SAS® Visual Data Mining and Machine Learning 8.1
Data Mining and Machine Learning Procedures
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Shared Concepts</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>The ASTORE Procedure</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>The BOOLRULE Procedure</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>The FACTMAC Procedure</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>The FOREST Procedure</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>The GRADBOOST Procedure</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>The MWPCA Procedure</td>
<td>143</td>
</tr>
<tr>
<td>9</td>
<td>The NNET Procedure</td>
<td>157</td>
</tr>
<tr>
<td>10</td>
<td>The RPCA Procedure</td>
<td>187</td>
</tr>
<tr>
<td>11</td>
<td>The SVDD Procedure</td>
<td>205</td>
</tr>
<tr>
<td>12</td>
<td>The SVMACHINE Procedure</td>
<td>231</td>
</tr>
<tr>
<td>13</td>
<td>The TEXTMINE Procedure</td>
<td>251</td>
</tr>
<tr>
<td>14</td>
<td>The TMSCORE Procedure</td>
<td>299</td>
</tr>
</tbody>
</table>

Subject Index 307

Syntax Index 313
Chapter 1
Introduction

Overview of SAS Visual Data Mining and Machine Learning Procedures

This book describes the data mining and machine learning procedures that are available in SAS Visual Data Mining and Machine Learning. These procedures provide data mining and machine learning algorithms that have been specially developed to take advantage of the distributed environment that the SAS Viya platform provides. Supervised learning methods that are available include forest and gradient boosting models, neural networks, support vector machines, and factorization machines. Procedures for scoring via an analytic store and for text mining are also included.

In addition to the data mining and machine learning procedures described in this book, SAS Visual Data Mining and Machine Learning provides procedures for sampling, data exploration, clustering, dimension reduction, model assessment, and additional supervised learning, which are described in SAS Visual Data Mining and Machine Learning: Statistical Procedures.

Experimental Software

Experimental software is sometimes included as part of a production-release product. It is provided to (sometimes targeted) customers in order to obtain feedback. All experimental uses are marked Experimental in this document. Whenever an experimental procedure, statement, or option is used, a message is printed to the SAS log to indicate that it is experimental.
Chapter 1: Introduction

The design and syntax of experimental software might change before any production release. Experimental software has been tested prior to release, but it has not necessarily been tested to production-quality standards, and so should be used with care.

About This Book

This book assumes that you are familiar with Base SAS software and with the books *SAS Language Reference: Concepts* and *Base SAS Procedures Guide*. It also assumes that you are familiar with basic SAS System concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as the PRINT and SORT procedures) to manipulate SAS data sets.

Chapter Organization

This book is organized as follows:

Chapter 1, this chapter, provides an overview of the data mining and machine learning procedures that are available in SAS Visual Data Mining and Machine Learning, and it summarizes related information, products, and services.

Chapter 2 provides information about topics that are common to multiple procedures. Topics include how to use SAS Cloud Analytic Services (CAS) sessions and how to load a SAS data set onto a CAS server. This chapter also documents the CODE and PARTITION statements, which are used across a number of procedures.

Subsequent chapters describe the data mining and machine learning procedures. These chapters appear in alphabetical order by procedure name and are organized as follows:

- The “Overview” section briefly describes the analysis provided by the procedure.
- The “Getting Started” section provides a quick introduction to the procedure through a simple example.
- The “Syntax” section describes the SAS statements and options that control the procedure.
- The “Details” section discusses methodology and other topics, such as ODS tables.
- The “Examples” section contains examples that use the procedure.
- The “References” section contains references for the methodology.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the typographical conventions used in this book:
Options Used in Examples

The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documentation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template in an ODS destination statement as follows:

```sas
ods html style=HTMLBlue;
   . . .
ods html close;
ods pdf style=PearlJ;
   . . .
ods pdf close;
```

Most of the PDF tables are produced by using the following SAS System option:

```sas
options papersize=(6.5in 9in);
```

If you run the examples, you might get slightly different output. This is a function of the SAS System options that are used and the precision that your computer uses for floating-point calculations.

Where to Turn for More Information

Online Documentation

You can access the documentation by going to http://support.sas.com/documentation.
SAS Technical Support Services

The SAS Technical Support staff is available to respond to problems and answer technical questions regarding the use of procedures in this book. Go to http://support.sas.com/techsup for more information.
Chapter 2
Shared Concepts

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Shared Concepts</td>
<td>5</td>
</tr>
<tr>
<td>Using CAS Sessions and CAS Engine Librefs</td>
<td>5</td>
</tr>
<tr>
<td>Loading a SAS Data Set onto a CAS Server</td>
<td>6</td>
</tr>
<tr>
<td>Syntax Common to SAS Visual Data Mining and Machine Learning Procedures</td>
<td>7</td>
</tr>
<tr>
<td>AUTOTUNE Statement</td>
<td>7</td>
</tr>
<tr>
<td>CODE Statement</td>
<td>12</td>
</tr>
<tr>
<td>PARTITION Statement</td>
<td>13</td>
</tr>
<tr>
<td>Details for SAS Visual Data Mining and Machine Learning Procedures</td>
<td>14</td>
</tr>
<tr>
<td>Using Validation and Test Data</td>
<td>14</td>
</tr>
<tr>
<td>Multithreading</td>
<td>15</td>
</tr>
<tr>
<td>Hyperparameter Tuning</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

Introduction to Shared Concepts

This book describes data mining and machine learning procedures that run in SAS Viya. One component of SAS Viya is SAS Cloud Analytic Services (CAS), which is the analytic server and associated cloud services. The following subsections describe how to set up and use CAS sessions.

The section “Syntax Common to SAS Visual Data Mining and Machine Learning Procedures” on page 7 describes the common syntax elements that are supported by some of the procedures in this book. In some cases, individual procedures implement these common elements in slightly different ways. When this occurs, the differences are described in the respective procedure chapters.

The section “Details for SAS Visual Data Mining and Machine Learning Procedures” on page 14 provides details that are common to some of the procedures in this book.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this
CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```
cas mysess;
    libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```
cas mysess terminate;
```

For more information about the CAS statement and the LIBNAME statement, see *SAS Cloud Analytic Services: Language Reference*. For general information about CAS and CAS sessions, see *SAS Cloud Analytic Services: Fundamentals*.

Loading a SAS Data Set onto a CAS Server

Procedures in this book require the input data to reside on a CAS server. To work with a SAS data set, you must first load the data set onto the CAS server. Data loaded on the CAS server are called *data tables*. This section lists three methods of loading a SAS data set onto a CAS server. In this section, `mycas` is the name of the caslib that is connected to the `mysess` CAS session.

- You can use a single DATA step to create a data table on the CAS server as follows:

  ```
  data mycas.Sample;
    input y x @@;
  datalines;
  .46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7;
  
  Note that DATA step operations might not work as intended when you perform them on the CAS server instead of the SAS client.
  
  - You can create a SAS data set first, and when it contains exactly what you want, you can use another DATA step to load it onto the CAS server as follows:
data Sample;
  input y x @@;
datalines;
  .46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7 .78 8
;data mycas.Sample;
  set Sample;
run;

- You can use the CASUTIL procedure as follows:

  proc casutil sessref=mysess;
    load data=Sample casout="Sample";
  quit;

  The CASUTIL procedure can load data onto a CAS server more efficiently than the DATA step. For more information about the CASUTIL procedure, see SAS Cloud Analytic Services: Language Reference.

The mycas caslib stores the Sample data table, which can be distributed across many machine nodes. You must use a caslib reference in procedures in this book to enable the SAS client machine to communicate with the CAS session. For example, the following FACTMAC procedure statements use a data table that resides in the mycas caslib:

  proc factmac data = mycas.Sample;
    ...statements...;
  run;

You can delete your data table by using the DELETE procedure as follows:

  proc delete data = mycas.Sample;
  run;

The Sample data table is accessible only in the mysess session. When you terminate the mysess session, the Sample data table is no longer accessible from the CAS server. If you want your Sample data table to be available to other CAS sessions, then you must promote your data table. For more information about data tables, see SAS Cloud Analytic Services: Accessing and Manipulating Data.

Syntax Common to SAS Visual Data Mining and Machine Learning Procedures

**AUTOTUNE Statement**

AUTOTUNE <options> ;
Chapter 2: Shared Concepts

This section applies to the following procedures: FACTMAC, FOREST, GRADBOOST, NNET, and SVMACHINE.

Table 2.1 summarizes the options you can specify in the AUTOTUNE statement. All options except the TUNINGPARAMETERS= option are described in detail in the list that follows Table 2.1. For more information about the TUNINGPARAMETERS= option, see the specific procedure chapter.

**Table 2.1 AUTOTUNE Statement Options**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for k-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

**EVALHISTORY=ALL | LOG | NONE | TABLE**

specifies how to report the evaluation history of the tuner.

You can specify one of the following values:

- **ALL**
  - reports each evaluation in the log and creates the EvaluationHistory ODS table.

- **LOG**
  - prints the following information to the log for each evaluation: evaluation number, objective value, best objective value up to that point, evaluation time, and elapsed time since the beginning of the tuning process.

- **NONE**
  - suppresses reporting of evaluations in the log and does not create the EvaluationHistory ODS table.

- **TABLE**
  - creates the EvaluationHistory ODS table, which contains all evaluated points. The table contains columns for the evaluation number, all tuning parameters, and the objective function value.

By default, EVALHISTORY=TABLE
**FRACTION=number**

specifies the fraction of all data to be used for validation, where *number* must be between 0.01 and 0.99, inclusive. If you specify this option, the tuner uses a single partition validation for finding the objective value (validation error estimate). This option might not be advisable for small or unbalanced data tables where the random assignment of the validation subset might not provide a good estimate of error. For large, balanced data tables, a single validation partition is usually sufficient for estimating error; a single partition is more efficient than cross validation in terms of the total execution time.

If a PARTITION statement is specified, the validation partition defined in that statement is used, and this option is ignored. You cannot specify this option in combination with the KFOLD= option.

By default, FRACTION=0.3.

**KFOLD=number**

specifies the number of partition folds in the cross validation process, where *number* must be between 2 and 20, inclusive. If you specify this option, the tuner uses cross validation to find the objective value. In cross validation, each model evaluation requires *number* of training executions (on *number−1* data folds) and *number* of scoring executions (on one hold-out fold). Thus, the evaluation time is increased by approximately a factor of *number*. For small to medium data tables or for unbalanced data tables, cross validation provides on average a better representation of error across the entire data table (a better generalization error).

If you do not specify either this option or the FRACTION= option, then the default of FRACTION=0.3 is used. If a PARTITION statement is specified, the validation partition defined in that statement is 0.3 and this option is ignored. You cannot specify this option in combination with the FRACTION= option.

**MAXEVALS=number**

specifies the maximum number of configuration evaluations allowed for the tuner, where *number* must be an integer greater than or equal to 3. When the *number* of evaluations is reached, the tuner terminates the search and returns the results. To produce a single objective function value (validation error estimate), each configuration evaluation requires either a single model training and scoring execution on a validation partition, or a number of training and scoring executions equal to the value of the KFOLD= option for cross validation. The MAXEVALS= option might lead to termination before the value of the MAXITER= option or the MAXTIME= option is reached.

By default, MAXEVALS=50.

**MAXITER=number**

specifies the maximum number of iterations of the optimization tuner, where *number* must be greater than or equal to 1. Each iteration normally involves a number of objective evaluations up to the value of the POPSIZE= option. The MAXITER= option might lead to termination before the value of the MAXEVALS= option or the MAXTIME= option is reached.

By default, MAXITER=5.

**MAXTIME=number**

specifies the maximum time (in seconds) allowed for the tuner, where *number* must be greater than or equal to 1. When this value is reached, the tuner terminates the search and returns results. The actual run time for optimization might be longer because it includes the remaining time needed to finish the current evaluation. For long-running model training (large data tables), the actual run time might
significantly exceed number. The MAXTIME= option might lead to termination before the value of the MAXEVALS= option or the MAXITER= option is reached.

By default, MAXTIME=36000.

**NPARALLEL=number**

specifies the number of evaluations to be performed in parallel, where number must be greater than or equal to 0. When SEARCHMETHOD=GA is specified, the value of number is equal to the value of the POPSIZE= option minus one. When SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM is specified, the value of number is equal to the value of SAMPLESIZE= option.

By default, NPARALLEL=0, which indicates that the value of number is determined as follows:

- If SEARCHMETHOD=GA, then the number of parallel evaluations is equal to the value of the POPSIZE= option minus 1.
- If SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM, then the number of parallel evaluations is equal to the value of the SAMPLESIZE= option, with a maximum value of 32.

**OBJECTIVE=function**

specifies which measure of model performance the tuner uses as the objective function.

You can specify one of the following values for function. Some values can be specified only when the target variable is of a particular type, as shown in parentheses.

- **ASE** uses average squared error as the objective function.
- **AUC** uses area under the curve as the objective function (nominal type only).
- **F05** uses the F0.5 coefficient as the objective function (nominal type only).
- **F1** uses the F1 coefficient as the objective function (nominal type only).
- **GAMMA** uses the gamma coefficient as the objective function (nominal type only).
- **GINI** uses the Gini coefficient as the objective function (nominal type only).
- **KS** uses the Kolmogorov-Smirnov coefficient as the objective function (nominal type only).
- **MAE** uses the mean absolute error as the objective function (interval type only).
- **MCE** uses the misclassification rate as the objective function (nominal type only).
- **MCLL** uses the multiclass log loss as the objective function (nominal type only).
- **MISC** uses the misclassification error percentage as the objective function (nominal type only).
- **MSE** uses the mean squared error as the objective function (interval type only).
- **MSLE** uses the mean squared logarithmic error as the objective function (interval type only).
- **RASE** uses the root average squared error as the objective function.
- **RMAE** uses the root mean absolute error as the objective function (interval type only).
- **RMSLE** uses the root mean squared logarithmic error as the objective function (interval type only).
TAU uses the tau coefficient as the objective function (nominal type only).

By default, OBJECTIVE=MISC for nominal targets, and OBJECTIVE=MSE for interval targets.

POPSIZE=number specifies the maximum number of evaluations in one iteration (population), where number must be greater than or equal to 1. In some cases, the tuner algorithm might generate a number of new configurations that is smaller than number. The POPSIZE option is only used when SEARCHMETHOD=GA. This option is ignored when SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS.

By default, POPSIZE=10.

SAMPLESIZE=number specifies the total number of evaluations, where number must be greater than or equal to 1. You can specify this option when SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS. This option is ignored when SEARCHMETHOD=GA.

By default, SAMPLESIZE=50.

SEARCHMETHOD=GA | LHS | RANDOM specifies the search method to use for tuning. You can specify the following values:

GA uses an initial Latin hypercube sample that seeds a genetic algorithm to generate a new population of alternative configurations at each iteration.

LHS uses a Latin hypercube to generate a single sample of configurations that is uniform in each tuning parameter, but random in combinations.

RANDOM generates a single sample of purely random configurations.

By default, SEARCHMETHOD=GA.

TARGETEVENT=string specifies the target event to use for calculating the selected objective function. This option is ignored when the value of the OBJECTIVE= option is not AUC, F1, F05, GINI, GAMMA, TAU, or KS.

If you do not specify the TARGETEVENT= option, the tuner selects one of the target levels and uses it for calculating the specified objective function.

TUNINGPARAMETERS=(suboption | . . . | < suboption >) TUNEPARMS=(suboption | . . . | < suboption >) specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

For more information about which tuning suboptions are available, see the specific procedure chapters.

USEPARAMETERS=tuning-parameter-option specifies which set of parameters to tune.

You can specify the following tuning-parameter-options:

STANDARD tunes using the default bounds and initial values for all parameters.

CUSTOM tunes only the parameters that are specified in the TUNINGPARAMETERS= option.
COMBINED tunes the parameters that are specified in the TUNINGPARAMETERS= option and uses default bounds and initial values to tune all other parameters.

By default, USEPARAMETERS=COMBINED.

## CODE Statement

```sas
CODE < options > ;
```

This section applies to the following procedures: FOREST and GRADBOOST.

Table 2.2 summarizes the options you can specify in the CODE statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMENT</td>
<td>Adds comments to the generated code</td>
</tr>
<tr>
<td>FILE=</td>
<td>Names the file where the generated code is saved</td>
</tr>
<tr>
<td>FORMATWIDTH=</td>
<td>Specifies the numeric format width for the regression coefficients</td>
</tr>
<tr>
<td>INDENTSIZEx=</td>
<td>Specifies the number of spaces to indent the generated code</td>
</tr>
<tr>
<td>LABELID=</td>
<td>Specifies a number used to construct names and labels</td>
</tr>
<tr>
<td>LINESIZE=</td>
<td>Specifies the line size for the generated code</td>
</tr>
<tr>
<td>NOTRIM</td>
<td>Compares formatted values, including blank padding</td>
</tr>
<tr>
<td>PCATAxALL</td>
<td>Generates probabilities for all levels of categorical response variables</td>
</tr>
</tbody>
</table>

If you do not specify the FILE= option and if your SAS client has a default path, then the SAS scoring code is written to an external file named `_code_`. You can specify the following options in the CODE statement.

- **COMMENT**
  adds comments to the generated code.

- **FILE=filename**
  names the external file that saves the generated code. When enclosed in a quoted string (for example, `FILE="c:\mydir\scorecode.sas"`), this option specifies the path and filename for writing the code to an external file. If you do not specify a path but your SAS client has a default path, then the code is written to an external file named `filename` at that location. You can also specify an unquoted `filename` of no more than eight characters. If the `filename` is assigned as a fileref in a Base SAS FILENAME statement, the file specified in the FILENAME statement is opened; otherwise, if your SAS client has a default path, an external file named `filename` is created.

- **FORMATWIDTH=width**
  specifies the width to use in formatting derived numbers such as parameter estimates. You can specify a value in the range 4 to 32; the default is 20.
**PARTITION Statement**

`PARTITION partition-option;`

This section applies to the following procedures: FOREST and GRADBOOST.

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjoint subsets for model training, validation, and testing. For more information, see the section “Using Validation and Test Data” on page 14. Either you can designate a variable in the input data table and a set of formatted values of that variable to determine the role of each observation, or you can specify proportions to use for randomly assigning observations to each role.

You must specify exactly one of the following `partition-options`:

**FRACTION(<TEST=frac> <VALIDATE=frac> <SEED=number>)**

randomly assigns specified proportions of the observations in the input data table to the roles. You specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions. If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions must be less than 1 and the remaining fraction of the observations are assigned to the training role. The SEED= option specifies an integer that is used to start the pseudorandom number generator for random partitioning of data for training, testing, and validation. If you do not specify SEED=number or if `number` is less than or equal to 0, the seed is generated by reading the time of day from the computer’s clock.
Chapter 2: Shared Concepts

ROLE=variable (<TEST=’value’> <TRAIN=’value’> <VALIDATE=’value’>)
ROLENVAR=variable (<TEST=’value’> <TRAIN=’value’> <VALIDATE=’value’>)

names the variable in the input data table whose values are used to assign roles to each observation. This variable cannot also appear as an analysis variable in other statements or options. The TEST=, TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are used to assign observation roles. If you do not specify the TRAIN= suboption, then all observations whose role is not determined by the TEST= or VALIDATE= suboption are assigned to the training role.

Details for SAS Visual Data Mining and Machine Learning Procedures

Using Validation and Test Data

This section applies to the following procedures: FOREST and GRADBOOST.

When you have sufficient data, you can divide your data into three parts called the training, validation, and test data. During the selection process, models are fit on the training data, and the prediction errors for the models so obtained are found by using the validation data. This prediction error on the validation data can be used to decide when to terminate the selection process and to decide which model to select. Finally, after a model has been selected, the test set can be used to assess how the selected model generalizes on data that played no role in selecting the model.

In some cases, you might want to use only training and test data. For example, you might decide to use an information criterion to decide which effects to include and when to terminate the selection process. In this case, no validation data are required, but test data can still be useful in assessing the predictive performance of the selected model. In other cases, you might decide to use validation data during the selection process but forgo assessing the selected model on test data. Hastie, Tibshirani, and Friedman (2001) note that it is difficult to provide a general rule for how many observations you should assign to each role. They note that a typical split might be 50% for training and 25% each for validation and testing.

You use a PARTITION statement to logically subdivide the input data table into separate roles. You can specify the fractions of the data that you want to reserve as test data and validation data. For example, the following statements randomly divide the inData data table, reserving 50% for training and 25% each for validation and testing:

```
proc logselect data=mycas.inData;
 partition fraction(test=0.25 validate=0.25);
 ...
run;
```

You can specify the SEED= option in the PARTITION statement to create the same partition data tables for a particular number of compute nodes. However, changing the number of compute nodes changes the initial distribution of data, resulting in different partition data tables.
In some cases, you might need to exercise more control over the partitioning of the input data table. You can do this by naming both a variable in the input data table and a formatted value of that variable for each role. For example, the following statements assign roles to the observations in the inData data table that are based on the value of the variable Group in that data table. Observations whose value of Group is 'Group 1' are assigned for testing, and those whose value is 'Group 2' are assigned to training. All other observations are ignored.

```
proc logselect data=mycas.inData;
 partition roleVar=Group(test='Group 1' train='Group 2')
 ...
run;
```

When you have reserved observations for training, validation, and testing, a model that is fit on the training data is scored on the validation and test data, and statistics are computed separately for each of these subsets.

---

**Multithreading**

This section applies to the following procedures: FACTMAC, FOREST, GRADBOOST, NNET, SVMACHINE, TEXTMINE, and TMSCORE.

Threading refers to the organization of computational work into multiple tasks (processing units that can be scheduled by the operating system). A task is associated with a thread. Multithreading refers to the concurrent execution of threads. When multithreading is possible, substantial performance gains can be realized compared to sequential (single-threaded) execution. The number of threads spawned by a procedure that runs in CAS is determined by your installation.

The tasks that are multithreaded by procedures that run in CAS are primarily defined by dividing the data that are processed on a single machine among the threads—that is, the procedures implement multithreading through a data-parallel model. For example, if the input data table has 1,000 observations and the procedure is running on four threads, then 250 observations are associated with each thread. All operations that require access to the data are then multithreaded. These operations include the following (not all operations are required for all procedures):

- variable levelization
- effect levelization
- formation of the initial crossproducts matrix
- formation of approximate Hessian matrices for candidate evaluation during model selection
- objective function calculation
- gradient calculation
- Hessian calculation
- scoring of observations

In addition, operations on matrices such as sweeps can be multithreaded provided that the matrices are of sufficient size to realize performance benefits from managing multiple threads for the particular matrix operation.
Hyperparameter Tuning

This section applies to the following procedures: FACTMAC, FOREST, GRADBOOST, NNET, and SVMACHINE.

The quality of the predictive model that these procedures create depends on the values for various options that govern the training process; these options are called hyperparameters. The default values of these hyperparameters might not be suitable for all applications. In order to reduce the manual effort in adjusting these hyperparameters, you can use the AUTOTUNE statement to identify the best settings for them. The AUTOTUNE statement engages the optimization algorithm (tuner), which searches for the best possible combination of values of these select hyperparameters while trying to minimize the objective function. The objective function is either a validation error or an accuracy estimate as specified in the OBJECTIVE= option. For example, when OBJECTIVE=MISC, the objective function is the misclassification error for nominal targets, and when OBJECTIVE=ASE, the objective function is the average squared error for interval targets. The tuning process involves multiple evaluations of the objective function and can include multiple iterations (depending on the value of the SEARCHMETHOD= option). Each evaluation of the objective function can consist of one or several training and scoring executions as follows:

- If you specify the PARTITION statement, the tuner uses a single-partition validation set as defined in that statement. For each newly generated configuration of hyperparameters, a new model is trained on the training subset, and then the validation subset is scored using the trained model to find the resulting objective function value.

- If you specify the FRACTION= option, the tuner uses a single-partition validation set. In this process, the tuner partitions all the data into two subsets: one subset for model training and one subset for model validation. For each newly generated configuration of hyperparameters, a new model is trained on the training subset, and then the validation subset is scored using the trained model to find the resulting objective function value.

- If KFOLD=k is specified, the tuner uses k-fold cross validation. In this process, the tuner partitions all the data into k subsets (folds). For each fold, a new model is trained on each of the (k–1) folds and then validated using the selected (holdout) fold. The objective function value is averaged over each set of training and scoring executions to obtain a single error estimate value.

The default optimization tuner algorithm is based on a genetic algorithm (by default, SEARCHMETHOD=GA). The genetic algorithm applies the principles of natural selection and evolution to find an improved configuration. The tuner performs the following sequence of actions.

1. A default model configuration (default values of select model tuning parameters) is evaluated first and designated as Iteration 0. The objective function value is obtained by using either single partition validation or k-fold cross validation and then recorded for comparison.

2. The initial set of configurations, also called a “population,” is generated using a technique called random Latin hypercube sampling (LHS). In a Latin hypercube sample, each configuration of hyperparameters is evaluated, and their objective function values are again recorded for comparison. This becomes Iteration 1.
3. The best model configurations from the initial population are used to generate the next population of model configurations, Iteration 2, which are then evaluated. This process is repeated for the remaining iterations, as long as the maximum number of evaluations or the maximum time is not reached.

4. The best model configuration is reevaluated by executing a single training and model scoring, and information about the model training and scoring for this configuration is returned.

5. All evaluated model configurations are ranked, and the hyperparameter and objective function values of the top 10 configurations are returned.

If SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS, then step 3 is eliminated. A single sample of candidate configurations is generated (either randomly or using a Latin hypercube sample) and evaluated as step 2.

During step 2 and step 3 (if performed), a portion of the identified set of configurations are evaluated concurrently by the system. The default number of possible parallel evaluations is determined by the POPSIZE= option when SEARCHMETHOD=GA or by the SAMPLESIZE= when SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS. The maximum number of parallel evaluations is limited by the total number of worker nodes that are connected to the server divided by the number of worker nodes that are used by the session. For example, if the server is configured with 100 worker nodes and 4 worker nodes are used in the session, then at most 25 parallel evaluations are performed by default. This limit can be increased up to a factor of 2 times the default limit (to 50 in this example). If the session contains all the worker nodes that are available to the server and the number of worker nodes is greater than 16, then the number of worker nodes per parallel session is limited to 8 in order to allow for at least two parallel evaluations.

Specifically, the number of parallel evaluations is determined as follows:

1. The number of workers to use in parallel subsessions is first determined by using the number of workers in the parent session, \( n_{\text{Workers}} \). If \( n_{\text{Workers}} \) is equal to all the workers that are connected to the server and there are at least 16 workers, the number of workers in the subsession is limited to 8 to allow for at least two parallel subsessions.

2. The number of possible parallel evaluations is then determined as either one less than the population size when SEARCHMETHOD=GA, or as the sampling size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM.

3. The number of parallel evaluations is then limited by the server configuration:

   - For a single-machine server, if the number of possible parallel evaluations is greater than 4 and not specified in the NPARALLEL= option, it is limited to 4. If the NPARALLEL= option is specified, then the number of possible parallel evaluations is limited to 32.
   - For a distributed-mode server, the limit for the number of parallel evaluations is calculated as \( W/n \) where \( W \) is the number of workers connected to the server and \( n \) is the number of workers in the parallel subsessions. If the NPARALLEL= option is specified, then the limit is \( 2W/n \).

By default, all configurations are evaluated in parallel. If the POPSIZE= or SAMPLESIZE= option is increased, the number of parallel evaluations is also increased.

Because each of the parallel evaluations results in a different data distribution, the best model that is obtained from the autotuning process cannot be reproduced by rerunning the procedure with the hyperparameter values...
that are reported in the autotuning results. The model that is built when the procedure is rerun will use a
different distribution of data. You can reproduce the tuned model only if the server is run in single-machine
mode or if only one worker is used in the server, with only one thread used for training. Because the best
model that is returned cannot necessarily be recovered by training with the same hyperparameters at a future
time, it is strongly recommended that you preserve the returned model.

References

Hastie, T. J., Tibshirani, R. J., and Friedman, J. H. (2001). *The Elements of Statistical Learning: Data Mining,
Chapter 3
The ASTORE Procedure

Overview: ASTORE Procedure

The ASTORE procedure is an interactive procedure in which each statement runs immediately. The ASTORE procedure describes, manages, and scores with an analytic store. The analytic store is the result of a SAVESTATE statement from another analytic procedure; it is a binary file that contains that procedure’s state after it completes the training phase of data analysis. Some procedures that support a SAVESTATE statement are the FACTMAC, FOREST, and SVMACHINE procedures. You can use the analytic store at a later time for scoring.

PROC ASTORE Features

The ASTORE procedure enables you to do the following:
- describe limited information about the analytic store
- move analytic stores between the client and the server
- produce different types of DS2 scoring code that can run locally using the DS2 procedure
- produce DS2 language scoring code that can run in SAS Viya
- score an input data set and produce an output data set by using a specified analytic store and optional DS2 scoring code that uses the analytic store
- consume code that is created by a DESCRIBE statement; you can edit the code and send it again in a SCORE statement (because PROC ASTORE is interactive)

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”
Getting Started: ASTORE Procedure

Creating an Analytic Store

When you score complex analytic models, you must use a different approach from the usual simple scoring code. Instead you can save the state of the model in a binary file called an analytic store. This binary file can be used later to score the model. This example shows how to produce an analytic store that is created by the SVMACHINE procedure. For more information about the SVMACHINE procedure, see Chapter 12, “The SVMACHINE Procedure.”

This example uses the home equity data set hmeq, which is available in the Sampsio library that SAS provides. The data set contains observations for 5,960 mortgage applicants. A variable named Bad indicates whether the customer has paid on his or her loan or has defaulted on it. Table 3.1 describes the variables in Hmeq.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| Bad      | Response | Binary | 1 = customer defaulted on the loan or is seriously delinquent  
|          |        |       | 0 = customer is current on loan payments |
| CLAge    | Predictor | Interval | Age of oldest credit line in months |
| CLNo     | Predictor | Interval | Number of credit lines |
| DebtInc  | Predictor | Interval | Debt-to-income ratio |
| Delinq   | Predictor | Interval | Number of delinquent credit lines |
| Derog    | Predictor | Interval | Number of major derogatory reports |
| Job      | Predictor | Nominal | Occupational category |
| Loan     | Predictor | Interval | Requested loan amount |
| MortDue  | Predictor | Interval | Amount due on existing mortgage |
| nInq     | Predictor | Interval | Number of recent credit inquiries |
| Reason   | Predictor | Binary | 'DebtCon' = debt consolidation  
|          |        |       | 'HomeImp' = home improvement |
| Value    | Predictor | Interval | Value of current property |
| YoJ      | Predictor | Interval | Years at present job |

You can load the sampsio.hmeq data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step. These statements assume that your CAS engine libref is named mycas (as in the section “Using CAS Sessions and CAS Engine Librefs” on page 20), but you can substitute any appropriately defined CAS engine libref.

This DATA step includes an id variable, which is bound to the observation number _N_. The id variable is used to join the input records with their corresponding scores.

```plaintext
data mycas.hmeq;
 set sampsio.hmeq;
 id = _N_;
run;
```
Because distributed computing orders distributed data differently than traditional SAS procedures orders them, one or more variables that can act as the record identifier must be in the input data set. Here the record identifier is a single variable `id`.

The following PROC SVMACHINE call specifies two INPUT statements: one specifies the variables `loan`, `mortdue`, `value` as interval variables; the other specifies the variables `reason`, `job`, `delinq`, and `ninq` as classification variables. The TARGET statement indicates that the variable `bad` is chosen as the target. The ID statement indicates that the `id` variable must be present in the output data table in order to join records from the input table to their corresponding record in the output table. The SAVESTATE statement saves the state of the SVMACHINE procedure in the analytic store, which is stored in the table `mycas.savehmeq`.

```sas
proc svmachine data=mycas.hmeq;
 input loan mortdue value /level=interval;
 input reason job delinq ninq /level=nominal;
 target bad;
 id id;
 savestate rstore=mycas.savehmeq;
```

**NOTE:** PROC ASTORE does not have to run immediately after PROC SVMACHINE.

Two different procedure runs at different times will produce two analytic stores that have different keys, even though the two runs might appear to be identical. Running the preceding code twice will produce two stores with different key identifiers.

---

**Using the Analytic Store**

The most important task of the ASTORE procedure is to score an input table by using the information in the analytic store, which is stored in a data table in CAS.

In this example, the input data table is `mycas.hmeq`, the output data table is `mycas.scoreout1`, and the analytic store is in the data table `mycas.savehmeq`. All the input tables must be loaded in your CAS session. The resulting output table is created in the same CAS session.

```sas
proc astore;
 score data=mycas.hmeq
 out=mycas.scoreout1
 rstore=mycas.savehmeq;
quit;

data scoreout1;
 set mycas.scoreout1;
run;
proc sort data=scoreout1;
 by id;
run;
```

The following statements print the observations, as shown in **Output 3.1**.

```sas
proc print data=scoreout1(obs=5);
run;
```
Syntax: ASTORE Procedure

The following statements are available in the ASTORE procedure:

```plaintext
PROC ASTORE;
 SCORE score-options;
 DESCRIBE describe-options;
 DOWNLOAD download-options;
 UPLOAD upload-options;
```

PROC ASTORE is interactive: each statement is executed immediately.

The following sections describe the PROC ASTORE statement and then describe the other statements in alphabetical order.

---

**PROC ASTORE Statement**

```
PROC ASTORE;
```

The PROC ASTORE statement invokes the procedure and does not require any options.

---

**DESCRIBE Statement**

```
DESCRIBE STORE=local-file-name | RSTORE=CAS-libref.data-table < describe-options>;
```

The DESCRIBE statement specifies the name or identifier of an analytic store either in the local file system or in a data table stored in CAS. It can also produce DS2 basic scoring code. You can edit the basic scoring code to add transformations to the input variables, flag or override the decision made for the record, work with ensembles, and so on.

Because PROC ASTORE is interactive, you can edit the result from the DESCRIBE statement and send it in a subsequent SCORE statement. The edited file must comply with the DS2 language syntax. For more information about the DS2 language, see *SAS DS2 Language Reference*.

You must specify exactly one of the following options:

---

**Figure 3.1** Scoring with PROC ASTORE

<table>
<thead>
<tr>
<th>Obs</th>
<th>id</th>
<th><em>P</em></th>
<th>P_BAD1</th>
<th>P_BAD0</th>
<th>I_BAD</th>
<th><em>WARN</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0000000088</td>
<td>7.2815958E-8</td>
<td>0.9999999272</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.9999999691</td>
<td>9.2701136E-8</td>
<td>0.9999999073</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1.0000000096</td>
<td>7.2405865E-8</td>
<td>0.9999999276</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-0.846156581</td>
<td>0.6410258508</td>
<td>0.3589741492</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1.0000000505</td>
<td>5.1990216E-8</td>
<td>0.999999948</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3: The ASTORE Procedure

STORE=local-file-name
specifies either the file reference or the full path of a valid store file that was created earlier by another procedure that processed a SAVESTATE statement.

RSTORE=CAS-libref.data-table
specifies the CAS table that contains the analytic store. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 20.

You can also specify the following describe-option:

EPICODE< =code-file-name>
sends DS2 language statement either to the SAS log (if you do not specify a code-file-name) or to an external code file that can run in CAS and that is identified by code-file-name, which is either the file reference or the full path and member name of the external code file.

NOTE: The DS2 code allows you to score concurrently with multiple analytic stores as long as they share the same input and output variables. The store key identifier plays an important role in managing multiple analytic stores in a single run.

DOWNLOAD Statement

DOWNLOAD RSTORE=CAS-libref.data-table STORE=store-file-name ;
The DOWNLOAD statement retrieves an external binary analytic store that was produced by another procedure from the CAS session and stores it in the local file system.

You must specify the following options in any order:

RSTORE=CAS-libref.data-table
specifies a data table that contains the state to be downloaded. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 20.

STORE=local-file-name
specifies either the file reference or the full path of the local analytic store file to which the contents of the data table is downloaded.

SCORE Statement

SCORE DATA=CAS-libref.data-table OUT=CAS-libref.data-table RSTORE=CAS-libref.data-table < EPICODE< = >code-file-name> ;
The SCORE statement enables you to score both simple and complex models.

You must specify the following score-options:
DATA=CAS-libref.data-table
names the input data table for PROC ASTORE to use. CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about CAS-libref, see the section “Using CAS Sessions and CAS Engine Librefs” on page 20.

data-table specifies the name of the input data table.

OUT=CAS-libref.data-table
names the output data table for PROC ASTORE to use. You must specify this option before any other options. CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about CAS-libref, see the section “Using CAS Sessions and CAS Engine Librefs” on page 20.

data-table specifies the name of the output data table.

RSTORE=CAS-libref.model-file-name
specifies the data table in CAS to contain the analytic store. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 20.

You can also specify the following option:

EPCODE=code-file-name
names the location of the optional scoring code file (which was created by the DESCRIBE statement) and loads that file into the CAS session for scoring. You can use this option when you have changed the contents of the scoring code.

UPLOAD Statement

UPLOAD upload-options ;

The UPLOAD statement moves an analytic store from the local file system into a data table in CAS.

You must specify the following upload-options in any order:

RSTORE=CAS-libref.data-table
specifies the CAS table to which the store is sent. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 20.
**STORE=** `local-file-name`

specifies either the file reference or the full path of the valid store file that was created earlier by some analytic engine and exists in the local file system.

---

**Details: ASTORE Procedure**

The DESCRIBE statement displays the following basic information about the store:

- store key
- some basic information to describe the model
- input variables
- output variables

If you specify the EPCODE= option in the DESCRIBE statement, PROC ASTORE produces basic DS2 language statements, which it sends to the SAS log unless you specify an optional `code-file-name` to send them to a specified file. The DS2 code contains empty method blocks like the following:

```plaintext
method preScoreRecord();
end;
method postScoreRecord();
end;
method run();
 set sasep.in; /* read in the record */
 preScoreRecord(); /* Optional: process the input variables as needed */
 sc.scoreRecord(); /* score one record */
 postScoreRecord(); /* Optional: process the output variables as needed */
end;
```

You can use the `preScoreRecord` method block to transform the input variables, and you can change or flag the scores in the `postScoreRecord` method block. If you do not intend to fill either of these two method blocks, then you do not need to specify the EPCODE=`code-file-name` option in the SCORE statement.

The UPLOAD statement produces output that includes the store key for future reference in the DS2 language code. The code that is produced by the EPCODE= option in the DESCRIBE statement includes the same key. If you upload the store to CAS and you specify the EPCODE= option in the DESCRIBE statement again, you will observe the same key. The key of the store is dependent on the store and not on whether the store is located in the local file system or in CAS.

---

**ODS Table Names**

Each table that the ASTORE procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. These names are listed in Table 3.2.
### Table 3.2  ODS Tables Produced by PROC ASTORE

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Key information from the UPLOAD statement</td>
<td>UPLOAD</td>
</tr>
<tr>
<td></td>
<td>Key information from the DOWNLOAD statement</td>
<td>DOWNLOAD</td>
</tr>
<tr>
<td></td>
<td>Key information from the DESCRIBE statement</td>
<td>DESCRIBE</td>
</tr>
<tr>
<td>InputVariables</td>
<td>List of input variables from the procedure that saved the state</td>
<td>DESCRIBE</td>
</tr>
<tr>
<td>OutputVariables</td>
<td>List of output variables from the procedure that saved the state</td>
<td>DESCRIBE</td>
</tr>
<tr>
<td>Description</td>
<td>Name of the component that saved the state and the time it was saved.</td>
<td>DESCRIBE</td>
</tr>
<tr>
<td>Timing</td>
<td>Timing details.</td>
<td>SCORE</td>
</tr>
</tbody>
</table>

**NOTE:** Analytic stores can become very large; breaking down the different stages of scoring a data table in CAS is important and informative.

---

### Examples: ASTORE Procedure

**NOTE:** Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

### Example 3.1: Scoring a Single Record

This is a simple example that creates a table that contains one record whose ID is 100 and uses the analytic store that was produced by PROC SVMACHINE.

The following DATA step creates the mycas.hmeq1 table in CAS and extracts the record whose ID is 100.

```sas
 data mycas.hmeq1;
 set mycas.hmeq;
 if (id = 100);
 run;
```
Chapter 3: The ASTORE Procedure

The following statements score the mycas.hmeq1 table with the analytic store in the table mycas.savehmeq to produce the output table mycas.hmeq1out, which is shown in Output 3.1.1.

```sas
proc astore;
 score data=mycas.hmeq1
 rstore=mycas.savehmeq
 out=mycas.hmeq1out;
quit;
proc print data= mycas.hmeq1out ;
run;
```

**Output 3.1.1** Scoring a Single Record

<table>
<thead>
<tr>
<th>Obs</th>
<th>id</th>
<th><em>P</em></th>
<th>P_BAD1</th>
<th>P_BAD0</th>
<th>I_BAD</th>
<th><em>WARN</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>1.0000000287</td>
<td>6.2877921E-8</td>
<td>0.9999999371</td>
<td>0</td>
<td>M</td>
</tr>
</tbody>
</table>

Example 3.2: Describing the Store

In this simple example, no DS2 language code is requested. The DESCRIBE statement produces tables that describe some of the contents store as seen in Output 3.2.1 and sends the basic code to the file svmepcode.sas.

```sas
proc astore;
 describe rstore=mycas.savehmeq
 epcode="svmepcode.sas";
quit;
```

**Output 3.2.1** contains the following ODS tables:

- The “Key Information” table displays the string identifier of the store. This is the same string that is contained in the code the EPCODE= option in DESCRIBE statement produces.
- The “Basic Information” table displays the analytic engine that produced the store and the time when the store was created by processing a SAVESTATE statement.
- The “Input Variables” table displays the input variables.
- The “Output Variables” table displays the output variables.

**Output 3.2.1** Output Tables from the DESCRIBE statement

<table>
<thead>
<tr>
<th>Key Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>14F2E0A7B9A73581F79904C6E900D60ABCC51EDB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Engine</td>
</tr>
<tr>
<td>Time Created</td>
</tr>
</tbody>
</table>
The following statements show the contents of the `svmepcode.sas` file; this is DS2 language code:

```sas
data sasep.out;
 dcl package score sc();
 dcl double "LOAN";
 dcl double "MORTDUE";
 dcl double "VALUE";
 dcl nchar(7) "REASON";
 dcl nchar(7) "JOB";
 dcl double "DELINQ";
 dcl double "NINQ";
 dcl double "BAD";
 dcl double "id";
 dcl double "_P_" having label n'Decision Function';
 dcl double "P_BAD1" having label n'Predicted: BAD=1';
 dcl double "P_BAD0" having label n'Predicted: BAD=0';
 dcl nchar(32) "I_BAD" having label n'Into: BAD';
 dcl nchar(4) "_WARN_" having label n'Warnings';
 Keep "id" "_P_" "P_BAD1" "P_BAD0" "I_BAD" "_WARN_" ;
 varlist allvars[_all_];
 method init();
```
```
sc.setvars(allvars);
sc.setKey(n'14F2E0A7B9A73581F79904C6E900D60ABCC51EDB');
end;
method preScoreRecord();
end;
method postScoreRecord();
end;
method term();
end;
method run();
set sasep.in;
preScoreRecord();
sc.scoreRecord();
postScoreRecord();
end;
enddata;
```

**NOTE:** The `sc.setKey` in the method `init` method block contains a string that identifies an analytic store. Every time you produce a new store, the key changes, even if you think the runs are identical.

You can view or edit the `svmepcode.sas` file that resides in the local file system. If you do not intend to edit either the `preScoreRecord` or `postScoreRecord` method block, you can still score. When you edit the file, you must follow the syntax of the DS2 programming language. The following statements show an example:

```
method preScoreRecord();
 /* insert input variable transformations here */
end;
method postScoreRecord();
 /* change or flag the decisions here */
end;
method run();
 set sasep.in; /* read in the record */
 preScoreRecord(); /* Optional: process the input variables as needed */
 sc.scoreRecord(); /* score one record */
 postScoreRecord(); /* Optional: process the output variables as needed */
end;
```

Transformations of an input variable should be in the `preScoreRecord` method block. You can alter the decisions made from scoring one record in the `postScoreRecord` method block. If you do not intend to alter the contents of the DS2 code in either of these method blocks, then you do not need to specify the EPCODE= option in the SCORE statement.

**NOTE:** The store key will be different every time you use the SAVESTATE statement in a procedure that supports it.
Example 3.3: Downloading the Store to the Local File System

This example extracts the analytic store saved in the data table mycas.savehmeq from CAS to the local file svmlocalcopy in the local file system.

```plaintext
proc astore;
 download rstore=mycas.savehmeq
 store="svmlocalcopy";
quit;
```

In addition to downloading the actual file, PROC ASTORE writes a note in the log that shows how many bytes were downloaded.

Example 3.4: Uploading the Local Store from the Local File System

This example sends the analytic store svmlocalcopy from the local file system to the data table mycas.savehmeq on CAS.

```plaintext
proc astore;
 upload rstore=mycas.savehmeqnew
 store="svmlocalcopy";
quit;
```

The UPLOAD statement produces the store key in the listing. You can use this key to construct the embedded processing code on your own, but it is simpler for you to use the EPCODE= option in the DESCRIBE statement to produce the resulting minimal code and then edit the contents.
## Chapter 4
### The BOOLRULE Procedure

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: BOOLRULE Procedure</td>
<td>34</td>
</tr>
<tr>
<td>PROC BOOLRULE Features</td>
<td>34</td>
</tr>
<tr>
<td>Using CAS Sessions and CAS Engine Librefs</td>
<td>35</td>
</tr>
<tr>
<td>Getting Started: BOOLRULE Procedure</td>
<td>35</td>
</tr>
<tr>
<td>Syntax: BOOLRULE Procedure</td>
<td>39</td>
</tr>
<tr>
<td>PROC BOOLRULE Statement</td>
<td>39</td>
</tr>
<tr>
<td>DOCINFO Statement</td>
<td>42</td>
</tr>
<tr>
<td>OUTPUT Statement</td>
<td>43</td>
</tr>
<tr>
<td>SCORE Statement</td>
<td>44</td>
</tr>
<tr>
<td>TERMINFO Statement</td>
<td>44</td>
</tr>
<tr>
<td>Details: BOOLRULE Procedure</td>
<td>45</td>
</tr>
<tr>
<td>BOOLLEAR for Boolean Rule Extraction</td>
<td>45</td>
</tr>
<tr>
<td>Term Ensemble Process</td>
<td>46</td>
</tr>
<tr>
<td>Rule Ensemble Process</td>
<td>47</td>
</tr>
<tr>
<td>Measurements Used in BOOLLEAR</td>
<td>48</td>
</tr>
<tr>
<td>Precision, Recall, and the F1 Score</td>
<td>48</td>
</tr>
<tr>
<td>g-Score</td>
<td>49</td>
</tr>
<tr>
<td>Estimated Precision</td>
<td>49</td>
</tr>
<tr>
<td>Improvability Test</td>
<td>50</td>
</tr>
<tr>
<td>Shrinking the Search Space</td>
<td>50</td>
</tr>
<tr>
<td>Feature Selection</td>
<td>50</td>
</tr>
<tr>
<td>Significance Testing</td>
<td>50</td>
</tr>
<tr>
<td>k-Best Search</td>
<td>51</td>
</tr>
<tr>
<td>Improvability Test</td>
<td>51</td>
</tr>
<tr>
<td>Early Stop Based on the F1 Score</td>
<td>51</td>
</tr>
<tr>
<td>Output Data Sets</td>
<td>51</td>
</tr>
<tr>
<td>CANDIDATETERMS= Data Table</td>
<td>51</td>
</tr>
<tr>
<td>RULES= Data Table</td>
<td>52</td>
</tr>
<tr>
<td>RULETERMS= Data Table</td>
<td>53</td>
</tr>
<tr>
<td>Scoring Data Set</td>
<td>53</td>
</tr>
<tr>
<td>OUTMATCH= Data Table</td>
<td>53</td>
</tr>
<tr>
<td>Examples: BOOLRULE Procedure</td>
<td>54</td>
</tr>
<tr>
<td>Example 4.1: Rule Extraction for Binary Targets</td>
<td>54</td>
</tr>
<tr>
<td>Example 4.2: Rule Extraction for a Multiclass Target</td>
<td>56</td>
</tr>
<tr>
<td>Example 4.3: Using Events in Rule Extraction</td>
<td>58</td>
</tr>
<tr>
<td>Example 4.4: Scoring</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>
Overview: BOOLRULE Procedure

The BOOLRULE procedure is a SAS Viya procedure that enables you to extract Boolean rules from large-scale transactional data.

The BOOLRULE procedure can automatically generate a set of Boolean rules by analyzing a text corpus that has been processed by the TEXTMINE procedure and is represented in a transactional format. For example, the following rule set is generated for documents that are related to bank interest:

\[
\begin{align*}
\text{(cut} & \ ^{^\wedge} \text{rate} ^{^\wedge} \text{bank} ^{^\wedge} \text{percent} ^{^\wedge} \sim \text{sell}) \quad \text{or} \\
\text{(market} & \ ^{^\wedge} \text{money} ^{^\wedge} \sim \text{year} ^{^\wedge} \text{percent} ^{^\wedge} \sim \text{sale}) \quad \text{or} \\
\text{(repurchase} & \ ^{^\wedge} \text{fee}) \quad \text{or} \\
\text{(rate} & \ ^{^\wedge} \text{prime rate}) \quad \text{or} \\
\text{(federal} & \ ^{^\wedge} \text{rate} ^{^\wedge} \text{maturity})
\end{align*}
\]

In this example, ^ indicates a logical “and,” and ~ indicates a logical negation. The first line of the rule set says that if a document contains the terms “cut,” “rate,” “bank,” and “percent,” but does not contain the term “sell,” it belongs to the bank interest category.

The BOOLRULE procedure has three advantages when you use a supervised rule-based model to analyze your large-scale transactional data. First, it focuses on modeling the positive documents in a category. Therefore, it is more robust when the data are imbalanced.\(^1\) Second, the rules can be easily interpreted and modified by a human expert, enabling better human-machine interaction. Third, the procedure adopts a set of effective heuristics to significantly shrink the search space for search rules, and its basic operations are set operations, which can be implemented very efficiently. Therefore, the procedure is highly efficient and can handle very large-scale problems.

PROC BOOLRULE Features

The BOOLRULE procedure processes large-scale transactional data in parallel to achieve efficiency and scalability. The following list summarizes the basic features of PROC BOOLRULE:

- Boolean rules are automatically extracted from large-scale transactional data.
- The extracted rules can be easily understood and tuned by humans.
- Important features are identified for each category.
- Imbalanced data are handled robustly.
- Binary-class and multiclass categorization are supported.
- Events for defining labels for documents are supported.
- All processing phases use a high degree of multithreading.

\(^1\)A data table is imbalanced if it contains many more negative samples than positive samples, or vice versa.
Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

---

Getting Started: BOOLRULE Procedure

**NOTE:** Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

The following DATA step creates a data table that contains 20 observations that have three variables. The `Text` variable contains the input documents. The `apple_fruit` variable contains the label of documents: a value of 1 indicates that the document is related to the apple as the fruit or to the apple tree. The `DID` variable contains the ID of the documents. Each row in the data table represents a document for analysis.
data mycas.getstart;
  infile datalines delimiter='|' missover;
  length text $150;
  input text$ apple_fruit did$;
datalines;
  Delicious and crunchy apple is one of the popular fruits | 1 |d01
  Apple was the king of all fruits. | 1 |d02
  Custard apple or Sitaphal is a sweet pulpy fruit | 1 |d03
  apples are a common tree throughout the tropics | 1 |d04
  apple is round in shape, and tastes sweet | 1 |d05
  Tropical apple trees produce sweet apple| 1| d06
  Fans of sweet apple adore Fuji because it is the sweetest of| 1 |d07
  this apple tree is small | 1 |d08
  Apple Store shop iPhone x and iPhone x Plus.| 0 |d09
  See a list of Apple phone numbers around the world.| 0 |d10
  Find links to user guides and contact Apple Support, | 0 |d11
  Apple counters Samsung Galaxy launch with iPhone gallery | 0 |d12
  Apple Smartphones - Verizon Wireless.| 0 |d13
  Apple mercurial chief executive, was furious.| 0 |d14
  Apple has upgraded the phone.| 0 |d15
  the great features of the new Apple iPhone x.| 0 |d16
  Apple sweet apple iphone.| 0 |d17
  Apple apple will make cars | 0 |d18
  Apple apple also makes watches| 0 |d19
  Apple apple makes computers too| 0 |d20
;run;

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

The following statements use the TEXTMINE procedure to parse the input text data. The generated term-by-document matrix is stored in a data table named mycas.bow. The summary information about the terms in the document collection is stored in a data table named mycas.terms.

proc textmine data=mycas.getstart language="english";
  doc_id
    did;
  var
    text;
  parse
    nonoungroups
    = none
    entities
    = none
    outparent
    = mycas.bow
    outterms
    = mycas.terms
    reducef
    = 1;
run;
The following statements use the BOOLRULE procedure to extract rules:

```sas
proc boolrule
 data = mycas.bow
 docid = _document_
 termid = _termnum_
 docinfo = mycas.getstart
 terminfo = mycas.terms
 minsupports = 1
 mpos = 1
 gpos = 1;
 docinfo
 id = did
 targets = (apple_fruit);
 terminfo
 id = key
 label = term;
 output
 rules = mycas.rules
 ruleterms = mycas.ruleterms;
run;
```

The mycas.bow and mycas.terms data sets are specified as input in the DATA= and TERMINFO= options, respectively, in the PROC BOOLRULE statement. In addition, the DOCID= and TERMID= options in the PROC BOOLRULE statement specify the columns of the mycas.bow data table that contain the document ID and term ID, respectively.

