centrality of a Directed Graph**

As a simple example, consider again the directed graph in Figure 3.7 with the data table mycas.LinkSetIn, which is defined in the section “Links Input Data” on page 59. The following statements calculate the weighted degree centrality for both in- and out-degrees:

```plaintext
class proc network
 direction = directed
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 centrality
 degree = weight;
run;
```

The nodes data table mycas.NodeSetOut now contains the degree centrality for each node of the input graph. This data table is shown in Figure 3.45.

**Figure 3.45** Degree Centrality of a Directed Graph

<table>
<thead>
<tr>
<th>node</th>
<th>centr_degree_in_wt</th>
<th>centr_degree_out_wt</th>
<th>centr_degree_wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
**Influence Centrality**

Influence centrality is a generalization of degree centrality that considers the link and node weights of adjacent nodes ($C_1$) in addition to the link weights of nodes that are adjacent to adjacent nodes ($C_2$). The metric $C_1$ is referred to as first-order influence centrality, and the metric $C_2$ is referred to as second-order influence centrality.

For undirected graphs, influence centrality is

$$C_1(i) = \frac{\sum_{e \in \delta_i} w^E_e}{\sum_{j \in N} w^N_j}$$

$$C_2(i) = \sum_{j \in \tilde{N}_i} C_1(j)$$

where $\delta_i$ represents the set of links that are incident to node $i$, $\tilde{N}_i$ represents the multiset of neighbors (that is, nodes that are connected by links incident with node $i$), $w^E_e$ is the weight of link $e$, and $w^N_i$ is the weight of node $i$.

For directed graphs, influence centrality is

$$C_1(i) = \frac{\sum_{e \in \delta^\text{out}_i} w^E_e}{\sum_{j \in N} w^N_j}$$

$$C_2(i) = \sum_{j \in \tilde{N}^\text{out}_i} C_1(j)$$

where $\delta^\text{out}_i$ represents the set of outgoing links that are connected from node $i$ and $\tilde{N}^\text{out}_i$ represents the multiset of neighbors (that is, nodes that are connected by links incident with node $i$).

As the name suggests, this metric indicates potential influence, performance, or ability to transfer knowledge. Influence centrality is calculated using the value of the INFLUENCE= option in the CENTRALITY statement.

The algorithm that PROC NETWORK uses to compute influence centrality is a simple traversal, runs in time $O(|E|)$, and therefore should scale to very large graphs.

**OUTNODES= Data Table**

The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the influence centrality of each node. This data table contains the following column:

- **node**: the node label

If you specify INFLUENCE=UNWEIGHT or INFLUENCE=BOTH, the following columns also appear in the nodes output data table:

- **centr_influence1_unwt**: the unweighted first-order influence centrality of the node
• `centr_influence2_unwt`: the unweighted second-order influence centrality of the node

If you specify `INFLUENCE=WEIGHT` or `INFLUENCE=BOTH`, the following columns also appear in the nodes output data table:

• `centr_influence1_wt`: the weighted first-order influence centrality of the node
• `centr_influence2_wt`: the weighted second-order influence centrality of the node

**Influence Centrality of a Directed Graph**

Consider again the directed graph in Figure 3.7. Ignore the weights and just calculate the $C_1$ and $C_2$ metrics that are based on connections (that is, consider all link and node weights as 1). The following statements calculate the unweighted influence centrality:

```
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality
 influence = unweight;
run;
```

The nodes data table `mycas.NodeSetOut` now contains the unweighted influence centrality for each node of the input graph. This data table is shown in Figure 3.46.

**Figure 3.46** Influence Centrality of a Directed Graph

<table>
<thead>
<tr>
<th>node</th>
<th>centr_influence1_unwt</th>
<th>centr_influence2_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.33333</td>
<td>0.55556</td>
</tr>
<tr>
<td>D</td>
<td>0.11111</td>
<td>0.22222</td>
</tr>
<tr>
<td>C</td>
<td>0.11111</td>
<td>0.22222</td>
</tr>
<tr>
<td>E</td>
<td>0.22222</td>
<td>0.22222</td>
</tr>
<tr>
<td>F</td>
<td>0.11111</td>
<td>0.22222</td>
</tr>
<tr>
<td>G</td>
<td>0.22222</td>
<td>0.22222</td>
</tr>
<tr>
<td>H</td>
<td>0.22222</td>
<td>0.22222</td>
</tr>
<tr>
<td>I</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>B</td>
<td>0.33333</td>
<td>0.44444</td>
</tr>
</tbody>
</table>

For a more detailed example, see “Example 3.2: Influence Centrality for Project Groups in a Research Department” on page 222.

**Clustering Coefficient**

The local clustering coefficient of a node is the number of links between the nodes within its neighborhood divided by the number of links that could possibly exist between them (their induced complete graph). The local clustering coefficient metric is often referred to as transitivity.
Chapter 3: The NETWORK Procedure

The formula for the clustering coefficient is

$$C(i) = \frac{\sum_{j \in \hat{N}_i, k \in \hat{N}_i; j < k} b_{jk}}{K(\hat{N}_i)}$$

when DIRECTION=UNDIRECTED, or

$$C(i) = \frac{\sum_{j \in \hat{N}_i^{out}, k \in \hat{N}_i^{out}; j \neq k} b_{jk}}{K(\hat{N}_i^{out})}$$

when DIRECTION=DIRECTED, where $\hat{N}_i$ represents the set of neighbors excluding node $i$ itself (that is, unique nodes that are connected by links, excluding self-links, incident with node $i$); $\hat{N}_i^{out}$ represents the set of out-neighbors excluding node $i$ itself (that is, unique nodes that are connected by outgoing links, excluding self-links, from node $i$); and $b_{jk}$ specifies whether or not (1 or 0, respectively) a link from node $j$ to node $k$ exists in the link set $E$, as follows:

$$b_{jk} = \begin{cases} 
1, & \text{if there exists } e \in E \text{ such that from}(e) = j \text{ and to}(e) = k \\
0, & \text{otherwise}
\end{cases}$$

The definition of the local clustering coefficient for undirected graphs is closely related to the global triangle count, which is given by

$$C_T = \frac{1}{3} \sum_{i \in N} K(\hat{N}_i) C(i) = \sum_{i \in N, j \in \hat{N}_i, k \in \hat{N}_i; i < j < k} b_{jk}$$

When DIRECTION=UNDIRECTED, this count is reported in the NUM_TRIANGLES term of the macro variable _NETWORK_.

In PROC NETWORK, the calculation of local clustering coefficient considers only binary networks. Weights and multilinks are ignored in the metric.

For a particular node, the clustering coefficient determines how close the subgraph that is induced by its neighbor set is to being a complete subgraph. In social networks, a high clustering coefficient can help predict relationships that might not be known, confirmed, or realized yet. Consider a social network of four people, where person $A$ knows persons $B$, $C$, and $D$, person $B$ knows person $C$, and person $C$ knows person $D$. This does not guarantee that person $B$ knows person $D$, but it is more likely that person $B$ knows person $D$ than that person $B$ knows some random person.

The clustering coefficient is calculated when you specify the CLUSTERINGCOEFFICIENT option in the CENTRALITY statement.

The algorithm that PROC NETWORK uses to compute the clustering coefficient runs in time $O(|N|^3)$. Therefore, this algorithm is not expected to scale to very large graphs.
**OUTNODES= Data Table**
The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the clustering coefficient of each node. This data table contains the following columns:

- **node**: the node label
- **centr_cluster**: the clustering coefficient of the node

**Clustering Coefficient of an Undirected Graph**
Consider the three undirected graphs on four nodes shown in Figure 3.47.

![Figure 3.47 Three Undirected Graphs](image)

Graph 1 Graph 2 Graph 3

A C
B D

Figure 3.47 Three Undirected Graphs

Define the three links data tables as follows:

```plaintext
data mycas.LinkSetInCC1;
 input from $ to $ @@;
 datalines;
 A B A C A D
 B C B D C D
 ;

data mycas.LinkSetInCC2;
 input from $ to $ @@;
 datalines;
 A B A C A D
 C D
 ;

data mycas.LinkSetInCC3;
 input from $ to $ @@;
 datalines;
 A B A C A D
 ;
```

The following statements use three calls to PROC NETWORK to calculate the clustering coefficients of each graph:
Chapter 3: The NETWORK Procedure

```sas
proc network
 links = mycas.LinkSetInCC1
 outNodes = mycas.NodeSetOut1;
 centrality
 clusteringCoef;
run;

proc network
 links = mycas.LinkSetInCC2
 outNodes = mycas.NodeSetOut2;
 centrality
 clusteringCoef;
run;

proc network
 links = mycas.LinkSetInCC3
 outNodes = mycas.NodeSetOut3;
 centrality
 clusteringCoef;
run;
```

The nodes data tables provide the clustering coefficients for each node of each input graph, as shown in Figure 3.48 through Figure 3.50.

**Figure 3.48** Clustering Coefficient of an Undirected Graph 1

<table>
<thead>
<tr>
<th>node</th>
<th>centr_cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
</tbody>
</table>

**Figure 3.49** Clustering Coefficient of an Undirected Graph 2

<table>
<thead>
<tr>
<th>node</th>
<th>centr_cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.33333</td>
</tr>
<tr>
<td>D</td>
<td>1.00000</td>
</tr>
<tr>
<td>B</td>
<td>0.00000</td>
</tr>
<tr>
<td>C</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

**Figure 3.50** Clustering Coefficient of an Undirected Graph 3

<table>
<thead>
<tr>
<th>node</th>
<th>centr_cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
</tbody>
</table>
Closeness Centrality

Closeness centrality is the reciprocal of the average of the shortest path (geodesic) distances from a particular node to all other nodes. Closeness can be thought of as a measure of how long it takes information to spread from a particular node to other nodes in the network. The higher the closeness value of a particular node, the faster the information will spread from that node to other nodes.

Define \(d_{ij}\) to be the shortest path distance from node \(i\) to node \(j\), with link weight defined by the \text{AUXWEIGHT=} option in the \text{LINKSVAR} statement. If the auxiliary link weight is not specified, then the link weight defaults to \(1/w\), where \(w\) represents the weight assigned by the \text{WEIGHT=} option in the \text{LINKSVAR} statement. By default, this means that a higher link weight implies a stronger relationship between its nodes (similar to other centrality metrics).

Closeness Centrality for an Undirected Graph

For an undirected graph, \(R(i) = \{ j \in N : d_{ij} < \infty \}\) is the set of reachable nodes from node \(i\). The set of unreachable nodes from node \(i\) is \(N \setminus R(i) = \{ j \in N : d_{ij} = \infty \}\). The \text{CLOSENOPATH=} option specifies how to handle unreachable nodes.

For the special case in which all nodes are unreachable from node \(i\), the closeness centrality is defined as 0. Otherwise, closeness centrality is calculated as

\[
C_c(i) = s(i) \left( \frac{n(i)}{\sum_{j \in R(i)} d_{ij} + |N \setminus R(i)| \ p} \right)
\]

where \(p\) defines a penalty parameter for unreachable nodes, \(n(i)\) defines the number of nodes that are considered in calculating the average, and \(s(i)\) is a scaling factor, as shown in Table 3.9.

<table>
<thead>
<tr>
<th>\text{CLOSENOPATH=}</th>
<th>(p)</th>
<th>(n(i))</th>
<th>(s(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER</td>
<td>(\max_{(i,j) \in N \times N} {d_{ij} : d_{ij} &lt; \infty} + 1)</td>
<td>(</td>
<td>N</td>
</tr>
<tr>
<td>NNODES</td>
<td>(</td>
<td>N</td>
<td>)</td>
</tr>
<tr>
<td>ZERO</td>
<td>0</td>
<td>(</td>
<td>R(i)</td>
</tr>
</tbody>
</table>

Closeness Centrality for a Directed Graph

For a directed graph, \(R_{\text{out}}(i) = \{ j \in N : d_{ij} < \infty \}\) is the set of reachable nodes from node \(i\), whereas \(R_{\text{in}}(i) = \{ j \in N : d_{ji} < \infty \}\) is the set of nodes from which there is a finite path to node \(i\). The set of unreachable nodes from node \(i\) is \(N \setminus R_{\text{out}}(i) = \{ j \in N : d_{ij} = \infty \}\), whereas the set of nodes from which there is no finite path to node \(i\) is \(N \setminus R_{\text{in}}(i) = \{ j \in N : d_{ji} = \infty \}\).

For the special case in which all nodes are unreachable from node \(i\), the out-closeness centrality is defined as 0. Otherwise, out-closeness centrality is calculated as

\[
C_{c_{\text{out}}}(i) = s_{\text{out}}(i) \left( \frac{n_{\text{out}}(i)}{\sum_{j \in R_{\text{out}}(i)} d_{ij} + |N \setminus R_{\text{out}}(i)| \ p} \right)
\]
where \( n^{out}(i) \) defines the number of nodes that are considered in calculating the average and \( s^{out}(i) \) is a scaling factor, as shown in Table 3.10.

For the special case in which node \( i \) is unreachable from all the other nodes, the in-closeness centrality is defined as 0. Otherwise, in-closeness centrality is calculated as

\[
C^{in}_c(i) = s^{in}(i) \left( \frac{n^{in}(i)}{\sum_{j \in R^{in}(i)} d_{ji} + |N \setminus R^{in}(i)| \cdot p} \right)
\]

where \( n^{in}(i) \) defines the number of nodes that are considered in calculating the average and \( s^{in}(i) \) is a scaling factor, as shown in Table 3.10.

### Table 3.10 Formulas for CLOSENOPATH= Option for Directed Graphs

<table>
<thead>
<tr>
<th>CLOSENOPATH=</th>
<th>( n^{out}(i) )</th>
<th>( s^{out}(i) )</th>
<th>( n^{in}(i) )</th>
<th>( s^{in}(i) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER</td>
<td>(</td>
<td>N</td>
<td>- 1)</td>
<td>1</td>
</tr>
<tr>
<td>NNODES</td>
<td>(</td>
<td>N</td>
<td>- 1)</td>
<td>1</td>
</tr>
<tr>
<td>ZERO</td>
<td>(</td>
<td>R^{out}(i)</td>
<td>- 1)</td>
<td>(</td>
</tr>
</tbody>
</table>

The overall closeness centrality for directed graphs is calculated as

\[
C_c(i) = \frac{C^{out}_c(i) + C^{in}_c(i)}{2}
\]

### Harmonic Centrality

Harmonic centrality, as described in Rochat (2009), is a variant of closeness centrality that attempts to simplify the treatment of unreachable nodes by calculating the average of the reciprocal of the shortest path distances from a particular node to all the other nodes. The formula for harmonic centrality is

\[
C_h(i) = \frac{1}{|N| - 1} \sum_{j \in N \setminus \{i\}} \frac{1}{d_{ij}}
\]

To enable the calculation of harmonic centrality, use the CLOSENOPATH=HARMONIC option.

Closeness centrality is calculated using the value of the CLOSE= option in the CENTRALITY statement. If CLOSE=WEIGHT (or BOTH), then the shortest paths are calculated with respect to the weighted graph. Because the metric uses shortest paths to determine closeness, the weight and the closeness metric are inversely related. In general, the lower the weight, the higher the contribution to the closeness metric.

The algorithm that PROC NETWORK uses to compute closeness centrality relies on calculating shortest paths for all source-sink pairs and runs in time \( O(|N| \times (|N| \log |N| + |E|)) \). Therefore, this algorithm is not expected to scale to very large graphs. Because the shortest path calculations can be computed independently (for each source node), the algorithm uses multiple threads and multiple machines (depending on your session configuration and license).
**OUTNODES= Data Table**

The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the closeness centrality of each node. This data table contains the following column:

- **node**: the node label

If the graph is undirected and you specify CLOSE=UNWEIGHT or CLOSE=BOTH, the following column also appears in the nodes output data table:

- **centr_close_unwt**: the unweighted closeness centrality of the node

If the graph is undirected and you specify CLOSE=WEIGHT or CLOSE=BOTH, the following column also appears in the nodes output data table:

- **centr_close_wt**: the weighted closeness centrality of the node

If the graph is directed and you specify CLOSE=UNWEIGHT or CLOSE=BOTH, the following columns also appear in the nodes output data table:

- **centr_close_in_unwt**: the unweighted in-closeness centrality of the node
- **centr_close_out_unwt**: the unweighted out-closeness centrality of the node
- **centr_close_unwt**: the unweighted closeness centrality of the node

If the graph is directed and you specify CLOSE=WEIGHT or CLOSE=BOTH, the following columns also appear in the nodes output data table:

- **centr_close_in_wt**: the weighted in-closeness centrality of the node
- **centr_close_out_wt**: the weighted out-closeness centrality of the node
- **centr_close_wt**: the weighted closeness centrality of the node

**Closeness Centrality of an Undirected Graph**

Consider again the directed graph in Figure 3.7 with the data table mycas.LinkSetIn, which is defined in the section “Links Input Data” on page 59. The following statements calculate the closeness centrality for both the weighted and unweighted graphs:

```plaintext
proc network
 direction = directed
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 centrality
 close = both;
run;
```

The nodes data table mycas.NodeSetOut now contains the weighted and unweighted directed closeness centrality of the input graph. This data table is shown in Figure 3.51.
Betweenness Centrality

Betweenness centrality counts the number of times a particular node (or link) occurs in shortest paths between other nodes. Betweenness can be thought of as a measure of the control that a node (or link) has over the communication flow through the rest of the network. In this sense, the nodes (or links) that have high betweenness are the gatekeepers of information, because of their relative location in the network.

The formula for node betweenness centrality is

\[
C_b(i) = \sum_{s, t \in N; s \neq t} \frac{\sigma_{st}(i)}{\sigma_{st}}
\]

when DIRECTION=UNDIRECTED, or

\[
C_b(i) = \sum_{s, t \in N; s \neq t \neq u} \frac{\sigma_{st}(i)}{\sigma_{st}}
\]

when DIRECTION=DIRECTED, where \(\sigma_{st}\) is the number of shortest paths from \(s\) to \(t\) and \(\sigma_{st}(i)\) is the number of shortest paths from \(s\) to \(t\) that pass through node \(i\). As with closeness centrality, the shortest path is calculated with respect to the link weight that is defined by the AUXWEIGHT= option in the LINKSVAR statement. If the auxiliary link weight is not specified, then the link weight defaults to \(1/w\), where \(w\) represents the weight that is assigned by the WEIGHT= option in the LINKSVAR statement. By default, this means that a higher link weight implies a stronger relationship between the link’s nodes.

By default, this metric is normalized by dividing by \(K(N \setminus \{i\})\), the number of links in the complete graph on node set \(N \setminus \{i\}\). You can disable this normalization by using the BETWEENNORM= option.

The formula for link betweenness centrality is

\[
C_b(i, j) = \sum_{s, t \in N; s \neq t \neq u} \frac{\sigma_{st}(i, j)}{\sigma_{st}}
\]

when DIRECTION=UNDIRECTED, or

\[
C_b(i, j) = \sum_{s, t \in N; s \neq t \neq u} \frac{\sigma_{st}(i, j)}{\sigma_{st}}
\]
when DIRECTION=DIRECTED, where $\sigma_{st}(i, j)$ is the number of shortest paths from $s$ to $t$ that pass through link $(i, j)$.

By default, this metric is normalized by dividing by $K(N)$, the number of links in the complete graph on node set $N$. You can disable this normalization by using the BETWEENNORM= option.

For directed graphs, because the paths are directed, only the out-betweenness is computed. To get the in-betweenness, you must reverse all the directions of the graph and run the procedure again. You can accomplish this by simply using the LINKSVAR statement to reverse the interpretation of from and to.

Betweenness centrality is calculated using the value of the BETWEEN= option in the CENTRALITY statement. As with closeness centrality, if BETWEEN=WEIGHT (or BETWEEN=BOTH), then the calculation of shortest paths is performed using the weighted graph.

The algorithm that PROC NETWORK uses to compute betweenness centrality relies on calculating shortest paths for all source-sink pairs and runs in time $O(|N| \times (|N| \log |N| + |E|))$. Therefore, it is not expected to scale to very large graphs. As with closeness centrality, because shortest path computations can be calculated independently (for each source node), the algorithm uses multiple threads and multiple machines (depending on your session configuration and license). When closeness and betweenness centrality are run together, PROC NETWORK calculates both metrics in one pass.

**OUTNODES= Data Table**

The node betweenness centrality results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the betweenness centrality of each node. This data table contains the following column:

- node: the node label

If you specify BETWEEN=UNWEIGHT or BETWEEN=BOTH, the following column also appears in the nodes output data table:

- centr_between_unwt: the unweighted betweenness centrality of the node

If you specify BETWEEN=WEIGHT or BETWEEN=BOTH, the following column also appears in the nodes output data table:

- centr_between_wt: the weighted betweenness centrality of the node

**OUTLINKS= Data Table**

The link betweenness centrality results are provided in the links output data table that you specify in the OUTLINKS= option in the PROC NETWORK statement.

The OUTLINKS= data table contains the betweenness centrality of each link. This data table contains the following columns:

- from: the from node label
- to: the to node label
If you specify BETWEEN=UNWEIGHT or BETWEEN=BOTH, the following column also appears in the links output data table:

- centr_between_unwt: the unweighted betweenness centrality of the link

If you specify BETWEEN=WEIGHT or BETWEEN=BOTH, the following column also appears in the nodes links data table:

- centr_between_wt: the weighted betweenness centrality of the link

**Betweenness Centrality of a Directed Graph**

Consider again the directed graph in Figure 3.7 with data table mycas.LinkSetIn, which is defined in the section “Links Input Data” on page 59. The following statements calculate the betweenness centrality for both the weighted and unweighted graphs:

```latex
proc network
 direction = directed
 links = mycas.LinkSetIn
 outLinks = mycas.LinkSetOut
 outNodes = mycas.NodeSetOut;
 centrality
 between = both;
run;
```

The nodes data table mycas.NodeSetOut now contains the weighted and unweighted node betweenness centrality of the input graph. This data table is shown in Figure 3.52.

**Figure 3.52** Node Betweenness Centrality of a Directed Graph

<table>
<thead>
<tr>
<th>node</th>
<th>centr_between_wt</th>
<th>centr_between_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>B</td>
<td>0.07143</td>
<td>0.07738</td>
</tr>
<tr>
<td>C</td>
<td>0.00000</td>
<td>0.00595</td>
</tr>
<tr>
<td>D</td>
<td>0.01786</td>
<td>0.00595</td>
</tr>
<tr>
<td>E</td>
<td>0.17857</td>
<td>0.17857</td>
</tr>
<tr>
<td>F</td>
<td>0.26786</td>
<td>0.26786</td>
</tr>
<tr>
<td>G</td>
<td>0.21429</td>
<td>0.21429</td>
</tr>
<tr>
<td>H</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>I</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

In addition, the links data table mycas.LinkSetOut contains the weighted and unweighted link betweenness centrality of the input graph. This data table is shown in Figure 3.53.
Figure 3.53  Link Betweenness Centrality of a Directed Graph

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>weight</th>
<th>centr_between_wt</th>
<th>centr_between_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>0.06944</td>
<td>0.07407</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>2</td>
<td>0.01389</td>
<td>0.01852</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>4</td>
<td>0.02778</td>
<td>0.01852</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
<td>0.01389</td>
<td>0.01389</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>2</td>
<td>0.02778</td>
<td>0.03241</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>5</td>
<td>0.11111</td>
<td>0.11111</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>1</td>
<td>0.08333</td>
<td>0.08796</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
<td>0.08333</td>
<td>0.07407</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>1</td>
<td>0.04167</td>
<td>0.04167</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>2</td>
<td>0.16667</td>
<td>0.16667</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>6</td>
<td>0.25000</td>
<td>0.25000</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>1</td>
<td>0.09722</td>
<td>0.09722</td>
</tr>
<tr>
<td>G</td>
<td>I</td>
<td>1</td>
<td>0.09722</td>
<td>0.09722</td>
</tr>
<tr>
<td>H</td>
<td>G</td>
<td>2</td>
<td>0.01389</td>
<td>0.01389</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>3</td>
<td>0.01389</td>
<td>0.01389</td>
</tr>
</tbody>
</table>

For more detailed examples, see “Example 3.3: Betweenness and Closeness Centrality for Computer Network Topology” on page 226 and “Example 3.4: Betweenness and Closeness Centrality for Project Groups in a Research Department” on page 229.

Eigenvector Centrality

Eigenvector centrality is an extension of degree centrality in which centrality points are awarded for each neighbor. However, not all neighbors are equally important. Intuitively, a connection to an important node should contribute more to the centrality score than a connection to a less important node. This is the basic idea behind eigenvector centrality. The eigenvector centrality of a node is defined to be proportional to the sum of the scores of all nodes that are connected to it. Mathematically, it is represented as

$$x_i = \frac{1}{\lambda} \sum_{j \in N} w_{ij} x_j$$

when DIRECTION=UNDIRECTED, or

$$x_i = \frac{1}{\lambda} \sum_{j \in N} w_{ij} x_j$$

when DIRECTION=DIRECTED, where $x_i$ is the eigenvector centrality of node $i$, $w_{ij}$ is the sum of the weights of links from node $i$ to node $j$, and $\lambda$ is a constant.

The right eigenvector equation in matrix form can be written as:

$$Ax = \lambda x$$

where, for an undirected graph, $A$ represents the (symmetric) adjacency matrix that corresponds to the link weights in $E$, or for a directed graph, $A$, represents the adjacency matrix that corresponds to the outgoing link weights in $E$. To calculate the left eigenvector, which corresponds to the incoming link weights, switch the orientation of the from and to variables in the data table by using the LINKSVAR= statement. In constructing
the matrix \( A \), the weights of multilinks are aggregated. Eigenvector centrality is defined as the principal eigenvector \( x \) that corresponds to the largest eigenvalue \( \lambda \).

To solve this eigenvector problem, PROC NETWORK provides two algorithms: the Jacobi-Davidson algorithm and the power method. You can use the EIGENALGORITHM= option in the CENTRALITY statement to specify which algorithm to use. EIGENALGORITHM=JACOBI-DAVIDSON, which is the default, specifies the Jacobi-Davidson algorithm for solving large-scale eigenvalue problems (Sleijpen and van der Vorst 2000). The power method is one of the standard algorithms for solving eigenvalue problems, but it converges slowly for certain problems.

Eigenvector centrality is calculated using the value that you specify in the EIGEN= option in the CENTRALITY statement.

**OUTNODES= Data Table**

The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the eigenvector centrality of each node. This data table contains the following column:

- **node**: the node label

If you specify EIGEN=UNWEIGHT or EIGEN=BOTH, the following column also appears in the nodes output data table:

- **centr_eigen_unwt**: the unweighted eigenvector centrality of the node

If you specify EIGEN=WEIGHT or EIGEN=BOTH, the following column also appears in the nodes output data table:

- **centr_eigen_wt**: the weighted eigenvector centrality of the node

**Eigenvector Centrality of an Undirected Graph**

The following example illustrates the use of eigenvector centrality on the undirected graph \( G \) shown in Figure 3.54.
The graph can be represented by the following links data table, mycas.LinkSetIn:

```sql
data mycas.LinkSetIn;
 input from $ to $ @@;
 datalines;
 A D B C B D B E B F
 B I B J E F E G E H
; ;
```

The following statements compute the eigenvector centrality:

```sql
proc network
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 centrality
 eigen = unweight;
run;
```

The output data table mycas.NodeSetOut now contains the eigenvector centrality of each node, as shown in Figure 3.55.
Even though nodes F and D both have the same degree of 2, node F has a higher eigenvector centrality than node D. This is because node F links to two important nodes (B and E), whereas node D links to one important node (B) and one unimportant node (A).

For a more detailed example, see “Example 3.5: Eigenvector Centrality for Word Sense Disambiguation” on page 233.

Hub and Authority Scoring

Hub and authority centrality was originally developed by Kleinberg (1998) to rank the importance of web pages. Certain web pages (called hubs) are important in the sense that they point to many important pages. On the other hand, some web pages (called authorities) are important because they are pointed to by many important pages. In other words, a good hub node is one that points to many good authorities, and a good authority node is one that is pointed to by many good hub nodes. This idea can be applied to many other types of graphs besides web pages. For example, you can apply it to a citation network for journal articles. A review article that cites many good authority papers has a high hub score, whereas a paper that is referenced by many other papers has a high authority score. The section “Authority in US Supreme Court Precedent” on page 17 presents a similar example.

The authority centrality of a node is proportional to the sum of the hub centrality of nodes that point to it. Similarly, the hub centrality of a node is proportional to the sum of the authorities of nodes that it points to. That is,

\[ x_i = \alpha \sum_{j \in N} w_{ij} y_j \]
\[ y_j = \beta \sum_{i \in N} w_{ji} x_i \]

where \( x_i \) is the authority centrality of node \( i \), \( y_j \) is the hub centrality of node \( j \), \( w_{ij} \) is the sum of the weights of links from node \( i \) to node \( j \), and \( \alpha \) and \( \beta \) are constants.

Similar to eigenvector centrality, the definitions of authority and hub centrality can be written in matrix form as

\[ x = \alpha A y \]
\[ y = \beta A^T x \]
where \( A \) represents the adjacency matrix that corresponds to the outgoing link weights in \( E \) and \( A^T \) represents the adjacency matrix that corresponds to the incoming link weights in \( E \). In constructing the matrices \( A \) and \( A^T \), the weights of multilinks are aggregated.

Combining the two equations results in

\[
AA^T x = \lambda x \\
A^T Ay = \lambda y
\]

where \( \lambda = (\alpha \beta)^{-1} \). Thus, the authority and hub centralities are the principal eigenvectors of \( AA^T \) and \( A^T A \), respectively.

To solve this eigenvector problem, PROC NETWORK provides two algorithms: the Jacobi-Davidson algorithm and the power method. You can use the EIGENALGORITHM= option in the CENTRALITY statement to specify which algorithm to use. EIGENALGORITHM=JACOBI DAVIDSON, which is the default, specifies the Jacobi-Davidson algorithm for solving large-scale eigenvalue problems (Sleijpen and van der Vorst 2000). The power method is one of the standard algorithms for solving eigenvalue problems, but it converges slowly for certain problems.

**OUTNODES= Data Table**
The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the hub and authority centralities of each node. This data table contains the following column:

- **node**: the node label

If you specify HUB=UNWEIGHT or HUB=BOTH, the following column also appears in the nodes output data table:

- **centr_hub_unwt**: the unweighted hub centrality of the node

If you specify HUB=WEIGHT or HUB=BOTH, the following column also appears in the nodes output data table:

- **centr_hub_wt**: the weighted hub centrality of the node

If you specify AUTH=UNWEIGHT or AUTH=BOTH, the following column also appears in the nodes output data table:

- **centr_auth_unwt**: the unweighted authority centrality of the node

If you specify AUTH=WEIGHT or AUTH=BOTH, the following column also appears in the nodes output data table:

- **centr_auth_wt**: the weighted authority centrality of the node
Hub and Authority Centrality of an Undirected Graph

The following example illustrates the use of hub and authority scoring on the directed graph $G$ shown in Figure 3.56. Each node represents a web page. If web page $i$ has a hyperlink that points to web page $j$, then there is a directed link from $i$ to $j$.

Figure 3.56 Hub and Authority Centrality Example of a Directed Graph

The graph can be represented by the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
 input from $ to $ @@;
 datalines;
 B C C B D A D B E B
 E D E F F B F E G E
 H E I E I B J E J B
 K B K E
;
```

The following statements compute hub and authority centrality:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality
 hub = unweight
 auth = unweight;
run;
```

The output data table mycas.NodeSetOut now contains the hub and authority scores of each node, as shown in Figure 3.57.
Figure 3.57 Hub and Authority Centrality Output

<table>
<thead>
<tr>
<th>node</th>
<th>centr_hub_unwt</th>
<th>centr_auth_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.00000</td>
<td>0.10287</td>
</tr>
<tr>
<td>B</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>C</td>
<td>0.54135</td>
<td>0.00000</td>
</tr>
<tr>
<td>D</td>
<td>0.59703</td>
<td>0.11466</td>
</tr>
<tr>
<td>E</td>
<td>0.66549</td>
<td>0.84725</td>
</tr>
<tr>
<td>F</td>
<td>1.00000</td>
<td>0.11466</td>
</tr>
<tr>
<td>G</td>
<td>0.45865</td>
<td>0.00000</td>
</tr>
<tr>
<td>H</td>
<td>0.45865</td>
<td>0.00000</td>
</tr>
<tr>
<td>I</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>J</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>K</td>
<td>1.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

The output shows that nodes B and E have high authority scores because they have many incoming links. Nodes F, I, J, and K have high hub scores because they all point to good authority nodes B and E.

PageRank Centrality

PageRank centrality, named after Google’s cofounder Larry Page, was originally proposed for the application of ranking web pages in a search engine.

The PageRank algorithm models the stationary distribution of a Markov process, assuming that each node is a web page and each link is a hyperlink from one page to another. A web surfer might choose a random link on every page or might jump to a random page on the whole web with some probability. The PageRank of a web page is the percentage of time the surfer spends on the page. Mathematically, it is defined as

\[
x_i = \frac{1 - \alpha}{|N|} + \alpha \left( \sum_{j \in N: w_{ij}^{\text{out}} \neq 0} \frac{w_{ij}}{w_{ij}^{\text{out}}} x_j + \sum_{j \in N: w_{ij}^{\text{out}} = 0} \frac{1}{|N|} x_j \right)
\]

where \( x_i \) is the PageRank score of node \( i \), \( w_{ij} \) is the sum of the weights of links from node \( i \) to node \( j \), \( \alpha \) is a damping factor, and

\[
w_{ij}^{\text{out}} = \sum_{j \in N} w_{ij}
\]

is the sum of the outbound link weights from node \( i \).

For the calculation of PageRank centrality, PROC NETWORK implements a version of the power method, as described in Langville and Meyer (2006). The damping factor \( \alpha \), which you can specify in the PAGERANKALPHA= option in the CENTRALITY statement, is an important concept in the PageRank algorithm. In the PageRank equation, \( 1 - \alpha \) represents the probability of jumping to a random page. Without the damping factor, pages that have no incoming links would have a PageRank score of zero, so these pages cannot be distinguished by PageRank scores. The damping factor also affects the convergence of the power method. Typically, many more iterations are required as the damping factor is set closer to 1.

When the PageRank algorithm is applied to undirected graphs, each undirected link is treated as two directed links that go in both directions.
OUTNODES= Data Table
The results are provided in the nodes output data table that you specify in the OUTNODES= option in the PROC NETWORK statement.

The OUTNODES= data table contains the PageRank centrality of each node. This data table contains the following column:

- node: the node label

If you specify PAGERANK=UNWEIGHT or PAGERANK=BOTH, the following column also appears in the nodes output data table:

- centr_pagerank_unwt: the unweighted PageRank centrality of the node

If you specify PAGERANK=WEIGHT or PAGERANK=BOTH, the following column also appears in the nodes output data table:

- centr_pagerank_wt: the weighted PageRank centrality of the node

PageRank Centrality of an Undirected Graph
This section concludes with an example that illustrates the use of PageRank centrality on the directed graph \( G \) that is shown in Figure 3.56 in the previous section, “Hub and Authority Scoring” on page 108.

The following statements compute the PageRank score by using the same data as in the previous section:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality
 pagerankAlpha = 0.85
 pagerank = unweight;
run;
```

The output data table mycas.NodeSetOut now contains the PageRank score of each node, as shown in Figure 3.58.
The PageRank score can be thought of as the percentage of time a web surfer spends on a web page. In this example, 38.4% of the surfer’s time is spent on page (node) B, and 34.3% of the surfer’s time is spent on page (node) C. Notice that node C has a higher PageRank score than node E, even though it has fewer links. The reason is that node C has an incoming link from high-value node B, whereas node E has no incoming links from high-value nodes.

The following statements modify the damping factor to be 0.999 to show the changes in PageRank scores:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality
 pagerankAlpha = 0.999
 pagerank = unweight;
run;
```

The new PageRank scores are shown in Figure 3.59.

As expected, the scores of all nodes except B and C are getting close to zero. This is because after the web surfer arrives at pages B and C, the surfer cannot jump off the pages because there are no outbound links from nodes B and C to other nodes.
Clique Enumeration

A *clique* of a graph \( G = (N, E) \) is an induced subgraph that is a complete graph. Every node in a clique is connected to every other node in that clique. A *maximal clique* is a clique that is not a subset of the nodes of any larger clique. That is, it is a set \( C \) of nodes such that every pair of nodes in \( C \) is connected by a link and every node not in \( C \) is missing a link to at least one node in \( C \). The number of maximal cliques in a particular graph can be very large and can grow exponentially with every node that is added. Finding cliques in graphs has applications in many industries, including bioinformatics, social networks, electrical engineering, and chemistry.

You can find the maximal cliques of an input graph by using the CLIQUE statement. The options for this statement are described in the section “CLIQUE Statement” on page 36. The clique algorithm works only with undirected simple graphs (with no self-links).

The results of the clique algorithm are written to the output data table that you specify in the OUT= option in the CLIQUE statement. Each node of each clique is listed in the output data table along with the variable clique to identify the clique to which it belongs. The clique identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK statement. A node can appear multiple times in this data table if it belongs to multiple cliques.

The algorithm that PROC NETWORK uses to compute maximal cliques is a variant of the Bron-Kerbosch algorithm (Bron and Kerbosch 1973; Harley 2003). Enumerating all maximal cliques is NP-hard, so this algorithm usually does not scale to very large graphs.

Maximal Cliques of an Undirected Graph

This section illustrates the use of the clique algorithm on the undirected graph \( G \) shown in Figure 3.60.

**Figure 3.60** Undirected Graph \( G \)

The undirected graph \( G \) can be represented by the following links data table, mycas.LinkSetIn:
data mycas.LinkSetIn;
  input from to @@;
  datalines;
  0 1 0 2 0 3 0 4 0 5
  0 6 1 2 1 3 1 4 1 5
  2 4 2 5 2 6 2 7 2 8
  3 4 5 6 7 8 8 9
;  
The following statements calculate the maximal cliques, output the results in the data table mycas.Cliques, and use the FEDSQL procedure as a convenient way to create a data table (mycas.CliqueSizes) of clique sizes:

proc network
  links        = mycas.LinkSetIn;
  clique
    out       = mycas.Cliques
    maxCliques = all;
run;

proc fedsql sessref=mysess;
  create table CliqueSizes as
    select clique, count(*) as size
    from Cliques
    group by clique;
quit;

The output data table mycas.Cliques now contains the maximal cliques of the input graph, as shown in Figure 3.61.

**Figure 3.61** Maximal Cliques of an Undirected Graph

<table>
<thead>
<tr>
<th>clique</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

In addition, the output data table mycas.CliqueSizes contains the number of nodes in each clique, as shown in Figure 3.62.
Figure 3.62  Sizes of Maximal Cliques of an Undirected Graph

<table>
<thead>
<tr>
<th>clique</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

The maximal cliques are shown graphically in Figure 3.63 and Figure 3.64.

Figure 3.63  Maximal Cliques $C^1$ and $C^2$

$C^1 = \{0, 1, 2, 3, 4\}$  
$C^2 = \{0, 2, 5, 6\}$

Figure 3.64  Maximal Cliques $C^3$ and $C^4$

$C^3 = \{2, 7, 8\}$  
$C^4 = \{8, 9\}$
Community Detection

Community detection partitions a graph into communities such that the nodes within the community subgraphs are more densely connected than the nodes from different communities.

In test PROC NETWORK, you can specify community detection by using the COMMUNITY statement. The options for this statement are described in the section “COMMUNITY Statement” on page 37.

PROC NETWORK implements three heuristic algorithms for finding communities: the LOUVAIN algorithm proposed in Blondel et al. (2008), the label propagation algorithm proposed in Raghavan, Albert, and Kumara (2007), and the parallel label propagation algorithm developed by SAS.

When you specify ALGORITHM=PARALLELGRAMPROP in the COMMUNITY statement, community detection is supported for directed and undirected graphs. When you specify ALGORITHM=LOUVAIN or ALGORITHM=LABELPROP in the COMMUNITY statement, community detection is supported only for undirected graphs. To run the latter two algorithms for directed graphs, one approach you might take is to aggregate directed links into undirected links. You could do your own aggregation, such as summing the link weights, or you might specify MULTILINKS=FALSE, which will aggregate the links by using the minimum weight, as described in “Multigraphs” on page 65.

Given a graph $G = (N, E)$, all three algorithms run in time $O(k|E|)$, where $k$ is the average number of links per node. The Louvain algorithm aims to optimize modularity, which is one of the most popular merit functions of community detection. Modularity is a measure of the quality of a division of a graph into communities. The modularity of a division is the fraction of the links that fall within the communities minus the expected fraction if the links were distributed at random, assuming that you do not change the (weighted) degree of each node. To compute modularity, you can equivalently think of an unweighted graph as a weighted graph in which all weights have a value of 1.

Let $k_i$ represent the weighted degree of node $i$ in an undirected graph, where $k_i$ is defined as the sum of the weights of links incident with node $i$ (with self-links added twice). Then, for an undirected graph $G = (N, E)$, modularity is defined as

$$Q = \frac{1}{2|E|} \sum_{i \in N} \sum_{j \in N} \left( k_{ij} - \frac{k_i k_j}{2|E|} \right) \Delta(c_i, c_j)$$

where $k_{ij}$ is the sum of the weights of links between node $i$ and node $j$ (with self-links added twice), $c_i$ is the community to which node $i$ belongs, and $\Delta(c_i, c_j)$ is the Kronecker delta symbol, defined as 1 if $c_i = c_j$ and 0 otherwise.

For a directed graph, modularity is based on weighted out-degrees and weighted in-degrees of the nodes and is defined as

$$Q = \frac{1}{|E|} \sum_{i \in N} \sum_{j \in N} \left( k_{ij}^{\text{out}} - \frac{k_i^{\text{out}} k_j^{\text{in}}}{|E|} \right) \Delta(c_i, c_j)$$

where $k_{ij}^{\text{out}}$ is the sum of the weights of links from node $i$ to node $j$, $k_i^{\text{out}}$ is the sum of the weights of outgoing links from node $i$, and $k_i^{\text{in}}$ is the sum of the weights of incoming links to node $i$.

The Louvain algorithm partitions nodes into communities by heuristically optimizing modularity. The following is a brief description of the Louvain algorithm:
1. Initialize each node as its own community.

2. Move each node from its current community to the neighboring community that increases modularity the most. Repeat this step until modularity cannot be improved.

3. Group the nodes in each community into a supernode. Construct a new graph based on supernodes. Repeat these steps until modularity cannot be further improved or the maximum number of iterations has been reached.

The more recently proposed label propagation algorithm moves a node to a community that most of its neighbors belong to. Extensive testing by Lancichinetti and Fortunato (2009) has empirically demonstrated that the label propagation algorithm performs as well as the Louvain method in most cases.

The following is a brief description of the label propagation algorithm:

1. Initialize each node as its own community.

2. Move each node from its current community to the neighboring community that has the maximum sum of link weights to the current node; break ties randomly if necessary. Repeat this step until there are no more movements.

The parallel label propagation algorithm is an extension of the basic label propagation algorithm. During each iteration, rather than updating node labels sequentially, nodes update their labels simultaneously by using the node label information from the previous iteration. In this approach, node labels can be updated in parallel. However, simultaneous updating of this nature often leads to oscillating labels because of the bipartite subgraph structure often present in large graphs. To address this issue, at each iteration the parallel algorithm skips the labeling step at some randomly chosen nodes in order to break the bipartite structure. You can control the random samples that the algorithm takes by specifying the RANDOMFACTOR= or RANDOMSEED= option in the COMMUNITY statement.

The parallel label propagation algorithm is also the only algorithm that supports the DIRECTION=DIRECTED option in the COMMUNITY statement. For a directed graph, this algorithm finds communities on the basis of the information flow along the directed links. That is, when a node updates its label, it takes the label of one of its out-neighbors.

**Fix and Warm Start Community Detection**

When you want to perform community detection, you might want to initialize or fix some nodes into prearranged communities on the basis of prior invocations of the COMMUNITY statement or prior knowledge about your data. By default, all three community detection algorithms start with each node in its own community and have nodes change communities on the basis of conditions specific to the algorithm being run. In PROC NETWORK you can use the WARMSTART= option to change this initial configuration for some or all of the nodes. The value that is specified in the WARMSTART= option must be the name of a variable in the NODES= input table that has nonnegative integer values. Nodes that have the same value are placed in the same community, and each node that has a missing value (or is not specified in the NODES= input table) is placed in its own community.

Warm starting can be beneficial if you are performing community detection across multiple snapshots of a network, \(G_0, \ldots, G_n\), where there are relatively few changes (such as link additions or deletions) between each consecutive snapshot. One benefit is that you can improve the run time of the algorithm by warm
starting the nodes to a state that is closer to convergence than is the default initialization. For example, if you use the communities that are found in $G_{i-1}$ to warm start many of the nodes for community detection on $G_i$, you can probably achieve convergence sooner than having each node start in its own community.

Another benefit to warm starting community detection is that you can obtain more stable communities. In general, there can be many solutions that have similar quality in terms of community metrics, so even a small change to the graph can cause significantly different communities to be output. However, by warm starting the nodes, you are likely to see more stable communities, which can be helpful if you want to track communities over time. In general, warm starting community detection on $G_i$ by using exactly the communities that are found in $G_{i-1}$ might hurt the quality of the solution, depending on the amount of change between $G_{i-1}$ and $G_i$. To alleviate this issue, you can warm start only the nodes that have had no link additions or deletions between $G_{i-1}$ and $G_i$.

In addition to warm starting community detection, you can also fix nodes in a community by using the FIX= option, provided that you have specified ALGORITHM=LOUVAIN or ALGORITHM=LABELPROP. The value that is specified in the FIX= option must be the name of a variable in the NODES= input table that has nonnegative integer values. In this case, nodes that have the same value are forced into the same community and cannot be split into different communities (unlike warm start, where the nodes can change communities as the algorithm progresses). Nodes that are fixed in same community can still be merged into other communities and become part of a larger community. Each algorithm determines whether to move a fixed group of nodes into another community by treating the fixed group as a unit, which is accomplished by aggregating the fixed group into a supernode.

You can specify both the FIX= and WARMSTART= options simultaneously. If both options are specified, the values of the variables are assumed to be related. For example, if nodes $i$ and $j$ have a value of 1 for the FIX variable and node $k$ has a value of 1 for the WARMSTART variable, then nodes $i$, $j$, and $k$ are initialized in the same community. During the algorithm, $k$ can move to a different community than do $i$ and $j$, but $i$ and $j$ are forced to remain in the same community.

Large Communities

It has often been observed in practice that the number of nodes contained in communities (produced by community detection algorithms) usually follows a power law distribution. That is, a few communities contain a very large number of nodes, whereas most communities contain a small number of nodes. This is especially true for large graphs. PROC NETWORK provides two approaches to alleviate the imbalance in the number of nodes across communities: one uses the RECURSIVE option, and the other uses the RESOLUTIONLIST= option.

Recursive

You can apply the RECURSIVE option to recursively break large communities into smaller ones. At the first step, PROC NETWORK processes data as if no RECURSIVE option were specified. At the end of this step, it checks whether the community result satisfies the RECURSIVE option criterion. If the community result satisfies this criterion, PROC NETWORK stops iterations and outputs results. Otherwise, it treats each large community as an independent graph and recursively performs community detection on top of it.

In certain cases, a community is not further split even if it does not meet the recursive criterion that you specified. One example is a star-shaped community that contains 200 nodes when MAXCOMMSIZE is specified as 100; another example is a symmetric community whose diameter is 2 when MAXDIAMETER is specified as 1.
Resolution List

The second way to combat the imbalance, provided that you have specified ALGORITHM=LOUVAIN in the COMMUNITY statement, is to specify a larger value than the default value of 1 for the RESOLUTIONLIST= option. When ALGORITHM=LOUVAIN, the value that is specified for the RESOLUTIONLIST= option can be interpreted as follows: Suppose the resolution value is $x$. Two communities are merged if the sum of the weights of intercommunity links is at least $x$ times the expected value of the same sum if the graph is reconfigured randomly. Therefore, a larger resolution value produces more communities, each of which contains a smaller number of nodes. However, there is no explicit formula to detail the number of nodes in communities with respect to the resolution value. You must use trial and error to get to the expected community size. More information about resolution value is available in Ronhovde and Nussinov (2010).

If you specify ALGORITHM=LOUVAIN, you can supply multiple resolution values at one time. If you supply multiple resolution values at one time, PROC NETWORK detects communities at the highest resolution level first, then merges communities at a lower resolution, and repeats the process until it reaches the lowest level. This process enables you to see how the communities are merged at different levels. Because of the local nature of this optimization algorithm, two different runs do not produce the same result if the two runs share a common resolution level. For example, the algorithm can produce different results at resolution 0.5 in two runs: one with RESOLUTIONLIST=1 0.7 0.5 and the other with RESOLUTIONLIST=1 0.5.

If you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, the resolution value is used when the algorithm decides the label a node should take from its neighboring community labels. A node cannot take the label of a community if the density of that community, after adding the node, would be less than the resolution value. In this case, the density of a community is defined as the number of links inside the community divided by the total number of possible links (even for directed graphs). Also, because the algorithm decides the labels for nodes in parallel, the output communities are not guaranteed to have densities larger than the resolution value. However, in general, a larger resolution value is likely to result in communities that contain fewer nodes and a higher density. For more information about resolution values for label propagation, see Traag, Van Dooren, and Nesterov (2011).

If you supply multiple resolution values at one time and you specify ALGORITHM=PARALLELLABELPROP, the NETWORK procedure performs community detection multiple times, each time with a different resolution value. This is equivalent to calling PROC NETWORK several times, each time with a different (single) resolution value specified for the RESOLUTIONLIST= option.

If you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, the value that is specified in the RESOLUTIONLIST= option has a major impact on the running time of the algorithm. When a large resolution value is specified, the algorithm is likely to create many tiny communities, and nodes are likely to change communities between iterations. Therefore, the algorithm might not converge properly. On the other hand, when the resolution value is small, the algorithm might find some very large communities, such as a community that contains more than a million nodes. In this case, if you specify the RECURSIVE option, the algorithm spends a long time in the recursive step in order to break large communities into smaller ones.

The recommended approach is to first experiment with a set of resolution values without using the RECURSIVE option. At the end of the run, examine the resulting modularity values and the community size distributions. Remove the resolution values that lead to small modularity values or huge communities. Then add the RECURSIVE option to the COMMUNITY statement, if desired, and run PROC NETWORK again. “Example 3.6: Community Detection on Zachary’s Karate Club Data” on page 235 shows the use of the RESOLUTIONLIST= option in finding communities.
**Large Graphs**

When you are dealing with large graphs, the following practice is recommended:

- Use the `LINKREMOVALRATIO=` option to remove unimportant links. This practice can often dramatically improve the run time of large graphs.

**Output Data Tables**

Community detection produces up to six output data tables. In these data tables, if you specify `ALGORITHM=LOUVAIN` in the `COMMUNITY` statement, resolution level numbers appear in decreasing order of the values that are specified in the `RESOLUTIONLIST=` option. That is, resolution level 1 corresponds to the largest value specified in the `RESOLUTIONLIST=` option, and resolution level $K$ corresponds to the smallest value specified in the `RESOLUTIONLIST=` option. For example, if `RESOLUTIONLIST=2.5 3.1 0.6`, then resolution level 1 is at value 3.1, resolution level 2 is at value 2.5, and resolution level 3 is at value 0.6.

The community identifiers are numbered sequentially, starting from the value of the `INDEXOFFSET=` option in the `PROC NETWORK` statement.

**OUTNODES= Data Table**

The `OUTNODES=` data table describes the community identifier of each node. If multiple resolution values have been specified, the data table reports the community identifier of each node at each resolution level. This data table contains the following columns:

- **node**: the node label
- **community$_i$**: community identifier at resolution level $i$, where $i$ is the resolution level number as previously described. There are $K$ such columns if $K$ different values are specified in the `RESOLUTIONLIST=` option.

**OUTLINKS= Data Table**

The `OUTLINKS=` data table describes the community identifier of each link. If multiple resolution values have been specified, the data table reports the community identifier of each link at each resolution level. If a particular link contains a *from* node and a *to* node assigned to different communities, then the community identifier is the missing indicator (\(.\)). This data table contains the following columns:

- **from**: the *from* node label
- **to**: the *to* node label
- **community$_i$**: community identifier at resolution level $i$, where $i$ is the resolution level number as previously described. There are $K$ such columns if $K$ different values are specified in the `RESOLUTIONLIST=` option.
**OUTLEVEL= Data Table**
The OUTLEVEL= data table describes the number of communities and their corresponding modularity values at various resolution levels. It contains the following columns:

- **level**: resolution level number
- **resolution**: resolution value
- **communities**: number of communities at the current resolution level
- **modularity**: modularity value at the current resolution level

**OUTCOMMUNITY= Data Table**
The OUTCOMMUNITY= data table describes various properties about each community. It contains the following columns:

- **level**: resolution level number
- **resolution**: resolution value
- **community**: community identifier
- **nodes**: number of nodes contained in the community
- **intra_links**: number of links that connect two nodes in the community
- **inter_links**: number of links (outgoing links for a directed graph) that connect from a node in the community to a node outside the community
- **density**: intra_links divided by the total number of possible links in the community
- **cut_ratio**: inter_links divided by the number of possible links from the community to nodes outside the community
- **conductance**: the fraction of links from a node in the community that connect to nodes in a different community. This fraction is calculated as follows:
  - for an undirected graph: \( \frac{\text{inter_links}}{\text{inter_links} + 2 \times \text{intra_links}} \)
  - for a directed graph: \( \frac{\text{inter_links}}{\text{inter_links} + \text{intra_links}} \)

**OUTOVERLAP= Data Table**
The OUTOVERLAP= data table describes the intensity of each node. At the end of community detection, a node could have links that connect to multiple communities. The intensity of a node is computed as the sum of the link weights that connect to nodes in the specified community divided by the total link weights of the node. If a node has no links, it is not included in the table. For directed graphs, only the outgoing links of a node are used in the intensity calculation. This data table is computationally expensive to produce, and it requires a large amount of disk space. Therefore, the data table contains only results that correspond to the smallest value of the RESOLUTIONLIST= option. The data table contains the following columns:

- **node**: the node label
• community: community identifier
• intensity: intensity of the node that belongs to the community

**OUTCOMMLINKS= Data Table**
The OUTCOMMLINKS= data table describes how communities are connected. It contains the following columns:

• level: resolution level number
• resolution: resolution value
• from_community: community identifier of the from community
• to_community: community identifier of the to community
• link_weight: sum of link weights of all links between from_community and to_community

**Community Detection on an Undirected Graph**
This section illustrates the use of the community detection algorithm on the undirected graph $G$ shown in Figure 3.65.

**Figure 3.65** Undirected Graph $G$

The undirected graph $G$ can be represented by the following links data table, mycas.LinkSetIn:
data mycas.LinkSetIn;
   input from $ to $ @@;
   datalines;
   A B A F A G B C B D
   B E C D E F G I G H
   H I
; 

The following statements perform community detection and output the results in the specified data tables. The Louvain algorithm is used by default because no value is specified for the ALGORITHM= option.

    proc network
       links      = mycas.LinkSetIn
       outNodes   = mycas.NodeSetOut;
       community
          resolutionList = 1.0 0.5
          outLevel      = mycas.CommLevelOut
          outCommunity  = mycas.CommOut
          outOverlap    = mycas.CommOverlapOut
          outCommLinks  = mycas.CommLinksOut;
    run;

The output data table mycas.NodeSetOut contains the community identifier of each node, as shown in Figure 3.66.

    Figure 3.66  Community Detection on an Undirected Graph: Nodes Output

   node community_1 community_2
   A      1        1
   B      2        1
   C      2        1
   D      2        1
   E      1        1
   F      1        1
   G      3        2
   H      3        2
   I      3        2

The output data table mycas.CommLevelOut contains summary information at each resolution level, as shown in Figure 3.67.

    Figure 3.67  Community Detection on an Undirected Graph: Level Output

   level resolution communities modularity
   1      1.0        3    0.39256
   2      0.5        2    0.34298

The output data table mycas.CommOut contains the number of nodes in each community, as shown in Figure 3.68.
The output data table mycas.CommOverlapOut contains community overlap information, as shown in Figure 3.69.

The output data table mycas.CommLinksOut describes how the communities are connected, as shown in Figure 3.70.

Fixing Nodes for Community Detection

This section continues the example in the section “Community Detection on an Undirected Graph” on page 123 and illustrates fixing nodes together for community detection on the graph shown in Figure 3.65. Suppose you want to fix nodes A and B in the same community, nodes C and D in the same community, and nodes H and I in the same community. In order to do this, you must specify a nodes data table that has a variable that defines these fixed groups. The following DATA step creates the nodes data table:
The following statements perform community detection by using fixed node groups:

```r
proc network
 nodes = mycas.NodeSetIn
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 community
 resolutionList = 1.0
 fix = fixGroup;
run;
```

The output data table `mycas.NodeSetOut` contains the community identifier of each node, as shown in Figure 3.71.

**Figure 3.71** Fixing Nodes for Community Detection: Nodes Output

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
</tbody>
</table>

**Connected Components**

A connected component of a graph is a set of nodes that are all reachable from each other. That is, if two nodes are in the same component, then there is a path between them. For a directed graph, there are two types of components: a strongly connected component has a directed path between any two nodes, and a weakly connected component ignores direction and requires only that a path exist between any two nodes.

In PROC NETWORK, you can invoke connected components by using the CONNECTEDCOMPONENTS statement. The options for this statement are described in the section “CONNECTEDCOMPONENTS Statement” on page 40.

There are three algorithms for finding connected components in an undirected graph: a depth-first search algorithm (ALGORITHM=DFS), a union-find algorithm (ALGORITHM=UNIONFIND), and a distributed parallel union-find algorithm (ALGORITHM=PARALLEL). For a graph \( G = (V, E) \), each algorithm runs in time \( O(|V| + |E|) \) and can usually scale to very large graphs. The default is the sequential union-find algorithm (ALGORITHM=UNIONFIND). For directed graphs, only the depth-first search algorithm (ALGORITHM=DFS) is available.

The results of the connected components algorithm are written to the output nodes data table that you specify in the OUTNODES= option in the PROC NETWORK statement and the output links data table that you
specify in the OUTLINKS= option in the PROC NETWORK statement. For each node in the nodes data table (or link in the links data table), the variable concomp identifies its component. The component identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK statement.

**Output Data Tables**

Depending on the options selected, the connected components algorithm produces an additional output data table as described in the following section.

**OUT= Data Table**

The OUT= data table describes the number of links in each connected component. This data table contains the following columns:

- concomp: connected component identifier
- nodes: number of nodes contained in the connected component

**Connected Components of an Undirected Graph**

This section illustrates the use of the connected components algorithm on the undirected graph $G$ shown in Figure 3.72.

![Figure 3.72 Undirected Graph G](image)

The undirected graph $G$ can be represented by the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
 input from $ to $ @@;
datalines;
A B A C B C C H D E D F D G F E G I K L
;
```

The following statements find the connected components and output the results in the data table mycas.NodeSetOut:
Chapter 3: The NETWORK Procedure

```
proc network
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 connectedComponents;
run;
```

The output data table `mycas.NodeSetOut` contains the connected components of the input graph, as shown in Figure 3.73.

**Figure 3.73** Connected Components of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>concomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
</tr>
</tbody>
</table>

Notice that you define the graph by using only the links data table. As seen in Figure 3.72, this graph also contains a singleton node labeled J, which has no associated links. By definition, this node defines its own component. But because you define the input graph by using only the links data table, it does not show up in the results data table. To define a graph by using nodes that have no associated links, you should also define the input nodes data table. In this case, define the nodes data table `mycas.NodeSetIn` as follows:

```
data mycas.NodeSetIn;
 input node $ @@;
datalines;
 A B C D E F G H I J K L
;
```

Now, when you find the connected components, you define the input graph by using both the nodes input data table and the links input data table:

```
proc network
 nodes = mycas.NodeSetIn
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 connectedComponents;
run;
```

The resulting data table, `mycas.NodeSetOut`, includes the singleton node J as its own component, as shown in Figure 3.74.
**Figure 3.74** Connected Components of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>concomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
</tr>
</tbody>
</table>

**Connected Components of a Directed Graph**

This section illustrates the use of the connected components algorithm on the directed graph $G$ shown in Figure 3.75.

**Figure 3.75** Directed Graph $G$

The directed graph $G$ can be represented by the following links data table, mycas.LinkSetIn:
Chapter 3: The NETWORK Procedure

```sas
data mycas.LinkSetIn;
 input from $ to $ @@;
 datalines;
 A B B C B E B F C G
 C D D C D H E A E F
 F G G F H G H D
;```

The following statements find the connected components and output the results in the data tables mycas.NodeSetOut, mycas.LinkSetOut, and mycas.ConCompOut:

```sas
proc network
direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut
outLinks = mycas.LinkSetOut;
connectedComponents
   out = mycas.ConCompOut;
run;
```

The output data table mycas.NodeSetOut, shown in Figure 3.76, now contains the node mappings for the connected components of the input graph.

Figure 3.76 Node Mappings for the Connected Components of a Directed Graph

```
node concomp
B  1
A  1
E  1
D  2
H  2
C  2
F  3
G  3
```

The output data table mycas.LinkSetOut, shown in Figure 3.77, now contains the link mappings for the connected components of the input graph.
Figure 3.77 Links Mappings for the Connected Components of a Directed Graph

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>concomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>3</td>
</tr>
</tbody>
</table>

The output data table `mycas.ConCompOut`, shown in Figure 3.78, now contains the number of nodes in each connected component of the input graph.

Figure 3.78 Summary for the Connected Components of a Directed Graph

<table>
<thead>
<tr>
<th>concomp</th>
<th>nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

The connected components are represented graphically in Figure 3.79.
Core Decomposition

An alternative to community detection for finding cohesive subgroups is a method of extracting \(k\)-cores known as *core decomposition*. Although this method is generally not as powerful as community detection for extracting a detailed community structure, it can provide a coarse approximation of cohesive structure at a very low computational cost. Let \(G = (N, E)\) define a graph that contains nodes \(N\) and links \(E\), and let \(G_S = (S, E_S)\) be an induced subgraph on node set \(S\). The subgraph \(G_S\) is a *\(k\)-core* if and only if for every node \(j \in S\), the degree of \(j\) is greater than or equal to \(k\), and \(G_S\) is the maximum subgraph with this property. By definition, the cores are nested. That is, if \(G_{S_k}\) is a \(k\)-core of size \(k\), then \(G_{S_{k+1}}\) is contained in \(G_{S_k}\).

In PROC NETWORK, you can invoke core decomposition by using the CORE statement. The options for this statement are described in the section “CORE Statement” on page 41.

The results of the core decomposition algorithm are given in the output nodes data table that you specify in the OUTNODES= option in the PROC NETWORK statement. For each node in the nodes data table, the variable `core_out` identifies its *core number*, the highest-order core that contains this node.

The algorithm that is used for core decomposition is based on the work presented in Batagelj and Zaversnik (2003). This algorithm runs in time \(O(|E|)\) and therefore should scale to very large graphs.
Core Decomposition of an Undirected Graph

This section illustrates the use of the core decomposition algorithm on the undirected graph G shown in Figure 3.80.

![Undirected Graph](image)

Figure 3.80 Undirected Graph

The undirected graph G can be represented using the following nodes data table, `mycas.NodeSetIn`, and links data table, `mycas.LinkSetIn`:

```plaintext
data mycas.NodeSetIn;
  input node $ @@;
datalines;
v1   v2   v3   v4   v5
v6   v7   v8   v9   v10
v11  v12  v13  v14  v15
v16  v17  v18  v19
```

Chapter 3: The NETWORK Procedure

```plaintext
data mycas.LinkSetIn;
  input from $ to $ @@;
datalines;
v1  v2  v5  v6  v6  v7  v7  v8  v10  v11
v2  v3  v4  v2  v4  v8  v9  v9  v10
v8  v18 v10 v12 v13 v14 v13 v15 v13 v16
v13 v17 v14 v15 v14 v16 v14 v17 v15 v16
v15 v17 v16 v17 v18 v13 v18 v17 v18 v16
v12 v14 v12 v15 v12 v16
;```

The following statements calculate the core decomposition and output the results in the data table mycas.NodeSetOut:

```plaintext
proc network
 nodes = mycas.NodeSetIn
 links = mycas.LinkSetIn
 outNodes = mycas.NodeSetOut;
 core;
run;
```

The nodes output data table mycas.NodeSetOut contains the core number (variable core_out) for each node, as shown in Figure 3.81.

**Figure 3.81** Core Decomposition of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>core_out</th>
</tr>
</thead>
<tbody>
<tr>
<td>v19</td>
<td>0</td>
</tr>
<tr>
<td>v1</td>
<td>1</td>
</tr>
<tr>
<td>v11</td>
<td>1</td>
</tr>
<tr>
<td>v5</td>
<td>1</td>
</tr>
<tr>
<td>v6</td>
<td>1</td>
</tr>
<tr>
<td>v7</td>
<td>1</td>
</tr>
<tr>
<td>v10</td>
<td>2</td>
</tr>
<tr>
<td>v2</td>
<td>2</td>
</tr>
<tr>
<td>v3</td>
<td>2</td>
</tr>
<tr>
<td>v4</td>
<td>2</td>
</tr>
<tr>
<td>v8</td>
<td>2</td>
</tr>
<tr>
<td>v9</td>
<td>2</td>
</tr>
<tr>
<td>v12</td>
<td>3</td>
</tr>
<tr>
<td>v18</td>
<td>3</td>
</tr>
<tr>
<td>v13</td>
<td>4</td>
</tr>
<tr>
<td>v14</td>
<td>4</td>
</tr>
<tr>
<td>v15</td>
<td>4</td>
</tr>
<tr>
<td>v16</td>
<td>4</td>
</tr>
<tr>
<td>v17</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 3.82 shows the graph layered by its core number.
Figure 3.82  Core Decomposition
Chapter 3: The NETWORK Procedure

Cycle Enumeration

A path in a graph is a sequence of links such that the to node of each link is the from node of the next link. An elementary cycle is a path in which the starting node and the ending node are the same and no node appears more than twice in the sequence.

In PROC NETWORK, you can find (or just count) the elementary cycles of an input graph by specifying the CYCLE statement. The options for this statement are described in the section “CYCLE Statement” on page 41. To find the cycles and report them in an output data table, use either the OUTCYCLESNODES= option or the OUTCYCLESLINKS= option. To simply count the cycles, omit the output data table options.

For undirected graphs, each link represents two directed links. For this reason, the following cycles are filtered out: trivial cycles (A \rightarrow B \rightarrow A) and duplicate cycles that are found by traversing a cycle in both directions (A \rightarrow B \rightarrow C \rightarrow A and A \rightarrow C \rightarrow B \rightarrow A).

By default, PROC NETWORK uses depth-first search to quickly identify whether a cycle exists. This algorithm runs in time $O(N + E)$. This algorithm should scale to very large graphs. If filters are used or if the specified maximum number of cycles (MAXCYCLES=) is greater than 1, then enumerative algorithms are used.

The default algorithm that PROC NETWORK uses to enumerate cycles when the value of the MAXLENGTH= option is greater than 20 (ALGORITHM=BACKTRACK) is a variant of the algorithm in Johnson (1975). This algorithm runs in time $O((N + E)(c + 1))$, where $c$ is the number of elementary cycles in the graph. So the algorithm should scale to large graphs that contain few cycles. However, some graphs can have a very large number of cycles, so the algorithm might not scale. The default when the value of the MAXLENGTH= option is less than or equal to 20 (ALGORITHM=BUILD) is described in Liu and Wang (2006). This algorithm is usually much faster than the backtracking algorithm when the length of the cycles is sufficiently restricted.

If MAXCYCLES=ALL and there are many cycles, the output data tables can become very large. It might be beneficial to check the number of cycles before you try to create an output data table. For more information about these options, see the section “CYCLE Statement” on page 41.

Output Data Tables

Depending on the specified options, the cycle algorithm produces additional output data tables as described in the following section.

OUTCYCLESNODES= Data Table

The OUTCYCLESNODES= data table describes the enumerated cycles as a sequence of nodes. This data table contains the following columns:

- cycle: the cycle identifier
- order: the order (sequence) of the node in the cycle
- node: the node label
OUTCYCLESLINKS= Data Table
The OUTCYCLESLINKS= data table describes the enumerated cycles as a sequence of links. This data table contains the following columns:

- cycle: the cycle identifier
- order: the order (sequence) of the link in the cycle
- from: the from node label
- to: the to node label

The cycle identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK statement.

Cycle Enumeration of a Directed Graph
This section provides a simple example of using the cycle enumeration algorithm on the directed graph $G$ shown in Figure 3.83. For a more detailed example involving both cycle enumeration and transitive closure, see “Example 3.10: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System” on page 253.

Figure 3.83 Directed Graph $G$

The directed graph $G$ can be represented by the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
 input from $ to $ @@;
datalines;
 A B A E B C C A C D
 D E D F E B E C F E
;
```

The following statements count the number of cycles in the graph (without storing them):
proc network
  direction = directed
  links     = mycas.LinkSetIn;
  cycle
    maxCycles = all;
run;
%put &_NETWORK_;

The result is written to the log of the NETWORK procedure, as shown in Figure 3.84.

**Figure 3.84** PROC NETWORK Log: Count the Number of Cycles in a Directed Graph

```
NOTE: --
NOTE: Running NETWORK.
NOTE: --
NOTE: The number of nodes in the input graph is 6.
NOTE: The number of links in the input graph is 10.
NOTE: Processing cycle enumeration using 1 threads across 1 machines.
NOTE: The algorithm found 7 cycles.
NOTE: Processing cycle enumeration used 0.00 (cpu: 0.00) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.03997 seconds.
STATUS=OK PROBLEM_TYPE=CYCLE SOLUTION_STATUS=OK NUM_CYCLES=7 CPU_TIME=0.08 REAL_TIME=0.04
```

The following statements return the first cycle that is found in the graph:

```
proc network
 direction = directed
 links = mycas.LinkSetIn;
 cycle
 outCyclesNodes = mycas.CyclesNodes
 outCyclesLinks = mycas.CyclesLinks;
run;
```

The output data table mycas.CyclesNodes now contains the nodes of the first cycle that is found in the input graph, as shown in Figure 3.85.

**Figure 3.85** Nodes of the First Cycle Found in a Directed Graph

<table>
<thead>
<tr>
<th>cycle</th>
<th>order</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>A</td>
</tr>
</tbody>
</table>

The output data table mycas.CyclesLinks now contains the links of the first cycle that is found in the input graph, as shown in Figure 3.86.
**Figure 3.86** Links of the First Cycle Found in a Directed Graph

<table>
<thead>
<tr>
<th>cycle order</th>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

The first cycle that is found in the input graph is shown graphically in **Figure 3.87**.