The DOCINFO statement specifies the following information about the mycas.GetStart data table:

- The ID= option specifies the column that contains the document ID. The variables in this column are matched to the document ID variable that is specified in the DOCID= option in the PROC BOOLRULE statement in order to fetch target information about documents for rule extraction.
- The TARGETS= option specifies the target variables.

The TERMINFO statement specifies the following information about the mycas.terms data table:

- The ID= option specifies the column that contains the term ID. The variables in this column are matched to the term ID variable that is specified in the TERMID= option in the PROC BOOLRULE statement in order to fetch information about terms for rule extraction.
- The LABEL= option specifies the column that contains the text of the terms.

The OUTPUT statement requests that the extracted rules be stored in the data table mycas.Rules.

*Figure 4.1* shows the SAS log that PROC BOOLRULE generates; the log provides information about the default configurations used by the procedure, about where the procedure runs, and about the input and output files. The log shows that the mycas.rules data table contains two observations, indicating that the BOOLRULE procedure identified two rules for the apple_fruit category.
Chapter 4: The BOOLRULE Procedure

The following statements PROC PRINT to show the contents of the mycas.rules data table that the BOOLRULE procedure generates:

```sas
proc print data = mycas.rules;
var target ruleid rule F1 precision recall;
run;
```

Figure 4.2 shows the output of PROC PRINT, which contains two rules. For information about the output of the RULES= option, see the section “RULES= Data Table” on page 52.

<table>
<thead>
<tr>
<th>Obs</th>
<th>TARGET</th>
<th>RULEID</th>
<th>RULE</th>
<th>F1</th>
<th>PRECISION</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>apple_fruit</td>
<td>1</td>
<td>be &amp; apple</td>
<td>0.85714</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>apple_fruit</td>
<td>2</td>
<td>tree</td>
<td>1.00000</td>
<td>1</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The following statements run the BOOLRULE procedure to match rules in documents and run PROC PRINT to show the results:

```sas
proc boolrule
 data = mycas.bow
 docid = _document_
 termid = _termnum_
 score
 ruleterms = mycas.ruleterms
 outmatch = mycas.matches;
run;
proc print data=mycas.matches;
run;
```

Figure 4.3 shows the output of PROC PRINT, the mycas.matches data table. For information about the output of the OUTMATCH= option, see the section “OUTMATCH= Data Table” on page 53.
The following statements are available in the BOOLRULE procedure:

```
PROC BOOLRULE <options>;
 DOCINFO <options>;
 TERMINFO <options>;
 OUTPUT <options>;
 SCORE <options>;
```

The following sections describe the PROC BOOLRULE statement and then describe the other statements in alphabetical order.

### PROC BOOLRULE Statement

```
PROC BOOLRULE <options>;
```

The PROC BOOLRULE statement invokes the procedure. Table 4.1 summarizes the `options` in the statement by function. The `options` are then described fully in alphabetical order.

---

**Figure 4.3** The mycas.matches Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>DOCUMENT</th>
<th>TARGET</th>
<th>RULE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>d06</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>d09</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>d11</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>d16</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>d17</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>d04</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>d04</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>d07</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>d14</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>d15</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>d19</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>d02</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>d03</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>d05</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>d08</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>d10</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>d12</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>d13</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>d18</td>
<td>.</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>d20</td>
<td>.</td>
<td>0</td>
</tr>
</tbody>
</table>
### Table 4.1  PROC BOOLRULE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic Options</strong></td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data table (which must be in transactional format) for rule extraction</td>
</tr>
<tr>
<td>DOCID=</td>
<td>Specifies the variable in the DATA= data table that contains the document ID</td>
</tr>
<tr>
<td>DOCINFO=</td>
<td>Specifies the input data table that contains information about documents</td>
</tr>
<tr>
<td>GNEG=</td>
<td>Specifies the minimum $g$-score needed for a negative term to be considered for rule extraction</td>
</tr>
<tr>
<td>GPOS=</td>
<td>Specifies the minimum $g$-score needed for a positive term or a rule to be considered for rule extraction</td>
</tr>
<tr>
<td>MAXCANDIDATES=</td>
<td>Specifies the number of term candidates to be selected for each category</td>
</tr>
<tr>
<td>MAXTRIESIN=</td>
<td>Specifies the $k_{in}$ value for $k$-best search in the term ensemble process for creating a rule</td>
</tr>
<tr>
<td>MAXTRIESOUT=</td>
<td>Specifies the $k_{out}$ value for $k$-best search in the rule ensemble process for creating a rule set</td>
</tr>
<tr>
<td>MINSUPPORTS=</td>
<td>Specifies the minimum number of documents in which a term needs to appear in order for the term to be used for creating a rule</td>
</tr>
<tr>
<td>MNEG=</td>
<td>Specifies the $m$ value for computing estimated precision for negative terms</td>
</tr>
<tr>
<td>MPOS=</td>
<td>Specifies the $m$ value for computing estimated precision for positive terms</td>
</tr>
<tr>
<td>TERMID=</td>
<td>Specifies the variable in the DATA= data table that contains the term ID</td>
</tr>
<tr>
<td>TERMINFO=</td>
<td>Specifies the input data table that contains information about terms</td>
</tr>
</tbody>
</table>

You must specify the following `option`:

**DATA=** `CAS-libref.data-table`

**DOC=** `CAS-libref.data-table`

names the input data table for PROC BOOLRULE to use. `CAS-libref.data-table` is a two-level name, where

- `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

- `data-table` specifies the name of the input data table.
Each row of the input data table must contain one variable for the document ID and one variable for the term ID. Both the document ID variable and the term ID variable can be either a numeric or character variable. The BOOLRULE procedure does not assume that the data table is sorted by either document ID or term ID.

You can also specify the following options:

- **DOCID=**`variable`
  specifies the `variable` that contains the ID of each document. The document ID can be either a number or a string of characters.

- **DOCINFO=**`CAS-libref.data-table`
  names the input data table that contains information about documents. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

- **GNEG=**`g-value`
  specifies the minimum `g-value` needed for a negative term to be considered for rule extraction in the term ensemble. If you do not specify this option, the value that is specified for the **GPOS=** option (or its default value) is used. For more information about `g-value`, see the section “`g-Score`” on page 49.

- **GPOS=**`g-value`
  specifies the minimum `g-value` needed for a positive term to be considered for rule extraction in the term ensemble. A rule also needs to have a `g-value` that is higher than `g-value` to be considered in the rule ensemble. The `g-value` is also used in the improvability test. A rule is improvable if the `g-value` that is computed according to the improvability test is larger than `g-value`. By default, GPOS=8.

- **MAXCANDIDATES=**`n`
  specifies the number of term candidates to be selected for each category. Rules are built by using only these term candidates. By default, MAXCANDS=500.

- **MAXCANDS=**`n`
  specifies the `k_out` value for the `k`-best search in the rule ensemble process for creating a rule set. For more information, see the section “`k-Best Search`” on page 51. By default, MAXTRIESOUT=50.

- **MINSUPPORTS=**`n`
  specifies the minimum number of documents in which a term needs to appear in order for the term to be used for creating a rule. By default, MINSUPPORTS=3.
Chapter 4: The BOOLRULE Procedure

MNEG\(=m\)
specifies the \(m\) value for computing estimated precision for negative terms. If you do not specify this option, the value specified for the MPOS= option (or its default value) is used.

MPOS\(=m\)
specifies the \(m\) value for computing estimated precision for positive terms. By default, MPOS=8.

TERMID=\(variable\)
specifies the \(variable\) that contains the ID of each term. The \(variable\) can be either a number or a string of characters. If the TERMINFO= option is not specified, \(variable\) is also used as the label of terms.

TERMINFO=CAS-libref.data-table
names the input data table that contains information about terms. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

Each row of the input data table must contain one variable for the term ID. If you specify this option, you must use the TERMINFO statement to specify which variables in the data table contain the term ID and the term label, respectively. The BOOLRULE procedure uses the term ID in the DATA= data table to search for the term ID variable in this data table to obtain information about the terms. If you do not specify this option, the content of the TERMID= variable is also used as the label of terms.

DOCINFO Statement

DOCINFO <options> ;

The DOCINFO statement specifies information about the data table that is specified in the DOCINFO= option in the PROC BOOLRULE statement.

You can specify the following options:

EVENTS=(value1, value2, . . .)
specifies the values of target variables that are considered as positive events or categories of interest as follows:

- When TARGETTYPE=BINARY, the values of each target variable that is specified in the TARGET= option correspond to positive events. All other values correspond to negative events.
- When TARGETTYPE=BINARY, for any variable specified in the TARGET= option that is a numeric variable, “1” is considered to be a positive event by default.
- When TARGETTYPE=BINARY, for any variable specified in the TARGET= option that is a character variable, “Y” is considered to be a positive event by default.
- You cannot specify this option when TARGETTYPE=MULTICLASS.

ID=\(variable\)
specifies the \(variable\) that contains the document ID. To fetch the target information about documents, the values in the \(variable\) are matched to the document ID variable that is specified in the DOCID= option in the PROC BOOLRULE statement. The \(variable\) can be either a numeric variable or a character variable. Its type must match the type of the variable that is specified in the DOCID= option in the PROC BOOLRULE statement.
TARGET=(variable, variable, …)
  specifies the target variables. A target variable can be either a numeric variable or a character variable.
  - When TARGETTYPE=BINARY, you can specify multiple target variables, and each target variable corresponds to a category.
  - When TARGETTYPE=MULTICLASS, you can specify only one target variable, and each of its levels corresponds to a category.

TARGETTYPE=BINARY | MULTICLASS
  specifies the type of the target variables. You can specify the following values:

  BINARY
    indicates that multiple target variables can be specified and each target variable corresponds to a category.

  MULTICLASS
    indicates that only one target variable can be specified and each level of the target variable corresponds to a category.

By default, TARGETTYPE=BINARY.

---

**OUTPUT Statement**

```output
OUTPUT < options > ;
```

The OUTPUT statement specifies the data tables that contain the results that the BOOLRULE procedure generates.

You can specify the following options:

**CANDIDATETERMS=CAS-libref.data-table**
  specifies a data table to contain the terms that have been selected by the BOOLRULE procedure for rule creation. *CAS-libref.data-table* is a two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

If MAXCANDIDATES=\( p \) in the BOOLRULE statement, the procedure selects at most \( p \) terms for each category to be considered for rule extraction. For more information about this data table, see the section “Output Data Sets” on page 51.

**RULES=CAS-libref.data-table**
  specifies a data table to contain the rules that have been generated by the BOOLRULE procedure for each category. *CAS-libref.data-table* is a two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

For more information about this data table, see the section “Output Data Sets” on page 51.
RULETERMS=\texttt{CAS-libref.data-table}

specifies a data table to contain the terms in each rule that is generated by the BOOLRULE procedure. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

For more information about this data table, see the section “Output Data Sets” on page 51.

SCORE Statement

\texttt{SCORE < \textit{options}> ;}

The SCORE statement specifies the input data table that contains the terms in rules and the output data table to contain the scoring results.

You can specify the following \textit{options}:

\texttt{OUTMATCH=\texttt{CAS-libref.data-table}}

specifies a data table to contain the rule-matching results (that is, whether a document satisfies a rule). \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

For more information about this data table, see the section “Scoring Data Set” on page 53.

\texttt{RULETERMS=\texttt{CAS-libref.data-table}}

specifies a data table that contains the terms in each rule that the BOOLRULE procedure generates. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the input data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 35.

For more information about this data table, see the section “RULETERMS= Data Table” on page 53.

TERMININFO Statement

\texttt{TERMININFO < \textit{options}> ;}

The TERMININFO statement specifies information about the data table that is specified in the TERMININFO= option in the PROC BOOLRULE statement. If you specify the TERMININFO= data table in the PROC BOOLRULE statement, you must also include this statement to specify which variables in the data table contain the term ID and the term label, respectively.

You can specify the following \textit{options}:
**ID=** variable

specifies the variable that contains the term ID. To fetch the text of terms, the values in variable are matched to the term ID variable that is specified in the TERMID= option in the PROC BOOLRULE statement. The variable can be either a numeric variable or a character variable. Its type must match the type of the variable that is specified in the TERMID= option in the PROC BOOLRULE statement.

**LABEL=** variable

specifies the variable that contains the text of the terms, where variable must be a character variable.

---

**Details: BOOLRULE Procedure**

PROC BOOLRULE implements the BOOLLEAR technique for rule extraction. This section provides details about various aspects of the BOOLRULE procedure.

**BOOLLEAR for Boolean Rule Extraction**

Rule-based text categorization algorithms uses text rules to classify documents. Text rules are interpretable and can be effectively learned even when the number of positive documents is very limited. BOOLLEAR (Cox and Zhao 2014) is a novel technique for Boolean rule extraction. When you supply a text corpus that contains multiple categories, BOOLLEAR extracts a set of binary rules from each category and represents each rule in the form of a conjunction, where each item in the conjunction denotes the presence or absence of a particular term. The BOOLLEAR process is as follows (criteria and measurements that are used in this process are described in the next section):

1. Use an information gain criterion to form an ordered term candidate list. The term that best predicts the category is first on the list, and so on. Terms that do not have a significant relationship to the category are removed from this list. Set the current term to the first term.

2. Determine the “estimated precision” of the current term. The estimated precision is the projected percentage of the term’s occurrence with the category in out-of-sample data, using additive smoothing. Create a rule that consists of that term.

3. If the “estimated precision” of the current rule could not possibly be improved by adding more terms as qualifiers, then go to step 6.

4. Starting with the next term on the list, determine whether the conjunction of the current rule with that term (via either term presence or term absence) significantly improves the information gain and also improves estimated precision.

5. If there is at least one combination that meets the criterion in step 4, choose the combination that yields the best estimated precision, and go to step 3 with that combination. Otherwise, continue to step 6.

6. If the best rule obtained in step 3 has a higher estimated precision than the current “highest precision” rule, replace the current rule with the new rule.

7. Increment the current term to the next term in the ordered candidate term list and go to step 2. Continue repeating until all terms in the list have been considered.
8. Determine whether the harmonic mean of precision and recall (the F1 score) of the current rule set is improved by adding the best rule obtained by steps 1 to 7. If it is not, then exit.

9. If so, remove from the document set all documents that match the new rule, add this rule to the rule set, and go to step 1 to start creating the next rule in the rule set.

BOOLLEAR contains two essential processes for rule extraction: a term ensemble process (steps 4–5), which creates rules by adding terms; and a rule ensemble process (steps 2–9), which creates a rule set. The rule set can then be used for either content exploration or text categorization. Both the term ensemble process and the rule ensemble process are iterative processes. The term ensemble process forms an inner loop of the rule ensemble process. Efficient heuristic search strategies and sophisticated evaluation criteria are designed to ensure state-of-the-art performance of BOOLLEAR.

**Term Ensemble Process**

The term ensemble process iteratively adds terms to a rule. When the process finishes, it returns a rule that can be used as a candidate rule for the rule ensemble process. Figure 4.4 shows the flowchart of the term ensemble process.

![Figure 4.4 Term Ensemble Process for Creating a Rule](image)

Before adding terms to a rule, BOOLLEAR first sorts the candidate terms in descending order according to their relevance. It then starts to add terms to the rule iteratively. In each
iteration of the term ensemble process, BOOLLEAR takes a term $t$ from the ordered candidate term list and determines whether adding the term to the current rule $r$ can improve the rule’s estimated precision. To ensure that the term is good enough, BOOLLEAR tries $k_{in} - 1$ additional terms in the term list, where $k_{in}$ is the maximum number of terms to examine for improvement. If none of these terms is better (results in a lower $g$-score of the current rule $r$) than term $t$, the term is considered to be $k$-best, where $k = k_{in}$, and BOOLLEAR updates the current rule $r$ by adding term $t$ to it. If one of the $k_{in} - 1$ additional terms is better than term $t$, BOOLLEAR sets that term as $t$ and tries $k_{in} - 1$ additional terms to determine whether this new $t$ is better than all of those additional terms. BOOLLEAR repeats until the current term $t$ is $k$-best or until it reaches the end of the term list. After a term is added to the rule, BOOLLEAR marks the term as used and continues to identify the next $k$-best term from the unused terms in the sorted candidate term list. When a $k$-best term is identified, BOOLLEAR adds it to the rule. BOOLLEAR keeps adding $k$-best terms until the rule cannot be further improved. By trying to identify a $k$-best term instead of the global best, BOOLLEAR shrinks its search space to improve its efficiency.

**Rule Ensemble Process**

The rule ensemble process iteratively creates and adds new rules to a rule set. When the process finishes, it returns the rule set, which can then be used for text categorization. Figure 4.5 shows the flowchart of the rule ensemble process.

*Figure 4.5* Rule Ensemble for Creating a Rule Set

In each iteration of the rule ensemble process, BOOLLEAR tries to find a rule $r$ that has the highest precision in classifying the previously unclassified positive samples. For the first iteration, all samples are unclassified. To ensure that the precision of rule $r$ is good enough, BOOLLEAR generates $k_{out} - 1$ additional rules, where
Chapter 4: The BOOLRULE Procedure

$k_{out}$ is an input parameter that you specify in the MAXTRIESOUT= option in the PROC BOOLRULE statement. If one of these rules has a higher precision than rule $r$, BOOLLEAR sets that rule as the new rule $r$ and generates another $k_{out} - 1$ rules to determine whether this new rule is the best among them. BOOLLEAR repeats this process until the current rule $r$ is better than any of the $k_{out} - 1$ rules that are generated after it. The obtained rule $r$ is called a $k$-best rule, where $k = k_{out}$. When BOOLLEAR obtains a $k$-best rule, it adds that rule to the rule set and removes from the corpus all documents that satisfy the rule. In order to reduce the possibility of generating redundant rules, BOOLLEAR then determines whether the F1 score of the rule set is improved. If the F1 score is improved, BOOLLEAR goes to the next iteration and uses the updated corpus to generate another rule. Otherwise, it treats the current rule set as unimprovable, stops the search, and outputs the currently obtained rule set. Note that to identify a “good” rule, BOOLLEAR does not go through all the potential rules to find the global “best,” because doing so can be computationally intractable when the number of candidate terms is large. Also, before BOOLLEAR generates a rule, it orders the terms in the candidate term set by their correlation to the target. So it is reasonable to expect that the obtained $k$-best rule is close to a globally best rule in terms of its capability for improving the F1 score of the rule set. For information about the F1 score, see the section “Precision, Recall, and the F1 Score” on page 48.

Measurements Used in BOOLLEAR

This section provides detailed information about the measurements that are used in BOOLLEAR to evaluate terms and rules.

Precision, Recall, and the F1 Score

Precision measures the probability that the observation is actually positive when a classifier predicts it to be positive; recall measures the probability that a positive observation will be recognized; and the F1 score is the harmonic mean of precision and recall. A good classifier should be able to achieve both high precision and high recall. The precision, recall, and F1 score are defined as

$$\text{precision} = \frac{TP}{TP + FP}$$

$$\text{recall} = \frac{TP}{TP + FN}$$

$$F1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

where TP is the true-positive (the number of documents that are predicted to be positive and are actually positive), FP is the false-positive (the number of documents that are predicted to be positive but are actually negative), TN is the true-negative (the number of documents that are predicted to be negative and are actually negative), and FN is the false-negative (the number of documents that are predicted to be negative but are actually positive). A classifier thus obtains a high F1 score if and only if it can achieve both high precision and high recall. The F1 score is a better measurement than accuracy when the data are imbalanced,² because a classifier can obtain very high accuracy by predicting that all samples belong to the majority category.

²Accuracy is defined as $\frac{TP + TN}{TP + FP + TN + FN}$. 
**g-Score**

BOOLLEAR uses the g-test (which is also known as the likelihood-ratio or maximum likelihood statistical significance test) as an information gain criterion to evaluate the correlation between terms and the target. The g-test generates a g-score, which has two beneficial properties: as a form of mutual information, it is approximately equivalent to information gain in the binary case; and because it is distributed as a chi-square, it can also be used for statistical significance testing. The g-test is designed to compare the independence of two categorical variables. Its null hypothesis is that the proportions at one variable are the same for different values of the second variable. Given the TP, FP, FN, and TN of a term, the term’s g-score can be computed as

\[
g = 2 \times \sum_{i=\{TP, TN, FP, FN\}} O(i) \log \left( \frac{O(i)}{E(i)} \right)
\]

\[
O(TP) = TP
\]
\[
O(FP) = FP
\]
\[
O(TN) = TN
\]
\[
O(FN) = FN
\]
\[
E(TP) = \frac{(TP + FP) \times P}{P + N}
\]
\[
E(FP) = \frac{(TP + FP) \times N}{P + N}
\]
\[
E(TN) = \frac{(TN + FN) \times N}{P + N}
\]
\[
E(FN) = \frac{(TN + FN) \times P}{P + N}
\]

where \(P\) is the number of positive documents; \(N\) is the number of negative documents; \(O(TP), O(FP), O(TN),\) and \(O(FN)\) refer to the observed TP, FP, TN, and FN of a term; and \(E(TP), E(FP), E(TN),\) and \(E(FN)\) refer to the expected TP, FP, TN, and FN of a term. A term has a high g-score if it appears often in positive documents but rarely in negative documents, or vice versa.

**Estimated Precision**

Estimated precision helps BOOLLEAR shorten its search path and avoid generating overly specific rules. The precision is estimated by a form of additive smoothing with additional correction \((err_i)\) to favor shorter rules over longer rules:

\[
\text{precision}_{i}^{m}(t) = \frac{TP_{i,t}}{TP_{i,t} + FP_{i,t} + m} - err_{i-1}
\]

\[
err_{i} = \frac{TP_{i,t}}{TP_{i,t} + FP_{i,t}} - \frac{TP_{i,t} + \frac{P}{N+P} \times m}{TP_{i,t} + FP_{i,t} + m} + err_{i-1}
\]

In the preceding equations, \(m(\leq 1)\) is a parameter that you specify for bias correction. A large \(m\) is called for when a very large number of rules are evaluated, in order to minimize selection bias. \(TP_{i,t}\) and \(FP_{i,t}\) are the true-positive and false-positive of rule \(t\) when the length of the rule is \(i\).
Improvability Test

BOOLLEAR tests for improvability in the term ensemble step for “in-process” model pruning. To determine whether a rule is improvable, BOOLLEAR applies the g-test to a perfect confusion table that is defined as

<table>
<thead>
<tr>
<th>TP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FP</td>
</tr>
</tbody>
</table>

In this table, TP is the true-positive of the rule and FP is the false-positive of the rule. The g-score that is computed by using this table reflects the maximum g-score that a rule could possibly obtain if a perfectly discriminating term were added to the rule. If the g-score is smaller than a number that you specify to indicate a maximum p-value for significance in the GPOS= and GNEG= options, BOOLLEAR considers the rule to be unimprovable.

Shrinking the Search Space

Exhaustively searching the space of possible rules is impractical because of the exponential number of rules that would have to be searched ($2^m$ rules, where $m$ is the number of candidate terms). In addition, an exhaustive search usually leads to overfitting by generating many overly specific rules. Therefore, BOOLLEAR implements the strategies described in the following sections to dramatically shrink the search space to improve its efficiency and help it avoid overfitting.

Feature Selection

BOOLLEAR uses the g-test to evaluate terms. Assume that MAXCANDIDATES=$p$ and MINSUPPORTS=$c$ in the PROC BOOLRULE statement. A term is added to the ordered candidate term list if and only if the following two conditions hold:

1. The term is a top $p$ term according to its g-score.
2. The term appears in more than $c$ documents.

The size of the candidate term list controls the size of the search space. The smaller the size, the fewer terms are used for rule extraction, and therefore the smaller the search space is.

Significance Testing

In many rule extraction algorithms, rules are built until they perform perfectly on a training set, and pruning is applied afterwards. In contrast, BOOLLEAR prunes “in-process.” The following three checks are a form of in-process pruning; rules are not expanded when their expansion does not meet these basic requirements. These requirements help BOOLLEAR truncate its search path and avoid generating overly specific rules.

- **Minimum positive document coverage**: BOOLLEAR requires that a rule be satisfied by at least $s$ positive documents, where $s$ is the value of the MINSUPPORTS= option in the PROC BOOLRULE statement.
- **Early stop based on g-test**: BOOLLEAR stops searching when the g-score that is calculated for improving (or starting) a rule does not meet required statistical significance levels.
• **Early stop based on estimated precision**: BOOLLEAR stops building a rule when the estimated precision of the rule does not improve when the current best term is added to the rule. This strategy helps BOOLLEAR shorten its search path.

**k-Best Search**

In the worst case, BOOLLEAR could still examine an exponential number of rules, although the heuristics described here minimize that chance. But because the terms are ordered by predictiveness of the category beforehand, a $k$-best search is used to further improve the efficiency of BOOLLEAR: If BOOLLEAR tries unsuccessfully to expand (or start) a rule numerous times with the a priori “best” candidates, then the search can be prematurely ended. Two optional parameters, $k_{in}$ and $k_{out}$, determine the maximum number of terms and rules to examine for improvement. The $k_{in}$ parameter (which is specified in the MAXTRIESIN= option) is used in the term ensemble process: if $k_{in}$ consecutive terms have been checked for building possible rules and none of them are superior to the best current rule, the search is terminated. The $k_{out}$ parameter (which is specified in the MAXTRIESOUT= option) is used in the rule ensemble process: if $k_{out}$ consecutive terms have been checked to add to a rule and they do not generate a better rule, then the search for expanding that rule is terminated. This helps BOOLLEAR shorten its search path, even with a very large number of candidate terms, with very little sacrifice in accuracy.

**Improvability Test**

BOOLLEAR tests whether adding a theoretical perfectly discriminating term to a particular rule could possibly have both a statistically significant result and a higher estimated precision than the current rule. If it cannot, then the current rule is recognized without additional testing as the best possible rule, and no further expansion is needed.

**Early Stop Based on the F1 Score**

BOOLLEAR stops building the rule set if adding the current best rule does not improve the rule set’s F1 score. Thus the F1 score is treated as the objective to maximize.

---

**Output Data Sets**

This section describes the output data sets that PROC BOOLRULE produces when you specify the corresponding option in the OUTPUT statement.

**CANDIDATETERMS= Data Table**

The CANDIDATETERMS= option in the OUTPUT statement specifies a data table to contain the terms that have been selected by the procedure for rule creation. If MAXCANDIDATES=$p$ in the PROC BOOLRULE statement, the procedure selects a maximum of $p$ terms for each category.

Table 4.2 shows the fields in this data table.
Table 4.2  Fields in the CANDIDATETERMS= Data Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>The category that the term is selected for (this field corresponds to the</td>
</tr>
<tr>
<td></td>
<td>Target field in the RULES= data table)</td>
</tr>
<tr>
<td>Rank</td>
<td>The rank of the term in the ordered term list for the category (term rank</td>
</tr>
<tr>
<td></td>
<td>starts from 1)</td>
</tr>
<tr>
<td>Term</td>
<td>A lowercase version of the term</td>
</tr>
<tr>
<td>Key</td>
<td>The term identifier of the term</td>
</tr>
<tr>
<td>GScore</td>
<td>The g-score of the term that is obtained for the target category</td>
</tr>
<tr>
<td>Support</td>
<td>The number of documents in which the term appears</td>
</tr>
<tr>
<td>TP</td>
<td>The number of positive documents in which the term appears</td>
</tr>
<tr>
<td>FP</td>
<td>The number of negative documents in which the term appears</td>
</tr>
</tbody>
</table>

RULES= Data Table

The RULES= option in the OUTPUT statement specifies the output data table to contain the rules that have been generated for each category.

Table 4.3 shows the fields in this data table.

Table 4.3  Fields in the RULES= Data Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>The target category that the term is selected to model</td>
</tr>
<tr>
<td>Target_var</td>
<td>The variable that contains the target</td>
</tr>
<tr>
<td>Target_val</td>
<td>The value of the target variable</td>
</tr>
<tr>
<td>Ruleid</td>
<td>The ID of a rule (Ruleid starts from 1)</td>
</tr>
<tr>
<td>Ruleid_loc</td>
<td>The ID of a rule in a rule set (in each rule set, Ruleid_loc starts from 1)</td>
</tr>
<tr>
<td>Rule</td>
<td>The text content of the rule</td>
</tr>
<tr>
<td>TP</td>
<td>The number of positive documents that are satisfied by the rule set when</td>
</tr>
<tr>
<td></td>
<td>the rule is added to the rule set</td>
</tr>
<tr>
<td>FP</td>
<td>The number of negative documents that are satisfied by the rule set when</td>
</tr>
<tr>
<td></td>
<td>the rule is added to the rule set</td>
</tr>
<tr>
<td>Support</td>
<td>The number of documents that are satisfied by the rule set when the rule is</td>
</tr>
<tr>
<td></td>
<td>added to the rule set</td>
</tr>
<tr>
<td>rTP</td>
<td>The number of positive documents that are satisfied by the rule when the</td>
</tr>
<tr>
<td></td>
<td>rule is added to the rule set</td>
</tr>
<tr>
<td>rFP</td>
<td>The number of negative documents that are satisfied by the rule when the</td>
</tr>
<tr>
<td></td>
<td>rule is added to the rule set</td>
</tr>
<tr>
<td>rSupport</td>
<td>The number of documents that are satisfied by the rule when the rule is</td>
</tr>
<tr>
<td></td>
<td>added to the rule set</td>
</tr>
<tr>
<td>F1</td>
<td>The F1 score of the rule set when the rule is added to the rule set</td>
</tr>
<tr>
<td>Precision</td>
<td>The precision of the rule set when the rule is added to the rule set</td>
</tr>
<tr>
<td>Recall</td>
<td>The recall of the rule set when the rule is added to the rule set</td>
</tr>
</tbody>
</table>
This data table contains the discovered rule sets for predicting the target levels of the target variable. In each rule set, the order of the rules is important and helps you interpret the results. The first rule is trained using all the data; the second rule is trained on the data that did not satisfy the first rule; and subsequent rules are built only after the removal of observations that satisfy previous rules. The fit statistics (TP, FP, Support, F1, Precision, and Recall) of each rule are cumulative and represent totals that include using that particular rule along with all the previous rules in the rule set.

When you specify TARGETTYPE=MULTICLASS in the DOCINFO statement, each target level of the target variable defines a category and the target field contains the same content as the Target_val field. When TARGETTYPE=BINARY in the DOCINFO statement, each target variable defines a category and the target field contains the same content as the Target_var field.

**RULETERMS= Data Table**

The RULETERMS= option in the OUTPUT statement specifies a data table to contain the terms in the rules. The information in this data table is used in the scoring phase for scoring documents.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>The target category that the term is selected to model</td>
</tr>
<tr>
<td>Target_var</td>
<td>The variable that contains the target</td>
</tr>
<tr>
<td>Target_val</td>
<td>The value of the target variable</td>
</tr>
<tr>
<td>Ruleid</td>
<td>The ID of a rule (Ruleid starts from 1)</td>
</tr>
<tr>
<td>Ruleid_loc</td>
<td>The ID of a rule in a rule set (in each rule set, Ruleid_loc starts from 1)</td>
</tr>
<tr>
<td>Rule</td>
<td>The text content of the rule</td>
</tr>
<tr>
<td><em>termnum</em></td>
<td>The ID of a term that is used in the rule</td>
</tr>
<tr>
<td>Direction</td>
<td>Specifies whether the term is positive or negative (if Direction=1, the term is positive; if Direction=−1, the term is negative)</td>
</tr>
<tr>
<td>Weight</td>
<td>The weight of a term</td>
</tr>
</tbody>
</table>

Term weights are used for scoring documents. The weight of a negative term is always −1. If a positive term is in rule \( r \) and there are \( k \) positive terms in the rule, the weight of this positive term is \( 1/k + 0.000001 \). If a document contains all the positive terms in the rule but none of the negative terms, the score of the document is \( k \times (1/k + 0.000001) > 1 \), indicating that the document satisfies the rule. Otherwise, the document’s score is less than 1, indicating that the document does not satisfy the rule.

**Scoring Data Set**

This section describes the output data set that PROC BOOLRULE produces when you specify the corresponding option in the SCORE statement.

**OUTMATCH= Data Table**

The OUTMATCH= option in the SCORE statement specifies the output data table to contain the rule-matching results (that is, whether a document satisfies a rule). A document satisfies a rule (in other words, a rule is
matched in the document) if and only if all the positive terms in the rule are present in the document and none of the negative terms are present in the document. PROC BOOLRULE also outputs a special rule for which ID=0. If a document satisfies the rule for which ID=0, then the document does not satisfy any rule in the RULETERMS= table. For this special rule, the target has a missing value.

Table 4.5 shows the fields in this data table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Document</em></td>
<td>ID of the document that satisfies the rule</td>
</tr>
<tr>
<td><em>Target</em></td>
<td>ID of the target that the rule is generated for</td>
</tr>
<tr>
<td><em>Rule_ID</em></td>
<td>ID of the rule that the document satisfies</td>
</tr>
</tbody>
</table>

Examples: BOOLRULE Procedure

Example 4.1: Rule Extraction for Binary Targets

This example generates rules for a data table that contains various types of customer reviews. The following DATA step creates the mycas.reviews data table, which contains nine observations that have four variables. The text variable contains the input reviews. The positive variable contains the sentiment of the reviews: a value of 1 indicates that the review is positive, and a value of 0 indicates that the review is negative. The category variable contains the category of the reviews. The did variable contains the ID of the documents. Each row in the data table represents a document for analysis.

```{r}
data mycas.reviews;
 infile datalines delimiter='|' missover;
 length text $300 category $20;
 input text$ positive category$ did;
datalines;
 This is the greatest phone ever! love it!|1|electronics|1
 The phone's battery life is too short and screen resolution is low.|0|electronics|2
 The screen resolution is low, but I love this tv.|1|electronics|3
 The movie itself is great and I like it, although the resolution is low.|1|movies|4
 The movie's story is boring and the acting is poor.|0|movies|5
 I watched this movie on tv, it's not good on a small screen. |0|movies|6
 watched the movie first and loved it, the book is even better!|1|books|7
 I like the story in this book, they should put it on screen.|1|books|8
 I love the author, but this book is a waste of time, don't buy it.|0|books|9
;run;
```

The following TEXTMINE procedure call parses the mycas.reviews data table, stores the term-by-document matrix in the mycas.reviews_bow data table in transactional format, and stores terms that appeared in the mycas.reviews data table in the mycas.reviews_terms data table:
Example 4.1: Rule Extraction for Binary Targets

```sas
proc textmine data=mycas.reviews;
 doc_id
 did;
 var
 text;
 parse
 nonoungroups
 notagging
 entities = none
 outparent = mycas.reviews_bow
 outterms = mycas.reviews_terms
 reducef = 1;
run;
```

The following statements run PROC BOOLRULE to extract rules from the `mycas.reviews_bow` data table and run PROC PRINT to show the results. By default, TARGETTYPE=BINARY. One target variable, `positive`, is specified; this variable indicates whether the reviews are positive or negative.

```sas
proc boolrule
 data = mycas.reviews_bow
 docid = _document_
 termid = _termnum_
 docinfo = mycas.reviews
 terminfo = mycas.reviews_terms
 minsupports = 1
 mpos = 1
 gpos = 1;
 docinfo
 id = did
 targets = (positive);
 terminfo
 id = key
 label = term;
 output
 ruleterms = mycas.ruleterms
 rules = mycas.rules;
run;
```

```sas
data rules;
 set mycas.rules;
 proc print data=rules;
 var target ruleid rule F1 precision recall;
 run;
```

**Output 4.1.1** shows that the `mycas.rules` data table contains rules that are generated for the “positive” categories.
Example 4.2: Rule Extraction for a Multiclass Target

This example uses the same input table and the same TEXTMINE procedure call that are used in Example 4.1 to illustrate how you can extract rules for a multiclass target. The DATA step and procedure call are repeated here for convenience.

The following DATA step creates the mycas.reviews data table, which contains nine observations that have four variables. The text variable contains the input reviews. The positive variable contains the sentiment of the reviews: a value of 1 indicates that the review is positive, and a value of 0 indicates that the review is negative. The category variable contains the category of the reviews. The did variable contains the ID of the documents. Each row in the data table represents a document for analysis.

```plaintext
data mycas.reviews;
infile datalines delimiter='|' missover;
length text $300 category $20;
input text$ positive category$ did;
datalines;
 This is the greatest phone ever! love it!|1|electronics|1
 The phone's battery life is too short and screen resolution is low.|0|electronics|2
 The screen resolution is low, but I love this tv.|1|electronics|3
 The movie itself is great and I like it, although the resolution is low.|1|movies|4
 The movie's story is boring and the acting is poor.|0|movies|5
 I watched this movie on tv, it's not good on a small screen. |0|movies|6
 I watched the movie first and loved it, the book is even better!|1|books |7
 I like the story in this book, they should put it on screen.|1|books|8
 I love the author, but this book is a waste of time, don't buy it.|0|books|9
run;
```

The following TEXTMINE procedure call parses the mycas.reviews data table, stores the term-by-document matrix in the mycas.reviews_bow data table in transactional format, and stores terms that appeared in the mycas.reviews data table in the mycas.reviews_terms data table:

```plaintext
proc textmine data=mycas.reviews;
 doc_id did;
 var text;
 parse nonoungroups notagging
 entities = none
 outparent = mycas.reviews_bow
```

---

Output 4.1.1 The mycas.rules Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>TARGET</th>
<th>RULEID</th>
<th>RULE</th>
<th>F1</th>
<th>PRECISION</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>positive</td>
<td>1</td>
<td>like</td>
<td>0.57143</td>
<td>1.00000</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>positive</td>
<td>2</td>
<td>better</td>
<td>0.75000</td>
<td>1.00000</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>positive</td>
<td>3</td>
<td>great</td>
<td>0.88889</td>
<td>1.00000</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>positive</td>
<td>4</td>
<td>love</td>
<td>0.90909</td>
<td>0.83333</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Example 4.2: Rule Extraction for a Multiclass Target

The following statements run PROC BOOLRULE to extract rules from the mycas.reviews_bow data table and run PROC PRINT to show the results. TARGETTYPE=MULTICLASS is specified, and category is specified as the target variable, which contains three levels: “electronics,” “movies,” and “books.” Each level defines a category for which the BOOLRULE procedure extracts rules.

```
proc boolrule
 data = mycas.reviews_bow
 docid = _document_
 termid = _termnum_
 docinfo = mycas.reviews
 terminfo = mycas.reviews_terms
 minsupports = 1
 mpos = 1
 gpos = 1;
 docinfo
 id = did
 targettype = multiclass
 targets = (category);
 terminfo
 id = key
 label = term;
 output
 ruleterms = mycas.ruleterms
 rules = mycas.rules;
run;
```

```
data rules;
 set mycas.rules;
 proc print data=rules;
 var target ruleid rule F1 precision recall;
 run;
```

Output 4.2.1 shows that the mycas.rules data table contains rules that are generated for the “electronics,” “movies,” and “books” categories.

```
Output 4.2.1 The mycas.rules Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>TARGET</th>
<th>RULEID</th>
<th>RULE</th>
<th>F1</th>
<th>PRECISION</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>electronics</td>
<td>1</td>
<td>phone</td>
<td>0.80000</td>
<td>1.00</td>
<td>0.66667</td>
</tr>
<tr>
<td>2</td>
<td>electronics</td>
<td>2</td>
<td>resolution</td>
<td>0.85714</td>
<td>0.75</td>
<td>1.00000</td>
</tr>
<tr>
<td>3</td>
<td>movies</td>
<td>3</td>
<td>movie</td>
<td>0.85714</td>
<td>0.75</td>
<td>1.00000</td>
</tr>
<tr>
<td>4</td>
<td>books</td>
<td>4</td>
<td>book</td>
<td>1.00000</td>
<td>1.00</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
```
Example 4.3: Using Events in Rule Extraction

This example uses the same input table and the same TEXTMINE procedure call that are used in Example 4.1 to illustrate how you can use events in rule extraction. The DATA step and procedure call are repeated here for convenience.

When TARGETTYPE=MULTICLASS, each level of the target variable defines a category for rule extraction. If you want to extract rules for only a subset of the levels of the target variable, you can use the EVENTS= option to specify the categories for which you want to extract rules.

The following DATA step creates the mycas.reviews data table, which contains nine observations that have four variables. The text variable contains the input reviews. The positive variable contains the sentiment of the reviews: a value of 1 indicates that the review is positive and a value of 0 indicates that the review is negative. The category variable contains the category of the reviews. The did variable contains the ID of the documents. Each row in the data table represents a document for analysis.

```plaintext
data mycas.reviews;
 infile datalines delimiter='|' missover;
 length text $300 category $20;
 input text$ positive category$ did;
 datalines;
 This is the greatest phone ever! love it!|1|electronics|1
 The phone's battery life is too short and screen resolution is low.|0|electronics|2
 The screen resolution is low, but I love this tv.|1|electronics|3
 The movie itself is great and I like it, although the resolution is low.|1|movies|4
 The movie's story is boring and the acting is poor.|0|movies|5
 I watched this movie on tv, it's not good on a small screen. |0|movies|6
 watched the movie first and loved it, the book is even better!|1|books|7
 I like the story in this book, they should put it on screen.|1|books|8
 I love the author, but this book is a waste of time, don't buy it.|0|books|9
; run;
```

The following TEXTMINE procedure call parses the mycas.reviews data table, stores the term-by-document matrix in the mycas.reviews_bow data table in transactional format, and stores terms that appeared in the mycas.reviews data table in the mycas.reviews_terms data table:

```plaintext
class mycas.reviews;
 doc_id
 did;
 var
 text;
 parse
 nonoungroups
 notagging
 entities = none
 outparent = mycas.reviews_bow
 outterms = mycas.reviews_terms
 reducef = 1;
run;
```
The following statements run PROC BOOLRULE to extract rules from the mycas.reviews_bow data table and run PROC PRINT to show the results. TARGETTYPE=BINARY is specified, and category is specified as the target variable, which contains three levels: “electronics,” “movies,” and “books.” Because the “movies” and “books” levels are specified in the EVENTS= option, PROC BOOLRULE procedure extracts rules for “movies” and “books,” but not “electronics.”

```
proc boolrule
 data = mycas.reviews_bow
 docid = _document_
 termid = _termnum_
 docinfo = mycas.reviews
 terminfo = mycas.reviews_terms
 minsupports = 1
 mpos = 1
 gpos = 1;
 docinfo
 id = did
 targettype = binary
 targets = (category)
 events = ("movies" "books");
 terminfo
 id = key
 label = term;
 output
 ruleterms = mycas.ruleterms
 rules = mycas.rules;
run;

data rules;
set mycas.rules;
proc print data=rules;
 var target ruleid rule F1 precision recall;
run;
```

Output 4.3.1 shows that the mycas.rules data table contains rules that are generated for the “movies” and “books” categories.

```
Output 4.3.1 The mycas.rules Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>TARGET</th>
<th>RULEID</th>
<th>RULE</th>
<th>F1</th>
<th>PRECISION</th>
<th>RECALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>category</td>
<td>1</td>
<td>movie</td>
<td>0.8</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td>2</td>
<td>category</td>
<td>2</td>
<td>book</td>
<td>1.0</td>
<td>1</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
```

Example 4.4: Scoring

This example uses the same input table and the same TEXTMINE procedure call that are used in Example 4.1 to illustrate how you can match extracted rules in documents. Then it adds the DATA step to generate testing data. The DATA step and procedure call are repeated here for convenience.

The following DATA step creates the mycas.reviews data table, which contains nine observations that have four variables. The text variable contains the input reviews. The positive variable contains the sentiment of the reviews: a value of 1 indicates that the review is positive, and a value of 0 indicates that the review is
The category variable contains the category of the reviews. The did variable contains the ID of the documents. Each row in the data table represents a document for analysis.

```plaintext
data mycas.reviews;
 infile datalines delimiter='|' missover;
 length text $300 category $20;
 input text$ positive category$ did;
 datalines;
 This is the greatest phone ever! love it!|1|electronics|1
 The phone's battery life is too short and screen resolution is low.|0|electronics|2
 The screen resolution is low, but I love this tv.|1|electronics|3
 The movie itself is great and I like it, although the resolution is low.|1|movies|4
 The movie's story is boring and the acting is poor.|0|movies|5
 I watched this movie on tv, it's not good on a small screen. |0|movies|6
 watched the movie first and loved it, the book is even better!|1|books |7
 I like the story in this book, they should put it on screen.|1|books|8
 I love the author, but this book is a waste of time, don't buy it.|0|books|9
run;
```

The following DATA step generates the testing data, which contain two observations that have two variables. The text variable contains the input reviews. The did variable contains the ID of the documents. Each row in the data table represents a document for analysis.

```plaintext
data mycas.reviews_test;
 infile datalines delimiter='|' missover;
 length text $300;
 input text$ did;
 datalines;
 love it! a great phone, even better than advertised|1
 I like the book, GREATEST in this genre|2
run;
```

The following TEXTMINE procedure call parses the mycas.reviews data table, stores the term-by-document matrix in the mycas.reviews_bow data table in transactional format, and stores terms that appeared in the mycas.reviews data table in the mycas.reviews_terms data table:

```plaintext
proc textmine data=mycas.reviews;
 doc_id did;
 var text;
 parse
 nonoungroups
 notagging
 entities = none
 outparent = mycas.reviews_bow
 outterms = mycas.reviews_terms
 outconfig = mycas.parseconfig
 reducef = 1;
run;
```
The following statements run PROC BOOLRULE to extract rules from the mycas.reviews_bow data table. TARGETTYPE=BINARY is specified. One target variable, positive, is specified; this variable indicates whether the reviews are positive or negative.

```plaintext
proc boolrule
 data = mycas.reviews_bow
 docid = _document_
 termid = _termnum_
 docinfo = mycas.reviews
 terminfo = mycas.reviews_terms
 minsupports = 1
 mpos = 1
 gpos = 1;
 docinfo
 id = did
 targettype = binary
 targets = (positive);
 terminfo
 id = key
 label = term;
 output
 ruleterms = mycas.ruleterms
 rules = mycas.rules;
run;
```

The TMSCORE procedure uses the parsing configuration that is stored in the mycas.parseconfig data table to parse the mycas.reviews_test data table. The term-by-document matrix is stored in the mycas.reviews_test_bow data table.

```plaintext
proc tmscore
 data = mycas.reviews_test
 terms = mycas.reviews_terms
 config = mycas.parseconfig
 outparent = mycas.reviews_test_bow;
 doc_id did;
 var text;
run;
```

The following statements run PROC BOOLRULE to match rules in the testing data and run PROC PRINT to show the matching results:

```plaintext
proc boolrule
 data = mycas.reviews_test_bow
 docid = _document_
 termid = _termnum_
 score
 ruleterms = mycas.ruleterms
 outmatch = mycas.match;
run;
```

```plaintext
proc print data=mycas.match; run;
```
The mycas.match data table in Output 4.4.1 shows which documents satisfy which rules.

**Output 4.4.1** The mycas.match Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>DOCUMENT</th>
<th>TARGET</th>
<th>RULE_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

**References**

Overview: FACTMAC Procedure

The FACTMAC procedure implements the factorization machine model in SAS Viya. The flexible factorization machine model has applications in predictive modeling and recommendation (Rendle 2012). Factorization machines generalize matrix factorization, among other techniques. You can use the FACTMAC procedure to read and write data in distributed form, and to perform factorization in parallel by making full use of multicore computers or distributed computing environments.

The FACTMAC procedure estimates factors for each of the nominal input variables you specify, in addition to estimating a global bias and a bias for each level of those nominal input variables. You also specify an interval target variable. The procedure computes the biases and factors by using the stochastic gradient descent (SGD) algorithm, which minimizes the root mean square error (RMSE) criterion on the input data table that you provide. In this method, each iteration attempts to reduce the RMSE. The SGD algorithm proceeds until the maximum number of iterations is reached.
PROC FACTMAC stores the results of the factorization an output data table, which is produced by the OUTMODEL statement. This data table contains the factors in addition to the global bias and the biases for all the levels of the input variables, in addition to the factors. The corresponding level names are listed for ease of reference. The biases and factors are used for scoring.

PROC FACTMAC Features

PROC FACTMAC enables you to use parallel execution for factorization in a distributed computing environment or on a single-machine. The following list summarizes the basic features of PROC FACTMAC:

- is highly distributed and multithreaded
- learns a factorization machine model based on a parallel implementation of the SGD optimization algorithm

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named mysess, and the LIBNAME statement creates the mycas CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the mysess session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”
NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

This example shows how to use the FACTMAC procedure to learn a factorization machine model from observations in a SAS data table. This example uses the cars data set in the Sashelp library and illustrates the prediction of gas mileage of cars based on make and model. The analysis uses four variables: car make, car model, car type, and a variable named mpg_city, which measures the car’s fuel usage (in miles per gallon) for city driving. The remaining variables in the data table are not used.

You can load the cars data set into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:

```
data mycas.cars;
 set sashelp.cars;
run;
```

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

The following statements run PROC FACTMAC and output the results to ODS tables:

```
proc factmac data=mycas.cars outmodel=mycas.factors maxiter=50
 nfactors=5 learnstep=0.002;
 input make model type /level=nominal;
 target mpg_city /level=interval;
 output out=mycas.score_out copyvars=(make model type mpg_city);
run;
```

```
proc print data=mycas.factors(obs=48);
run;
```

The NFACTORS= option requests that the model estimate five factors, the LEARNSTEP= option sets the optimization learning step to 0.002, the MAXITER= option requests that the optimization stop after 50 iterations, and the OUTMODEL= option requests that the model parameters be written to the mycas.factors data table. The INPUT statement specifies that the make, model, and type variables are to be used as nominal inputs. The TARGET statement specifies that mpg_city is the target variable to be predicted. The OUTPUT statement requests that the predictions be written to the data table mycas.score_out and that the make, model, type and mpg_city variables be copied from the mycas.cars data table to the mycas.score_out data table.

Figure 5.1 shows the global bias, the bias values for each level, and the list of the factors for the first 48 observations.
66 F Chapter 5: The FACTMAC Procedure

Figure 5.1 Bias Values and Factors
O b s

V a r ia b le

L e v e l

B ia s

F a c to r 1

F a c to r 2

F a c to r 3

F a c to r 4

F a c to r 5
0 .0 0 0 0 0

1

_ G L O B A L _

2 0 .0 6 0 7

0 .0 0 0 0 0

0 .0 0 0 0 0

0 .0 0 0 0 0

0 .0 0 0 0 0

2

M a k e

A c u ra

-0 .6 3 2 2

-1 .6 5 1 8 9

-2 .3 4 2 1 3

0 .0 9 5 5 3

-4 .0 6 5 5 1

0 .7 2 5 6 3

3

M a k e

A u d i

-1 .5 8 7 1

-0 .2 3 1 3 1

0 .0 7 8 2 8

-0 .3 5 2 9 8

-0 .4 5 8 2 7

-0 .2 0 1 6 6

4

M a k e

B M W

-1 .3 6 0 7

0 .0 0 7 7 7

0 .0 5 4 5 5

-0 .1 9 4 6 6

-0 .0 7 2 7 2

0 .2 2 2 7 5

5

M a k e

B u ic k

-1 .1 7 1 9

2 .9 6 4 9 3

0 .1 0 8 1 5

3 .1 4 0 4 8

-4 .7 4 2 9 3

-0 .2 8 6 9 2

6

M a k e

C a d i lla c

-3 .5 6 0 7

-1 .0 7 0 3 3

-0 .9 9 1 8 7

1 .4 9 6 9 9

0 .5 8 2 4 5

0 .9 5 6 6 9

7

M a k e

C h e v r o le t

-0 .3 9 4 1

0 .0 1 2 1 6

0 .0 0 6 8 8

0 .0 5 3 2 1

0 .0 0 9 2 3

-0 .0 3 5 0 7

8

M a k e

C h r y s le r

-0 .1 9 4 1

0 .5 6 1 6 8

-0 .9 0 6 8 1

-0 .7 7 8 9 9

-1 .3 8 4 9 8

1 .4 8 2 2 0

9

M a k e

D o d g e

-0 .6 7 6 1

0 .5 3 6 0 3

0 .0 5 0 4 4

0 .0 3 6 1 4

0 .7 9 8 6 7

0 .4 6 5 2 2

1 0

M a k e

F o rd

-0 .7 9 9 9

-0 .2 9 5 3 2

-0 .1 6 4 5 4

0 .0 5 8 4 5

-0 .2 7 5 5 0

0 .1 0 5 2 8

1 1

M a k e

G M C

-4 .6 8 5 7

1 .0 3 1 7 1

-1 .9 7 3 1 0

-0 .9 1 0 6 9

-4 .5 4 4 1 8

2 .0 0 9 5 2

1 2

M a k e

H o n d a

7 .7 6 2 8

0 .8 4 9 0 2

-0 .5 4 0 7 3

-0 .3 7 1 4 9

-0 .8 7 8 9 8

-0 .3 1 3 3 4

1 3

M a k e

H u m m e r

-1 0 .0 6 0 7

-3 .2 6 6 5 2

2 .0 6 0 4 4

-3 .3 1 8 1 1

-1 .3 2 7 0 9

-6 .0 3 0 6 8

1 4

M a k e

H y u n d a i

2 .9 3 9 3

0 .3 0 0 7 5

0 .7 2 7 5 7

-0 .7 8 0 5 7

0 .0 1 3 7 1

-0 .1 3 1 1 3

1 5

M a k e

In fin iti

-2 .8 1 0 7

-1 .2 0 2 7 0

2 .2 3 7 6 2

6 .2 7 4 5 9

-3 .9 7 1 3 1

0 .5 1 6 0 8

1 6

M a k e

Is u z u

-4 .0 6 0 7

6 .3 1 9 6 6

-4 .6 1 0 5 2

2 .3 2 4 6 5

-5 .9 8 8 8 2

-2 .3 3 4 9 5

1 7

M a k e

J a g u a r

-2 .5 6 0 7

-2 .1 8 1 7 5

-1 .3 6 3 9 5

-1 .7 2 0 3 4

2 .8 8 5 7 3

1 .2 2 2 0 2

1 8

M a k e

J e e p

-2 .7 2 7 4

1 .3 4 1 3 6

-4 .7 1 5 4 3

5 .6 8 7 4 0

0 .2 5 7 4 8

-5 .3 0 4 7 4

1 9

M a k e

K ia

1 .8 4 8 3

-5 .3 0 7 5 5

3 .5 3 8 6 4

-4 .7 5 6 1 9

5 .2 4 4 4 6

2 .5 5 0 9 8

2 0

M a k e

L a n d R o v e r

-6 .0 6 0 7

-5 .9 8 6 5 7

1 .7 3 5 0 1

3 .1 6 0 5 0

0 .1 6 4 6 9

-3 .8 9 0 3 1

2 1

M a k e

L e x u s

-2 .6 0 6 2

-0 .9 7 0 6 8

1 .8 3 4 4 0

1 .6 1 6 6 1

0 .7 7 8 1 5

0 .4 4 3 8 3

2 2

M a k e

L i n c o ln

-3 .2 8 3 0

1 .3 2 6 8 4

0 .1 6 1 8 5

-0 .6 8 3 7 5

-0 .6 6 1 9 6

1 .1 7 0 9 4

2 3

M a k e

M IN I

6 .4 3 9 3

-0 .1 8 3 1 6

1 .8 8 5 1 4

-0 .7 9 7 1 6

-2 .6 2 5 5 7

5 .7 8 7 8 3

2 4

M a k e

M a z d a

1 .3 9 3 8

-0 .9 1 1 7 1

1 .9 5 7 1 8

-1 .1 3 2 4 1

0 .7 0 1 2 4

0 .0 6 4 8 3

2 5

M a k e

M e rc e d e s -B e n z

-2 .7 1 4 6

-0 .1 6 7 3 8

0 .0 7 7 9 9

-0 .2 0 5 1 7

-0 .2 5 9 4 5

-0 .0 8 4 4 3

2 6

M a k e

M e rc u ry

-2 .5 0 5 2

0 .9 3 3 9 3

2 .2 5 6 0 7

0 .1 7 3 5 7

0 .2 5 7 8 6

1 .2 7 9 7 3

2 7

M a k e

M its u b is h i

0 .8 6 2 3

-0 .2 4 4 3 2

0 .3 5 6 3 5

0 .1 6 7 0 3

0 .3 2 4 7 9

-0 .0 2 8 1 0

2 8

M a k e

N is s a n

-0 .3 5 4 9

-0 .0 0 1 3 2

-0 .0 2 5 6 1

0 .0 0 7 5 1

0 .0 0 2 3 0

-0 .0 2 6 5 2

2 9

M a k e

O ld s m o b i le

0 .9 3 9 3

0 .2 1 0 7 3

3 .4 9 8 5 6

5 .9 2 7 9 0

-6 .2 8 9 7 9

2 .9 2 3 9 4

3 0

M a k e

P o n tia c

0 .4 8 4 7

-0 .1 3 0 6 1

-1 .7 0 5 0 2

-1 .3 5 0 8 6

1 .1 4 5 9 9

1 .4 1 5 3 5

3 1

M a k e

P o rs c h e

-2 .6 3 2 2

-4 .9 0 2 5 9

4 .5 6 2 6 9

4 .1 8 5 5 5

0 .6 6 5 4 3

-4 .0 9 5 0 5

3 2

M a k e

S a a b

0 .3 6 7 8

-0 .1 8 6 6 6

0 .0 0 7 1 4

0 .1 6 1 8 1

0 .8 0 4 3 9

0 .6 1 8 8 9

3 3

M a k e

S a tu r n

4 .3 1 4 3

1 .9 0 3 4 0

-3 .3 8 0 2 0

3 .7 3 0 0 3

0 .3 1 7 8 5

-0 .3 4 1 0 6

3 4

M a k e

S c io n

1 1 .4 3 9 3

6 .3 1 0 0 9

-6 .2 2 9 9 4

6 .2 6 1 7 0

-1 .7 4 4 8 1

5 .7 7 0 1 2

3 5

M a k e

S u b a ru

0 .2 1 2 0

0 .4 8 4 9 4

-0 .3 6 5 5 0

-0 .4 1 6 9 8

-0 .4 9 6 9 6

1 .0 3 9 0 8

3 6

M a k e

S u z u k i

2 .0 6 4 3

-1 .7 2 7 7 3

1 .9 3 5 7 9

-0 .7 7 0 9 9

-0 .0 1 7 6 6

-1 .5 0 6 9 5

3 7

M a k e

T o y o ta

4 .3 6 7 8

0 .2 9 6 5 0

-0 .0 8 5 7 4

-0 .1 3 6 8 1

0 .2 0 4 7 7

-0 .5 4 6 2 3

3 8

M a k e

V o lk s w a g e n

1 .3 3 9 3

-0 .0 5 2 3 6

0 .7 0 8 7 9

-1 .4 9 1 9 1

-1 .3 3 9 2 4

0 .1 9 6 1 4

3 9

M a k e

V o lv o

-0 .3 1 0 7

0 .9 1 5 8 5

-0 .2 0 4 7 9

-0 .6 4 4 1 6

-0 .2 3 1 6 6

0 .7 4 6 5 0

4 0

M o d e l

3 .5 R L 4 d r

-2 .0 6 0 7

4 .2 9 0 0 8

6 .3 2 1 2 7

6 .3 2 6 0 9

-6 .3 2 2 0 3

-4 .1 3 0 5 2

4 1

M o d e l

3 .5 R L w /N a v ig a tio n 4 d r

-2 .0 6 0 7

-2 .5 3 3 5 8

1 .0 7 0 3 3

6 .3 2 2 4 4

4 .6 4 1 8 5

0 .8 8 8 4 1

4 2

M o d e l

3 0 0 M

4 d r

-2 .0 6 0 7

6 .3 3 2 5 8

6 .3 2 1 0 2

-1 .4 6 1 0 5

6 .3 2 5 4 4

6 .3 2 4 0 5

4 3

M o d e l

3 0 0 M

S p e c ia l E d itio n 4 d r

-2 .0 6 0 7

-6 .3 3 3 4 7

4 .2 0 1 5 8

-6 .3 2 7 3 0

-0 .6 8 9 4 6

4 .7 7 9 1 7

4 4

M o d e l

3 2 5 C i 2 d r

-0 .0 6 0 7

0 .7 5 6 8 7

-6 .3 2 1 7 1

6 .3 2 2 5 7

-6 .3 2 4 5 9

6 .3 2 3 0 9

4 5

M o d e l

3 2 5 C i c o n v e r t i b le 2 d r

-1 .0 6 0 7

6 .3 3 2 1 6

-4 .5 4 5 9 8

-0 .4 9 2 6 6

6 .3 2 4 9 6

6 .3 2 2 7 0

4 6

M o d e l

3 2 5 i 4 d r

-0 .0 6 0 7

-0 .1 1 3 5 9

4 .9 8 9 7 9

2 .2 1 1 3 9

5 .5 0 1 7 7

6 .3 2 4 1 6

4 7

M o d e l

3 2 5 x i 4 d r

-1 .0 6 0 7

-6 .3 2 5 3 9

1 .4 9 3 0 4

5 .5 2 1 6 9

-6 .1 3 3 2 5

6 .3 2 5 6 8

4 8

M o d e l

3 2 5 x i S p o rt

-1 .0 6 0 7

6 .3 2 0 9 5

-5 .1 8 6 7 6

-0 .4 5 8 2 7

-4 .1 1 6 2 2

-3 .1 2 2 5 4


Syntax: FACTMAC Procedure

The following statements are available in the FACTMAC procedure:

```
PROC FACTMAC <options> ;
 CODE FILE=filename ;
 ID variables ;
 INPUT variables <LEVEL=NOMINAL> ;
 OUTPUT OUT=CAS-libref.data-table <options> ;
 SAVESTATE RSTORE=CAS-libref.data-table ;
 TARGET variable <LEVEL=INTERVAL> ;
 AUTOTUNE <options> ;
```

The PROC FACTMAC statement, an INPUT statement, and the TARGET statement are required. You can specify multiple INPUT statements.

The following sections describe the PROC FACTMAC statement and then describe the other statements in alphabetical order.

PROC FACTMAC Statement

```
PROC FACTMAC <options> ;
```

The PROC FACTMAC statement invokes the procedure. Table 5.1 summarizes the options available in the PROC FACTMAC statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input Data Table Options</strong></td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data table</td>
</tr>
<tr>
<td><strong>Factorization Options</strong></td>
<td></td>
</tr>
<tr>
<td>NFACTORS=</td>
<td>Specifies the number of factors to estimate for the model</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations</td>
</tr>
<tr>
<td>SEED=</td>
<td>Specifies the seed to be used for pseudorandom number generation</td>
</tr>
<tr>
<td>LEARNSTEP=</td>
<td>Specifies the learning step size for the SGD algorithm</td>
</tr>
<tr>
<td>NTHREADS=</td>
<td>Specifies the number of threads to use on each computation node</td>
</tr>
<tr>
<td>NONNEGATIVE</td>
<td>Requests nonnegative factorization</td>
</tr>
</tbody>
</table>

You can specify the following options:

```
DATA=CAS-libref.data-table
```

names the input data table for PROC FACTMAC to use. The default is the most recently created data table. `CAS-libref.data-table` is a two-level name, where
**CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about **CAS-libref**, see the section “Using CAS Sessions and CAS Engine Librefs” on page 64.

**data-table** specifies the name of the input data table.

**LEARNSTEP= number**

specifies the learning step size for the stochastic gradient descent (SGD) algorithm, where *number* is a positive real number. The learning step size controls the amount by which the factors are updated at each iteration.

By default, **LEARNSTEP=0.001**. This value can be tuned with the AUTOTUNE statement.

**MAXITER=number**

specifies the maximum number of iterations for the algorithm to perform, where *number* is an integer greater than or equal to 1. In each iteration of the SGD method, the factors are recomputed.

By default, **MAXITER=1**. This value can be tuned with the AUTOTUNE statement.

**NFACTORS= number**

specifies the number of factors to estimate for the model, where *number* is an integer greater than or equal to 1.

By default, **NFACTORS=1**. This value can be tuned with the AUTOTUNE statement.

**NONNEGATIVE**

performs nonnegative factorization, in which the estimated factors are greater than or equal to 0 and the estimated biases are 0.

By default, nonnegative factorization is not performed.

**NOPRINT**

suppresses ODS output.

**NTHREADS=number-of-threads**

specifies the number of threads to use for the computation, where *number-of-threads* is an integer from 1 to 64, inclusive. The default value is the maximum number of available threads per computer.

**OUTMODEL=** **caslib.data-table**

specifies the output model data table to contain the computed factor parameters. **caslib.data-table** is a two-level name, where **caslib** refers to the caslib and session identifier, and **data-table** specifies the name of the output data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 64.

**SEED=** **random-seed**

specifies an integer that is used to start the pseudorandom number generator. This option enables you to reproduce the same sample output, but only when **NTHREADS=1**. If you do not specify a seed or you specify a value less than or equal to 0, the seed is generated from reading the time of day from the computer’s clock.

By default, **SEED=0**.
The AUTOTUNE statement searches for the best combination of values of the NFACTORS=, LEARNSTEP=, and MAXITER= options in the PROC FACTMAC statement. You cannot specify both the OUTPUT and AUTOTUNE statements in the same run of PROC FACTMAC.

Table 5.2 summarizes the options that you can specify in the AUTOTUNE statement. For more information about all options except the TUNINGPARAMETERS= option, see the option’s description in the section “AUTOTUNE Statement” on page 7 in Chapter 2, “Shared Concepts.” The TUNINGPARAMETERS= option is described following Table 5.2.

### Table 5.2 AUTOTUNE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for $k$-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

**TUNINGPARAMETERS=(suboption | . . . | < suboption>)**

**TUNEPARMS=(suboption | . . . | < suboption>)**

specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

You can specify one or more of the following suboptions:

**NFACTORS (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)**

specifies information about the number of factors to use for tuning the factorization machine model. For more information, see the NFACTORS= option in the PROC FACTMAC statement.

You can specify the following additional suboptions:
**Chapter 5: The FACTMAC Procedure**

**LB=number**
specifies the minimum number of factors to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=5.

**UB=number**
specifies the maximum number of factors to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=30.

**VALUES=value-list**
specifies a list of values to consider for the number of factors during tuning, where value-list is a space-separated list of integer numbers greater than or equal to 1. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

**INIT=number**
specifies the initial number of factors for the tuner to use.

By default, INIT=5.

**EXCLUDE**
excludes the number of factors from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

**LEARNSTEP (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)**
specifies information about the learning step to use for tuning the factorization machine model. For more information, see the LEARNSTEP= option in the PROC FACTMAC statement.

You can specify the following additional suboptions:

**LB=number**
specifies the minimum learning step to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=0.001.

**UB=number**
specifies the maximum learning step to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=1.

**VALUES=value-list**
specifies a list of learning steps to consider during tuning, where value-list is a space-separated list of numbers greater than 0. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

**INIT=number**
specifies the initial learning step for the tuner to use.

By default, INIT=0.001.
EXCLUDE
excludes the learning step from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

MAXITER (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the maximum number of iterations to use for tuning the factorization machine model. For more information, see the MAXITER= option in the PROC FACTMAC statement.

You can specify the following additional suboptions:

LB=number
specifies the minimum number of iterations to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=10.

UB=number
specifies the maximum number of iterations to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=200.

VALUES=value-list
specifies a list of numbers of trees to consider during tuning, where value-list is a space-separated list of positive integers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial number of iterations for the tuner to use.

By default, INIT=30.

EXCLUDE
excludes the number of iterations from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

---

CODE Statement

CODE FILE=filename ;
The CODE statement generates SAS DATA step code that mimics the computations that are performed. The generated SAS DATA step code can be used for scoring new observations. Only one CODE statement is processed. If you specify multiple CODE statements, only the first one is used.

You must specify the following option:

FILE=filename
specifies the name of the file to write the SAS score code to.

The CODE statement is optional. If you do not include a CODE statement, no score code is generated.
ID Statement

ID variables;

The ID statement lists one or more variables that are to be copied from the input data table to the output data tables that are specified in the OUT= option in the OUTPUT statement and the RSTORE= option in the SAVESTATE statement.

INPUT Statement

INPUT variables < LEVEL=INTERVAL | NOMINAL >;

The INPUT statement specifies the names of the variables to be used in the factorization. It names one or more input variables that use common options. If you want to use different options for different variables, you can specify multiple INPUT statements.

You can include the following option in each INPUT statement:

LEVEL=INTERVAL | NOMINAL

specifies the level of measurement of the variables. You can specify the following values:

INTERVAL specifies that the level of measurement of the variables is interval.

NOMINAL specifies that the level of measurement of the variables is nominal.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables.

You must specify at least two nominal input variables. You can also specify any number of interval input variables.

OUTPUT Statement

OUTPUT OUT=CAS-libref.data-table < options >;

The OUTPUT statement creates an output data table to contain the results of the procedure run. You cannot specify both the OUTPUT and AUTOTUNE statements in the same run of PROC FACTMAC.

You must specify the following option:

OUT=CAS-libref.data-table

names the output data table for PROC FACTMAC to use. You must specify this option before any other options. CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about CAS-libref, see the section “Using CAS Sessions and CAS Engine Librefs” on page 64.
**SAVESTATE Statement**

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see Chapter 3, “The ASTORE Procedure.”

You must specify the following option:

\[ RSTORE=CAS-libref.data-table \]

specifies a data table in which to save the analytic store for the model. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 64.

**TARGET Statement**

\[ \text{TARG}E\text{T } \text{variable } < \text{LEVEL=} \text{INTERVAL} > ; \]

The TARGET statement names the target variable whose values PROC FACTMAC predicts. The target must be interval and must be different from the variables in the INPUT statement. You can include the following option in the OUTPUT statement:

\[ \text{LEVEL=} \text{INTERVAL} \]

specifies the level of measurement of the variables.

PROC FACTMAC currently accepts only interval target variables.

**Details: FACTMAC Procedure**

The factorization machines model is defined as

\[
\hat{y}(x) = w_0 + \sum_{j=1}^{p} w_j x_j + \sum_{j=1}^{p} \sum_{j' = j+1}^{p} x_j x_{j'} \sum_{f=1}^{k} v_{j'f} v_{j'f}
\]

where \( x = (x_1, \ldots, x_p) \) is an observed \( p \)-dimensional input feature vector, \( \hat{y} \) is the predicted target, \( w_0 \) is a global bias, \( w_j \) are per-feature biases, and \( v_{j'f} \) denotes coordinate \( f \) of the vector \( v_j \in \mathbb{R}^k \). The overall
factor matrix $V \in \mathbb{R}^{p \times k}$ is the concatenation of the row vectors $v_j$ for $j = 1, \ldots, p$. The number of factors is $k$. PROC FACTMAC estimates the model parameters $w_0, w_1, \ldots, w_p$ and $V$. The estimation is done by minimizing the root mean square error (RMSE), which is defined by

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$

over the training set, subject to the max-norm regularization constraint

$$\|v_j\|_\infty < B, j = 1, \ldots, p$$

The optimization uses a projected-gradient version of the stochastic gradient descent (SGD) algorithm. The constant $B$ is automatically set, based on the range of the input and target variables.

The results of running PROC FACTMAC are reproducible only if you specify a value greater than 0 for the SEED= option and specify NTHREADS=1, because PROC FACTMAC uses a threaded SGD solver that purposefully uses shared memory without locks in each computation node. The variability between runs is nevertheless expected to be small. PROC FACTMAC can still use multiple machines for the analysis even when NTHREADS=1.

Displayed Output

The FACTMAC procedure displays various tables that are related to the factorization. The following sections describe the output tables in the order of their appearance when the related options are specified.

Model Information

The “Model Information” table displays basic information about the parameters that are used in the factorization analysis. This information includes the maximum number of iterations, learning step, number of factors, and seed value.

Number of Observations

The “Number of Observations” table displays the number of observations that are read from the input data table and used.

Iteration History

The “Iteration History” table displays the iteration history and approximate loss when the variables that are specified in the INPUT statement are interval.

The “displayed loss” is an approximation for computational efficiency reasons. The final exact loss is shown in the “Final Exact Loss” table.
Final Exact Loss

The “Final Exact Loss” table displays the actual, exact mean square error (MSE) and the root mean square error (RMSE) of the learned factorization machines model solution, which are computed on the training data.

Interval Variables

The “Interval Variables” table shows the mean and the standard deviation for the interval variables.

Output CAS Tables

When you specify the OUTPUT statement to create output tables on your CAS server, the FACTMAC procedure produces the output data table along with a table that lists the CAS library, the data table name, and the number of rows and columns in that data table.

ODS Table Names

Each table created by the FACTMAC procedure has a name associated with it, and you must use this name to refer to the table when you use ODS statements. The names of each table and a short description of the contents are listed in Table 5.3.

Table 5.3  ODS Tables Produced by PROC FACTMAC

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>DescStatsInt</td>
<td>Descriptive statistics for interval variables</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
<tr>
<td>FinalLoss</td>
<td>Final exact loss</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
<tr>
<td>NObs</td>
<td>Number of observations</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
<tr>
<td>OptIterHistory</td>
<td>Iteration history</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
<tr>
<td>OutCASTblFull</td>
<td>Summary table for output data; it contains the number of observations and the number of variables</td>
<td>PROC FACTMAC</td>
<td>Default</td>
</tr>
</tbody>
</table>

Output Data Tables

The FACTMAC procedure creates a data table to which it writes the global biases and the factors. You specify the name of this data table in the OUTMODEL statement. Details about the data table are listed in Table 5.4.
Chapter 5: The FACTMAC Procedure

Table 5.4  Output Data Table Produced by PROC FACTMAC

<table>
<thead>
<tr>
<th>Data Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTORS</td>
<td>Lists the global bias, the name of each input variable, each level and the values of the estimated factors</td>
</tr>
</tbody>
</table>

Examples: FACTMAC Procedure

**NOTE:** Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 5.1: Running PROC FACTMAC with the MovieLens Data Set

This example draws on data that are derived from companies that provide movies for online viewing. A company wants to offer its customers recommendations of movies that they might like. These recommendations are based on ratings that are provided by users. The MovieLens data set was developed by the GroupLens project at the University of Minnesota and is available at [http://grouplens.org/datasets/movielens](http://grouplens.org/datasets/movielens) (Harper and Konstan 2015). This example uses the MovieLens 100K version.

There are four columns in the MovieLens 100K data set: user ID, item ID (each item is a movie), timestamp, and rating. This example predicts the rating for a specified user ID and an item ID. The data set is very sparse because most combinations of users and movies are not rated.

You can download the compressed archive file from the website at [http://files.grouplens.org/datasets/movielens/ml-100k.zip](http://files.grouplens.org/datasets/movielens/ml-100k.zip) and use any third-party unzip tool to extract all the files in the archive to the destination directory of your choice. The file that contains the ratings is *u.data*. Assuming the destination directory is `/data`, the following DATA step loads the data table from the directory into your CAS session:

```sas
proc casutil;
 load file="/data/u.data" /* or other user-defined location*/
 casout="movlens"
 importoptions=(filetype="CSV" delimiter="TAB" getnames="FALSE"
 vars=("userid" "itemid" "rating" "timestamp"));
run;
```

---

1Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising, products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of any advertising, products, or other materials on, or available from, such websites or resources.
Example 5.1: Running PROC FACTMAC with the MovieLens Data Set

The following statements show how to use PROC FACTMAC to predict movie ratings:

```sas
proc factmac data=mycas.movlens nfactors=10 learnstep=0.15 maxiter=20 outmodel=mycas.factors;
 input userid itemid /level=nominal;
 target rating /level=interval;
 output out=mycas.out1 copyvars=(userid itemid rating);
run;
```

The following statements print the first 10 observations in the mycas.factors data table, which is specified in the OUTMODEL= option in the PROC FACTMAC statement. The output is shown in Output 5.1.1.

```sas
proc print data=mycas.factors(obs=10);
run;
```

**Output 5.1.1 Bias Values and Factors**

<table>
<thead>
<tr>
<th>Obs</th>
<th>Variable</th>
<th>Level</th>
<th>Bias</th>
<th>Factor1</th>
<th>Factor2</th>
<th>Factor3</th>
<th>Factor4</th>
<th>Factor5</th>
<th>Factor6</th>
<th>Factor7</th>
<th>Factor8</th>
<th>Factor9</th>
<th>Factor10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><em>GLOBAL</em></td>
<td></td>
<td>3.52986</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>userid</td>
<td>1</td>
<td>0.08043</td>
<td>0.14034</td>
<td>0.36798</td>
<td>-0.52760</td>
<td>-0.31465</td>
<td>0.22486</td>
<td>-0.28397</td>
<td>-0.87780</td>
<td>0.24885</td>
<td>0.02000</td>
<td>-0.14646</td>
</tr>
<tr>
<td>3</td>
<td>userid</td>
<td>2</td>
<td>0.17982</td>
<td>0.54746</td>
<td>0.00647</td>
<td>-0.47194</td>
<td>-0.39421</td>
<td>-0.19759</td>
<td>0.51829</td>
<td>-0.10209</td>
<td>0.01729</td>
<td>0.26124</td>
<td>-0.12959</td>
</tr>
<tr>
<td>4</td>
<td>userid</td>
<td>3</td>
<td>-0.73356</td>
<td>-0.54006</td>
<td>0.01826</td>
<td>0.31498</td>
<td>0.11264</td>
<td>0.73452</td>
<td>0.31893</td>
<td>-0.06499</td>
<td>-0.63882</td>
<td>-0.45544</td>
<td>0.18285</td>
</tr>
<tr>
<td>5</td>
<td>userid</td>
<td>4</td>
<td>0.80347</td>
<td>0.26031</td>
<td>0.04870</td>
<td>-0.25062</td>
<td>-0.01312</td>
<td>-0.29526</td>
<td>0.53290</td>
<td>-0.58693</td>
<td>0.00283</td>
<td>0.36615</td>
<td>0.40131</td>
</tr>
<tr>
<td>6</td>
<td>userid</td>
<td>5</td>
<td>-0.65557</td>
<td>0.51211</td>
<td>0.07824</td>
<td>-0.08614</td>
<td>-0.01463</td>
<td>0.46066</td>
<td>-0.30982</td>
<td>-0.21790</td>
<td>0.37157</td>
<td>-1.06146</td>
<td>-0.29942</td>
</tr>
<tr>
<td>7</td>
<td>userid</td>
<td>6</td>
<td>0.10521</td>
<td>0.17515</td>
<td>0.18334</td>
<td>-0.51516</td>
<td>0.53364</td>
<td>-0.55709</td>
<td>-0.16770</td>
<td>-0.05254</td>
<td>0.39754</td>
<td>0.29666</td>
<td>0.23568</td>
</tr>
<tr>
<td>8</td>
<td>userid</td>
<td>7</td>
<td>0.43540</td>
<td>0.25194</td>
<td>0.07348</td>
<td>-0.05654</td>
<td>-0.02345</td>
<td>-0.24364</td>
<td>0.14093</td>
<td>-0.03300</td>
<td>-0.46717</td>
<td>0.51100</td>
<td>-0.19197</td>
</tr>
<tr>
<td>9</td>
<td>userid</td>
<td>8</td>
<td>0.26675</td>
<td>0.11208</td>
<td>0.57564</td>
<td>0.02860</td>
<td>-0.77657</td>
<td>-0.16036</td>
<td>-0.41215</td>
<td>-0.06069</td>
<td>0.76389</td>
<td>-0.00608</td>
<td>-0.11334</td>
</tr>
<tr>
<td>10</td>
<td>userid</td>
<td>9</td>
<td>0.74287</td>
<td>0.18856</td>
<td>-0.10608</td>
<td>0.22230</td>
<td>-1.01906</td>
<td>-0.18707</td>
<td>-0.08458</td>
<td>-0.02147</td>
<td>-0.82411</td>
<td>-0.21252</td>
<td>-0.09411</td>
</tr>
</tbody>
</table>
```

The following statements print the predicted movie ratings for the first 20 observations, as shown in Output 5.1.2.

```sas
proc print data=mycas.out1(obs=20);
run;
```
Output 5.1.2 Predicted Movie Ratings

<table>
<thead>
<tr>
<th>Obs</th>
<th>userid</th>
<th>itemid</th>
<th>rating</th>
<th>P_rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>196</td>
<td>242</td>
<td>3</td>
<td>4.09834</td>
</tr>
<tr>
<td>2</td>
<td>186</td>
<td>302</td>
<td>3</td>
<td>3.78284</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>377</td>
<td>1</td>
<td>1.42463</td>
</tr>
<tr>
<td>4</td>
<td>244</td>
<td>51</td>
<td>2</td>
<td>3.20907</td>
</tr>
<tr>
<td>5</td>
<td>166</td>
<td>346</td>
<td>1</td>
<td>2.58391</td>
</tr>
<tr>
<td>6</td>
<td>298</td>
<td>474</td>
<td>4</td>
<td>4.60470</td>
</tr>
<tr>
<td>7</td>
<td>115</td>
<td>265</td>
<td>2</td>
<td>3.43183</td>
</tr>
<tr>
<td>8</td>
<td>253</td>
<td>465</td>
<td>5</td>
<td>4.57718</td>
</tr>
<tr>
<td>9</td>
<td>305</td>
<td>451</td>
<td>3</td>
<td>2.96174</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>86</td>
<td>3</td>
<td>4.44866</td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td>257</td>
<td>2</td>
<td>3.08217</td>
</tr>
<tr>
<td>12</td>
<td>286</td>
<td>1014</td>
<td>5</td>
<td>3.08536</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>222</td>
<td>5</td>
<td>4.46180</td>
</tr>
<tr>
<td>14</td>
<td>210</td>
<td>40</td>
<td>3</td>
<td>3.30407</td>
</tr>
<tr>
<td>15</td>
<td>224</td>
<td>29</td>
<td>3</td>
<td>3.15151</td>
</tr>
<tr>
<td>16</td>
<td>303</td>
<td>785</td>
<td>3</td>
<td>3.03463</td>
</tr>
<tr>
<td>17</td>
<td>122</td>
<td>387</td>
<td>5</td>
<td>4.47396</td>
</tr>
<tr>
<td>18</td>
<td>194</td>
<td>274</td>
<td>2</td>
<td>2.57941</td>
</tr>
<tr>
<td>19</td>
<td>291</td>
<td>1042</td>
<td>4</td>
<td>3.47518</td>
</tr>
<tr>
<td>20</td>
<td>234</td>
<td>1184</td>
<td>2</td>
<td>1.62934</td>
</tr>
</tbody>
</table>

References

Chapter 6
The FOREST Procedure

Contents
Overview: FOREST Procedure ... 80
PROC FOREST Features ... 81
Using CAS Sessions and CAS Engine Librefs 81
Getting Started: FOREST Procedure .. 81
Syntax: FOREST Procedure ... 86
PROC FOREST Statement .. 87
AUTOTUNE Statement ... 90
CODE Statement ... 94
CROSSVALIDATION Statement .. 94
GROW Statement .. 95
ID Statement .. 96
INPUT Statement .. 96
OUTPUT Statement ... 96
PARTITION Statement ... 97
SAVESTATE Statement ... 97
TARGET Statement .. 98
WEIGHT Statement .. 98
Details: FOREST Procedure .. 98
Bagging the Data ... 98
Training a Decision Tree .. 99
Loh Method .. 99
Predicting an Observation ... 100
Measuring Prediction Error ... 100
Handling Missing Values .. 101
Measuring Variable Importance ... 102
Strategies .. 101
Specifics .. 101
Handling Values That Are Absent from Training Data 102
Measuring Variable Importance ... 102
Residual Sum of Squares Importance Method 102
Random Branch Assignment Importance Method 104
Hyperparameter Tuning .. 104
k-fold Cross Validation ... 104
Displayed Output ... 105
Model Information ... 105
Number of Observations ... 105
Variable Importance .. 105
Overview: FOREST Procedure

The FOREST procedure creates a predictive model called a forest (which consists of several decision trees) in SAS Viya. A predictive model defines a relationship between input variables and a target variable. The purpose of a predictive model is to predict a target value from inputs. The FOREST procedure trains the model; that is, it creates the model by using training data in which the target values are known. The model can then be applied to observations in which the target is unknown. If the predictions fit the new data well, the model is said to generalize well. Good generalization is the primary goal for predictive tasks. A predictive model might fit the training data well but generalize poorly.

A decision tree is a type of predictive model that has been developed independently in the statistics and artificial intelligence communities. The FOREST procedure creates a tree recursively: The procedure chooses an input variable and uses it to create a rule to split the data into two or more subsets. The process is then repeated in each subset, and then again in each new subset, and so on until some constraint is met. In the terminology of the tree metaphor, the subsets are nodes, the original data table is the root node, and the final unpartitioned subsets are leaves or terminal nodes. A node is an internal node if it is not a leaf. The data in a leaf determine the estimates of the value of the target variable. These estimates are subsequently applied to predict the target of a new observation that is assigned to the leaf.

The FOREST procedure creates multiple decision trees that differ from each other in two ways: First, the training data for each tree constitute a different sample; each sample is created by sampling with replacement observations from the original training data of the forest. Second, the input variables that are considered for splitting a node are randomly selected from all available inputs. Among these randomly selected variables, the FOREST procedure chooses a single variable, which is associated the most with the target, when it forms a splitting rule.
PROC FOREST Features

The FOREST procedure creates an ensemble of decision trees to predict a single target of either interval or nominal measurement level. An input variable can have an interval or nominal measurement level.

The FOREST procedure ignores any observation from the training data that has a missing target value.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: FOREST Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”
A common use of forest models is to predict whether a mortgage applicant will default on a loan. The home equity data table Hmeq, which is in the Sampsio library that SAS provides, contains observations for 5,960 mortgage applicants. A variable named Bad indicates whether the applicant, after being approved for a loan, paid off or defaulted on the loan.

This example uses the Hmeq data table to build a forest model that is used to score the data and can be used to score data about new loan applicants. Table 6.1 describes the variables in Hmeq.

Table 6.1 Variables in the Home Equity (Hmeq) Data Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>Response</td>
<td>Binary</td>
<td>1 = applicant defaulted on the loan or is seriously delinquent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = applicant paid off the loan</td>
</tr>
<tr>
<td>CLAge</td>
<td>Predictor</td>
<td>Interval</td>
<td>Age of oldest credit line in months</td>
</tr>
<tr>
<td>CLNo</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of credit lines</td>
</tr>
<tr>
<td>DebtInc</td>
<td>Predictor</td>
<td>Interval</td>
<td>Debt-to-income ratio</td>
</tr>
<tr>
<td>Delinq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of delinquent credit lines</td>
</tr>
<tr>
<td>Derog</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of major derogatory reports</td>
</tr>
<tr>
<td>Job</td>
<td>Predictor</td>
<td>Nominal</td>
<td>Occupational category</td>
</tr>
<tr>
<td>Loan</td>
<td>Predictor</td>
<td>Interval</td>
<td>Requested loan amount</td>
</tr>
<tr>
<td>MortDue</td>
<td>Predictor</td>
<td>Interval</td>
<td>Amount due on mortgage</td>
</tr>
<tr>
<td>nInq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of recent credit inquiries</td>
</tr>
<tr>
<td>Reason</td>
<td>Predictor</td>
<td>Binary</td>
<td>'DebtCon' = debt consolidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'HomeImp' = home improvement</td>
</tr>
<tr>
<td>Value</td>
<td>Predictor</td>
<td>Interval</td>
<td>Value of property</td>
</tr>
<tr>
<td>YoJ</td>
<td>Predictor</td>
<td>Interval</td>
<td>Years at present job</td>
</tr>
</tbody>
</table>

The following statements load the mycas.hmeq data into your CAS session. For this example, the statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

```sas
/* Convert variable names to mixed case */
data mycas.hmeq;
  length Bad Loan MortDue Value 8 Reason Job $7 YoJ Derog Delinq CLAge nInq CLNo DebtInc 8;
  set sampsio.hmeq;
run;

proc print data=mycas.hmeq(obs=10); run;
```

Output 6.1 shows the first 10 observations of mycas.hmeq.
PROC FOREST treats numeric variables as interval inputs unless you specify otherwise. Character variables are always treated as nominal inputs. The following statements run PROC FOREST and save the model in a table named mycas.savedModel:

```plaintext
proc forest data=mycas.hmeq outmodel=mycas.savedModel;
  input Delinq Derog Job nInq Reason / level = nominal;
  input CLAge CLNo DebtInc Loan Mortdue Value YoJ / level = interval;
  target Bad / level = nominal;
  ods output FitStatistics=fitstats;
run;
```

No parameters are specified in the PROC FOREST statement; therefore, the procedure uses all default values. For example, the number of trees in the forest is 100, the number of bins for interval input variables is 20, and the number of variables that are examined at each node for a split is the square root of the number of input variables.

The INPUT and TARGET statements are required in order to run PROC FOREST. The INPUT statement indicates which variables to use to build the model, and the TARGET statement indicates which variable the procedure predicts.

Figure 6.2 displays the “Model Information” table. This table shows the values of the training parameters in the first six rows, in addition to some basic information about the trees in the forest.
Figure 6.3 displays the “Number of Observations” table, which shows how many observations were read and used. If you specify a PARTITION statement, the “Number of Observations” table also displays the number of observations that were read and used per partition.

Figure 6.4 displays the estimates of variable importance. The rows in this figure are sorted by the importance measure. A conclusion from fitting the forest model to these data is that DebtInc is the most important predictor of loan default.
Figure 6.4 Variable Importance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Importance</th>
<th>Std Dev Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DebTnc</td>
<td>274.92</td>
<td>83.5246</td>
</tr>
<tr>
<td>Delinq</td>
<td>90.6345</td>
<td>13.3056</td>
</tr>
<tr>
<td>Value</td>
<td>73.9882</td>
<td>24.1221</td>
</tr>
<tr>
<td>Derog</td>
<td>53.3015</td>
<td>7.7220</td>
</tr>
<tr>
<td>nlnq</td>
<td>42.7026</td>
<td>3.3223</td>
</tr>
<tr>
<td>CLNo</td>
<td>30.3675</td>
<td>3.8418</td>
</tr>
<tr>
<td>CLAge</td>
<td>26.3095</td>
<td>4.9389</td>
</tr>
<tr>
<td>Job</td>
<td>24.7731</td>
<td>2.4681</td>
</tr>
<tr>
<td>MortDue</td>
<td>23.1489</td>
<td>3.0192</td>
</tr>
<tr>
<td>YoJ</td>
<td>21.7237</td>
<td>2.2514</td>
</tr>
<tr>
<td>Loan</td>
<td>21.1239</td>
<td>6.0751</td>
</tr>
<tr>
<td>Reason</td>
<td>5.0869</td>
<td>1.5725</td>
</tr>
</tbody>
</table>

Figure 6.5 shows the first 10 and last 10 observations of the fit statistics. When PROC FOREST runs, it computes fit statistics for a sequence of forests that have an increasing number of trees. As the number of trees increases, the fit statistics usually improve (decrease) at first and then level off and fluctuate within a small range. Forest models provide an alternative estimate of the average square error and misclassification rate. This alternative is called the out-of-bag (OOB) estimate. The OOB estimate is a convenient substitute for an estimate that is based on test data and is a less biased estimate of how the model will perform on future data. For more information, see the section “Bagging the Data” on page 98. The listing shows that the out-of-bag error estimate is worse (larger) than the estimate that evaluates all observations on all trees. This is common.
Chapter 6: The FOREST Procedure

Syntax: FOREST Procedure

The following statements are available in the FOREST procedure:

PROC FOREST < options > ;
 AUTOTUNE < options > ;
 CODE < options > ;
 CROSSVALIDATION < KFOLD=number > ;
 GROW criterion ;
 ID variables ;
 INPUT variables < / LEVEL=NOMINAL | INTERVAL > ;
 OUTPUT OUT=CAS-libref.data-table < option > ;
 PARTITION partition-option ;
 SAVESTATE RSTORE=CAS-libref.data-table ;
 TARGET variable < / LEVEL=NOMINAL | INTERVAL > ;
 WEIGHT variable ;

The PROC FOREST, INPUT, and TARGET statements are required. The INPUT statement can appear multiple times.
PROC FOREST Statement

PROC FOREST <options> ;

The PROC FOREST statement invokes the procedure. Table 6.2 summarizes the options in the PROC FOREST statement.

Table 6.2 PROC FOREST Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Options</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the name of the input table</td>
</tr>
<tr>
<td>INBAGFRACTION=</td>
<td>Specifies the fraction of the training data to use for growing each tree</td>
</tr>
<tr>
<td>INMODEL=</td>
<td>Specifies a saved forest model to use to score a new table</td>
</tr>
<tr>
<td>LOH=</td>
<td>Specifies the number of variables to preselect using the Loh method</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses ODS output</td>
</tr>
<tr>
<td>NTREES=</td>
<td>Specifies the number of trees to grow in the forest model</td>
</tr>
<tr>
<td>NUMBIN=</td>
<td>Specifies the number of bins for continuous variables</td>
</tr>
<tr>
<td>OUTMODEL=</td>
<td>Specifies the data table to score the forest model</td>
</tr>
<tr>
<td>RBAIMP</td>
<td>Creates a variable importance table by using random branch assignment</td>
</tr>
<tr>
<td>SEED=</td>
<td>Specifies the random number seed to use for model building</td>
</tr>
<tr>
<td>VARS_TO_TRY=</td>
<td>Specifies the number of variables to examine at each node split</td>
</tr>
<tr>
<td>VOTE=</td>
<td>Specifies the method for calculating the predicted probabilities for a nominal target</td>
</tr>
<tr>
<td>Splitting Options</td>
<td></td>
</tr>
<tr>
<td>ASSIGNMISSING=</td>
<td>Specifies how to handle missing values in a predictor variable</td>
</tr>
<tr>
<td>MAXBRANCH=</td>
<td>Specifies the maximum number of splits per node</td>
</tr>
<tr>
<td>MAXDEPTH=</td>
<td>Specifies the maximum tree depth</td>
</tr>
<tr>
<td>MINLEAFSIZE=</td>
<td>Specifies the minimum number of observations per leaf</td>
</tr>
<tr>
<td>MINUSEINSEARCH=</td>
<td>Specifies the minimum number of observations to use with the USEINSEARCH policy for handling missing values</td>
</tr>
</tbody>
</table>

You can specify the following options:

ASSIGNMISSING=NONE | MACSMALL | USEINSEARCH

specifies how PROC FOREST creates a default splitting rule that is used to handle missing values and unknown levels. An unknown level is a level of a categorical predictor that does not exist in the training data but is encountered during scoring.

This option controls how missing values are used in model training, and controls the creation of the default splitting rule.

The primary splitting rule for a node is created during model training. During model scoring, observations are assigned to a node in a tree based upon the primary splitting rule if the rule’s variable is not missing. If the variable is missing for the observation, then the default splitting rule is used.
The default splitting rule enables all data to be scored, even if the primary rule cannot be used on a particular observation.

You can specify one of the following values to determine the default splitting rule:

- **NONE** excludes observations that have any missing variables from training the forest model. In the scoring phase, this default rule assigns missing interval inputs to the leftmost branch of the split, and unknown and missing nominal levels to the largest branch in the split.

- **MACSMALL** treats a missing value as a separate, legitimate value in the search for a split for the primary splitting rule. Missing values in interval inputs are treated as less than any other number. In the scoring phase, this default rule assigns missing interval inputs to the leftmost branch of the split, and unknown nominal levels to the largest branch in the split.

- **USEINSEARCH** treats a missing value as a separate, legitimate value in the search for a split for the primary splitting rule. Missing values in interval inputs are treated as a special level that is used during the split process. In the scoring phase, this default rule assigns missing interval inputs to the branch determined during forest growing, and unknown nominal levels to the largest branch in the split.

By default, ASSIGNMISSING=USEINSEARCH.

DATA= `CAS-libref.data-table`

names the input data table for PROC FOREST to use. The default is the most recently created data table. `CAS-libref.data-table` is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about **CAS-libref**, see the section “Using CAS Sessions and CAS Engine Librefs” on page 81.

- **data-table** specifies the name of the input data table.

INBAGFRACTION= `number`

specifies the fraction of the random bootstrap sample of the training data to be used for growing each tree in the forest, where `number` is a value between 0 and 1.

By default, INBAGFRACTION=0.6. This value can be tuned with the AUTOTUNE statement.

INMODEL= `<CAS-libref.>data-table`

specifies the data table that you have previously saved as a forest model by using the OUTMODEL= option in a previous run of PROC FOREST. `CAS-libref.data-table` is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the input data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 81.

When you use the INMODEL= option, the OUTPUT statement is required and any other options in the PROC FOREST statement, except for NOPRINT, are ignored.
LOH=L
specifies a number of variables (L) that are preselected to consider for candidate splits for each node. The variables are selected using the Loh method.

If L is less than the value of the VARS_TO_TRY= option (m), then the variables are selected from among the m variables. If L is greater than or equal to m, or if no L is specified, then the Loh method is not used.

MAXBRANCH=b
specifies the maximum number of children per node in the tree. PROC FOREST tries to create this number of children unless it is impossible (for example, if a split variable does not have enough levels).

By default, MAXBRANCH=2.

MAXDEPTH=number
specifies the maximum depth of the tree to be grown. The number of levels in a tree is equal to the depth plus one.

By default, MAXDEPTH=20.

MINLEAFSIZE=number
specifies the minimum number of observations that each child of a split must contain in the training data table in order for the split to be considered.

By default, MINLEAFSIZE=5.

MINUSERINSEARCH=number
specifies a threshold for using missing values in the split search when ASSIGNMISSING=USEINSEARCH. If the number of observations in which the splitting variable has missing values is greater than or equal to number, then PROC FOREST uses the USEINSEARCH policy to handle missing values for that variable.

By default, MINUSERINSEARCH=1.

NOPRINT
suppresses ODS output.

NTREES=number
specifies the number of trees to grow in the forest model.

By default, NTREES=100. This value can be tuned with the AUTOTUNE statement.

NUMBIN=number
specifies the number of bins in which to bin the interval input variables. PROC FOREST bins continuous predictors to a fixed bin size. This option controls the number of bins and thereby also the size of the bins.

By default, NUMBIN=20.

OUTMODEL=<CAS-libref.>data-table
specifies the data table to which to save the forest model. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 81.
RBAIMP creates a variable importance table by using random branch assignment (RBA). This table is created in addition to the normal variable importance table that is calculated using the residual sum of squares (RSS) error. For more information about RBA and RSS variable importance, see the section “Measuring Variable Importance” on page 102.

SEED=number
specifies the initial seed for random number generation for model building. The value of number must be an integer. If you do not specify a seed or you specify a value less than or equal to 0, the seed is generated from reading the time of day from the computer’s clock.

VARS_TO_TRY=m
M=m
specifies the number of input variables to consider splitting on in a node, where m ranges from 1 to the number of input variables.

By default, m is the square root of the number of input variables. This value can be tuned with the AUTOTUNE statement.

VOTE=MAJORITY | PROBABILITY
specifies how to calculate the predicted probability of the target levels for a nominal target. The predicted level is the level that has the highest predicted probability. This option affects the scoring and fit statistics of the forest model. You can specify the following values:

MAJORITY specifies that the predicted probability of each target level is equal to the number of trees in the forest that predicted that level as the target, divided by the total number of trees in the forest.

PROBABILITY specifies that the predicted probability of each target level is equal to the probability of that level averaged over each tree in the forest.

By default, VOTE=PROBABILITY.

AUTOTUNE Statement

AUTOTUNE <options> ;

The AUTOTUNE statement searches for the best combination of values of the INBAGFRACTION=, MAXDEPTH=, NTREES=, and VARS_TO_TRY= options in the PROC FOREST statement. You cannot specify both the AUTOTUNE statement and the CROSSVALIDATION statement in the same procedure run.

Table 6.3 summarizes the options that you can specify in the AUTOTUNE statement. For more information about all options except the TUNINGPARAMETERS= option, see the option’s description in the section “AUTOTUNE Statement” on page 7 in Chapter 2, “Shared Concepts.” The TUNINGPARAMETERS= option is described following Table 6.3.
Table 6.3 AUTOTUNE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for k-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

TUNINGPARAMETERS=(<suboption> | . . . | <suboption>)
TUNEPARMS=(<suboption> | . . . | <suboption>)

specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

You can specify one or more of the following suboptions:

INBAGFRACTION (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies information about the fraction of the training data to use for each bagged tree while tuning the forest model. For more information, see the INBAGFRACTION= option in the PROC FOREST statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum fraction of training data to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=0.1.

UB=number

specifies the maximum fraction of training data to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=0.9.
VALUES=value-list
specifies a list of fractions of training data to consider during tuning, where value-list is a space-separated list of numbers greater than 0 and less than or equal to 1. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial fraction of training data for the tuner to use.

By default, INIT=0.6.

EXCLUDE
excludes the fraction of the training data to use for each bagged tree from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

MAXDEPTH (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the maximum depth to which to grow the trees in the forest. For more information, see the MAXDEPTH= option in the PROC FOREST statement.

You can specify the following additional suboptions:

LB=number
specifies a lower bound on the maximum depth to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=1.

UB=number
specifies an upper bound on the maximum depth to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=29.

VALUES=value-list
specifies a list of values to consider for the maximum depth of the trees in the forest, where value-list is a space-separated list of numbers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial maximum depth of trees in the forest.

By default, INIT=20.

EXCLUDE
excludes maximum depth from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

NTREES (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the number of trees in the forest to use for tuning the forest model. For more information, see the NTREES= option in the PROC FOREST statement.

You can specify the following additional suboptions:
LB= *number*

specifies the minimum number of trees to consider during tuning. If you specify this suboption, you cannot specify the **VALUES=** suboption.

By default, **LB=20**.

UB= *number*

specifies the maximum number of trees to consider during tuning. If you specify this suboption, you cannot specify the **VALUES=** suboption.

By default, **UB=150**.

VALUES= *value-list*

specifies a list of numbers of trees to consider during tuning, where *value-list* is a space-separated list of positive integers. If you specify this suboption, you cannot specify either the **LB=** or **UB=** suboption.

INIT= *number*

specifies the initial number of trees for the tuner to use.

By default, **INIT=100**.

EXCLUDE

excludes the number of trees from the tuning process. If you specify this suboption, any specified **LB=**, **UB=**, **VALUES=**, and **INIT=** suboptions are ignored.

VARS_TO_TRY (LB= *number** UB=** *number** **VALUES=** *value-list** **INIT=** *number** **EXCLUDE)**

specifies information about the number of variables to consider at each split during tree growth while tuning the forest model. For more information, see the **VARS_TO_TRY=** option in the **PROC FOREST** statement.

You can specify the following additional suboptions:

LB= *number*

specifies the minimum number of variables to consider during tuning. If you specify this suboption, you cannot specify the **VALUES=** suboption.

By default, **LB=1**.

UB= *number*

specifies the maximum number of variables to consider during tuning. If you specify this suboption, you cannot specify the **VALUES=** suboption.

By default, **UB=\min(n,100)**, where *n* is the total number of input variables.

VALUES= *value-list*

specifies a list of numbers of variables to consider during tuning, where *value-list* is a space-separated list of positive integers. If you specify this suboption, you cannot specify either the **LB=** or **UB=** suboption.

INIT= *number*

specifies the initial number of variables for the tuner to use.

By default, **INIT is the square root of the number of the input variables, rounded up.**
EXCLUDE
excludes the number of variables from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

CODE Statement

CODE <options>;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 6.4 summarizes the options available in the CODE statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMENT</td>
<td>Adds comments to the generated code</td>
</tr>
<tr>
<td>FILE=</td>
<td>Names the file where the generated code is saved</td>
</tr>
<tr>
<td>FORMATWIDTH=</td>
<td>Specifies the numeric format width for the regression coefficients</td>
</tr>
<tr>
<td>INDENTSIZE=</td>
<td>Specifies the number of spaces to indent the generated code</td>
</tr>
<tr>
<td>LABELID=</td>
<td>Specifies a number used to construct names and labels</td>
</tr>
<tr>
<td>LINESIZE=</td>
<td>Specifies the line size for the generated code</td>
</tr>
<tr>
<td>NOTRIM</td>
<td>Compares formatted values, including blank padding</td>
</tr>
<tr>
<td>PCATALL</td>
<td>Generates probabilities for all levels of categorical response variables</td>
</tr>
</tbody>
</table>

For more information about the syntax of the CODE statement, see the section “CODE Statement” on page 12 in Chapter 2, “Shared Concepts.”

CROSSVALIDATION Statement

CROSSVALIDATION <KFOLD=number>;

The CROSSVALIDATION statement performs a k-fold cross validation process to find the average estimated validation error. You cannot specify the CROSSVALIDATION statement if you specify either the AUTOTUNE statement or the PARTITION statement.

You can specify the following option:

KFOLD=number

specifies the number of partition folds in the cross validation process, where number must be between 2 and 20, inclusive.

By default, KFOLD=5.
GROW Statement

GROW criterion ;

The GROW statement specifies the criterion by which to split a parent node into child nodes. As it grows the tree, PROC FOREST calculates the specified criterion for each predictor variable and then splits on the predictor variable that optimizes the specified criterion.

For categorical responses, the available criteria are CHAID, CHISQUARE, ENTROPY, GINI, and IGR; the default is IGR. For continuous responses, the available criteria are CHAID, FTEST, and RSS; the default is RSS.

For either categorical or continuous responses, you can specify the following criterion:

CHAID

for categorical predictor variables, CHAID uses the value (as specified in the ALPHA= option) of a chi-square statistic (for a classification tree) or an F statistic (for a regression tree) to merge similar levels of the predictor variable until the number of children in the proposed split reaches the number that you specify in the MAXBRANCH= option in the PROC FOREST statement. The p-values for the final split determine the variable on which to split.

For continuous predictor variables, CHAID chooses the best single split until the number of children in the proposed split reaches the value that you specify in the MAXBRANCH= option in the PROC FOREST statement.

For categorical responses only, you can specify the following criteria:

CHISQUARE

uses a chi-square statistic to split each variable and then uses the p-values that correspond to the resulting splits to determine the splitting variable.

ENTROPY

GAIN

uses the gain in information (decrease in entropy) to split each variable and then to determine the split.

GINI

uses the decrease in the Gini index to split each variable and then to determine the split.

IGR

uses the entropy metric to split each variable and then uses the information gain ratio to determine the split.

The default criterion for categorical responses is IGR.

For continuous responses only, you can specify the following criteria:

FTEST

uses an F statistic to split each variable and then uses the resulting p-value to determine the split variable.

RSS

VARIANCE

uses the change in response variance to split each variable and then to determine the split.

The default criterion for continuous responses is RSS.
ID Statement