**Figure 3.87** $A \rightarrow B \rightarrow C \rightarrow A$

The following statements return all the cycles in the graph:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn;
cycle
 maxCycles = all
 outCyclesNodes = mycas.CyclesNodes;
run;
```

The output data table `mycas.CyclesNodes` now contains the nodes of all the cycles in the input graph, as shown in **Figure 3.88**.
Figure 3.88  Nodes of All Cycles in a Directed Graph

<table>
<thead>
<tr>
<th>cycle order</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>

The six additional cycles are shown graphically in Figure 3.89 through Figure 3.91.

**Figure 3.89  Cycles**

\[ A \rightarrow E \rightarrow B \rightarrow C \rightarrow A \]

\[ A \rightarrow E \rightarrow C \rightarrow A \]
Figure 3.90  Cycles

\[ B \rightarrow C \rightarrow D \rightarrow E \rightarrow B \]

\[ B \rightarrow C \rightarrow D \rightarrow F \rightarrow E \rightarrow B \]

Figure 3.91  Cycles

\[ E \rightarrow C \rightarrow D \rightarrow E \]

\[ E \rightarrow C \rightarrow D \rightarrow F \rightarrow E \]
Node Similarity

Node similarity is a measure of how similar the neighborhoods of two nodes are.

In PROC NETWORK, you can calculate node similarity by using the NODESIMILARITY statement. The options for this statement are described in the section “NODESIMILARITY Statement” on page 46.

PROC NETWORK implements six different measures of node similarity: four measures that are based on the immediate neighborhood (which you specify using the ADAMICADAR=, COMMONNEIGHBORS=, COSINE= and JACCARD= options) and two measures that are based on inner products between vector representations of nodes (first- and second-order proximity, which you specify in the PROXIMITYORDER= option when you also specify VECTOR=TRUE). The vector representations are calculated using the link sampling algorithm in Tang et al. (2015).

One simple measure of structural node similarity in a network is the number of neighbors that two nodes have in common. That is, the nodes are similar in proportion to the size of their overlapping neighborhoods.

In an undirected graph, \( N_i \) represents the set of neighbors (that is, unique nodes that are connected by links incident with node \( i \)). In a directed graph, \( N_{i}^{\text{out}} \) represents the set of out-neighbors (that is, unique nodes that are connected by outgoing links from node \( i \)), and \( N_{i}^{\text{in}} \) represents the set of in-neighbors (that is, unique nodes that are connected by incoming links to node \( i \)). The common neighbors similarity measure between nodes \( i \) and \( j \) is defined as

\[
S_{ij}^{\text{CN}} = |N_i \cap N_j|
\]

when \text{DIRECTION=}\text{UNDIRECTED}, or

\[
S_{ij}^{\text{CN}} = |N_{i}^{\text{out}} \cap N_{j}^{\text{out}}|
\]

when \text{DIRECTION=}\text{DIRECTED}.

Based on the common neighbors measure, high-degree nodes are likely to attain large similarity scores, even when only a small fraction of their neighbors is shared. One way of correcting this bias is to divide by the size of the union of the two neighborhoods. The result is called the Jaccard similarity measure, and is defined as

\[
S_{ij}^{\text{J}} = \frac{|N_i \cap N_j|}{|N_i \cup N_j|}
\]

when \text{DIRECTION=}\text{UNDIRECTED}, or

\[
S_{ij}^{\text{J}} = \frac{|N_{i}^{\text{out}} \cap N_{j}^{\text{out}}|}{|N_{i}^{\text{out}} \cup N_{j}^{\text{out}}|}
\]

when \text{DIRECTION=}\text{DIRECTED}. By convention, when the union of the two neighborhoods is empty, the Jaccard similarity measure is 0.

A second way of correcting the bias of the common neighbors similarity measure is to divide by the geometric mean of the two neighborhood sizes. The result is called the cosine similarity measure, which is defined as

\[
S_{ij}^{\text{C}} = \frac{|N_i \cap N_j|}{\sqrt{|N_i||N_j|}}
\]
Node Similarity

when DIRECTION=UNDIRECTED, or

\[ S_{ij}^{C} = \frac{|N_{i}^{\text{out}} \cap N_{j}^{\text{out}}|}{\sqrt{|N_{i}^{\text{out}}||N_{j}^{\text{out}}|}} \]

when DIRECTION=DIRECTED. By convention, when either of the two neighborhoods is empty, the cosine similarity measure is 0.

A third way of correcting the bias of the common neighbors similarity measure is to weight exclusive neighbors more heavily than neighbors that are shared by many nodes. Using the inverse log-frequency weighting formulated by Adamic and Adar (2003), the Adamic-Adar similarity measure is defined as

\[ S_{ij}^{AA} = \sum_{k \in N_{i} \cap N_{j}} \frac{1}{\log|N_{k}|} \]

when DIRECTION=UNDIRECTED, or

\[ S_{ij}^{AA} = \sum_{k \in N_{i}^{\text{out}} \cap N_{j}^{\text{out}}} \frac{1}{\log|N_{k}^{\text{in}}|} \]

when DIRECTION=DIRECTED.

Another way to compare nodes in the graph is to first embed them in a \(d\)-dimensional vector space in such a way that the network structure is preserved. The method that is used here was introduced in Tang et al. (2015); it is designed to produce node embeddings that capture the first- or second-order proximity between nodes as proximity between corresponding vector-space embeddings. The first-order proximity in a graph can be represented by \(w_{ij}\), the sum of weights of links from \(i\) to \(j\). The second-order proximity between a pair of nodes \((i, j)\) in a graph is the similarity between their neighborhood structures. If the first-order proximity of \(i\) to all other nodes is represented as a vector \(p_{i} = (w_{i1}, \ldots, w_{i|N|})\), then the second-order proximity between \(i\) and \(j\) is determined by the similarity between \(p_{i}\) and \(p_{j}\). The second-order proximity assumes that the nodes that share many connections to other nodes are similar to each other. In the method of Tang et al. (2015), a \(d\)-dimensional vector \(u_{i}\) is calculated for each node \(i\) by minimizing a corresponding objective function. In the case of first-order proximity, the objective function is

\[ O_{1} = - \sum_{e \in E} w_{e} \log p_{1}(\text{from}(e), \text{to}(e)) \]

where \(\text{from}(e)\) represents the \(\text{from}\) node of link \(e\), \(\text{to}(e)\) represents the \(\text{to}\) node of link \(e\), and \(p_{1}\) is the joint probability of a link between nodes \(i\) and \(j\), which is modeled as

\[ p_{1}(i, j) = \frac{1}{1 + \exp(-u_{i} \cdot u_{j})} \]

For second-order proximity, the \(d\)-dimensional vector embeddings \(u_{i}\) and the \(d\)-dimensional context embeddings \(v_{i}\) are calculated by minimization of the objective function,

\[ O_{2} = - \sum_{e \in E} w_{e} \log p_{2}(\text{to}(e)|\text{from}(e)) \]

where

\[ p_{2}(j|i) = \frac{\exp(v_{j} \cdot u_{i})}{\sum_{k \in N} \exp(v_{k} \cdot u_{i})} \]
The optimization is performed by using the asynchronous stochastic gradient descent algorithm with random sampling of links from the input link set, where the number of samples is specified in the NSAMPLES= option. In addition, Tang et al. (2015) adopt the approach of negative sampling, which samples multiple negative links that are drawn from the uniform noise distribution. You can use the NEGATIVESAMPLEFACTOR= option to specify the number of negative links for each input link sample.

If the stochastic gradient descent updates cease to make any significant change to the embedding vector space, the algorithm has converged and can terminate before reaching the number of samples that is specified in the NSAMPLES= option. The tolerance for this convergence termination criterion can be controlled via the CONVERGENCEThreshold= option. In addition, the convergence values, which represent the rate of change of embedding vectors, are tabulated over time and are written to the OUTCONVERGENCE= data table.

After the embeddings for each node in the graph are calculated, the vector similarity measure between a pair of nodes \( i \) and \( j \) is calculated as a function of the angle between their embedding vectors,

\[
S_{ij}^V = \frac{\cos(\theta_{uiuj}) + 1}{2}
\]

where \( \theta_{uiuj} \) is the angle between \( u_i \) and \( u_j \).

By default, PROC NETWORK finds the node similarity for all pairs of nodes in the input graph. That is, it finds the node similarity for each possible combination of source nodes and sink nodes. Alternatively, you can use the SOURCE= option in the NODESIMILARITY statement to fix a particular source node and find all node similarity scores from the fixed source node to all possible sink nodes. Conversely, by using the SINK= option in the NODESIMILARITY statement, you can fix a sink node and find all node similarity scores from all possible source nodes to the fixed sink node. By using both options together, you can calculate all similarity scores for a specific source-sink pair. In addition, you can use the NODESSUBSET= option in the PROC NETWORK statement to define a list of source-sink pairs to process, as described in the section “Nodes Subset Input Data” on page 64. The following section provides an example of finding the node similarity for all source-sink pairs. You can find additional examples of how to define the specific source-sink pairs of interest in the section “Shortest Path” on page 195.

Output Data Tables

The node similarity algorithm populates up to three output data tables. The output data table that you specify in the OUTSIMILARITY= option in the NODESIMILARITY statement contains the node similarity scores for each source-sink pair. The output data table that you specify in the OUTNODES= option in the PROC NETWORK statement option contains the vector representations of the nodes when you use the VECTOR= option. The output data table that you specify in the OUTCONVERGENCE= option in the NODESIMILARITY statement contains the convergence curves for vector embeddings training.

OUTSIMILARITY= Data Table

The OUTSIMILARITY= data table contains the similarity scores for each node pair. Unless particular sources-sink pairs are requested, the output table will list all pairs with source node label less than or equal to the sink node label. For large graphs and a large requested number of source-sink pairs, this output data table can be extremely large. Generating the output can sometimes take longer than computing the similarity. This output data table is a distributed table when you are running on multiple machines. The only restriction is the total available cache disk space that is enabled by your configuration, as described in SAS Cloud Analytic Services: User’s Guide. If you do not specify the OUTSIMILARITY= option, the pairwise
similarity calculation is skipped. This can be useful if you intend only to train node embeddings for vector similarity.

The OUTSIMILARITY= data table contains the following columns:

- **source**: the source node label of this pair
- **sink**: the sink node label of this pair
- **link**: the flag indicating whether this pair exists in the LINKS= data table (1 if exists, 0 otherwise)
- **jaccard**: the Jaccard similarity score, if you specify JACCARD=TRUE
- **commonNeighbors**: the common neighbors similarity score, if you specify COMMONNEIGHBORS=TRUE
- **cosine**: the cosine similarity score, if you specify COSINE=TRUE
- **adamicAdar**: the Adamic-Adar similarity score, if you specify ADAMICADAR=TRUE
- **vector**: the vector similarity score, if you specify VECTOR=TRUE

**OUTNODES= Data Table**
When VECTOR=TRUE, the output table that is specified in the OUTNODES= option contains the vector representations of each node in the input graph. The vector embedding columns are defined as vec_1 through vec_d, where d is specified by the NDIMENSIONS= option in the NODESIMILARITY statement. When PROXIMITYORDER=SECOND, the context embedding columns, defined as ctx_1 through ctx_d, are also written to this output table.

**OUTCONVERGENCE= Data Table**
The OUTCONVERGENCE= data table contains the convergence curves for vector embeddings training. When this table has been specified, the convergence value of the vector embeddings training algorithm is periodically written to the table. In multiple machine processing, each machine trains its own embedding vectors and writes its convergence values independently. In order to limit the size of output table to no more than 10,000 observations per processing machine, the algorithm reports only at certain sample intervals. For example, if you specify NSAMPLES=8,000,000, the algorithm might report only every 1,000th sample.

The OUTCONVERGENCE= data table contains the following columns:

- **worker**: the identifier for the particular machine that reports the convergence value
- **sample**: the number of samples that have been completed when the convergence value is reported
- **convergence**: the reported convergence value
Node Similarity in an Undirected Graph

This section provides a simple example of calculation of node similarity in the undirected graph $G$ that is shown in Figure 3.92.

![Figure 3.92 Undirected Graph $G$](image)

The undirected graph $G$ can be represented by the links data table, mycas.LinkSetIn, that is created by the following DATA step:

``` SAS
data mycas.LinkSetIn;
 input from $ to $ weight;
 datalines;
 A B 1
 A D 1
 C B 1
 C D 1
 E B 1
 E D 1
 E F 1
;
```

The following statements find the node pairs that have the top 21 vector node similarity scores:

``` SAS
proc network
 links = mycas.LinkSetIn;
 nodeSimilarity
 vector = true
 nDimensions = 10
 proximityOrder = second
 topK = 21
 orderBy = vector
 outSimilarity = mycas.NodeSim;
run;
```

The output data table mycas.NodeSim, as shown in Figure 3.93, contains the pairs of nodes that are ranked highest according to vector node similarity.
This example illustrates the intuition behind node similarity scores. The nodes A and C have the same set of nearest neighbors (see Figure 3.92), B and D, which results in the Jaccard similarity score of 1 and a vector similarity score very close to 1; thus the (A,C) pair is ranked first in the output. The pair (B,F) has lower Jaccard and vector similarity scores relative to (A,C). Lower similarity scores are reasonable in this cases because B and F share only one neighbor out of their three total neighbors.

The first-order proximity can be calculated by the following statements:

```plaintext
proc network
 links = mycas.LinkSetIn
 outNodes = mycas.NodeVecs;
 nodeSimilarity
 jaccard = false
 vector = true
 nDimensions = 10
 proximityOrder = first
 topK = 21
 outSimilarity = mycas.NodeSim
 nSamples = 10000;
run;
```

The output data table mycas.NodeSim, as shown in Figure 3.94, contains the pairs of nodes and similarity scores for the first-order proximity. The example also demonstrates the intuition behind similarity that is based on first-order proximity and how it is different from Jaccard-based proximity and the vector for the second-order proximity. Intuitively, the first-order vector similarity score between the nodes that are directly connected is higher than the first-order vector similarity score between the nodes that are separated by a
longer path in a graph, whereas the Jaccard similarity and second-order vector similarity scores are higher between the nodes that share more neighbors. The first-order vector similarity is more closely related to results that are produced by label propagation community detection algorithms, in the sense that the pairs of nodes that have high first-order vector similarity scores between them can be placed in one community.

**Figure 3.94** Node Pairs ranked by First Order Vector Similarity

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>link</th>
<th>order</th>
<th>vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1.00000</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>0</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>0</td>
<td>3</td>
<td>1.00000</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>0</td>
<td>4</td>
<td>1.00000</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>0</td>
<td>5</td>
<td>1.00000</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0</td>
<td>6</td>
<td>1.00000</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>1</td>
<td>7</td>
<td>0.78806</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>1</td>
<td>8</td>
<td>0.76069</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>9</td>
<td>0.57964</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>0</td>
<td>10</td>
<td>0.55955</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
<td>11</td>
<td>0.50947</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>0</td>
<td>12</td>
<td>0.49927</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>0</td>
<td>13</td>
<td>0.43614</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>1</td>
<td>14</td>
<td>0.42886</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>1</td>
<td>15</td>
<td>0.41376</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>0</td>
<td>16</td>
<td>0.32509</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>0</td>
<td>17</td>
<td>0.22782</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
<td>18</td>
<td>0.22518</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>0</td>
<td>19</td>
<td>0.21664</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>0</td>
<td>20</td>
<td>0.17055</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>0</td>
<td>21</td>
<td>0.06469</td>
</tr>
</tbody>
</table>

The output data table mycas.NodeVecs contains node-embedding vectors, shown in **Figure 3.95**.

**Figure 3.95** Node-Embedding Vectors

<table>
<thead>
<tr>
<th>node</th>
<th>vec_1</th>
<th>vec_2</th>
<th>vec_3</th>
<th>vec_4</th>
<th>vec_5</th>
<th>vec_6</th>
<th>vec_7</th>
<th>vec_8</th>
<th>vec_9</th>
<th>vec_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.11475</td>
<td>-0.61697</td>
<td>-0.06531</td>
<td>0.08249</td>
<td>-0.31666</td>
<td>-0.38869</td>
<td>-0.01619</td>
<td>-0.01475</td>
<td>-0.12739</td>
<td>-0.57189</td>
</tr>
<tr>
<td>B</td>
<td>-0.34484</td>
<td>-0.01401</td>
<td>-0.01864</td>
<td>0.33397</td>
<td>0.59344</td>
<td>-0.08097</td>
<td>0.07481</td>
<td>-0.44139</td>
<td>-0.30726</td>
<td>-0.33977</td>
</tr>
<tr>
<td>C</td>
<td>-0.15172</td>
<td>-0.19039</td>
<td>-0.23786</td>
<td>-0.56478</td>
<td>-0.37673</td>
<td>0.37906</td>
<td>0.25890</td>
<td>-0.04476</td>
<td>0.37354</td>
<td>0.26646</td>
</tr>
<tr>
<td>D</td>
<td>0.15011</td>
<td>-0.29556</td>
<td>-0.24776</td>
<td>-0.17747</td>
<td>-0.09507</td>
<td>0.04055</td>
<td>0.33574</td>
<td>0.55559</td>
<td>0.40081</td>
<td>0.45220</td>
</tr>
<tr>
<td>E</td>
<td>0.20796</td>
<td>0.64270</td>
<td>-0.10490</td>
<td>-0.08532</td>
<td>0.31491</td>
<td>0.19173</td>
<td>-0.35699</td>
<td>-0.04500</td>
<td>0.26791</td>
<td>0.43387</td>
</tr>
<tr>
<td>F</td>
<td>0.18628</td>
<td>0.72552</td>
<td>0.29129</td>
<td>0.34264</td>
<td>-0.07478</td>
<td>0.29726</td>
<td>-0.11858</td>
<td>-0.30466</td>
<td>-0.17327</td>
<td>0.07622</td>
</tr>
</tbody>
</table>
Warm Start for Vector Node Similarity

This section continues the example in the section “Node Similarity in an Undirected Graph” on page 146 and illustrates warm start processing for vector node similarity. You can resume training of the previously learned node embeddings by providing the previous output as the initialization of a subsequent call to PROC NETWORK. After producing the result shown in Figure 3.95, you can warm start the training of the node-embedding vectors by providing the output table that is specified in the OUTNODES= option from the previous run as the NODES= input option. In addition, you must use the EMBEDDINGS= option to specify the variables within the NODES= input table to be used for the vector embeddings.

The following statements resume the training and produce refined node embeddings:

```sas
proc network
 links = mycas.LinkSetIn
 nodes = mycas.NodeVecs
 outNodes = mycas.NodeVecs2;
 nodeSimilarity
 jaccard = false
 vector = true
 nDimensions = 10
 proximityOrder = first
 topK = 21
 outSimilarity = mycas.NodeSim2
 nSamples = 10000
 embeddings = (vec_1-vec_10);
run;
```

**Figure 3.96** Refined First Order Vector Similarity Scores after Warm Start

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>link</th>
<th>order</th>
<th>vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1.00000</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>0</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>0</td>
<td>3</td>
<td>1.00000</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>0</td>
<td>4</td>
<td>1.00000</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>0</td>
<td>5</td>
<td>1.00000</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>0</td>
<td>6</td>
<td>1.00000</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>1</td>
<td>7</td>
<td>0.85422</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>1</td>
<td>8</td>
<td>0.53771</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>9</td>
<td>0.53419</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>1</td>
<td>10</td>
<td>0.52854</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
<td>11</td>
<td>0.52109</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
<td>12</td>
<td>0.49783</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>0</td>
<td>13</td>
<td>0.46255</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>1</td>
<td>14</td>
<td>0.44348</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>0</td>
<td>15</td>
<td>0.44336</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>0</td>
<td>16</td>
<td>0.31201</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>0</td>
<td>17</td>
<td>0.29518</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>0</td>
<td>18</td>
<td>0.29201</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>0</td>
<td>19</td>
<td>0.17834</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>0</td>
<td>20</td>
<td>0.10574</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>0</td>
<td>21</td>
<td>0.07064</td>
</tr>
</tbody>
</table>
The new similarity scores in mycas.NodeSim2, as shown in Figure 3.96, are based on the refined node embeddings that are in the data table mycas.NodeVecs2. Figure 3.97 shows the refined node embeddings.

**Figure 3.97** Refined Node-Embedding Vectors after Warm Start

<table>
<thead>
<tr>
<th>node</th>
<th>vec_1</th>
<th>vec_2</th>
<th>vec_3</th>
<th>vec_4</th>
<th>vec_5</th>
<th>vec_6</th>
<th>vec_7</th>
<th>vec_8</th>
<th>vec_9</th>
<th>vec_10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.06607</td>
<td>-0.64116</td>
<td>-0.01293</td>
<td>0.09966</td>
<td>-0.28407</td>
<td>-0.43488</td>
<td>0.01510</td>
<td>0.12793</td>
<td>-0.15618</td>
<td>-0.51347</td>
</tr>
<tr>
<td>B</td>
<td>-0.44741</td>
<td>-0.05365</td>
<td>-0.05597</td>
<td>0.08349</td>
<td>0.56579</td>
<td>-0.02195</td>
<td>0.01541</td>
<td>-0.53168</td>
<td>-0.26390</td>
<td>-0.33717</td>
</tr>
<tr>
<td>C</td>
<td>-0.35674</td>
<td>-0.24943</td>
<td>-0.20734</td>
<td>-0.57279</td>
<td>-0.21086</td>
<td>0.40076</td>
<td>0.32492</td>
<td>-0.24728</td>
<td>0.22620</td>
<td>0.12840</td>
</tr>
<tr>
<td>D</td>
<td>0.28385</td>
<td>-0.26035</td>
<td>-0.15636</td>
<td>-0.15390</td>
<td>-0.15189</td>
<td>-0.11675</td>
<td>0.13660</td>
<td>0.68220</td>
<td>0.34720</td>
<td>0.40275</td>
</tr>
<tr>
<td>E</td>
<td>0.24805</td>
<td>0.68117</td>
<td>0.04144</td>
<td>0.10597</td>
<td>0.41152</td>
<td>0.14435</td>
<td>-0.26936</td>
<td>0.04557</td>
<td>0.10675</td>
<td>0.43049</td>
</tr>
<tr>
<td>F</td>
<td>0.24235</td>
<td>0.75237</td>
<td>0.30133</td>
<td>0.29435</td>
<td>-0.06699</td>
<td>0.26254</td>
<td>-0.19125</td>
<td>-0.22185</td>
<td>-0.14690</td>
<td>0.13029</td>
</tr>
</tbody>
</table>

**Vector Node Similarity Convergence**

This section demonstrates the convergence options for vector node similarity.

This example uses an undirected graph that is represented by the links data table, mycas.LinkSetIn, which is created by the following DATA step:

```latex
data mycas.LinkSetIn;
 input from $ to $ @@;
datalines;
 A B A F A G B C B D
 B E C D E F G I G H
 H I
;```

The following statements compute vector node embeddings and plot the convergence curves for each worker:

```latex
proc network
  links = mycas.LinkSetIn;
  nodeSimilarity
    jaccard = false
    vector = true
    convergenceThreshold = 0.025
  outConvergence = mycas.OutConv1;
run;
```

The output data table mycas.OutConv1 contains the convergence curve for each worker, as shown in Figure 3.98. The training of the vector node embeddings halts after the desired convergence threshold of 0.025 is reached.
Figure 3.98 Convergence Output Table

<table>
<thead>
<tr>
<th>sample</th>
<th>worker</th>
<th>convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0.77976</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.58486</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.43868</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0.32908</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0.24687</td>
</tr>
<tr>
<td>230</td>
<td>0</td>
<td>0.03767</td>
</tr>
<tr>
<td>240</td>
<td>0</td>
<td>0.03397</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
<td>0.03069</td>
</tr>
<tr>
<td>260</td>
<td>0</td>
<td>0.02772</td>
</tr>
<tr>
<td>270</td>
<td>0</td>
<td>0.02505</td>
</tr>
<tr>
<td>280</td>
<td>0</td>
<td>0.02264</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.78175</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0.58635</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0.43980</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0.32991</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0.24748</td>
</tr>
<tr>
<td>230</td>
<td>1</td>
<td>0.03771</td>
</tr>
<tr>
<td>240</td>
<td>1</td>
<td>0.03401</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
<td>0.03071</td>
</tr>
<tr>
<td>260</td>
<td>1</td>
<td>0.02776</td>
</tr>
<tr>
<td>270</td>
<td>1</td>
<td>0.02508</td>
</tr>
<tr>
<td>280</td>
<td>1</td>
<td>0.02266</td>
</tr>
</tbody>
</table>

The following statements produce a plot of the convergence curves from each processing worker:

```r
proc sgplot data=mycas.OutConv1;
    series x=sample y=convergence / group=worker;
run;
```
Each plotted series represents a different worker, each of which trains embeddings independently and in parallel. The output is displayed in Figure 3.99.

Path Enumeration

A path in a graph is a sequence of links such that the to node of each link is the from node of the next link. An elementary path is a path in which no node is visited more than once. A path between two nodes, i and j, in a graph is a path that starts at i and ends at j. The starting node is called the source node, and the ending node is called the sink node.

In PROC NETWORK, you can find the elementary paths of an input graph by specifying the PATH statement. The options for this statement are described in the section “PATH Statement” on page 51.

By default, PROC NETWORK finds paths for all pairs of nodes in the input graph. That is, it finds all paths for each possible combination of source nodes and sink nodes. Alternatively, you can use the SOURCE= option to fix a particular source node and find all paths from the fixed source node to all possible sink nodes. Conversely, by using the SINK= option, you can fix a sink node and find all paths from all possible source nodes to the fixed sink node. By using both options together, you can request all paths for a specific source-sink pair. In addition, you can use the NODESSUBSET= option to define a list of source-sink pairs to process, as described in the section “Nodes Subset Input Data” on page 64. The following section provides an example of how to use one of these options. Additional examples that show how to define the source-sink pairs of interest are found in the section “Shortest Path” on page 195.
For weighted graphs, the algorithm uses the weight variable that is defined in the links (nodes) data table to evaluate a path’s total link (node) weight. You can also use the AUXWEIGHT= option in the LINKSVAR statement to define an auxiliary link weight.

Output Data Tables

The path enumeration algorithm produces up to two output data tables. The output data table that you specify in the OUTPATHSLINKS= option contains the links of the paths for each source-sink pair. The output data table that you specify in the OUTPATHSNODES= option contains the nodes of the paths for each source-sink pair.

OUTPATHSLINKS= Data Table

The OUTPATHSLINKS= data table contains the links present in each path. For large graphs and a large requested number of source-sink pairs, this output data table can be extremely large. Generating the output can sometimes take longer than computing the paths. This output data table is a distributed table when you are running on multiple machines. The only restriction is the total available cache disk space enabled by your configuration, as described in *SAS Cloud Analytic Services: Fundamentals*.

The OUTPATHSLINKS= data table contains the following columns:

- **source**: the source node label of this path
- **sink**: the sink node label of this path
- **path**: for this source-sink pair, the path identifier of this path
- **order**: for this source-sink pair, the order of this link in this path
- **from**: the *from* node label of this link in this path
- **to**: the *to* node label of this link in this path
- **weight**: the weight of this link in this path
- **column**: the auxiliary weight of this link (if the AUXWEIGHT=column is defined in the LINKSVAR statement)

OUTPATHSNODES= Data Table

The OUTPATHSNODES= data table contains the nodes present in each path. This output data table can also be extremely large. This output data table is a distributed table when you are running on multiple machines.

The OUTPATHSNODES= data table contains the following columns:

- **source**: the source node label of this path
- **sink**: the sink node label of this path
- **path**: for this source-sink pair, the path identifier of this path
- **order**: for this source-sink pair, the order of this node in this path
- **node**: the node label of this node in this path
- **weight**: the weight of this node in this path
Path Enumeration for One Source-Sink Pair

This section provides a simple example of using the path enumeration algorithm on the directed graph \(G \) shown in Figure 3.100 to find all paths between one source-sink pair by using the SOURCE= and SINK= options.

Figure 3.100 Directed Graph \(G \)

The directed graph \(G \) can be represented by the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
  input from $ to $ weight @@;
datalines;
  A B 1 A E 1 B C 1 C A 6 C D 1
  D E 3 D F 1 E B 1 E C 4 F E 1
  E A 1
;```

The following statements find all paths between node D and node A whose path link weight is less than or equal to 10:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn;
path
 source = D
 sink = A
 maxLinkWeight = 10
```

outPathsLinks  = mycas.PathLinks
outPathsNodes  = mycas.PathNodes;
run;

The output data table mycas.PathLinks contains the links of the three paths from \( D \) to \( A \) whose path link weight is less than or equal to 10, as shown in Figure 3.101.

**Figure 3.101** Links for All (Short) Paths in a Directed Graph

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>path</th>
<th>order</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>D</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>2</td>
<td>E</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>F</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>E</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>1</td>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>2</td>
<td>F</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>3</td>
<td>E</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>4</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>6</td>
</tr>
</tbody>
</table>

The output data table mycas.PathNodes contains the nodes of the three paths, as shown in Figure 3.102.

**Figure 3.102** Nodes for All (Short) Paths in a Directed Graph

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>path</th>
<th>order</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>6</td>
<td>A</td>
</tr>
</tbody>
</table>

The three (short) paths are shown graphically in Figure 3.103.
Pattern Matching

Given two graphs, $G$ (main) and $Q$ (query), subgraph isomorphism is the problem of finding all subgraphs $Q'$ of $G$ that are isomorphic to $Q$ (that is, that have the same topology as graph $Q$). Pattern matching addresses the analogous problem in the presence of node and link attributes. It is the problem of finding all subgraphs $Q'$ of $G$ isomorphic to graph $Q$ such that all node and link attributes defined in $Q$ are preserved in $Q'$ under the isomorphism map.

Subgraph isomorphism and pattern matching have applications in many areas, including social network analysis, fraud detection, pattern recognition, data mining, chemistry, and biology. See, for example, Aggarwal and Wang (2010); Gallagher (2006); Conte et al. (2004); Shasha, Wang, and Giugno (2002).

In PROC NETWORK, you can find pattern matches by using the PATTERNMATCH statement. The options for this statement are described in the section “PATTERNMATCH Statement” on page 52. The search algorithm is a multithreaded implementation that is based conceptually on the algorithms proposed in Saltz (2013).

The query graph is specified in the LINKSQUERY= option or the NODESQUERY= option (or both) in the PROC NETWORK statement. The specification of the query graph and its attributes works the same way that it does for the main graph, which is described in more detail in the section “Graph Input Data” on page 59. One exception is the concept of a wildcard when an attribute’s value is missing. A missing value in the query graph indicates that the attribute value in the matching subgraph can be any value. An example of this is shown in “Example 3.15: Pattern Matching in a Social Network” on page 265.
Output Data Tables

Depending on the options that you specify, the pattern matching algorithm produces output data tables as described in the following sections.

**OUTMATCHNODES= Data Table**
The OUTMATCHNODES= data table describes the mappings from nodes in the query graph to nodes in the main graph for each pattern match. This data table contains the following columns:

- match: match identifier
- nodeQ: node label for each node in the query graph
- node: node label for each node in the main graph

**OUTMATCHLINKS= Data Table**
The OUTMATCHLINKS= data table describes the subgraph in the main graph for each pattern match. This data table contains the following columns:

- match: match identifier
- from: the from node label
- to: the to node label

**OUTSUMMARY= Data Table**
The OUTSUMMARY= data table summarizes the executed queries, the number of matches that are found, and the elapsed time. This data table contains the following columns:

- queryKey: the query key (if the QUERYKEY= option is specified)
- nodes: the number of nodes in the query graph
- links: the number of links in the query graph
- matches: the number of matches that are found
- realTime: the elapsed time (in seconds) for the pattern match search

**Pattern Matching of a Directed Graph**

This section illustrates the use of the pattern matching algorithm on the directed graph \( G \) that is shown in Figure 3.104.
The directed graph $G$ can be represented using the links data table, mycas.Links, and nodes data table, mycas.Nodes, that are created by the following DATA steps:

``` SAS
data mycas.Links;
 input from $ to $ @@;
datalines;
A B A I A H
B D B E B C
C F C G C A
F G F A G B
E C I H D G
F C C D D E
;
data mycas.Nodes;
 input node $ @@;
 label=node;
datalines;
A B C D E F G H I
;
```

Each node has a node attribute label that is defined as the name of the node.

In this example, you want to find all subgraphs that are directed cycles of length 3 that pass through node C. The query graph $Q$ that defines the pattern to search for is shown in Figure 3.105.
The query graph $Q$ can be represented using the nodes data table, mycas.NodesQuery, and links data table, mycas.LinksQuery, that are created by the following DATA steps:

``` SAS
data mycas.NodesQuery;
 input node label $;
datalines;
2 C
;
data mycas.LinksQuery;
 input from to;
datalines;
1 2
2 3
3 1
;
```

You can use the following statements to find all subgraphs that have the specified pattern:

``` SAS
proc network
 direction = directed
 nodes = mycas.Nodes
 links = mycas.Links
 nodesQuery = mycas.NodesQuery
 linksQuery = mycas.LinksQuery;
 nodesVar
 vars = (label);
 nodesQueryVar
 vars = (label);
 patternMatch
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks;
run;
```

The output data table mycas.OutMatchNodes now contains the mapping from nodes in the query graph to nodes in the main graph for each pattern match, as shown in Figure 3.106.

**Figure 3.106** Node Mappings for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>G</td>
<td>G</td>
</tr>
</tbody>
</table>

The output data table mycas.OutMatchLinks now contains the subgraphs for each pattern match, as shown in Figure 3.107.
Figure 3.107  Subgraphs for Pattern Matches

<table>
<thead>
<tr>
<th>match from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
</tr>
</tbody>
</table>

The results are displayed graphically in Figure 3.108.

Figure 3.108  Subgraphs
Pattern Matching of an Undirected Graph

This section illustrates the use of the pattern matching algorithm on the undirected graph $G$ that is shown in Figure 3.109.

![Undirected Graph $G$](image)

The undirected graph $G$ has one link attribute (weight) and one node attribute (color). The graph can be represented using the nodes data table, mycas.Nodes, and links data table, mycas.Links, that are created by the following DATA steps:

```plaintext
data mycas.Nodes;
 input node $ color $ @@;
datalines;
A red B blue C green D red E green
F blue G red H green I purple J blue
K green L red M blue N yellow O purple
P green
;
data mycas.Links;
 input from $ to $ weight @@;
datalines;
A B 5 A C 5 A D 5 A E 3 B C 5
B D 5 B E 5 C D 5 C E 5 D E 5
F G 4 F H 3 G H 3 E F 2 E J 2
J I 4 J K 4 J L 4 I K 4 I L 4
```
Each node has a node attribute color, and each link has a link attribute weight.

In this example, you want to find pairs of triangles (cliques of size 3) that are connected by a link whose weight is 1. In addition, you want the outer nodes of the triangle to have the colors blue and green. The query graph $Q$ that defines the pattern to search for is shown in Figure 3.110.

![Figure 3.110 Query Graph $Q$](image)

The query graph $Q$ can be represented using the nodes data table, `mycas.NodesQuery`, and links data table, `mycas.LinksQuery`, that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
 input node color $;
 datalines;
 1 green
 2 blue
 5 blue
 6 green
;
data mycas.LinksQuery;
 input from to weight;
 datalines;
 1 2 .
 1 3 .
 2 3 .
 3 4 1
 4 5 .
 5 6 .
 4 6 .
;
```

The missing link weight values in the query graph are treated as wildcards. They indicate that the weight of that particular link in the pattern can be any value. The missing observations in the nodes data table for the query graph are also treated as wildcards. A wildcard indicates that the associated attribute can take any value.

You can use the following statements to find all subgraphs that have the specified pattern:
proc network
    nodes = mycas.Nodes
    links = mycas.Links
    nodesQuery = mycas.NodesQuery
    linksQuery = mycas.LinksQuery;
    nodesVar
        vars = (color);
    linksVar
        vars = (weight);
    nodesQueryVar
        vars = (color);
    linksQueryVar
        vars = (weight);
    patternMatch
        outMatchNodes = mycas.OutMatchNodes
        outMatchLinks = mycas.OutMatchLinks;
run;

The output data table mycas.OutMatchNodes now contains the mapping from nodes in the query graph to
nodes in the main graph for each pattern match, as shown in Figure 3.111.

**Figure 3.111** Node Mappings for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>K</td>
<td>green</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>J</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>I</td>
<td>purple</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>O</td>
<td>purple</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>M</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>P</td>
<td>green</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>P</td>
<td>green</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>M</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>O</td>
<td>purple</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>I</td>
<td>purple</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>J</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>K</td>
<td>green</td>
</tr>
</tbody>
</table>

The output data table mycas.OutMatchLinks now contains the subgraphs for each pattern match, as shown in
Figure 3.112.
Only one set of links (one topology) matches the specified pattern. However, there are two isomorphic mappings. The results are displayed graphically in Figure 3.113.

Using the SAS Function Compiler to Create Refined Query Filters

As is shown in the previous examples, using attributes in the query data tables returns subgraphs that match the specified values exactly in addition to matching the defined graph structure (topology).

You can further customize the query by using the SAS Function Compiler (FCMP), which provides greater flexibility than using query data tables provides. For a general overview of FCMP and examples of its use in creating user-defined functions, see the chapter “The FCMP Procedure” in Base SAS Procedures Guide. In PROC NETWORK, you can use FCMP to provide a set of Boolean functions, each of which, when associated
with a specific pattern match query, defines an additional condition that a subgraph from the main graph must satisfy in order to be considered a match. You can use FCMP syntax and programming statements in addition to the attributes of the query (or main) graph in defining such a condition. The flexibility you have in defining the FCMP function permits both exact and inexact attribute matching for individual nodes and links, and these can be further tailored to specific nodes and links in the query graph. The additional ability to use functions that apply to pairs of nodes and links enables you to define conditions whose scope is more global than that of conditions on attributes of individual nodes and links. Refinement using pair filters is described in the section “Using the SAS Function Compiler to Create Refined Query Pair Filters” on page 167. Furthermore, you can define a filter globally on the set of candidate matching nodes and links. Refinement using a global match filter is described in the section “Using the SAS Function Compiler to Create Refined Query Match Filters” on page 172.

Arguments to the defined functions must either correspond to columns in the input data tables or define scalars. The expected format for defining a column argument in the function option is `table.column`, where `table` represents the appropriate table indicator as described in Table 3.11 and `column` is the name of the column in the referenced table.

<table>
<thead>
<tr>
<th>Table</th>
<th>Table Indicators</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINKS=</td>
<td>links or l</td>
<td>links.var</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specifies the <code>var</code> variable in the links table</td>
</tr>
<tr>
<td>LINKSQUERY=</td>
<td>linksQuery, linksQ, or lq</td>
<td>linksQuery.var</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specifies the <code>var</code> variable in the links query table</td>
</tr>
<tr>
<td>NODES=</td>
<td>nodes or n</td>
<td>nodes.var</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specifies the <code>var</code> variable in the nodes table</td>
</tr>
<tr>
<td>NODESQUERY=</td>
<td>nodesQuery, nodesQ, or nq</td>
<td>nodesQuery.var</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specifies the <code>var</code> variable in the nodes query table</td>
</tr>
</tbody>
</table>

You can specify FCMP functions and their associated arguments in the following options to define a node or link filter function:

- `NODEFILTER=` option, which specifies the FCMP function for a node filter
- `LINKFILTER=` option, which specifies the FCMP function for a link filter

During the search process, a node filter function is called for a particular mapping from some node in the query graph to some node in the main graph. The node filter function evaluates whether this node mapping is valid. A link filter function is called for a particular mapping from some link in the query graph to some link in the main graph. The link filter function evaluates whether this link mapping is valid.

Consider again the example in the section “Pattern Matching of an Undirected Graph” on page 161. Rather than providing the `color` variable in the `mycas.NodesQuery` table, the same refinement is accomplished using the following node filter function and associated function call:

```lisp
function myNodeFilter(nodeQ, color $);
 if (nodeQ in (1,6)) then return (color='green');
 else if (nodeQ in (2,5)) then return (color='blue');
 else return (1);
```
Chapter 3: The NETWORK Procedure

patternMatch

nodeFilter = myNodeFilter(nodesQuery.node, nodes.color)

For query nodes 1, 2, 5, and 6, the function myNodeFilter checks the color attribute of a candidate node in the main graph. Query nodes 1 and 6 must map to a node in the main graph whose color is green. Query nodes 2 and 5 must map to a node in the main graph whose color is blue. For all other query nodes, the color of the mapped node in the main graph can take any value.

Similarly, rather than providing the weight variable in the mycas.LinksQuery table, the same refinement is accomplished using the following link filter function and associated function call:

function myLinkFilter(fromQ, toQ, weight);
    if (fromQ=3 and toQ=4) then return (weight=1);
    else return (1);
endsub;

patternMatch

linkFilter = myLinkFilter(linksQuery.from, linksQuery.to, links.weight)

For query link {3, 4}, the function myLinkFilter checks the weight attribute of a candidate link in the main graph. Query link {3, 4} must map to a link in the main graph whose weight is 1. For all other query links, the weight of the mapped link in the main graph can take any value.

Pattern Matching of an Undirected Graph Using FCMP Filter Functions

This section shows how you can use the FCMP filter functions instead of defining attributes in the query data tables. Using attributes in the query data tables allows only for exact attribute matching. The filter functions extend the query capabilities to inexact attribute matching. Any method or mathematical operator that is supported by FCMP (on CAS) can be used in the definition of the filter function. For an example of using inexact attribute matching, see “Example 3.15: Pattern Matching in a Social Network” on page 265.

The following DATA steps create the same query tables as are created in the section “Pattern Matching of an Undirected Graph” on page 161 but with no additional attribute specifications.

data mycas.NodesQuery;
    input node @@;
datalines;
1 2 5 6
;
data mycas.LinksQuery;
    input from to @@;
datalines;
1 2 1 3 2 3 3 4 4 5
5 6 4 6
;

The following statements use PROC CAS and the fcmpact action set to specify the filter functions myLinkFilter and myNodeFilter and then load them into the CAS session. For more information about the fcmpact action set, see the chapter “FCMP Action Set” in SAS Viya: System Programming Guide. For general information about PROC CAS, see SAS Cloud Analytic Services: CASL Reference.
%macro FCMPActionLoad();
loadactionset "fcmpact";
setSessOpt{cmplib="casuser.myRoutines"}; run;
fcmpact.addRoutines /
  saveTable = true,
  funcTable = {name="myRoutines", caslib="casuser", replace=true},
  package = "myPackage",
  routineCode = myFilter;
run;
%mend FCMPActionLoad;
proc cas;
  source myFilter;
  function myNodeFilter(nodeQ, color $);
    if (nodeQ in (1,6)) then return (color='green');
    else if (nodeQ in (2,5)) then return (color='blue');
    else return (1);
  endsub;
  function myLinkFilter(fromQ, toQ, weight);
    if (fromQ=3 and toQ=4) then return (weight=1);
    else return (1);
  endsub;
endsource;
%FCMPActionLoad();
quit;

Next, the following statements find all subgraphs that have the pattern that is specified by the query input data tables and the FCMP filter functions:

proc network
  nodes = mycas.Nodes
  links = mycas.Links
  nodesQuery = mycas.NodesQuery
  linksQuery = mycas.LinksQuery;
  nodesVar
    vars = (color);
  linksVar
    vars = (weight);
  patternMatch
    nodeFilter = myNodeFilter(nodesQuery.node, nodes.color)
    linkFilter = myLinkFilter(linksQuery.from, linksQuery.to, links.weight)
    outMatchNodes = mycas.OutMatchNodes
    outMatchLinks = mycas.OutMatchLinks;
run;

Using the SAS Function Compiler to Create Refined Query Pair Filters

Further refinement of queries can be done by providing functions that consider pairs of nodes (or links) and their associated mappings.

You can specify FCMP functions and their associated arguments in the following options to define a node-pair or link-pair filter function:

- NODEPAIRFILTER= option, which specifies the FCMP function for a filter that is based on a pair of...
nodes

- LINKPAIRFILTER= option, which specifies the FCMP function for a filter that is based on a pair of links

During the search process (or when the validity of a node mapping is considered), a node-pair filter function is called for a particular mapping of a pair of nodes in the query graph to a pair of nodes in the main graph. The node-pair filter function evaluates whether this node-pair mapping is valid. Similarly, when the subgraph is considered for a mapping, a link-pair filter function is called for each pair of links in the query graph to a pair of links in the main graph. The link-pair filter function evaluates whether this link-pair mapping is valid.

All arguments to the pair filter functions are arrays of length two (for the two elements of the pair). As in the filter functions, the arguments must correspond to columns in the input data tables or they must define scalars.

Consider again the example in the section “Pattern Matching of an Undirected Graph” on page 161. The following node-pair filter function enforces that the color of the nodes that are mapped to query nodes 1 and 6 are the same and that the color of the nodes that are mapped to query nodes 2 and 5 are the same:

```
function myNodePairFilter(nodeQ[1], color[1] $);
 if ((nodeQ[1]=1 and nodeQ[2]=6) or
 else return (1);
endsub;
```

```
patternMatch
 nodePairFilter = myNodePairFilter(nodesQuery.node,nodes.color)
```

The following link-pair filter function enforces that the weights of the links that are mapped to the triangles (1,2,3 and 4,5,6) are inclusively equal and that the weights of the links of the left triangle are greater than the weights of the links of the right triangle:

```
function myLinkPairFilter(fromQ[1], toQ[1], weight[1] $);
 then return (weight[1]=weight[2]);
 else
 then return (weight[1]>weight[2]);
 else return (1);
endsub;
```

```
patternMatch
 linkPairFilter = myLinkPairFilter(linksQuery.from,linksQuery.to,links.weight)
```

**Pattern Matching of an Undirected Graph Using FCMP Pair Filter Functions**

The query graph \( Q \) that defines the pattern to search for is shown in Figure 3.114.
The topology of the query graph $Q$ can be represented using the nodes data table (mycas.NodesQuery) and links data table (mycas.LinksQuery) that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
 input node @@;
datalines;
 1 2 5 6 ;
data mycas.LinksQuery;
 input from to @@;
datalines;
 1 2 1 3 2 3 3 4 4 5 5 6 4 6 ;
```

The following statements use PROC CAS and the `fcmpact` action set to specify the pair filter functions `myNodePairFilter` and `myLinkPairFilter` and then load them into the CAS session. For more information about the `fcmpact` action set, see the chapter “FCMP Action Set” in SAS Viya: System Programming Guide. For general information about PROC CAS, see SAS Cloud Analytic Services: CASL Reference.

```plaintext
proc cas;
 source myFilter;
 function myNodePairFilter(nodeQ[*], color[*] $);
 then return (color[1]=color[2]);
 else return (1);
 endsub;
 function myLinkPairFilter(fromQ[*], toQ[*], weight[*]);
 then return (weight[1]=weight[2]);
 else
 then return (weight[1]>weight[2]);
 else return (1);
```

---

Figure 3.114 Query Graph $Q$
Next, the following statements find all subgraphs that have the pattern that is specified by the query input data tables and the FCMP pair filter functions:

```plaintext
proc network
 nodes = mycas.Nodes
 links = mycas.Links
 nodesQuery = mycas.NodesQuery
 linksQuery = mycas.LinksQuery;
 nodesVar
 vars = (color);
 linksVar
 vars = (weight);
 patternMatch
 nodePairFilter = myNodePairFilter(nodesQuery.node,nodes.color)
 linkPairFilter = myLinkPairFilter(linksQuery.from,linksQuery.to,links.weight)
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks;
run;
```

The output data table `mycas.OutMatchNodes` now contains the mapping from nodes in the query graph to nodes in the main graph for each pattern match, as shown in Figure 3.115.

**Figure 3.115** Node Mappings for Pattern Matches

```
match nodeQ node color
1 1 D red
1 2 C green
1 3 E green
1 4 J blue
1 5 K green
1 6 L red
2 1 C green
2 2 D red
2 3 E green
2 4 J blue
2 5 L red
2 6 K green
```

The output data table `mycas.OutMatchLinks` now contains the subgraphs for each pattern match, as shown in Figure 3.116.
Only one set of links (one topology) matches the specified pattern. However, there are two isomorphic mappings. The results are displayed graphically in Figure 3.117.

For an example of using node and link-pair filters to identify value-added tax carousel fraud, see “Example 3.16: Detection of Value-Added Tax Carousel Fraud” on page 275.
Using the SAS Function Compiler to Create Refined Query Match Filters

You can do global refinement of queries by providing functions that consider any subset of nodes (or links or both) and their associated mappings.

The MATCHFILTER= option specifies the FCMP function for a filter that is based on a potential match (that is, any subset of nodes or links or both).

During the search process (or when the validity of a node mapping or subgraph is considered), a match filter function is called for a particular mapping of a subset of nodes (or links or both) in the query graph to a subset of nodes (or links or both) in the main graph. The match filter function evaluates whether this node (or link or both) mapping is valid.

All arguments to the match filter functions are arrays. As in the filter functions, the arguments must correspond to columns in the input data tables or they must define scalars. Arguments that are associated with links are arrays whose length is equal to the number of links in the query graph. Arguments that are associated with nodes are arrays whose length is equal to the number of nodes in the query graph.

Consider again the example in the section “Pattern Matching of an Undirected Graph Using FCMP Pair Filter Functions” on page 168. The following match filter function enforces that the sum of weights of the links of the left triangle (1,2,3) are at least 30% greater than the sum of the weights of the links of the right triangle (4,5,6):

```sas
function myMatchFilter(fromQ[*], toQ[*], weight[*], limit);
 sumLeft = 0;
 sumRight = 0;
 nLinks = dim(weight);
 do i=1 to nLinks;
 if(fromQ[i]<=3 and toQ[i]<=3) then sumLeft = sumLeft + weight[i];
 else
 if(fromQ[i]>=4 and toQ[i]>=4) then sumRight = sumRight + weight[i];
 end;
 return (sumLeft>(limit*sumRight));
endsub;

patternMatch
 matchFilter = myMatchFilter(linksQuery.from, linksQuery.to, links.weight, 1.3)
```

Pattern Matching of an Undirected Graph Using FCMP Match Filter Functions

The query graph $Q$ that defines the pattern to search for is shown in Figure 3.118.
The topology of the query graph \( Q \) can be represented using the nodes data table (mycas.NodesQuery) and links data table (mycas.LinksQuery) that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
 input node @@;
 datalines;
1 2 5 6
;
data mycas.LinksQuery;
 input from to @@;
 datalines;
1 2 1 3 2 3 3 4 4 5 5 6 4 6
;
```

The following statements use PROC CAS and the `fcmpact` action set to specify the node-pair filter function `myNodePairFilter` and the match filter function `myMatchFilter` and then load them into the CAS session. For more information about the `fcmpact` action set, see the chapter “FCMP Action Set” in *SAS Viya: System Programming Guide*. For general information about PROC CAS, see *SAS Cloud Analytic Services: CASL Reference*.

```plaintext
proc cas;
 source myFilter;
 function myNodePairFilter(nodeQ[*], color[*] $);
 if ((nodeQ[1]=1 and nodeQ[2]=6) or
 else return (1);
 endsub;
 function myMatchFilter(fromQ[*], toQ[*], weight[*], limit);
 sumLeft = 0;
 sumRight = 0;
 nLinks = dim(weight);
 do i=1 to nLinks;
 if(fromQ[i]<=3 and toQ[i]<=3) then sumLeft = sumLeft + weight[i];
 else
```
if(fromQ[i]>=4 and toQ[i]>=4) then sumRight = sumRight + weight[i];
end;
return (sumLeft>(limit*sumRight));
endsub;
endsource;
%FCMPActionLoad();
quit;

Next, the following statements find all subgraphs that have the pattern that is specified by the query input data tables and the FCMP filter functions:

```
proc network
 nodes = mycas.Nodes
 links = mycas.Links
 nodesQuery = mycas.NodesQuery
 linksQuery = mycas.LinksQuery;
 nodesVar
 vars = (color);
 linksVar
 vars = (weight);
 patternMatch
 nodePairFilter = myNodePairFilter(nodesQuery.node,nodes.color)
 matchFilter = myMatchFilter(linksQuery.from,linksQuery.to,links.weight,1.3)
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks;
run;
```

The output data table mycas.OutMatchNodes now contains the mapping from nodes in the query graph to nodes in the main graph for each pattern match, as shown in Figure 3.119.

**Figure 3.119** Node Mappings for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>D</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>C</td>
<td>green</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>E</td>
<td>green</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>F</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>H</td>
<td>green</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>G</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C</td>
<td>green</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>D</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>E</td>
<td>green</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>F</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>G</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>H</td>
<td>green</td>
</tr>
</tbody>
</table>

The output data table mycas.OutMatchLinks now contains the subgraphs for each pattern match, as shown in Figure 3.120.
Figure 3.120 Subgraphs for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>H</td>
<td>3</td>
</tr>
</tbody>
</table>

Only one set of links (one topology) matches the specified pattern. However, there are two isomorphic mappings. The results are displayed graphically in Figure 3.121.

Figure 3.121 Subgraphs

For an example of using a match filter to identify value-added tax carousel fraud, see “Example 3.16: Detection of Value-Added Tax Carousel Fraud” on page 275.
Specifying the Variables to Match

In some applications, you might want to consider an attribute that is associated with a query graph but not match its value exactly. By default, the variables to match (VARSMATCH=) are the same as the variables to consider (VARS=). The VARSMATCH= option in the LINKSQUERYVAR and NODESQUERYVAR statements enables you to specify the variables to match exactly.

Consider again the example in the section “Pattern Matching of an Undirected Graph” on page 161, which is displayed graphically in Figure 3.109. The pattern that you want to find is a simple two-edge, three-node graph where the middle node has the color blue and the other two nodes have colors red and green. In addition, the link connecting nodes 1 and 2 should have weight at most 4 and the link connecting nodes 1 and 3 should have weight at most 3. This is shown graphically in Figure 3.122.

The topology of the query graph $Q$ can be represented using the nodes query table (mycas.NodesQuery) and links query table (mycas.LinksQuery) that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
 input node color $;
datalines;
 1 blue
 2 red
 3 green
;
data mycas.LinksQuery;
 input from to limit;
datalines;
 1 2 4
 1 3 3
;
```

The restriction on the node’s exact color is imposed as before using the nodes query table. The weight restrictions (limit) are not exact, although the data that are needed to apply the restriction are contained in the links query table. The following link filter function enforces that the weight of each link does not exceed the specified limit:
proc cas;
source myFilter;
function myLinkFilter(weight, limitQ);
  return (weight<=limitQ);
endsub;
endsource;
%FCMPActionLoad();
quit;
Next, the following statements find all subgraphs that have the patterns that are specified by the query input data tables and the FCMP filter functions:

proc network
  nodes = mycas.Nodes
  links = mycas.Links
  nodesQuery = mycas.NodesQuery
  linksQuery = mycas.LinksQuery;
  nodesVar
    vars = (color);
  linksVar
    vars = (weight);
  nodesQueryVar
    vars = (color);
  linksQueryVar
    vars = (limit)
    varsMatch = ();
  patternMatch
    linkFilter = myLinkFilter(links.weight,linksQuery.limit)
    outMatchNodes = mycas.OutMatchNodes
    outMatchLinks = mycas.OutMatchLinks;
run;

In this case, you need the VARSMATCH= option in the LINKSQUERYVAR statement to indicate that you do not want to match the limit values exactly, but those values need to be included in the graph attributes (VARS=) for use in the FCMP link filter function.

The output data table mycas.OutMatchNodes now contains the mapping from nodes in the query graph to nodes in the main graph for each match, as shown in Figure 3.123.

**Figure 3.123** Node Mappings for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>F</td>
<td>blue</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>G</td>
<td>red</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>E</td>
<td>green</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>F</td>
<td>blue</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>G</td>
<td>red</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>H</td>
<td>green</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>J</td>
<td>blue</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>L</td>
<td>red</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>E</td>
<td>green</td>
</tr>
</tbody>
</table>
The output data table mycas.OutMatchLinks now contains the subgraphs for each match, as shown in Figure 3.124.

**Figure 3.124** Subgraphs for Pattern Matches

<table>
<thead>
<tr>
<th>match</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>G</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>J</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>L</td>
<td>4</td>
</tr>
</tbody>
</table>

The results are displayed graphically in Figure 3.125.
Figure 3.125 Subgraphs

**Processing Multiple Queries in One Pass**

For some applications, you might want to search for more than one pattern in the main graph. The QUERYKEY= option enables you to define all the patterns of interest in one pass. This can help improve performance because the processing is done in parallel across machines and threads (depending on your server configuration).

As an example, consider the following set of time-stamped transactions:
data mycas.Nodes;
  input node $ @@;
  label = node;
  datalines;
  A B C D E F
;
data mycas.Links;
  format time DATE9.;
  input from $ to $ time DATE9.;
  datalines;
  A B 02OCT2017
  A C 03OCT2017
  B C 03OCT2017
  B D 04OCT2017
  C A 02OCT2017
  C D 04OCT2017
  D A 01NOV2017
  D E 01NOV2017
  D F 17DEC2017
  E B 04OCT2017
  F B 13FEB2018
  F E 13FEB2018
;
Each node has a node attribute label, and each link has a link attribute time.
The data are shown graphically in Figure 3.126.

Figure 3.126 Directed Graph $G$
The pattern you want to find is a path of sequential transactions that starts at a node with label A and ends at a node with label F. The length of the path can be between two and five links. One approach to finding this set of patterns is to construct four query graphs and call the pattern-matching algorithm separately four times. A more efficient approach is to use the QUERYKEY= option and process these four queries in one pass.

The query graphs that define the patterns to search for are shown in Figure 3.127. In addition, the pattern requires that $T_1 < T_2 < \cdots < T_n$.

**Figure 3.127** Query Graphs

In order to construct this set of patterns (path2 through path5), the query graphs can be represented using the data that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
 input node label $ key $ @@;
datalines;
1 A 3 F path2
1 A 4 F path3
1 A 5 F path4
1 A 6 F path5
;
data mycas.LinksQuery;
 input from to key $ @@;
```

The following statements specify the link-pair filter function. The link-pair filter function `myLinkPairFilter` enforces that the sequence of transactions in the path has increasing timestamps.

```
proc cas;
 source myFilter;
 function myLinkPairFilter(fromQ[*], toQ[*], time[*]);
 if (toQ[1] = fromQ[2]) then return (time[1]<time[2]);
 else return (1);
 endsub;
endsource;
%FCMPActionLoad();
quit;
```

Next, the following statements find all subgraphs that have the patterns that are specified by the query input data tables and the FCMP filter functions:

```
proc network
 direction = directed
 nodes = mycas.Nodes
 links = mycas.Links
 nodesQuery = mycas.NodesQuery
 linksQuery = mycas.LinksQuery;
 nodesVar
 vars = (label);
 nodesQueryVar
 vars = (label);
 linksVar
 vars = (time);
 patternMatch
 queryKey = key
 linkPairFilter = myLinkPairFilter(linksQuery.from,linksQuery.to,links.time)
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks
 outSummary = mycas.OutMatchSummary;
run;
```

There are two matches with path length 3 and one match with path length 4. The output data table `mycas.OutSummary` contains the summary information about the executed queries, as shown in **Figure 3.128**.

**Figure 3.128** Summary Information for Executed Queries

<table>
<thead>
<tr>
<th>key</th>
<th>nodes</th>
<th>links</th>
<th>matches</th>
<th>realTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>path2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0.003288</td>
</tr>
<tr>
<td>path3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0.053557</td>
</tr>
<tr>
<td>path4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0.003318</td>
</tr>
<tr>
<td>path5</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0.003392</td>
</tr>
</tbody>
</table>
The output data table mycas.OutMatchNodes contains the mapping from nodes in the query graph to nodes in the main graph for each pattern type (key) and each match, as shown in Figure 3.129.

**Figure 3.129** Node Mappings for Pattern Matches

<table>
<thead>
<tr>
<th>key</th>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>path3</td>
<td>1</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>1</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>1</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>1</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>D</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

The output data table mycas.OutMatchLinks contains the subgraphs for each pattern type (key) and each match, as shown in Figure 3.130.

**Figure 3.130** Subgraphs for Pattern Matches

<table>
<thead>
<tr>
<th>key</th>
<th>match</th>
<th>from</th>
<th>to</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>path3</td>
<td>1</td>
<td>A</td>
<td>B</td>
<td>02OCT2017</td>
</tr>
<tr>
<td>path3</td>
<td>1</td>
<td>B</td>
<td>D</td>
<td>04OCT2017</td>
</tr>
<tr>
<td>path3</td>
<td>1</td>
<td>D</td>
<td>F</td>
<td>17DEC2017</td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>A</td>
<td>C</td>
<td>03OCT2017</td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>C</td>
<td>D</td>
<td>04OCT2017</td>
</tr>
<tr>
<td>path3</td>
<td>2</td>
<td>D</td>
<td>F</td>
<td>17DEC2017</td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>A</td>
<td>B</td>
<td>02OCT2017</td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>B</td>
<td>C</td>
<td>03OCT2017</td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>C</td>
<td>D</td>
<td>04OCT2017</td>
</tr>
<tr>
<td>path4</td>
<td>1</td>
<td>D</td>
<td>F</td>
<td>17DEC2017</td>
</tr>
</tbody>
</table>

The results are displayed graphically in Figure 3.131.
For an example of executing multiple queries in one pass for identifying value-added tax carousel fraud, see “Example 3.16: Detection of Value-Added Tax Carousel Fraud” on page 275.
Network Projection

Network projection is the process of reducing a multiple-partition network to a single-partition network. When a network is projected onto one subset of nodes \( S \) through another subset of nodes \( T \), the resulting network contains only the nodes of \( S \). The links present between any node pair that shares a common neighbor among the nodes of \( T \) in the original network. The algorithm assumes that the graph induced by \( S \cup T \) in the original network is bipartite, so any links that exist among the nodes of \( S \) or among the links of \( T \) are ignored. In PROC NETWORK, you can calculate network projection by specifying the PROJECTION statement.

PROC NETWORK implements network projection according to partitions that are defined in the NODES= data table. You must use the PARTITION= option to specify the data variable that defines the partition of each node. The values of this variable must be either 1, 0, or missing. To find the projection onto node set \( S \) through node set \( T \), assign the partition value 1 to nodes in set \( S \) and the partition value 0 to nodes in the set \( T \). Nodes that have a missing indicator (.) for the partition flag or nodes that are absent from the NODES= data table are excluded from the projection computation.

In addition, the extent to which two nodes that are joined by a link in the projected graph are connected can be quantified on the basis of how many neighbors the nodes have in common. In PROC NETWORK, you can quantify each projected link by using one of the following similarity measures:

- common neighbors, by specifying COMMONNEIGHBORS=TRUE
- cosine, by specifying COSINE=TRUE
- Jaccard, by specifying JACCARD=TRUE

When DIRECTION=DIRECTED, only out-neighbors (that is, nodes that are connected by outgoing links) are considered. For the formal definition of each of these similarity measures, see the section “Node Similarity” on page 142.

You can also produce the lists of neighbors that are common to each node pair that is joined by a link in the projected graph. These lists are written to the output data table that you specify in the OUTNEIGHBORSLIST= option.

Output Data Tables

The network projection algorithm populates up to three output data tables, which are described in the following subsections.

**OUTPROJECTIONLINKS= Data Table**

The output data table that you specify in the OUTPROJECTIONLINKS= option in the PROJECTION statement contains the links of the projected graph. Optionally, this table also reports the requested similarity scores that are computed between pairs of nodes that are represented by a link in the projected graph. These scores quantify the extent to which the node pair is connected through nodes that are indicated by a partition flag of 0 in the input graph.

The OUTPROJECTIONLINKS= data table contains the following columns:

- from: the \textit{from} node label of this link
• to: the to node label of this link

• commonNeighbors: the common neighbors similarity score between the from and to nodes, if you specify COMMONNEIGHBORS=TRUE

• cosine: the cosine similarity score between the from and to nodes, if you specify COSINE=TRUE

• jaccard: the Jaccard similarity score between the from and to nodes, if you specify JACCARD=TRUE

**OUTPROJECTIONNODES= Data Table**
The output data table that you specify in the OUTPROJECTIONNODES= option in the PROJECTION statement contains the nodes of the projected graph. This data table contains the following column:

• node: the node label

**OUTNEIGHBORSLIST= Data Table**
The output data table that you specify in the OUTNEIGHBORSLIST= option in the PROJECTION statement contains the lists of common neighbors between pairs of nodes. For each link that is listed in the OUTPROJECTIONLINKS= data table, each neighbor that is common to both the from and to nodes is listed in this table. There is one observation for each neighbor.

The OUTNEIGHBORSLIST= data table contains the following columns:

• from: the from node label

• to: the to node label

• neighbor_id: the sequential index of the neighbor

• neighbor: the node label of the common neighbor of the from and to nodes

The neighbor_id identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK statement.

**Network Projection of a Bipartite Graph**
This section provides a simple example that calculates a network projection of the bipartite graph $G$ that is shown in Figure 3.132.
The bipartite graph \( G \) can be represented by a links data table. You can create this table, mycas.LinkSetIn, by using the following DATA step:

```java
data mycas.LinkSetIn;
 input from $ to $ @@;
 datalines;
 A 1 A 2 A 3
 B 1 B 2 B 4 B 5
 C 2 C 3 C 4 C 5
 D 3 D 5
 E 4 E 5 E 6
;```

In order to identify the partition of each node, you must also specify a nodes data table, mycas.NodeSetIn, which you can create using the following DATA step:

```java
data mycas.NodeSetIn;
  input node $ partitionFlag @@;
  datalines;
  A 1 B 1 C 1 D 1 E 1
  1 0 2 0 3 0 4 0 5 0 6 0
;```

The following statements find the projection of the network onto nodes A through E:

```java
proc network
 links = mycas.LinkSetIn
 nodes = mycas.NodeSetIn;
 projection
 partition = partitionFlag
 outProjectionLinks = mycas.ProjLinkSetOut
 commonNeighbors = true;
run;
```

The output data table mycas.ProjLinkSetOut, as shown in Figure 3.133, contains the links of the projected graph. For each link, the number of neighbors that connect the from and to nodes is contained in the commonNeighbors variable.
**Figure 3.133** Links of the Projected Graph

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>commonNeighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>

The projected graph is shown in Figure 3.134.

**Figure 3.134** The Projected Graph
Reach (Ego) Network

The reach network of a graph $G = (N, E)$ is a graph $G^R_L = (N^R_L, E^R_L)$ that is defined as the induced subgraph over the set of nodes $N^R_L$ that are reachable in $L$ steps (or hops) from a set $S$ of nodes, called the source nodes. In the context of social networks, reach networks are often referred to as ego networks, because they focus on the neighbors of one particular individual (or more than one).

For a directed graph, the set of reachable nodes, $N^R_L$ is defined using outgoing links and its induced subgraph (using outgoing links only) is called the out-reach network.

In PROC NETWORK, reach networks can be found by using the REACH statement. The options for this statement are described in the section “REACH Statement” on page 55.

In most cases, the set of source nodes from which to calculate reach are defined in a nodes subset data table, as described in the section “Nodes Subset Input Data” on page 64. The nodes subset data table can be used to define several sets of sources nodes. Each source node set is used to find the reach networks. The reach network identifier is given in the reach column of the nodes subset data table. When you specify the EACHSOURCE option, every node in the original graph’s node set $N$ is used to find a reach network from each node separately. The mapping between node and reach identifier is created in the data table that is specified in the OUTNODES= option in the PROC NETWORK statement.

Output Data Tables

Depending on the options selected, the reach network algorithm produces output data tables as described in the following sections.

**OUTREACHNODES= Data Table**

The OUTREACHNODES= data table describes the nodes in each reach network that are found from each set of source nodes. This data table contains the following columns:

- reach: reach network identifier (which defines the set of source nodes that was used)
- node: node label for each node in each reach network

**OUTREACHLINKS= Data Table**

The OUTREACHLINKS= data table describes the links in each reach network that are found from each set of source nodes. Output of the reach network links can sometimes be more computationally expensive compared to calculating only the nodes or counts in the reach networks. This data table contains the following columns:

- reach: reach network identifier (which defines the set of source nodes that was used)
- from: the from node label for each link in each reach network
- to: the to node label for each link in each reach network
**OUTCOUNTS= Data Table**

The OUTCOUNTS= data table describes the number of nodes in each reach network for each set of source nodes. This data table contains the following columns:

- **reach**: reach network identifier (which defines the set of source nodes that was used)
- **node**: node label for each node in the source node sets
- **count**: the number of nodes in the (out-)reach network from the set of source nodes
- **count_not**: the number of nodes not in the (out-)reach network from the set of source nodes

If node weights are present, the OUTCOUNTS= data table contains the following additional columns:

- **count_wt**: the sum of the weights of the nodes counted in count
- **count_not_wt**: the sum of the weights of the nodes counted in count_not

If the graph is directed and you specify the DIGRAPH option (and MAXREACH=1), then the OUTCOUNTS= data table contains the following additional columns:

- **count_in**: the number of nodes that reach some node in the set of source nodes using at most one step
- **count_out**: the number of nodes in the out-reach network from the set of source nodes (equivalent to count)
- **count_in_or_out**: the number of nodes in the union of the set of nodes counted in count_in and count_out
- **count_in_and_out**: the number of nodes in the intersection of the set of nodes counted in count_in and count_out

If node weights are present, the OUTCOUNTS= data table contains the following additional columns:

- **count_in_wt**: the sum of the weights of the nodes counted in count_in
- **count_out_wt**: the sum of the weights of the nodes counted in count_out
- **count_in_or_out_wt**: the sum of the weights of the nodes counted in count_in_or_out
- **count_in_and_out_wt**: the sum of the weights of the nodes counted in count_in_and_out

**Reach Network of a Directed Graph**

This section illustrates the use of the reach networks algorithm on the directed graph $G$ shown in Figure 3.135.
The directed graph $G$ can be represented using the following links data table, `mycas.LinkSetIn`:

```latex
\begin{verbatim}
data mycas.LinkSetIn;
 input from $ to $ @@;
datalines;
 A B A C A D B C B E
 B F C E D E E D E F
 F G G H G I H G H I
;
\end{verbatim}
```

Consider two sets of source nodes, $S_1 = \{A, G\}$ and $S_2 = \{B\}$. These can be defined separately in two nodes subset data tables as follows:

```latex
\begin{verbatim}
data mycas.NodeSubSetIn1;
 input node $ reach;
datalines;
 A 1
 G 1
;
\end{verbatim}
```

```latex
\begin{verbatim}
data mycas.NodeSubSetIn2;
 input node $ reach;
datalines;
 B 1
;
\end{verbatim}
```

For the first set of source nodes, you can use the following statements to find the reach network that is restricted by a hop limit of 1:

```latex
\begin{verbatim}
proc network
 direction = directed
 links = mycas.LinkSetIn
 nodesSubset = mycas.NodeSubSetIn1;
 reach
 outReachNodes = mycas.ReachNodes1
 outReachLinks = mycas.ReachLinks1
 outCounts = mycas.ReachCounts1
 maxReach = 1;
run;
\end{verbatim}
```
The output data tables mycas.ReachNodes1, mycas.ReachLinks1, and mycas.ReachCounts1 now contain the nodes, links, and counts of the reach network, respectively, that come from \( S_1 \). They are shown in Figure 3.136.

**Figure 3.136** Reach Network for \( S_1 = \{A, G\} \) with Hop Limit of 1

**ReachNodes1**

```
reach node
1 A
1 B
1 C
1 D
1 G
1 H
1 I
```

**ReachLinks1**

```
reach from to
1 A C
1 H G
1 A B
1 G I
1 A D
1 H I
1 B C
1 G H
```

**ReachCounts1**

```
reach node count count_not
1 A 7 2
1 G 7 2
```

The results are displayed graphically in Figure 3.137.

**Figure 3.137** Reach Network for \( S_1 = \{A, G\} \) with Hop Limit of 1
For the second set of source nodes, you can use the following statements to find the reach network that is restricted by a hop limit of 2:

```plaintext
proc network
direction = directed
links = mycas.LinkSetIn
nodesSubset = mycas.NodeSubSetIn2;
reach
 outReachNodes = mycas.ReachNodes2
 outReachLinks = mycas.ReachLinks2
 outCounts = mycas.ReachCounts2
 maxReach = 2;
run;
```

The output data tables `mycas.ReachNodes2`, `mycas.ReachLinks2`, and `mycas.ReachCounts2` now contain the nodes, links, and counts of the reach network, respectively, that come from $S_2$. They are shown in Figure 3.138.

**Figure 3.138** Reach Network for $S_2 = \{B\}$ with Hop Limit of 2

<table>
<thead>
<tr>
<th>ReachNodes2</th>
</tr>
</thead>
<tbody>
<tr>
<td>reach node</td>
</tr>
<tr>
<td>1 B</td>
</tr>
<tr>
<td>1 C</td>
</tr>
<tr>
<td>1 D</td>
</tr>
<tr>
<td>1 E</td>
</tr>
<tr>
<td>1 F</td>
</tr>
<tr>
<td>1 G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ReachLinks2</th>
</tr>
</thead>
<tbody>
<tr>
<td>reach from to</td>
</tr>
<tr>
<td>1 B  E</td>
</tr>
<tr>
<td>1 E  D</td>
</tr>
<tr>
<td>1 B  F</td>
</tr>
<tr>
<td>1 E  F</td>
</tr>
<tr>
<td>1 C  E</td>
</tr>
<tr>
<td>1 F  G</td>
</tr>
<tr>
<td>1 B  C</td>
</tr>
<tr>
<td>1 D  E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ReachCounts2</th>
</tr>
</thead>
<tbody>
<tr>
<td>reach node count count_not</td>
</tr>
<tr>
<td>1 B 6 3</td>
</tr>
</tbody>
</table>

The results are displayed graphically in Figure 3.139.
Processing Multiple Reach Networks in One Pass

You can process a set of reach networks from one graph in one pass by using a nodes subset data table. The MAXREACH= option applies to all the reach networks that are requested. If the nodes subset data table column reach is set to 0 or missing (.), then the node is not processed. If the reach column is set to a value greater than 0, then the node is processed along with other nodes by using the same marker.

Consider again the graph shown in Figure 3.135, now with source node sets $S_1 = \{C\}$ and $S_2 = \{A, H\}$. These source node sets can be defined together as follows:

```sas
data mycas.NodeSubSetIn;
 input node $ reach;
datalines;
A 2
C 1
H 2
;
```

You can use the following statements to process both one-hop-limit reach networks in one pass:

```sas
proc network
direction = directed
links = mycas.LinkSetIn
nodesSubset = mycas.NodeSubSetIn;
reach
 outReachNodes = mycas.ReachNodes
 outReachLinks = mycas.ReachLinks
 outCounts = mycas.ReachCounts
 maxReach = 1;
run;
```

The output data tables mycas.ReachNodes, mycas.ReachLinks, and mycas.ReachCounts now contain the nodes, links, and counts of the reach networks, respectively, that come from $S_1$ and $S_2$. They are shown in Figure 3.140.
Shortest Path

A shortest path between two nodes, $i$ and $j$, in a graph is a path that starts at $i$ and ends at $j$ and has the lowest total link weight. The starting node is called the source node, and the ending node is called the sink node.

In PROC NETWORK, you can find shortest paths by using the SHORTESTPATH statement. The options for this statement are described in the section “SHORTESTPATH Statement” on page 56.

By default, PROC NETWORK finds shortest paths for all pairs of nodes in the input graph. That is, it finds a shortest path for each possible combination of source nodes and sink nodes. Alternatively, you can use the SOURCE= option to fix a particular source node and find shortest paths from the fixed source node to all possible sink nodes. Conversely, by using the SINK= option, you can fix a sink node and find shortest paths from all possible source nodes to the fixed sink node. By using both options together, you can request one particular shortest path for a specific source-sink pair. In addition, you can use the NODESSUBSET=
option to define a list of source-sink pairs to process, as described in the section “Nodes Subset Input Data” on page 64. The following sections show examples of how to use these options.

Which algorithm PROC NETWORK uses to find shortest paths depends on the data. The algorithm and run-time complexity for each link type are shown in Table 3.12.

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Algorithm</th>
<th>Complexity (per Source Node)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>Breadth-first search</td>
<td>$O(</td>
</tr>
<tr>
<td>Weighted (nonnegative)</td>
<td>Dijkstra’s algorithm</td>
<td>$O(</td>
</tr>
<tr>
<td>Weighted (positive and negative allowed)</td>
<td>Bellman-Ford algorithm</td>
<td>$O(</td>
</tr>
</tbody>
</table>

You can find details for each algorithm in Ahuja, Magnanti, and Orlin (1993).

For weighted graphs, the algorithm uses the weight variable that is defined in the links data table to evaluate a path’s total weight (cost). You can also use the AUXWEIGHT= option in the LINKSVAR statement to define an auxiliary weight. The auxiliary weight is not used in the algorithm to evaluate a path’s total weight. It is calculated only for the sake of reporting the total auxiliary weight for each shortest path.

**Output Data Tables**

The shortest path algorithm produces up to three output data tables. The output data table that you specify in the OUTPATHS= option contains the links of a shortest path for each source-sink pair. The output data table that you specify in the OUTWEIGHTS= option contains the total weight for the shortest path for each source-sink pair. The output data table that you specify in the OUTSUMMARY= option contains descriptive statistics of the finite shortest paths for each source.

**OUTPATHS= Data Table**

The OUTPATHS= data table contains the links present in each shortest path. For large graphs and a large requested number of source-sink pairs, this output data table can be extremely large. Generating the output can sometimes take longer than computing the shortest paths. For example, using the US road network data for the state of New York, the data contain a directed graph that has 264,346 nodes. Finding the shortest path for all pairs from only one source node results in 140,969,120 observations, which is a data table of 11 GB. Finding shortest paths for all pairs from all nodes would produce an enormous output data table. This output data table is a distributed table when you are running on multiple machines. The only restriction is the total available cache disk space enabled by your configuration, as described in *SAS Cloud Analytic Services: Fundamentals*.

An example of finding the all-pairs shortest path for this road network is shown in “Example 3.13: Shortest Paths of the New York Road Network” on page 260.

The OUTPATHS= data table contains the following columns:

- **source**: the source node label of this shortest path
- **sink**: the sink node label of this shortest path
- **order**: for this source-sink pair, the order of this link in a shortest path
- **from**: the *from* node label of this link in a shortest path
• to: the to node label of this link in a shortest path
• weight: the weight of this link in a shortest path

If you use the AUXWEIGHT= option in the LINKSVAR statement, the following column also appears in the summary output table:

• column: the auxiliary weight of this link

**OUTSUMMARY= Data Table**
The OUTSUMMARY= data table contains descriptive statistics for the finite shortest paths for each source. This data table contains the following columns:

• source: the source node label
• paths: the number of finite shortest paths from source to requested sinks
• path_weight_min: the minimum weight of shortest paths from source to requested sinks
• path_weight_max: the maximum weight of shortest paths from source to requested sinks
• path_weight_avg: the average weight of shortest paths from source to requested sinks
• path_weight_std: the standard deviation of weight of shortest paths from source to requested sinks
• path_weight_var: the variance of weight of shortest paths from source to requested sinks

If you use the AUXWEIGHT= option in the LINKSVAR statement, the following columns also appear in the summary output table:

• path_auxweight_min: the minimum auxiliary weight of shortest paths from source to requested sinks
• path_auxweight_max: the maximum auxiliary weight of shortest paths from source to requested sinks
• path_auxweight_avg: the average auxiliary weight of shortest paths from source to requested sinks
• path_auxweight_std: the standard deviation of auxiliary weight of shortest paths from source to requested sinks
• path_auxweight_var: the variance of auxiliary weight of shortest paths from source to requested sinks
OUTWEIGHTS= Data Table
The OUTWEIGHTS= data table contains the weight (and auxiliary weight) of each shortest path. This data
table contains the following columns:

- **source**: the source node label of this shortest path
- **sink**: the sink node label of this shortest path
- **path_weight**: the weight of the shortest path for this source-sink pair

If you use the AUXWEIGHT= option in the LINKSVAR statement, the following column also appears in the
summary output table:

- **path_auxweight**: the auxiliary weight of the shortest path for this source-sink pair (if you specify the
  AUXWEIGHT= option in the LINKSVAR statement)

Shortest Paths for All Pairs
This example illustrates the use of the shortest path algorithm for all source-sink pairs on the undirected
graph $G$ shown in Figure 3.141.