```
ID variables ;
```

The ID statement lists one or more `variables` that are to be copied from the input data table to the output data tables that are specified in the OUT= option in the OUTPUT statement and the RSTORE= option in the SAVESTATE statement.

INPUT Statement

```
INPUT variables </ LEVEL=NOMINAL | INTERVAL > ;
```

The INPUT statement names input `variables` that share common options. The INPUT statement can be repeated.

You can specify the following option:

`LEVEL=NOMINAL | INTERVAL`

specifies the level of measurement of two variables. You can specify the following values:

- `NOMINAL` specifies that the level of measurement of the variables is nominal.
- `INTERVAL` specifies that the level of measurement of the variables is interval.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables.

OUTPUT Statement

```
OUTPUT OUT=CAS-libref.data-table < option > ;
```

The OUTPUT statement creates an output data table that contains the results of PROC FOREST.

You must specify the following option:

`OUT=CAS-libref.data-table`

names the output data table for PROC FOREST to use. You must specify this option before any other options. `CAS-libref.data-table` is a two-level name, where

- `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 81.

- `data-table` specifies the name of the output data table.

You can also specify the following `option`:
PARTITION Statement

PARTITION partition-option;

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjoint subsets for model training, validation, and testing. For more information, see the section “Using Validation and Test Data” on page 14 in Chapter 2, “Shared Concepts.” Either you can designate a variable in the input data table and a set of formatted values of that variable to determine the role of each observation, or you can specify proportions to use for randomly assigning observations to each role.

You must specify exactly one of the following partition-options:

FRACTION(<TEST=fraction> <VALIDATE=fraction> <SEED=number>)
randomly assigns specified proportions of the observations in the input data table to the roles. You specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions. If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions must be less than 1 and the remaining fraction of the observations are assigned to the training role. The SEED= option specifies an integer that is used to start the pseudorandom number generator for random partitioning of data for training, testing, and validation. If you do not specify SEED=number or if number is less than or equal to 0, the seed is generated by reading the time of day from the computer’s clock.

ROLE=variable (<TEST=value> <TRAIN=value> <VALIDATE=value>)
ROLEVAR=variable (<TEST=value> <TRAIN=value> <VALIDATE=value>)
names the variable in the input data table whose values are used to assign roles to each observation. This variable cannot also appear as an analysis variable in other statements or options. The TEST=, TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are used to assign observation roles. If you do not specify the TRAIN= suboption, then all observations whose role is not determined by the TEST= or VALIDATE= suboption are assigned to the training role.

SAVESTATE Statement

SAVESTATE RSTORE=CAS-libref.data-table;

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see Chapter 3, “The ASTORE Procedure.”

You must specify the following option:

RSTORE=CAS-libref.data-table
specifies a data table in which to save the analytic store for the model. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 81.

TARGET Statement

TARGET variable </LEVEL=NOMINAL | INTERVAL> ;

The TARGET statement names the variable whose values PROC FOREST tries to predict.

You can specify the following option:

LEVEL=NOMINAL | INTERVAL

specifies the level of measurement. You can specify the following values:

NOMINAL specifies that the level of measurement of the variables is nominal.

INTERVAL specifies that the level of measurement of the variables is interval.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables.

WEIGHT Statement

WEIGHT variable ;

The variable in the WEIGHT statement is used as a weight to perform a weighted analysis of the data. Observations that have nonpositive or missing weights are not included in the analysis. If a WEIGHT statement is not included, all observations that are used in the analysis are assigned a weight of 1.

Details: FOREST Procedure

Bagging the Data

A decision tree in a forest trains on new training data that are derived from the original training data presented to the FOREST procedure. Using different data to train different trees reduces the correlation of the predictions of the trees, which in turn should improve the predictions of the forest.

The FOREST procedure samples the original data with replacement to create the training data for an individual tree. The convention of sampling with replacement originated with Leo Breiman’s bagging algorithm (Breiman 1996, 2001). The word bagging stems from “bootstrap aggregating,” where “bootstrap” refers to a process that uses sampling with replacement. Breiman refers to the observations that are excluded from the sample as out-of-bag (OOB) observations. Therefore, observations in the training sample are called the bagged observations, and the training data for a specific decision tree are called the bagged data.
The **INBAGFRACTION**= option in the **PROC FOREST** statement specifies the number of observations to sample with replacement into the bagged data.

Estimating the goodness of fit of the model by using the training data is usually too optimistic; the fit of the model to new data is usually worse than the fit to the training data. Estimating the goodness of fit by using the out-of-bag data is usually too pessimistic at first. With enough trees, the out-of-bag estimates are an unbiased estimate of the generalization fit.

Training a Decision Tree

The **FOREST** procedure trains a decision tree by splitting the bagged data, then splitting each of the resulting segments, and so on recursively until some constraint is met.

Splitting involves the following subtasks:

1. selecting candidate inputs
2. computing the association of each input with the target
3. searching for the best split that uses the most highly associated inputs

PROC FOREST randomly selects m candidate input variables independently in every node, where m is the value of the **VARS_TO_TRY**= option in the **PROC FOREST** statement. If you specify L as the value of the **LOH**= option and $L < m$, then **PROC FOREST** chooses the best L input variables from the m variables according to the criterion described in section “Loh Method” on page 99. A split search is performed on all L or m variables, and the best rule is kept to split the node.

The reason for searching fewer input variables for a splitting rule instead of searching all inputs and choosing the best split is to improve prediction on new data. An input that offers more splitting possibilities provides the search routine more chances to find a spurious split. Loh and Shih (1997) demonstrate the bias towards spurious splits that result. They also demonstrate that preselecting the input variable and then searching only on that one input reduces the bias. You can choose to preselect a number of input variables by using the **LOH**= option.

The split search seeks to maximize the reduction in the gain for a nominal target and the reduction in variance of an interval target.

Loh Method

Specify the **LOH**= option to use ideas developed by Loh in a series of papers (Loh and Shih 1997; Loh 2002, 2009).

This method selects the number of variables that have the smallest p-value of a chi-square test of association in a contingency table. These variables are selected from the **VARS_TO_TRY**=m randomly selected variables that are chosen for a single decision tree in the forest.

Let Y and X denote the target variable and input variable, respectively. Let Y_i and X_i denote their values in observation i. If Y is categorical, let J denote the number of values. Similarly, if X is categorical, let K denote the number of values.
If both \(Y \) and \(X \) are categorical, then form the \(J \times K \) contingency table of the frequencies of the observations and compute the \(p \)-value. If \(Y \) has an interval measurement level, then note whether \(Y_i \) is greater than or less than the average of \(Y, \bar{Y} \), in the node, and then form the \(2 \times K \) table of frequencies and compute the \(p \)-value.

If \(X \) has an interval measurement level, then let

\[
K = \begin{cases}
3 & \text{if } N < 20J \\
4 & \text{otherwise}
\end{cases}
\]

where \(N \) is the number of observations in the calculations and \(J = 2 \) if \(Y \) has an interval measurement level.

Predicting an Observation

To predict an observation, the FOREST procedure first assigns the observation to a single leaf in each decision tree in the forest, then uses that leaf to make a prediction based on the tree that contains the leaf, and finally simply averages the predictions over the trees. For an interval target, the prediction in a leaf equals the average of the target values among the bagged training observations in that leaf. For a nominal target, the posterior probability of a target category equals the proportion of that category among the bagged training observations in that leaf. The predicted nominal target category is the category that has the largest posterior probability. In case of a tie, the first category that occurs in the training data is the prediction.

Measuring Prediction Error

The FOREST procedure computes the average square error measure of prediction error. For a nominal target, PROC FOREST also computes the misclassification rate and the log-loss.

The average square error for an interval target, the average square error for a nominal target, the misclassification rate, and the log-loss are defined, respectively, as

\[
\text{ASE}_{\text{int}} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\]

\[
\text{ASE}_{\text{cat}} = \frac{1}{JN} \sum_{i=1}^{N} \sum_{j=1}^{J} (\delta_{ij} - \hat{p}_{ij})^2
\]

\[
\text{Misc} = \frac{1}{N} \sum_{i=1}^{N} \, 1(y_i \neq \hat{y}_i)
\]

\[
\text{LogLoss} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \log(\hat{p}_{ij})
\]

where \(\hat{y}_i \) is the target prediction of observation \(i \), \(\delta_{ij} \) equals 1 if the nominal target value \(j \) occurs in observation \(i \) or 0 if it does not, \(\hat{p}_{ij} \) is the predicted probability of nominal target value \(j \) for observation \(i \), \(N \) is the number of observations, \(J \) is the number of nominal target values (classes), and \(\tilde{p}_{ij} \) is \(\hat{p}_{ij} \) truncated away from 0 and 1:

\[
\tilde{p}_{ij} = \max(\min(\hat{p}_{ij}, 1 - 10^{-10}), 10^{-10})
\]
The definitions are valid whether \(\hat{y}_i \) is the usual model prediction or the out-of-bag prediction. The \(\text{ASE}_\text{int} \) that is based on the usual model predictions of the original training data is usually optimistic and smaller than what its value will be on future data.

Handling Missing Values

Strategies

Tree-based models use observations that have missing input values. The FOREST procedure offers the following strategies for handling missing values:

- The simple strategy is to regard a missing value as a special nonmissing value. For a nominal input, a missing value simply constitutes a new categorical value. For an input whose values are ordered, each missing value constitutes a special value that is assigned a place in the ordering that yields the best split. That place is usually different in different nodes of the tree.

 This strategy is beneficial when missing values are predictive of certain target values. For example, people who have large incomes might be more reluctant to disclose their income than people who have ordinary incomes. If income were predictive of a target, then a missing income value would be predictive of the target and the missing values would be regarded as a special large-income value. The strategy seems harmless when the distribution of missing values is uncorrelated with the target because no choice of branch for the missing values would help predict the target.

 A linear regression could use the same strategy by adding binary indicator variables to designate whether a value is missing. Alternatively, and much more commonly, a linear regression could simply remove observations in which any input is missing. Let \(p \) denote the probability that a variable value is missing, and let \(v \) denote the number of input variables. The probability that an observation has one or more missing values is \(1 - (1 - p)^v \) (assuming missingness is independent and identically distributed among the inputs). If \(p = 0.1 \) and \(v = 10 \), then 65% of the observations would have missing values and would be removed from linear regression.

- The alternative strategy for decision trees is to exclude from the search algorithm any observations that have a missing value in the single input variable that defines the splitting rule. If \(p = 0.1 \) and \(v = 10 \), then only 10% instead of 65% of the observations are excluded. Although this compares favorably with common linear regression, using observations that have missing values might still be better.

Specifics

If the value of a target variable is missing, the observation is excluded from training and from evaluating the model. If the value of an input variable is missing, PROC FOREST uses the missing value as a legitimate value when `ASSIGNMISSING=USEINSEARCH` (the default value) and the number of observations in which the splitting variable has missing values is at least as large as the value of the `MINUSEINSEARCH=` option. When `ASSIGNMISSING=USEINSEARCH` and the number of observations in which the splitting value has missing values is less than the value of the `MINUSEINSEARCH=` option, the splitting rule assigns observations that have missing values to the largest branch.

If you specify `ASSIGNMISSING=NONE`, then PROC FOREST ignores training observations in which the input variables have missing values. When observations that have missing values are scored, if `ASSIGN-`
MISSING=NONE was used during model training, then observations that have missing values are scored using ASSIGNMISSING=MACSMALL as the default rule.

Handling Values That Are Absent from Training Data

A splitting rule that uses a categorical variable might not recognize all possible values of the variable because some categories might not exist in the training data. Splitting rules assign unseen categorical values to the branch that has the most in-bag training observations.

Measuring Variable Importance

The importance of a variable is the contribution it makes to the success of the model. For a predictive model, success means good prediction. Often the prediction relies mainly on a few variables. A good measure of importance reveals those variables. The better the prediction, the more closely the model represents reality and the more plausible it is that the important variables represent the true cause of prediction. Some people prefer a simple model so that they can understand it. However, a simple model usually relinquishes details of reality. Sometimes it is better to first find a good model and then ask which variables are important than to first ask which model is good for variable importance and then train that model.

Van der Laan (2006) asks whether a predictive model is appropriate at all. He believes that if variable importance is your goal, then you should predict importance directly instead of fitting a model. If your goal is to select suspicious genes for further study in a laboratory or to find variables in an industrial process that might influence the quality of the product, then his argument is persuasive. However, the purpose of many predictive models is to make predictions. In these cases, gaining insight into causes can be useful.

Variable importance is also useful for selecting variables for a subsequent model. The comparative importance between the selected variables does not matter. Researchers often seek speed and simplicity from the first model and seek accuracy from the subsequent model. Despite this tendency, a forest is often more useful than a simpler regression as a first model when you want interactions because variables contribute to the forest model through interactions.

Several authors have demonstrated that using a forest to first select variables and then using only those variables in a subsequent forest produces a final forest that predicts the target better than only training a forest without the variable selection.

The FOREST procedure implements two methods for computing variable importance, which are described in the following subsections. By default, the variable importance is calculated by using the change in the residual sum of square errors.

Residual Sum of Squares Importance Method

The residual sum of squares (RSS) for regression trees is defined as

\[
\text{RSS} = \sum_{\lambda} \sum_{i \in \lambda} \left(y_i - \hat{y}^T_{\lambda} \right)^2
\]

where
• i is an observation on leaf λ
• y_i is the predicted value of the response variable of observation i
• \hat{y}_{λ}^T is the actual value of the response variable on leaf λ

The residual sum of squares (RSS) for classification trees is defined as

$$\text{RSS} = \sum_{\lambda} \sum_{\Phi} N_{\Phi}^\lambda \left[\sum_{\tau \neq \Phi} \left(P_{\tau}^\lambda \right)^2 + \left(1 - P_{\Phi}^\lambda \right)^2 \right]$$

where

• Φ is the actual response level
• N_{Φ}^λ is the number of observations on leaf λ that have response level Φ
• P_{τ}^λ is the posterior probability for the response level τ on leaf λ
• P_{Φ}^λ is the posterior probability for the actual response level Φ on leaf λ

For a single tree in the forest, the RSS-based metric measures variable importance based on the change in RSS when a split is found at a node. The change is

$$\Delta_d = \text{RSS}_d - \sum_i \text{RSS}_i^d$$

where

• d denotes the node
• i denotes the index of a child that this node includes
• RSS_d is the RSS if the node is treated as a leaf
• RSS_i^d is the RSS of the node after it has been split

If the change in RSS is negative (which is possible when you use the validation set), then the change is set to 0.

The RSS-based importance for a single tree is then defined as

$$\sqrt{\sum_{d=1}^D \Delta_d}$$

where D is the total number of nodes.

The RSS variable importance for the forest is the average of the RSS variable importance across all trees in the forest.
Random Branch Assignment Importance Method

The random branch assignment (RBA) method computes the importance of an input variable \(v\) by comparing how the data fit the predictions with how the data fit modified predictions. To modify the predictions, the FOREST procedure replaces all splitting rules that use variable \(v\) by a rule that randomly assigns an observation to a branch. The probability of assigning an observation to a branch, \(P(\text{branch})\), is proportional to the number of training observations that were assigned to the branch during construction of the model.

The RBA importance can be expressed mathematically as

\[
I_{\text{RBA}}(v) \propto \sum_{i=1}^{n} \text{Loss}(y_i, \hat{y}_i) - \sum_{i=1}^{n} \text{Loss}(y_i, \tilde{y}_i)
\]

where \(\hat{y}_i\) is the modified prediction for observation \(i\) and \(\tilde{y}_i\) is the standard prediction. For an interval target, PROC FOREST computes the RBA importance of square error loss and absolute error loss. For a categorical target, PROC FOREST computes square error loss and negative margin loss.

Neville and Tan (2014) motivate and introduce the RBA method of variable importance.

Hyperparameter Tuning

For more information about hyperparameter tuning, see the section “Hyperparameter Tuning” on page 16 in Chapter 2, “Shared Concepts.”

You can use the AUTOTUNE statement to tune the following options in the PROC FOREST statement:

- **MAXDEPTH=** option for the maximum depth of trees to grow in the forest
- **NTREES=** option for the number of trees to grow in the forest
- **INBAGFRACTION=** option for the bootstrap sample size for building each tree in the forest
- **VARS_TO_TRY=** option for the number of variables to randomly select at each node split for each tree in the forest

\(k\)-fold Cross Validation

The CROSSVALIDATION statement performs a \(k\)-fold cross validation process to find the average estimated validation error (misclassification error for nominal targets or average square error for interval targets) for the trained model. During cross validation, all data are divided into \(k\) subsets (folds), where \(k\) is the value of the KFOLD= option. For each fold, a new model is trained on the \((k-1)\) folds, and then validated using the selected (hold-out) fold. The validation error estimates are then averaged over each set of training and scoring executions to obtain a single value. The CROSSVALIDATION statement returns a table that contains a single data row that shows the average validation error.
Displayed Output

The FOREST procedure displays the parameters that are used to train the model, the fit statistics of the trained model, and other information. The output is organized into various tables, which are discussed here in order of their appearance.

Model Information

The “Model Information” table contains the settings of the training parameters. This table also contains some basic information about the trees in the resulting forest. This table is produced by default.

Number of Observations

The “Number of Observations” table contains the number of observations that are read from the input data table and the number of observations that are used in the analysis. When you specify the PARTITION statement, the table also indicates the number of observations that are used in each partition. This table is produced by default.

Variable Importance

The “Variable Importance” table displays variable importance based on residual sum of square errors, which is explained in the section “Measuring Variable Importance” on page 102. This table is produced by default.

RBA Variable Importance

The “RBA Variable Importance” table displays variable importance based on the random branch assignment (RBA) method, which is explained in the section “Random Branch Assignment Importance Method” on page 104. This table is produced by the RBAIMP option in the PROC FOREST statement.

Fit Statistics

The “Fit Statistics” table contains statistics that measure the model’s goodness of fit. The fit of the model to the data improves as the number of trees in the forest increases. Successive rows in the table contain fit statistics for a forest that has more trees. Fit statistics are described in the section “Measuring Prediction Error” on page 100. This table is produced by default.

Tuner Information

The “Tuner Information” table displays the setup values that the tuner uses. This table is produced by the AUTOTUNE statement.

Tuner Summary

The “Tuner Summary” table displays statistics about the tuning process. This table is produced by the AUTOTUNE statement.
Tuner Timing

The “Tuner Timing” table displays the total time spent on different tasks while tuning. This table is produced by the AUTOTUNE statement.

Best Configuration

The “Best Configuration” table displays the hyperparameters and objective function values for the best configuration. This table is produced by the AUTOTUNE statement.

Tuner Results

The “Tuner Results” table displays the values of the hyperparameters, the objective function for the default configuration (Iteration 0), and up to 10 best found configurations. This table is produced by the AUTOTUNE statement.

Cross Validation Results

The “Cross Validation Results” table contains the average error rate (misclassification error or average square error) of k-fold cross validation.

Output CAS Tables

When you specify the OUTPUT statement or the OUTMODEL= option in the PROC FOREST statement to create output tables on your CAS server, the FOREST procedure produces the output data table along with a table that lists the CAS library, the data table name, and the number of rows and columns in that data table.

Evaluation History

The “Evaluation History” tables display the values of the hyperparameters and the objective function for all configurations. This table is produced by the AUTOTUNE statement, either by default or when EVALHISTORY=ALL.

ODS Table Names

Each table created by the FOREST procedure has a name associated with it, and you must use this name to refer to the table when you use ODS statements. The names of each table and a short description of the contents are listed in Table 6.5.
<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BestConfiguration</td>
<td>Hyperparameters and objective function values for the best configuration</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>CrossValidationResults</td>
<td>Average error rate (misclassification error or average square error) of k-fold cross validation</td>
<td>CROSSVALIDATION</td>
<td>Default</td>
</tr>
<tr>
<td>EvaluationHistory</td>
<td>Values of the hyperparameters and the objective function for all configurations</td>
<td>AUTOTUNE</td>
<td>Default / EvalHistory=ALL</td>
</tr>
<tr>
<td>FitStatistics</td>
<td>Fit statistics from the model</td>
<td>PROC FOREST</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>PROC FOREST</td>
<td>Default</td>
</tr>
<tr>
<td>Nobs</td>
<td>Number of observations</td>
<td>PROC FOREST</td>
<td>Default</td>
</tr>
<tr>
<td>OutCASTbl</td>
<td>Summary table for output data; it contains the number of observations and the number of variables</td>
<td>PROC FOREST / OUTPUT</td>
<td>OUTMODEL= / Default</td>
</tr>
<tr>
<td>RBAImportance</td>
<td>Random branch assignment variable importance</td>
<td>PROC FOREST</td>
<td>RBAIMP</td>
</tr>
<tr>
<td>TunerInfo</td>
<td>Setup values used by the tuner</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerResults</td>
<td>Values of the hyperparameters, the objective function for the default configuration (Iteration 0), and up to 10 best found configurations</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerSummary</td>
<td>Statistics about the tuning process</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerTiming</td>
<td>Total time spent on different tasks while tuning</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>VariableImportance</td>
<td>Residual sum of squares variable importance</td>
<td>PROC FOREST</td>
<td>Default</td>
</tr>
</tbody>
</table>
Example: FOREST Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 6.1: Scoring New Data by Using a Previous Forest Model

This example illustrates how you can use the OUTMODEL= option to save a model table, and later use the model table to score a data table. It uses the JunkMail data set in the Sashelp library.

The JunkMail data set comes from a study that classifies whether an email is junk email (coded as 1) or not (coded as 0). The data set contains 4,601 observations with 59 variables. The response variable is a binary indicator of whether an email is considered spam or not. There are 57 predictor variables that record the frequencies of some common words and characters and the lengths of uninterrupted sequences of capital letters in emails.

You can load the Sashelp.JunkMail data set into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:

```sas
data mycas.junkmail;
set sashelp.junkmail;
run;
```

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined libref.

The following statements train a forest model and score the training data table. The OUTPUT statement scores the training data and saves the results to a new table named fit_at_runtime.

```sas
proc forest data=mycas.junkmail outmodel=mycas.forest_model;
   input Address Addresses All Bracket Business CS CapAvg CapLong
   CapTotal Conference Credit Data Direct Dollar Edu Email
   Exclamation Font Free George HP HPL Internet Lab Labs
   Mail Make Meeting Money Order Original Our Over PM Paren
   Parts People Pound Project RE Receive Remove Semicolon
   Table Technology Telnet Will You Your _000 _85 _415 _650
   _857 _1999 _3D / level = interval;
   target class /level=nominal;
   output out=mycas.score_at_runtime;
   ods output FitStatistics=fit_at_runtime;
run;
```

The preceding statements produce the table shown in Output 6.1.1. The table shows the training and out-of-bag statistics.
Output 6.1.1 Fit Statistics: Fit at Run Time

<table>
<thead>
<tr>
<th>Number of Trees</th>
<th>OOB Average Square Error</th>
<th>Training Average Square Error</th>
<th>OOB Misclassification Rate</th>
<th>Training Misclassification Rate</th>
<th>OOB Log Loss</th>
<th>Training Log Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.114</td>
<td>0.1052</td>
<td>0.148</td>
<td>0.1448</td>
<td>0.538</td>
<td>0.430</td>
</tr>
<tr>
<td>2</td>
<td>0.192</td>
<td>0.0926</td>
<td>0.140</td>
<td>0.1274</td>
<td>0.769</td>
<td>0.337</td>
</tr>
<tr>
<td>3</td>
<td>0.226</td>
<td>0.0857</td>
<td>0.133</td>
<td>0.1150</td>
<td>0.787</td>
<td>0.282</td>
</tr>
<tr>
<td>4</td>
<td>0.254</td>
<td>0.0849</td>
<td>0.132</td>
<td>0.1121</td>
<td>0.823</td>
<td>0.280</td>
</tr>
<tr>
<td>5</td>
<td>0.275</td>
<td>0.0831</td>
<td>0.132</td>
<td>0.1089</td>
<td>0.849</td>
<td>0.277</td>
</tr>
<tr>
<td>6</td>
<td>0.284</td>
<td>0.0803</td>
<td>0.122</td>
<td>0.1054</td>
<td>0.844</td>
<td>0.270</td>
</tr>
<tr>
<td>7</td>
<td>0.293</td>
<td>0.0807</td>
<td>0.118</td>
<td>0.1000</td>
<td>0.834</td>
<td>0.272</td>
</tr>
<tr>
<td>8</td>
<td>0.298</td>
<td>0.0797</td>
<td>0.115</td>
<td>0.0963</td>
<td>0.841</td>
<td>0.271</td>
</tr>
<tr>
<td>9</td>
<td>0.302</td>
<td>0.0794</td>
<td>0.114</td>
<td>0.0982</td>
<td>0.843</td>
<td>0.271</td>
</tr>
<tr>
<td>10</td>
<td>0.306</td>
<td>0.0795</td>
<td>0.114</td>
<td>0.0976</td>
<td>0.850</td>
<td>0.272</td>
</tr>
<tr>
<td>91</td>
<td>0.332</td>
<td>0.0788</td>
<td>0.103</td>
<td>0.0878</td>
<td>0.892</td>
<td>0.274</td>
</tr>
<tr>
<td>92</td>
<td>0.332</td>
<td>0.0787</td>
<td>0.103</td>
<td>0.0876</td>
<td>0.892</td>
<td>0.274</td>
</tr>
<tr>
<td>93</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.103</td>
<td>0.0880</td>
<td>0.892</td>
<td>0.274</td>
</tr>
<tr>
<td>94</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.102</td>
<td>0.0880</td>
<td>0.892</td>
<td>0.274</td>
</tr>
<tr>
<td>95</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.102</td>
<td>0.0878</td>
<td>0.891</td>
<td>0.274</td>
</tr>
<tr>
<td>96</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.102</td>
<td>0.0885</td>
<td>0.891</td>
<td>0.274</td>
</tr>
<tr>
<td>97</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.103</td>
<td>0.0887</td>
<td>0.892</td>
<td>0.274</td>
</tr>
<tr>
<td>98</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.103</td>
<td>0.0887</td>
<td>0.892</td>
<td>0.273</td>
</tr>
<tr>
<td>99</td>
<td>0.331</td>
<td>0.0788</td>
<td>0.103</td>
<td>0.0887</td>
<td>0.891</td>
<td>0.274</td>
</tr>
<tr>
<td>100</td>
<td>0.331</td>
<td>0.0787</td>
<td>0.104</td>
<td>0.0887</td>
<td>0.892</td>
<td>0.273</td>
</tr>
</tbody>
</table>

The following statements use a previously saved model to score new data:

```plaintext
proc forest data=mycas.junkmail inmodel=mycas.forest_model;
  output out=mycas.score_later;
  ods output FitStatistics=fit_later;
run;
```

When you specify the INMODEL= option to use a previously created forest model, the fit statistics table no longer shows the out-of-bag statistics, because you are scoring new data. In this example, the scored data are the same as the training data, so you can see that the statistics in Output 6.1.2 match those previously seen in Output 6.1.1.
This example demonstrates that the FOREST procedure can score an input data table by using a previously saved forest model, which was saved using the OUTMODEL= option in a previous procedure run. If you want to properly score a new data table, you must not modify the mycas.forest_model table, because doing so could invalidate the constructed forest model. As with any scoring of new data, the variables that are used in the model creation must be present in order for you to score a new table.

References

Chapter 7
The GRADBOOST Procedure

Contents

Overview: GRADBOOST Procedure .. 114
Using CAS Sessions and CAS Engine Librefs .. 114
Getting Started: GRADBOOST Procedure .. 115
Syntax: GRADBOOST Procedure .. 119
 PROC GRADBOOST Statement .. 120
 AUTOTUNE Statement ... 123
 CODE Statement .. 128
 CROSSVALIDATION Statement ... 128
 ID Statement .. 129
 INPUT Statement .. 129
 OUTPUT Statement .. 129
 PARTITION Statement ... 130
 SAVESTATE Statement .. 130
 TARGET Statement .. 131
 WEIGHT Statement .. 131
Details: GRADBOOST Procedure ... 131
 Subsampling the Data .. 131
 Training a Decision Tree .. 132
 Boosting .. 132
 Measuring Prediction Error ... 132
 Handling Missing Values .. 133
 Strategies ... 133
 Specifics .. 134
 Measuring Variable Importance ... 134
 Residual Sum of Squares Importance Method 134
Hyperparameter Tuning ... 136
 k-fold Cross Validation .. 136
Displayed Output .. 136
 Model Information ... 136
 Number of Observations .. 136
 Variable Importance ... 137
 Fit Statistics .. 137
 Tuner Information ... 137
 Tuner Summary .. 137
 Tuner Timing .. 137
 Best Configuration .. 137
Overview: GRADBOOST Procedure

The GRADBOOST procedure creates a predictive model called a gradient boosting model in SAS Viya. A gradient boosting model consists of multiple decision trees. A predictive model defines a relationship between input variables and a target variable. The purpose of a predictive model is to predict a target value from inputs. The GRADBOOST procedure creates the model by using training data in which the target values are known. The model can then be applied to observations in which the target is unknown. If the predictions fit the new data well, the model is said to generalize well. Good generalization is the primary goal of predictive tasks. A predictive model might fit the training data well but generalize poorly.

A decision tree is a type of predictive model that has been developed independently in the statistics and artificial intelligence communities. Based on the boosting method in Hastie, Tibshirani, and Friedman (2001) and Friedman (2001), the GRADBOOST procedure creates a predictive model by fitting a set of additive trees.

For more information about training a gradient boosting model, see the section “Boosting” on page 132.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```
proc options option=(CASHOST CASPORT); run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```
```
cas mysess;
libname mycas cas sessref=mysess;

The CAS statement creates the CAS session named mysess, and the LIBNAME statement creates the mycas CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the mysess session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

cas mysess terminate;

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

A common use of gradient boosting models is to predict whether a mortgage applicant will default on a loan. The home equity data table Hmeq, which is in the Sampsio library that SAS provides, contains observations for 5,960 mortgage applicants. A variable named Bad indicates whether the applicant, after being approved for a loan, paid off or defaulted on the loan.

This example uses the Hmeq data table to build a gradient boosting model that is used to score the data and can be used to score data about new loan applicants. Table 7.1 describes the variables in Hmeq.
Table 7.1 Variables in the Home Equity (Hmeq) Data Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>Response</td>
<td>Binary</td>
<td>1 = applicant defaulted on the loan or is seriously delinquent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = applicant paid off the loan</td>
</tr>
<tr>
<td>CLAge</td>
<td>Predictor</td>
<td>Interval</td>
<td>Age of oldest credit line in months</td>
</tr>
<tr>
<td>CLNo</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of credit lines</td>
</tr>
<tr>
<td>DebtInc</td>
<td>Predictor</td>
<td>Interval</td>
<td>Debt-to-income ratio</td>
</tr>
<tr>
<td>Delinq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of delinquent credit lines</td>
</tr>
<tr>
<td>Derog</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of major derogatory reports</td>
</tr>
<tr>
<td>Job</td>
<td>Predictor</td>
<td>Nominal</td>
<td>Occupational category</td>
</tr>
<tr>
<td>Loan</td>
<td>Predictor</td>
<td>Interval</td>
<td>Requested loan amount</td>
</tr>
<tr>
<td>MortDue</td>
<td>Predictor</td>
<td>Interval</td>
<td>Amount due on mortgage</td>
</tr>
<tr>
<td>nlnq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of recent credit inquiries</td>
</tr>
<tr>
<td>Reason</td>
<td>Predictor</td>
<td>Binary</td>
<td>'DebtCon' = debt consolidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'HomeImp' = home improvement</td>
</tr>
<tr>
<td>Value</td>
<td>Predictor</td>
<td>Interval</td>
<td>Value of property</td>
</tr>
<tr>
<td>YoJ</td>
<td>Predictor</td>
<td>Interval</td>
<td>Years at present job</td>
</tr>
</tbody>
</table>

The following statements load the mycas.hmeq data into your CAS session. For this example, the statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

```sas
data mycas.hmeq;
  length Bad Loan MortDue Value 8 Reason Job $7
    YoJ Derog Delinq CLAge nInq CLNo DebtInc 8;
  set sampsio.hmeq;
run;

proc print data=mycas.hmeq(obs=10); run;
```

Output 7.1 shows the first 10 observations of mycas.hmeq.

Figure 7.1 Partial Listing of the mycas.hmeq Data

<table>
<thead>
<tr>
<th>Obs</th>
<th>Bad</th>
<th>Loan</th>
<th>MortDue</th>
<th>Value</th>
<th>Reason</th>
<th>Job</th>
<th>YoJ</th>
<th>Derog</th>
<th>Delinq</th>
<th>CLAge</th>
<th>nInq</th>
<th>CLNo</th>
<th>DebtInc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1100</td>
<td>25860</td>
<td>39025</td>
<td>HomeImp</td>
<td>Other</td>
<td>10.5</td>
<td>0</td>
<td>0</td>
<td>94.367</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1800</td>
<td>48649</td>
<td>57037</td>
<td>HomeImp</td>
<td>Other</td>
<td>5.0</td>
<td>3</td>
<td>2</td>
<td>77.100</td>
<td>1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2000</td>
<td>62250</td>
<td></td>
<td>HomeImp</td>
<td>Sales</td>
<td>16.0</td>
<td>0</td>
<td>0</td>
<td>115.800</td>
<td>0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2000</td>
<td>45000</td>
<td>55000</td>
<td>HomeImp</td>
<td>Other</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
<td>86.067</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2200</td>
<td>24280</td>
<td>34687</td>
<td>HomeImp</td>
<td>Other</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>300.867</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2300</td>
<td>28192</td>
<td>40150</td>
<td>HomeImp</td>
<td>Other</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>54.600</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2400</td>
<td>50000</td>
<td>73395</td>
<td>HomeImp</td>
<td>ProEx</td>
<td>5.0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2400</td>
<td>17180</td>
<td></td>
<td>HomeImp</td>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14.567</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2500</td>
<td>15000</td>
<td>20200</td>
<td>HomeImp</td>
<td></td>
<td>18.0</td>
<td>0</td>
<td>0</td>
<td>136.067</td>
<td>1</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
PROC GRADBOOST treats numeric variables as interval inputs unless you specify otherwise. Character variables are always treated as nominal inputs. The following statements run PROC GRADBOOST and save the model in a table named mycas.savedModel:

```sas
proc gradboost data=mycas.hmeq outmodel=mycas.savedModel;
  input Delinq Derog Job nInq Reason / level = nominal;
  input CLAge CLNo DebtInc Loan Mortdue Value YoJ / level = interval;
  target Bad / level = nominal;
  ods output FitStatistics=fitstats;
run;
```

No parameters are specified in the PROC GRADBOOST statement; therefore, the procedure uses all default values. For example, the number of trees in the boosting model is 100, and the number of bins for interval input variables is 20.

The **INPUT** and **TARGET** statements are required in order to run PROC GRADBOOST. The **INPUT** statement indicates which variables to use to build the model, and the **TARGET** statement indicates which variable the procedure predicts.

Figure 7.2 displays the “Model Information” table. This table shows the values of the training parameters in the first six rows, in addition to some basic information about the trees in the boosting model.

![Figure 7.2 Model Information](image)

The GRADBOOST Procedure

<table>
<thead>
<tr>
<th>Model Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Trees</td>
<td>100</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Subsampling Rate</td>
<td>0.5</td>
</tr>
<tr>
<td>Number of Variables Per Split</td>
<td>12</td>
</tr>
<tr>
<td>Number of Bins</td>
<td>20</td>
</tr>
<tr>
<td>Number of Input Variables</td>
<td>12</td>
</tr>
<tr>
<td>Maximum Number of Tree Nodes</td>
<td>63</td>
</tr>
<tr>
<td>Minimum Number of Tree Nodes</td>
<td>31</td>
</tr>
<tr>
<td>Maximum Number of Branches</td>
<td>2</td>
</tr>
<tr>
<td>Minimum Number of Branches</td>
<td>2</td>
</tr>
<tr>
<td>Maximum Depth</td>
<td>5</td>
</tr>
<tr>
<td>Minimum Depth</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Number of Leaves</td>
<td>32</td>
</tr>
<tr>
<td>Minimum Number of Leaves</td>
<td>16</td>
</tr>
<tr>
<td>Maximum Leaf Size</td>
<td>2851</td>
</tr>
<tr>
<td>Minimum Leaf Size</td>
<td>5</td>
</tr>
<tr>
<td>Seed</td>
<td>123818132</td>
</tr>
</tbody>
</table>

Figure 7.3 displays the “Number of Observations” table, which shows how many observations were read and used. If you specify a **PARTITION** statement, the “Number of Observations” table also displays the number of observations that were read and used per partition.
Figure 7.3 Number of Observations

<table>
<thead>
<tr>
<th>Training</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
<td>5960</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>5960</td>
</tr>
</tbody>
</table>

Figure 7.4 displays the estimates of variable importance. The rows in this figure are sorted by the importance measure. A conclusion from fitting the boosting model to these data is that DebtInc is the most important predictor of loan default.

<table>
<thead>
<tr>
<th>Variable Importance</th>
<th>Std Dev Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Importance</td>
</tr>
<tr>
<td>DebtInc</td>
<td>26.9257</td>
</tr>
<tr>
<td>Delinq</td>
<td>7.3450</td>
</tr>
<tr>
<td>nlnq</td>
<td>6.1775</td>
</tr>
<tr>
<td>Job</td>
<td>5.4479</td>
</tr>
<tr>
<td>Derog</td>
<td>5.3054</td>
</tr>
<tr>
<td>CLAge</td>
<td>5.0686</td>
</tr>
<tr>
<td>Value</td>
<td>4.9606</td>
</tr>
<tr>
<td>CLNo</td>
<td>4.9280</td>
</tr>
<tr>
<td>YoJ</td>
<td>4.8388</td>
</tr>
<tr>
<td>MortDue</td>
<td>4.7727</td>
</tr>
<tr>
<td>Loan</td>
<td>3.2080</td>
</tr>
<tr>
<td>Reason</td>
<td>1.1742</td>
</tr>
</tbody>
</table>

Figure 7.5 shows the first 10 and last 10 observations of the fit statistics. PROC GRADBOOST computes fit statistics on a per-tree basis. As the number of trees increases, the fit statistics usually improve (decrease) at first and then level off and fluctuate within a small range.
The following statements are available in the GRADBOOST procedure:

```
PROC GRADBOOST < options > ;
   AUTOTUNE < options > ;
   CODE < options > ;
   CROSSVALIDATION < KFOLD=number > ;
   ID variables ;
   INPUT variables </LEVEL=NOMINAL | INTERVAL> ;
   OUTPUT OUT=CAS-libref.data-table < option > ;
   PARTITION partition-option ;
   SAVESTATE RSTORE=CAS-libref.data-table ;
   TARGET variable </LEVEL=NOMINAL | INTERVAL> ;
   WEIGHT variable ;
```

The PROC GRADBOOST, INPUT, and TARGET statements are required. The INPUT statement can appear multiple times.
The rest of this section provides detailed syntax information about each of the preceding statements, beginning with the PROC GRADBOOST statement. The remaining statements are described in alphabetical order.

PROC GRADBOOST Statement

```plaintext
PROC GRADBOOST < options > ;
```

The PROC GRADBOOST statement invokes the procedure. Table 7.2 summarizes the options in the PROC GRADBOOST statement.

Table 7.2 PROC GRADBOOST Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Options</td>
<td></td>
</tr>
<tr>
<td>INMODEL=</td>
<td>Specifies a saved gradient boosting model to use to score new a table</td>
</tr>
<tr>
<td>LASSO=</td>
<td>Specifies the L1 norm regularization parameter</td>
</tr>
<tr>
<td>LEARNINGRATE=</td>
<td>Specifies the learning rate for each tree</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses ODS output</td>
</tr>
<tr>
<td>NTREES=</td>
<td>Specifies the number of trees to grow in the boosting model</td>
</tr>
<tr>
<td>NUMBIN=</td>
<td>Specifies the number of bins for continuous variables</td>
</tr>
<tr>
<td>OUTMODEL=</td>
<td>Specifies the data table to which the gradient boosting model is to be saved</td>
</tr>
<tr>
<td>RIDGE=</td>
<td>Specifies the L2 norm regularization parameter</td>
</tr>
<tr>
<td>SAMPLINGRATE=</td>
<td>Specifies the fraction of the training data to use for growing each tree</td>
</tr>
<tr>
<td>SEED=</td>
<td>Specifies the random number seed to use for model building</td>
</tr>
<tr>
<td>VARS_TO_TRY=</td>
<td>Specifies the number of variables to examine at each node split</td>
</tr>
<tr>
<td>Splitting Options</td>
<td></td>
</tr>
<tr>
<td>ASSIGNMISSING=NONE</td>
<td>Specifies how to handle missing values in a predictor variable</td>
</tr>
<tr>
<td>MAXBRANCH=</td>
<td>Specifies the maximum number of splits per node</td>
</tr>
<tr>
<td>MAXDEPTH=</td>
<td>Specifies the maximum tree depth</td>
</tr>
<tr>
<td>MINLEAFSIZE=</td>
<td>Specifies the minimum number of observations per leaf</td>
</tr>
<tr>
<td>MINUSEINSEARCH=</td>
<td>Specifies the minimum number of observations to use with the USEINSEARCH policy for handling missing values</td>
</tr>
</tbody>
</table>

You also specify the following options:

ASSIGNMISSING=NONE | MACSMALL | USEINSEARCH

specifies how to handle missing values during training and creates a splitting rule to handle missing values and unknown levels during scoring. An unknown level is a level of a categorical predictor variable that does not exist in the training data but is encountered during scoring.

During model training, PROC GRADBOOST searches for the best splitting rule for each node, as described in the section “Training a Decision Tree” on page 132. During model scoring, observations are assigned to a node in a tree based upon the best splitting rule if that rule’s variable is not missing. If the variable is missing for the observation, then the default splitting that is specified by this option is
used. The default splitting rule enables all data to be scored, even if the best splitting rule cannot be used on a particular observation.

You can specify one of the following values:

- **NONE** during training, excludes observations that have any missing variables from the model. In the scoring phase, this default rule assigns observations that have missing values of an interval predictor variable to the leftmost branch of the split, and assigns observations that have unknown and missing nominal levels to the largest branch in the split.

- **MACSMALL** during training, treats a missing value as a separate, legitimate value in the search for a split for the primary splitting rule. Missing values in interval predictor variables are treated as less than any other number. In the scoring phase, this default rule assigns observations that have missing values of interval predictor variables to the leftmost branch of the split, and assigns observations that have unknown nominal levels to the largest branch in the split.

- **USEINSEARCH** during training, treats a missing value as a separate, legitimate value in the search for a split for the primary splitting rule. Missing values in interval predictor variables are treated as a special level that is used during the split process. In the scoring phase, this default rule assigns observations that have missing values of interval predictor variables to the branch determined during the model growing, and assigns observations that have unknown nominal levels to the largest branch in the split.

By default, **ASSIGNMISSING=USEINSEARCH**.

DATA=

names the input data table for PROC GRADBOOST to use. The default is the most recently created data table. **CAS-libref.data-table** is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about **CAS-libref**, see the section “Using CAS Sessions and CAS Engine Librefs” on page 114.

- **data-table** specifies the name of the input data table.

INMODEL=

specifies the data table that you previously saved as a gradient boosting model by using the **OUTMODEL=** option in a previous run of PROC GRADBOOST. **CAS-libref.data-table** is a two-level name, where **CAS-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the input data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 114.

When you use the **INMODEL=** option, both the **DATA=** option and the **OUTPUT** statement are required, and any other options, except for **NOPRINT**, are ignored.
LASSO=

Specifies the L1 norm regularization parameter, where *number* must be nonnegative.

By default, LASSO=0. This value can be tuned with the AUTOTUNE statement.

LEARNINGRATE=

Specifies the learning rate for the gradient boosting algorithm, where *number* must be between 0 and 1, inclusive.

By default, LEARNINGRATE=0.1. This value can be tuned with the AUTOTUNE statement.

MAXBRANCH=

Specifies the maximum number of children per node in the tree. PROC GRADBOOST tries to create this number of children unless it is impossible (for example, if a split variable does not have enough levels).

By default, MAXBRANCH=2.

MAXDEPTH=

Specifies the maximum depth of the tree to be grown. The number of levels in a tree is equal to the depth plus one.

By default, MAXDEPTH=5.

MINLEAFSIZE=

Specifies the minimum number of observations that each child of a split must contain in the training data table in order for the split to be considered.

By default, MINLEAFSIZE=5.

MINUSEINSEARCH=

Specifies a threshold for using missing values in the split search when ASSIGNMISSING=USEINSEARCH. If the number of observations in which the splitting variable has missing values is greater than or equal to *number*, then PROC GRADBOOST uses the USEINSEARCH policy to handle missing values for that variable.

By default, MINUSERINSEARCH=1.

NOPRINT

Suppresses ODS output.

NTREES=

Specifies the number of trees to grow in the gradient boosting model.

By default, NTREES=100. This value can be tuned with the AUTOTUNE statement.

NUMBIN=

Specifies the number of bins in which to bin the interval input variables. PROC GRADBOOST bins continuous predictors to a fixed bin size. This option controls the number of bins and thereby also the size of the bins.

By default, NUMBIN=20.
OUTMODEL= <CAS-libref.data-table>
specifies the data table to which to save the gradient boosting model. *CAS-libref.data-table* is a
two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies
the name of the output data table. For more information about this two-level name, see the DATA=
option and the section “Using CAS Sessions and CAS Engine Librefs” on page 114.

RIDGE=number
L2=number
specifies the L2 norm regularization parameter on prediction. The *number* must be nonnegative.

By default, RIDGE=0. This value can be tuned with the AUTOTUNE statement.

SAMPLINGRATE=number
specifies the fraction of the training data to be used for growing each tree in the boosting model.

By default, SAMPLINGRATE=0.5. This value can be tuned with the AUTOTUNE statement.

SEED=number
specifies the initial seed for random number generation for model building. The value of *number* must
be an integer. If you do not specify a seed or you specify a value less than or equal to 0, the seed is
generated from reading the time of day from the computer’s clock.

VARS_TO_TRY=M

specifies the number of input variables to consider splitting on in a node, where *M* ranges from 1 to the
number of input variables.

By default, *M* is the number of input variables. This value can be tuned with the AUTOTUNE statement.

AUTOTUNE Statement

AUTOTUNE <options> ;

The AUTOTUNE statement searches for the best combination of values of the LASSO=, LEARNINGRATE=,
NTREES=, RIDGE=, SAMPLINGRATE=, and VARS_TO_TRY= options in the PROC GRADBOOST
statement. You cannot specify both the AUTOTUNE statement and the CROSSVALIDATION statement in
the same procedure run.

Table 7.3 summarizes the options that you can specify in the AUTOTUNE statement. For more information
about all options except the TUNINGPARAMETERS= option, see the option’s description in the section
“AUTOTUNE Statement” on page 7 in Chapter 2, “Shared Concepts.” The TUNINGPARAMETERS= option
is described following Table 7.3.
Table 7.3 AUTOTUNE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for k-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

TUNINGPARAMETERS=(suboption | . . . | < suboption >)

TUNEPARMS=(suboption | . . . | < suboption >)

specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

You can specify one or more of the following *suboptions*:

LASSO (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies information about the L1 regularization to use for tuning the gradient boosting model. For more information, see the LASSO= option in the PROC GRADBOOST statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum L1 regularization value to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=0.

UB=number

specifies the maximum L1 regularization value to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=10.
VALUES=value-list
specifies a list of L1 regularization values to consider during tuning, where value-list is a space-separated list of numbers greater than or equal to 0. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial L1 regularization value for the tuner to use.
By default, INIT=0.

EXCLUDE
excludes L1 regularization from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

LEARNINGRATE (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the learning rate to use for tuning the gradient boosting model. For more information, see the LEARNINGRATE= option in the PROC GRADBOOST statement.
You can specify the following additional suboptions:

LB=number
specifies the minimum learning rate to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.
By default, LB=0.01.

UB=number
specifies the maximum learning rate to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.
By default, UB=1.

VALUES=value-list
specifies a list of learning rates to consider during tuning, where value-list is a space-separated list of numbers greater than 0 and less than or equal to 1. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial learning rate for the tuner to use.
By default, INIT=0.1.

EXCLUDE
excludes the learning rate from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

NTREES (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies information about the number of trees to use for tuning the gradient boosting model. For more information, see the NTREES= option in the PROC GRADBOOST statement.
You can specify the following additional suboptions:
LB=number
specifies the minimum number of trees to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=20.

UB=number
specifies the maximum number of trees to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=150.

VALUES=value-list
specifies a list of numbers of trees to consider during tuning, where value-list is a space-separated list of positive integers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial number of trees for the tuner to use.

By default, INIT=100.

EXCLUDE
excludes the number of trees from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

RIDGE (LB=number UB=**number VALUES=**value-list INIT=**number EXCLUDE)**
specifies information about the L2 regularization to use for tuning the gradient boosting model. For more information, see the RIDGE= option in the PROC GRADBOOST statement.

You can specify the following additional suboptions:

LB=number
specifies the minimum L2 regularization value to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=0.

UB=number
specifies the maximum L2 regularization value to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=10.

VALUES=value-list
specifies a list of L2 regularization values to consider during tuning, where value-list is a space-separated list of numbers greater than or equal to 0. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial L2 regularization value for the tuner to use.