![Figure 3.141 Undirected Graph G](image)

The undirected graph $G$ can be represented by the following links data table, mycas.LinkSetIn:
data mycas.LinkSetIn;
  input from $ to $ weight @@;
datalines;
A B 3 A C 2 A D 6 A E 4 B D 5
B F 5 C E 1 D E 2 D F 1 E F 4
;
The following statements find shortest paths for all source-sink pairs:

proc network
  links = mycas.LinkSetIn;
shortestPath
  outSummary = mycas.ShortPathS
  outWeights = mycas.ShortPathW
  outPaths = mycas.ShortPathP;
run;

The output data table mycas.ShortPathP contains the shortest paths, as shown in Figure 3.142.

Figure 3.142 All-Pairs Shortest Paths

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>order from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>3</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>3</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>4</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>1</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>2</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>1</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>1</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>2</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>3</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>4</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>1</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>1</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>2</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>1</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>2</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>3</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>1</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>2</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>3</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>1</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>2</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>3</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>1</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>2</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>2</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>1</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>1</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>3</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
<td>1</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
<td>2</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
<td>3</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>1</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>2</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>1</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>2</td>
<td>D</td>
<td>2</td>
</tr>
</tbody>
</table>
The output data table mycas.ShortPathW contains the path weights of the shortest paths of each source-sink pair, as shown in Figure 3.143.

**Figure 3.143** All-Pairs Shortest Paths Weights

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>path_weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

The output data table mycas.ShortPathS contains descriptive statistics of the finite shortest paths for each source, as shown in Figure 3.144.

**Figure 3.144** All-Pairs Shortest Paths Summary

<table>
<thead>
<tr>
<th>source</th>
<th>paths</th>
<th>path_weight_min</th>
<th>path_weight_max</th>
<th>path_weight_avg</th>
<th>path_weight_std</th>
<th>path_weight_var</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3.0</td>
<td>1.58114</td>
<td>2.5</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>3.0</td>
<td>1.87083</td>
<td>3.5</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3.8</td>
<td>1.64317</td>
<td>2.7</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>4.8</td>
<td>1.09545</td>
<td>1.2</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>3.8</td>
<td>1.92354</td>
<td>3.7</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3.2</td>
<td>1.78885</td>
<td>3.2</td>
</tr>
</tbody>
</table>

**Shortest Paths for a Subset of Source-Sink Pairs**

This section illustrates the use of a nodes subset data table, the NODESSUBSET= option, and the shortest path algorithm to find shortest paths for a subset of source-sink pairs. The data table variables source and sink are used as indicators to specify which pairs to process. The marked source nodes define a set $S$, and the marked sink nodes define a set $T$. PROC NETWORK then calculates all the source-sink pairs in the crossproduct of these two sets.

For example, the following DATA step tells PROC NETWORK to calculate the pairs in $S \times T = \{A, C\} \times \{B, F\}$:

```plaintext
data mycas.NodeSubSetIn;
 input node $ source sink;
datalines;
A 1 0
```
The following statements find a shortest path for the four combinations of source-sink pairs:

```plaintext
proc network
 nodesSubset = mycas.NodeSubSetIn
 links = mycas.LinkSetIn;
 shortestPath
 outPaths = mycas.ShortPath;
run;
```

The output data table `mycas.ShortPath` contains the shortest paths, as shown in Figure 3.145.

### Figure 3.145 Shortest Paths for a Subset of Source-Sink Pairs

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>order</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>1</td>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>2</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>3</td>
<td>E</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>4</td>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>1</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>2</td>
<td>E</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>3</td>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

**Shortest Paths for a Subset of Source or Sink Pairs**

This section illustrates the use of the shortest path algorithm to find the shortest paths between a subset of source (or sink) nodes and all the other sink (or source) nodes.

In this case, you designate the subset of source (or sink) nodes in the nodes subset data table by specifying the `source` (or `sink`) variable. By specifying only one of the variables, you indicate that you want PROC NETWORK to calculate all source-sink pairs from a subset of source nodes (or to calculate all source-sink pairs to a subset of sink nodes).

For example, the following DATA step designates nodes `B` and `E` as source nodes:

```plaintext
data mycas.NodeSubSetIn;
 input node $ source;
datalines;
 B 1
 E 1
;
```

You can use the same PROC NETWORK call that is used in the section “Shortest Paths for a Subset of Source-Sink Pairs” on page 200 to find all the shortest paths from nodes `B` and `E`. The output data table `mycas.ShortPath` contains the shortest paths, as shown in Figure 3.146.
Conversely, the following DATA step designates nodes \( B \) and \( E \) as sink nodes:

```sas
 data mycas.NodeSubSetIn;
 input node $ sink;
 datalines;
 B 1
 E 1
 ;
```

You can use the same PROC NETWORK call again to find all the shortest paths to nodes \( B \) and \( E \). The output data table `mycas.ShortPath` contains the shortest paths, as shown in Figure 3.147.
**Figure 3.147** Shortest Paths for a Subset of Sink Pairs

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>order</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>B</td>
<td>1</td>
<td>D</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>1</td>
<td>D</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>1</td>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>2</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>1</td>
<td>E</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>3</td>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>1</td>
<td>B</td>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>2</td>
<td>A</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>E</td>
<td>3</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>1</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>1</td>
<td>F</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>E</td>
<td>1</td>
<td>F</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>E</td>
<td>2</td>
<td>D</td>
<td>E</td>
<td>2</td>
</tr>
</tbody>
</table>

**Shortest Paths for One Source-Sink Pair**

This section illustrates the use of the shortest path algorithm to find the shortest paths between one source-sink pair by using the SOURCE= and SINK= options.

The following statements find a shortest path between node C and node F:

```plaintext
proc network
 links = mycas.LinkSetIn;
 shortestPath
 source = C
 sink = F
 outPaths = mycas.ShortPath;
run;
```

The output data table mycas.ShortPath contains this shortest path, as shown in **Figure 3.148**.

**Figure 3.148** Shortest Paths for One Source-Sink Pair

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>order</th>
<th>from</th>
<th>to</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>F</td>
<td>1</td>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>2</td>
<td>E</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>3</td>
<td>D</td>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>

The shortest path is shown graphically in **Figure 3.149**.
**Figure 3.149** Shortest Path between Nodes C and F

**Shortest Paths with Auxiliary Weight Calculation**

This section illustrates the use of the shortest path algorithm with auxiliary weights to find the shortest paths between all source-sink pairs.

Consider a links data table in which the auxiliary weight is a counter for each link:

```sas
data mycas.LinkSetIn;
 input from $ to $ weight count @@;
datalines;
 A B 3 1 A C 2 1 A D 6 1 A E 4 1 B D 5 1
 B F 5 1 C E 1 1 D E 2 1 D F 1 1 E F 4 1
;
```

The following statements find the shortest paths for all source-sink pairs:

```sas
proc network
 links = mycas.LinkSetIn;
 linksVar
 auxWeight = count;
 shortestPath
 outWeights = mycas.ShortPathW;
run;
```

The output data table `mycas.ShortPathW` contains the total path weight of shortest paths in each source-sink pair, as shown in Figure 3.150. Because the variable `count` in `mycas.LinkSetIn` has a value of 1 for all links, the value in the output data table variable `path_auxweight` contains the number of links in each shortest path.
The section “Road Network Shortest Path” on page 14 shows an example of using the shortest path algorithm to minimize travel time to and from work based on traffic conditions.

**Shortest Paths with Negative Link Weights**

This section illustrates the use of the shortest path algorithm on a directed graph \( G \) with negative link weights, shown in Figure 3.151.
Figure 3.151 Directed Graph $G$ with Negative Link Weights

You can represent the directed graph $G$ by using the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
 input from $ to $ weight @@;
datalines;
 A B -1 A C 4 B C 3 B D 2 B E 2
 D B 1 D C 5 E D -3
;
```

The following statements find a shortest path between the source node $E$ and the sink node $B$:

```plaintext
proc network
 direction = directed
 links = mycas.LinkSetIn;
 shortestPath
 source = E
 sink = B
 outPaths = mycas.ShortPathP;
run;
```

The output data table mycas.ShortPathP contains a shortest path from node $E$ to node $B$, as shown in Figure 3.152.
Now, consider the following adjustment to the weight of link \((B, E)\):

```sas
data mycas.LinkSetIn;
 set mycas.LinkSetIn;
 if (from='B' and to='E') then
 weight=1;
run;
```

In this case, there is a negative weight cycle \((E \rightarrow D \rightarrow B \rightarrow E)\). The Bellman-Ford algorithm catches the cycle and produces an error message, as shown in Figure 3.153.

![Figure 3.153 PROC NETWORK Log: Negative Weight Cycle](image)

Summary Statistics

In PROC NETWORK, you can calculate various summary statistics for a graph and its nodes by using the SUMMARY statement. The options for this statement are described in the section “SUMMARY Statement” on page 57.

Output Data Tables

The summary statistics that PROC NETWORK produces are divided into two categories: statistics on the entire graph and statistics on the nodes and links of the graph. The latter statistics are appended to the output nodes and links data tables that you specify in the OUTNODES= and OUTLINKS= option in the PROC NETWORK statement. The former statistics are contained in the data table that you specify in the OUT= option in the SUMMARY statement.

In an undirected graph, \(N_i\) represents the set of neighbors excluding node \(i\) itself (that is, unique nodes that are connected by links, excluding self-links, incident with node \(i\)). In a directed graph, \(N_i^{\text{out}}\) represents
the set of out-neighbors excluding node $i$ itself (that is, unique nodes that are connected by outgoing links, excluding self-links, from node $i$), and $\hat{N}_i^{\text{in}}$ represents the set of in-neighbors excluding node $i$ itself (that is, unique nodes that are connected by incoming links, excluding self-links, to node $i$).

**OUT= Data Table**

By default, the summary output data table that you specify in the OUT= option in the SUMMARY statement contains the following columns:

- **nodes**: the number of nodes in the graph ($|N|$)
- **links**: the number of links in the graph ($|E|$)
- **avg_links_per_node**: the average number of links per node
- **density**: the number of links in the graph divided by the number of links in a complete graph ($\frac{|E|}{\binom{|N|}{2}}$)
- **self_links_ignored**: the number of self-links that are ignored
- **dup_links_ignored**: the number of links removed in multilink aggregation
- **leaf_nodes**: the number of leaf nodes
  - for an undirected graph: a node $i$ is a leaf node if $|\hat{N}_i| = 1$
  - for a directed graph: a node $i$ is a leaf node if $|\hat{N}_i^{\text{out}}| = 0$ and $|\hat{N}_i^{\text{in}}| > 0$
- **singleton_nodes**: the number of singleton nodes
  - for an undirected graph: a node $i$ is a singleton node if $|\hat{N}_i| = 0$
  - a directed graph: a node $i$ is a singleton node if $|\hat{N}_i^{\text{out}}| + |\hat{N}_i^{\text{in}}| = 0$

You can produce statistics about the connectedness of the graph by using the CONNECTEDCOMPONENTS and BICONNECTEDCOMPONENTS options. For more information about connected components and biconnected components, see the sections “Connected Components” on page 126 and “Biconnected Components and Articulation Points” on page 87, respectively. If you use the CONNECTEDCOMPONENTS or BICONNECTEDCOMPONENTS option, the following columns might also appear in the summary output data table for undirected graphs:

- **concomp**: the number of connected components in the graph
- **biconcomp**: the number of biconnected components in the graph
- **artpoints**: the number of articulation points in the graph
- **isolated_pairs**: the number of isolated pairs of nodes (a connected component of size 2)
- **isolated_stars**: the number of isolated stars (a connected component, $C$, of size greater than 2 in which one node $i \in C$ has $|\hat{N}_i| = |C| - 1$ and all other nodes $i \in C \setminus \{i\}$ have $|\hat{N}_i| = 1$)

The following columns appear for directed graphs:

- **concomp**: the number of strongly connected components in the graph
Summary Statistics

- *isolated_pairs*: the number of isolated pairs of nodes (a weakly connected component of size 2)
- *isolated_stars_out*: the number of isolated outward stars (a weakly connected component, \( C \), of size greater than 2 in which one node \( i \in C \) has \( |\tilde{N}_i^{\text{out}}| = |C| - 1 \) and all other nodes \( i \in C \setminus \{i\} \) have \( |\tilde{N}_i^{\text{in}}| = 1 \))
- *isolated_stars_in*: the number of isolated inward stars (a weakly connected component, \( C \), of size greater than 2 in which one node \( i \in C \) has \( |\tilde{N}_i^{\text{in}}| = |C| - 1 \) and all other nodes \( i \in C \setminus \{i\} \) have \( |\tilde{N}_i^{\text{out}}| = 1 \))

You can produce statistics about the shortest paths in the graph by using the `SHORTESTPATH=` option. The *diameter* of a graph is the longest possible shortest path distance of all source-sink pairs that the graph can contain. For more information about shortest paths, see the section “Shortest Path” on page 195. If you use the `SHORTESTPATH=` option, the following columns also appear in the summary output data table:

- *diameter_wt*: the longest weighted shortest path distance in the graph
- *diameter_unwt*: the longest unweighted shortest path distance in the graph
- *avg_shortpath_wt*: the average weighted shortest path distance in the graph
- *avg_shortpath_unwt*: the average unweighted shortest path distance in the graph

Calculating the diameter of a graph is computationally expensive, because it involves calculating shortest paths for all pairs. For undirected graphs, an approximate method is available based on Boitmanis et al. (2006). You can invoke the algorithm by using the `DIAMETERAPPROX=` option. The exact method runs in time \( O(|N| \times (|N| \log |N| + |E|)) \); the approximate method runs in time \( O(|E| \sqrt{|N|}) \) with an additive error of \( O(\sqrt{|N|}) \). If you use the `DIAMETERAPPROX=` option, the following columns also appear in the summary output data table:

- *diameter_approx_wt*: the approximate longest weighted shortest path distance in the graph
- *diameter_approx_unwt*: the approximate longest unweighted shortest path distance in the graph

You can produce statistics about clustering coefficients by using the `CLUSTERINGCOEFFICIENT` option. The *triangle count* of an undirected graph is the number of distinct three-node sets in which each node is a neighbor of the other two. Triangle counting is also used in the formula for computing clustering coefficients. For more information about clustering coefficients, see the section “Clustering Coefficient” on page 95. If you use the `CLUSTERINGCOEFFICIENT` option, the following column also appears in the summary output data table:

- *triangles*: the total triangle count of the graph
**OUTNODES= Data Table**

In addition, you can produce summary statistics about the nodes of the graph. By default, the following columns are appended to the data table that you specify in the OUTNODES= option in the PROC NETWORK statement:

- **sum_in_and_out_wt**: the sum of the link weights from and to the node
- **leaf_node**: 1, if the node is a leaf node; otherwise, 0
- **singleton_node**: 1, if the node is a singleton node; otherwise, 0
- **isolated_pair**: the identifier, if the node is in an isolated pair; otherwise, missing (.)
- **neighbor_leaf_nodes**: the number of leaf nodes connected to the node

You can produce statistics about the connectedness of the graph by using the CONNECTEDCOMPONENTS and BICONNECTEDCOMPONENTS options. If you use these options, the following column also appears in the nodes output data table for undirected graphs:

- **isolated_star**: the identifier, if the node is in an isolated star; otherwise, missing (.)

The following columns also appear for directed graphs:

- **isolated_star_out**: the identifier, if the node is in an isolated outward star; otherwise, missing (.)
- **isolated_star_in**: the identifier, if the node is in an isolated inward star; otherwise, missing (.)

You can produce statistics about the shortest path distances to and from nodes in the graph by using the SHORTESTPATH= option. The *eccentricity* of a node \( i \) is the longest of all possible shortest path distances between \( i \) and any other node. If you use the SHORTESTPATH= option, the following columns also appear in the nodes output data table for undirected graphs:

- **eccentr_out_wt**: the longest weighted shortest path distance from the node
- **eccentr_out_unwt**: the longest unweighted shortest path distance from the node

The following columns also appear for directed graphs:

- **eccentr_in_wt**: the longest weighted shortest path distance to the node
- **eccentr_in_unwt**: the longest unweighted shortest path distance to the node
**OUTLINKS= Data Table**

In addition, you can produce summary statistics about the connectedness of the links of the graph. If you use the CONNECTEDCOMPONENTS or BICONNECTEDCOMPONENTS option, the following columns are appended to the data table that you specify in the OUTLINKS= option in the PROC NETWORK statement for undirected graphs:

- **isolated_pair**: the identifier, if the link is in an isolated pair; otherwise, missing (.)
- **isolated_star**: the identifier, if the link is in an isolated star; otherwise, missing (.)

The following columns are appended for directed graphs:

- **isolated_star_out**: the identifier, if the link is in an isolated outward star; otherwise, missing (.)
- **isolated_star_in**: the identifier, if the link is in an isolated inward star; otherwise, missing (.)

**Summary Statistics of a Directed Graph**

This section illustrates the calculation of summary statistics on the directed graph $G$ shown in Figure 3.154.

**Figure 3.154** Directed Graph $G$

You can represent the directed graph $G$ by using the following nodes data table, mycas.NodeSetIn, and links data table, mycas.LinkSetIn:

```
 data mycas.NodeSetIn;
 input node $ @@;
 datalines;
 A B C D E F G H I J K L M N O P
 ;
 data mycas.LinkSetIn;
```
input from $ to $ weight @@;
datalines;
A B 1 A C 2 A D 2 B A 2 D E 2
D F 1 E F 2 F D 2 F E 1 A A 2
A B 2 I J 5 K L 3 K M 2 N O 1
P O 5
;

Basic Summary Statistics
The following statements calculate the default summary statistics and output the results in the data table mycas.Summary:

```sas
proc network
direction = directed
nodes = mycas.NodeSetIn
links = mycas.LinkSetIn;
summary
out = mycas.Summary;
run;
```

The output data table mycas.Summary contains the default summary statistics of the input graph, as shown in Figure 3.155.

**Figure 3.155** Graph Summary Statistics of a Directed Graph

<table>
<thead>
<tr>
<th>nodes</th>
<th>links</th>
<th>avg_links_per_node</th>
<th>density</th>
<th>self_links_ignored</th>
<th>dup_links_ignored</th>
<th>leaf_nodes</th>
<th>singleton_nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>0.9375</td>
<td>0.0625</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Basic Summary Statistics and Connected Components
The following statements calculate the default summary statistics and produce information about the connectedness of the graph. They output the results in the data table mycas.Summary.

```sas
proc network
direction = directed
nodes = mycas.NodeSetIn
links = mycas.LinkSetIn;
summary
connectedComponents
out = mycas.Summary;
run;
```

The output data table mycas.Summary contains the summary statistics of the input graph, as shown in Figure 3.156.

**Figure 3.156** Graph Summary and Connectedness Statistics of a Directed Graph

<table>
<thead>
<tr>
<th>nodes</th>
<th>links</th>
<th>avg_links_per_node</th>
<th>density</th>
<th>self_links_ignored</th>
<th>dup_links_ignored</th>
<th>leaf_nodes</th>
<th>singleton_nodes</th>
<th>concomp</th>
<th>isolated_pairs</th>
<th>isolated_stars_out</th>
<th>isolated_stars_in</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>0.9375</td>
<td>0.0625</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Summary Statistics and Shortest Paths
The following statements calculate the default summary statistics and produce information about the shortest path distances of the graph. They output the results in the data table mycas.Summary. In addition, node statistics are produced and output in the data table mycas.NodeSetOut. Because the graph is disconnected, we use the FINITEPATH option in the SUMMARY statement so that the shortest path descriptive statistics only consider finite paths.

```sas
proc network
direction = directed
nodes = mycas.NodeSetIn
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
summary
 finitePath
 out = mycas.Summary
 shortestPath = weight;
run;
```

The output data table mycas.Summary contains the summary and shortest path statistics of the input graph, as shown in Figure 3.157.

Figure 3.157  Graph Summary and Shortest Path Statistics of an Undirected Graph

<table>
<thead>
<tr>
<th>nodes</th>
<th>links</th>
<th>avg_links_per_node</th>
<th>density</th>
<th>self_links_ignored</th>
<th>dup_links_ignored</th>
<th>leaf_nodes</th>
<th>singleton_nodes</th>
<th>diameter_wt</th>
<th>avg_shortpath_wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15</td>
<td>0.9375</td>
<td>0.0625</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>2.90476</td>
</tr>
</tbody>
</table>

The output data table mycas.NodeSetOut contains per-node summary and shortest path statistics of the input graph, as shown in Figure 3.158.

Figure 3.158  Per-Node Summary and Shortest Path Statistics of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>leaf_node</th>
<th>singleton_node</th>
<th>neighbor_leaf_nodes</th>
<th>sum_in_and_out_wt</th>
<th>eccentr_wt_out</th>
<th>eccentr_wt_in</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Transitive Closure

The *transitive closure* of a graph $G$ is a graph $G^T = (N, E^T)$ such that for all $i, j \in N$ there is a link $(i, j) \in E^T$ if and only if there is a path from $i$ to $j$ in $G$.

The transitive closure of a graph can help efficiently answer questions about reachability. Suppose you want to find out whether you can get from node $i$ to node $j$ in the original graph $G$. Given the transitive closure $G^T$ of $G$, you can simply check for the existence of link $(i, j)$. Transitive closure has many applications, including speeding up the processing of structured query languages, which are often used in databases.

In PROC NETWORK, you can invoke the transitive closure algorithm by using the TRANSITIVECLOSURE statement. The options for this statement are described in the section “TRANSITIVECLOSURE Statement” on page 58.

The links that define the transitive closure of the input graph are written to the output data table that you specify in the OUT= option in the TRANSITIVECLOSURE statement.

The algorithm that PROC NETWORK uses to compute transitive closure is a sparse version of the Floyd-Warshall algorithm (Cormen, Leiserson, and Rivest 1990). This algorithm runs in time $O(|N|^3)$ and therefore might not scale to very large graphs.

Transitive Closure of a Directed Graph

This example illustrates the use of the transitive closure algorithm on the directed graph $G$ shown in Figure 3.159.

![Directed Graph G](image)

The directed graph $G$ can be represented by the following links data table, mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;
 input from $ to $ @@;
datalines;
 B C B D C B D A D C
;
```

The following statements calculate the transitive closure and output the results in the data table mycas.TransClosure:
The output data table `mycas.TransClosure` contains the transitive closure of $G$, as shown in Figure 3.160.

**Figure 3.160** Transitive Closure of a Directed Graph

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

The transitive closure of $G$ is shown graphically in Figure 3.161.

**Figure 3.161** Transitive Closure of $G$

For a more detailed example, see “Example 3.10: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System” on page 253.
Macro Variable _NETWORK_

The NETWORK procedure defines a macro variable named _NETWORK_. This variable contains a character string that indicates the status of PROC NETWORK upon termination and details about the selected algorithm. The various terms of the variable are interpreted as follows:

**STATUS**
indicates the status of the procedure at termination. The STATUS term can take one of the following values:

- **OK** The procedure terminated normally.
- **OUT_OF_MEMORY** Insufficient memory was allocated to the procedure.
- **INTERRUPTED** The procedure was interrupted by the user.
- **ERROR** The procedure encountered an error.

**PROBLEM_TYPE**
indicates the selected problem type (algorithm class). The PROBLEM_TYPE term can take one of the following values:

- **BICONNECTEDCOMPONENTS** Biconnected components
- **CENTRALITY** Centrality
- **CLIQUE** Clique enumeration
- **COMMUNITY** Community detection
- **CONNECTEDCOMPONENTS** Connected components
- **CORE** Core decomposition
- **CYCLE** Cycle enumeration
- **LOADGRAPH** Loading a graph (no algorithm)
- **NODESIMILARITY** Node similarity
- **PATH** Path enumeration
- **PATTERNMATCH** Pattern matching
- **PROJECTION** Network projection
- **REACH** Reach (ego) networks
- **READGRAPH** Reading a graph (no algorithm)
- **SHORTESTPATH** Shortest path
- **SUMMARY** Graph summary
- **TRANSITIVECLOSURE** Transitive closure
- **UNLOADGRAPH** Unloading a graph (no algorithm)
**SOLUTION_STATUS**

indicates the solution status of the selected problem type (algorithm class). The SOLUTION_STATUS term can take one of the following values:

- **OK** The algorithm terminated normally.
- **ERROR** The algorithm encountered an error.
- **INTERRUPTED** The algorithm was interrupted by the user.
- **OUTMEM_SOL** The algorithm ran out of memory but still found a solution.
- **OUTMEM_NOSOL** The algorithm ran out of memory and either did not find a solution or failed to output the solution due to insufficient memory.
- **TIMELIMIT** The algorithm reached its execution time limit.
- **SOLUTION_LIM** The algorithm reached its limit on the number of solutions found.

**CPU_TIME**

indicates the total CPU time (in seconds) that PROC NETWORK used.

**REAL_TIME**

indicates the elapsed time (in seconds) that PROC NETWORK used.

In addition, each algorithm might report some additional details. The following section provides more information about these details.

**Macro Variable _NETWORK_ Details**

The BICONNECTEDCOMPONENTS algorithm provides the following additional information:

**NUM_COMPONENTS**

indicates the number of biconnected components that the algorithm found.

**NUM_ARTICULATION_POINTS**

indicates the number of articulation points that the algorithm found.

The CENTRALITY algorithm provides the following additional information:

**NUM_TRIANGLES**

indicates the number of triangles in the graph (if you specify CLUSTERINGCOEFFICIENT and DIRECTION=UNDIRECTED).

The CLIQUE algorithm provides the following additional information:

**NUM_CLIQUES**

indicates the number of cliques that the algorithm found.

The CONNECTEDCOMPONENTS algorithm provides the following additional information:
NUM_COMPONENTS
indicates the number of connected components that the algorithm found.

The CYCLE algorithm provides the following additional information:

NUM_CYCLES
indicates the number of cycles that the algorithm found.

The LOADGRAPH statement provides the following additional information:

CREATETIME
indicates the creation time of the in-memory graph.

GRAPH
indicates the in-memory graph identifier.

The PATH algorithm provides the following additional information:

NUM_PATHS
indicates the number of paths that the algorithm found.

The PATTERNMATCH algorithm provides the following additional information:

NUM_MATCHES
indicates the number of pattern matches that the algorithm found.

The SHORTESTPATH algorithm provides the following additional information:

NUM_PATHS
indicates the number of shortest paths that the algorithm found.

**ODS Table Names**

For general information about ODS tables, see *SAS Output Delivery System: Procedures Guide*. Each ODS table that the NETWORK procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. These names are listed in Table 3.13.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProblemSummary</td>
<td>Summary of the graph</td>
</tr>
<tr>
<td>SolutionSummary</td>
<td>Summary of the solution status, timing, and results</td>
</tr>
<tr>
<td>OutputCasTables</td>
<td>See the section “OutputCasTables Table” on page 220</td>
</tr>
</tbody>
</table>

The following statements use the example in the section “Shortest Paths for All Pairs” on page 198 and find all-pairs shortest paths for a small undirected graph. By default, this code produces the two ODS output tables listed in Table 3.13.
data mycas.LinkSetIn;
   input from $ to $ weight @@;
datalines;
A B 3 A C 2 A D 6 A E 4 B D 5
B F 5 C E 1 D E 2 D F 1 E F 4
;
proc network
   links = mycas.LinkSetIn;
   shortestPath
      outWeights = mycas.ShortPathW
      outPaths = mycas.ShortPathP;
   run;

The problem summary table in Figure 3.162 provides a basic summary of the graph input.

**Figure 3.162 Problem Summary Table**

<table>
<thead>
<tr>
<th>The NETWORK Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Problem Summary</strong></td>
</tr>
<tr>
<td>Number of Nodes</td>
</tr>
<tr>
<td>Number of Links</td>
</tr>
<tr>
<td>Graph Direction</td>
</tr>
</tbody>
</table>

The solution summary table in Figure 3.163 provides a basic solution summary for the algorithm that is processed. The information in this table is similar to the information that is provided in the macro variable _NETWORK_, described in the section “Macro Variable _NETWORK_” on page 216. The timing information in this table (and in the log) represents the time spent running the algorithm, excluding the time spent in input, graph building, and output. In the case of reading, loading, or unloading a graph (with no algorithm), the time in the solution summary represents the input and graph building time. In the case of a distributed algorithm, which uses multiple machines, the real time represents the maximum amount of time that an individual machine used to run the algorithm, and the CPU time represents the total amount of time across all active machines in your configured session.

**Figure 3.163 Solution Summary Table**

<table>
<thead>
<tr>
<th>Solution Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Problem Type</strong></td>
</tr>
<tr>
<td><strong>Solution Status</strong></td>
</tr>
<tr>
<td><strong>Number of Paths</strong></td>
</tr>
<tr>
<td><strong>CPU Time</strong></td>
</tr>
<tr>
<td><strong>Real Time</strong></td>
</tr>
</tbody>
</table>
OutputCasTables Table

The OutputCasTables table is a special table that has information about each CAS table that is created during a CAS action execution. The information for each CAS table consists of the CAS table name, the caslib in which the table resides, and the number of columns and rows in the CAS table. Because this table is not a typical ODS table that contains analytical results, you cannot include it in the `table-spec-list` in the `DISPLAYOUT` statement.

Examples: NETWORK Procedure

Example 3.1: Articulation Points in a Terrorist Network

This example considers the terrorist communications network from the attacks on the United States on September 11, 2001, described in Krebs (2002). Figure 3.164 shows this network, which was constructed after the attacks, based on collected intelligence information.

Figure 3.164  Terrorist Communications Network from 9/11
The full network data include 153 links. The following statements show a small subset to illustrate the use of the BICONNECTEDCOMPONENTS statement in this context:

```sas
data mycas.LinkSetInTerror911;
 input from & $32. to & $32.;
datalines;
Abu Zubeida Djamal Beghal
Jean-Marc Grandvisir Djamal Beghal
Nizar Trabelsi Djamal Beghal
Abu Walid Djamal Beghal
Abu Qatada Djamal Beghal
Zacarias Moussaoui Djamal Beghal
Jerome Courtaillier Djamal Beghal
Kamel Daoudi Djamal Beghal
Abu Walid Kamel Daoudi
Abu Walid Abu Qatada
Kamel Daoudi Zacarias Moussaoui
Kamel Daoudi Jerome Courtaillier
Jerome Courtaillier Zacarias Moussaoui
Jerome Courtaillier David Courtaillier
Zacarias Moussaoui David Courtaillier
Zacarias Moussaoui Ahmed Ressam
Zacarias Moussaoui Abu Qatada
Zacarias Moussaoui Ramzi Bin al-Shibh
Zacarias Moussaoui Mahamed Atta
Ahmed Ressam Haydar Abu Doha
Mehdi Khammoun Haydar Abu Doha
Essid Sami Ben Khemais Haydar Abu Doha
Mehdi Khammoun Essid Sami Ben Khemais
Mehdi Khammoun Mohamed Bensakhria
...
;
```

Suppose that this communications network had been discovered before the attack on 9/11. If the investigators’ goal was to disrupt the flow of communication between different groups within the organization, then they would want to focus on the people who are articulation points in the network.

To find the articulation points, use the following statements:

```sas
proc network
 links = mycas.LinkSetInTerror911
 outNodes = mycas.NodeSetOut;
 biconnectedComponents;
run;

data mycas.ArtPoints;
 set mycas.NodeSetOut;
 where artpoint=1;
run;
```

The output data table mycas.ArtPoints contains members of the network who are articulation points. By focusing on cutting off these particular members, investigators could have significantly disrupted the terrorists’ ability to communicate when planning the attack.
Output 3.1.1  Articulation Points of Terrorist Communications Network from 9/11

<table>
<thead>
<tr>
<th>node</th>
<th>artpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djamal Beghal</td>
<td>1</td>
</tr>
<tr>
<td>Zacarias Moussaoui</td>
<td>1</td>
</tr>
<tr>
<td>Essid Sami Ben Khemais</td>
<td>1</td>
</tr>
<tr>
<td>Mohamed Atta</td>
<td>1</td>
</tr>
<tr>
<td>Mamoun Darkazanli</td>
<td>1</td>
</tr>
<tr>
<td>Nawaf Alhazmi</td>
<td>1</td>
</tr>
</tbody>
</table>

Example 3.2: Influence Centrality for Project Groups in a Research Department

This example looks at an undirected graph that represents a few of the project groups in a hypothetical research department. A link between nodes A and B means that person A and person B work together or that person A reports to person B. The graph represents the six main project groups.

- Department 1 (D1) consists of Snopp, Gukrishnan, Leon, and Kabutz. Snopp reports to Chapman.
- Department 2 (D2) consists of Oliver, Gotti, Patrick, and Zhuo. Oliver reports to Chapman.
- Department 3 (D3) consists of Gotti, Leon, and Kabutz. Gotti reports to Chapman.
- Department 4 (D4) consists of the following project groups, which report to Yu. Yu reports to Chapman on this project.
  - Department 4a (D4a) consists of Polark, Chang, Weng, and Angel. Polark reports to Yu.
  - Department 4b (D4b) consists of Christoph, Nardo, Gotti, and Zhuo. Christoph reports to Yu.
  - Department 4c (D4c) consists of Graffe, Zhuo, and Hund. Graffe reports to Yu.

The links are shown in Figure 3.165.
Example 3.2: Influence Centrality for Project Groups in a Research Department

Figure 3.165 Project Groups in a Research Department

The link weights measure the reporting magnitude. In general, the higher the weight, the higher the contribution to the influence metric. Chapman is the director of the overall department, and Yu is the manager of a subgroup. The leads for projects D1, D2, and D3 report to Chapman, and the leads for D4a, D4b, and D4c report to Yu. Reporting links to the director, Chapman, receive a link weight of 3, and reporting links to Yu receive a weight of 2. Links that represent people working together on a project all receive an equal weight of 1. The node weights also represent some level of reporting: directors (4), managers (3), leads (2), and all others (1).

The project graph can be represented in the following link and nodes data tables:

```plaintext
data mycas.LinkSetInDept;
 input from $1-12 to $13-24 weight;
datalines;
 Yu Chapman 3
 Gotti Chapman 3
 Oliver Chapman 3
 Snopp Chapman 3
 Gukrishnan Leon 1
 Snopp Gukrishnan 1
 Kabutz Gukrishnan 1
 Kabutz Snopp 1
 Snopp Leon 1
 Kabutz Leon 1
 Gotti Oliver 1
 Gotti Patrick 1
 Oliver Patrick 1
```

The link weights measure the reporting magnitude. In general, the higher the weight, the higher the contribution to the influence metric. Chapman is the director of the overall department, and Yu is the manager of a subgroup. The leads for projects D1, D2, and D3 report to Chapman, and the leads for D4a, D4b, and D4c report to Yu. Reporting links to the director, Chapman, receive a link weight of 3, and reporting links to Yu receive a weight of 2. Links that represent people working together on a project all receive an equal weight of 1. The node weights also represent some level of reporting: directors (4), managers (3), leads (2), and all others (1).
data mycas.NodeSetInDept;
  input node $1-12 weight;
  datalines;
  Chapman 4
  Yu 3
  Gotti 2
  Polark 2
  Christoph 2
  Oliver 2
  Snopp 2
  Zhuo 1
  Nardo 1
  Weng 1
  Chang 1
  Hund 1
  Graffe 1
  Leon 1
  Gukrishnan 1
  Kabutz 1
  Patrick 1
  Angel 1

The following statements calculate influence centrality (in addition to degree centrality):

proc network
  logLevel = moderate
  links = mycas.LinkSetInDept
  nodes = mycas.NodeSetInDept
  outNodes = mycas.NodeSetOut;
Example 3.2: Influence Centrality for Project Groups in a Research Department

![Image of one page of a document]

The progress of the procedure is shown in Output 3.2.1.