By default, INIT=0.
EXCLUDE

excludes L2 regularization from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

SAMPLINGRATE (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies information about the portion of the training data for each boosted tree to use for tuning the gradient boosting model. For more information, see the `SAMPLINGRATE=` option in the PROC GRADBOOST statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum sampling rate to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=0.1.

UB=number

specifies the maximum sampling rate to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=1.

VALUES=value-list

specifies a list of sampling rates to consider during tuning, where `value-list` is a space-separated list of numbers greater than 0 and less than or equal to 1. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number

specifies the initial sampling rate for the tuner to use.

By default, INIT=0.5.

EXCLUDE

excludes the sampling rate from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

VARS_TO_TRY (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies information about the number of variables to consider at each split during tree growth. For more information, see the `VARS_TO_TRY=` option in the PROC GRADBOOST statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum number of variables to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=1.

UB=number

specifies the maximum number of variables to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

The default is the number of input variables.
VALUES=value-list
specifies a list of numbers of variables to consider during tuning, where value-list is a space-separated list of positive integers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial number of variables for the tuner to use.

The default is the total number of input variables.

EXCLUDE
excludes the number of variables from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

CODE Statement

```sas
CODE < options > ;
```

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 7.4 summarizes the options available in the CODE statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMENT</td>
<td>Adds comments to the generated code</td>
</tr>
<tr>
<td>FILE=</td>
<td>Names the file where the generated code is saved</td>
</tr>
<tr>
<td>FORMATWIDTH=</td>
<td>Specifies the numeric format width for the regression coefficients</td>
</tr>
<tr>
<td>INDSIZE=</td>
<td>Specifies the number of spaces to indent the generated code</td>
</tr>
<tr>
<td>LABELID=</td>
<td>Specifies a number used to construct names and labels</td>
</tr>
<tr>
<td>LINESIZE=</td>
<td>Specifies the line size for the generated code</td>
</tr>
<tr>
<td>NOTRIM</td>
<td>Compares formatted values, including blank padding</td>
</tr>
<tr>
<td>PCATA LL</td>
<td>Generates probabilities for all levels of categorical response variables</td>
</tr>
</tbody>
</table>

For more information about the syntax of the CODE statement, see the section “CODE Statement” on page 12 in Chapter 2, “Shared Concepts.”

CROSSVALIDATION Statement

```sas
CROSSVALIDATION < KFOLD=number > ;
```

The CROSSVALIDATION statement performs a k-fold cross validation process to find the average estimated validation error. You cannot specify the CROSSVALIDATION statement if you specify either the AUTOTUNE statement or the PARTITION statement.

You can specify the following option:
ID Statement

ID variables ;

The ID statement lists one or more variables that are to be copied from the input data table to the output data tables that are specified in the OUT= option in the OUTPUT statement and the RSTORE= option in the SAVESTATE statement.

INPUT Statement

INPUT variables < / **LEVEL=NOMINAL | INTERVAL** > ;

The INPUT statement names input variables that share common options. The INPUT statement can be repeated.

You can specify the following option:

LEVEL=NOMINAL | INTERVAL

specifies the level of measurement of two variables. You can specify the following values:

- **NOMINAL** specifies that the level of measurement of the variables is nominal.
- **INTERVAL** specifies that the level of measurement of the variables is interval.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables.

OUTPUT Statement

OUTPUT OUT=**CAS-libref.data-table** < option > ;

The OUTPUT statement creates an output data table that contains the results of running PROC GRADBOOST.

You must specify the following option:

OUT= **CAS-libref.data-table**

names the output data table for PROC GRADBOOST to use. You must specify this option before any other options. **CAS-libref.data-table** is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly
defined in the LIBNAME statement. For more information about CAS-libref, see the section “Using CAS Sessions and CAS Engine Librefs” on page 114.

data-table specifies the name of the output data table.

You can also specify the following option:

COPYVAR=variable
COPYVARS=(variables)
lists one or more variables from the input data table to be transferred to the output data table.

PARTITION Statement

PARTITION partition-option ;

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjoint subsets for model training, validation, and testing. For more information, see the section “Using Validation and Test Data” on page 14 in Chapter 2, “Shared Concepts.” Either you can designate a variable in the input data table and a set of formatted values of that variable to determine the role of each observation, or you can specify proportions to use for randomly assigning observations to each role.

You must specify exactly one of the following partition-options:

FRACTION(<TEST=fraction> <VALIDATE=fraction> <SEED=number>)
randomly assigns specified proportions of the observations in the input data table to the roles. You specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions. If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions must be less than 1 and the remaining fraction of the observations are assigned to the training role. The SEED= option specifies an integer that is used to start the pseudorandom number generator for random partitioning of data for training, testing, and validation. If you do not specify SEED=number or if number is less than or equal to 0, the seed is generated by reading the time of day from the computer’s clock.

ROLE=variable (<TEST='value'> <TRAIN='value'> <VALIDATE='value'>)
ROLEVAR=variable (<TEST='value'> <TRAIN='value'> <VALIDATE='value'>)
names the variable in the input data table whose values are used to assign roles to each observation. This variable cannot also appear as an analysis variable in other statements or options. The TEST=, TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are used to assign observation roles. If you do not specify the TRAIN= suboption, then all observations whose role is not determined by the TEST= or VALIDATE= suboption are assigned to the training role.

SAVESTATE Statement

SAVESTATE RSTORE=CAS-libref.data-table ;

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see Chapter 3, “The ASTORE Procedure.”
You must specify the following option:

`RSTORE=CAS-libref.data-table`

specifies a data table in which to save the analytic store for the model. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 114.

TARGET Statement

```plaintext
TARGET variable < / LEVEL=NOMINAL | INTERVAL > ;
```

The TARGET statement names the `variable` whose values PROC GRADBOOST predicts.

You can specify the following option:

`LEVEL=NOMINAL | INTERVAL`

specifies the level of measurement. You can specify the following values:

- `NOMINAL` specifies that the level of measurement of the variables is nominal.
- `INTERVAL` specifies that the level of measurement of the variables is interval.

By default, `LEVEL=INTERVAL` for numeric variables and `LEVEL=NOMINAL` for categorical variables.

WEIGHT Statement

```plaintext
WEIGHT variable ;
```

The `variable` in the WEIGHT statement is used as a weight to perform a weighted analysis of the data. Observations that have nonpositive or missing weights are not included in the analysis. If a WEIGHT statement is not included, all observations that are used in the analysis are assigned a weight of 1.

Details: GRADBOOST Procedure

Subsampling the Data

A decision tree in a gradient boosting model trains on new training data that are derived from the original training data presented to the GRADBOOST procedure. Using different data to train different trees during the boosting process reduces the correlation of the predictions of the trees, which in turn should improve the predictions of the boosting model.

The GRADBOOST procedure samples the original data without replacement to create the training data for an individual tree. The GRADBOOST procedure performs the action of sampling multiple times throughout a run, and each set of training data created is referred to as a subsample.

The `SAMPLINGRATE=` option in the PROC GRADBOOST statement specifies the fraction of observations to sample without replacement.
Training a Decision Tree

The GRADBOOST procedure trains a decision tree by splitting the subsampled data, then splitting each resulting segment, and so on recursively until some constraint is met.

Splitting involves the performing following tasks in order:

1. selecting candidate inputs
2. computing the association of each input with the target
3. searching for the best split that uses the most highly associated inputs

PROC GRADBOOST randomly selects \(VARS_TO_TRY=m \) candidate input variables independently in every node. A split search is performed on all \(m \) variables, and the best rule is kept to split the node.

The split search seeks to maximize the reduction in the gain for a nominal target and the reduction in variance of an interval target.

Boosting

A description of gradient boosting for decision trees can be found in Hastie, Tibshirani, and Friedman (2001) and Friedman (2001).

PROC GRADBOOST creates a series of decision trees that together form a single predictive model. The trees are built sequentially. Each tree uses a subsample of the data and is built as described in the section “Training a Decision Tree” on page 132. The sequence of trees and how each tree affects a subsequent tree are discussed in Hastie, Tibshirani, and Friedman (2001) and Friedman (2001).

Measuring Prediction Error

The GRADBOOST procedure computes the average square error measure of prediction error. For a nominal target, the procedure also computes the misclassification rate and the log-loss.

The average square error for an interval, the average square error for a nominal target, the misclassification rate, and the log-loss are defined, respectively, as

\[
ASE_{\text{int}} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2
\]

\[
ASE_{\text{cat}} = \sum_{i=1}^{N} \sum_{j=1}^{J} \frac{(\delta_{ij} - \hat{p}_{ij})^2}{JN}
\]

\[
MISC = \frac{1}{N} \sum_{i=1}^{N} 1(y_i \neq \hat{y}_i)
\]

\[
\text{LogLoss} = - \sum_{i=1}^{N} \sum_{j=1}^{J} \frac{\delta_{ij} \log(\hat{p}_{ij})}{N}
\]
where \(\hat{y}_i \) is the target prediction of observation \(i \), \(\delta_{ij} \) equals 1 if the nominal target value \(j \) occurs in observation \(i \) or 0 if it does not, \(\hat{p}_{ij} \) is the predicted probability of nominal target value \(j \) for observation \(i \), \(N \) is the number of observations, \(J \) is the number of nominal target values (classes), and \(\bar{p}_{ij} \) is \(\hat{p}_{ij} \) truncated away from 0 and 1,

\[
\bar{p}_{ij} = \max(\min(\hat{p}_{ij}, 1 - 10^{-10}), 10^{-10})
\]

The definitions are valid whether \(\hat{y}_i \) is the usual model prediction or the out-of-bag prediction. The ASE\(_{\text{int}}\) that is based on the usual model predictions of the original training data is usually optimistic and smaller than what its value will be for future data.

Handling Missing Values

Strategies

Tree-based models use observations that have missing input values. The GRADBOOST procedure offers the following strategies for handling missing values:

- The simple strategy is to regard a missing value as a special nonmissing value. For a nominal input, a missing value simply constitutes a new categorical value. For an input whose values are ordered, each missing value constitutes a special value that is assigned a place in the ordering that yields the best split. That place is usually different in different nodes of the tree.

 This strategy is beneficial when missing values are predictive of certain target values. For example, people who have large incomes might be more reluctant to disclose their income than people who have ordinary incomes. If income were predictive of a target, then a missing income value would be predictive of the target and the missing values would be regarded as a special large-income value. The strategy seems harmless when the distribution of missing values is uncorrelated with the target because no choice of branch for the missing values would help predict the target.

 A linear regression could use the same strategy by adding binary indicator variables to designate whether a value is missing. Alternatively, and much more commonly, a linear regression could simply remove observations in which any input is missing. Let \(p \) denote the probability that a variable value is missing, and let \(v \) denote the number of input variables. The probability that an observation has one or more missing values is \(1 - (1 - p)^v \) (assuming missingness is independent and identically distributed among the inputs). If \(p = 0.1 \) and \(v = 10 \), then 65% of the observations would have missing values and would be removed from linear regression.

- The alternative strategy for decision trees is to exclude from the search algorithm any observations that have a missing value in the single input variable that defines the splitting rule. If \(p = 0.1 \) and \(v = 10 \), then only 10% instead of 65% of the observations are excluded. Although this compares favorably with common linear regression, using observations that have missing values might still be better.
Specifics

If the value of a target variable is missing, the observation is excluded from training and from evaluating the model. If the value of an input variable is missing, PROC GRADBOOST uses the missing value as a legitimate value either by default or when `ASSIGNMISSING=USEINSEARCH` and the number of observations in which the splitting variable has missing values is at least as large as the value of the `MINUSEINSEARCH=` option. When `ASSIGNMISSING=USEINSEARCH` and the number of observations in which the splitting value has missing values is less than the value of the `MINUSEINSEARCH=` option, the splitting rule assigns observations that have missing values to the largest branch.

Measuring Variable Importance

The importance of a variable is the contribution it makes to the success of the model. For a predictive model, success means good prediction. Often the prediction relies mainly on a few variables. A good measure of importance reveals those variables. The better the prediction, the more closely the model represents reality, and the more plausible it is that the important variables represent the true cause of prediction. Some people prefer a simple model so that they can understand it. However, a simple model usually relinquishes details of reality. Sometimes it is better to first find a good model and then ask which variables are important than to first ask which model is good for variable importance and then train that model.

Van der Laan (2006) asks whether a predictive model is appropriate at all. He believes that if variable importance is your goal, then you should predict importance directly instead of fitting a model. If your goal is to select suspicious genes for further study in a laboratory or to find variables in an industrial process that might influence the quality of the product, then his argument is persuasive. However, the purpose of many predictive models is to make predictions. In these cases, gaining insight into causes can be useful.

Variable importance is also useful for selecting variables for a subsequent model. The comparative importance of the selected variables does not matter. Researchers often seek speed and simplicity from the first model and seek accuracy from the subsequent model.

The GRADBOOST procedure calculates the variable importance by using the change in the residual sum of square errors.

Residual Sum of Squares Importance Method

The residual sum of squares (RSS) for regression trees is defined as

$$RSS = \sum_{\lambda} \sum_{i \in \lambda} (y_i - \hat{y}_{\lambda}^T)^2$$

where

- i is an observation on leaf λ
- y_i is the predicted value of the response variable of observation i
- \hat{y}_{λ}^T is the actual value of the response variable on leaf λ
The residual sum of squares (RSS) for classification trees is defined as

\[
\text{RSS} = \sum_{\lambda} \sum_{\Phi} N^{\lambda}_{\Phi} \left[\sum_{\tau \neq \Phi} \left(P_{\tau}^{\lambda} \right)^2 + \left(1 - P_{\Phi}^{\lambda} \right)^2 \right]
\]

where

- \(\Phi \) is the actual response level
- \(N^{\lambda}_{\Phi} \) is the number of observations on leaf \(\lambda \) that have response level \(\Phi \)
- \(P_{\tau}^{\lambda} \) is the posterior probability for the response level \(\tau \) on leaf \(\lambda \)
- \(P_{\Phi}^{\lambda} \) is the posterior probability for the actual response level \(\Phi \) on leaf \(\lambda \)

For a single tree in the boosting model, the RSS-based metric measures variable importance based on the change in RSS when a split is found at a node. The change is

\[
\Delta_d = \text{RSS}_d - \sum_i \text{RSS}^d_i
\]

where

- \(d \) denotes the node
- \(i \) denotes the index of a child that this node includes
- \(\text{RSS}_d \) is the RSS if the node is treated as a leaf
- \(\text{RSS}^d_i \) is the RSS of the node after it has been split

If the change in RSS is negative (which is possible when you use the validation set), then the change is set to 0.

The RSS-based importance for a single tree is then defined as

\[
\sqrt{\sum_{d=1}^{D} \Delta_d}
\]

where \(D \) is the total number of nodes.

The RSS variable importance for the boosting model is the average of the RSS variable importance across all trees in the boosting model.
Hyperparameter Tuning

For more information about hyperparameter tuning, see the section “Hyperparameter Tuning” on page 16 in Chapter 2, “Shared Concepts.”

You can use the AUTOTUNE statement to tune the following options in the PROC GRADBOOST statement:

- **LASSO=** option for the L1 regularization parameter
- **RIDGE=** option for the L2 regularization parameter
- **LEARNINGRATE=** option for the learning rate parameter
- **NTREES=** option for the number of trees
- **SAMPLINGRATE=** option for the proportion of the training data to sample
- **VARS_TO_TRY=** option for the number of variables to randomly select at each node split for each tree

k-fold Cross Validation

The CROSSVALIDATION statement performs a \(k \)-fold cross validation process to find the average estimated validation error (misclassification error for nominal targets or average square error for interval targets) for the trained model. During cross validation, all data are divided into \(k \) subsets (folds), where \(k \) is the value of the KFOLD= option. For each fold, a new model is trained on the \((k-1)\) folds, and then validated using the selected (hold-out) fold. The validation error estimates are then averaged over each set of training and scoring executions to obtain a single value. The CROSSVALIDATION statement returns a table that contains a single data row that shows the average validation error.

Displayed Output

The GRADBOOST procedure displays the parameters that are used to train the model, the fit statistics of the trained model, and other information. The output is organized into various tables, which are discussed here in order of their appearance.

Model Information

The “Model Information” table contains the settings of the training parameters. This table also contains some basic information about the trees in the resulting boosting model. This table is produced by default.

Number of Observations

The “Number of Observations” table contains the number of observations that are read from the input data table and the number of observations that are used in the analysis. When you specify the PARTITION statement, the table also indicates the number of observations that are used in each partition. This table is produced by default.
Variable Importance

The “Variable Importance” table displays variable importance based on residual sum of square errors, which is explained in the section “Measuring Variable Importance” on page 134. This table is produced by default.

Fit Statistics

The “Fit Statistics” table contains statistics that measure the model’s goodness of fit. The fit of the model to the data improves as the number of trees in the boosting model increases. Successive rows in the table contain fit statistics for a boosting model that has more trees. Fit statistics are described in the section “Measuring Prediction Error” on page 132. This table is produced by default.

Tuner Information

The “Tuner Information” table displays the setup values that the tuner uses. This table is produced by the AUTOTUNE statement.

Tuner Summary

The “Tuner Summary” table displays statistics about the tuning process. This table is produced by the AUTOTUNE statement.

Tuner Timing

The “Tuner Timing” table displays the total time spent on different tasks while tuning. This table is produced by the AUTOTUNE statement.

Best Configuration

The “Best Configuration” table displays the hyperparameters and objective function values for the best configuration. This table is produced by the AUTOTUNE statement.

Tuner Results

The “Tuner Results” table displays the values of the hyperparameters, the objective function for the default configuration (Iteration 0), and up to 10 best found configurations. This table is produced by the AUTOTUNE statement.

Cross Validation Results

The “Cross Validation Results” table contains the average error rate (misclassification error or average square error) of k-fold cross validation.

Output Table

The “Output Table” table describes tables that are created either when you specify the OUTMODEL option in the PROC GRADBOOST statement or when you specify the OUTPUT statement.
Evaluation History

The “Evaluation History” tables display the values of the hyperparameters and the objective function for all configurations. This table is produced by the AUTOTUNE statement, either by default or when EVALHISTORY=ALL.

ODS Table Names

Each table that the GRADBOOST procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. The name of each table and a short description of the contents are listed in Table 7.5.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BestConfiguration</td>
<td>Hyperparameters and objective function values for the best configuration</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>CrossValidationResults</td>
<td>Average error rate (misclassification error or average square error) of k-fold cross validation</td>
<td>CROSSVALIDATION</td>
<td>Default</td>
</tr>
<tr>
<td>EvaluationHistory</td>
<td>Values of the hyperparameters and the objective function for all configurations</td>
<td>AUTOTUNE</td>
<td>Default / EvalHistory=ALL</td>
</tr>
<tr>
<td>FitStatistics</td>
<td>Fit statistics from the model</td>
<td>PROC GRADBOOST</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>PROC GRADBOOST</td>
<td>Default</td>
</tr>
<tr>
<td>Nobs</td>
<td>Number of observations</td>
<td>PROC GRADBOOST</td>
<td>Default</td>
</tr>
<tr>
<td>OutCASTbl</td>
<td>Output table</td>
<td>PROC GRADBOOST or OUTPUT</td>
<td>OUTMODEL=</td>
</tr>
<tr>
<td>TunerInfo</td>
<td>Setup values used by the tuner</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerResults</td>
<td>Values of the hyperparameters, the objective function for the default configuration (Iteration 0), and up to 10 best found configurations</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerSummary</td>
<td>Statistics about the tuning process</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
</tbody>
</table>
Table 7.5 continued

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>TunerTiming</td>
<td>Total time spent on different tasks while tuning</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>VariableImportance</td>
<td>Residual sum of squares variable importance</td>
<td>PROC GRADBOOST</td>
<td>Default</td>
</tr>
</tbody>
</table>

Example: GRADBOOST Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 7.1: Scoring New Data by Using a Previous Boosting Model

This example illustrates how you can use the OUTMODEL= option to save a model table, and later use the model table to score a data table. It uses the JunkMail data set in the Sashelp library.

The JunkMail data set comes from a study that classifies whether an email is junk email (coded as 1) or not (coded as 0). The data set contains 4,601 observations with 59 variables. The response variable is a binary indicator of whether an email is considered spam or not. There are 57 predictor variables that record the frequencies of some common words and characters and the lengths of uninterrupted sequences of capital letters in emails.

You can load the Sashelp.JunkMail data set into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:

```sas
data mycas.junkmail;
  set sashelp.junkmail;
run;
```

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined libref.

The following statements train a boosting model and score the training data table. The OUTPUT statement scores the training data and saves the results to a new table named fit_at_runtime.

```sas
proc gradboost data=mycas.junkmail outmodel=mycas.gradboost_model;
  input Address Addresses All Bracket Business CS CapAvg CapLong
          CapTotal Conference Credit Data Direct Dollar Edu Email
          Exclamation Font Free George HP HPL Internet Lab Labs
          Mail Make Meeting Money Order Original Our Over PM Paren
          Parts People Pound Project RE Receive Remove Semicolon
```

Example: GRADBOOST Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 7.1: Scoring New Data by Using a Previous Boosting Model

This example illustrates how you can use the OUTMODEL= option to save a model table, and later use the model table to score a data table. It uses the JunkMail data set in the Sashelp library.

The JunkMail data set comes from a study that classifies whether an email is junk email (coded as 1) or not (coded as 0). The data set contains 4,601 observations with 59 variables. The response variable is a binary indicator of whether an email is considered spam or not. There are 57 predictor variables that record the frequencies of some common words and characters and the lengths of uninterrupted sequences of capital letters in emails.

You can load the Sashelp.JunkMail data set into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:

```sas
data mycas.junkmail;
  set sashelp.junkmail;
run;
```

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined libref.

The following statements train a boosting model and score the training data table. The OUTPUT statement scores the training data and saves the results to a new table named fit_at_runtime.

```sas
proc gradboost data=mycas.junkmail outmodel=mycas.gradboost_model;
  input Address Addresses All Bracket Business CS CapAvg CapLong
          CapTotal Conference Credit Data Direct Dollar Edu Email
          Exclamation Font Free George HP HPL Internet Lab Labs
          Mail Make Meeting Money Order Original Our Over PM Paren
          Parts People Pound Project RE Receive Remove Semicolon
```
The preceding statements produce the table shown in Output 7.1.1. The table shows the training statistics.

Output 7.1.1 Fit Statistics, Fit at Run Time

<table>
<thead>
<tr>
<th>Number of Trees</th>
<th>Training Average Square Error</th>
<th>Training Misclassification Rate</th>
<th>Training Log Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2144</td>
<td>0.3940</td>
<td>0.620</td>
</tr>
<tr>
<td>2</td>
<td>0.1953</td>
<td>0.2467</td>
<td>0.580</td>
</tr>
<tr>
<td>3</td>
<td>0.1800</td>
<td>0.2039</td>
<td>0.548</td>
</tr>
<tr>
<td>4</td>
<td>0.1669</td>
<td>0.1506</td>
<td>0.520</td>
</tr>
<tr>
<td>5</td>
<td>0.1563</td>
<td>0.1361</td>
<td>0.496</td>
</tr>
<tr>
<td>6</td>
<td>0.1472</td>
<td>0.1384</td>
<td>0.475</td>
</tr>
<tr>
<td>7</td>
<td>0.1391</td>
<td>0.1326</td>
<td>0.456</td>
</tr>
<tr>
<td>8</td>
<td>0.1326</td>
<td>0.1308</td>
<td>0.441</td>
</tr>
<tr>
<td>9</td>
<td>0.1270</td>
<td>0.1302</td>
<td>0.427</td>
</tr>
<tr>
<td>10</td>
<td>0.1217</td>
<td>0.1221</td>
<td>0.413</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>91</td>
<td>0.0570</td>
<td>0.0706</td>
<td>0.199</td>
</tr>
<tr>
<td>92</td>
<td>0.0569</td>
<td>0.0706</td>
<td>0.199</td>
</tr>
<tr>
<td>93</td>
<td>0.0568</td>
<td>0.0702</td>
<td>0.199</td>
</tr>
<tr>
<td>94</td>
<td>0.0565</td>
<td>0.0698</td>
<td>0.198</td>
</tr>
<tr>
<td>95</td>
<td>0.0564</td>
<td>0.0698</td>
<td>0.197</td>
</tr>
<tr>
<td>96</td>
<td>0.0561</td>
<td>0.0700</td>
<td>0.196</td>
</tr>
<tr>
<td>97</td>
<td>0.0559</td>
<td>0.0702</td>
<td>0.196</td>
</tr>
<tr>
<td>98</td>
<td>0.0557</td>
<td>0.0702</td>
<td>0.195</td>
</tr>
<tr>
<td>99</td>
<td>0.0555</td>
<td>0.0704</td>
<td>0.194</td>
</tr>
<tr>
<td>100</td>
<td>0.0553</td>
<td>0.0702</td>
<td>0.194</td>
</tr>
</tbody>
</table>

The following statements use a previously saved model to score new data:

```sql
proc gradboost data=mycas.junkmail inmodel=mycas.gradboost_model;
    output out=mycas.score_later;
    ods output FitStatistics=fit_later;
run;
```

When you specify the INMODEL= option to use a previously created boosting model, you see the statistics for the scored data if the target exists in the newly scored data table. In this example, the scored data are the same as the training data, so you can see that the statistics in Output 7.1.2 match those previously seen in Output 7.1.1.
This example demonstrates that the GRADBOOST procedure can score an input data table by using a previously saved boosting model, which was saved using the OUTMODEL= option in a previous procedure run. If you want to properly score a new data table, you must not modify the table mycas.graddboost_model, because doing so could invalidate the constructed boosting model. As with any scoring of new data, the variables that are used in the model creation must be present in order for you to score a new table.

<table>
<thead>
<tr>
<th>Number of Trees</th>
<th>Average Square Error</th>
<th>Misclassification Rate</th>
<th>Log Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2144</td>
<td>0.3940</td>
<td>0.620</td>
</tr>
<tr>
<td>2</td>
<td>0.1953</td>
<td>0.2467</td>
<td>0.580</td>
</tr>
<tr>
<td>3</td>
<td>0.1800</td>
<td>0.2039</td>
<td>0.548</td>
</tr>
<tr>
<td>4</td>
<td>0.1669</td>
<td>0.1506</td>
<td>0.520</td>
</tr>
<tr>
<td>5</td>
<td>0.1563</td>
<td>0.1361</td>
<td>0.496</td>
</tr>
<tr>
<td>6</td>
<td>0.1472</td>
<td>0.1384</td>
<td>0.475</td>
</tr>
<tr>
<td>7</td>
<td>0.1391</td>
<td>0.1326</td>
<td>0.456</td>
</tr>
<tr>
<td>8</td>
<td>0.1326</td>
<td>0.1308</td>
<td>0.441</td>
</tr>
<tr>
<td>9</td>
<td>0.1270</td>
<td>0.1302</td>
<td>0.427</td>
</tr>
<tr>
<td>10</td>
<td>0.1217</td>
<td>0.1221</td>
<td>0.413</td>
</tr>
<tr>
<td>91</td>
<td>0.0570</td>
<td>0.0706</td>
<td>0.199</td>
</tr>
<tr>
<td>92</td>
<td>0.0569</td>
<td>0.0706</td>
<td>0.199</td>
</tr>
<tr>
<td>93</td>
<td>0.0568</td>
<td>0.0702</td>
<td>0.199</td>
</tr>
<tr>
<td>94</td>
<td>0.0565</td>
<td>0.0698</td>
<td>0.198</td>
</tr>
<tr>
<td>95</td>
<td>0.0564</td>
<td>0.0698</td>
<td>0.197</td>
</tr>
<tr>
<td>96</td>
<td>0.0561</td>
<td>0.0700</td>
<td>0.196</td>
</tr>
<tr>
<td>97</td>
<td>0.0559</td>
<td>0.0702</td>
<td>0.196</td>
</tr>
<tr>
<td>98</td>
<td>0.0557</td>
<td>0.0702</td>
<td>0.195</td>
</tr>
<tr>
<td>99</td>
<td>0.0555</td>
<td>0.0704</td>
<td>0.194</td>
</tr>
<tr>
<td>100</td>
<td>0.0553</td>
<td>0.0702</td>
<td>0.194</td>
</tr>
</tbody>
</table>

References

Overview: MWPCA Procedure

The MWPCA procedure implements moving windows robust principal component analysis. You can use this procedure to capture changes in principal components over time by using sliding windows. Also, you can choose to perform robust principal component analysis on each window; that is, the outliers and noise would be excluded from each window before the analysis is performed.

One important application of MWPCA is for detecting relative changes in parts of a system compared to the overall system. By tracing the principal components over time, you can determine whether significant changes in the principal components can be a cause for concern.

PROC MWPCA stores the requested principal components for each window in an output table that is produced by the OUTPUT Statement.
PROC MWPCA Features

The MWPCA procedure has the following features:

- reads input data in parallel when the data source is on a distributed system
- is multithreaded during all phases of analytic execution
- supports large-scale data
- provides an INPUT Statement so that the analysis can be done on selected columns of the data
- provides the option to perform robust principal component analysis (RPCA) on each window

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```plaintext
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```plaintext
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the `CASHOST` and `CASPORT` of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```plaintext
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”
NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

The following simple example shows how to use the MWPCA procedure to monitor the operation of four wind turbines. The data, which are simulated, are the hourly energy (in kilowatts) that each turbine produces.

The following DATA step creates the Turbines data set:

```sas
data turbines;
  input time Turbine1 Turbine2 Turbine3 Turbine4;
datalines;
  1  3241.250445  4079.490559  3505.854227  3392.565663
  2  2395.881828  3410.130913  2783.411447  2694.114311
  3  3628.878452  4543.677282  3818.729737  3701.380754
  4  2823.608204  3806.751908  3221.480613  3029.188791
  5  3743.196614  4632.571843  3859.732421  3817.242149
  6  1807.899427  2536.174173  1698.306145  1619.159414
  7  2240.006055  3271.723656  2477.616826  2210.066151
... more lines ...
```

The following statements plot the amount of energy that each turbine produces over time. Output 8.1 shows the resulting plot.

```sas
proc sgplot data = turbines;
  series x= time y= Turbine1/legendlabel = "Turbine1" lineattrs = (thickness = 0.1);
  series x= time y= Turbine2/legendlabel = "Turbine2" lineattrs = (thickness = 0.1);
  series x= time y= Turbine3/legendlabel = "Turbine3" lineattrs = (thickness = 0.1);
  series x= time y= Turbine4/legendlabel = "Turbine4" lineattrs = (thickness = 0.1);
  yaxis label="Turbine";
run;
```

You can load the Turbines data set into your CAS session by specifying your CAS engine libref in the following DATA step. These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

```latex
data mycas.turbines;
set turbines;
run;
```

The following statements run PROC MWPCA:

```latex
proc mw pca data=mycas.turbines windowsize=200 stepsize=1 robust;
id time;
output out=mycas.windowpcs;
run;
```
Figure 8.2 displays the “Model Information,” “Dimensions,” and “Result Summary” ODS tables. In the “Model Information” table, you can see the WINDOWSIZE= and STEPSIZE= options and some other options that are set to their default values. In the “Dimensions” table, you can see the number of observations and variables in the input table. The MWPCA procedure ignores the observations with missing values; however, the ID column cannot be missing for any observation. In the “Results Summary” table, you can see that the windowpcs data table contains 701 windows. You can also see that the solution status is optimal; that is, the RPCA/PCA algorithm ran successfully for all windows.

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
</tr>
<tr>
<td>Window Size</td>
</tr>
<tr>
<td>Step Size</td>
</tr>
<tr>
<td>RPCA Method</td>
</tr>
<tr>
<td>Lambda</td>
</tr>
<tr>
<td>Lambda Weight</td>
</tr>
<tr>
<td>SVD Method</td>
</tr>
</tbody>
</table>

| Number of Observations | 900 |
| Number of Variables | 4 |

<table>
<thead>
<tr>
<th>Results Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Windows</td>
</tr>
<tr>
<td>Solution Status</td>
</tr>
<tr>
<td>Run Time (Seconds)</td>
</tr>
</tbody>
</table>

You can see the output table windowpcs in your CAS engine library. This table contains the first principal component for each turbine and information about how it changes over time (windows). The following statements plot the value of the first principal component over time for each turbine. Output 8.3 shows the resulting plot.

```plaintext
proc sgplot data =mycas.windowpcs;
series x= window_id y= Turbine1/legendlabel = "Turbine1" lineattrs = (thickness = 1);
series x= window_id y= Turbine2/legendlabel = "Turbine2" lineattrs = (thickness = 1);
series x= window_id y= Turbine3/legendlabel = "Turbine3" lineattrs = (thickness = 1);
series x= window_id y= Turbine4/legendlabel = "Turbine4" lineattrs = (thickness = 1);
yaxis label="Turbine";
xaxis label="Time";
run;
```

As you can see in Output 8.3, the first principal component displays the same pattern of changes for the first three turbines. However, toward the end, the first principal component for the fourth turbine starts to behave differently from the other three turbines, indicating an abnormality in the operation of the fourth turbine.
Syntax: MWPCA Procedure

The following statements are available in the MWPCA procedure:

```
PROC MWPCA <options> ;
   ID variable ;
   INPUT variables ;
   RPCA <options> ;
   SVD <options> ;
   OUTPUT OUT=CAS-libref.data-table <options> ;
   DISPLAY <table-list> </options> ;
   DISPLAYOUT table-spec-list </options> ;
```

The following sections describe the PROC MWPCA statement and then describe the other statements in alphabetical order.
PROC MWPCA Statement

PROC MWPCA <options> ;

The PROC MWPCA Statement invokes the procedure. Table 8.1 summarizes the options available in the PROC MWPCA statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Table Option</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data table</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PROC MWPCA Statement Options</td>
<td></td>
</tr>
<tr>
<td>CENTER</td>
<td>Centers the input data</td>
</tr>
<tr>
<td>NTHREADS=</td>
<td>Specifies the maximum number of threads to use on each</td>
</tr>
<tr>
<td></td>
<td>computation node</td>
</tr>
<tr>
<td>ROBUST</td>
<td>Uses robust principal component analysis on each window</td>
</tr>
<tr>
<td>STEPSIZE=</td>
<td>Specifies the step size</td>
</tr>
<tr>
<td>WINDOWSIZE=</td>
<td>Specifies the window size</td>
</tr>
</tbody>
</table>

You can specify the following options:

CENTER

centers the observations by the mean of each column for each window.

DATA= `CAS-libref.data-table`

names the input data table for PROC MWPCA to use. The default is the most recently created data table. `CAS-libref.data-table` is a two-level name, where

- `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 144.
- `data-table` specifies the name of the input data table.

NTHREADS= `number-of-threads`

specifies the number of threads to use in the computation. The default value is the lesser of the number of threads available per computation node and 16.

ROBUST

uses the robust principal component analysis (RPCA) method to obtain principal components for each window. You can specify the RPCA options in the RPCA Statement. For more information about the RPCA method, see Chapter 10, “The RPCA Procedure.”
STEPSIZE=number
specifies the step size, which is the number of observations between the beginnings of two consecutive windows. This option is required.

WINDOWSIZE=number
specifies the number of observations in each window. This option is required.

DISPLAY Statement

```sas
DISPLAY < table-list > < / options > ;
```

The DISPLAY statement enables you to specify a list of display tables to display or exclude. This statement is similar to the ODS SELECT, ODS EXCLUDE, and ODS TRACE statements. However, the DISPLAY statement can improve performance when a large number of tables could be generated (such as in BY-group processing). The procedure processes the DISPLAY statement on a CAS server and thus sends only a subset of ODS tables to the SAS client. Because ODS statements are processed on a SAS client, all the display tables generated are first sent to the client and then the client creates a subset. If both DISPLAY and ODS statements are used together, the DISPLAY statement takes precedence over the ODS statements. For more information about ODS, see SAS Output Delivery System: Procedures Guide.

You can specify the following **options** after a slash (/):

CASESENSITIVE
performs a case-sensitive comparison of table names in the **table-list** to display table names when tables are subsetted for display. To preserve case, you must enclose table names in the **table-list** in quotation marks.

EXCLUDE
displays all display tables except those specified in the **table-list**.

EXCLUDEALL
suppresses display of all tables. This option takes precedence over the other options.

TRACE
displays the display table names, labels, and paths.

You can specify the **table-list** as a list of table names, paths, partial pathnames, and regular expressions.

A path is a table name that is prefixed with dot-separated grouping information. For example, a SelectionSummary table that is produced by a procedure during a selection routine might have the path `Bygroup1.Summary.SelectionSummary`. A partial pathname does not include all groups; for example, `SelectionSummary` and `Summary.SelectionSummary` are partial pathnames for `Bygroup1.Summary.SelectionSummary`.

When you specify a table name or partial pathname, all display tables whose paths end in the specified name are selected for display or exclusion. For example, both `SelectionSummary` and `Summary.SelectionSummary` select `Bygroup1.Summary.SelectionSummary`.

A regular expression is enclosed in “/”. For example, specifying “/tions/” selects all pathnames that contain the substring “tions”; in particular, the `Bygroup1.Summary.SelectionSummary` table is selected. Specifying “!/tions!/” selects all pathnames that do not contain the substring “tions”; in particular, the `Bygroup1.Summary.SelectionSummary` table is not selected.
DISPLAYOUT Statement

DISPLAYOUT table-spec-list < / options > ;

The DISPLAYOUT statement enables you to create CAS output tables from your displayed output. This statement is similar to the ODS OUTPUT statement. For more information about ODS, see SAS Output Delivery System: Procedures Guide.

The table-spec-list specifies a list of CAS output tables to create. Each entry in the list has either a key or a key=value format:

key=value specifies key as the ODS table name, path, or partial pathname, and specifies value as the CAS output table name.

key specifies key as the ODS table name and also as the CAS output table name.

Table names and partial pathnames are discussed under the DISPLAY statement. The DISPLAYOUT statement does not support regular expressions.

You can specify the following options after a slash (/):

NOREPLACE
 does not replace an existing CAS output table of the same name.

REPEATED
 replicates the CAS output tables on all nodes.

ID Statement

ID variable ;

The ID statement lists one variable from the data set that specifies the order of the observations in the input data set. This variable is not being considered as part of the analysis to compute the principal components. Also, the values of variable should be unique with common difference.

The following examples show values of the variables that you can use as ID variables:

- 1,3,5,7, ...
- 2,2,2,7,3,2,3,7,4,2,4,7, ...

The following examples show values of the variables that you cannot use as ID variables:

- 1,2,5,6,7, ...(without common difference)
- 1,2,3,3,4,5,6,7, ... (not unique)

The ID statement is required. Without this statement, windows cannot be identified.
INPUT Statement

```
INPUT variables ;
```

The INPUT statement specifies the names of `variables` to be considered in the MWPCA procedure. Only numeric `variables` are accepted. If you do not specify the INPUT Statement, all numeric `variables` in the input data set (except the one used in the ID Statement statement) are considered.

OUTPUT Statement

```
OUTPUT OUT=CAS-libref.data-table <options> ;
```

The OUTPUT statement creates an output data table to contain the results of the procedure run.

You must specify the following option:

```
OUT=CAS-libref.data-table
```

names the output data table for PROC MWPCA to use. You must specify this option before any other options. `CAS-libref.data-table` is a two-level name, where

- `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 144.

- `data-table` specifies the name of the output data table.

You can also specify the following `options`:

```
NPC=number
```

specifies the number of principal components to display for each window.

```
STANDARDPC
```

standardizes the output principal components. If the window matrix is W and the ith principal component vector is P_i, then the jth element of the standard principal component P^S_i is

$$P^S_{ij} = \frac{P_{ij} \times \sigma_i}{(W^T W)_{jj}}$$

where σ_i is the ith largest eigenvalue of matrix W.

RPCA Statement

```
RPCA <options> ;
```

If you specify the ROBUST option in the PROC MWPCA statement, then you can use this statement to specify the following RPCA `options`:
FIXEDMU
 if specified, uses a fixed value for μ in each iteration of RPCA when METHOD=APG. Otherwise, μ is updated dynamically in each iteration.

LAMBDA=number
 specifies a value for λ, where number is a positive real number. The default value is computed by $\frac{1}{\sqrt{n}}$, where n is the lesser of the number of observations and the number of input variables in the input data set. The value of λ affects the sparsity of the sparse matrix. For more information, see Candès et al. (2011).

LAMBDAWEIGHT=number
 specifies the value of λ_{weight}. The final value of the λ that is used in the RPCA algorithm is calculated by multiplying λ_{weight} by λ. You can use this value to control the sparsity of the sparse matrix. For more information about the sparse matrix in RPCA, see Chapter 10, “The RPCA Procedure.”

By default, LAMBDAWEIGHT=1.

MAXITER=number
 specifies the maximum number of iterations before the RPCA algorithm stops, where number is a positive integer. By default, MAXITER=1000.

METHOD=ALM | APG
 specifies the method to perform RPCA. You can specify the following values:

ALM specifies the augmented Lagrange multiplier method.

APG specifies the accelerated proximal gradient method.

For more information about each method, see the section “Details: RPCA Procedure” on page 199.

By default, METHOD=ALM.

MU=number
 specifies an initial value of μ when METHOD=APG. By default, MU=10$^{-3}$.

TOLERANCE=number
 specifies the convergence criterion for the RPCA algorithm on each window. By default, TOLERANCE=10$^{-7}$.

SVD Statement

SVD < option > ;

To calculate the principal components for each window, a singular value decomposition (SVD) solver is called. You can specify the following option:

MAXRANK=number
 specifies the maximum value for rank considered by the SVD solver. By default, number is the number of input variables.
Chapter 8: The MWPCA Procedure

Details: MWPCA Procedure

Principal component analysis (PCA) is a statistical approach that converts a set of correlated variables to a set of linearly uncorrelated variables known as principal components. Because the first few principal components (which are associated with the largest eigenvalues) usually capture most of the variability in the data, any change or degradation in parts compared to the overall system would be reflected in these components. As a result, moving windows PCA (MWPCA) is particularly useful in monitoring systems that contain many correlated measures for which the correlations hold over time in a properly functioning system. Thus, a change in principal components indicates that some part or measure is deviating from the rest of the system.

Also, you can use MWPCA in situations where similar machines are operating in the same environment, such as wind turbines in the same wind field. If the first principal component of one of these machines starts to behave differently than that of other machines over time, then the behavior of that machine is deviating from the behavior of the rest of the machines.

MWPCA performs better than the famous Hotelling T^2 approach in detecting degradations when it is applied to systems that have nonstationary measures and systems that have measures that are affected by seasonality. Also, MWPCA can give you a relatively clear indication of which part of the system is getting out of control. The optimal choice for window size and step size varies by application and frequency of sampling.

Displayed Output

The MWPCA procedure displays various tables that are related to input and results. The following sections describe the output tables in the order of their appearance.

Model Information

The “Model Information” table displays basic information about the options that the MWPCA procedure uses. This information includes the data source, window size, step size, RPCA method, SVD method used in RPCA, and values of λ and λ_{weight} used in RPCA.

Dimensions

The “Dimensions” table displays the number of observations and variables in the input data set.

Results Summary

The “Results Summary” table displays the summary of the PROC MWPCA results, including the number of windows, solution status, and run time.

Solution status is “optimal” only if optimization ends successfully for all windows. Otherwise solution status is “Optimization Not Successful in One or More Windows.”
ODS Table Names

Each table that the MWPCA procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. The name of each table and a short description of the contents are listed in Table 8.2.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>PROC MWPCA</td>
<td>Default</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimensions of the input table</td>
<td>PROC MWPCA</td>
<td>Default</td>
</tr>
<tr>
<td>Summary</td>
<td>Summary of the results</td>
<td>PROC MWPCA</td>
<td>Default</td>
</tr>
</tbody>
</table>

References

Chapter 9
The NNET Procedure

Contents

Overview: NNET Procedure .. 158
PROC NNET Features ... 158
Using CAS Sessions and CAS Engine Librefs 159
Getting Started: NNET Procedure .. 159
Syntax: NNET Procedure .. 161
PROC NNET Statement ... 161
ARCHITECTURE Statement ... 163
AUTOTUNE Statement ... 163
CODE Statement ... 168
CROSSVALIDATION Statement .. 168
HIDDEN Statement .. 169
INPUT Statement ... 169
OPTIMIZATION Statement ... 170
PARTITION Statement ... 172
SCORE Statement ... 173
TARGET Statement .. 173
TRAIN Statement ... 175
WEIGHT Statement .. 176
Details: NNET Procedure .. 177
Computational Method ... 177
Hyperparameter Tuning .. 177
k-fold Cross Validation .. 178
Autoencoder ... 178
Displayed Output ... 178
Iteration History ... 179
Convergence Status .. 179
Model Information .. 179
Score Information ... 179
Tuner Information ... 179
Tuner Results ... 179
Evaluation History .. 179
Best Configuration .. 179
Tuner Summary .. 179
TunerTiming ... 179
ROCInfo ... 179
FitStat .. 180
Overview: NNET Procedure

The NNET procedure trains a multilayer perceptron neural network in SAS Viya. For more information about multilayer perceptron neural networks, see Bishop (1995). PROC NNET can also use a previously trained network to score a data table (referred to as stand-alone scoring), or it can generate SAS DATA step statements that can be used to score a data table.

Training a multilayer perceptron neural network requires the unconstrained minimization of a nonlinear objective function. Because there are currently no practical methods to guarantee finding a global minimum of that objective function, one way to be reasonably sure of finding a good solution is to train the network multiple times by using different sets of initial values for the weights. Thus, even problems with smaller numbers of variables and training observations can benefit from the use of distributed mode.

PROC NNET Features

The NNET procedure was designed with two goals in mind: to perform efficient, high-speed training of neural networks, and to be as easy to use as possible while still creating models that fit the training data well and generalize well.

PROC NNET has the following basic features:

- ability to train and score using distributed mode
- parallel reading of input data and parallel writing of output data
- high degree of multithreading during all phases of training and scoring
- intelligent defaults for most neural network parameters, such as activation and error functions
- either automatic or manual selection and use of a validation data partition to prevent overfitting during training
- automatic termination of training when the validation error stops improving
- automatic searching for best hidden layers and key parameters such as L1 and L2 regularization norm, learning rate, and so on
- \(k \)-fold cross validation to estimate average validation error
Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: NNET Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

This example shows how to use the NNET procedure to train a neural network to predict the type of iris plant. The iris data published by Fisher (1936) have been widely used for examples in discriminant and cluster analyses. The sepal length, sepal width, petal length, and petal width are measured in millimeters on 50 iris specimens from each of three species: *Iris setosa*, *I. versicolor*, and *I. virginica*. The data set is available in the Sashelp library.

You can load the `sashelp.iris` data into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:
data mycas.iris;
 set sashelp.iris;
run;

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

The following statements run PROC NNET and output the results to ODS tables:

```sas
proc nnet data=mycas.iris;
    input SepalLength SepalWidth PetalLength PetalWidth;
    target Species / level=nominal;
    hidden 2;
    train outmodel=mycas.nnetModel_gs seed=635117188;
    partition fraction(validate=0.3 seed=103873735);
run;
```

Figure 9.1 shows the model information for the neural network.

Figure 9.1 Model Information

<table>
<thead>
<tr>
<th>The NNET Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Information</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Number of Observations Read</td>
</tr>
<tr>
<td>Target/Response Variable</td>
</tr>
<tr>
<td>Number of Nodes</td>
</tr>
<tr>
<td>Number of Input Nodes</td>
</tr>
<tr>
<td>Number of Output Nodes</td>
</tr>
<tr>
<td>Number of Hidden Nodes</td>
</tr>
<tr>
<td>Number of Hidden Layers</td>
</tr>
<tr>
<td>Number of Weight Parameters</td>
</tr>
<tr>
<td>Number of Bias Parameters</td>
</tr>
<tr>
<td>Architecture</td>
</tr>
<tr>
<td>Seed for Initial Weight</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
<tr>
<td>Number of Neural Nets</td>
</tr>
<tr>
<td>Objective Value</td>
</tr>
<tr>
<td>Misclassification Rate for Validation</td>
</tr>
</tbody>
</table>

Figure 9.2 shows the misclassification rate for the training sample.

Figure 9.2 Score Information for Training Data

<table>
<thead>
<tr>
<th>Score Information for Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
</tr>
<tr>
<td>Number of Observations Used</td>
</tr>
<tr>
<td>Misclassification Rate</td>
</tr>
</tbody>
</table>

Figure 9.3 shows the misclassification rate for the validation sample.
Syntax: NNET Procedure

The following statements are available in the NNET procedure:

```
PROC NNET < options > ;
  INPUT variables < / LEVEL=INTERVAL | NOMINAL > ;
  HIDDEN number < /options > ;
  TARGET variables < /options > ;
  TRAIN OUTMODEL=CAS-libref.data-table < options > ;
  ARCHITECTURE architecture-options ;
  WEIGHT variable ;
  PARTITION < partition-options > ;
  OPTIMIZATION < options > ;
  AUTOTUNE < options > ;
  CROSSVALIDATION < KFOLD=number > ;
  SCORE OUT=CAS-libref.data-table < option > ;
  CODE < options > ;
```

When you train a neural network, the PROC NNET, INPUT, TARGET, and TRAIN statements are required. At least one HIDDEN statement is required unless you use the GLIM architecture; in that case the HIDDEN statement is not allowed.

When you use a previously trained neural network to score a data table, only the PROC NNET, SCORE, and CODE statements are allowed.

PROC NNET Statement

```
PROC NNET < options > ;
```

The PROC NNET statement invokes the procedure. You can specify the following options in the PROC NNET statement:

You can specify the following options:

- **DATA=CAS-libref.data-table**
 names the input data table for PROC NNET to use. The default is the most recently created data table. **CAS-libref.data-table** is a two-level name, where
 - **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which
Chapter 9: The NNET Procedure

defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about CAS-libref, see the section “Using CAS Sessions and CAS Engine Librefs” on page 159.

data-table specifies the name of the input data table.

NOTE: The data set options WHERE, TEMPNAMES, and TEMPEXPRESS are not supported.

INMODEL=CAS-libref.data-table

specifies a model for stand-alone scoring or coding. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 159.

MISSING=MAX | MEAN | MIN

specifies the statistic with which to impute missing values for interval input variables. If you specify this option, missing values for nominal input variables are treated as a valid level. PROC NNET excludes any observations that have missing values in the target variable.

You can specify the following values:

- **MAX** substitutes missing values with the maximum value of the corresponding interval input variable.
- **MEAN** substitutes missing values with the mean value of the corresponding interval input variable.
- **MIN** substitutes missing values with the minimum value of the corresponding interval input variable.

By default, observations that have missing values are excluded from the analysis.

NTHREADS=number-of-threads

specifies the number of threads to use for the computation. The default value is the number of CPUs available. The value of number-of-threads can be from 1 to 64, inclusive.

STANDARDIZE=NONE | STD | (MIDRANGE | RANGE)

specifies the method to use for standardizing interval inputs.

You can specify the following methods:

- **NONE** specifies the method in which the variables are not altered.
- **STD** specifies the method in which the variables are scaled such that their mean is 0 and the standard deviation is 1.
- **MIDRANGE | RANGE** specifies the method in which the variables are scaled such that their midrange is 0 and the half-range is 1. That is, the variables have a minimum of –1 and a maximum of 1.

By default, STANDARDIZE=MIDRANGE.
ARCHITECTURE Statement

ARCHITECTURE architecture-option ;

The ARCHITECTURE statement specifies the architecture of the neural network to be trained.

You can specify one of the following architecture-options (GLIM and MLP DIRECT are not allowed when an autoencoder is used; for more information about the autoencoder, see the section “Autoencoder” on page 178):

GLIM

specifies a neural network architecture that has no hidden layers (this is equivalent to a generalized linear model). If you specify this architecture-option, the HIDDEN statement is not allowed.

MLP

specifies a multilayer perceptron architecture that has one or more hidden layers. This is the default architecture. This option is the default for autoencoding.

MLP DIRECT

specifies that direct connections between each input and each target neuron be included when the MLP architecture is used.

When you use PROC NNET to train a neural network, this statement is optional. This statement is not allowed when you use PROC NNET to perform stand-alone scoring.

NOTE: If you specify the AUTOTUNE statement, PROC NNET uses the architecture suggested by the tuning optimization. As a result, it might use a different architecture from the one specified in the ARCHITECTURE statement.

AUTOTUNE Statement

AUTOTUNE < options > ;

The AUTOTUNE statement activates the tuning optimization algorithm, which searches for the best hidden layers and regularization parameters based on the problem and specified options. If ALGORITHM=SGD, the algorithm also searches for the best values of the learning rate and annealing rate. When you specify the AUTOTUNE statement, PROC NNET might ignore any specified HIDDEN statement depending on the values of USEPARAMETERS= and TUNINGPARAMETERS= options. You cannot specify both the AUTOTUNE statement and the CROSSVALIDATION statement in the same procedure run.