**Output 3.2.1** PROC NETWORK Log: Influence Centrality for Project Groups in a Research Department

```
NOTE: --
NOTE: Running NETWORK.
NOTE: Reading the nodes data.
NOTE: Reading the links data.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 18.
NOTE: The number of links in the input graph is 35.
NOTE: Processing centrality metrics.
NOTE: Processing degree centrality metrics using 1 threads across 1 machines.
NOTE: Processing centrality metrics used 0.0 MBs of memory.
NOTE: Processing degree centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: Processing influence centrality metrics using 1 threads across 1 machines.
NOTE: Processing influence centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: Processing centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.063559 seconds.
NOTE: The data set MYCAS.NODESETOUT has 18 observations and 5 variables.
STATUS=OK PROBLEM_TYPE=CENTRALITY SOLUTION_STATUS=OK CPU_TIME=0.12 REAL_TIME=0.06
```

The nodes data table mycas.NodeSetOut now contains the weighted influence centrality of the department’s graph, including $C_1$ (the centr_influence1_wt variable) and $C_2$ (the centr_influence2_wt variable). This data table is shown in Output 3.2.2.
Output 3.2.2 Influence Centrality for Project Groups in a Research Department

<table>
<thead>
<tr>
<th>node</th>
<th>weight</th>
<th>centr_degree_out</th>
<th>centr_influence1_wt</th>
<th>centr_influence2_wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gotti</td>
<td>2</td>
<td>8</td>
<td>0.35714</td>
<td>1.57143</td>
</tr>
<tr>
<td>Zhuo</td>
<td>1</td>
<td>7</td>
<td>0.25000</td>
<td>1.17857</td>
</tr>
<tr>
<td>Oliver</td>
<td>2</td>
<td>4</td>
<td>0.21429</td>
<td>1.14286</td>
</tr>
<tr>
<td>Chapman</td>
<td>4</td>
<td>4</td>
<td>0.42857</td>
<td>1.10714</td>
</tr>
<tr>
<td>Christoph</td>
<td>2</td>
<td>4</td>
<td>0.17857</td>
<td>1.03571</td>
</tr>
<tr>
<td>Yu</td>
<td>3</td>
<td>4</td>
<td>0.32143</td>
<td>0.92857</td>
</tr>
<tr>
<td>Patrick</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.82143</td>
</tr>
<tr>
<td>Leon</td>
<td>1</td>
<td>4</td>
<td>0.14286</td>
<td>0.82143</td>
</tr>
<tr>
<td>Kabutz</td>
<td>1</td>
<td>4</td>
<td>0.14286</td>
<td>0.82143</td>
</tr>
<tr>
<td>Snopp</td>
<td>2</td>
<td>4</td>
<td>0.21429</td>
<td>0.82143</td>
</tr>
<tr>
<td>Nardo</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.78571</td>
</tr>
<tr>
<td>Graffe</td>
<td>1</td>
<td>3</td>
<td>0.14286</td>
<td>0.64286</td>
</tr>
<tr>
<td>Polark</td>
<td>2</td>
<td>4</td>
<td>0.17857</td>
<td>0.64286</td>
</tr>
<tr>
<td>Gukrishnan</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.50000</td>
</tr>
<tr>
<td>Hund</td>
<td>1</td>
<td>2</td>
<td>0.07143</td>
<td>0.39286</td>
</tr>
<tr>
<td>Weng</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.39286</td>
</tr>
<tr>
<td>Angel</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.39286</td>
</tr>
<tr>
<td>Chang</td>
<td>1</td>
<td>3</td>
<td>0.10714</td>
<td>0.39286</td>
</tr>
</tbody>
</table>

As expected, the director, Chapman, has the highest first-order influence, because the weights of the reporting links to him are high. The highest second-order influence is Gotti, who reports to the director but is also involved in three different projects and therefore has a large sphere of influence. This example is revisited with other centrality metrics in other examples.

Example 3.3: Betweenness and Closeness Centrality for Computer Network Topology

Consider a small network of 10 computers spread out across an office. Let a node represent a computer, and let a link represent a direct connection between the machines. For this example, consider the links as Ethernet connections that enable data to transfer between computers. If two computers are not connected directly, then the information must flow through other connected machines. Consider a topology as shown in Figure 3.166. This is an example of the well-known kite network, which was popularized by Krackhardt (1990) for better understanding of social networks in the workplace.
Define the links data table as follows:

```plaintext
data mycas.LinkSetInCompNet;
 input from $ to $ @@;
datalines;
 A B A C A D B C B D
 B E C D C F C H D E
 D F D G E F E G F G
 F H H I I J
;
```

To better understand the topology of the computer network, calculate the degree, closeness, and betweenness centrality. It is also interesting to look for articulation points in the computer network to identify places of vulnerability.

```plaintext
proc network
 links = mycas.LinkSetInCompNet
 outLinks = mycas.LinkSetOut
 outNodes = mycas.NodeSetOutCentr;
centrality
degree
 close = unweight
 between = unweight;
run;
proc network
 links = mycas.LinkSetInCompNet
 outNodes = mycas.NodeSetOutBiCC;
biconnectedComponents;
run;
data mycas.NodeSetOut;
 by node;
run;
%put &_NETWORK_;```
Output 3.3.1 shows the resulting nodes data table `mycas.NodeSetOut` sorted by closeness.

Output 3.3.1 Node Closeness and Betweenness Centrality, Sorted by Closeness

<table>
<thead>
<tr>
<th>node</th>
<th>centr_degree_out</th>
<th>centr_close_unwt</th>
<th>centr_between_unwt</th>
<th>artpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5</td>
<td>0.64286</td>
<td>0.23148</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>0.64286</td>
<td>0.23148</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>0.60000</td>
<td>0.38889</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>0.60000</td>
<td>0.10185</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>0.52941</td>
<td>0.02315</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>0.52941</td>
<td>0.02315</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>0.42857</td>
<td>0.22222</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>0.31034</td>
<td>0.00000</td>
<td>0</td>
</tr>
</tbody>
</table>

Output 3.3.2 shows the resulting nodes data table (`mycas.NodeSetOut`) sorted by node betweenness.

Output 3.3.2 Node Closeness and Betweenness Centrality, Sorted by Betweenness

<table>
<thead>
<tr>
<th>node</th>
<th>centr_degree_out</th>
<th>centr_close_unwt</th>
<th>centr_between_unwt</th>
<th>artpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>3</td>
<td>0.60000</td>
<td>0.38889</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0.64286</td>
<td>0.23148</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>0.64286</td>
<td>0.23148</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>0.42857</td>
<td>0.22222</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>0.60000</td>
<td>0.10185</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>0.52941</td>
<td>0.02315</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>0.52941</td>
<td>0.02315</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>0.31034</td>
<td>0.00000</td>
<td>0</td>
</tr>
</tbody>
</table>

Output 3.3.3 shows the resulting links data table (`mycas.LinkSetOut`) sorted by link betweenness.
The computers that have the highest closeness centrality are C and F, because they have the average shortest paths to all the other nodes. These computers are key to the efficient distribution of information across the network. Assuming that the entire office has some centralized data that should be shared with all computers, machines C and F would be the best candidates for storing the data on their local hard drives. The computer that has the highest betweenness centrality is H. Although machine H has only three connections, it is one of the most important machines in the office because it serves as the only way to reach computers I and J from the other machines in the office. Notice also that machine H is an articulation point, because removing it would disconnect the office network. In this setting, computers with high betweenness should be carefully maintained and secured with UPS (uninterruptible power supply) systems to ensure that they are always online.

Example 3.4: Betweenness and Closeness Centrality for Project Groups in a Research Department

This example uses the same data as in “Example 3.2: Influence Centrality for Project Groups in a Research Department” on page 222, which illustrates influence centrality by considering the link weights that represent some measure of reporting magnitude. In Example 3.2, links between managers (or leads) and direct reports have higher link weights than links between nonmanagers. This interpretation makes sense in the context of influence centrality because weight and the metric are directly related. However, for closeness and betweenness centrality, weight and the metric are inversely related.

This example considers the speed of the flow of information between people. In this sense, connections between managers and direct reports have smaller values, which cost less in the shortest path calculations. As described in the section “Closeness Centrality” on page 99, by default, PROC NETWORK uses the reciprocal of the link weight to find the shortest paths of the closeness and betweenness centrality metrics.
The following statements calculate weighted (and unweighted) closeness and betweenness centrality.

```r
proc network
  logLevel = moderate
  links = mycas.LinkSetInDept
  outLinks = mycas.LinkSetOut
  outNodes = mycas.NodeSetOut;
  centrality
    close = both
    between = both;
run;
%put &_NETWORK_;
```

The progress of the procedure is shown in Output 3.4.1.

Output 3.4.1 PROC NETWORK Log: Closeness and Node Betweenness Centrality for Project Groups in a Research Department

```
NOTE: ------------------------------------------------------------------------------------------
NOTE: Running NETWORK.
NOTE: Reading the links data.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 18.
NOTE: The number of links in the input graph is 35.
NOTE: Processing centrality metrics.
NOTE: Processing between/close centrality metrics using 128 threads across 4 machines.
                 Algorithm       Nodes   Complete     Time
                  centrality     18       100%     0.03
Real
NOTE: Processing between/close centrality metrics used 0.03 seconds.
NOTE: Processing centrality metrics used 0.03 (cpu: 0.02) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.083828 seconds.
NOTE: The data set MYCAS.LINKSETOUT has 35 observations and 5 variables.
NOTE: The data set MYCAS.NODESETOUT has 18 observations and 5 variables.
STATUS=OK  PROBLEM_TYPE=CENTRALITY  SOLUTION_STATUS=OK  CPU_TIME=0.20  REAL_TIME=0.08
```

The nodes data table mycas.NodeSetOut shows the weighted and unweighted closeness and node betweenness centrality, as shown in Output 3.4.2.
Example 3.4: Betweenness and Closeness Centrality for Project Groups in a Research Department

Output 3.4.2 Closeness and Betweenness Centrality for Project Groups in a Research Department

<table>
<thead>
<tr>
<th>node</th>
<th>centr_close_wt</th>
<th>centr_close_unwt</th>
<th>centr_between_wt</th>
<th>centr_between_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angel</td>
<td>0.44156</td>
<td>0.29310</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Chang</td>
<td>0.44156</td>
<td>0.29310</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Chapman</td>
<td>0.88696</td>
<td>0.50000</td>
<td>0.44118</td>
<td>0.23235</td>
</tr>
<tr>
<td>Christoph</td>
<td>0.68456</td>
<td>0.48571</td>
<td>0.05882</td>
<td>0.11275</td>
</tr>
<tr>
<td>Gotti</td>
<td>0.81600</td>
<td>0.51515</td>
<td>0.20956</td>
<td>0.28444</td>
</tr>
<tr>
<td>Graffe</td>
<td>0.67105</td>
<td>0.43590</td>
<td>0.08088</td>
<td>0.06642</td>
</tr>
<tr>
<td>Gukrishnan</td>
<td>0.46575</td>
<td>0.32692</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Hund</td>
<td>0.45133</td>
<td>0.36957</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Kabutz</td>
<td>0.50746</td>
<td>0.38636</td>
<td>0.00000</td>
<td>0.03885</td>
</tr>
<tr>
<td>Leon</td>
<td>0.50746</td>
<td>0.38636</td>
<td>0.00000</td>
<td>0.03885</td>
</tr>
<tr>
<td>Nardo</td>
<td>0.51777</td>
<td>0.42500</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Oliver</td>
<td>0.73913</td>
<td>0.44737</td>
<td>0.04044</td>
<td>0.02230</td>
</tr>
<tr>
<td>Patrick</td>
<td>0.50000</td>
<td>0.37778</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Polark</td>
<td>0.69388</td>
<td>0.38636</td>
<td>0.30882</td>
<td>0.30882</td>
</tr>
<tr>
<td>Snopp</td>
<td>0.75556</td>
<td>0.38636</td>
<td>0.16176</td>
<td>0.08088</td>
</tr>
<tr>
<td>Weng</td>
<td>0.44156</td>
<td>0.29310</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>Yu</td>
<td>0.87179</td>
<td>0.50000</td>
<td>0.50000</td>
<td>0.41262</td>
</tr>
<tr>
<td>Zhuo</td>
<td>0.58286</td>
<td>0.47222</td>
<td>0.06618</td>
<td>0.15172</td>
</tr>
</tbody>
</table>

The links data table mycas.LinkSetOut shows the weighted and unweighted link betweenness centrality, as shown in Output 3.4.3.
Output 3.4.3 Link Betweenness Centrality for Project Groups in a Research Department

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>weight</th>
<th>centr_between_wt</th>
<th>centr_between_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang</td>
<td>Angel</td>
<td>1</td>
<td>0.00654</td>
<td>0.00654</td>
</tr>
<tr>
<td>Polark</td>
<td>Angel</td>
<td>1</td>
<td>0.09804</td>
<td>0.09804</td>
</tr>
<tr>
<td>Weng</td>
<td>Angel</td>
<td>1</td>
<td>0.00654</td>
<td>0.00654</td>
</tr>
<tr>
<td>Polark</td>
<td>Chang</td>
<td>1</td>
<td>0.09804</td>
<td>0.09804</td>
</tr>
<tr>
<td>Weng</td>
<td>Chang</td>
<td>1</td>
<td>0.00654</td>
<td>0.00654</td>
</tr>
<tr>
<td>Gotti</td>
<td>Chapman</td>
<td>3</td>
<td>0.17974</td>
<td>0.08682</td>
</tr>
<tr>
<td>Oliver</td>
<td>Chapman</td>
<td>3</td>
<td>0.12745</td>
<td>0.06776</td>
</tr>
<tr>
<td>Snopp</td>
<td>Chapman</td>
<td>3</td>
<td>0.23529</td>
<td>0.14227</td>
</tr>
<tr>
<td>Yu</td>
<td>Chapman</td>
<td>3</td>
<td>0.35294</td>
<td>0.22734</td>
</tr>
<tr>
<td>Christoph</td>
<td>Gotti</td>
<td>1</td>
<td>0.02288</td>
<td>0.08551</td>
</tr>
<tr>
<td>Christoph</td>
<td>Nardo</td>
<td>1</td>
<td>0.04248</td>
<td>0.03922</td>
</tr>
<tr>
<td>Christoph</td>
<td>Yu</td>
<td>2</td>
<td>0.12092</td>
<td>0.14107</td>
</tr>
<tr>
<td>Christoph</td>
<td>Zhuo</td>
<td>1</td>
<td>0.02941</td>
<td>0.04575</td>
</tr>
<tr>
<td>Kabutz</td>
<td>Gotti</td>
<td>1</td>
<td>0.06536</td>
<td>0.11187</td>
</tr>
<tr>
<td>Leon</td>
<td>Gotti</td>
<td>1</td>
<td>0.06536</td>
<td>0.11187</td>
</tr>
<tr>
<td>Nardo</td>
<td>Gotti</td>
<td>1</td>
<td>0.04902</td>
<td>0.04575</td>
</tr>
<tr>
<td>Gotti</td>
<td>Oliver</td>
<td>1</td>
<td>0.00000</td>
<td>0.03050</td>
</tr>
<tr>
<td>Gotti</td>
<td>Patrick</td>
<td>1</td>
<td>0.05229</td>
<td>0.05392</td>
</tr>
<tr>
<td>Zhuo</td>
<td>Gotti</td>
<td>1</td>
<td>0.04902</td>
<td>0.09052</td>
</tr>
<tr>
<td>Graffe</td>
<td>Hund</td>
<td>1</td>
<td>0.06209</td>
<td>0.04270</td>
</tr>
<tr>
<td>Graffe</td>
<td>Yu</td>
<td>2</td>
<td>0.16013</td>
<td>0.11024</td>
</tr>
<tr>
<td>Graffe</td>
<td>Zhuo</td>
<td>1</td>
<td>0.03268</td>
<td>0.07625</td>
</tr>
<tr>
<td>Kabutz</td>
<td>Gukrishnan</td>
<td>1</td>
<td>0.00654</td>
<td>0.03050</td>
</tr>
<tr>
<td>Gukrishnan</td>
<td>Leon</td>
<td>1</td>
<td>0.00654</td>
<td>0.03050</td>
</tr>
<tr>
<td>Snopp</td>
<td>Gukrishnan</td>
<td>1</td>
<td>0.09804</td>
<td>0.05011</td>
</tr>
<tr>
<td>Zhuo</td>
<td>Hund</td>
<td>1</td>
<td>0.04902</td>
<td>0.06841</td>
</tr>
<tr>
<td>Kabutz</td>
<td>Leon</td>
<td>1</td>
<td>0.00654</td>
<td>0.00654</td>
</tr>
<tr>
<td>Kabutz</td>
<td>Snopp</td>
<td>1</td>
<td>0.03268</td>
<td>0.03126</td>
</tr>
<tr>
<td>Snopp</td>
<td>Leon</td>
<td>1</td>
<td>0.03268</td>
<td>0.03126</td>
</tr>
<tr>
<td>Nardo</td>
<td>Zhuo</td>
<td>1</td>
<td>0.01961</td>
<td>0.02614</td>
</tr>
<tr>
<td>Oliver</td>
<td>Patrick</td>
<td>1</td>
<td>0.03268</td>
<td>0.01797</td>
</tr>
<tr>
<td>Zhuo</td>
<td>Oliver</td>
<td>1</td>
<td>0.02288</td>
<td>0.03453</td>
</tr>
<tr>
<td>Zhuo</td>
<td>Patrick</td>
<td>1</td>
<td>0.02614</td>
<td>0.03922</td>
</tr>
<tr>
<td>Weng</td>
<td>Polark</td>
<td>1</td>
<td>0.09804</td>
<td>0.09804</td>
</tr>
<tr>
<td>Polark</td>
<td>Yu</td>
<td>2</td>
<td>0.36601</td>
<td>0.36601</td>
</tr>
</tbody>
</table>

Note that Chapman (the director) and Yu (a manager who reports to Chapman) both have the highest weighted closeness centrality. However, Yu’s weighted betweenness centrality is highest because he serves as a gatekeeper between his three groups (D4a, D4b, and D4c) and the rest of the department.
Example 3.5: Eigenvector Centrality for Word Sense Disambiguation

In many languages, numerous words are polysemous (they carry more than one meaning). A common task in information retrieval is to assign the correct meaning to a polysemous word within a given context. Take the word “bass” as an example. It can mean either a type of fish (as in the sentence “I went fishing for sea bass”) or tones of low frequency (as in the sentence “The bass part of the song is very moving”).

The following example from Mihalcea (2005) shows how eigenvector centrality can be used to disambiguate the word sense in the sentence “The church bells no longer ring on Sundays.” The following senses of words can be drawn from a dictionary:

- **church**
 1. one of the groups of Christians who have their own beliefs and forms of worship
 2. a place for public (especially Christian) worship
 3. a service conducted in a church

- **bell**
 1. a hollow device made of metal that makes a ringing sound when struck
 2. a push button at an outer door that gives a ringing or buzzing signal when pushed
 3. the sound of a bell

- **ring**
 1. make a ringing sound
 2. ring or echo with sound
 3. make (bells) ring, often for the purposes of musical edification

- **Sunday**
 1. first day of the week; observed as a day of rest and worship by most Christians

Using one of the similarity metrics defined in Sinha and Mihalcea (2007), you can generate a graph in which the nodes correspond to the preceding word senses and the weights are determined by the similarity metric. The resulting graph is shown in Figure 3.167.
To identify the correct senses, you run eigenvector centrality on the graph and select the highest-ranking sense for each word:

```sas
data mycas.LinkSetIn;
   input from $ to $ weight;
datalines;
  bell_1 ring_1 0.85
  bell_1 ring_2 0.55
  bell_1 ring_3 1.01
  bell_2 ring_1 0.40
  bell_2 ring_2 0.35
  bell_2 ring_3 0.80
  bell_3 ring_1 0.23
  bell_3 ring_2 0.19
  bell_3 ring_3 1.06
  ring_3 church_1 0.30
  ring_3 church_2 0.34
  ring_3 church_3 0.50
  church_1 sunday_1 0.31
  church_2 sunday_1 0.35
;

proc network
   links = mycas.LinkSetIn
   outNodes = mycas.NodeSetOut;
   centrality
      eigen = weight;
run;
```

```sas
data mycas.NodeSetOut;
   length word $8 sense $1;
   set mycas.NodeSetOut;
   word = scan(node,1,'_');
   sense = scan(node,2,'_');
run;
```
Example 3.6: Community Detection on Zachary’s Karate Club Data

This example uses Zachary’s Karate Club data (Zachary 1977), which describes social network friendships between 34 members of a karate club at a US university in the 1970s. This is one of the standard publicly available data tables for testing community detection algorithms. It contains 34 nodes and 78 links. The graph is shown in Figure 3.168.

The eigenvector scores and the implied word sense are shown in Output 3.5.1.

Output 3.5.1 Eigenvector Centrality for Word Sense Disambiguation

<table>
<thead>
<tr>
<th>node</th>
<th>centr_eigen_wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ring_3</td>
<td>1.00000</td>
</tr>
<tr>
<td>bell_1</td>
<td>0.77997</td>
</tr>
<tr>
<td>bell_3</td>
<td>0.59692</td>
</tr>
<tr>
<td>bell_2</td>
<td>0.53889</td>
</tr>
<tr>
<td>ring_1</td>
<td>0.48924</td>
</tr>
<tr>
<td>ring_2</td>
<td>0.35207</td>
</tr>
<tr>
<td>church_3</td>
<td>0.24081</td>
</tr>
<tr>
<td>church_2</td>
<td>0.17248</td>
</tr>
<tr>
<td>church_1</td>
<td>0.15222</td>
</tr>
<tr>
<td>sunday_1</td>
<td>0.05180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>sense</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>bell</td>
<td>1</td>
<td>bell_1</td>
</tr>
<tr>
<td>church</td>
<td>3</td>
<td>church_3</td>
</tr>
<tr>
<td>ring</td>
<td>3</td>
<td>ring_3</td>
</tr>
<tr>
<td>sunday</td>
<td>1</td>
<td>sunday_1</td>
</tr>
</tbody>
</table>

Example 3.6: Community Detection on Zachary’s Karate Club Data
The graph can be represented using the following links data table, mycas.LinkSetIn:

```latex
\begin{verbatim}
data mycas.LinkSetIn;
  input from to @@;
datalines;
  0 9 0 10 0 14 0 15 0 16 0 19 0 20 0 21
  0 23 0 24 0 27 0 28 0 29 0 30 0 31 0 32
  0 33 2 1 3 1 3 2 4 1 4 2 4 3 5 1
  6 1 7 1 7 5 7 6 8 1 8 2 8 3 8 4
  9 1 9 3 10 3 11 1 11 5 11 6 12 1 13 1
  13 4 14 1 14 2 14 3 14 4 17 6 17 7 18 1
  18 2 20 1 20 2 22 1 22 2 26 24 26 25 28 3
  28 24 28 25 29 3 30 24 30 27 31 2 31 9 32 1
  32 25 32 26 32 29 33 3 33 9 33 15 33 16 33 19
  33 21 33 23 33 24 33 30 33 31 33 32
;
\end{verbatim}
```

The following statements use the RESOLUTIONLIST= option to represent resolution levels (1, 0.5) in community detection on the Karate Club data. For more information about resolution levels, see the section “Resolution List” on page 120.

```latex
\begin{verbatim}
proc network
  links = mycas.LinkSetIn
  outNodes = mycas.NodeSetOut;
  community
    resolutionList = 1.0 0.5
    outLevel = mycas.CommLevelOut
    outCommunity = mycas.CommOut
    outOverlap = mycas.CommOverlapOut
\end{verbatim}
```
Example 3.6: Community Detection on Zachary's Karate Club Data

```plaintext
commLinks = mycas.CommLinksOut;
run;
```

The output data table `mycas.NodeSetOut` contains the community identifier of each node, as shown in
Output 3.6.1.

Output 3.6.1 Community Nodes Output

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
<th>community_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The column `community_1` contains the community identifier of each node when the resolution value is 1.0;
the column `community_2` contains the community identifier of each node when the resolution value is 0.5.
Different node colors are used to represent different communities in Figure 3.169 and Figure 3.170. As you
see from the figures, four communities at resolution 1.0 are merged into two communities at resolution 0.5.
Figure 3.169 Karate Club Communities (Resolution = 1.0)

Figure 3.170 Karate Club Communities (Resolution = 0.5)

The output data table mycas.CommLevelOut contains the number of communities and the corresponding modularity values found at each resolution level. It is shown in Output 3.6.2.
Example 3.6: Community Detection on Zachary’s Karate Club Data

Output 3.6.2 Community Level Summary Output

<table>
<thead>
<tr>
<th>level</th>
<th>resolution</th>
<th>communities</th>
<th>modularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>4</td>
<td>0.41880</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>0.37179</td>
</tr>
</tbody>
</table>

The output data table mycas.CommOut contains the number of nodes in each community, as shown in Output 3.6.3.

Output 3.6.3 Community Number of Nodes Output

<table>
<thead>
<tr>
<th>level</th>
<th>resolution</th>
<th>community</th>
<th>nodes</th>
<th>intra_links</th>
<th>inter_links</th>
<th>density</th>
<th>cut_ratio</th>
<th>conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1</td>
<td>11</td>
<td>20</td>
<td></td>
<td>0.36364</td>
<td>0.055336</td>
<td>0.25926</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>2</td>
<td>12</td>
<td>24</td>
<td></td>
<td>0.36364</td>
<td>0.053030</td>
<td>0.22581</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td></td>
<td>0.60000</td>
<td>0.027586</td>
<td>0.12821</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
<td>0.46667</td>
<td>0.059524</td>
<td>0.41667</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1</td>
<td>17</td>
<td>34</td>
<td></td>
<td>0.25000</td>
<td>0.034602</td>
<td>0.12821</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>17</td>
<td>34</td>
<td></td>
<td>0.25000</td>
<td>0.034602</td>
<td>0.12821</td>
</tr>
</tbody>
</table>

The output data table mycas.CommOverlapOut contains the intensity of each node that belongs to multiple communities. It is shown in Output 3.6.4. Note that only the communities in the last resolution level (the smallest resolution value) appear as output in this data table. In this example, Node 0 belongs to two communities, with 82.3% of its links connecting to Community 1 and 17.6% of its links connecting to Community 2.
Chapter 3: The NETWORK Procedure

Output 3.6.4 Community Overlap Output

<table>
<thead>
<tr>
<th>node</th>
<th>community</th>
<th>intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.82353</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0.17647</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.11111</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.88889</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.40000</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.60000</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.60000</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0.40000</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.50000</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0.50000</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.20000</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0.80000</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1.00000</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1.00000</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>1.00000</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

The output data table mycas.CommLinksOut shows how the communities are interconnected. It is shown in Output 3.6.5. In this example, when the resolution value is 1, the link weight between Communities 1 and 2 is 7, and the link weight between Communities 2 and 3 is 4.

Output 3.6.5 Community Links Output

<table>
<thead>
<tr>
<th>level</th>
<th>resolution</th>
<th>from_community</th>
<th>to_community</th>
<th>link_weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
Example 3.7: Recursive Community Detection on Zachary’s Karate Club Data

This example illustrates the use of the RECURSIVE option in PROC NETWORK for community detection on Zachary’s Karate Club data (Zachary 1977). The data table appears in “Example 3.6: Community Detection on Zachary’s Karate Club Data” on page 235. The current example forces each community to contain no more than five nodes and limits the number of links between any pair of nodes within any community to be no greater than 2.

```plaintext
proc network
  links          = mycas.LinkSetIn
  outNodes       = mycas.NodeSetOut;
  community
    resolutionList = 1.0
    recursive (maxCommSize = 5 maxDiameter = 2 relation = AND)
    outCommunity  = mycas.CommOut;
run;
```

The output data table `mycas.NodeSetOut` contains the community identifier of each node, as shown in Output 3.7.1.

Output 3.7.1 Community Nodes Output

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>4</td>
</tr>
</tbody>
</table>

The output data table `mycas.CommOut` contains the number of nodes in each community, as shown in Output 3.7.2.

Output 3.7.2 Community Counts Output

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>4</td>
</tr>
</tbody>
</table>
Output 3.7.2 Community Number of Nodes Output

<table>
<thead>
<tr>
<th>level</th>
<th>resolution</th>
<th>community</th>
<th>nodes</th>
<th>intra_links</th>
<th>inter_links</th>
<th>density</th>
<th>cut_ratio</th>
<th>conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>0.60000</td>
<td>0.02759</td>
<td>0.25000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>1.00000</td>
<td>0.10938</td>
<td>0.77778</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1.00000</td>
<td>0.06250</td>
<td>0.66667</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>0.52381</td>
<td>0.08995</td>
<td>0.43590</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>0.66667</td>
<td>0.08602</td>
<td>0.66667</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>13</td>
<td>0.66667</td>
<td>0.13978</td>
<td>0.76471</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>0.66667</td>
<td>0.10753</td>
<td>0.71429</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>0.66667</td>
<td>0.16129</td>
<td>0.78947</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>0.66667</td>
<td>0.05833</td>
<td>0.46667</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>1.00000</td>
<td>0.10938</td>
<td>0.77778</td>
</tr>
</tbody>
</table>

The community graph is shown in Figure 3.171, with different node shapes and colors representing different communities.

Figure 3.171 Karate Club Recursive Communities

As you can see from Output 3.7.2, Community 4, whose nodes are drawn as black ellipses in Figure 3.171, contains seven nodes even though the maximum number of nodes in any community is set to 5. This is because Community 4 has a symmetric shape: Nodes 0 and 33 are in the center, and they symmetrically connect to Nodes 21, 15, 19, 16, and 23. Therefore, this community cannot be further split.
Example 3.8: Centrality Metrics for an Undirected Graph by Community

When you are trying to understand the roles of certain entities in a social network, a typical workflow is to first divide the network into communities and then calculate centrality metrics on the induced subgraphs defined by those communities. You can process these induced subgraphs of the original input graph with only one call to PROC NETWORK by using the BY statement. This section presents an example of how to use the COMMUNITY statement, followed by the CENTRALITY statement in conjunction with the BY statement.

Consider the graph depicted in Figure 3.172.

![Undirected Graph](image)

The following statements create the data table mycas.LinkSetIn:

```plaintext
data mycas.LinkSetIn;	
    input from $ to $ @@;
    datalines;
    A B A C A D B C C D
    C E D F F G F H F I
    G H I I J J K J L
    K L
;
```

First, call the community detection method as follows:

```plaintext
proc network
    links = mycas.LinkSetIn
    outNodes = mycas.OutNodesComms
    outLinks = mycas.OutLinksComms;
    community;
run;
```

The resulting output is a partition of the links and nodes of the original graph into communities.

The data table that contains the assignment of nodes to communities, mycas.OutNodesComms, is shown in Output 3.8.1.
Output 3.8.1 Nodes for the Communities of an Undirected Graph

<table>
<thead>
<tr>
<th>node</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>J</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
</tr>
</tbody>
</table>

The data table that contains the assignment of links to communities, mycas.OutLinksComms, is shown in **Output 3.8.2**.

Output 3.8.2 Links for the Communities of an Undirected Graph

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>community_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>J</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>J</td>
<td>L</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>3</td>
</tr>
</tbody>
</table>

The graph seems to have three distinct parts, which are connected by just a few links. The induced subgraphs on these communities are shown in blue in **Figure 3.173** through **Figure 3.175**.
Now, using one call to PROC NETWORK, you can calculate the centrality metrics for all three induced subgraphs by using the BY statement and the links partition defined by the community detection algorithm. In addition, because these subgraphs are completely independent, the processing is done in parallel across machines and threads (depending on your server configuration).
The NETWORK Procedure

```
proc network
  links = mycas.OutLinksComms(where=(community_1 ne .))
  outNodes = mycas.NodeSetOut;
  centrality
    degree
      influence = unweight
      close = unweight
      between = unweight
      eigen = unweight;
  displayout
    ProblemSummary = ProblemSummary
    SolutionSummary = SolutionSummary;
  by community_1;
run;
%put &_NETWORK_;
```

Assuming that your grid has a total of at least three cores, all three subgraphs are processed simultaneously with one call to PROC NETWORK. The progress of the procedure is shown in **Output 3.8.3**.

Output 3.8.3 PROC NETWORK Log: Centrality by Cluster for an Undirected Graph

<table>
<thead>
<tr>
<th>NOTE:</th>
<th>Running NETWORK.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE:</td>
<td>The number of nodes in the input graph is 5.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The number of links in the input graph is 6.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics used 0.01 (cpu: 0.00) seconds.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The above message was for the following BY group:</td>
</tr>
<tr>
<td></td>
<td>community_1=1</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The number of nodes in the input graph is 4.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The number of links in the input graph is 5.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics used 0.01 (cpu: 0.00) seconds.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The above message was for the following BY group:</td>
</tr>
<tr>
<td></td>
<td>community_1=2</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The number of nodes in the input graph is 3.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The number of links in the input graph is 3.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>Processing centrality metrics used 0.01 (cpu: 0.00) seconds.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The above message was for the following BY group:</td>
</tr>
<tr>
<td></td>
<td>community_1=3</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The CAS table 'PROBLEMSUMMARY' in caslib 'CASUSERHDFS(tiarno)' has 3 rows and 4 columns.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The CAS table 'SOLUTIONSUMMARY' in caslib 'CASUSERHDFS(tiarno)' has 3 rows and 5 columns.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The Cloud Analytic Services server processed the request in 0.083058 seconds.</td>
</tr>
<tr>
<td>NOTE:</td>
<td>The data set MYCAS.NODESETOUT has 12 observations and 8 variables.</td>
</tr>
</tbody>
</table>

Notice that links that connect different partitions have been removed by using a WHERE clause on the LINKS= option in the PROC NETWORK statement.
The output table `mycas.ProblemSummary` contains a summary of each induced subgraph that is processed by PROC NETWORK.

Output 3.8.4 Problem Summary by Community

<table>
<thead>
<tr>
<th>community_1 numNodes numLinks graphDirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5 6 Undirected</td>
</tr>
<tr>
<td>2 4 5 Undirected</td>
</tr>
<tr>
<td>3 3 3 Undirected</td>
</tr>
</tbody>
</table>

The output table `mycas.SolutionSummary` contains a solution summary for the processing on each of the induced subgraphs.

Output 3.8.5 Solution Summary by Community

<table>
<thead>
<tr>
<th>community_1 problemType status cpuTime realTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Centrality OK 0.00 0.01</td>
</tr>
<tr>
<td>2 Centrality OK 0.00 0.01</td>
</tr>
<tr>
<td>3 Centrality OK 0.00 0.01</td>
</tr>
</tbody>
</table>

The centrality results (by community) are shown in **Output 3.8.6**.

Output 3.8.6 Centrality for All Induced Subgraphs

<table>
<thead>
<tr>
<th>community_1=1 node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1_unwt centr_influence2_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 2 0.70711 0.66667 0.00000 0.4 1.4</td>
</tr>
<tr>
<td>C 4 1.00000 1.00000 0.58333 0.8 1.6</td>
</tr>
<tr>
<td>D 2 0.70711 0.66667 0.00000 0.4 1.4</td>
</tr>
<tr>
<td>E 1 0.37236 0.57143 0.00000 0.2 0.8</td>
</tr>
<tr>
<td>A 3 0.89897 0.80000 0.08333 0.6 1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>community_1=2 node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1_unwt centr_influence2_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 3 1.00000 1.00000 0.16667 0.75 1.75</td>
</tr>
<tr>
<td>H 2 0.78078 0.75 0.00000 0.50 1.50</td>
</tr>
<tr>
<td>I 2 0.78078 0.75 0.00000 0.50 1.50</td>
</tr>
<tr>
<td>F 3 1.00000 1.00 0.16667 0.75 1.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>community_1=3 node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1_unwt centr_influence2_unwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 2 1 1 0 0.66667 1.33333</td>
</tr>
<tr>
<td>L 2 1 1 0 0.66667 1.33333</td>
</tr>
<tr>
<td>J 2 1 1 0 0.66667 1.33333</td>
</tr>
</tbody>
</table>
Example 3.9: Cycle Enumeration for Kidney Donor Exchange

This example looks at an application of cycle enumeration to help create a kidney donor exchange. Suppose someone needs a kidney transplant and a family member is willing to be a donor. If the donor and recipient are incompatible (because of blood type, tissue mismatch, and so on), the transplant cannot happen. Now suppose two donor-recipient pairs, \(i\) and \(j\), are in this situation, but donor \(i\) is compatible with recipient \(j\) and donor \(j\) is compatible with recipient \(i\). Then two transplants can take place in a two-way swap, shown in Figure 3.176. More generally, an \(n\)-way swap can be performed involving \(n\) donors and \(n\) recipients (CNN 2012).

![Figure 3.176 Kidney Donor Exchange Two-Way Swap](image)

To model this problem, define a directed graph as follows: Each node is an incompatible donor-recipient pair. Link \((i, j)\) exists if the donor from node \(i\) is compatible with the recipient from node \(j\), as shown in Figure 3.177.

![Figure 3.177 Kidney Donor Exchange Network](image)

The link weight is a measure of the quality of the match. By introducing dummy links whose weight is 0, you can also include recipients who have no donors and altruistic donors who have no recipients. The idea is to find a maximum-weight node-disjoint union of directed cycles. You want the union to be node-disjoint so that no kidney is donated more than once, and you want cycles so that the donor from node \(i\) donates a kidney if and only if the recipient from node \(i\) receives a kidney.

Without any other constraints, the problem could be solved as a linear assignment problem, as described in *SAS Optimization: The OPTNETWORK Procedure*. But doing so would allow arbitrarily long cycles in the solution. For practical considerations (such as travel) and to mitigate risk, each cycle must have no more than \(L\) links. The kidney exchange problem is to find a maximum-weight node-disjoint union of short directed cycles.

One way to solve this problem is to explicitly generate all cycles whose length is at most \(L\) and then solve a set-packing problem. You can use PROC NETWORK to generate the cycles and then use PROC OPTMODEL to read the PROC NETWORK output, formulate the set-packing problem, call the mixed integer linear programming solver, and output the optimal solution. See Chapter 10, “The OPTMODEL Procedure” in *SAS Optimization: Mathematical Optimization Procedures*.
The following DATA step sets up the problem by first creating a random graph on \(n \) nodes with link probability \(p \) and Uniform(0,1) weight:

```sas
/* create random graph on n nodes with link probability p 
 and uniform(0,1) weight */
%let n = 100;
%let p = 0.02;
data mycas.LinkSetIn;
call streaminit(1);
do from = 0 to &n - 1;
do to = 0 to &n - 1;
  if from eq to then continue;
  else if rand('UNIFORM') < &p then do;
    weight = rand('UNIFORM');
    output;
  end;
end;
end;
run;
```

The following statements use PROC NETWORK to generate all cycles whose length is greater than or equal to 2 and less than or equal to 10:

```sas
/* generate all cycles with 2 <= length <= max_length */
%let max_length = 10;
proc network
  logLevel = moderate
  direction = directed
  links = mycas.LinkSetIn;
  cycle
    minLength = 2
    maxLength = &max_length
    maxCycles = all
    outCyclesLinks = mycas.CyclesLinks;
run;
%put &_NETWORK_;
```

PROC NETWORK finds 395 cycles of the appropriate length, as shown in Output 3.9.1.
Output 3.9.1 PROC NETWORK Log: Cycles for Kidney Donor Exchange

For this set of cycles, you can now formulate a mixed integer linear program (MILP) to maximize the total cycle weight. Let \(C \) define the set of cycles of appropriate length, \(N_c \) define the set of nodes in cycle \(c \), \(E_c \) define the set of links in cycle \(c \), and \(w_e \) denote the link weight for link \(e \). Define a binary decision variable \(x_c \). Set \(x_c \) to 1 if cycle \(c \) is used in the solution; otherwise, set it to 0. Then, the following MILP defines the problem that you want to solve in order to maximize the quality of the kidney exchange:

\[
\begin{align*}
\text{maximize} & \quad \sum_{c \in C} \left(\sum_{e \in E_c} w_e \right) x_c \\
\text{subject to} & \quad \sum_{c \in C, i \in N_c} x_c \leq 1 \quad i \in N \\
& \quad x_c \in \{0, 1\} \quad c \in C
\end{align*}
\]

The constraint (incomp_pair) ensures that each node (incompatible pair) in the graph is intersected at most once. That is, a donor can donate a kidney only once. You can use PROC OPTMODEL to solve this mixed integer linear programming problem as follows:

```plaintext
/* solve set-packing problem to find maximum-weight node-disjoint union of short directed cycles */
proc optmodel;
   /* declare index sets and parameters, and read data */
   set <num,num> LINKS;
   num weight {LINKS};
   read data mycas.LinkSetIn into LINKS=[from to] weight;
   set <num,num,num> TRIPLES;
   read data mycas.CyclesLinks into TRIPLES=[cycle from to];
   set CYCLES = setof {<c,i,j> in TRIPLES} c;
   set LINKS_c {c in CYCLES} = setof {<(c),i,j> in TRIPLES} <i,j>;
   set NODES_c {c in CYCLES} = union {<i,j> in LINKS_c[c]} {i,j};
   set NODES = union {c in CYCLES} NODES_c[c];
```
num cycle_weight {c in CYCLES} = sum {<i,j> in LINKS_c[c]} weight[i,j];

/* UseCycle[c] = 1 if cycle c is used, 0 otherwise */
var UseCycle {CYCLES} binary;

/* declare objective */
max TotalWeight
 = sum {c in CYCLES} cycle_weight[c] * UseCycle[c];

/* each node appears in at most one cycle */
con NodePacking {i in NODES}:
 sum {c in CYCLES: i in NODES_c[c]} UseCycle[c] <= 1;

/* call solver */
solve;

/* output optimal solution */
create data Solution from
 [c]={c in CYCLES: UseCycle[c].sol > 0.5} cycle_weight;
quit;

PROC OPTMODEL solves the problem by using the mixed integer linear programming solver.
The output data table `mycas.Solution`, shown in Output 3.9.3, now contains the cycles that define the best exchange and their associated weight (quality).

Output 3.9.3 Maximum-Quality Solution for Kidney Donor Exchange

<table>
<thead>
<tr>
<th>c</th>
<th>cycle_weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4.3542</td>
</tr>
<tr>
<td>62</td>
<td>4.3403</td>
</tr>
<tr>
<td>121</td>
<td>4.9748</td>
</tr>
<tr>
<td>155</td>
<td>5.0843</td>
</tr>
<tr>
<td>362</td>
<td>1.9424</td>
</tr>
<tr>
<td>385</td>
<td>1.7253</td>
</tr>
<tr>
<td>392</td>
<td>2.4295</td>
</tr>
</tbody>
</table>

24.8509
Example 3.10: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System

Most systems that track software errors, or bugs, have some notion of duplicate bugs, in which one bug is declared to be the same as another bug. If bug A is considered a duplicate (DUP) of bug B, then a fix for B would also fix A. You can represent the DUPs in a bug tracking system as a directed graph where you add a link $A \rightarrow B$ if A is a DUP of B.

The bug tracking system needs to check for two situations when users declare a bug to be a DUP. The first situation is called a circular dependency. Consider bugs A, B, C, and D in the tracking system. The first user declares that A is a DUP of B and that C is a DUP of D. A second user declares that B is a DUP of C, and a third user declares that D is a DUP of A. You now have a circular dependency, and no primary bug is defined for the development team to focus on. You can easily see this circular dependency in the graph representation, because $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$. You can find such circular dependencies by using cycle enumeration, which is described in the section “Cycle Enumeration” on page 136. The second situation that needs to be checked is more general. If one user declares that A is a DUP of B and another user declares that B is a DUP of C, this chain of duplicates is already an issue. The bug tracking system needs to provide one primary bug to which the rest of the bugs are duplicated. You can identify the existence of these chains by calculating the transitive closure of the directed graph that is defined by the DUP links.

Given the original directed graph G (defined by the DUP links) and its transitive closure G^T, any link in G^T that is not in G exists because of some chain that is present in G.

Consider the following data, which define some duplicated bugs (called defects) in a small sample of the bug tracking system:

```sql
data mycas.DefectLinks;
  input defectId $ linkedDefect $ linkType $ when datetime16.;
  format when datetime16.;
datalines;
D0096978 S0711218 DUPTO 20OCT10:00:00:00
S0152674 S0153280 DUPTO 30MAY02:00:00:00
S0153280 S0153307 DUPTO 30MAY02:00:00:00
S0153307 S0152674 DUPTO 30MAY02:00:00:00
S0162973 S0162978 DUPTO 29NOV10:16:13:16
S0162978 S0165405 DUPTO 29NOV10:16:13:16
S0325026 S0575748 DUPTO 01JUN10:00:00:00
S0347945 S0346582 DUPTO 03MAR06:00:00:00
S0350596 S0346582 DUPTO 21MAR06:00:00:00
S0539744 S0643230 DUPTO 10MAY10:00:00:00
S0575748 S0643230 DUPTO 15JUN10:00:00:00
S0629984 S0643230 DUPTO 01JUN10:00:00:00
;
```

The following statements calculate cycles in addition to the transitive closure of the graph G that is defined by the duplicated defects in mycas.DefectLinks. The output data table mycas.Cycles contains any circular dependencies, and the data table mycas.TransClosure contains the transitive closure G^T. To identify the chains, you can use PROC SQL to identify the links in G^T that are not in G.
proc network
 logLevel = moderate
 direction = directed
 links = mycas.DefectLinks;
 linksVar
 from = defectId
 to = linkedDefect;
 cycle
 out = mycas.Cycles
 maxCycles = all;
run;
%put &_NETWORK_;

proc network
 logLevel = moderate
 direction = directed
 links = mycas.DefectLinks;
 linksVar
 from = defectId
 to = linkedDefect;
 transitiveClosure
 out = mycas.TransClosure;
run;
%put &_NETWORK_;

proc sql;
 create table Chains as
 select defectId, linkedDefect
 from mycas.TransClosure(where=(defectId ne linkedDefect)) except
 select defectId, linkedDefect
 from mycas.DefectLinks;
quit;

The progress of the procedure is shown in Output 3.10.1.
Output 3.10.1 PROC NETWORK Log: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System

NOTE: Running NETWORK.
NOTE: Reading the links data.
NOTE: Data input used 0.00 (cpu: 0.00) seconds.
NOTE: Building the input graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 16.
NOTE: The number of links in the input graph is 12.
NOTE: Processing cycle enumeration using 1 threads across 1 machines.
NOTE: The algorithm found 1 cycles.
NOTE: Processing cycle enumeration used 0.00 (cpu: 0.00) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.04355 seconds.
NOTE: The data set MYCAS.CYCLES has 4 observations and 3 variables.
STATUS=OK PROBLEM_TYPE=CYCLE SOLUTION_STATUS=OK NUM_CYCLES=1 CPU_TIME=0.15 REAL_TIME=0.04
NOTE: Table WORK.CHAINS created, with 5 rows and 2 columns.

Output 3.10.2 displays the output data table mycas.Cycles, which contains one case of a circular dependency in which the DUPs start and end at S0152674.

<table>
<thead>
<tr>
<th>cycle</th>
<th>order</th>
<th>node</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>S0152674</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>S0153280</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>S0153307</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>S0152674</td>
</tr>
</tbody>
</table>

Output 3.10.3 displays the local data set Chains, which contains the chains in the bug tracking system that come from the links in G^T that are not in G.
Output 3.10.3 Chains in Bug Tracking System

<table>
<thead>
<tr>
<th>defectId</th>
<th>linkedDefect</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0152674</td>
<td>S0153307</td>
</tr>
<tr>
<td>S0153280</td>
<td>S0152674</td>
</tr>
<tr>
<td>S0153307</td>
<td>S0153280</td>
</tr>
<tr>
<td>S0162973</td>
<td>S0165405</td>
</tr>
<tr>
<td>S0325026</td>
<td>S0643230</td>
</tr>
</tbody>
</table>

Example 3.11: Reach Networks for Computing the Market Coverage of a Terrorist Network

The problem of finding an efficient method for covering a market (a set of entities) is important in numerous industries. For example, consider that you are an advertising company with access to data that are collected from your customers’ social networks. To keep costs at a minimum in a new promotion, you want to find a minimal set of customers to whom you need to advertise in order to reach the entire market. To do this, you could first generate all the reach networks for each customer by using PROC NETWORK. These networks could then be used in a set-covering problem, which you can solve as an integer linear program by using PROC OPTMODEL. Let N be the set of customers that you want to reach, and let the links E define the social network of those customers. If you use a one-hop reach network, you assume that if an advertisement is sent to customer i, then customer i will promote the advertisement to all his friends (those he is connected to in E). If you use two-hop reach networks, you assume that customer i’s friends will also promote the advertisement to their friends. So the question is, To which subset of customers should you advertise to reach all customers through the promotion mechanism?

This problem can be generalized as follows:

Given a graph $G = (N, E)$, choose a node set N^* of minimal size such that there is a path of length less than or equal to L to every node in N from a node in N^*.

To illustrate an application of this problem, consider again the terrorist communications network from “Example 3.1: Articulation Points in a Terrorist Network” on page 220. In this case, customers are alleged terrorists. Solving the covering problem here can give you a subset of people to focus on in an investigation in order to cover all members of the network.

The following macro, %GenerateReach, runs PROC NETWORK to generate the reach network for each person in the terrorist network for a variable hop limit:

```sas
%macro GenerateReach(limit=);
proc network
  outNodes = mycas.NodeSetOut
  links = mycas.LinkSetInTerror911;
reach
  eachSource
    outNodes = mycas.ReachNode
    maxReach = &limit;
run;
%mend GenerateReach;
```

The following macro, %SolverCover, runs PROC OPTMODEL to solve the set-covering problem:
%macro SolverCover();
proc optmodel;
 string tmpLabel;
 set<num> NODE_ID;
 set<string> NODE_LABEL init {};
 string nodeIdToLabel(NODE_ID);
 num nodeLabelToId(NODE_LABEL);

 set<num> REACH_SET(NODE_ID) init {};
 set<string,num> PAIRS;

 /* read data */
 read data mycas.NodeSetOut into NODE_ID=[_n_] nodeIdToLabel=node;
 read data mycas.ReachNode into PAIRS=[node reach];
 for{i in NODE_ID} do;
 tmpLabel = nodeIdToLabel[i];
 NODE_LABEL = NODE_LABEL union {tmpLabel};
 nodeLabelToId[tmpLabel] = i;
 end;
 for{<label,i> in PAIRS} do;
 REACH_SET[i] = REACH_SET[i] union {nodeLabelToId[label]};
 end;

 /* declare decision variables */
 var x (NODE_ID) binary;

 /* declare objective */
 minimize numNodes = sum{j in NODE_ID} x[j];

 /* cover constraint */
 con cover {i in NODE_ID}:
 sum{j in REACH_SET[i]} x[j] >= 1;

 /* solve */
 solve;

 create data Solution from [label]=
 (setof{j in NODE_ID : round(x[j].sol)=1}nodeIdToLabel[j]);
quit;
%mend SolverCover;

The following statements calculate the minimal cover for the one-hop limit:

%GenerateReach(limit=1);
%SolverCover();

To cover the network, assuming a one-hop limit, the investigators would need to investigate the people listed in the data table mycas.Solution, shown in Output 3.11.1.
Output 3.11.1 Minimal One-Hop Cover for Terrorist Communications Network

<table>
<thead>
<tr>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djamal Beghal</td>
</tr>
<tr>
<td>Essid Sami Ben Khemais</td>
</tr>
<tr>
<td>Fayez Ahmed</td>
</tr>
<tr>
<td>Hani Hanjour</td>
</tr>
<tr>
<td>Mamduh Mahmud Salim</td>
</tr>
<tr>
<td>Mohamed Atta</td>
</tr>
<tr>
<td>Nabil al-Marabh</td>
</tr>
<tr>
<td>Nawaf Alhazmi</td>
</tr>
<tr>
<td>Ramzi Bin al-Shibh</td>
</tr>
<tr>
<td>Zacarias Moussaoui</td>
</tr>
</tbody>
</table>

The following statements calculate the minimal cover for the two-hop limit:

```plaintext
%GenerateReach(limit=2);
%SolverCover();
```

If investigators assume a two-hop limit, they could focus their attention on the two people shown in **Output 3.11.2**. Then, by following their links (and their links’ links), they could cover the entire network.

Output 3.11.2 Minimal Two-Hop Cover for Terrorist Communications Network

<table>
<thead>
<tr>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohamed Atta</td>
</tr>
<tr>
<td>Zacarias Moussaoui</td>
</tr>
</tbody>
</table>

Example 3.12: Connected Components for US Patent Citations

This example looks at the structural relationship of US patent citations by using a large data set that is maintained by the Stanford Network Analysis Project (SNAP) (Leskovec 2014). The citation graph includes over 16 million citations made to patents between 1975 and 1999.

The following statements construct the links data table `mycas.Patents` from a local copy of the raw patent citation data:

```plaintext
filename in 'cit-Patents.txt';
data mycas.Patents;	infile firstobs=5 dlm='09'X;	input from to;	run;
```

The following statements find the connected components of the citation graph by using a distributed union-find algorithm. This algorithm takes advantage of all the machines in your configured session.

```plaintext
proc network
  links = mycas.Patents
  outNodes = mycas.NodeSetOut;
  connectedComponents
```
Example 3.12: Connected Components for US Patent Citations

```plaintext
out = mycas.ConCompOut
algorithm = parallel;
run;
%put &_NETWORK_;
```

The progress of the procedure is shown in Output 3.12.1.

Output 3.12.1 PROC NETWORK Log: Connected Components for US Patent Citations

```
NOTE: Running NETWORK.
NOTE: The graph contains 1 self-links that are ignored.
NOTE: The number of nodes in the input graph is 3774768.
NOTE: The number of links in the input graph is 16518947.
NOTE: Processing connected components using 4 threads across 4 machines.
NOTE: The graph has 3627 connected components.
NOTE: Processing connected components used 0.83 (cpu: 2.10) seconds.
NOTE: The Cloud Analytic Services server processed the request in 5.732421 seconds.
NOTE: The data set MYCAS.NODESETOUT has 3774768 observations and 2 variables.
NOTE: The data set MYCAS.CONCOMPOUT has 3627 observations and 2 variables.
```

```
STATUS=OK  PROBLEM_TYPE=CONNECTEDCOMPONENTS  SOLUTION_STATUS=OK  NUM_COMPONENTS=3627
CPU_TIME=34.81  REAL_TIME=5.73
```

The 10 biggest components are shown in Output 3.12.2. It is interesting to note that the vast majority of patents (over 99%) are all contained in the same component. This is not too surprising, because many of the seminal patent claims are required in order to understand subsequent inventions.

Output 3.12.2 Ten Largest Components for US Patent Citations

```
Obs concomp nodes
1 1 3764117
2 299 19
3 146 16
4 220 15
5 8 14
6 388 14
7 421 14
8 1911 14
9 11 13
10 81 13
```
The progress of the procedure is shown in Output 3.13.1.
Example 3.14: Shortest Path in a Road Network by Date and Time

This example reconsiders the road network between a SAS employee’s home in Raleigh, North Carolina, and SAS headquarters nearby in Cary introduced in the section “Road Network Shortest Path” on page 14. The following data provide a snapshot of the road network and travel times observed at three different times:

```sas
data mycas.LinkSetInRoadNC;
  input start_inter $1-20 end_inter $21-40 miles miles_per_hour
          date date11. time time10.;
  format date date11. time time10.;
  time_to_travel = miles * 1/miles_per_hour * 60;
datalines;
614CapitalBlvd Capital/WadeAve 0.6 25 15-APR-2013 10:30 am
614CapitalBlvd Capital/US70W 0.6 25 15-APR-2013 10:30 am
```

Notice that the resulting output data tables, mycas.shortPathSummary and mycas.shortPathPaths, are large distributed data tables.
The first snapshot (15-APR-2013 10:30 am) is a typical traffic pattern on a workday. The second snapshot (16-APR-2013 9:30 am) represents morning rush-hour traffic, and the third (18-APR-2013 8:30 am) represents rush-hour traffic where a major highway (US70W) has been closed for repairs.

The following statements find the route that yields the shortest path between home (614 Capital Boulevard) and SAS headquarters (SAS Campus Drive) for all three scenarios simultaneously by using the BY statement:

```sas
proc network
    links = mycas.LinkSetInRoadNC;
    linksVar
        from = start_inter
        to = end_inter
        weight = time_to_travel;
    shortestPath
        outPaths = mycas.ShortPathP
        outWeights = mycas.ShortPathW
        source = "614CapitalBlvd"
        sink = "SASCampusDrive";
    displaylayout
        ProblemSummary = ProblemSummary
        SolutionSummary = SolutionSummary;
    by date time;
run;
%put &_NETWORK_;```

Assuming that your grid has a total of at least three cores, all three graphs are processed simultaneously.
through one call to PROC NETWORK. The progress of the procedure is shown in Output 3.14.1.

**Output 3.14.1** PROC NETWORK Log: Shortest Path in a Road Network by Date and Time

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>numNodes</th>
<th>numLinks</th>
<th>graphDirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-APR-2013</td>
<td>10:30:00</td>
<td>10</td>
<td>11</td>
<td>Undirected</td>
</tr>
<tr>
<td>16-APR-2013</td>
<td>9:30:00</td>
<td>10</td>
<td>11</td>
<td>Undirected</td>
</tr>
<tr>
<td>18-APR-2013</td>
<td>8:30:00</td>
<td>8</td>
<td>8</td>
<td>Undirected</td>
</tr>
</tbody>
</table>

Output 3.14.2 displays the output table mycas.ProblemSummary, which contains a summary of each graph that is processed by PROC NETWORK.

**Output 3.14.2** Problem Summary by Date and Time

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>numNodes</th>
<th>numLinks</th>
<th>graphDirection</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-APR-2013</td>
<td>10:30:00</td>
<td>10</td>
<td>11</td>
<td>Undirected</td>
</tr>
<tr>
<td>16-APR-2013</td>
<td>9:30:00</td>
<td>10</td>
<td>11</td>
<td>Undirected</td>
</tr>
<tr>
<td>18-APR-2013</td>
<td>8:30:00</td>
<td>8</td>
<td>8</td>
<td>Undirected</td>
</tr>
</tbody>
</table>

Output 3.14.3 displays the output table mycas.SolutionSummary, which contains a solution summary for the processing on each graph.
Output 3.14.3 Solution Summary by Date and Time

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>problemType</th>
<th>status</th>
<th>numPaths</th>
<th>cpuTime</th>
<th>realTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-APR-2013</td>
<td>10:30:00</td>
<td>Shortest Path</td>
<td>OK</td>
<td>1</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>16-APR-2013</td>
<td>9:30:00</td>
<td>Shortest Path</td>
<td>OK</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18-APR-2013</td>
<td>8:30:00</td>
<td>Shortest Path</td>
<td>OK</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Output 3.14.4 displays the output data table mycas.ShortPathW, which shows the total time to travel on the best route for each time snapshot.

Output 3.14.4 Shortest Path Summary for Road Network at Each Date and Time

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>source</th>
<th>sink</th>
<th>path_weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-APR-2013</td>
<td>10:30:00</td>
<td>614CapitalBlvd</td>
<td>SASCampusDrive</td>
<td>11.5582</td>
</tr>
<tr>
<td>16-APR-2013</td>
<td>9:30:00</td>
<td>614CapitalBlvd</td>
<td>SASCampusDrive</td>
<td>12.9582</td>
</tr>
<tr>
<td>18-APR-2013</td>
<td>8:30:00</td>
<td>614CapitalBlvd</td>
<td>SASCampusDrive</td>
<td>14.2582</td>
</tr>
</tbody>
</table>

Output 3.14.5 displays the output data table mycas.ShortPathP, which shows (by date and time) the best route for each time snapshot.

Output 3.14.5 Shortest Path for Road Network by Date and Time

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>order</th>
<th>start_inter</th>
<th>end_inter</th>
<th>time_to_travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>date=15-APR-2013 time=10:30:00</td>
<td>11.5582</td>
<td>1</td>
<td>614CapitalBlvd</td>
<td>Capital/WadeAve</td>
<td>1.4400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Capital/WadeAve</td>
<td>WadeAve/RaleighExpy</td>
<td>4.5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>WadeAve/RaleighExpy</td>
<td>RaleighExpy/US40W</td>
<td>3.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>RaleighExpy/US40W</td>
<td>US40W/HarrisonAve</td>
<td>1.4182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>US40W/HarrisonAve</td>
<td>SASCampusDrive</td>
<td>1.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.5582</td>
</tr>
<tr>
<td>date</td>
<td>time</td>
<td></td>
<td></td>
<td></td>
<td>11.5582</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>order</th>
<th>start_inter</th>
<th>end_inter</th>
<th>time_to_travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>date=16-APR-2013 time=9:30:00</td>
<td>12.9582</td>
<td>1</td>
<td>614CapitalBlvd</td>
<td>Capital/US70W</td>
<td>1.4400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>US70W/US440W</td>
<td>US440W/RaleighExpy</td>
<td>2.7000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>US440W/RaleighExpy</td>
<td>RaleighExpy/US40W</td>
<td>3.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>RaleighExpy/US40W</td>
<td>US40W/HarrisonAve</td>
<td>1.4182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>US40W/HarrisonAve</td>
<td>SASCampusDrive</td>
<td>1.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.9582</td>
</tr>
<tr>
<td>date</td>
<td>time</td>
<td></td>
<td></td>
<td></td>
<td>12.9582</td>
</tr>
</tbody>
</table>
Example 3.15: Pattern Matching in a Social Network

This example considers a portion of a social network that conveys relationships between people (*friends*), residences (*lives in*), and preferences for particular restaurants (*likes*). The network, directed graph $G$, is shown in Figure 3.178.

**Figure 3.178** Social Network $G$

The following data provide a snapshot of the social connections between Matt and a few of his friends:

```r
data mycas.NodesSocial;
 infile datalines dsd;
 length node $40. type $40. subtype $20.;
 input node $ type $ subtype $;
 label=node;
 datalines;
 Matt, Person,
 Rob, Person,
 Chuck, Person,
 Stephen, Person,
 Manoj, Person,
 Bryan, Person,
 Jack, Person,
 Natalia, Person,
```
data mycas.LinksSocial;
  infile datalines dsd;
  length from $40. to $40. connection $20.;
  input from $ to $ connection $ rating;
  datalines;
  Matt, Rob, friends, .
  Rob, Matt, friends, .
  Matt, Chuck, friends, .
  Chuck, Matt, friends, .
  Chuck, Rob, friends, .
  Rob, Chuck, friends, .
  Jack, Rob, friends, .
  Rob, Jack, friends, .
  Matt, Stephen, friends, .
  Stephen, Matt, friends, .
  Matt, Manoj, friends, .
  Manoj, Matt, friends, .
  Matt, Bryan, friends, .
  Bryan, Matt, friends, .
  Matt, Jack, friends, .
  Jack, Matt, friends, .
  Natalia, Jack, friends, .
  Jack, Natalia, friends, .
  Matt, Philadelphia, lives in, .
  Stephen, Philadelphia, lives in, .
  Stephen, JimmyJs, likes, 7
  Stephen, Cafe Luna, likes, 8
  Rob, Raleigh, lives in, .
  Chuck, Raleigh, lives in, .
  Manoj, Raleigh, lives in, .
  Jack, Raleigh, lives in, .
  Natalia, Raleigh, lives in, .
  Bryan, Charlotte, lives in, .
  Rob, The Pit Authentic, likes, 7
  Jack, Red Hot Blue, likes, 9
  Chuck, The Pit Authentic, likes, 8
  Chuck, Cafe Luna, likes, 6
  Chuck, Second Empire, likes, 7
  Jack, Vivo Rist, likes, 8
  Manoj, Dumplings, likes, 6
  Natalia, Red Hot Blue, likes, 9
  Bryan, Red Hot Blue, likes, 9
Example 3.15: Pattern Matching in a Social Network

The nodes in the nodes data table mycas.NodesSocial represent people, cities, and restaurants. The node attribute type defines the node type. In the case of a restaurant, the node attribute subtype defines the type of restaurant.

The links in the links data table mycas.LinksSocial represent connections between the nodes. The type of connection is defined by the link attribute connection, and in the case of people connected to restaurants, the link attribute rating specifies a rating on a scale of 1 to 10.

For these data, a typical social network pattern search might be to find “friends of Matt who like barbecue restaurants.” This pattern is shown in Figure 3.179.

**Figure 3.179** Query Graph Q

In order to construct this pattern, the query graph can be represented using the data that are created by the following DATA steps:

```plaintext
data mycas.NodesSocialQuery;
 infile datalines dsd;
 length node $40. label $40. type $40. subtype $20.;
 input node $ label $ type $ subtype $;
 datalines;
 Matt, Matt, Person,
 X,, Person,
 BBQ,, Restaurant, BBQ
;

data mycas.LinksSocialQuery;
 infile datalines dsd;
 length from $40. to $40. connection $20.;
 input from $ to $ connection $;
 datalines;
 Matt, X, friends
 X, Matt, friends
 X, BBQ, likes
;
```

The query graph nodes data table implies that:

- The query node Matt must be a person with the node attribute label=Matt.
- The query node X can be any person.
- The query node BBQ must be a barbecue restaurant (that is, type=Restaurant and subtype=BBQ).

The query graph links data table implies that:

- Bryan, Vivo Rist, likes, 6
- Rob, Moonlight, likes, 10

;
• Person Matt and person X must be friends.
• Person X must like the restaurant that is assigned to node BBQ.

You can use the following statements to find all subgraphs that have the specified pattern:

```plaintext
proc network
direction = directed
nodes = mycas.NodesSocial
links = mycas.LinksSocial
nodesQuery = mycas.NodesSocialQuery
linksQuery = mycas.LinksSocialQuery;
nodeVar
 vars = (label type subtype);
linkVar
 vars = (connection);
nodesQueryVar
 vars = (label type subtype);
linksQueryVar
 vars = (connection);
patternMatch
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks;
run;
%put &_NETWORK_
```

The progress of the procedure is shown in Output 3.15.1.

Output 3.15.1 PROC NETWORK Log: Pattern Matching in a Social Network

```
NOTE: Running NETWORK.
NOTE: The number of nodes in the input graph is 19.
NOTE: The number of links in the input graph is 39.
NOTE: The number of nodes in the query graph is 3.
NOTE: The number of links in the query graph is 3.
NOTE: Processing the pattern matching query using 32 threads across 1 machines.
NOTE: The algorithm found 5 matches.
NOTE: Processing the pattern matching query used 0.00 (cpu: 0.00) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.078518 seconds.
NOTE: The data set MYCAS.OUTMATCHNODES has 15 observations and 6 variables.
NOTE: The data set MYCAS.OUTMATCHLINKS has 15 observations and 4 variables.
STATUS=OK PROBLEM_TYPE=PATTERNMATCH SOLUTION_STATUS=OK NUM_MATCHES=5 CPU_TIME=0.24 REAL_TIME=0.08
```

Output 3.15.2 displays the output data table mycas.OutMatchNodes, which shows the mappings from nodes in the query graph to nodes in the input graph for each match. For this query, five friends (X) match the specified criteria: Bryan, Chuck, Jack, Rob, and Stephen.
Output 3.15.2  Node Mappings for Friends Who Like Barbecue

<table>
<thead>
<tr>
<th>match</th>
<th>node</th>
<th>label</th>
<th>type</th>
<th>subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BBQ</td>
<td>Red Hot Blue</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>1</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Bryan</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BBQ</td>
<td>The Pit Authentic</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>Chuck</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BBQ</td>
<td>Red Hot Blue</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>3</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>Jack</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BBQ</td>
<td>The Pit Authentic</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>4</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>Rob</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BBQ</td>
<td>JimmyJs</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>5</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>Stephen</td>
<td>Person</td>
<td></td>
</tr>
</tbody>
</table>

Output 3.15.3 displays the output data table mycas.OutMatchLinks, which shows the subgraphs for each match.

Output 3.15.3  Subgraphs for Friends Who Like Barbecue

<table>
<thead>
<tr>
<th>match</th>
<th>from</th>
<th>to</th>
<th>connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bryan</td>
<td>Matt</td>
<td>friends</td>
</tr>
<tr>
<td>1</td>
<td>Bryan</td>
<td>Red Hot Blue</td>
<td>likes</td>
</tr>
<tr>
<td>1</td>
<td>Matt</td>
<td>Bryan</td>
<td>friends</td>
</tr>
<tr>
<td>2</td>
<td>Chuck</td>
<td>Matt</td>
<td>friends</td>
</tr>
<tr>
<td>2</td>
<td>Chuck</td>
<td>The Pit Authentic</td>
<td>likes</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td>Chuck</td>
<td>friends</td>
</tr>
<tr>
<td>3</td>
<td>Jack</td>
<td>Matt</td>
<td>friends</td>
</tr>
<tr>
<td>3</td>
<td>Jack</td>
<td>Red Hot Blue</td>
<td>likes</td>
</tr>
<tr>
<td>3</td>
<td>Matt</td>
<td>Jack</td>
<td>friends</td>
</tr>
<tr>
<td>4</td>
<td>Matt</td>
<td>Rob</td>
<td>friends</td>
</tr>
<tr>
<td>4</td>
<td>Rob</td>
<td>Matt</td>
<td>friends</td>
</tr>
<tr>
<td>4</td>
<td>Rob</td>
<td>The Pit Authentic</td>
<td>likes</td>
</tr>
<tr>
<td>5</td>
<td>Matt</td>
<td>Stephen</td>
<td>friends</td>
</tr>
<tr>
<td>5</td>
<td>Stephen</td>
<td>JimmyJs</td>
<td>likes</td>
</tr>
<tr>
<td>5</td>
<td>Stephen</td>
<td>Matt</td>
<td>friends</td>
</tr>
</tbody>
</table>

Another example search pattern that you might want to find is “friends of Matt who like barbecue restaurants and live in Raleigh.” This pattern is shown in Figure 3.180.
In order to construct this pattern, the query graph can be represented using the data that are created by the following DATA steps and the same call to PROC NETWORK as before:

``` Sas
data mycas.NodesSocialQuery;
 length node $40. label $40. type $40. subtype $20.;
 input node $ label $ type $ subtype $;
 datalines;
 Matt, Matt, Person,
 X,, Person,
 Raleigh, Raleigh, City,
 BBQ,, Restaurant, BBQ
 ;

data mycas.LinksSocialQuery;
 length from $40. to $40. connection $20.;
 input from $ to $ connection $;
 datalines;
 Matt, X, friends
 X, Matt, friends
 X, Raleigh, lives in
 X, BBQ, likes
 ;
```

Output 3.15.4 displays the output data table mycas.OutMatchNodes. For this query, three friends (X) match the specified criteria: Rob, Chuck, and Jack.
Example 3.15: Pattern Matching in a Social Network

Output 3.15.4 Node Mappings for Friends Who Like Barbecue and Live in Raleigh

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>label</th>
<th>type</th>
<th>subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BBQ</td>
<td>The Pit Authentic</td>
<td>The Pit Authentic Restaurant BBQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Matt</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Raleigh</td>
<td>Raleigh</td>
<td>Raleigh</td>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 X</td>
<td>Rob</td>
<td>Rob</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 BBQ</td>
<td>The Pit Authentic</td>
<td>The Pit Authentic Restaurant BBQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Matt</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Raleigh</td>
<td>Raleigh</td>
<td>Raleigh</td>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Chuck</td>
<td>Chuck</td>
<td>Chuck</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 BBQ</td>
<td>Red Hot Blue</td>
<td>Red Hot Blue Restaurant BBQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Matt</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Raleigh</td>
<td>Raleigh</td>
<td>Raleigh</td>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 X</td>
<td>Jack</td>
<td>Jack</td>
<td>Person</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Output 3.15.5 displays the output data table mycas.OutMatchLinks.

Output 3.15.5 Subgraphs for Friends Who Like Barbecue and Live in Raleigh

<table>
<thead>
<tr>
<th>match</th>
<th>from</th>
<th>to</th>
<th>connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Matt</td>
<td>Rob</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1 Rob</td>
<td>Matt</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1 Rob</td>
<td>Raleigh</td>
<td>lives in</td>
<td></td>
</tr>
<tr>
<td>1 Rob</td>
<td>The Pit Authentic</td>
<td>likes</td>
<td></td>
</tr>
<tr>
<td>2 Chuck</td>
<td>Matt</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>2 Chuck</td>
<td>Raleigh</td>
<td>lives in</td>
<td></td>
</tr>
<tr>
<td>2 Chuck</td>
<td>The Pit Authentic</td>
<td>likes</td>
<td></td>
</tr>
<tr>
<td>2 Chuck</td>
<td>Matt</td>
<td>likes</td>
<td></td>
</tr>
<tr>
<td>3 Matt</td>
<td>Chuck</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>3 Jack</td>
<td>Matt</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>3 Jack</td>
<td>Raleigh</td>
<td>lives in</td>
<td></td>
</tr>
<tr>
<td>3 Jack</td>
<td>Red Hot Blue</td>
<td>likes</td>
<td></td>
</tr>
<tr>
<td>3 Matt</td>
<td>Jack</td>
<td>friends</td>
<td></td>
</tr>
</tbody>
</table>

Finally, you might want to find “a pair of people, at least one of whom is a friend of Matt, who like the same barbecue restaurant (with rating of 9 or higher), live in Raleigh, and are friends of each other.” This pattern is shown in Figure 3.181.
In order to construct this pattern, the query graph can be represented using the data that are created by the following DATA steps:

```plaintext
data mycas.NodesSocialQuery;
 infile datalines dsd;
 length node $40. label $40. type $40. subtype $20.;
 input node $ label $ type $ subtype $;
 datalines;
 Matt, Matt, Person,
 X,, Person,
 Y,, Person,
 Raleigh, Raleigh, City,
 BBQ,, Restaurant, BBQ
;

data mycas.LinksSocialQuery;
 infile datalines dsd;
 length from $40. to $40. connection $20.;
 input from $ to $ connection $;
 datalines;
 Matt, X, friends
 X, Matt, friends
 X, Raleigh, lives in
 Y, Raleigh, lives in
 X, BBQ, likes
 Y, BBQ, likes
 X, Y, friends
 Y, X, friends
;
```

Figure 3.181 Query Graph $Q$
Example 3.15: Pattern Matching in a Social Network

The query node Matt must be a person with the node attribute label=Matt. The query nodes, X and Y, can be any pair of people, at least one of whom is a friend of Matt and who both live in Raleigh. The query node BBQ must be a barbecue restaurant (that is, type=Restaurant and subtype=BBQ) that is liked by both persons X and Y with a rating of at least 9. Person X and person Y must be friends with Matt.

In order to enforce that the restaurant was rated with a value of at least limitRating, you can use the following FCMP link filter function:

```cas
proc cas;
 source myFilter;
 function myLinkFilter(connectionQ $, rating, limitRating);
 if (connectionQ='likes') then return (rating >= limitRating);
 else return (1);
 endsub;
endsource;
loadactionset "fcmpact";
setSessOpt(cmplib="casuser.myRoutines"); run;
fcmpact.addRoutines /
 saveTable = true,
 funcTable = {name="myRoutines", caslib="casuser", replace=true},
 package = "myPackage",
 routineCode = myFilter;
run;
quit;
```

The following statements find all subgraphs that have the specified pattern:

```network
direction = directed
nodes = mycas.NodesSocial
links = mycas.LinksSocial
nodesQuery = mycas.NodesSocialQuery
linksQuery = mycas.LinksSocialQuery;
nodesVar
 vars = (label type subtype);
linksVar
 vars = (connection rating);
nodesQueryVar
 vars = (label type subtype);
linksQueryVar
 vars = (connection);
patternMatch
 linkFilter = myLinkFilter(linksQuery.connection,links.rating,9)
outMatchNodes = mycas.OutMatchNodes
outMatchLinks = mycas.OutMatchLinks;
run;
```

Output 3.15.6 displays the output data table mycas.OutMatchNodes. For this query, only one pair of friends (Jack and Natalia) matches the specified criteria.
Output 3.15.6 Node Mapping for a Pair of Friends

<table>
<thead>
<tr>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>label</th>
<th>type</th>
<th>subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BBQ</td>
<td>Red Hot Blue</td>
<td>Red Hot Blue</td>
<td>Restaurant</td>
<td>BBQ</td>
</tr>
<tr>
<td>1</td>
<td>Matt</td>
<td>Matt</td>
<td>Matt</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Raleigh</td>
<td>Raleigh</td>
<td>Raleigh</td>
<td>City</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Jack</td>
<td>Jack</td>
<td>Person</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>Natalia</td>
<td>Natalia</td>
<td>Person</td>
<td></td>
</tr>
</tbody>
</table>

Output 3.15.7 displays the output data table mycas.OutMatchLinks.