Table 9.1 summarizes the options you can specify in the AUTOTUNE statement. For more information about all options except the TUNINGPARAMETERS= option, see the section “AUTOTUNE Statement” on page 7 in Chapter 2, “Shared Concepts.” The TUNINGPARAMETERS= option is described in detail following Table 9.1.
Table 9.1 AUTOTUNE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for k-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

TUNINGPARAMETERS=(suboption | . . . | < suboption >)

specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

You can specify one or more of the following suboptions:

ANNEALINGRATE (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies the range of the annealing rates to use in the tuning process. This option is valid only when ALGORITHM=SGD in the OPTIMIZATION statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum annealing rate to use in the tuning process, where number is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=1E–13.

UB=number

specifies the maximum annealing rate to use in the tuning process, where number is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=1E–2.
VALUES=\textit{value-list}
specifies a list of annealing rates to use in the tuning process, where \textit{value-list} is a space-separated list of nonnegative doubles. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

\textbf{INIT=\textit{number}}
specifies the initial annealing rate in the tuning process.

By default, INIT=1E–06.

\textbf{EXCLUDE}
excludes the annealing rate from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

\textbf{LEARNINGRATE (LB=\textit{number} UB=\textit{number} VALUES=\textit{value-list} INIT=\textit{number} EXCLUDE)}
specifies the range of the learning rates to use in the tuning process. This option is valid only when ALGORITHM=SGD in the OPTIMIZATION statement.

You can specify the following additional \textit{suboptions}:

\textbf{LB=\textit{number}}
specifies the minimum learning rate to use for tuning, where \textit{number} is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=1E–6.

\textbf{UB=\textit{number}}
specifies the maximum learning rate to use for tuning, where \textit{number} is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=1E–1.

\textbf{VALUES=\textit{value-list}}
specifies a list of learning rates to use in the tuning process, where \textit{value-list} is a space-separated list of nonnegative doubles. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

\textbf{INIT=\textit{number}}
specifies the initial learning rate to use for tuning.

By default, INIT=1E–03.

\textbf{EXCLUDE}
excludes the learning rate from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

\textbf{NHIDDEN (LB=\textit{number} UB=\textit{number} VALUES=\textit{value-list} INIT=\textit{number} EXCLUDE)}
specifies the tuning range of the number of hidden layers in the network.

You can specify the following additional \textit{suboptions}:
Chapter 9: The NNET Procedure

LB=number

specifies the minimum number of hidden layers, where *number* is an integer between 0 and 5. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=0.

UB=number

specifies the maximum number of hidden layers, where *number* is an integer between 0 and 5. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=2.

VALUES=value-list

specifies a list of numbers of hidden layers to be searched in the tuning process, where *value-list* is a space-separated list of nonnegative integers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number

specifies the initial number of hidden layers for the tuning process.

By default, INIT=0.

EXCLUDE

excludes the number of hidden layers from the tuning process. If you specify this suboption, any specified LB= and UB= suboptions are ignored and you cannot specify any NUNITSi suboption.

NUNITSi (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies tuning information for neurons in the *i*th hidden layer, where *i* is any integer 1–5, inclusive. By default, up to two hidden layers are tried during tuning. An NUNITSi suboption takes effect only when the value of the UB= suboption in the NHIDDEN suboptions is greater than or equal to *i*.

You can specify the following additional *suboptions*:

LB=number

specifies the minimum number of neurons in the *i*th hidden layer, where *number* must be a nonnegative integer. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=1.

UB=number

specifies the maximum number neurons in the *i*th hidden layer, where *number* must be a nonnegative integer. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=\(\min (3n, 100)\), where *n* is the number of model inputs.

VALUES=value-list

specifies a list of candidate numbers of neurons in the *i*th hidden layer to be searched in the tuning process, where *value-list* is a space-separated list of nonnegative integers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.
INIT=number

specifies the initial number of neurons in the ith hidden layer.

By default, INIT=1.

EXCLUDE

excludes the number of neurons in the ith hidden layer from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored. If you specify this suboption, you cannot specify the NHIDDEN suboption or any other NUNITSi option.

REGL1 (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies the range of L1 regularization values in the tuning process.

You can specify the following additional suboptions:

LB=number

specifies the minimum L1 regularization value in the tuning process, where *number* is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=0.

UB=number

specifies the maximum L1 regularization value in the tuning process, where *number* is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=10.

VALUES=value-list

specifies a list of L1 regularization values to be searched in the tuning process, where *value-list* is a space-separated list of nonnegative doubles. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number

specifies the initial L1 regularization value in the tuning process.

By default, INIT=0.

EXCLUDE

excludes L1 regularization from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

REGL2 (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies the range of L2 regularization values in the tuning process.

You can specify the following additional suboptions:

LB=number

specifies the minimum L2 regularization value in the tuning process, where *number* is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, LB=0.
UB=number
specifies the maximum L2 regularization value in the tuning process, where *number* is a nonnegative double. If you specify this suboption, you cannot also specify the VALUES= suboption.

By default, UB=10.

VALUES=value-list
specifies a list of L2 regularization values to be searched in the tuning process, where *value-list* is a space-separated list of nonnegative doubles. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial L2 regularization value in the tuning process.

By default, INIT=0.

EXCLUDE
excludes L2 regularization from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

CODE Statement

```sas
CODE < options > ;
```

The **CODE** statement returns the SAS score code that can be used to score data similar to the input data.

You can specify the following **options**:

FILE=filename
specifies the name of the file where PROC NNET is to write the SAS score code.

NOCOMPPGM

omits the logic of the option **FRACTION** option in the **PARTITION** statement from the score code.

If you do not specify this option, the logic of the option **FRACTION** option in the **PARTITION** statement is included in the score code.

CROSSVALIDATION Statement

```sas
CROSSVALIDATION < KFOLD=number > ;
```

The **CROSSVALIDATION** statement performs a *k*-fold cross validation process to find the average estimated validation error. You cannot specify the **CROSSVALIDATION** statement if you specify either the **AUTOTUNE** statement or the **PARTITION** statement.

You can specify the following option:
KFOLD=number
specifies the number of partition folds in the cross validation process, where number must be between 2 and 20, inclusive.
By default, KFOLD=5.

HIDDEN Statement

HIDDEN number < /options> ;
The HIDDEN statement specifies the number of neurons or units in a hidden layer, which must be a positive integer. You can specify multiple HIDDEN statements; each HIDDEN statement represents a hidden layer.
You can specify the following options:

ACT=EXP | IDENTITY | LOGISTIC | RECTIFIER | SIN | TANH
specifies the activation function for the hidden layer.
You can specify the following measures:

EXP specifies the exponential function.
IDENTITY specifies the identity function.
LOGISTIC specifies the logistic function.
RECTIFIER specifies the rectifier activation function.
SIN specifies the sine function.
TANH specifies the hyperbolic tangent function.
By default, ACT=TANH.

COMB=ADD | LINEAR
specifies the combination function for the hidden layer.
You can specify the following functions:

ADD specifies the additive combination function.
LINEAR specifies the linear combination function.
By default, COMB=LINEAR.

HIDDEN statements are ignored when you specify the AUTOTUNE statement.

INPUT Statement

INPUT variables < / LEVEL=INTERVAL | NOMINAL > ;
The INPUT statement identifies the variables in the input data table that are input to the neural network. You can specify multiple INPUT statements.
You can specify the following option:
LEVEL=INTERVAL | NOMINAL
specifies the variables in the input data table. You can specify the following methods:

- **INTERVAL** specifies that the variables are interval variables, which must be numeric.
- **NOMINAL** specifies that the variables are nominal variables, also known as classification variables, which can be numeric or character.

By default, LEVEL=INTERVAL.

OPTIMIZATION Statement

OPTIMIZATION < options> ;

The OPTIMIZATION statement specifies options for the optimization method that is used to train your model. When you are training your model, the objective function to be minimized is

\[
f(w) = \frac{1}{n} \sum_{i=0}^{n} L(w; x_i, y_i) + R(w)
\]

where \(L(w; x_i, y_i) \) is the loss associated with observation \(i \) having data \(x_i \) and correct classification \(y_i \), and \(R(w) \) is a regularization term defined by

\[
R(w) = \lambda_1 \| w \|_1 + \frac{\lambda_2}{2} \| w \|_2^2
\]

You can specify the following options:

ALGORITHM=LBFGS | SGD < sgd-options> | HF

specifies the optimization algorithm to use during training. You can specify the following optimization algorithms:

- **HF** *(Experimental)* specifies a nonlinear optimization algorithm that uses the Hessian vector product to build the second-order information. This algorithm is based on a modified conjugate gradient method. Because it does not use the Hessian directly, it can work for large-scale problems.

- **LBFGS** specifies the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm.

- **SGD** specifies the stochastic gradient descent algorithm.

When ALGORITHM=SGD, you can specify these additional *sgd-options*:

ANNEALINGRATE=number

specifies the annealing parameter, \(\beta \). Annealing is a way to automatically reduce the learning rate as SGD progresses, causing smaller steps as SGD approaches a solution. Effectively, it replaces the learning rate parameter, \(\eta \), with

\[
\eta' = \frac{\eta}{1 + \beta t}
\]

where \(t \) is the number of iterations that SGD has performed.

By default, ANNEALINGRATE=1.0e-6. The *number* must be a nonnegative double.
COMMFREQ=number
specifies the number of minibatches that each computational thread processes before weights are synchronized across all threads and nodes.

LEARNINGRATE=number
specifies the learning rate parameter, \(\eta \), for SGD. New iterates for SGD are found by using

\[
 w_{k+1} = w_k - \frac{\eta}{\|I_k\|} \sum_{(x_i, y_i) \in I_k} \nabla L(w_k; x_i, y_i)
\]

where \(w_k \) is the current weight vector, \(w_{k+1} \) is the new weight vector, \(I_k \) is the minibatch used during iteration \(k \), and \(L(w_k; x_i, y_i) \) is the loss associated with the \(i \)th observation.

If you see a huge objective value with SGD, especially with small data set, it is likely that the learning rate is set too large.

By default, LEARNINGRATE=0.001. The number must be a nonnegative double.

MINIBATCHSIZE=number
specifies the size of the minibatches used in SGD.

By default, MINIBATCHSIZE=10.

MOMENTUM=number
specifies the value for momentum. The number must be greater than or equal to 0 and less than or equal to 1. By default, MOMENTUM=0.

SEED=number
specifies the seed for random access of observations on each thread for the SGD algorithm. If number is less than or equal to 0 or not specified, a random seed from the computer clock is used.

USELOCKING
specifies that computational threads share a common weight vector and update weight vector without race conditions. If you do not specify this option, computational threads update a single weight vector simultaneously. This causes intentional race conditions and nondeterministic behavior, but increases performance significantly.

By default, ALGORITHM=LBFGS.

MAXITER=number
specifies the iteration budget for training. For LBFGS, the algorithm stops after MAXITER= iterations if convergence has not been achieved. For SGD, number specifies the desired number of training epochs.

By default, MAXITER=250.

MAXTIME=number
specifies the maximum time (in seconds) allowed for optimization, where number must be greater than or equal to 1. When this value is reached, the optimization terminates the search and returns results. When MAXTIME=0, no maximum time is set.

By default, MAXTIME=0.
Chapter 9: The NNET Procedure

- **REGL1=number**
 specifies the L1 regularization parameter λ_1 for the model loss function. The *number* must be nonnegative. Note that this value is autotuned when you specify the AUTOTUNE statement.
 By default, REGL1=0.

- **REGL2=number**
 specifies the L2 regularization parameter λ_2. The *number* must be nonnegative. Note that this value is autotuned when you specify the AUTOTUNE statement.
 By default, REGL2=0.

PARTITION Statement

```
PARTITION < partition-options > ;
```

The PARTITION statement specifies how observations in the input data table are logically partitioned into disjoint subsets for model training, validation, and testing. Either you can designate a variable in the input data table and a set of formatted values of that variable to determine the role of each observation, or you can specify proportions to use for random assignment of observations for each role. Alternatively, you can use a separate validation data table in the TRAIN statement to do validation.

You can specify the following mutually exclusive *partition-options*:

- **ROLEVAR=variable(TRAIN=value VALIDATE=value < TEST=value>)**
 names the *variable* in the input data table whose values are used to assign roles to each observation. The formatted values of this variable, which are used to assign observations roles, are specified in the TEST=, TRAIN=, and VALIDATION= suboptions. The VALIDATE= suboption is required; the TRAIN= and TEST= suboptions are optional. If you do not specify the TRAIN= suboption, the training subset that PROC NNET uses is the complement set of the VALIDATE= suboption, or the complement set of the VALIDATE= and TEST= suboptions if both are specified.

- **FRACTION(VALIDATE=fraction TEST=fraction < SEED=random-seed>)**
 randomly assigns the specified proportions of the observations in the input data table to training and validation roles. You specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions. The VALIDATE= suboption is required, and the TEST= suboption is optional. If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions must be less than 1 and the remaining fraction of the observations are assigned to the training role. Otherwise, the PARTITION statement is ignored. The range of the VALIDATE= and TEST= suboptions is from 1E–5 to 1 – (1E–5), inclusive.

 NOTE: The split between training, validation, and test observations can only approximate the requested fraction, because the fraction is used as a cutoff value for a random number generator to determine the actual split. If you require a more accurate split, you must use the ROLEVAR= option to specify the split explicitly.

You cannot use the PARTITION statement along with the CROSSVALIDATION statement. _Fraction_PartInd_ is a reserved partition variable name for the FRACTION option. PROC NNET terminates with an error if you specify the FRACTION option and the input data table includes a variable named _Fraction_PartInd_. If you specify the FRACTION option, the _Fraction_PartInd_ variable is automatically included in the scored output data table.
SCORE Statement

```
SCORE OUT='CAS-libref.data-table < option > ;
OUTPUT OUT='CAS-libref.data-table < option > ;
```

The SCORE statement creates a new data table that is the result of prediction from using the input data and the model.

You must specify the following option:

```
OUT='CAS-libref.data-table
```

names the output data table for PROC NNET to use. You must specify this option before any other options. `CAS-libref.data-table` is a two-level name, where

- `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 159.

- `data-table` specifies the name of the output data table.

You can also specify the following option:

```
COPYVAR=variable
COPYVARS=(variables)
```

lists one or more variables from the input data table to be transferred to the output data table.

TARGET Statement

```
TARGET variable < /options > ;
```

The TARGET statement specifies the target variable for the neural network. If you do not specify a TARGET statement, PROC NNET trains an autoencoder. For more information, see the section “Autoencoder” on page 178.

You can specify the following options:

```
LEVEL=INTERVAL | NOMINAL
```

specifies the variable type. You can specify the following values:

- `INTERVAL` specifies that the variable is interval, which must be numeric.
- `NOMINAL` specifies that the variable is nominal, also known as a classification variable, which can be numeric or character.

By default, LEVEL=INTERVAL.
ACT=EXP | IDENTITY | SIN | SOFTMAX | TANH

specifies the activation function for the target.

You can specify the following values:

- **EXP** specifies the exponential function. You can use ACT=EXP only with ERROR=GAMMA or ERROR=POISSON.
- **IDENTITY** specifies the identity function.
- **SIN** specifies the sine function.
- **SOFTMAX** specifies the softmax function.
- **TANH** specifies the hyperbolic tangent function.

For the GLIM architecture, you can only specify ACT=IDENTITY for an interval target and ACT=SOFTMAX for a nominal target, which are the same by default. For the MLP or MLP DIRECT architecture, the SOFTMAX method is used only with a nominal target, whereas the other methods are used only with an interval target. By default, ACT=IDENTITY for the interval target and ACT=SOFTMAX for the nominal target.

ERROR=ENTROPY | GAMMA | NORMAL | POISSON

specifies the error function. The entropy error function is used only when LEVEL=NOM. You can specify the following error functions:

- **ENTROPY** specifies the cross-entropy function.
- **GAMMA** specifies the gamma error function. This function is usually used when you want to predict the time between events. Only ACT=EXP is valid when ERROR=GAMMA.
- **NORMAL** specifies the normal error function, which is the sum of the squared differences between the network output and the target value.
- **POISSON** specifies the Poisson error function. This function is usually used when you want to predict the number of events per unit time. Only ACT=EXP is valid when ERROR=POISSON.

By default, ERROR=NORMAL when LEVEL=INT, and ERROR=ENTROPY when LEVEL=NOM.

COMB=ADD | LINEAR

specifies the combination function for the target layer. You can specify the following combination functions:

- **ADD** specifies the additive combination function.
- **LINEAR** specifies the linear combination function.

By default, COMB=LINEAR.
The TRAIN statement causes the NNET procedure to use the training data that are specified in the PROC NNET statement to train a neural network model whose structure is specified in the ARCHITECTURE, INPUT, TARGET, and HIDDEN statements. The goal of training is to determine a set of network weights that best predicts the targets in the training data while still doing a good job of predicting targets of unseen data (that is, generalizing well and not overfitting).

Training starts with a pseudorandomly generated set of initial weights. PROC NNET then computes the objective function for the training partition, and the optimization algorithm adjusts the weights. This process is repeated until any one of the following conditions is met:

- The objective function that is computed using the training partition stops improving.
- The objective function that is computed using the validation partition stops improving.
- The process has been repeated the number of times specified in the MAXITER= and MAXTIME= options in the OPTIMIZATION statement.

When you are training, you must include exactly one TRAIN statement. The TRAIN statement is not allowed when you are doing stand-alone scoring.

You must specify the following option:

OUTMODEL=<CAS-libref.data-table><options>;

specifies the final model from training. `<CAS-libref.data-table>` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 159.

You can use the model data table later to score a different input data table as long as the variable names and types of the variables in the new input data table match those in the training data table.

You can also specify the following options:

DROPOUTHIDDEN=<ratio>

specifies the dropout ratio of hidden layers. This option is valid only when ALGORITHM=SGD and all the connections use the linear combination function. The ratio must be between 0 and 1, inclusive.

By default, DROPOUTHIDDEN=0.

DROPOUTINPUT=<ratio>

specifies the dropout ratio of input layers. This option is valid only when ALGORITHM=SGD and all the connections use the linear combination function. The ratio must be between 0 and 1, inclusive.

By default, DROPOUTINPUT=0.
NUMTRIES=number

specifies the number of times the network is to be trained using a different starting point. Specifying this option helps ensure that the optimizer finds the table of weights that truly minimizes the objective function and does not return a local minimum. The value of number must be an integer between 1 and 20,000, inclusive. By default, NUMTRIES=1.

NOTE: When NUMTRIES > 1, the ODS tables “OptIterHistory” and “ConvergenceStatus” are suppressed.

RESUME

trains with the initial weight that is specified in the INMODEL= option in the PROC NNET statement. If you specify the RESUME option, you must also specify the INMODEL= option.

VALIDATION=CAS-libref.data-table

specifies a separate data table for validation during training. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 159.

If you specify both the VALIDATION= option and the PARTITION statement, the PARTITION statement is ignored. The VALIDATION= data table must have the same variables that you specify in the DATA= option in the PROC NNET statement.

WSEED=random-seed

SEED=random-seed

specifies the seed for generating initial random weights. If you do not specify a seed or you specify a value less than or equal to 0, the seed is generated from the computer clock. This option enables you to reproduce the same sample output.

WEIGHT Statement

WEIGHT variable ;

If you specify a WEIGHT statement, variable identifies a numeric variable in the input data table that contains the weight to be placed on the prediction error (the difference between the output of the network and the target value specified in the input data table) for each observation during training.

If the variable is less than or equal to 0 or is missing, the observation is not used for training. When you perform scoring, PROC NNET scores the observation even if the weight is less than or equal to 0 or missing.

The WEIGHT statement is optional. If a WEIGHT statement is not included, all observations are assigned a weight of 1.
Computational Method

PROC NNET trains a multilayer perceptron neural network that contains one or more hidden layers. For more information about multilayer perceptron neural networks, see Bishop (1995).

The NNET procedure does not have many parameters that you must specify for training. You must specify where the training data are (in the `DATA=` option in the PROC NNET statement), the names and types of the input variables (in the `INPUT` statement), the names and types of the target variables (in the `TARGET` statement), the number of hidden layers (in the `HIDDEN` statement), and the number of neurons in each hidden layer (in the `HIDDEN` statement).

 Optionally, you can also specify where to write the score file that contains targets from the input file and predicted target variables from the trained network and where to write the model file that contains the parameters of the trained network (in the `SCORE` statement). In addition, you can specify where to write the SAS DATA step statements that you can use to score new data tables (in the `CODE` statement).

The optimization algorithms available in PROC NNET are the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS), the stochastic gradient descent algorithm (SGD), and Hessian Free algorithm (HF), which are popular methods of solving large-scale nonlinear optimization problems. The algorithms terminate based on criteria such as convergence tolerance and maximum iterations. In addition, PROC NNET stops if the validation error (which is calculated after each line search) lacks improvement a certain number of times in a row.

The most important parameters that you can specify are the number of hidden layers in the network and the number of neurons in each hidden layer. A good strategy is to start with a single hidden layer by specifying a single `HIDDEN` statement with a small number of neurons, and slowly increase the number until the validation error stops improving.

The next most important parameter that you can specify is the number of times the network is to be retrained using different sets of initial weights (in the `NUMTRIES=` option in the `TRAIN` statement). Finally, unless your training data table is very large, you should set the `MAXITER=` option in the `OPTIMIZATION` statement to a large number, say 1,000 or more to prevent the optimization algorithm from stopping prematurely. The value of the `MAXITER=` option is only a limit; for example, specifying `MAXITER=1000` does not mean that the algorithm runs for 1,000 iterations. Most training runs use far fewer iterations. If you have a large data table, you can start with `MAXITER=1` to see how long a single iteration takes, and then increase the `MAXITER=` value.

Hyperparameter Tuning

For more information about hyperparameter tuning, see the section “Hyperparameter Tuning” on page 16 in Chapter 2, “Shared Concepts.”

You can tune the following hyperparameter values when you specify the `AUTOTUNE` statement:

- number of hidden layers
- number of hidden units in each hidden layer
- `REGL1=` option for the L1 regularization parameter
- `REGL2=` option for the L2 regularization parameter
- `ANNEALINGRATE=` option for the annealing rate parameter, which is used by the training algorithm of the SGD optimizer when you specify `ALGORITHM=SGD` in the `OPTIMIZATION` statement
- `LEARNINGRATE=` option for the learning rate parameter, which is used by the training algorithm of the SGD optimizer when you specify `ALGORITHM=SGD` in the `OPTIMIZATION` statement

k-fold Cross Validation

The `CROSSVALIDATION` statement uses a k-fold cross validation process to find the average estimated validation error (misclassification error for nominal targets or average square error for interval targets) for the trained model. During cross validation, all data are divided into k partitions (folds), where k is the value of the `KFOLD=` option. For each of the folds, a new model is trained on the (KFOLD–1) folds and then validated using the selected (holdout) fold. The validation error estimates are then averaged over each set of training and scoring executions to obtain a single value. The `CROSSVALIDATION` statement returns a table that contains a single data row that shows the average validation error.

Autoencoder

An autoencoder is a neural network that is used for efficient codings and widely used for feature extraction and nonlinear principal component analysis. Architecturally, an autoencoder is similar to a multilayer perceptron neural network because it has an input layer, hidden layers, and an output layer. However, it differs in that the output layer is duplicated from the input layer. Therefore, autoencoders are unsupervised learning models. You can train autoencoder in `PROC NNET` by omitting the `TARGET` and `ARCHITECTURE` statements. The score output of the autoencoder contains the learned features of hidden layers.

Displayed Output

`PROC NNET` displays basic fit statistics in the SAS log and more detailed information in several ODS tables. When you are scoring, `PROC NNET` displays the mean square error for an interval target and the misclassification rate for a nominal target. The scoring summary is based on the entire input data table if there is no validation subset. If a validation or testing subset is used, the scoring is performed for each partition. In addition, `PROC NNET` generates ODS tables that display detailed information about the model structure, input data, iteration history, and status for optimization solver.

The following sections describe the output that `PROC NNET` produces.
Iteration History

The “Iteration History” table contains the iteration history from optimization solver. This table is suppressed if the NUMTRIES option is greater than 1 in the TRAIN statement.

Convergence Status

The “Convergence Status” table contains the returning status of optimization solver. This table is suppressed if the NUMTRIES option is greater than 1 in the TRAIN statement.

Model Information

The “Model Information” table contains information about the neural network model.

Score Information

The “Score Information” table contains the misclassification rate or mean square error for training, validation, or testing partition sets.

Tuner Information

The “Tuner Information” table contains the values of options used by tuner.

Tuner Results

The “Tuner Results” table contains the values of hyperparameters, objective function for the default configuration (Iteration 0), and up to 10 best configurations found from tuner.

Evaluation History

The “Evaluation Results” table contains values of all tuning parameters and the objective function for all model configurations evaluated by the tuner.

Best Configuration

The “Best Configuration” table contains the values of hyperparameters and objective function for the best configuration from tuner.

Tuner Summary

The “Tuner Summary” table contains statistics for the tuning process.

TunerTiming

The “TunerTiming” table contains the run time break down of different tasks during tuning.

ROCInfo

The “ROCInfo” table contains the ROC curve information for the specified event in the nominal target. For more information, see Chapter 12, “The ASSESS Procedure” (SAS Visual Data Mining and Machine Learning: Statistical Procedures).
FitStat

The “FitStat” table contains various error metrics for supervised learning models. For more information, see Chapter 12, “The ASSESS Procedure” (*SAS Visual Data Mining and Machine Learning: Statistical Procedures*).

Cross Validation Results

The “Cross Validation Results” table contains the average error rate (misclassification error or average square error) of k-fold cross validation.

ODS Table Names

Each table that the NNET procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. The name of each table and a short description of the contents are listed in Table 9.2.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BestConfiguration</td>
<td>Hyperparameters and objective function values for the best configuration</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>ConvergenceStatus</td>
<td>Convergence status</td>
<td>PROC NNET</td>
<td>Default</td>
</tr>
<tr>
<td>CrossValidationResults</td>
<td>Average error rate (misclassification error or average square error) of k-fold cross validation</td>
<td>CROSSVALIDATION</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Information about the modeling environment</td>
<td>PROC NNET</td>
<td>Default</td>
</tr>
<tr>
<td>OptIterHistory</td>
<td>Iteration history information</td>
<td>PROC NNET</td>
<td>Default</td>
</tr>
<tr>
<td>ScoreInfo</td>
<td>Misclassification rate or mean square error for partition sets</td>
<td>SCORE, PARTITION</td>
<td>VALIDATION=</td>
</tr>
<tr>
<td>TunerInfo</td>
<td>Setup values used by the tuner</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerResults</td>
<td>Values of the hyperparameters, the objective function for the default configuration (Iteration 0), and up to 10 best configurations found</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
</tbody>
</table>
Table 9.2 continued

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>EvaluationHistory</td>
<td>Values of the hyperparameters, the objective function for the all model configurations evaluated by the tuner</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerSummary</td>
<td>Statistics about the tuning process</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>TunerTiming</td>
<td>Total time spent on different tasks during tuning</td>
<td>AUTOTUNE</td>
<td>Default</td>
</tr>
<tr>
<td>ROCInfo</td>
<td>ROC curve information for the specified event in the nominal target</td>
<td>AUTOTUNE, TARGET</td>
<td>LEVEL=NOMINAL</td>
</tr>
<tr>
<td>FitStat</td>
<td>Error metrics for supervised learning models</td>
<td>AUTOTUNE, TARGET</td>
<td>Default</td>
</tr>
</tbody>
</table>

Examples: NNET Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 9.1: Binary Target Classification with Partition

This example demonstrates how to use PROC NNET to predict whether a mortgage applicant will default on a loan. The data table Hmeq, which is in the Sampsio library that SAS provides, contains observations for 5,960 mortgage applicants. A variable named Bad indicates whether the applicant, after being approved for a loan, paid off or defaulted on the loan.

The following DATA steps load the Hmeq data set into a CAS session by naming a CAS engine libref in the first statement of each step:

```sas
data mycas.hmeq;
  set sampsio.hmeq;
run;
```

These statements assume that the CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

The following statements run PROC NNET and output the results to ODS tables. Based on the specified percentages, the PARTITION statement randomly splits the hmeq data set into three partitions: training,
validation, and testing. The error rates of the validation data set are computed during the training process as one of the stopping criteria in order to prevent overfitting.

```plaintext
proc nnet data=mycas.hmeq standardize=midrange missing=mean;
  architecture mlp;
  input job reason / level=nominal;
  input debtinc delinq loan mortdue value yoj derog clage clno;
  hidden 7;
  target bad / level=nominal;
  optimization algorithm=lbfgs maxiter=500;
  train outmodel=mycas.nnetmodel1 seed=12345;
  partition fraction(validate=0.2 test=0.1 seed=54321);
run;
```

The PROC NNET call creates the model, nnetModel1, from the training data; this model contains all the weight of the neural network. The example is run on one controller node.

Output 9.1.1 shows the model information for the neural network.

Output 9.1.1 Model Information

<table>
<thead>
<tr>
<th>Model Information</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Neural Net</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>4220</td>
</tr>
<tr>
<td>Number of Observations Read</td>
<td>4220</td>
</tr>
<tr>
<td>Target/Response Variable</td>
<td>BAD</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>28</td>
</tr>
<tr>
<td>Number of Input Nodes</td>
<td>19</td>
</tr>
<tr>
<td>Number of Output Nodes</td>
<td>2</td>
</tr>
<tr>
<td>Number of Hidden Nodes</td>
<td>7</td>
</tr>
<tr>
<td>Number of Hidden Layers</td>
<td>1</td>
</tr>
<tr>
<td>Number of Weight Parameters</td>
<td>140</td>
</tr>
<tr>
<td>Number of Bias Parameters</td>
<td>9</td>
</tr>
<tr>
<td>Architecture</td>
<td>MLP</td>
</tr>
<tr>
<td>Seed for Initial Weight</td>
<td>12345</td>
</tr>
<tr>
<td>Optimization Technique</td>
<td>LBFGS</td>
</tr>
<tr>
<td>Number of Neural Nets</td>
<td>1</td>
</tr>
<tr>
<td>Objective Value</td>
<td>1.3004208183</td>
</tr>
<tr>
<td>Misclassification Rate for Validation</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Output 9.1.2 shows the misclassification rate of the training data.

Output 9.1.2 Score Information for Training Data

<table>
<thead>
<tr>
<th>Score Information for Training</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Read</td>
<td>4220</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>4220</td>
</tr>
<tr>
<td>Misclassification Rate</td>
<td>0.1344</td>
</tr>
</tbody>
</table>

Output 9.1.3 shows the misclassification rate of the validation data.
Example 9.2: Finding the Best Neural Network Configuration

This example illustrates how to use the AUTOTUNE statement to search for the best set of hyperparameters within the domains that you specify. The data set (iris) is the same data set as is used in the section “Getting Started: NNET Procedure” on page 159. The AUTOTUNE statement searches for the best network for iris within two hidden layers (each of which has specified ranges), and it also searches for the best L1 and L2 regularization values based on the specified ranges. Only one controller node is used in the example.

You can load the sashelp.iris data set into your CAS session by naming your CAS engine libref in the first statement of the following DATA step. These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

```plaintext
data mycas.iris;
  set sashelp.iris;
run;
```

The following statements run PROC NNET and output the results to ODS tables. The AUTOTUNE statement activates the tuning optimization algorithm, which applies the specified ranges in the local searching process.

```plaintext
proc nnet data=mycas.iris;
  input SepalLength SepalWidth PetalLength PetalWidth;
  target Species / level=nominal;
  train outmodel=mycas.nnetModel2 seed=1517878693;
  autotune useparameters=custom objective=MCE searchmethod=GA
    tuningparameters=(nhidden(LB=0 UB=2 INIT=0)
      nunits1(LB=1 UB=10 INIT=1)
      nunits2(LB=1 UB=15 INIT=2)
      regl1(LB=1e-03 UB=1e-02 INIT=1e-03)
      regl2(LB=1e-03 UB=1e-02 INIT=1e-03)
    );
  optimization algorithm=LBFGS maxiter=100;
run;
```

Output 9.2.1 shows the setup values used by the tuner.
Output 9.2.1 Tuner Information

The NNET Procedure

<table>
<thead>
<tr>
<th>Tuner Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Type</td>
<td>Neural Net</td>
</tr>
<tr>
<td>Tuner Objective Function</td>
<td>Misclassification</td>
</tr>
<tr>
<td>Search Method</td>
<td>GA</td>
</tr>
<tr>
<td>Maximum Evaluations</td>
<td>50</td>
</tr>
<tr>
<td>Population Size</td>
<td>10</td>
</tr>
<tr>
<td>Maximum Iterations</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Tuning Time in Seconds</td>
<td>36000</td>
</tr>
<tr>
<td>Validation Type</td>
<td>Single Partition</td>
</tr>
<tr>
<td>Validation Partition Fraction</td>
<td>0.3</td>
</tr>
<tr>
<td>Log Level</td>
<td>2</td>
</tr>
<tr>
<td>Seed</td>
<td>1517878693</td>
</tr>
</tbody>
</table>

Output 9.2.2 shows the results reported by the NNET procedure. The first row displays results from the default settings, the second row displays the best results found by the tuner, and the third row displays the second-best results found.

Output 9.2.2 Tuner Results

<table>
<thead>
<tr>
<th>Tuner Results Default and Best Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>34</td>
</tr>
</tbody>
</table>

Output 9.2.3 shows the best values of the tuning parameters from the tuning process.

Output 9.2.3 Best Configuration

<table>
<thead>
<tr>
<th>Best Configuration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation</td>
<td>25</td>
</tr>
<tr>
<td>Hidden Layers</td>
<td>2</td>
</tr>
<tr>
<td>Neurons in Hidden Layer 1</td>
<td>7</td>
</tr>
<tr>
<td>Neurons in Hidden Layer 2</td>
<td>5</td>
</tr>
<tr>
<td>L1 Regularization</td>
<td>0.01</td>
</tr>
<tr>
<td>L2 Regularization</td>
<td>0.001</td>
</tr>
<tr>
<td>Misclassification</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Output 9.2.4 shows the best values of the tuning parameters from the tuning process.
Output 9.2.4 shows the tuner summary.

<table>
<thead>
<tr>
<th>Tuner Summary</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Config Objective Value</td>
<td>0.04762</td>
</tr>
<tr>
<td>Best Config Objective Value</td>
<td>0</td>
</tr>
<tr>
<td>Worst Config Objective Value</td>
<td>0.3333</td>
</tr>
<tr>
<td>Initial Config Evaluation Time</td>
<td>1.7121</td>
</tr>
<tr>
<td>Best Config Evaluation Time</td>
<td>2.2510</td>
</tr>
<tr>
<td>Number of Improved Configurations</td>
<td>2</td>
</tr>
<tr>
<td>Number of Evaluated Configurations</td>
<td>46</td>
</tr>
<tr>
<td>Total Tuning Time in Seconds</td>
<td>22.2189</td>
</tr>
<tr>
<td>Parallel Tuning Speedup</td>
<td>2.7713</td>
</tr>
</tbody>
</table>

Output 9.2.5 shows the run time for each task during the searching process. It is evident that the tuner spent the vast majority of time on training; this behavior is similar to most tuner runs. Therefore, it is important to understand that tuning might take a very long time by nature if the training time is long. Typically, networks that have more neurons or larger training samples take more time; also, if the value of the MAXITER= option is very large and the nonlinear objective function converges slowly, the run time could be very long. In general, tuner performance should not be a concern, because you typically use tuning only once in a while.

<table>
<thead>
<tr>
<th>Task</th>
<th>Seconds</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Training</td>
<td>51.45</td>
<td>83.55</td>
</tr>
<tr>
<td>Model Scoring</td>
<td>5.64</td>
<td>9.17</td>
</tr>
<tr>
<td>Total Objective Evaluations</td>
<td>57.10</td>
<td>92.73</td>
</tr>
<tr>
<td>Tuner</td>
<td>4.48</td>
<td>7.27</td>
</tr>
<tr>
<td>Total CPU Time</td>
<td>61.58</td>
<td>100.00</td>
</tr>
</tbody>
</table>

References

Chapter 10
The RPCA Procedure

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: RPCA Procedure</td>
<td>187</td>
</tr>
<tr>
<td>PROC RPCA Features</td>
<td>188</td>
</tr>
<tr>
<td>Using CAS Sessions and CAS Engine Librefs</td>
<td>188</td>
</tr>
<tr>
<td>Getting Started: RPCA Procedure</td>
<td>189</td>
</tr>
<tr>
<td>Syntax: RPCA Procedure</td>
<td>192</td>
</tr>
<tr>
<td>PROC RPCA Statement</td>
<td>192</td>
</tr>
<tr>
<td>CODE Statement</td>
<td>195</td>
</tr>
<tr>
<td>DISPLAY Statement</td>
<td>196</td>
</tr>
<tr>
<td>DISPLAYOUT Statement</td>
<td>197</td>
</tr>
<tr>
<td>INPUT Statement</td>
<td>197</td>
</tr>
<tr>
<td>OUTDECOMP Statement</td>
<td>197</td>
</tr>
<tr>
<td>ROWID Statement</td>
<td>198</td>
</tr>
<tr>
<td>SVD Statement</td>
<td>198</td>
</tr>
<tr>
<td>Details: RPCA Procedure</td>
<td>199</td>
</tr>
<tr>
<td>Augmented Lagrange Multiplier</td>
<td>200</td>
</tr>
<tr>
<td>Accelerated Proximal Gradient</td>
<td>200</td>
</tr>
<tr>
<td>Scaling and Centering</td>
<td>200</td>
</tr>
<tr>
<td>Displayed Output</td>
<td>201</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>201</td>
</tr>
<tr>
<td>Output Data Tables</td>
<td>202</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
</tr>
</tbody>
</table>

Overview: RPCA Procedure

The RPCA procedure implements robust principal component analysis (RPCA) in SAS Viya. RPCA can be used in many areas, including image processing, latent semantic indexing, ranking, and matrix completion (Candès et al. 2011).

The RPCA procedure decomposes an input matrix into a sum of two matrices: a low-rank matrix and a sparse matrix. You can use the low-rank matrix to do feature extraction and use the sparse matrix to detect anomalies.

Robustness in RPCA comes from the property that the principal components are computed from observations after removing the outliers—that is, from the low-rank matrix. Many applications of RPCA focus on the sparse matrix. One example is the extraction of moving objects from the background in surveillance videos.
PROC RPCA stores the results of the input matrix decomposition in output tables that are produced by OUTLOWRANK=, OUTSPARSE=, and OUTERROR= options. Also, PROC RPCA stores the results of the low-rank matrix decomposition in output tables that are produced by the OUTDECOMP Statement.

PROC RPCA Features

The RPCA procedure has the following features:

- reads input data in parallel when the data source is on a distributed system
- is multithreaded during all phases of analytic execution
- supports large-scale training data
- provides an INPUT Statement to enable you to do the analysis on selected columns of the data
- provides an OUTDECOMP Statement to generate multiple decomposition outputs
- provides a CODE Statement for projecting new data on principal components

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS server. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:
cas mysess terminate;

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: RPCA Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

This example shows how to use the RPCA procedure to decompose the input data set into a low-rank and a sparse matrices. It also demonstrates how to decompose the low-rank matrix to obtain the principal components. In this example, the input table `rpcaData` has 50 observations and three variables: `Index`, `X`, and `Y`. `Index` is simply an observation number. `X` is a randomly generated number between 0 and 1. `Y` is `X` plus a random term between -0.1 and 0.1. This data set also has three outliers for variable `Y` in observations 7, 20, and 33.

The following DATA step creates the `rpcaData` table:

```sas
data rpcaData;
  input index X Y;
  datalines;
  1 0.522 0.510
  2 0.642 0.583
  3 0.628 0.543
  4 0.826 0.875
  5 0.101 0.031
  6 0.310 0.311
  7 0.447 4.421
  8 0.419 0.481
  9 0.861 0.874
 10 0.418 0.334
11 0.929 1.020
12 0.946 0.946
13 0.548 0.567
14 0.626 0.643
15 0.616 0.581
16 0.684 0.622
17 0.438 0.450
18 0.264 0.174
19 0.705 0.607
20 0.932 3.024
21 0.866 0.836
22 0.145 0.138
23 0.225 0.133
24 0.577 0.515
25 0.815 0.832
```


You can load `rpcaData` into your CAS session by naming your CAS engine libref in the first statement of the following DATA step:

```plaintext
data mycas.rpcaData;
set rpcaData;
run;
```

This statement assumes your CAS engine libref is named `mycas`, but you can substitute any appropriately defined CAS engine libref.

The following statement runs PROC RPCA and outputs the decomposition results to the `mycas` CAS library engine:

```plaintext
proc rpca data=mycas.rpcaData
decomps=svd
    outlowrank=mycas.lowrankmat
    outsparse=mycas.sparsemat;
rowid index;
outdecomp svdleft=mycas.svdleft
    svddiag=mycas.svddiag
    svdright=mycas.svdright;
run;
```

These statements produce the `mycas.lowrankmat` and `mycas.sparsemat` tables, which are the decompositions of `mycas.rpcaData`. They also produce the `mycas.svdleft`, `mycas.svddiag`, and `mycas.svdright` tables.
which are the decompositions of the mycas.lowrankmat table. The \texttt{DECOMP=} option produces the SVD decomposition of the low-rank matrix.

\textbf{Figure 10.1} ODS Tables

\begin{verbatim}
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Information</td>
<td></td>
</tr>
<tr>
<td>Data Source</td>
<td>RPCADATA</td>
</tr>
<tr>
<td>RPCA Method</td>
<td>Augmented Lagrange Multiplier</td>
</tr>
<tr>
<td>SVD Method</td>
<td>Eigenvlue Decomposition</td>
</tr>
<tr>
<td>Lambda</td>
<td>0.1414214</td>
</tr>
<tr>
<td>Lambda Weight</td>
<td>1</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>50</td>
</tr>
<tr>
<td>Number of Variables</td>
<td>2</td>
</tr>
<tr>
<td>Number of Observations Used</td>
<td>50</td>
</tr>
<tr>
<td>Number of Observations with Missing Values</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Results Summary</td>
<td></td>
</tr>
<tr>
<td>Sparsity of Sparse Matrix</td>
<td>0.1600</td>
</tr>
<tr>
<td>Rank of Low Rank Matrix</td>
<td>1</td>
</tr>
<tr>
<td>Number of Iterations</td>
<td>29</td>
</tr>
<tr>
<td>Solution Status</td>
<td>Optimal</td>
</tr>
<tr>
<td>Run Time (Seconds)</td>
<td>2.73</td>
</tr>
</tbody>
</table>
\end{verbatim}

\textbf{Figure 10.1} displays the “Model Information,” “Dimensions,” and “Results Summary” tables. The “Model Information” table shows the default parameters for the RPCA method, the SVD method, Lambda, and LambdaWeight. The “Dimensions” table shows the number of observations and variables in the input table and the number of observations that have missing values. (PROC RPCA ignores the observations that have missing values.) The “Results Summary” table shows that the solution status is optimal; that is, the RPCA algorithm converged based on the tolerance value (this example uses the default value of 10^{-7}) within the maximum number of iterations (this example uses the default value of 1,000). In the "Results Summary" table, you can also see that the algorithm converged after 29 iterations. Furthermore, you can observe in this table that the rank of the low-rank matrix is 1, as expected from the fact that variable Y is highly correlated with variable X. Note that the sparsity value is 0.16, which indicates that the sparse matrix contains many nonzero values. As you increase the value of the LambdaWeight parameter, the sparsity of the sparse matrix increases.

The default value of the LambdaWeight parameter is 1. You can use the following PROC RPCA statement to change this parameter to 3.5. \textbf{Figure 10.2} shows that the sparsity of the sparse matrix increases to 0.97 and the rank of the low-rank matrix increases to 2.

\begin{verbatim}
proc rpca data=mycas.rpcaData
 lambda = 3.5
 outsparse=mycas.sparsemat2;
rowid index;
run;

proc print data=mycas.sparsemat2;
run;
\end{verbatim}
In fact, if you look at mycas.sparsemat2 in the CAS engine library, you can see that the only nonzero values in the sparse matrix are related to the outlier values that were introduced for variable Y (in observations 7, 20, and 33).

Syntax: RPCA Procedure

The following statements are available in the RPCA procedure:

```
PROC RPCA <options> ;
  ROWID variable ;
  INPUT variables ;
  SVD <options> ;
  OUTDECOMP <options> ;
  CODE FILE=filename ;
  DISPLAY <table-list> </options> ;
  DISPLAYOUT table-spec-list </options> ;
```

The following sections describe the PROC RPCA statement and then describe the other statements in alphabetical order.

PROC RPCA Statement

```
PROC RPCA <options> ;
```

The PROC RPCA Statement invokes the procedure. Table 10.1 summarizes the options available in the PROC RPCA statement.

<table>
<thead>
<tr>
<th>Table 10.1</th>
<th>PROC RPCA Statement Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>Input Data Table Option</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input data table</td>
</tr>
<tr>
<td>RPCA Options</td>
<td></td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the method of solving RPCA</td>
</tr>
<tr>
<td>DECOMP=</td>
<td>Specifies the low-rank decomposition method</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations</td>
</tr>
</tbody>
</table>
You can specify the following options:

CENTER

centers the observations by the mean of each column. For more information, see the section “Scaling and Centering” on page 200.

COLSTATISTICS= *CAS-libref.data-table*

specifies the name of the output table for the columnStatistics table. This table contains simple statistics for the variables of the input data set.

CAS-libref.data-table is a two-level name, where *CAS-libref* refers to the caslib and session identifier, and *data-table* specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

DATA= *CAS-libref.data-table*

names the input data table for PROC RPCA to use. The default is the most recently created data table.

CAS-libref.data-table is a two-level name, where

CAS-libref refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about *CAS-libref*, see the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

data-table specifies the name of the input data table.
DECOMP=SVD | PCA | NONE

specifies the type of analysis. If MAXITER=0, this step is applied to the original input data; otherwise, it is applied to the low-rank matrix. You can specify the following values:

SVD performs singular value decomposition.
PCA performs principal component analysis.
NONE performs none of the above two analysis.

By default, DECOMP=NONE.

FIXEDMU

uses a fixed value for μ in each iteration of the RPCA algorithm when METHOD=APG. Otherwise, the value of μ is dynamically updated in each iteration.

LAMBD=number

specifies a value for the parameter λ, where number is a positive real number. The default value is computed by $\frac{1}{\sqrt{n}}$, where n is the lesser of the number of observations and number of input variables in the input data set. This parameter affects the sparsity of the sparse matrix. For more information about this setting, see Candès et al. (2011).

LAMBDAWEIGHT=number

specifies the value of the parameter λ_{weight} applied on the l_1 norm of the sparse matrix. The final value for the λ that is used in the RPCA algorithm is calculated by multiplying λ_{weight} by λ. You can use this value to control the sparsity of the sparse matrix. A larger number produces a more sparse matrix. For more information, see the section “Details: RPCA Procedure” on page 199.

By default, LAMBDAWEIGHT=1.

MAXITER=number

specifies the maximum number of iterations before the process stops, where number is a positive integer. If MAXITER=0, PROC RPCA runs no iterations. If you also specify the DECOMP= option, the analysis is performed on the original matrix (instead of the low-rank matrix).

If the RPCA procedure does not converge in number of iterations, a solution status of “Failed to Converge” is written to the “Results Summary” table.

By default, MAXITER=1000.

METHOD=ALM | APG

specifies the method to solve RPCA. You can specify the following values:

ALM uses the augmented Lagrange multiplier method.
APG uses the accelerated proximal gradient method.

By default, METHOD=ALM.

MU=number

specifies an initial value of μ when METHOD=APG. By default, MU=0.001.
NTHREADS=number-of-threads
specifies the number of threads per computation node. The default value is the lesser of 16 and the number of threads available per computation node.

OUTERROR=CAS-libref.data-table
specifies the name of the output table for the error matrix. It contains the noise in the input data. This option can be specified when METHOD=APG.

CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

OUTLOWRANK=CAS-libref.data-table
specifies the name of the output table for the low-rank matrix.

CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

OUTSPARSE=CAS-libref.data-table
specifies the name of the output table for the sparse matrix.

CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

SCALE
scales the observations by the standard deviation of each column. If a constant variable exists (where all observations have the same value), the observations of this column are not scaled. For more information, see the section “Scaling and Centering” on page 200.

TOLERANCE=number
specifies the convergence criterion for the RPCA algorithm. The default value is 10^{-7}.

CODE Statement

CODE FILE=filename ;

The CODE statement generates SAS DATA step code that mimics the computations that are performed. The generated SAS DATA step code can be used for scoring new observations—that is, for projecting the new observations onto the principal components. Only one CODE statement is processed. If you specify multiple CODE statements, only the first one is used.

You must specify the following option:
FILE=filename
specifies the filename of the file to write the SAS score code to.

The CODE statement is optional. If you do not include a CODE statement, no score code is generated.

DISPLAY Statement

```
DISPLAY < table-list > < / options > ;
```

The DISPLAY statement enables you to specify a list of display tables to display or exclude. This statement is similar to the ODS SELECT, ODS EXCLUDE, and ODS TRACE statements. However, the DISPLAY statement can improve performance when a large number of tables could be generated (such as in BY-group processing). The procedure processes the DISPLAY statement on a CAS server and thus sends only a subset of ODS tables to the SAS client. Because ODS statements are processed on a SAS client, all the display tables generated are first sent to the client and then the client creates a subset. If both DISPLAY and ODS statements are used together, the DISPLAY statement takes precedence over the ODS statements. For more information about ODS, see *SAS Output Delivery System: Procedures Guide*.

You can specify the following options after a slash (/):

- **CASESENSITIVE**
 performs a case-sensitive comparison of table names in the table-list to display table names when tables are subsetted for display. To preserve case, you must enclose table names in the table-list in quotation marks.

- **EXCLUDE**
 displays all display tables except those specified in the table-list.

- **EXCLUDEALL**
 suppresses display of all tables. This option takes precedence over the other options.

- **TRACE**
 displays the display table names, labels, and paths.

You can specify the table-list as a list of table names, paths, partial pathnames, and regular expressions.

A path is a table name that is prefixed with dot-separated grouping information. For example, a SelectionSummary table that is produced by a procedure during a selection routine might have the path Bygroup1.Summary.SelectionSummary. A partial pathname does not include all groups; for example, Selection- Summary and Summary.SelectionSummary are partial pathnames for Bygroup1.Summary.SelectionSummary.

When you specify a table name or partial pathname, all display tables whose paths end in the specified name are selected for display or exclusion. For example, both SelectionSummary and Summary.SelectionSummary select Bygroup1.Summary.SelectionSummary.

A regular expression is enclosed in “/”. For example, specifying “/tions/” selects all pathnames that contain the substring “tions”; in particular, the Bygroup1.Summary.SelectionSummary table is selected. Specifying “!/tions/” selects all pathnames that do not contain the substring “tions”; in particular, the Bygroup1.Summary.SelectionSummary table is not selected.
DISPLAYOUT Statement

DISPLAYOUT table-spec-list </ options> ;

The DISPLAYOUT statement enables you to create CAS output tables from your displayed output. This statement is similar to the ODS OUTPUT statement. For more information about ODS, see SAS Output Delivery System: Procedures Guide.

The table-spec-list specifies a list of CAS output tables to create. Each entry in the list has either a key or a key=value format:

key=value specifies key as the ODS table name, path, or partial pathname, and specifies value as the CAS output table name.

key specifies key as the ODS table name and also as the CAS output table name.

Table names and partial pathnames are discussed under the DISPLAY statement. The DISPLAYOUT statement does not support regular expressions.

You can specify the following options after a slash (/):

NOREPLACE
does not replace an existing CAS output table of the same name.

REPEATEDreplicates the CAS output tables on all nodes.

INPUT Statement

INPUT variables ;

The INPUT statement specifies the names of variables to be considered in the RPCA procedure. Only numeric variables are accepted. If you do not specify this statement, PROC RPCA considers all numeric variables in the input data set.

OUTDECOMP Statement

OUTDECOMP < options> ;

The OUTDECOMP statement specifies output file names for the low-rank matrix decomposition tables.

If you specify DECOMP=SVD in the PROC RPCA Statement, then you can specify the following three options:

SVDDIAG=CAS-libref.data-table
specifies the name of the output table to contain the SVD diagonal vector.

CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.
SVDELF\text{\texttt{=CAS-libref.data-table}}
specifies the name of the output table to contain the SVD left matrix.

\texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

SVDRIGHT\text{\texttt{=CAS-libref.data-table}}
specifies the name of the output table to contain the SVD right matrix.

\texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

If you specify \texttt{DECOMP=PCA} in the \textbf{PROC RPCA Statement}, then you can specify the following two \texttt{options}:

\texttt{PCLOADINGS=\texttt{CAS-libref.data-table}}
specifies the name of the output table to contain the matrix of principal component loadings.

\texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

\texttt{PCSCORES=\texttt{CAS-libref.data-table}}
specifies the name of the output table to contain the matrix of principal component scores.

\texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 188.

\textbf{ROWID Statement}

\texttt{ROWID variable ;}

If your input data set has an index column for observations, you can specify an index \texttt{variable} in the \texttt{ROWID} statement. When you specify this statement and the input data are distributed on multiple nodes, the RPCA procedure preserves the order of observations in the \texttt{OUTLOWRANK=, OUTSPARSE=, OUTERROR=, SVDELF\texttt{=, and PCSCORES=} output tables. The values of \texttt{variable} must be integer. If the values of \texttt{variable} are not unique across observations, the RPCA procedure does not keep the order of the observations in the output tables.

\textbf{SVD Statement}

\texttt{SVD < options > ;}
The SVD statement specifies the parameters of the singular value decomposition (SVD) algorithm that are used in RPCA iterations. You can specify the following options:

MAXRANK=number

specifies the maximum value for the rank that the SVD solver considers. The default value is the number of input variables.

METHOD=EIGEN | RANDOM

specifies the type of the SVD solver. You can specify the following values:

- **EIGEN** uses the eigenvalue decomposition method.
- **RANDOM** uses the randomized SVD method.

When the number of variables in the input data set is very large, it is recommended that you use METHOD=RANDOM. By default, METHOD=EIGEN.

POWER=number

specifies the parameter power for the SVD solver if METHOD=RANDOM. By default POWER=0.

SEED=number

specifies the parameter seed for the SVD solver if METHOD=RANDOM. The default value is the current local time in SAS datetime format.

Robust principal component analysis (RPCA) is a matrix decomposition algorithm that decomposes an input matrix M into a low-rank matrix L_0 and a sparse matrix S_0, where $M = L_0 + S_0$. This decomposition is obtained by solving a convex programming problem called principal component pursuit (PCP).

Let $||L||_* := \sum_i \sigma_i(L)$ denote the nuclear norm of the matrix L (that is, the sum of the singular values of L), and let $||S||_1 = \sum_{ij} |S_{ij}|$ denote the l_1 norm of S. In this case, PCP can be formulated as

\[
\begin{align*}
\text{minimize} & \quad ||L||_* + \lambda ||S||_1 \\
\text{subject to} & \quad L + S = M
\end{align*}
\]

For more information about this formulation, see Candès et al. (2011).

RPCA is robust because the principal components are computed from the low-rank matrix. The sparse matrix includes the outlier values. As a result, many applications of RPCA focus on the sparse matrix.

Two algorithms are implemented in the RPCA procedure: augmented Lagrange multiplier and accelerated proximal gradient.

1The sparse matrix can also include noise. The sparsity of the sparse matrix depends highly on the settings of the λ and λ_{weight} parameters.
Augmented Lagrange Multiplier

In general, the augmented Lagrange method is used to solve nonlinear constrained optimization problems. In the case of PCP, an augmented Lagrange function is used to reformulate the PCP problem as the following nonlinear unconstrained optimization problem:

$$\minimize \quad l(L, S, Y) = \|L\|_* + \lambda \|S\|_1 + < Y, M - L - S > + \frac{\mu}{2} ||M - L - S||_F^2$$

Candès et al. (2011) use the augmented Lagrange multiplier (ALM) method to find the solution to the preceding optimization problem. The basic idea is to update S, L, and Y iteratively. At iteration k, given L_k and Y_k, the first step is to find S_{k+1} by minimizing $l(L_k, S, Y_k)$. In the second step, L_{k+1} is obtained by the singular value thresholding operator, which minimizes $l(L, S_{k+1}, Y_k)$. 2 Next, the Lagrange multiplier Y_{k+1} is updated. For more information, see Candès et al. (2011).

Accelerated Proximal Gradient

Another common relaxation of PCP is the following unconstrained optimization formulation, which contains two terms in the objective function. The first term is the original objective function weighted by μ, and the second term is the penalty term of the constraint:

$$\minimize \quad \mu \|L\|_* + \mu \lambda \|S\|_1 + \frac{1}{2} ||M - L - S||_F^2$$

Lin et al. (2009) applied the accelerated proximal gradient (APG) algorithm to solve the preceding relaxed model. In each iteration of their proposed algorithm, L_{k+1} and S_{k+1} are obtained by applying singular value decomposition on the updated matrix, which is computed based on the values of L and S in the last two iterations—that is, L_{k-1}, L_k, S_{k-1}, and S_k.

The APG algorithm is generally slower than the ALM algorithm. Zhou et al. (2010) suggest that APG be used when the observations are significantly corrupted by noise.

Scaling and Centering

If the CENTER or SCALE option (or both) are specified, the original data M are standardized as

$$M(i, j) = \frac{M(i, j) - \mu_j}{\sigma_j}$$

2The singular value thresholding operator performs based on the singular value decomposition.
where μ_j and σ_j are the mean and standard deviation of the jth column in M, respectively. Therefore, the low-rank matrix (L), the sparse matrix (S), and the error matrix (N) are updated as follows:

\[
L(i, j) = L(i, j) \ast (\sigma_j) + \mu_j \\
S(i, j) = S(i, j) \ast (\sigma_j) \\
N(i, j) = N(i, j) \ast (\sigma_j)
\]

(The error matrix N is generated only if METHOD=APG.)

Displayed Output

The RPCA procedure displays various tables that are related to input and results. The following sections describe the output tables in the order of their appearance.

Model Information

The “Model Information” table displays basic information about the parameters that are used in the RPCA procedure. This information includes the data source, the RPCA method, the SVD method used in RPCA, and the value of parameters λ and λ_{weight}. Also, if the SVD method is the randomized method (that is, METHOD=RANDOM in SVD Statement), the seed that is used in the SVD method is displayed.

Dimensions

The “Dimensions” table displays the number of observations and variables in the input data set, the number of missing observations, and the number of observations from the input data set that are considered for the RPCA analysis.

Results Summary

The “Results Summary” table displays the summary of the RPCA results, including the sparsity of the sparse matrix, the rank of the low-rank matrix, the number of iterations, the solution status, and the run time. The solution status takes one of these values:

- **Optimal**: RPCA converges and decompositions are successful.
- **SVD Failure**: Internal SVD call failure. This can be caused by running out of memory or SVD not converging.
- **Failed to Converge**: RPCA does not converge with the specified MAXITER= option.
- **Failed**: RPCA failed because it ran out of memory or because of other problems.

ODS Table Names

Each table created by the RPCA procedure has a name associated with it. You must use this name to refer to the table when you use ODS statements. The names of each table and a short description of the contents are listed in Table 10.2.
Table 10.2 ODS Tables Produced by PROC RPCA

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelInfo</td>
<td>Model information</td>
<td>PROC RPCA</td>
<td>Default</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Dimensions of the input table</td>
<td>PROC RPCA</td>
<td>Default</td>
</tr>
<tr>
<td>Summary</td>
<td>Summary of the results</td>
<td>PROC RPCA</td>
<td>Default</td>
</tr>
</tbody>
</table>

Output Data Tables

The RPCA procedure creates output tables for the low-rank matrix (OUTLOWRANK=), the sparse matrix (OUTSPARSE=), the error matrix (OUTERROR=), and column statistics (COLSTATISTICS=).

Also, depending on the value of the DECOMP=option in the PROC RPCA Statement, the low-rank matrix is decomposed in SVD tables (which are specified in the SVDLEFT=, SVDDIAG=, and SVDRIGHT= options), or PCA tables (which are specified in the PCLOADINGS= and PCSCORDES= options). Table 10.3 lists details about these data tables.

Table 10.3 Output Data Table Produced by PROC RPCA

<table>
<thead>
<tr>
<th>Data Table</th>
<th>Content</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLOWRANK</td>
<td>Low-rank matrix</td>
<td>Number of observations × number of variables</td>
</tr>
<tr>
<td>OUTSPARSE</td>
<td>Sparse matrix</td>
<td>Number of observations × number of variables</td>
</tr>
<tr>
<td>OUTERROR</td>
<td>Error matrix</td>
<td>Number of observations × number of variables</td>
</tr>
<tr>
<td>SVDLEFT</td>
<td>Left singular vectors.</td>
<td>Number of observations × number of singular values</td>
</tr>
<tr>
<td>SVDDIAG</td>
<td>Singular values in the decreasing order</td>
<td>Number of singular values</td>
</tr>
<tr>
<td>SVDRIGHT</td>
<td>Right singular vectors (and an extra column for variable names)</td>
<td>Number of variables × (number of singular values +1)</td>
</tr>
<tr>
<td>PCLOADINGS</td>
<td>Right singular vectors (and an extra column for variable names)</td>
<td>Number of variables × (number of singular values +1)</td>
</tr>
<tr>
<td>PCSCORES</td>
<td>Product of matrix of left singular vectors × diagonal matrix of singular values</td>
<td>Number of observations × number of singular values</td>
</tr>
<tr>
<td>COLSTATISTICS</td>
<td>Mean and standard deviation for each variable of the input data set</td>
<td>Number of variables × 3</td>
</tr>
</tbody>
</table>
References

Chapter 11
The SVDD Procedure

Overview: SVDD Procedure

The SVDD procedure implements the support vector data description (SVDD) algorithm (Tax and Duin 2004). SVDD is a one-class classification technique that is useful in applications where data that belong to one class are abundant but data about any other class are scarce or missing. Fraud detection, equipment health monitoring, and process control are some examples of application areas where the majority of the data belong to one class. You can use SVDD to model such one-class data and subsequently use the model to perform outlier detection.
In its simplest form, an SVDD model is obtained by building a minimum-radius hypersphere around the one-class training data. The hypersphere provides a compact spherical description of the training data. This training data description can be used to determine whether a new observation is similar to the training data observations. The distance from any new observation to the hypersphere center is computed and compared with the hypersphere radius. If the distance is more than the radius, the observation is designated as an outlier. Using kernel functions in SVDD formulation provides a more flexible description of training data. Such description is nonspherical and conforms to the geometry of the data.

PROC SVDD implements only the flexible data description.

SVDD is useful for obtaining a geometric description of data and in most applications also for detecting outliers. SVDD is used in domains where the majority of the data belong to one class. Applications of SVDD include the following:

- multivariate process control (Sun and Tsung 2003; Sukchotrat, Kim, and Tsung 2009)
- equipment prognostics and health management (Benkedjouh et al. 2012; Tax, Ypma, and Duin 1999a, b)
- cybersecurity and intrusion detection (Kang, Jeong, and Kong 2012)
- fraud identification (Jeong, An, and Nam 2016; Juszczak et al. 2008; Jeong, An, and Nam 2016)
- hyperspectral image analysis (Banerjee, Burlina, and Diehl 2006; Banerjee, Burlina, and Meth 2007; Sakla et al. 2011)
- analysis of health data from wearable devices (Shin, Lee, and Park 2011; Yang et al. 2010)

PROC SVDD Features

The following list provides important features of the SVDD procedure:

- multithreaded SVDD training
- support for both interval and nominal variables
- a WEIGHT statement that enables you to assign weights to observations
- choice of solvers:
 - stochastic subset solver that enables you to quickly obtain an approximate solution
 - active-set solver that enables you to obtain a more accurate solution
Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```
cas mysess;
  libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: SVDD Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

This example demonstrates how you can use the SVDD procedure to obtain a description of two-variable data and perform outlier detection. The training data in this example are refrigerant analysis data (Heckert and Filliben 2000). The data table contains 360 observations and 31 variables. The variables represent various process measurements that are taken during the refrigerant analysis. This example uses variables `y5` (inlet water temperature 1) and `y4` (pressure drop 6) to perform an SVDD training. Variables `y4` and `y5` are selected to highlight the ability of the SVDD algorithm to obtain an accurate description of the training data.
The following DATA step creates the refrigerant (which is stored on the work library by default):

```sas
data refrigerant;
  input y4 y5;
  label y4="Pressure Drop 6" y5="Inlet Water Temperature 1";
  datalines;
  2.0562 25.0904
  2.04147 25.1676
  2.04922 25.6362
  2.05387 25.6756
  ... more lines ...
```

The following code standardizes variables y4 and y5:

```sas
proc sql noprint;
  select min(y4), min(y5), max(y4), max(y5)
  into :miny4, :miny5, :maxy4, :maxy5
  from Refrigerant;
quit;

data refrigerant;
  set refrigerant;
  y4=(y4-&miny4)/%sysevalf(&maxy4-&miny4);
  y5=(y5-&miny5)/%sysevalf(&maxy5-&miny5);
run;
```

The following statements plot inlet water temperature 1 against pressure drop 6:

```sas
proc sgplot data=Refrigerant;
  title "Refrigerant Analysis";
  title1 "Scatter plot of inlet water temperature against pressure drop";
  scatter x=y4 y=y5/markerattrs=(size=3 symbol=circlefilled);
run;
```

Output 11.1 shows the results. The scatter plot indicates four distinct clusters.

Figure 11.1 Scatter Plot of Inlet Water Temperature against Pressure Drop
You can load the work.refrigerant data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step:

```plaintext
data mycas.refrigerant;
  set refrigerant;
run;
```

These statements assume that your CAS engine libref is named mycas, as in the section “Using CAS Sessions and CAS Engine Librefs” on page 207, but you can substitute any appropriately defined CAS engine libref.

The following statements execute the SVDD algorithm on the mycas.refrigerant data table and produce Figure 11.2 through Figure 11.5.

```plaintext
proc svdd data=mycas.Refrigerant;
  id y4 y5;
  input y4 y5/level=interval;
  kernel rbf / bw=0.021;
  savestate rstore=mycas.state;
run;
```

The INPUT statement defines the input variables y4 and y5 as interval variables. The KERNEL statement specifies the kernel function as a radial basis function (RBF) and specifies a value of 0.021 for the bandwidth parameter. The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in the mycas.state data table. You can use the analytic store later in the ASTORE procedure to score new data. The “Model Information” table in Figure 11.2 summarizes the key options and the input data variables.

Figure 11.2 Refrigerant Analysis Model Information

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization Method</td>
</tr>
<tr>
<td>Kernel Type</td>
</tr>
<tr>
<td>RBF Kernel Bandwidth</td>
</tr>
<tr>
<td>Expected Outlier Fraction</td>
</tr>
<tr>
<td>Optimization Tolerance</td>
</tr>
<tr>
<td>Number of Interval Variables</td>
</tr>
<tr>
<td>Number of Nominal Variables</td>
</tr>
</tbody>
</table>

The “Training Results” table in Figure 11.3 shows the number of support vectors and the R^2 threshold value.

Figure 11.3 Refrigerant Analysis Training Results

<table>
<thead>
<tr>
<th>Training Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Support Vectors</td>
</tr>
<tr>
<td>Number of Support Vectors on Boundary</td>
</tr>
<tr>
<td>Threshold R^2 Value</td>
</tr>
<tr>
<td>Constant (C_r) Value</td>
</tr>
<tr>
<td>Run Time (Seconds)</td>
</tr>
</tbody>
</table>
Figure 11.4 displays the number of observations in the training data set.

Figure 11.4 Refrigerant Analysis Training Observations

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>360</td>
</tr>
</tbody>
</table>

The “Optimization Summary” table in Figure 11.5 shows whether the solution is optimal, the number of iterations that were required, and the objective function value.

Figure 11.5 Refrigerant Analysis Optimization Summary

<table>
<thead>
<tr>
<th>Optimization Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Iterations</td>
</tr>
<tr>
<td>Objective Value</td>
</tr>
<tr>
<td>Infeasibility</td>
</tr>
<tr>
<td>Optimization Status</td>
</tr>
</tbody>
</table>

To evaluate the quality of the training results, scoring is performed on a 200 × 200 data grid. The following DATA step creates a data set named scoreds to contain the scoring observations:

```plaintext
data scoreds;
  do i=0 to 1 by 0.005;
    do j=0 to 1 by 0.005;
      output;
    end;
  end;
rename i=y5 j=y4;
run;
```

You can load the scoreds data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step:

```plaintext
data mycas.scoreds;
  set scoreds;
run;
```

The following code scores the mycas.scoreds using the score analytic store that was created during training:

```plaintext
proc astore;
  score data=mycas.scoreds out=mycas.score_results rstore=mycas.state;
quit;
```

The following code copies the score_results into the work library:

```plaintext
data work.score_results;
  set mycas.score_results;
run;
```
The following code plots the scoring results:

```sas
proc sgplot data=score_results(where=(_svddscore_ in (-1,1)));  
styleattrs datacontrastcolors=(ligr black) datasymbols=(circlefilled);  
title "Refrigerant Analysis";  
title1 "Scatter plot of inlet water temperature against pressure drop";  
title2 "Scoring Results";  
scatter x=y4 y=y5/group=_svddscore_ markerattrs=(size=3);  
run;
```

Figure 11.6 shows the scatter plot of the scoring data set. The gray area indicates the observations that are identified as outliers, and the black area indicates observations that are identified as inliers. Comparison between Figure 11.1 and the training data in Figure 11.6 indicates that SVDD has correctly identified observations outside the training data as outliers. In this example, the SVDD procedure described four disjoint clusters. Any observation not part of these four clusters was identified as an outlier during scoring.

Figure 11.6 Scoring Results Scatter Plot
Chapter 11: The SVDD Procedure

Syntax: SVDD Procedure

The following statements are available in the SVDD procedure:

```
PROC SVDD < options > ;
  CODE FILE=filename ;
  ID variables ;
  INPUT variables / < LEVEL=INTERVAL | NOMINAL > ;
  WEIGHT variable ;
  KERNEL kernel-type / < kernel-parameter > ;
  SOLVER solver-type / < options > ;
  SAVESTATE RSTORE=CAS-libref.data-table ;
```

The PROC SVDD statement, the KERNEL statement, and at least one INPUT statement are required.

The following sections describe the PROC SVDD statement and then describe the other statements in alphabetical order.

PROC SVDD Statement

```
PROC SVDD < options > ;
```

The PROC SVDD statement invokes the procedure. You can specify the following options:

- `DATA=CAS-libref.data-table` names the input data table for PROC SVDD to use. The default is the most recently created data table. `CAS-libref.data-table` is a two-level name, where

 - `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 207.

 - `data-table` specifies the name of the input data table.

- `NOPRINT` suppresses the generation of ODS outputs. If you specify this option, no ODS tables are generated.

- `NTHREADS=number-of-threads` specifies the number of threads to be used in the computation. The default value is the number of CPUs available in the machine.

- `OUTLIER_FRACTION=number FRACTION=number FRAC=number` specifies the expected fraction of the training data that consists of outliers, where `number` must be a real number between 0 and 1.

 By default, `OUTLIER_FRACTION=1E–6`.
OUTSV=\textit{CAS-libref.data-table}
\textbf{SV}=\textit{CAS-libref.data-table}

specifies the output data to contain the training data observations that are identified as support vectors, the corresponding value of the Lagrange multiplier (column _SVDDALPHA_), and an indicator (column _SVDDOUTLIER_) that flags the position of the support vectors relative to the data boundary. Support vectors whose _SVDDOUTLIER_ value is 0 fall on the data boundary, and support vectors whose _SVDDOUTLIER_ value is 1 fall outside the data boundary. \textit{CAS-libref.data-table} is a two-level name, where \textit{CAS-libref} refers to the caslib and session identifier, and \textit{data-table} specifies the name of the output data table. For more information about this two-level name, see the \texttt{DATA=} option and the section “Using CAS Sessions and CAS Engine Librefs” on page 207.

CODE Statement

\begin{verbatim}
CODE FILE=filename ;
\end{verbatim}

The CODE statement generates SAS DATA step code that mimics the computations that are done by the OUTPUT statement.

You must specify the following option:

\begin{verbatim}
FILE=filename
\end{verbatim}

specifies the filename of the file to write the SAS score code to.

The CODE statement is optional.

ID Statement

\begin{verbatim}
ID variables ;
\end{verbatim}

The ID statement lists one or more variables to be copied from the input data table to the output data tables that are specified in the OUTSV= option in the PROC SVDD statement and the RSTORE= option in the SAVESTATE statement.

INPUT Statement

\begin{verbatim}
INPUT variables / <LEVEL=INTERVAL | NOMINAL> ;
\end{verbatim}

The INPUT statement specifies the names of \textit{variables} to be used in training. Only interval, binary, and nominal variables are accepted. If you want to use different options for different variables, you can specify multiple INPUT statements.

You can specify the following \textit{option} after a slash (/):

\begin{verbatim}
LEVEL=INTERVAL | NOMINAL
\end{verbatim}

specifies whether the specified input \textit{variables} are continuous or categorical. You can specify the following values:
INTERVAL specifies that the input variables are continuous.

NOMINAL specifies that the input variables are categorical.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables. Binary variables are considered to be categorical variables.

KERNEL Statement

KERNEL kernel-type / kernel-parameter;

The KERNEL statement specifies the type of kernel and any associated parameters to be used during training. Only the radial basis kernel function is supported.

You must specify the following kernel-type and kernel-parameter:

RBF / BW=s

uses a radial basis function (also known as the Gaussian kernel function) during training. Specify the bandwidth parameter as the kernel-parameter, in the form BW=s, where s must be a positive nonzero real number. The kernel is defined as

\[
K(x, y) = \exp\left(-\frac{||x - y||^2}{2s^2}\right)
\]

where \(x, y\) are two vectors and \(s\) is the bandwidth parameter. You should expect increase in processing time as value of \(s\) is lowered. At very small values of \(s\), the processing time can be very high.

SAVESTATE Statement

SAVESTATE RSTORE=CAS-libref.data-table;

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see Chapter 3, “The ASTORE Procedure.”

You must specify the following option:

RSTORE=CAS-libref.data-table

specifies the filename of the file in which to save the analytic store. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 207.

SOLVER Statement

SOLVER solver-type < /options >;

The SOLVER statement specifies the type of optimization solver for SVDD training. You can specify following solver-types:
ACTSET

uses the active-set solver for SVDD training. For more information about this solver, see the section “Active-Set Solver” on page 223.

STOCHS

uses a stochastic subset solver for SVDD training. For more information about this solver, see the section “Stochastic Subset Solver” on page 223.

You can specify the following options after a slash (/) for either solver-type:

STOL= *number*

specifies the tolerance value for the solver, where *number* must be a real number greater than 0. To obtain a solution more quickly, specify a higher value for *number*. By default, STOL=1E–6.

MAXITER= *number*

specifies the maximum number of iterations of the solver, where *number* must be an integer greater than 0. To obtain a solution more quickly, specify a lower value for *number*. By default, MAXITER is set to 25 for the active-set solver and 200 for the stochastic subset solver.

You can specify the following options after a slash(/) only when the solver-type is STOCHS:

MAXSV= *number*

specifies the maximum number of support vectors, where *number* must be an integer greater than 0. To obtain a solution more quickly, specify a lower value for *number*. By default, MAXSV=3500.

NSAMP= *number*

specifies the number of observations that are sampled in each iteration of the stochastic solver, where *number* must be an integer greater than 0. To obtain a solution more quickly, specify a lower value for *number*. By default, NSAMP=10.

RTOL= *number*

specifies the tolerance value that is used to detect convergence of threshold value, where *number* must be a real number greater than 0. To obtain a solution more quickly, specify a higher value for *number*. By default, RTOL=1E–2.

CTOL= *number*

specifies the tolerance value that is used for detecting convergence of the center, where *number* must be a real number greater than 0. To obtain a solution more quickly, specify a higher value for *number*. By default, CTOL=1E–2.

NMATCH= *number*

specifies a convergence criterion for the stochastic solver, where *number* must be an integer greater than 0. If the radius and center values converge for *number* of consecutive iterations, then convergence is declared. By default, NMATCH=5. To obtain a solution more quickly, specify a lower value for *number*.

SEED= *number*

specifies a seed value that is used for selecting a random sample, where *number* must be an integer. The default value of SEED is based on the system clock. If you want reproducible results, specify an integer for *number*.
WEIGHT Statement

```
WEIGHT variable ;
```

The WEIGHT statement names a variable in the training data that specifies the weight to be assigned to each observation. The values of variable must be nonnegative. Observations that have higher weight have a better chance of being designated as support vectors.

Details: SVDD Procedure

PROC SVDD uses the radial basis kernel function to describe one-class training data and perform outlier detection. For more information about the theory and use of SVDD, see (Tax and Duin 2004).

Mathematical Formulation

This section describes the mathematical formulation of SVDD.

Normal Data Description

The most elemental form of SVDD is a normal data description. The SVDD model for normal data description builds a minimum-radius hypersphere around the data. PROC SVDD does not support this description because it is very simplistic and often leads to higher rates of misclassification. PROC SVDD supports the flexible data description (as described in the section “Flexible Data Description” on page 218). SVDD formulation can be expressed in either of the following forms:

Primal Form

The objective function in primal form is

\[
\min R^2 + C \sum_{i=1}^{n} \xi_i
\]

subject to

\[
\|x_i - a\|^2 \leq R^2 + \xi_i \quad \text{for all } i = 1, \ldots, n \\
\xi_i \geq 0 \quad \text{for all } i = 1, \ldots, n
\]

where

- \(x_i \in \mathbb{R}^m\) for \(i = 1, \ldots, n\) represents the training data
- \(R\) is the radius and represents the decision variable
- \(\xi_i\) is the slack for each variable
- \(a\) is the center
- \(C = \frac{1}{n_f}\) is the penalty constant that controls the trade-off between the volume and the errors
- \(f\) is the expected outlier fraction
Dual Form
The dual formulation is obtained from primal formulation by using the method of Lagrange multipliers. The objective function is

$$\max \sum_{i=1}^{n} \alpha_i (x_i \cdot x_i) - \sum_{i,j} \alpha_i \alpha_j (x_i \cdot x_j)$$

subject to

$$\sum_{i=1}^{n} \alpha_i = 1$$

$$0 \leq \alpha_i \leq C \text{ for all } i = 1, \ldots, n$$

where $\alpha_i \in \mathbb{R}$ are the Lagrange multipliers and $C = \frac{1}{n_f}$ is the penalty constant.

Duality Information The solution to the dual formulation of SVDD provides values of Lagrange multipliers α_i for all training data observations $i = 1, \ldots, n$. Based on the value of α_i, the position of an observation in the context of the data description can be determined as follows:

- **Inside position:**
 $$\|x_i - a\| < R \implies \alpha_i = 0$$

- **Boundary position:**
 $$\|x_i - a\| = R \implies 0 < \alpha_i < C$$

- **Outside position:**
 $$\|x_i - a\| > R \implies \alpha_i = C$$

The center of the data description a can be obtained using the values of α_i for all n observations in the training data as follows:

- **Center position:**
 $$\sum_{i=1}^{n} \alpha_i x_i = a$$

The circular data boundary can include a significant amount of space in which training observations are very sparsely distributed. Scoring with this model can increase the probability of false positives. Hence, instead of a circular shape, a compact bounded outline around the data is often desired. Such an outline should approximate the shape of the one-class training data. Such a data boundary is possible with the use of kernel functions.
Flexible Data Description

The support vector data description is made flexible by replacing the inner product \((x_i \cdot x_j) \) present in the objective function of (“Dual Form” on page 217) with a suitable kernel function \(K(x_i, x_j) \). The radial basis kernel function is defined as

\[
K(x, y) = \exp \left(-\frac{\|x - y\|^2}{2\sigma^2} \right)
\]

where \(x \) and \(y \) are any two observations from the training data and \(\sigma \) is the bandwidth parameter. Using a kernel function, the objective function is

\[
\max \sum_{i=1}^{n} \alpha_i K(x_i, x_i) - \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)
\]

subject to

\[
\sum_{i=1}^{n} \alpha_i = 1
\]

\[
0 \leq \alpha_i \leq C \quad \text{for all } i = 1, \ldots, n
\]

The results for the center, inside, boundary, and outside positions, which are described in the section “Duality Information” on page 217, hold when the kernel function is used in the mathematical formulation.

The threshold \(R^2 \) is calculated as

\[
R^2 = K(x_k, x_k) - 2 \sum_{i} \alpha_i K(x_i, x_k) + \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)
\]

using any \(x_k \in SV_{<C} \), where \(SV_{<C} \) is the set of support vectors for which \(\alpha_k < C \).

Scoring

For each observation \(z \) in the scoring data set, the distance \(\text{dist}^2(z) \) is calculated as follows:

\[
\text{dist}^2(z) = K(z, z) - 2 \sum_{i} \alpha_i K(x_i, z) + \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)
\]

Observations in the scoring data set for which \(\text{dist}^2(z) > R^2 \) are designated as outliers.

Figure 11.7 illustrates key SVDD statistics. The unfilled markers indicate the bivariate training data set. The filled green marker indicates the center \(a \). The filled blue markers are support vectors, which define the data boundary with a threshold \(R^2 \) value of 0.66. The plot shows contour lines for distance values from 0.76 to 1.06. The red markers indicate the outlier observations from the scoring data; their distance values are greater than the threshold \(R^2 \) value.
Radial Basis Function (RBF) Bandwidth Parameter

The flexible data description is preferred when the data boundary needs to closely follow the shape of the data. The tightness of the boundary is a function of the number of support vectors. In the case of an RBF kernel, it is observed that if the value of the outlier fraction f is kept constant, the number of support vectors identified by the SVDD algorithm is a function of the RBF bandwidth parameter s. At a very low value of s, the number of support vectors is very high and approaches the number of observations. As the value of s increases, the number of support vectors decreases. It is also observed that at lower values of s, the data boundary is extremely wiggly. As s is increased, the data boundary becomes less wiggly, and it starts to follow the shape of the data. At higher values of s, the data boundary starts becoming spherical. The processing time increases as the value of s decreases. At very small values of s, the processing time can be very high.

Figure 11.8 illustrates the effect of s on the data boundary.
Figure 11.8 Effect of RBF Bandwidth Parameter on Data Boundary

(a) Scatter plot of training data (b) $s = 0.2$

(c) $s = 0.6$ (d) $s = 0.9$

(e) $s = 2.2$ (f) $s = 4.2$

Subfigure (a) shows the training data. The training data were trained using different values of s. To confirm the shape of the data boundary, a 200 × 200 data grid was scored using training results. The scoring results are shown in subfigures (b) through (f). For subfigures (b) through (f), light gray indicates inside points and dark gray indicates outside points. All five results are obtained using $f = 0.0001$. At the lower value of $s = 0.2$, the data boundary is extremely wiggly. As the value of s is increased, the data boundary starts becoming less wiggly and conforms to the geometry of the training data. The higher value of $s = 4.2$ provides a very spherical data boundary. The data boundary that is obtained using $s = 0.9$ provides the best description of the data.

The selection of an appropriate value of s is tricky and often involves experimenting with several values until a good data boundary is obtained. If labeled data that belong to multiple classes are available, cross validation can be used to select value of s. If training data observations belong to a single class, cross validation cannot be used. In such a scenario, the distance to the farthest neighbor (DFN) method (Xiao et al. 2014) or the peak criterion method (Kakde et al. 2016) can be used to choose an appropriate value of s.
Fraction Outlier Parameter

As outlined in the section “Mathematical Formulation” on page 216, the penalty constant \(C \) controls the trade-off between the volume and accuracy. The constant \(C \) is defined as \(C = \frac{1}{nf} \), where \(n \) is the number of observations in the training data set and \(f \) is the fraction of outliers.

Keeping the value of the RBF bandwidth parameter \(s \) constant, higher values of \(f \) produce a tighter boundary around the training data and thereby lower the enclosed volume. As the value of \(f \) is decreased, the enclosed volume tends to increase. Figure 11.9 illustrates the effect of \(f \) on the data boundary.

Figure 11.9 Effect of \(f \) on Data Boundary

(a) Scatter Plot of Training Data (b) \(f = 0.2 \)

(c) \(f = 0.5 \) (d) \(f = 0.8 \)

For subfigures (b) through (d), light gray indicates outside points, dark gray indicates inside points, and black indicates support vectors. All three results are obtained using \(s = 2 \). As the value of \(f \) is increased from 0.2 to 0.8, the data boundary becomes tighter and the enclosed area is reduced. A data description that is obtained using an incorrect value of \(f \) can be misleading. If the specified value of \(f \) is more than the true value, it can lead to a higher misclassification rate because observations are incorrectly classified as outliers. The corresponding threshold \(R^2 \) value is also smaller. On the other hand, a specified value of \(f \) that is less than its true value can also lead to a higher misclassification rate because outliers are classified as inliers.

It is recommended that you use domain expertise and select SVDD training data such that the data truly reflect the single class of interest. The corresponding \(f \) can then be set to a very small value.
SVDD Formulation with a Weight Variable

You can use the WEIGHT statement to specify observation weights. The weight can be observation frequency. The following expression shows the dual formulation of SVDD with a kernel function and a weight variable:

$$\max \sum_{i=1}^{n} \alpha_i K(x_i, x_i) - \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)$$

subject to

$$\sum_{i=1}^{n} \alpha_i = 1$$

$$0 \leq \alpha_i \leq \frac{w_i}{\left(\sum_{i=1}^{n} w_i\right)}$$

for all $i = 1, \ldots, n$

where $K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2s^2}\right)$, where x and y are any two observations from the training data and s is the bandwidth parameter; $\alpha_i \in \mathbb{R}$ are the Lagrange multipliers, for all $i = 1, \ldots, n$; and w_i are the weight values, for all $i = 1, \ldots, n$.

Using a weight variable in SVDD formulation results in observations with higher weights having higher upper bounds on the value of the Lagrange multipliers. Such observations are more likely to end up with a positive nonzero value of their Lagrange multipliers and hence are designated as support vectors.

Comparison with One-Class Support Vector Machines

The one-class support vector machines (OCSVM) is a one-class classification technique similar to the SVDD. Instead of obtaining a bounding hypersphere around the training data, the OCSVM algorithm finds the maximal margin hyperplane that best separates the training data from the origin (Schölkopf et al. 1999). Similar to SVDD, the OCSVM algorithm uses kernel functions to map training data into a higher-dimensional feature space. The dual formulation of OCSVM can be expressed as

$$\min \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j K(x_i, x_j)$$

subject to

$$\sum_{i=1}^{n} \alpha_i = 1$$

$$0 \leq \alpha_i \leq \frac{1}{vn}$$

for all $i = 1, \ldots, n$

where $\alpha_i \in \mathbb{R}$ are the Lagrange multipliers, v is a parameter that controls the trade-off between maximizing the distance of the hyperplane from the origin and the number of data points contained by the hyperplane, n is the number of points in the training data, and $K(x_i, x_j)$ is the kernel function.

For the radial basis kernel function (RBF), $K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2s^2}\right)$, where x and y are any two observations from the training data and s is the bandwidth parameter.
With the RBF kernel function, the first term of the SVDD objective function of the flexible data description, as outlined in “Flexible Data Description” on page 218 evaluates to 1. Hence the OCSVM formulation is equivalent to the SVDD formulation when the RBF kernel function is used.

SVDD Solvers

You can perform SVDD training using either the active-set solver or the stochastic subset solver as described in the SOLVER Statement.

Active-Set Solver

The active set is defined as the set of indices that satisfy bound constraints as equality. The inactive set is a set of indices that satisfy bound constraints as strict inequality. For SVDD dual formulation, the active set refers to the set indices of observations for which $\alpha = 0$ or $\alpha = C$, and the inactive set refers to set indices of observations for which $0 < \alpha < C$. The active-set method seeks to form the solution by determining which indices of bound constraints belong to the active set and by using the inactive set (whose size is relatively small) to solve the optimization problem. Even though there is a great number of ways to partition bound constraint indices into active and inactive sets, the number of combinations tried in practice is usually small. A consequence is that the run time for the active-set method for a particular problem is hard to predict. The computational cost of the active-set method is also controlled by the number of support vectors, and that number is highly dependent on both the problem and the choice of the kernel bandwidth value. As a rule, the run time increases as the kernel bandwidth value decreases and the corresponding number support vectors increases.

Stochastic Subset Solver

The stochastic subset solver for SVDD training provides an efficient way to train your SVDD model and is recommended for training large data sets. The stochastic solver performs the following steps on training data with a sample size n, Gaussian bandwidth parameter s, fraction outlier f, and convergence criteria parameters that are specified in the SOLVER Statement:

1. Initialize a master set of support vectors SV^* by computing the SVDD of a random sample S_0. Set $i = 1$.

2. Select a random sample S_i. Compute its SVDD. Obtain a set of support vectors SV_i. When the WEIGHT option is specified, the probability of an observation becoming part of the sample is proportional to the observation’s weight value.

3. Compute the SVDD of $(SV^* \cup SV_i)$. Designate corresponding support vectors as SV^*. Set $i = i + 1$.

4. Repeat steps 2 and 3 until convergence of the threshold value R^2 and center a.
Once convergence is obtained, the resulting master set of support vectors SV^* is set as an input to the active set solver and solution is obtained. For more information about the stochastic solver, see Chaudhuri et al. (2016).

ODS Table Names

Each table that the SVDD procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. The name of each table and a short description of the contents are listed in Table 11.1.

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ModelInfo</td>
<td>Basic model information for the training</td>
<td>PROC SVDD</td>
<td>Default</td>
</tr>
<tr>
<td>Nobs</td>
<td>Observation information about the input data</td>
<td>PROC SVDD</td>
<td>Default</td>
</tr>
<tr>
<td>DescStatsNom</td>
<td>Number of levels of nominal variables in the input data</td>
<td>PROC SVDD</td>
<td>Default</td>
</tr>
<tr>
<td>OptSummary</td>
<td>Statistics related to optimization solver</td>
<td>PROC SVDD</td>
<td>Default</td>
</tr>
<tr>
<td>TrainingResults</td>
<td>Displays the training results</td>
<td>PROC SVDD</td>
<td>Default</td>
</tr>
</tbody>
</table>

Examples: SVDD Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 11.1: Analysis of Aircraft Engine Degradation

Sun and Tsung (2003) introduced an SVDD-based K-chart, which is a nonparametric multivariate control chart that is used for statistical process control and can also be used for monitoring equipment health and operating data. A K-chart is implemented in two phases: In phase I, observations from normal operations of the process are collected and are used to train a SVDD model and obtain the threshold R^2 value. This model of normal operations is then operationalized in phase II for process or equipment monitoring. For each new observation z, its distance value $\text{dist}^2(z)$ is computed and compared to the threshold R^2 value. Observations for which $\text{dist}^2(z) > R^2$ generally indicate something abnormal in the process.

This example uses a K-chart to illustrate the analysis of aircraft engine degradation and uses data from Saxena et al. (2008); Saxena and Goebel (2008). The data that are used in this example consist of the flight history of
15 engines. For each flight, three variables are related to the engine’s operating conditions and 21 variables are for sensor measurements. Because each engine degrades at a different rate, the number of flights until the end of life is different for each engine.

The following code creates a phase I (normal operations) data set (the engine data set in the work library) by selecting the first 25% of observations of a random sample of five engines. The analysis assumes that the first 25% of observations represent normal operations of the aircraft engine.

```sas
data engine;
  input Engine cycle x1-x24;
datalines;

... more lines ...
```

The following statements creates a subset of work.engine by selecting the first 25% of observations that belong to five randomly selected engines:

```sas
data eid(keep=engine);
  set engine;
  by engine;
  if first.engine then output;
run;

%let nwant = 5;
%let seed = 1994;

data reid;
  retain nleft 5;
  set eid nobs=n;
  r = ranuni(1994);
  if r <= nleft/n then do;
    nleft = nleft - 1;
    output;
  end;
  n = n - 1;
run;

%macro a;
  data _null_;
  set reid;
  call symput('e'||left(_n_), engine);
  run;

  %do i=1 %to &nwant;
    %if &i=1 %then %do;
      %let st=&&e&i;
    %end;
    %else %do;
      %let st=&st &&e&i;
    %end;
  %end;
%end;
```
Chapter 11: The SVDD Procedure

```sas
data eid_cy;
  set engine;
  by engine;
  if engine in (&st) and last.engine=1 then output;
run;

data eid_cy;
  set eid_cy;
  ds1=floor(0.25*cycle);
run;

/* The following DATA steps create the training data set */
data train;
  set engine;
  if engine in (&st) then output;
run;

data train;
  merge train(in=a) eid_cy(in=b);
  by engine;
  if a=b;
run;

data train;
  set train (where=(cycle le ds1));
run;

/* The following DATA step creates the scoring data set. The scoring data set contains flight data for all engines, which were not part of the training data set */
data score;
  set engine;
  if engine not in (&st) then output;
run;
%mend a;
%a
```

You can load the work.train data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step. These statements assume that your CAS engine libref is named mycas, as in the section “Using CAS Sessions and CAS Engine Librefs” on page 207, but you can substitute any appropriately defined CAS engine libref.

```sas
data mycas.train;
  set train;
run;
```

You can load the work.score data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step:

```sas
data mycas.score;
  set score;
run;
```

The following statements execute the SVDD algorithm on the mycas.train data table and produce Figure 11.1.1 through Figure 11.1.2.
The INPUT statement defines 24 input variables (x1–x24) as interval variables. The KERNEL statement specifies the radial basis function as the kernel function and specifies a value of 94 for the bandwidth parameter. The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in the mycas.state data table. You can use the analytic store later in the ASTORE procedure to score new data. The “Model Information” table in Output 11.1.1 summarizes the key options and input data variables.

Output 11.1.1 Aircraft Engine Degradation Analysis Model Information

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization Method</td>
</tr>
<tr>
<td>Kernel Type</td>
</tr>
<tr>
<td>RBF Kernel Bandwidth</td>
</tr>
<tr>
<td>Expected Outlier Fraction</td>
</tr>
<tr>
<td>Optimization Tolerance</td>
</tr>
<tr>
<td>Number of Interval Variables</td>
</tr>
<tr>
<td>Number of Nominal Variables</td>
</tr>
</tbody>
</table>

The “Training Results” table in Output 11.1.2 shows the number of support vectors and the threshold R^2 value.

Output 11.1.2 Aircraft Engine Degradation Analysis Training Results

<table>
<thead>
<tr>
<th>Training Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Support Vectors</td>
</tr>
<tr>
<td>Number of Support Vectors on Boundary</td>
</tr>
<tr>
<td>Threshold R^2 Value</td>
</tr>
<tr>
<td>Constant (C_r) Value</td>
</tr>
<tr>
<td>Run Time (Seconds)</td>
</tr>
</tbody>
</table>

Output 11.1.3 displays the number of observations in the training data set.

Output 11.1.3 Aircraft Engine Degradation Analysis Training Observations

| Number of Observations Read | 225 |
| Number of Observations Used | 225 |

The “Optimization Summary” table in Output 11.1.4 shows whether the solution is optimal, the number of iterations that were required and the objective function value.
The following code scores the *mycas.score* data, which contain the entire flight history for 10 engines. In the context of K-charts, this scoring constitutes the phase-II analysis, where new observations are scored to infer any departure from the normal operations.

```plaintext
proc astore;
  score data=mycas.score
       out=mycas.test_out
       rstore=mycas.state;
quit;
```

Output 11.1.5 shows the scoring results for Engine 6. The plot indicates the $\text{dist}^2(z)$ value plotted on the Y axis against the flight or cycle number on the X axis. The blue line indicates the $\text{dist}^2(z)$ value, and the red line indicates a moving average that is computed using five observations. The horizontal reference line indicates the threshold R^2 value of 0.80366 that was obtained from training, which also acts as an upper control limit (UCL) for the $\text{dist}^2(z)$ value. The vertical reference line indicates the last cycle (flight) of the first engine. The Output 11.1.5 shows that the $\text{dist}^2(z)$ value serves as a good proxy for engine degradation.
References

Chapter 12
The SVMACHINE Procedure

Contents

Overview: SVMACHINE Procedure ... 231
PROC SVMACHINE Features .. 232
Using CAS Sessions and CAS Engine Librefs 232
Getting Started: SVMACHINE Procedure 233
Syntax: SVMACHINE Procedure ... 235
PROC SVMACHINE Statement .. 235
AUTOTUNE Statement .. 236
CODE Statement ... 238
ID Statement .. 239
INPUT Statement ... 239
KERNEL Statement ... 239
OUTPUT Statement ... 240
PARTITION Statement .. 240
SAVESTATE Statement .. 241
TARGET Statement ... 241
Details: SVMACHINE Procedure ... 242
Interior-Point Method Optimization Technique 243
Scoring Process .. 243
Displayed Output ... 244
ODS Table Names .. 244
Examples: SVMACHINE Procedure 245
Example 12.1: Home Equity Loan Case 245
Example 12.2: Large Simulated Data Table 248
References ... 249

Overview: SVMACHINE Procedure

The SVMACHINE procedure implements the support vector machines (SVM) algorithm in SAS Viya. A popular data mining area classification method, the SVM algorithm computes support vector machine learning classifiers for the binary pattern recognition problem; it has been broadly used in the fields such as image classification, handwriting recognition, financial decision, text mining, and so on.

Like other predictive modeling tools, the SVMACHINE procedure uses input data to train a model and provides information about the model. The SVMACHINE procedure executes the SVM algorithm (applying
the interior-point optimization technique during training) and can generate SAS code for scoring future data. PROC SVMACHINE uses both linear and low-degree polynomial kernels to conduct computation, and it can run on multiple threads in a single machine or on multiple threads on multiple machines. It can load data from multiple nodes and perform computation in parallel.

PROC SVMACHINE Features

The SVMACHINE procedure has the following features:

- reads input data in parallel when the data source is on a distributed system
- is highly multithreaded during all phases of analytic execution
- supports large-scale training data
- supports both continuous and categorical inputs
- supports classification of a binary target
- supports the interior-point method

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:
cas mysess terminate;

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: SVMACHINE Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

This example trains the model by using German credit benchmark data, which are available in the samp-sio.dmagecr data set. This data set contains 1,000 observations, each of which contains an applicant’s information, including the applicant’s credit rating (GOOD or BAD). The binary target is named GOOD_BAD. Other input variables are Checking, Duration, History, and so on.

You can load the samp-sio.dmagecr data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step:

```sas
data mycas.dmagecr;
  set sampsio.dmagecr;
run;
```

These statements assume that your CAS engine libref is named mycas, as in the section “Using CAS Sessions and CAS Engine Librefs” on page 232, but you can substitute any appropriately defined CAS engine libref.

The following statements execute the SVM algorithm on the mycas.dmagecr data table and produce Figure 12.1 through Figure 12.3.

```sas
proc svmachine data=mycas.dmagecr;
  input checking history purpose savings employed marital coapp
    property other job housing telephon foreign/level=nominal;
  input duration amount installp resident existcr depends age/level=interval;
  target good_bad;
run;
```

The first INPUT statement defines the input variables Checking, History, Purpose, Savings, Employed, Marital, Coapp, Property, Other, Job, Housing, Telephon, and Foreign as categorical variables. The second INPUT statement defines the input variables Duration, Amount, Installp, Resident, Existcr, Depends, and Age as continuous variables. The TARGET statement defines good_bad to be the target variable (the variable that is predicted). The “Training Results” table in Figure 12.1 shows that the inner product of weights is 11.6121718, the bias is –2.1296773, and the number of support vectors is 531, of which 481 are on the margin.
Figure 12.1 German Credit Data Training Results

The SVMACHINE Procedure

<table>
<thead>
<tr>
<th>Training Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Product of Weights</td>
</tr>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>Total Slack (Constraint Violations)</td>
</tr>
<tr>
<td>Norm of Longest Vector</td>
</tr>
<tr>
<td>Number of Support Vectors</td>
</tr>
<tr>
<td>Number of Support Vectors on Margin</td>
</tr>
<tr>
<td>Maximum F</td>
</tr>
<tr>
<td>Minimum F</td>
</tr>
<tr>
<td>Number of Effects</td>
</tr>
<tr>
<td>Columns in Data Matrix</td>
</tr>
</tbody>
</table>

The “Misclassification Matrix” table in Figure 12.2 shows that among the total 1,000 observations, 700 observations are classified as good and 300 observations are classified as bad. The number of correctly predicted GOOD observations is 626, and the number of correctly predicted BAD observations is 158. Thus the accuracy is 78.4%, which is indicated in the “Fit Statistics” table in Figure 12.3.

Figure 12.2 German Credit Misclassification Matrix

<table>
<thead>
<tr>
<th>Misclassification Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Prediction</td>
</tr>
<tr>
<td>Observed</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>626</td>
</tr>
<tr>
<td>Bad</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>768</td>
</tr>
</tbody>
</table>

Figure 12.3 German Credit Accuracy

<table>
<thead>
<tr>
<th>Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
</tr>
<tr>
<td>Training</td>
</tr>
<tr>
<td>Accuracy</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Sensitivity</td>
</tr>
<tr>
<td>Specificity</td>
</tr>
</tbody>
</table>

A relatively good model means that misclassification is low while both sensitivity and specificity are high. In PROC SVMACHINE, you can adjust training parameters and use different kernels to obtain a better model.
Syntax: SVMACHINE Procedure

The following statements are available in the SVMACHINE procedure:

```
PROC SVMACHINE <options> ;
    AUTOTUNE <options> ;
    CODE FILE=filename ;
    ID variables ;
    INPUT variables /<LEVEL=INTERVAL | NOMINAL> ;
    KERNEL kernel-type /<kernel-parameter> ;
    OUTPUT OUT=CAS-libref.data-table <option> ;
    PARTITION partition-option ;
    SAVESTATE RSTORE=CAS-libref.data-table ;
    TARGET variable </option> ;
```

The PROC SVMACHINE statement, the TARGET statement, and at least one INPUT statement are required. The following sections describe the PROC SVMACHINE statement and then describe the other statements in alphabetical order.

PROC SVMACHINE Statement

```
PROC SVMACHINE <options> ;
```

The PROC SVMACHINE statement invokes the procedure.

You can specify the following options:

- **C=number**
 - specifies the penalty value, where number must be a real number greater than 0.
 - By default, C=1.0.

- **DATA=CAS-libref.data-table**
 - names the input data table for PROC SVMACHINE to use. The default is the most recently created data table. `CAS-libref.data-table` is a two-level name, where

 - `CAS-libref` refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 232.

 - `data-table` specifies the name of the input data table.

- **ITERATIONREPORT**
 - generates a table named “Iteration Report,” which displays the training accuracy for each iteration. If you also specify the PARTITION statement and the validation data and testing data exist, then the “Iteration Report” table also displays the validation accuracy and testing accuracy, respectively, for each iteration. This option is ignored if you specify the AUTOTUNE statement.
NOTE: Generating the accuracy report for each iteration is computationally expensive and requires a significant amount of time.

MAXITER= *number*

specifies the maximum number of iterations before the process stops, where *number* is a positive integer.

By default, MAXITER=25. In some cases, you can obtain a good model in less than five iterations.

NOPRINT

suppresses the generation of ODS outputs. If you specify this option, no ODS tables are generated.

NOSCALE

uses the original data during training.

NTHREADS= *number-of-threads*

specifies the number of threads that are used in the computation. The default value is the number of CPUs available in the machine.

SCALE

scales the input variables to between 0 and 1 during training.

By default, all numerical data are scaled before the training.

USEMISS

uses missing values for input variables. Missing is treated as a special level for a categorical variable, and missing values for a continuous variable are imputed to the mean before training.

By default, all observations that have missing values are dropped during the training process.

TOLERANCE= *number*

specifies the minimal absolute tolerance at which the iteration stops. The tolerance *number* must be equal to or greater than 1.0E-12.

By default, TOLERANCE=1.0E-6. In some cases, you can obtain a good model with TOLERANCE \geq 0.01.

AUTOTUNE Statement

```
AUTOTUNE < options > ;
```

The AUTOTUNE statement searches for the best combination of values of the C= option in the PROC SVMACHINE statement and the DEGREE= suboption of the POLYNOMIAL option in the KERNEL statement.

Table 12.1 summarizes the options you can specify in the AUTOTUNE statement. For more information about all options except the TUNINGPARAMETERS= option, see the option’s description in the section “AUTOTUNE Statement” on page 7 in Chapter 2, “Shared Concepts.” The TUNINGPARAMETERS option is described following table Table 12.1.