Output 3.15.7 Subgraph for a Pair of Friends

<table>
<thead>
<tr>
<th>match</th>
<th>from</th>
<th>to</th>
<th>connection</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jack</td>
<td>Matt</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Jack</td>
<td>Natalia</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Jack</td>
<td>Raleigh</td>
<td>lives in</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Jack</td>
<td>Red Hot Blue</td>
<td>likes</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>Matt</td>
<td>Jack</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Natalia</td>
<td>Jack</td>
<td>friends</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Natalia</td>
<td>Raleigh</td>
<td>lives in</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Natalia</td>
<td>Red Hot Blue</td>
<td>likes</td>
<td>9</td>
</tr>
</tbody>
</table>

The result is shown graphically in Figure 3.182.

Figure 3.182 Subgraph for a Pair of Friends
Example 3.16: Detection of Value-Added Tax Carousel Fraud

Value-added tax (VAT) carousel fraud can be accomplished by a series of sequential transactions through a subset of real (or fictitious) corporations that starts and ends at the same entity. The fraud scheme starts when one corporation (1) in a European Union (EU) country—for example, Germany—sells its goods to another corporation (2) in a different EU country—for example, the United Kingdom (UK). Because this is a cross-border sale within the EU, corporation 1 does not charge corporation 2 any VAT. Next, corporation 2 sells these same goods to corporation 3 (also in the UK). Corporation 2 charges corporation 3 for VAT—for example, 20% of the price of the goods. Corporation 2 now owes the VAT authority its collected tax. Next, corporation 3 sells its goods back to corporation 1 (cross-border) with no VAT charge. Then, corporation 3 claims a VAT refund from the authority for the tax payment made to corporation 2. The payment for the refund by the tax authority occurs promptly because of laws that serve to protect the interests of smaller companies. At this point, all three corporations disappear before corporation 2 has paid the VAT authority for the taxes it has collected. By colluding, the three corporations illegally net the refunded money from the VAT authority. For more information about VAT carousel fraud, see Lamensch and Ceci (2018).

The following data provide a small subset of transactions between corporations in EU countries:

```
data mycas.NodesVAT;
 format est DATE9.;
 input node $ country $ est :DATE9.;
 datalines;
 A Germany 01OCT2017
 B Germany 01OCT2017
 C UK 01SEP2017
 D UK 01OCT2017
 E UK 01JAN2016
 F UK 01DEC2017
 G Italy 01JAN2018
 H UK 01NOV2017
 I France 01FEB2018
 J France 01JAN2018
 K France 01DEC2017
 L Germany 01NOV2017
;```

```
data mycas.LinksVAT;
  format time DATE9.;
  input from $ to $ time :DATE9. score;
  datalines;
  A B 02OCT2017 1
  A C 03OCT2017 5
  B C 03OCT2017 1
  B D 04OCT2017 4
  C A 02OCT2017 1
  C D 04OCT2017 8
  D A 01NOV2017 1
  D E 01NOV2017 1
  D F 17DEC2017 1
  E B 04OCT2017 1
  F B 13FEB2018 1
  F E 13FEB2018 1
```
The nodes in the nodes data table mycas.NodesVAT represent corporations; the node attributes are host country (country) and the date the corporation was established (est). The links in the links data table mycas.LinksVAT represent transactions between the corporations; the link attributes are the date of the transaction (time) and a fraud score (score). The fraud score is some predetermined risk factor that is associated with certain transactions between corporations of interest.

The data are shown graphically in Figure 3.183.
The carousel fraud scheme involves a cycle of sequential transactions that starts and ends in some EU country and have any number of transactions within the borders of some other EU country. In this example, consider cycles of length between three and give links. The query graphs that define the patterns to search for are shown in Figure 3.184. In addition, the pattern requires that $T_1 < T_2 < \cdots < T_n$.

Figure 3.183 Transactions between Corporations in EU Countries
In order to construct this set of patterns (cycle3 through cycle5), the query graphs can be represented using the data that are created by the following DATA steps:

```plaintext
data mycas.NodesQuery;
  input node key $ @@;
  datalines;
  1 cycle3 2 cycle3 3 cycle3
  1 cycle4 2 cycle4 3 cycle4 4 cycle4
  1 cycle5 2 cycle5 3 cycle5 4 cycle5 5 cycle5
; data mycas.LinksQuery;
  input from to key $ @@;
  datalines;
  1 2 cycle3 2 3 cycle3 3 1 cycle3
  1 2 cycle4 2 3 cycle4 3 4 cycle4 4 1 cycle4
  1 2 cycle5 2 3 cycle5 3 4 cycle5 4 5 cycle5 5 1 cycle5
;```

In addition to searching for cycles of transactions, investigators need to identify several other characteristic patterns in order to consider a sequence of transactions that are at risk for VAT carousel fraud.

First, each corporation in the cycle must have been established in the past six months. Most corporations involved in VAT carousel fraud are fake corporations that are established for the sake of carrying forward the fraudulent transactions. Because these schemes are difficult to hide for long, corporations that are involved are usually recently established.

The following statements specify a node filter function (myNodeFilter) that enforces that each node in the pattern was established within `limitMonths` months of `startDate`:
%macro FCMPActionLoad();
loadactionset "fcmpact";
setSessOpt(cmplib="casuser.myRoutines"); run;
fcmpact.addRoutines /
  saveTable   = true,
  funcTable   = {name="myRoutines", caslib="casuser", replace=true},
  package     = "myPackage",
  routineCode = myFilter;
run;
%mend FCMPActionLoad;

proc cas;
  source myFilter;
  function myNodeFilter(est, limitMonths, startDate);
    /* All of the nodes in the cycle were established in the past
     * limitMonths months (from startDate). */
    return (intck('MONTH',est,startDate) < limitMonths);
  endsub;

The fraud scheme involves a cycle of transactions that start and end in some EU country and have any number
of transactions within the borders of some other EU country. The following statements specify a node-pair
filter function (myNodePairFilter) that enforces this pattern of transactions:

function myNodePairFilter(nodeQ[*], country[*] $);
  /* The first node must be from a different country than the other nodes,
   * each subsequent node must be from the same country. */
  if (nodeQ[1] = 1) then do;
    if (nodeQ[2] ne 1) then return (country[1] ne country[2]);
  end;
  else if (nodeQ[1]+1 = nodeQ[2]) then return (country[1]=country[2]);
  else return (1);
endsub;

Because the suspicious pattern involves tracking a sale of goods, the transactions must be sequential in time.
In addition, the entire series of transactions should occur in a relatively short period of time. The following
statements specify a link-pair filter function (myLinkPairFilter) that enforces that the transactions occur
sequentially and that the time between the first and last transaction must be within limitDays days:

function myLinkPairFilter(fromQ[*], toQ[*], time[*], limitDays);
  /* All transactions must be sequential in time.
   * The time between the first and last transaction must be
   * less than limitDays days. */
  if (toQ[1] = 1) then
    return (1);
  else if (toQ[1] = fromQ[2]) then
    return (time[1] < time[2]);
  else if (fromQ[1] = 1 and toQ[2] = 1) then
    return (intck('DAY',time[1],time[2]) < limitDays);
  else return (1);
endsub;

The final requirement that signals a suspicious series of transactions is the overall fraud score. Calculating
this value involves looking at the entire candidate subgraph and therefore requires a match filter function.
The following statements specify a match filter function (myMatchFilter) that enforces that the total fraud
score across all links in the cycle of transactions must be greater than or equal to limitScore:

```plaintext
function myMatchFilter(score[*], limitScore);
 /* The total fraud score across all links in the cycle of transactions
 must be greater than or equal to limitScore. */
 total = 0;
 nLinks = dim(score);
 do i=1 to nLinks;
 total = total + score[i];
 if (total >= limitScore) then return (1);
 end;
 return (0);
endsub;
endsource;
%FCMPActionLoad();
quit;
```

The following statements find all subgraphs that have the pattern that is specified by the query input data tables and the FCMP filter functions:

```plaintext
%let startDate=%sysevalf('01FEB2018'd);
proc network
 direction = directed
 nodes = mycas.NodesVAT
 links = mycas.LinksVAT
 nodesQuery = mycas.NodesQuery
 linksQuery = mycas.LinksQuery;
 nodesVar
 vars = (country est);
 linksVar
 vars = (time score);
 patternMatch
 queryKey = key
 nodeFilter = myNodeFilter(nodes.est,6,&startDate)
 nodePairFilter = myNodePairFilter(nodesQuery.node,nodes.country)
 linkPairFilter = myLinkPairFilter(linksQuery.from,linksQuery.to,links.time,100)
 matchFilter = myMatchFilter(links.score,10)
 outMatchNodes = mycas.OutMatchNodes
 outMatchLinks = mycas.OutMatchLinks
 outSummary = mycas.OutMatchSummary;
run;
%put &_NETWORK_;
```

The progress of the procedure is shown in Output 3.16.1.
Example 3.16: Pattern Matching for Detection of Value-Added Tax Carousel Fraud

Output 3.16.1  PROC NETWORK Log: Pattern Matching for VAT Carousel Fraud

NOTE: Running NETWORK.
NOTE: The number of nodes in the input graph is 12.
NOTE: The number of links in the input graph is 25.
NOTE: Processing pattern matching using 128 threads across 4 machines.
NOTE: The algorithm found 3 matches.
NOTE: Processing the pattern matching query used 0.01 (cpu: 0.01) seconds.
NOTE: The Cloud Analytic Services server processed the request in 0.134309 seconds.
NOTE: The data set MYCAS.OUTMATCHNODES has 12 observations and 6 variables.
NOTE: The data set MYCAS.OUTMATCHLINKS has 12 observations and 6 variables.
NOTE: The data set MYCAS.OUTMATCHSUMMARY has 3 observations and 5 variables.
STATUS=OK  PROBLEM_TYPE=PATTERNMATCH  SOLUTION_STATUS=OK  NUM_MATCHES=3  CPU_TIME=0.46  REAL_TIME=0.13

For these data, three sequences of transactions match the specified pattern.

Output 3.16.2 displays the output data table mycas.OutMatchSummary, which shows the summary information about the executed queries.

Output 3.16.2  Summary Information for Executed Queries

<table>
<thead>
<tr>
<th>key</th>
<th>nodes</th>
<th>links</th>
<th>matches</th>
<th>realTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycle3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0.003813982</td>
</tr>
<tr>
<td>cycle4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0.003613949</td>
</tr>
<tr>
<td>cycle5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0.003773928</td>
</tr>
</tbody>
</table>

Output 3.16.3 displays the output data table mycas.OutMatchNodes, which shows the mappings from nodes in the query graph to nodes in the input graph for each matching sequence of transactions.

Output 3.16.3  Node Mappings for Suspicious Transactions

<table>
<thead>
<tr>
<th>key</th>
<th>match</th>
<th>nodeQ</th>
<th>node</th>
<th>country</th>
<th>est</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycle3</td>
<td>1</td>
<td>1</td>
<td>A</td>
<td>Germany</td>
<td>01OCT2017</td>
</tr>
<tr>
<td>cycle3</td>
<td>1</td>
<td>2</td>
<td>C</td>
<td>UK</td>
<td>01SEP2017</td>
</tr>
<tr>
<td>cycle3</td>
<td>1</td>
<td>3</td>
<td>D</td>
<td>UK</td>
<td>01OCT2017</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>1</td>
<td>H</td>
<td>UK</td>
<td>01NOV2017</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>2</td>
<td>I</td>
<td>France</td>
<td>01FEB2018</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>3</td>
<td>J</td>
<td>France</td>
<td>01JAN2018</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>4</td>
<td>K</td>
<td>France</td>
<td>01DEC2017</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>Germany</td>
<td>01OCT2017</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>2</td>
<td>C</td>
<td>UK</td>
<td>01SEP2017</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>3</td>
<td>D</td>
<td>UK</td>
<td>01OCT2017</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>4</td>
<td>F</td>
<td>UK</td>
<td>01DEC2017</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>5</td>
<td>H</td>
<td>UK</td>
<td>01NOV2017</td>
</tr>
</tbody>
</table>

Output 3.15.3 displays the output data table mycas.OutMatchLinks, which shows the subgraphs for each matching sequence of transactions.
Output 3.16.4 Subgraphs for Suspicious Transactions

<table>
<thead>
<tr>
<th>key</th>
<th>match</th>
<th>from</th>
<th>to</th>
<th>time</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>cycle3</td>
<td>1</td>
<td>A</td>
<td>C</td>
<td>03OCT2017</td>
<td>5</td>
</tr>
<tr>
<td>cycle3</td>
<td>1</td>
<td>C</td>
<td>D</td>
<td>04OCT2017</td>
<td>8</td>
</tr>
<tr>
<td>cycle3</td>
<td>1</td>
<td>D</td>
<td>A</td>
<td>01NOV2017</td>
<td>1</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>H</td>
<td>I</td>
<td>01FEB2018</td>
<td>2</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>I</td>
<td>J</td>
<td>02FEB2018</td>
<td>4</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>J</td>
<td>K</td>
<td>04FEB2018</td>
<td>4</td>
</tr>
<tr>
<td>cycle4</td>
<td>1</td>
<td>K</td>
<td>H</td>
<td>10FEB2018</td>
<td>1</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>B</td>
<td>C</td>
<td>03OCT2017</td>
<td>1</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>C</td>
<td>D</td>
<td>04OCT2017</td>
<td>8</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>D</td>
<td>F</td>
<td>17DEC2017</td>
<td>1</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>F</td>
<td>H</td>
<td>03JAN2018</td>
<td>2</td>
</tr>
<tr>
<td>cycle5</td>
<td>1</td>
<td>H</td>
<td>B</td>
<td>05JAN2018</td>
<td>1</td>
</tr>
</tbody>
</table>

The result is shown graphically in Figure 3.185.
Example 3.16: Pattern Matching for Detection of Value-Added Tax Carousel Fraud

Figure 3.185  Subgraphs for Suspicious Transactions
Example 3.17: Node Similarity for Link Prediction

The goal of link prediction is to recover missing links—connections that are likely to exist between nodes but have not been recorded because of incomplete data. This example considers a network of 168 nodes and 219 links, where nodes represent individuals and links represent wiretap records. The data set is based on information from operation Oversize, an Italian criminal case against a mafia group that was involved in international drug trafficking, homicides, and robberies (Berlusconi et al. 2016). This network, an undirected graph $G$, is shown in Figure 3.186.
The data that are created by the following DATA step provide the connections that were obtained through wiretapping:

```plaintext
data mycas.LinkSetInWR;
 input from $ to $ @@;
datalines;
n8 n5 n9 n1 n9 n7 n10 n9 n11 n9 n17 n9
n19 n13 n20 n9 n21 n3 n21 n13 n21 n18 n24 n13
```

*Figure 3.186  Wiretap Network G*
The persons of interest—the two main traffickers within the criminal network, \( n49 \) and \( n27 \); the drug dealer \( n13 \); \( n49 \)'s brother and drug dealer, \( n50 \); and \( n118 \), the wife of a known drug dealer—are selected as a node subset to probe what other people in the network they are likely to be connected to.

The following statements define the nodes that are the sources of the new predicted links, with all other nodes as candidates:

```plaintext
data mycas.NodeSubSetIn;
 input node $ source;
 datalines;
n27 1
n49 1
n13 1
n50 1
n118 1
;```

```
```
The following statements produce the output data table `mycas.NodeSim`, which contains the Jaccard similarity between the nodes in the input subset and all other nodes; higher similarity scores indicate a higher probability of connection.

```sas
proc network
   links = mycas.LinkSetInWR
   nodesSubset = mycas.NodeSubSetIn;
   nodeSimilarity
      outSimilarity = mycas.NodeSim;
run;
```

To select the best candidate links for investigators, the following steps determine five links that have the highest Jaccard coefficient for each of the nodes in the subset:

```sas
data NodeSim;
   set mycas.NodeSim;
run;
data LinkSetInWR;
   set mycas.LinkSetInWR;
run;
proc sql;
   create table PredictedLinks as
      select * from NodeSim
      where link=0 and source ne sink;
quit;
proc sort data=PredictedLinks;
   by source descending jaccard;
run;
data PredictedLinksTop5;
   retain count 0;
   set PredictedLinks;
   by source;
   if first.source then count=0;
   count=count+1;
   if count <= 5;
run;
```

Output 3.17.1 displays the output data table `PredictedLinksTop5`.

Output 3.17.1 Top Predicted Links between Suspected Criminals

<table>
<thead>
<tr>
<th>Source</th>
<th>Sink</th>
<th>Link</th>
<th>Jaccard</th>
</tr>
</thead>
<tbody>
<tr>
<td>n118</td>
<td>n36</td>
<td>0</td>
<td>0.7500</td>
</tr>
<tr>
<td></td>
<td>n16</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>n28</td>
<td>0</td>
<td>0.5000</td>
</tr>
<tr>
<td></td>
<td>n103</td>
<td>0</td>
<td>0.3333</td>
</tr>
<tr>
<td></td>
<td>n114</td>
<td>0</td>
<td>0.3333</td>
</tr>
</tbody>
</table>
The predicted links are highlighted as bold and colored (by source node) in the illustration in Figure 3.187. Many of these predicted links have additional support from other sources of information, according to Berlusconi et al. (2016). For example, *n49* and *n48* lived in the same area and had key roles in the drug distribution; the husband of *n118* used to buy cocaine from *n36*; the link between *n13* and *n43* had been confirmed by further investigation; and so on.
Figure 3.187 Predicted Links
Example 3.18: A Node Similarity Recipe Recommendation Engine

When recommending products to consumers, retailers often build models that are based on known relationships between consumers and products, such as purchase history or online reviews. These models are known as recommendation engines. This example builds a model that recommends recipes that are most similar and most dissimilar from each other, based on the similarity of their ingredient lists. The data set consists of six sauce recipes, each consisting of some subset of ingredients. The inclusion of ingredients in recipes is organized into a bipartite network G, shown in Figure 3.188.

Figure 3.188 Recipe-Ingredient Network G
The links of \(G \) are constructed from raw data that are specified in adjacency list format in the DATA step:

```plaintext
data mycas.LinkSetRecipesIn;
  infile datalines dsd flowover;
  length Recipe $20. Ingredient1-Ingredient13 $20.;
  input Recipe $ Ingredient1-Ingredient13 $;
  array ingredient Ingredient1 -- Ingredient13;
  from = Recipe;
  do over ingredient;
    if missing(ingredient) then leave;
    to = Ingredient;
    output;
  end;
  keep from to;
  datalines;
Spag Sauce,   Tomato, Garlic, Salt, Onion, TomatoPaste, OliveOil
             Oregano, Parsley, , , ,
Spag Meat Sauce, Tomato, Garlic, Salt, Onion, TomatoPaste, OliveOil
              Celery, GreenPepper, BayLeaf, GroundBeef, Carrot
              PorkSausage, RedPepper
Eggplant Relish, Garlic, Salt, Onion, TomatoPaste, OliveOil, Eggplant
               GreenOlives, Capers, Sugar, , , ,
Creole Sauce,   Tomato, Salt, Onion, TomatoPaste, OliveOil, Celery
                Broth, GreenPepper, BlackPepper, Paprika, Thyme
                WorcestershireSauce,
Salsa,          Tomato, Garlic, Salt, Onion, Cilantro, Tomatillo
                JalapenoPepper, Lime, , , ,
Enchilada Sauce, Tomato, Broth, Cumin, Flour, BrownSugar, ChiliPowder
               CayennePepper, Oil, , , ,
;
In this example, the cosine node similarity scores between pairs of recipes are of interest.

The following DATA step defines the subset of nodes that represent the six recipes:

```plaintext
data mycas.NodesSubsetRecipesIn;
 infile datalines dsd;
 length node $20.;
 source = 1;
 sink = 1;
 input node;
 datalines;
Spag Sauce
Spag Meat Sauce
Eggplant Relish
Creole Sauce
Salsa
Enchilada Sauce
;
```

The following statements produce the output data table mycas.NodeSim, which contains the cosine similarity scores between the nodes in the input subset; higher similarity scores indicate greater overlap of the recipes’ ingredient lists.
Chapter 3: The NETWORK Procedure

```
proc network
 links = mycas.LinkSetRecipesIn
 nodesSubset = mycas.NodesSubsetRecipesIn;
 nodeSimilarity
 jaccard = false
 cosine = true
 outSimilarity = mycas.SimilarityRecipesOut;
run;
```

The output data table `mycas.SimilarityRecipesOut` contains the cosine similarity score of each recipe node pair, as shown in `Output 3.18.1`.

### Output 3.18.1 Recipe Cosine Similarity Output

<table>
<thead>
<tr>
<th>source</th>
<th>sink</th>
<th>cosine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creole Sauce</td>
<td>Creole Sauce</td>
<td>1.00000</td>
</tr>
<tr>
<td>Creole Sauce</td>
<td>Spag Meat Sauce</td>
<td>0.56045</td>
</tr>
<tr>
<td>Creole Sauce</td>
<td>Spag Sauce</td>
<td>0.51031</td>
</tr>
<tr>
<td>Creole Sauce</td>
<td>Eggplant Relish</td>
<td>0.38490</td>
</tr>
<tr>
<td>Creole Sauce</td>
<td>Salsa</td>
<td>0.30619</td>
</tr>
<tr>
<td>Creole Sauce</td>
<td>Enchilada Sauce</td>
<td>0.20412</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Eggplant Relish</td>
<td>1.00000</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Spag Sauce</td>
<td>0.58926</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Spag Meat Sauce</td>
<td>0.46225</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Creole Sauce</td>
<td>0.38490</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Salsa</td>
<td>0.35355</td>
</tr>
<tr>
<td>Eggplant Relish</td>
<td>Enchilada Sauce</td>
<td>0.00000</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Enchilada Sauce</td>
<td>1.00000</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Creole Sauce</td>
<td>0.20412</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Salsa</td>
<td>0.12500</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Spag Sauce</td>
<td>0.12500</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Spag Meat Sauce</td>
<td>0.09806</td>
</tr>
<tr>
<td>Enchilada Sauce</td>
<td>Eggplant Relish</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

The following statements produce a heat map visualization of the similarity between pairs of recipes:

```
proc sort data=mycas.SimilarityRecipesOut out=SimilarityRecipesSorted;
by sink source;
run;
proc sgplot data=SimilarityRecipesSorted noautolegend;
title "Cosine Similarity of Recipes";
heatmap y=source x=sink / weight=cosine
 colormodel=(white green) outline x2axis;
text y=source x=sink text=cosine / textAttrs=(size=10pt);
xaxis display=None;
x2axis display=(nolabel);
yaxis display=(nolabel) reverse;
run;
```
Example 3.19: Using Projection to Recommend Recipe Ingredient Pairings

The task of recipe recommendation that is demonstrated in “Example 3.18: A Node Similarity Recipe Recommendation Engine” on page 290 can also be achieved using projection. This example solves a similar recommendation problem that considers ingredient pairings instead of recipe pairings. Using the PROJECTION statement, you can find pairs of ingredients that occur together in one or more recipes. Consider again the data set mycas.LinkSetRecipesIn, which is used in Example 3.18. The inclusion of ingredients in recipes is organized into a bipartite network $G$, which is shown in Figure 3.188.

In this example, the number of common neighbors (recipe nodes) between ingredient node pairs are of interest. The PROJECTION statement requires a nodes data table with a column that indicates which nodes are recipes and which nodes are ingredients. You can use the following statements to generate the nodes data table mycas.NodeSetRecipesIn (which has a single variable called node):

```plaintext
proc network
 links = mycas.LinkSetRecipesIn
 outNodes = mycas.NodeSetRecipesIn;
run;
```

Then, you can use the following DATA step to define a script to provide a computed variable, which is called partition:
filename pscript ’/tmp/_partitionscript_’;
data _null_;  
  file pscript;  
  put "if(node in (  
    'Spag Sauce'  
    'Spag Meat Sauce'  
    'Eggplant Relish'  
    'Creole Sauce'  
    'Salsa'  
    'Enchilada Sauce'  
  )) then partition = 0;  
else partition = 1;";  
run;  

The partition variable has a value of 0 for recipe nodes and a value of 1 for ingredient nodes. Therefore, PROC NETWORK computes the network projection onto ingredient nodes through recipe nodes. The following statements produce the output data table mycas.ProjectionLinkSetOut, which contains links between ingredient pairs that appear in at least one common recipe. In addition, the output data table mycas.ProjectionListOut contains the lists of recipes that are common to each pair of ingredients.

```
proc network
 nodes = mycas.NodeSetRecipesIn(script=p script tempnames=(partition))
 links = mycas.LinkSetRecipesIn;
 projection
 partition = partition
 commonNeighbors = true
 outProjectionLinks = mycas.ProjectionLinkSetOut
 outNeighborsList = mycas.ProjectionListOut;
run;
```

The output is displayed in Output 3.19.1; it contains the ingredient pairings that occur in three or more recipes. For example, garlic and olive oil have three common neighbors, which means they occur together in three recipes.

**Output 3.19.1** Top Ingredient Pairings

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>commonNeighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onion</td>
<td>Salt</td>
<td>5</td>
</tr>
<tr>
<td>Garlic</td>
<td>Onion</td>
<td>4</td>
</tr>
<tr>
<td>Garlic</td>
<td>Salt</td>
<td>4</td>
</tr>
<tr>
<td>OliveOil</td>
<td>Onion</td>
<td>4</td>
</tr>
<tr>
<td>OliveOil</td>
<td>Salt</td>
<td>4</td>
</tr>
<tr>
<td>OliveOil</td>
<td>TomatoPaste</td>
<td>4</td>
</tr>
<tr>
<td>Onion</td>
<td>Tomato</td>
<td>4</td>
</tr>
<tr>
<td>Onion</td>
<td>TomatoPaste</td>
<td>4</td>
</tr>
<tr>
<td>Salt</td>
<td>Tomato</td>
<td>4</td>
</tr>
<tr>
<td>Salt</td>
<td>TomatoPaste</td>
<td>4</td>
</tr>
<tr>
<td>Garlic</td>
<td>OliveOil</td>
<td>3</td>
</tr>
<tr>
<td>Garlic</td>
<td>Tomato</td>
<td>3</td>
</tr>
<tr>
<td>Garlic</td>
<td>TomatoPaste</td>
<td>3</td>
</tr>
<tr>
<td>OliveOil</td>
<td>Tomato</td>
<td>3</td>
</tr>
<tr>
<td>Tomato</td>
<td>TomatoPaste</td>
<td>3</td>
</tr>
</tbody>
</table>
You can also use the following statements to display the particular recipes that contain both garlic and olive oil:

```sql
proc print data=mycas.ProjectionListOut
 (where=(from = 'Garlic' and to = 'OliveOil'))
noobs;
run;
```

The output is shown in Output 3.19.2; it indicates that eggplant relish, spaghetti sauce, and spaghetti meat sauce are the three recipes that contain both garlic and olive oil.

```
Output 3.19.2 Top Ingredient Pairings

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>neighbor_id</th>
<th>neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic</td>
<td>OliveOil</td>
<td>1</td>
<td>Eggplant Relish</td>
</tr>
<tr>
<td>Garlic</td>
<td>OliveOil</td>
<td>2</td>
<td>Spag Meat Sauce</td>
</tr>
<tr>
<td>Garlic</td>
<td>OliveOil</td>
<td>3</td>
<td>Spag Sauce</td>
</tr>
</tbody>
</table>
```

References


Index

ADAMICADAR= option
   NODESIMILARITY statement, 46
ALGORITHM= option
   COMMUNITY statement, 37
   CONNECTEDCOMPONENTS statement, 40
   CYCLE statement, 41
AUTH= option
   CENTRALITY statement, 32
AUXWEIGHT= option
   LINKSV AR statement, 45
BETWEEN= option
   CENTRALITY statement, 32
BETWEENNORM= option
   CENTRALITY statement, 33
BICONNECTEDCOMPONENTS option
   SUMMARY statement, 57
BICONNECTEDCOMPONENTS statement
   statement options, 31
BOTTOMK= option
   NODESIMILARITY statement, 46
BY statement
   NETWORK procedure, 31
CASESENSITIVE option
   DISPLAY statement (NETWORK), 43
CENTRALITY statement
   statement options, 32
CLIQUE statement
   statement options, 36
CLOSE= option
   CENTRALITY statement, 33
CLOSENOPATH= option
   CENTRALITY statement, 33
CLUSTERINGCOEFFICIENT option
   CENTRALITY statement, 33
   SUMMARY statement, 57
COMMONNEIGHBORS= option
   NODESIMILARITY statement, 46, 53
COMMUNITY statement
   statement options, 37
CONNECTEDCOMPONENTS option
   SUMMARY statement, 57
CONNECTEDCOMPONENTS statement
   statement options, 40
CONVERGENCE THRESHOLD= option
   NODESIMILARITY statement, 47
CORE statement
   statement options, 41
COSINE= option
   NODESIMILARITY statement, 47, 54
CYCLE statement
   statement options, 41
DEGREE option
   CENTRALITY statement, 33
DETERMINISTIC option
   PROC NETWORK statement, 28
DIAMETERAPPROX= option
   SUMMARY statement, 57
DIGRAPHS option
   REACH statement, 55
DIRECTION= option
   PROC NETWORK statement, 28
DISPLAY statement
   NETWORK procedure, 42
DISPLAYOUT statement
   NETWORK procedure, 43
DISTRIBUTED option
   PROC NETWORK statement, 28
EACHSOURCE option
   REACH statement, 55
EIGEN= option
   CENTRALITY statement, 34
EIGENALGORITHM= option
   CENTRALITY statement, 34
EIGENMAXITERS= option
   CENTRALITY statement, 34
EMBEDDINGS= option
   NODESIMILARITY statement, 47
EXCLUDE option
   DISPLAY statement (NETWORK), 43
EXCLUDEALL option
   DISPLAY statement (NETWORK), 43
FINITEPATH option
   SUMMARY statement, 57
FIX= option
   SUMMARY statement, 57
FROM= option
   COMMUNITY statement, 37
FROMVAR= option
   LINKSV AR statement, 44
GRAPH= option
   PROC NETWORK statement, 28
HUB= option  
   CENTRALITY statement, 34

INCLUDEALL option  
   DISPLAYOUT statement (NETWORK), 44
INDEXOFFSET= option  
   PROC NETWORK statement, 28
INFLUENCE= option  
   CENTRALITY statement, 35

JACCARD= option  
   NODESIMILARITY statement, 47, 54

LINKFILTER= option  
   PATTERNMATCH statement, 52
LINKPAIRFILTER= option  
   PATTERNMATCH statement, 52
LINKREMOVALRATIO= option  
   COMMUNITY statement, 37
LINKS= option  
   PROC NETWORK statement, 28
LINKSQUERY= option  
   PROC NETWORK statement, 29
LINKSQUERYVAR statement  
   statement options, 44
LINKSVAR statement  
   statement options, 45
LOADGRAPH statement  
   statement options, 46
LOGFREQTIME= option  
   PROC NETWORK statement, 29
LOGFREQUENCYTIME= option  
   PROC NETWORK statement, 29
LOGLEVEL= option  
   PROC NETWORK statement, 29

MATCHFILTER= option  
   PATTERNMATCH statement, 52
MAXCLIQUE= option  
   CLIQUE statement, 36
MAXCYCLES= option  
   CYCLE statement, 41
MAXITERS= option  
   COMMUNITY statement, 38
MAXLENGTH= option  
   CYCLE statement, 41
   PATH statement, 51
MAXLINKWEIGHT= option  
   CLIQUE statement, 36
   CYCLE statement, 41
   PATH statement, 51
MAXMATCHES= option  
   PATTERNMATCH statement, 52
MAXNODEWEIGHT= option  
   CLIQUE statement, 36
   CORE statement, 41
   CYCLE statement, 42
   PATH statement, 51
MAXSCORE= option  
   NODESIMILARITY statement, 47
MAXSIZE= option  
   CLIQUE statement, 36
   CORE statement, 41
   CYCLE statement, 42
   PATH statement, 51

MINMATCHES= option  
   PATTERNMATCH statement, 52
MINNODEWEIGHT= option  
   CLIQUE statement, 36
   CORE statement, 41
   CYCLE statement, 42
   PATH statement, 51

MINSCORE= option  
   NODESIMILARITY statement, 47
MINSIZE= option  
   CLIQUE statement, 36

MULTILINKS= option  
   PROC NETWORK statement, 29

NDIMENSIONS= option  
   NODESIMILARITY statement, 47
NEGATIVESAMPLEFACTOR= option  
   NODESIMILARITY statement, 48

NETWORK procedure, 20

NETWORK procedure, DISPLAY statement  
   CASESENSITIVE option, 43
   EXCLUDE option, 43
   EXCLUDEALL option, 43
   TRACE option, 43

NETWORK procedure, DISPLAYOUT statement  
   INCLUDEALL option, 44
   NOREPLACE option, 44
   REPEATED option, 44

NODE= option  
   NODEQUERYVAR statement, 49
   NODESUBSETVAR statement, 50
   NODEVAR statement, 50
NODEFILTER= option
   PATTERNMATCH statement, 52
NODEPAIRFILTER= option
   PATTERNMATCH statement, 53
NODES= option
   PROC NETWORK statement, 29
NODESIMILARITY statement
   statement options, 46
NODEQUERY= option
   PROC NETWORK statement, 30
NODEQUERYVAR statement
   statement options, 49
NODESUBSET= option
   PROC NETWORK statement, 30
NODESUBSETVAR statement
   statement options, 49
NODESVAR statement
   statement options, 50
NOREPLACE option
   DISPLAYOUT statement (NETWORK), 44
NSAMPLES= option
   NODESIMILARITY statement, 48
NTHREADS= option
   PROC NETWORK statement, 30
ORDERBY= option
   NODESIMILARITY statement, 48
OUT= option
   BICONNECTEDCOMPONENTS statement, 31
   CLIQUE statement, 37
   CONNECTEDCOMPONENTS statement, 40
   CYCLE statement, 42
   SHORTESTPATH statement, 56
   SUMMARY statement, 57
   TRANSITIVECLOSURE statement, 58
OUTCOMMLINKS= option
   COMMUNITY statement, 38
OUTCOMMUNITY= option
   COMMUNITY statement, 38
OUTCONVERGENCE= option
   COMMUNITY statement, 38
OUTSIMILARITY= option
   NODESIMILARITY statement, 48
OUTSUMMARY= option
   PATTERNMATCH statement, 53
   SHORTESTPATH statement, 56
OUTWEIGHTS= option
   SHORTESTPATH statement, 56
PAGERANK= option
   CENTRALITY statement, 35
PAGERANKALPHA= option
   CENTRALITY statement, 35
PAGERANKTOL= option
   CENTRALITY statement, 35
PARTITION= option
   PROJECTION statement, 54
PATH statement
   statement options, 51
PATTERNMATCH statement
   statement options, 52
PROC NETWORK statement
   statement options, 28
PROJECTION statement
   statement options, 53
PROXIMITYORDER= option
   NODESIMILARITY statement, 48
QUERYKEY= option
   PATTERNMATCH statement, 53
RANDOMFACTOR= option
  COMMUNITY statement, 38
RANDOMSEED= option
  COMMUNITY statement, 38
REACH statement
  statement options, 55
REACH= option
  NODESSUBSETVAR statement, 50
RECURSIVE (options)
  COMMUNITY statement, 38
REPEATED option
  DISPLAYOUT statement (NETWORK), 44
RESOLUTIONLIST= option
  COMMUNITY statement, 39
SELFINKS= option
  PROC NETWORK statement, 30
SHORTESTPATH statement
  statement options, 56
SHORTESTPATH= option
  SUMMARY statement, 58
SINK= option
  NODESIMILARITY statement, 48
  NODESSUBSETVAR statement, 50
  PATH statement, 52
  SHORTESTPATH statement, 56
SOURCE= option
  NODESIMILARITY statement, 48
  NODESSUBSETVAR statement, 50
  PATH statement, 52
  SHORTESTPATH statement, 56
STANDARDIZEDLABELS option
  PROC NETWORK statement, 31
STANDARDIZEDLABELSOUT option
  PROC NETWORK statement, 31
SUMMARY statement
  statement options, 57
TIMETYPE= option
  PROC NETWORK statement, 31
TO= option
  LINKSQUERYVAR statement, 44
  LINKSVAR statement, 45
TOLERANCE= option
  COMMUNITY statement, 39
TOPK= option
  NODESIMILARITY statement, 48
TOVAR= option
  LINKSQUERYVAR statement, 44
TRACE option
  DISPLAY statement (NETWORK), 43
TRANSITIVECLOSURE statement
  statement options, 58
UNLOADGRAPH statement

VARS= option
  LINKSQUERYVAR statement, 45
  LINKSVAR statement, 45
  NODESQUERYVAR statement, 49
  NODESVAR statement, 50
VARSMATCH= option
  LINKSQUERYVAR statement, 45
  NODESQUERYVAR statement, 49
VECTOR= option
  NODESIMILARITY statement, 49
WARMSTART= option
  COMMUNITY statement, 40
WEIGHT= option
  LINKSVAR statement, 45
  NODESVAR statement, 50
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.