NOTE: Processing the AUTOTUNE statement is computationally expensive and requires a significant amount of time.
NOTE: If you specify both AUTOTUNE statement and OUTPUT statement, the PROC SVMACHINE exits with error message.

Table 12.1 AUTOTUNE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALHISTORY=</td>
<td>Specifies how to report the evaluation history of the tuner</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>Specifies the fraction of observations to use for validation</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>Specifies the number of folds for k-fold cross validation</td>
</tr>
<tr>
<td>MAXEVALS=</td>
<td>Specifies the maximum number of evaluations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time for all iterations when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>NPARALLEL=</td>
<td>Specifies the number of parallel sessions</td>
</tr>
<tr>
<td>OBJECTIVE=</td>
<td>Specifies the objective function</td>
</tr>
<tr>
<td>POPSIZE=</td>
<td>Specifies the population size when SEARCHMETHOD=GA</td>
</tr>
<tr>
<td>SAMPLESIZE=</td>
<td>Specifies the sample size when SEARCHMETHOD=LHS or SEARCHMETHOD=RANDOM</td>
</tr>
<tr>
<td>SEARCHMETHOD=</td>
<td>Specifies the search method that the optimizer uses</td>
</tr>
<tr>
<td>TARGETEVENT=</td>
<td>Specifies the target event for ROC-based calculations</td>
</tr>
<tr>
<td>TUNINGPARAMETERS=</td>
<td>Specifies the custom tuning parameters</td>
</tr>
<tr>
<td>USEPARAMETERS=</td>
<td>Specifies how to handle the TUNINGPARAMETERS= option</td>
</tr>
</tbody>
</table>

TUNINGPARAMETERS=(suboption | . . . | < suboption >)

TUNEPARMS=(suboption | . . . | < suboption >)

specifies which parameters to tune and which ranges to tune over. If USEPARAMETERS=STANDARD, this option is ignored.

You can specify one or more of the following suboptions:

C (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

specifies the penalty values to be used when tuning the SVM model, where *number* or any value in *value-list* must be a real number greater than 0. For more information, see the C= option in the PROC SVMACHINE statement.

You can specify the following additional suboptions:

LB=number

specifies the minimum penalty number to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, LB=1E-10.

UB=number

specifies the maximum penalty number to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.

By default, UB=100.
VALUES=value-list
specifies a list of penalty numbers to consider during tuning, where value-list is a space-separated list of numbers greater than 0. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial penalty value for the tuner to use.
By default, INIT=1.

EXCLUDE
excludes the penalty value from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

DEGREE (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)
specifies the degree that is used in a linear (when number=1) or polynomial (when number=2 or 3) kernel during training, where number and values in value-list can be 1, 2 or 3. For more information, see the POLYNOMIAL option in the KERNEL statement.

You can specify the following additional suboptions:

LB=number
specifies a lower bound of the degree to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.
By default, LB=1.

UB=number
specifies an upper bound of the degree to consider during tuning. If you specify this suboption, you cannot specify the VALUES= suboption.
By default, UB=3.

VALUES=value-list
specifies a list of values to consider for the degree in the kernel, where value-list is a space-separated list of numbers. If you specify this suboption, you cannot specify either the LB= or UB= suboption.

INIT=number
specifies the initial degree of the kernel in the SVM.
By default, INIT=1.

EXCLUDE
excludes the degree from the tuning process. If you specify this suboption, any specified LB=, UB=, VALUES=, and INIT= suboptions are ignored.

CODE Statement

CODE FILE=filename ;
The CODE statement generates SAS DATA step code that mimics the computations that are done by the OUTPUT statement.

You must specify the following option:

FILE=filename

specifies the filename of the file to write the SAS score code to.

The CODE statement is optional.

ID Statement

```
ID variables;
```

The ID statement lists one or more variables that are to be copied from the input data table to the output data tables that are specified in the OUT= option in the OUTPUT statement and the RSTORE= option in the SAVESTATE statement.

INPUT Statement

```
INPUT variables / <LEVEL=INTERVAL | NOMINAL>;
```

The INPUT statement specifies the names of variables to be used in training. Only interval, binary, and nominal variables are accepted. If you want to use different options for different variables, you can specify multiple INPUT statements.

You can specify the following option after a slash (/):

LEVEL=INTERVAL | NOMINAL

specifies whether the specified input variables are continuous or categorical. You can specify the following values:

- **INTERVAL**: specifies that the input variables are continuous.
- **NOMINAL**: specifies that the input variables are categorical.

By default, LEVEL=INTERVAL for numeric variables and LEVEL=NOMINAL for categorical variables. Binary variables are considered to be categorical variables.

KERNEL Statement

```
KERNEL kernel-type / <kernel-parameter>;
```

The KERNEL statement specifies the type of kernel and any associated parameters to be used during training.

You can specify the following kernel-types:
Chapter 12: The SVMACHINE Procedure

LINEAR

uses a linear kernel during training. No kernel-parameter is needed. The kernel is defined as

\[k(x_1, x_2) = <x_1, x_2> \]

where \(x_1 \) and \(x_2 \) are two vectors and \(<, >\) is the inner product.

POLYNOMIAL

uses a polynomial kernel during training. Specify the polynomial degree as the kernel-parameter, in the form DEGREE=number, where number must be 2 or 3 (the default is 2). For example, specify KERNEL POLYNOMIAL / DEGREE=2. The kernel is defined as

\[k(x_1, x_2) = (<x_1, x_2> + 1)^p \]

where \(p \) is the degree of the polynomial.

By default, the kernel type is LINEAR.

OUTPUT Statement

```plaintext
OUTPUT OUT=CAS-libref.data-table < option > ;
```

The OUTPUT statement creates an output data table that contains the predicted values of the input data table.

You must specify the following option:

OUT=CAS-libref.data-table

names the output data table for PROC SVMACHINE to use. You must specify this option before any other options. **CAS-libref.data-table** is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to where the data table is to be stored, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about **CAS-libref**, see the section “Using CAS Sessions and CAS Engine Librefs” on page 232.

- **data-table** specifies the name of the output data table.

You can also specify the following **option**:

COPYVAR=variable

COPYVARS=(variables)

lists one or more variables from the input data table that are transferred to the output data table.

PARTITION Statement

```plaintext
PARTITION partition-option ;
```

The PARTITION statement specifies how observations in the input data set are logically partitioned into disjoint subsets for model training, validation, and testing. For more information, see the section “Using
Validation and Test Data” on page 14 in Chapter 2, “Shared Concepts.” Either you can designate a variable in
the input data table and a set of formatted values of that variable to determine the role of each observation, or
you can specify proportions to use for randomly assigning observations to each role.

You must specify exactly one of the following partition-options:

FRACTION(< TEST=fraction > < VALIDATE=fraction > < SEED=number >)
randomly assigns specified proportions of the observations in the input data table to the roles. You
specify the proportions for testing and validation by using the TEST= and VALIDATE= suboptions. If you specify both the TEST= and VALIDATE= suboptions, then the sum of the specified fractions
must be less than 1 and the remaining fraction of the observations are assigned to the training role. The
SEED= option specifies an integer that is used to start the pseudorandom number generator for random
partitioning of data for training, testing, and validation. If you do not specify SEED=number or if
number is less than or equal to 0, the seed is generated by reading the time of day from the computer’s
clock.

ROLE=variable (< TEST=value > < TRAIN=value > < VALIDATE=value >)
ROLEVAR=variable (< TEST=value > < TRAIN=value > < VALIDATE=value >)
names the variable in the input data table whose values are used to assign roles to each observation.
This variable cannot also appear as an analysis variable in other statements or options. The TEST=,
TRAIN=, and VALIDATE= suboptions specify the formatted values of this variable that are used to
assign observation roles. If you do not specify the TRAIN= suboption, then all observations whose
role is not determined by the TEST= or VALIDATE= suboption are assigned to the training role.

SAVESTATE Statement

SAVESTATE RSTORE=CAS-libref.data-table ;

The SAVESTATE statement creates an analytic store for the model and saves it as a binary object in a data
table. You can use the analytic store in the ASTORE procedure to score new data. For more information, see
Chapter 3, “The ASTORE Procedure.”

You must specify the following option:

RSTORE=CAS-libref.data-table
specifies a data table in which to save the analytic store for the model. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 232.

TARGET Statement

TARGET variable < /options > ;

The TARGET statement names the target variable whose values PROC SVMACHINE predicts. The target
variable must be binary and must be different from the variables in the INPUT statement.

You can specify following options after a slash (/):
ASC | ASCENDING
levelizes the target values in ascending order.

DESC | DESCENDING
levelizes the target values in descending order.

By default, the order is DESCENDING.

Details: SVMACHINE Procedure

PROC SVMACHINE uses linear or nonlinear kernels to compute support vector machine (SVM) learning classifiers for the binary pattern recognition problem. For more information about the theory and use of SVM learning, see Vapnik (1995); Burges (1998); Cristianini and Shawe-Taylor (2000).

In the linear kernel case, PROC SVMACHINE computes the parameters w and β that define the model function,

$$f(x) = w^T x + \beta$$

by solving the following quadratic optimization problem

$$\min_{w, \beta, z} \frac{1}{2} w^T w + C e^T z$$

subject to

$$D X w + \beta d \geq e - z$$

$$z \geq 0$$

where X denotes the $m \times n$ matrix whose rows correspond to the observations, D denotes a diagonal matrix whose diagonals are 1 or -1, z denotes the slack variables that relax the classification constraints, and C denotes the penalty term. The corresponding dual optimization problem is

$$\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - e^T \alpha$$

subject to

$$d^T \alpha = 0$$

$$0 \leq \alpha \leq C$$

where $Q = D X^T D$ and α is the Lagrange multiplier. For a more general discussion about duality in the context of quadratic programming, see the chapter “The OPTQP Procedure” in SAS/OR User’s Guide: Mathematical Programming. At the solution, w is related to α by the equation $w = X^T D \alpha$. Observations that correspond to nonzero entries in α are called support vectors. Observations that correspond to entries in α that are active at their upper bound are called support vectors on the margin.

In the nonlinear case, the dual optimization problem satisfies $Q_{ij} = d_i d_j k(x_i, x_j)$, where $k(x, y)$ denotes the selected kernel function, which is defined in the section “KERNEL Statement” on page 239. The corresponding model function is defined in terms of β, α, and the support vectors as follows:

$$f(x) = \beta + \sum_{\alpha_i > 0} \alpha_i d_i k(x, x_i).$$

When nonlinear kernels are used, the dimension of the corresponding primal problem can be prohibitively large, or infinite. Polynomial kernels are a special case in that the primal problem definition can be formed explicitly; in this case, the matrix X corresponds to explicitly projected observations.
A popular approach for accurately obtaining the global solution for an SVM optimization problem is the interior-point method. Interior-point methods are attractive in that the required number of iterations is relatively small and does not grow dramatically with problem size. The cost per iteration for interior-point methods can be quite high for large-scale problems unless there exists an underlying structure that can be exploited. For example, interior-point methods can be extremely efficient for problems where the number of variables are small in comparison to the number of constraints. When both the number of variables and number of constraints is large, interior-point methods become intractable for dense problems.

PROC SVMACHINE applies a primal-dual interior-point method to linear and polynomial kernels of degree 2 and 3. In the polynomial kernel case, X is obtained by explicitly projecting each observation in the design matrix. The resulting number of columns is given by the binomial coefficient

$$\binom{n + p}{p} = \frac{(n + p)!}{p!n!}$$

where n denotes the number of columns in the levelized design matrix and p denotes the polynomial degree. Thus, `KERNEL POLYNOMIAL/DEGREE=2` is not recommended when the number of columns in the design matrix is much greater than 100. Similarly, `KERNEL POLYNOMIAL/DEGREE=3` is not recommended when the number of columns in the design matrix is much greater than 32.

Primal-dual interior-point methods perturb the optimality conditions in order to create a system of nonlinear equations that satisfy the requirements of Newton’s method. This perturbed system of nonlinear equations has the property that an interior solution (with respect to the inequality constraints) always exists; safeguards are then wrapped around Newton’s method to ensure that the interior (and hence feasible) approximate solution is obtained. Interior-point methods have the additional property that as the perturbation term goes to 0, the approximate solution converges to the true solution.

The dominant cost for each iteration comes from the need to solve a system of linear equations of size $(m + n) \times (m + n)$. Because PROC SVMACHINE assumes that m might be very large, it uses block reduction strategies similar to those described in Gertz and Griffin (2005, 2010) to reduce the size of this system to a matrix of size $n \times n$, where n denotes the number of columns in the design (or projected kernel) matrix. Then it performs dense matrix factorization on the resulting system. For problems where $m \gg n$, the dominant computational cost occurs during the block-row reduction step. To reduce the solution time, this operation is both distributed and threaded.

Scoring Process

The scoring process for the interior-point method is straightforward. As long as the training weight parameters and bias are known, the scoring process is just a linear combination. The event or nonevent is decided by the decision function. If the decision function is less than or equal to 0, then the prediction is an event; otherwise, it is a nonevent.

For the interior-point method, the score code is provided for a linear kernel and for a polynomial kernel of degree 2 and 3.
Displayed Output

The following sections describe the output that PROC SVMACHINE produces by default. The output is organized into various tables, which are discussed in the order of their appearance.

Model Information

The “Model Information” table contains the initial training settings, such as task type, optimization technique, and kernel function type. If the kernel function type is polynomial, then the kernel degree is also displayed.

Number of Observations

The “Number of Observations” table contains the number of observations and the number of observations used.

Training Results

The “Training Results” table shows the model information. It includes but is not limited to the inner product of weights, bias, and the number of support vectors.

Iteration History

The “Iteration History” table contains the number of iterations, the complementarity, and the feasibility. The complementarity is controlled by the TOLERANCE= option (which specifies the minimal absolute tolerance at which an iteration stops) and the MAXITER= option (which controls the number of iterations).

Misclassification Matrix

The “Misclassification Matrix” table contains the target information, both observed and predicted. The columns include the observed target, predicted event, predicted nonevent, and total numbers of events or nonevents for the training data.

Fit Statistics

The “Fit Statistics” table contains the model accuracy information, which includes accuracy, error, sensitivity, and specificity. The statistics are calculated from the “Misclassification Matrix” table.

Iteration Report

The “Iteration Report” table contains the model accuracy value for each iteration step. If the PARTITION statement is specified, then the specified validation or testing data accuracy is also reported.

ODS Table Names

Each table that the SVMACHINE procedure creates has a name associated with it. You must use this name to refer to the table when you use ODS statements. The name of each table and a short description of the contents are listed in Table 12.2.
Table 12.2 ODS Tables Produced by PROC SVMACHINE

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>FitStatistics</td>
<td>Accuracy information about the training</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
<tr>
<td>IterationReport</td>
<td>Accuracy report for each iteration</td>
<td>PROC SVMACHINE ITERATIONREPORT</td>
<td></td>
</tr>
<tr>
<td>IterHistory</td>
<td>Iteration history</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
<tr>
<td>Misclassification</td>
<td>Misclassification matrix table</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
<tr>
<td>ModelInfo</td>
<td>Basic model information for the training</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
<tr>
<td>NObs</td>
<td>Observation information about the input data</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
<tr>
<td>TrainingResult</td>
<td>Displays the training results</td>
<td>PROC SVMACHINE</td>
<td>Default</td>
</tr>
</tbody>
</table>

Examples: SVMACHINE Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table name. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

Example 12.1: Home Equity Loan Case

This example shows how you can use PROC SVMACHINE to create scoring code that can be used to score future home equity loan applications. The data set Hmeq, which is in the Sampsio library that SAS provides, contains observations for 5,960 mortgage applicants. A variable named Bad indicates whether the customer has paid on the loan or has defaulted on it. Table 12.3 describes the variables in Hmeq.
Table 12.3 Variables in the Home Equity (Hmeq) Data Set

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad</td>
<td>Response</td>
<td>Binary</td>
<td>1 = customer defaulted on the loan or is seriously delinquent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 = customer is current on loan payments</td>
</tr>
<tr>
<td>CLAge</td>
<td>Predictor</td>
<td>Interval</td>
<td>Age of oldest credit line in months</td>
</tr>
<tr>
<td>CLNo</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of credit lines</td>
</tr>
<tr>
<td>DebtInc</td>
<td>Predictor</td>
<td>Interval</td>
<td>Debt-to-income ratio</td>
</tr>
<tr>
<td>Delinq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of delinquent credit lines</td>
</tr>
<tr>
<td>Derog</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of major derogatory reports</td>
</tr>
<tr>
<td>Job</td>
<td>Predictor</td>
<td>Nominal</td>
<td>Occupational category</td>
</tr>
<tr>
<td>Loan</td>
<td>Predictor</td>
<td>Interval</td>
<td>Requested loan amount</td>
</tr>
<tr>
<td>MortDue</td>
<td>Predictor</td>
<td>Interval</td>
<td>Amount due on existing mortgage</td>
</tr>
<tr>
<td>nlnq</td>
<td>Predictor</td>
<td>Interval</td>
<td>Number of recent credit inquiries</td>
</tr>
<tr>
<td>Reason</td>
<td>Predictor</td>
<td>Binary</td>
<td>'DebtCon' = debt consolidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>'HomeImp' = home improvement</td>
</tr>
<tr>
<td>Value</td>
<td>Predictor</td>
<td>Interval</td>
<td>Value of current property</td>
</tr>
<tr>
<td>YoJ</td>
<td>Predictor</td>
<td>Interval</td>
<td>Years at present job</td>
</tr>
</tbody>
</table>

You can load the Hmeq data set into your CAS session by specifying your CAS engine libref in the second statement in the following DATA step:

```plaintext
data mycas.hmeq;
   set sampsio.hmeq;
run;
```

The following statements execute the SVM algorithm on the mycas.hmeq data table:

```plaintext
filename codefile temp;
proc svmachine data=mycas.hmeq;
   input reason job derog delinq ninq / level=nominal;
   input loan mortdue value yoj clage clno debtinc / level=interval;
   target bad / desc;
   code file=codefile;
run;
```

The first INPUT statement defines the input variables Reason, Job, Derog, Delinq, and Ninq as categorical variables. The second INPUT statement defines the input variables Loan, MortDue, Value, YoJ, CLAge, CLNo, and DebtInc as continuous variables. The TARGET statement defines Bad (which is a binary variable) as the target variable and specifies the order of the target variable as descending. The CODE statement generates DATA step scoring code and stores it in the filename codefile. The scoring code can be used to score other home equity loan applications.

PROC SVMACHINE generates several ODS tables, some of which are shown in Output 12.1.1 through Output 12.1.5.

The “Model Information” table in Output 12.1.1 shows that the kernel function is linear, and the penalty parameter value is 1 (both of which are default values).
Example 12.1: Home Equity Loan Case

Output 12.1.1 Model Information

The SVMACHINE Procedure

<table>
<thead>
<tr>
<th>Model Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Type</td>
</tr>
<tr>
<td>Optimization Technique</td>
</tr>
<tr>
<td>Scale</td>
</tr>
<tr>
<td>Kernel Function</td>
</tr>
<tr>
<td>Penalty Method</td>
</tr>
<tr>
<td>Penalty Parameter</td>
</tr>
<tr>
<td>Maximum Iterations</td>
</tr>
<tr>
<td>Tolerance</td>
</tr>
</tbody>
</table>

The observations table in Output 12.1.2 shows that the total number of observations is 5,960 and the number of observations used in the training is 3,364.

Output 12.1.2 Number of Observations

<table>
<thead>
<tr>
<th>Number of Observations Read</th>
<th>5960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations Used</td>
<td>3364</td>
</tr>
</tbody>
</table>

The “Training Results” table in Output 12.1.3 shows the inner product of weights, bias, total slack, and so on.

Output 12.1.3 Training Results

<table>
<thead>
<tr>
<th>Training Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Product of Weights</td>
</tr>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>Total Slack (Constraint Violations)</td>
</tr>
<tr>
<td>Norm of Longest Vector</td>
</tr>
<tr>
<td>Number of Support Vectors</td>
</tr>
<tr>
<td>Number of Support Vectors on Margin</td>
</tr>
<tr>
<td>Maximum F</td>
</tr>
<tr>
<td>Minimum F</td>
</tr>
<tr>
<td>Number of Effects</td>
</tr>
<tr>
<td>Columns in Data Matrix</td>
</tr>
</tbody>
</table>

The “Misclassification Matrix” table in Output 12.1.4 displays the original observations and predicted values. Here the true positive is 43, the false negative is 257, the true negative is 3,055, and the false positive is 9.

Output 12.1.4 Misclassification Matrix

<table>
<thead>
<tr>
<th>Misclassification Matrix</th>
<th>Training Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>
The “Fit Statistics” table in Output 12.1.5 shows information about the accuracy, error, sensitivity, and specificity.

Output 12.1.5 Fit Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.9209</td>
</tr>
<tr>
<td>Error</td>
<td>0.0791</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.1433</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.9971</td>
</tr>
</tbody>
</table>

In addition to these ODS tables, PROC SVMACHINE also generates the “Iteration History” table. The CODE statement in this example generates SAS code and stores it in the filename codefile. Advanced SAS users can use the SAS code to easily score their data.

Example 12.2: Large Simulated Data Table

This example uses a large simulated data table to demonstrate how PROC SVMACHINE can handle relatively large data. The following DATA step generates 10 million observations in the CAS table mycas.bigdata:

```sas
data mycas.bigdata;
array x{5} x1-x5;
drop i n;
do n=1 to 10000000;
  do i=1 to dim(x);
    x{i} = ranbin(10816, 12, 0.6);
    x6 = sum(x2-x4) + ranuni(6068);
  end;
  if x6 > 0.5 then y = 1;
  else if x6 < -0.5 then y = 0;
  else y = ranbin(6084, 1, 0.4);
  output;
end;
run;
```

The following statements execute the SVM algorithm on the table mycas.bigdata:

```sas
proc svmachine data=mycas.bigdata;
  input x1-x6 / level=interval;
  target y;
run;
```

The “Misclassification Matrix” table in Output 12.2.1 shows the classification result. The total number of observations in which $y = 1$ is 5,631,506, and the total number of observations in which $y = 0$ is 4,368,494.
The “Fit Statistics” table in Output 12.2.2 shows the accuracy (92.85%) and the error (7.15%) of the model.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>5164803</td>
<td>466703</td>
<td>5631506</td>
</tr>
<tr>
<td>0</td>
<td>248256</td>
<td>4120238</td>
<td>4368494</td>
</tr>
<tr>
<td>Total</td>
<td>5413059</td>
<td>4586941</td>
<td>10000000</td>
</tr>
</tbody>
</table>

References

Chapter 13
The TEXTMINE Procedure

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: TEXTMINE Procedure</td>
<td>252</td>
</tr>
<tr>
<td>PROC TEXTMINE Features</td>
<td>252</td>
</tr>
<tr>
<td>Using CAS Sessions and CAS Engine Librefs</td>
<td>253</td>
</tr>
<tr>
<td>Getting Started: TEXTMINE Procedure</td>
<td>253</td>
</tr>
<tr>
<td>Syntax: TEXTMINE Procedure</td>
<td>257</td>
</tr>
<tr>
<td>PROC TEXTMINE Statement</td>
<td>257</td>
</tr>
<tr>
<td>DOC_ID Statement</td>
<td>258</td>
</tr>
<tr>
<td>PARSE Statement</td>
<td>259</td>
</tr>
<tr>
<td>SAVESTATE Statement</td>
<td>263</td>
</tr>
<tr>
<td>SELECT Statement</td>
<td>263</td>
</tr>
<tr>
<td>SVD Statement</td>
<td>264</td>
</tr>
<tr>
<td>TARGET Statement</td>
<td>268</td>
</tr>
<tr>
<td>VARIABLES Statement</td>
<td>268</td>
</tr>
<tr>
<td>Details: TEXTMINE Procedure</td>
<td>269</td>
</tr>
<tr>
<td>Natural Language Processing</td>
<td>269</td>
</tr>
<tr>
<td>Stemming</td>
<td>269</td>
</tr>
<tr>
<td>Part-of-Speech Tagging</td>
<td>269</td>
</tr>
<tr>
<td>Noun Group Extraction</td>
<td>270</td>
</tr>
<tr>
<td>Entity Identification</td>
<td>270</td>
</tr>
<tr>
<td>Multiword Terms Handling</td>
<td>272</td>
</tr>
<tr>
<td>Language Support</td>
<td>272</td>
</tr>
<tr>
<td>Term and Cell Weighting</td>
<td>272</td>
</tr>
<tr>
<td>Sparse Format</td>
<td>273</td>
</tr>
<tr>
<td>Coordinate List (COO) Format</td>
<td>273</td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td>273</td>
</tr>
<tr>
<td>Applications in Text Mining</td>
<td>273</td>
</tr>
<tr>
<td>Computation</td>
<td>274</td>
</tr>
<tr>
<td>SVD-Only Mode</td>
<td>274</td>
</tr>
<tr>
<td>Topic Discovery</td>
<td>274</td>
</tr>
<tr>
<td>Output Data Tables</td>
<td>275</td>
</tr>
<tr>
<td>The OUTCHILD= Data Table</td>
<td>275</td>
</tr>
<tr>
<td>The OUTCONFIG= Data Table</td>
<td>275</td>
</tr>
<tr>
<td>The OUTDOCPRO= Data Table</td>
<td>276</td>
</tr>
<tr>
<td>The OUTPARENT= Data Table</td>
<td>276</td>
</tr>
<tr>
<td>The OUTPOS= Data Table</td>
<td>277</td>
</tr>
<tr>
<td>The OUTTERMS= Data Table</td>
<td>277</td>
</tr>
</tbody>
</table>
Overview: TEXTMINE Procedure

The TEXTMINE procedure integrates natural language processing and statistical analysis to analyze large-scale textual data in SAS Viya. PROC TEXTMINE supports a wide range of fundamental text analysis features, which include tokenizing, stemming, part-of-speech tagging, noun group extraction, default or customized stop lists and start lists, entity parsing, multiword tokens, synonym lists, term weighting, term-by-document matrix creation, dimension reduction with singular value decomposition (SVD), and topic discovery.

PROC TEXTMINE Features

The TEXTMINE procedure processes large-scale textual data in parallel in order to achieve efficiency and scalability. The following list summarizes the basic features of PROC TEXTMINE:

- Functionalities that are related to document parsing, term-by-document matrix creation, and dimension reduction are integrated into one procedure in order to process data more efficiently.
- Parsing supports essential natural language processing (NLP) features, which include tokenizing, stemming, part-of-speech tagging, noun group extraction, default or customized stop lists and start lists, entity parsing, multiword tokens, synonym lists.
- Term weighting and filtering are supported for term-by-document matrix creation.
- Parsing and term-by-document matrix creation are processed in parallel.
- Computation of singular value decomposition (SVD) is parallelized.
• Topic discovery is integrated into the procedure.
• All phases of processing use a high degree of multithreading.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: TEXTMINE Procedure

The input data must be a table on your CAS server, and a CAS session must be set up. For more information, see the sections “Using CAS Sessions and CAS Engine Librefs” on page 5 and “Loading a SAS Data Set onto a CAS Server” on page 6 in Chapter 2, “Shared Concepts.”

The following DATA step creates the `getstart` data table, which contains 16 observations that have two variables, in your CAS session. The `text` variable contains the input documents, and the `did` variable contains the ID of the documents. Each row in the data table represents a document for analysis.
data mycas.getstart;
 infile datalines delimiter='|' missover;
 length text $150;
 input text$ did;
 datalines;
 Reduces the cost of maintenance. Improves revenue forecast. | 1
 Analytics holds the key to unlocking big data. | 2
 The cost of updates between different environments is eliminated. | 3
 Ensures easy deployment in the cloud or on-site. | 4
 Organizations are turning to SAS for business analytics. | 5
 This removes concerns about maintenance and hidden costs. | 6
 Service-oriented and cloud-ready for many cloud infrastructures. | 7
 Easily apply machine learning and data mining techniques to data. | 8
 SAS Viya will address data analysis, modeling and learning. | 9
 Helps customers reduce cost and make better decisions faster. | 10
 Simple, powerful architecture ensures easy deployment in the cloud. | 11
 SAS is helping industries glean insights from data. | 12
 Solve complex business problems faster than ever. | 13
 Shatter the barriers associated with data volume with SAS Viya. | 14
 Casual business users, data scientists and application developers. | 15
 Serves as the basis for innovation causing revenue growth. | 16
run;

These statements assume that your CAS engine libref is named mycas, but you can substitute any appropriately defined CAS engine libref.

The following DATA step uses the default stop list to eliminate noisy, noninformative terms:

 data mycas.engstop;
 set sashelp.engstop;
 run;

The following statements parse the input collection and use singular value decomposition followed by a rotation to discover topics that exist in the sample collection. The statements specify that only the terms that appear at least twice in the document collection are to be kept for generating the term-by-document matrix. The summary information about the terms in the document collection is stored in a data table named mycas.terms. The SVD statement requests that the first three singular values and singular vectors be computed. The topic assignments of the documents are stored in a data table named mycas.docpro, and the descriptive terms that define each topic are stored in a data table named mycas.topics.

 proc textmine data=mycas.getstart;
 doc_id did;
 variables text;
 parse
 outterms = mycas.terms
 reducef = 1
 stop = mycas.engstop;
 svd
 k = 3
 outdocpro = mycas.docpro
 outtopics = mycas.topics
 numLabels = 4;
 run;
The output from this analysis is presented in Figure 13.2, Figure 13.3 and Figure 13.4.

Figure 13.1 shows the SAS log that is generated by PROC TEXTMINE; the log provides information about the default configurations used by the procedure and about the input and output files. The log shows that the mycas.terms data table contains 24 observations. This means that the TEXTMINE procedure identified 24 individual terms in the input document collection. Because K=3 in the SVD statement, the mycas.docpro data table contains four variables: the first variable is the document ID, and the remaining three variables are obtained by projecting the original document onto the three left-singular vectors that have been rotated with the default orthogonal (varimax) rotation. The small collection and the use of the default cutoff threshold causes the values in the table to all be either 0 or 1.

Figure 13.1 SAS Log

NOTE: Stemming will be used in parsing.
NOTE: Tagging will be used in parsing.
NOTE: Noun groups will be used in parsing.
NOTE: No TERMWGT option is specified. TERMWGT=ENTROPY will be run by default.
NOTE: No CELLLWGT option is specified. CELLLWGT=LOG will be run by default.
NOTE: No ENTITIES option is specified. ENTITIES=NONE will be run by default.
NOTE: The dense SVD solver was used for this calculation.
NOTE: The Cloud Analytic Services server processed the request in 2.879294 seconds.
NOTE: The data set MYCAS.TERMS has 130 observations and 11 variables.
NOTE: The data set MYCAS.DOCPRO has 16 observations and 4 variables.
NOTE: The data set MYCAS.TOPICS has 3 observations and 3 variables.

The following statements use PROC PRINT in Base SAS to show the contents of the first 10 rows of the sorted mycas.docpro data table that is generated by the TEXTMINE procedure:

```sas
data docpro;
  set mycas.docpro;
run;
proc sort data=docpro;
  by did;
run;
proc print data = docpro (obs=10);
run;
```

Figure 13.2 shows the output of PROC PRINT. For information about the output of the OUTDOCPRO= option, see the section “The OUTDOCPRO= Data Table” on page 276.
Figure 13.2 The mycas.docpro Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>did</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.6340795882</td>
<td>0.7732677905</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.8099208183</td>
<td>0.5865392297</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.6340795882</td>
<td>0.7732677905</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.1727144191</td>
<td>0.9849719435</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The following statements use a DATA step and PROC PRINT to show the contents of the mycas.topics data table that is generated by the TEXTMINE procedure:

```plaintext
data topics; set mycas.topics; run;
proc print data = topics;
run;
```

Figure 13.3 shows the output of PROC PRINT. The three discovered topics are listed with four descriptive terms to characterize each topic.

Figure 13.3 The mycas.topics Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>_topicid</th>
<th>_name</th>
<th>_termCutOff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+application developer, +data scientist, +business user, application</td>
<td>0.145</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>easy deployment, deployment, +ensure, easy</td>
<td>0.139</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>+reduce, +help, +good decision, +decision</td>
<td>0.152</td>
</tr>
</tbody>
</table>

The following statements use a DATA step and the SORT and PRINT procedures to show the first 10 observations of the mycas.terms data table that is generated by the TEXTMINE procedure:

```plaintext
data terms; set mycas.terms; run;
proc sort data = terms; by key; run;
proc print data = terms (obs=10);
var term role freq numdocs key parent;
run;
```

Figure 13.4 shows the output of PROC PRINT, which provides details about the terms that are identified by the TEXTMINE procedure. Only the values of the variables term, role, freq, numdocs, key, and parent are displayed. For example, the output shows that the key of “ensures” is 19 and its parent’s key is 4, which is the term “ensure.” The TEXTMINE procedure also identified that “sas” is a proper noun and that “easy deployment” is a noun group. For information about the output of the OUTTERMS= option, see the section “The OUTTERMS= Data Table” on page 277.
Syntax: TEXTMINE Procedure

The following statements are available in the TEXTMINE procedure:

```
PROC TEXTMINE DATA=CAS-libref.data-table < options > ;
   VARIABLES variable ;
   TARGET variable ;
   DOC_ID variable ;
   PARSE < parse-options > ;
   SELECT label-list / < GROUP=group-option > KEEP | IGNORE ;
   SVD < svd-options > ;
   SAVESTATE RSTORE=CAS-libref.data-model ;
```

The PROC TEXTMINE statement, the VARIABLES statement, and the DOC_ID statement are required.

The following sections describe the PROC TEXTMINE statement and then describe the other statements in alphabetical order.

PROC TEXTMINE Statement

```
PROC TEXTMINE DATA=CAS-libref.data-table < options > ;
```

The PROC TEXTMINE statement invokes the procedure. Table 13.1 summarizes the `options` in the statement by function. The `options` are then described fully in alphabetical order.

Table 13.1 PROC TEXTMINE Statement Options

<table>
<thead>
<tr>
<th>option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Options</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>Specifies the input document data table</td>
</tr>
<tr>
<td>DOC=</td>
<td>Specifies the language that the input data table of documents uses</td>
</tr>
</tbody>
</table>

Figure 13.4 The mycas.terms Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Freq</th>
<th>numdocs</th>
<th>Key</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>basis</td>
<td>Noun</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>cloud-ready</td>
<td>Adj</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>business analytics</td>
<td>NOUN_GROUP</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>good decision</td>
<td>NOUN_GROUP</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>big data</td>
<td>NOUN_GROUP</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>cost</td>
<td>Noun</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>cost</td>
<td>Noun</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>innovation</td>
<td>Noun</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>learn</td>
<td>Verb</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>environment</td>
<td>Noun</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>.</td>
</tr>
</tbody>
</table>
Table 13.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWVARNAMES</td>
<td>Specifies that the new-style variable names should be used on tables</td>
</tr>
</tbody>
</table>

Multithreading Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTHREADS=</td>
<td>Specifies number of threads</td>
</tr>
</tbody>
</table>

You must specify the following option:

DATA=<CAS-libref.data-table>

names the input data table for PROC TEXTMINE to use. The default is the most recently created data table. `<CAS-libref.data-table>` is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the `caslib`, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about `CAS-libref`, see the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

- **data-table** specifies the name of the input data table.

Each row of the input data table must contain one text variable and one ID variable that correspond to the text and the unique ID of a document, respectively.

When you specify the SVD statement but not the PARSE statement, PROC TEXTMINE runs in **SVD-only** mode. In this mode, the **DATA=** option names the input SAS data table that contains the term-by-document matrix that is generated by the **OUTPARENT=** option in the **PARSE** statement.

You can also specify the following options:

LANGUAGE=<language>

names the language that is used by the documents in the input SAS data table. Languages supported in the current release are Chinese, Dutch, English, Finnish, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. By default, **LANGUAGE=ENGLISH**.

NEWVARNAMES

adds leading and trailing blanks to variable names in the input and output tables.

NTHREADS=<nthreads>

specifies the number of threads to be used. By default, the number of threads is the same as the number of CPUs on the CAS server.

DOC_ID Statement

```
DOC_ID variable ;
```
The DOC_ID statement specifies the variable that contains the ID of each document. In the input data table, each row corresponds to one document. The ID of each document must be unique; it can be either a number or a string of characters.

PARSE Statement

```plaintext
PARSE <parse-options> ;
```

The PARSE statement specifies the options for parsing the input documents and creating the term-by-document matrix. Table 13.2 summarizes the `parse-options` in the statement by function. The `parse-options` are then described fully in alphabetical order.

<p>| Table 13.2 PARSE Statement Options |</p>
<table>
<thead>
<tr>
<th>parse-option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsing Options</td>
<td></td>
</tr>
<tr>
<td>ENTITIES=</td>
<td>Specifies whether to extract entities in parsing</td>
</tr>
<tr>
<td>MULTITERM=</td>
<td>Specifies the multiword term list</td>
</tr>
<tr>
<td>NONOUNGROUPS</td>
<td>Suppresses noun group extraction in parsing</td>
</tr>
<tr>
<td>NOSTEMMING</td>
<td>Suppresses stemming in parsing</td>
</tr>
<tr>
<td>NOTAGGING</td>
<td>Suppresses part-of-speech tagging in parsing</td>
</tr>
<tr>
<td>SHOWDROPPEDTERMS=</td>
<td>Includes dropped terms in the OUTTERMS= data table</td>
</tr>
<tr>
<td>START=</td>
<td>Specifies the start list</td>
</tr>
<tr>
<td>STOP=</td>
<td>Specifies the stop list</td>
</tr>
<tr>
<td>SYNONYM</td>
<td>Specifies the synonym list</td>
</tr>
<tr>
<td>Term-by-Document Matrix Creation Options</td>
<td></td>
</tr>
<tr>
<td>CELLWGT=</td>
<td>Specifies how cells are weighted</td>
</tr>
<tr>
<td>REDUCEF=</td>
<td>Specifies the frequency for term filtering</td>
</tr>
<tr>
<td>TERMWGT=</td>
<td>Specifies how terms are weighted</td>
</tr>
<tr>
<td>Output Options</td>
<td></td>
</tr>
<tr>
<td>OUTCHILD=</td>
<td>Specifies the data table to contain the raw term-by-document matrix. All kept terms, whether or not they are child terms, are represented in this data table along with their corresponding frequency.</td>
</tr>
<tr>
<td>OUTCONFIG=</td>
<td>Specifies the data table to contain the option settings that PROC TEXTMINE uses in the current run</td>
</tr>
<tr>
<td>OUTPARENT=</td>
<td>Specifies the data table to contain the term-by-document matrix. Child terms are not represented in this data table. The frequencies of child terms are attributed to their corresponding parents.</td>
</tr>
<tr>
<td>OUTTERMS=</td>
<td>Specifies the data table to contain the summary information about the terms in the document collection</td>
</tr>
<tr>
<td>OUTPOS=</td>
<td>Specifies the data table to contain the position information about the child terms’ occurrences in the document collection</td>
</tr>
</tbody>
</table>
You can specify the following `parse-options`.

CELLWGT=LOG | NONE

specifies how the elements in the term-by-document matrix are weighted. You can specify the following values:

- **LOG** weights cells by using the log formulation. For information about the log formulation for cell weighting, see the section “Term and Cell Weighting” on page 272.
- **NONE** specifies that no cell weight be applied.

ENTITIES=STD | NONE

determines whether to use the standard LITI file for entity extraction. You can specify the following values:

- **STD** uses the standard LITI file for entity extraction. A term such as “George W. Bush” is recognized as an entity and given the corresponding entity role and attribute. For this term, the entity role is PERSON and the attribute is Entity. Although the entity is treated as the single term, “George W. Bush,” the individual tokens “George,” “W.,” and “Bush” are also included.
- **NONE** does not use the standard LITI file for entity extraction.

By default, **ENTITIES=NONE**.

MULTITERM=CASE-libref.data-table

specifies the input SAS data table that contains a list of multiword terms. **CASE-libref.data-table** is a two-level name, where **CASE-libref** refers to the caslib and session identifier, and **data-table** specifies the name of the input data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The multiword terms are case-sensitive and are treated as a single entry by the TEXTMINE procedure. Thus, the terms “Thank You” and “thank you” are processed differently. Consequently, you must convert all text strings to lowercase or add each of the multi-term’s case variations to the list before using the TEXTMINE procedure to create consistent multiword terms. The multi-term data table must have a variable **Multiterm** and each of its values must be formatted in the following manner:

```
multiterm: 3: pos
```

Specifically, the first item is the multiword term itself followed by a colon, the second item is a number that represents the token type followed by a colon, and the third item is the part of speech that the multiword term represents. **NOTE**: The token type 3 is the most common token type for multi-term lists; it represents compound words.

NONOUNGROUPS

NONG

suppresses standard noun group extraction. By default, the TEXTMINE procedure extracts noun groups, returns noun phrases without determiners or prepositions, and (unless the NOSTEMMING option is specified) stems noun group elements.
NOSTEMMING

suppresses stemming of words. By default, words are stemmed; that is, terms such as “advises” and “advising” are mapped to the parent term “advise.” The TEXTMINE procedure uses dictionary-based stemming (also known as lemmatization).

NOTAGGING

suppresses tagging of terms. By default, terms are tagged and the TEXTMINE procedure identifies a term’s part of speech based on context clues. The identified part of speech is provided in the Role variable of the OUTTERMS= data table.

OUTCHILD= CAS-libref.data-table

specifies the output data table to contain a compressed representation of the sparse term-by-document matrix. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The term counts are not weighted. The data table saves only the kept, representative terms. The child frequencies are not attributed to their corresponding parent (as they are in the OUTPARENT= data table). For more information about the compressed representation of the sparse term-by-document matrix, see the section “The OUTCHILD= Data Table” on page 275.

OUTCONFIG= CAS-libref.data-table

specifies the output data table to contain configuration information that is used for the current run of PROC TEXTMINE. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The primary purpose of this data table is to relay the configuration information from the TEXTMINE procedure to the TMSCORE procedure. The TMSCORE procedure uses options that are consistent with the TEXTMINE procedure. Thus, the data table that is created by using the OUTCONFIG= option becomes an input data table for PROC TMSCORE and ensures that the parsing options are consistent between the two runs. For more information about this data table, see the section “The OUTCONFIG= Data Table” on page 275.

OUTPARENT= CAS-libref.data-table

specifies the output data table to contain a compressed representation of the sparse term-by-document matrix. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The term counts can be weighted, if requested. The data table contains only the kept, representative terms, and the child frequencies are attributed to the corresponding parent. To obtain information about the children, use the OUTCHILD= option. For more information about the compressed representation of the sparse term-by-document matrix, see the section “The OUTPARENT= Data Table” on page 276.

OUTPOS= CAS-libref.data-table

specifies the output data table to contain the position information about the child terms’ occurrences in the document collection. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. For more information about this data table, see the section “The OUTPOS= Data Table” on page 277.
OUTTERMS=\texttt{CAS-libref.data-table} specifies the output data table to contain the summary information about the terms in the document collection. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. For more information about this data table, see the section “Output Data Tables” on page 275.

REDUCEF=n removes terms that are not in at least n documents. The value of n must be a positive integer. By default, REDUCEF=4.

SHOWDROPPEDTERMS includes the terms that have a keep status of N in the OUTTERMS= data table and the OUTCHILD= data table.

START=\texttt{CAS-libref.data-table} specifies the input data table that contains the terms that are to be kept for the analysis. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. These terms are displayed in the OUTTERMS= data table with a keep status of Y. All other terms are displayed with a keep status of N if the SHOWDROPPEDTERMS option is specified or not displayed if the SHOWDROPPEDTERMS option is not specified. The START= data table must have a Term variable and can also have a Role variable. You cannot specify both the START= and STOP= options.

STOP=\texttt{CAS-libref.data-table} specifies the input data table that contains the terms to exclude from the analysis. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. These terms are displayed in the OUTTERMS= data table with a keep status of N if the SHOWDROPPEDTERMS option is specified. The terms are not identified as parents or children. The STOP= data table must have a Term variable and can also have a Role variable. You cannot specify both the START= and STOP= options.

SYNONYM=\texttt{CAS-libref.data-table}

SYN=\texttt{CAS-libref.data-table} specifies the input data table that contains user-defined synonyms to be used in the analysis. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The data table specifies parent-child relationships that enable you to map child terms to a representative parent. The synonym relationship is indicated in the data table that is specified in the OUTTERMS= option and is also reflected in the term-by-document data table that is specified in the OUTPARENT= option. The input synonym data table must have either the two variables Term and Parent or the four variables Term, Parent, Termrole, and Parentrole. This data table overrides any relationships that are identified when terms are stemmed. (Terms are stemmed by default; you can suppress stemming by specifying the NOSTEMMING option.)
TERMWGT=ENTROPY | MI | NONE
specifies how terms are weighted. You can specify the following values:

- **ENTROPY** uses the entropy formulation to weight terms.
- **MI** uses the mutual information formulation to weight terms (you must also specify the **TARGET** statement).
- **NONE** requests that no term weight be applied.

For more information about the entropy formulation and the mutual information formulation for term weighting, see the section “Term and Cell Weighting” on page 272.

SAVESTATE Statement

`SAVESTATE RSTORE=CAS-libref.data-model ;`

The SAVESTATE statement saves a text mining model to a binary object contained in a data table. The object is referred to as the analytic store and contains the necessary information for scoring a text mining model by the ASTORE procedure. Only complete text models consisting of both parsing and document projections can be saved to the analytic store by the TEXTMINE procedure. The SELECT statement is not currently supported in an analytic store.

You must specify the following option:

- **RSTORE=** `CAS-libref.data-model`

 specifies a data table in which to save the text mining model. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the **DATA=** option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

SELECT Statement

`SELECT label-list / GROUP=group-option > KEEP | IGNORE ;`

The SELECT statement enables you to specify the parts of speech or entities or attributes that you want to include in or exclude from your analysis. Exclusion by the SELECT statement is different from exclusion that is indicated by the _keep variable in the OUTTERMS= data table. Terms that are excluded by the SELECT statement cannot be included in the OUTTERMS= data table, whereas terms that have _keep=N can be included in the OUTTERMS= data table if the SHOWDROPPEDTERMS option is specified. Terms excluded by the SELECT statement are excluded from the OUTPOS= data table, but terms that have _keep=N are included in OUTPOS= data table. Table 13.3 summarizes the options you can specify in the SELECT statement. The options are then described fully in syntactic order.
Table 13.3 SELECT Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>label-list</td>
<td>Specifies one or more labels of terms that are to be ignored or kept in your analysis</td>
</tr>
<tr>
<td>GROUP=</td>
<td>Specifies whether the labels are parts of speech, entities, or attributes</td>
</tr>
<tr>
<td>IGNORE</td>
<td>Ignores terms whose labels are specified in the label-list</td>
</tr>
<tr>
<td>KEEP</td>
<td>Keeps terms whose labels are specified in the label-list</td>
</tr>
</tbody>
</table>

You must specify a label-list and either the IGNORE or KEEP option:

label-list

specifies one or more labels that are either parts of speech or entities or attributes. Each label must be surrounded by double quotation marks and separated by spaces from other labels. Labels are case-insensitive. Terms that have these labels are either ignored during parsing (when the IGNORE option is specified) or kept in the parsing results in the OUTPOS= and OUTTERMS= data tables (when the KEEP option is specified). Table 13.5 shows all possible part-of-speech tags. Table 13.6 shows all valid English entities. The attribute variable in Table 13.12 shows all possible attributes.

IGNORE

ignores during parsing all terms whose labels are specified in the label-list, but keeps all other terms in the parsing results (the OUTPOS= and OUTTERMS= data tables).

KEEP

keeps in the parsing results (the OUTPOS= and OUTTERMS= data tables) only the terms whose labels are specified in the label-list.

You can also specify the following option:

GROUP=“ATTRIBUTES” | “ENTITIES” | “POS”

specifies whether the labels are attributes, entities, or parts of speech. The group type must be surrounded by double quotation marks and is case-insensitive. All labels that are specified in the label-list in the same SELECT statement should belong to the specified group. If you need to select labels from more than one group, you can use multiple SELECT statements (one for each group that you need to select from). You cannot specify multiple SELECT statements for the same group. By default, Num and Punct in the “ATTRIBUTES” group are ignored, but this default is overridden by a SELECT statement that specifies GROUP=“ATTRIBUTES”. By default, GROUP=“POS”.

SVD Statement

SVD < svd-options > ;

The SVD statement specifies the options for calculating a truncated singular value decomposition (SVD) of the large, sparse term-by-document matrix that is created during the parsing phase of PROC TEXTMINE. Table 13.4 summarizes the svd-options in the statement by function. The svd-options are then described fully in alphabetical order.
Table 13.4 SVD Statement Options

<table>
<thead>
<tr>
<th>svd-option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Options</td>
<td></td>
</tr>
<tr>
<td>COL=</td>
<td>Specifies the column variable, which contains the column indices of the term-by-document matrix, which is stored in coordinate list (COO) format</td>
</tr>
<tr>
<td>ROW=</td>
<td>Specifies the row variable, which contains the row indices of the term-by-document matrix, which is stored in COO format</td>
</tr>
<tr>
<td>ENTRY=</td>
<td>Specifies the entry variable, which contains the entries of the term-by-document matrix, which is stored in COO format</td>
</tr>
<tr>
<td>SVD Computation Options</td>
<td></td>
</tr>
<tr>
<td>K=</td>
<td>Specifies the number of dimensions to be extracted</td>
</tr>
<tr>
<td>MAX_K=</td>
<td>Specifies the maximum number of dimensions to be extracted</td>
</tr>
<tr>
<td>TOL=</td>
<td>Specifies the maximum allowable tolerance for the singular value</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>RES= Specifies the recommended number of dimensions (resolution) to be extracted by SVD, when the MAX_K= option is specified</td>
</tr>
<tr>
<td>Topic Discovery Options</td>
<td></td>
</tr>
<tr>
<td>NUMLABELS=</td>
<td>Specifies the number of terms to be used in the descriptive label for each topic</td>
</tr>
<tr>
<td>ROTATION=</td>
<td>Specifies the type of rotation to be used for topic discovery</td>
</tr>
<tr>
<td>IN_TERMS=</td>
<td>Specifies the data table that contains the terms for topic discovery in SVD-only mode</td>
</tr>
<tr>
<td>EXACTWEIGHT</td>
<td>Prevents rounding of the topic weights</td>
</tr>
<tr>
<td>NOCUTOFFS</td>
<td>Prevents setting term weights to 0 when they are below the threshold</td>
</tr>
<tr>
<td>Output Options</td>
<td></td>
</tr>
<tr>
<td>SVDU=</td>
<td>Specifies the U matrix, which contains the left singular vectors</td>
</tr>
<tr>
<td>SVDV=</td>
<td>Specifies the V matrix, which contains the right singular vectors</td>
</tr>
<tr>
<td>SVDS=</td>
<td>Specifies the S matrix, whose diagonal elements are the singular values</td>
</tr>
<tr>
<td>OUTDOCPRO=</td>
<td>Specifies the data table to contain the projections of the documents</td>
</tr>
<tr>
<td>OUTTOPICS=</td>
<td>Specifies the data table to contain the topics that have been discovered</td>
</tr>
</tbody>
</table>

You can specify the following *svd-options*:

COL=variable

specifies the *variable* that contains the column indices of the term-by-document matrix. You must specify this option when you run PROC TEXTMINE in *SVD-only* mode (that is, when you specify the SVD statement but not the PARSE statement).

ENTRY=variable

specifies the *variable* that contains the entries of the term-by-document matrix. You must specify this option when you run PROC TEXTMINE in *SVD-only* mode (that is, when you specify the SVD statement but not the PARSE statement).
EXACTWEIGHT
requests that the weights aggregated during topic derivation not be rounded. By default, the calculated weights are rounded to the nearest 0.001.

IN_TERMS=\texttt{CAS-libref.data-table}
specifies the input data table that contains information about the terms in the document collection. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the input data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. The data table should have the variables that are described in Table 13.12. The terms are required to generate topic names in the OUTTOPICS= data table. This option is only for topic discovery in SVD-only mode. This option conflicts with the PARSE statement, and only one of the two can be specified. If you want to run SVD-only mode without topic discovery, then you do not need to specify this option.

K=k
specifies the number of columns in the matrices U, V, and S. This value is the number of dimensions of the data table after SVD is performed. If the value of \(k \) is too large, then the TEXTMINE procedure runs for an unnecessarily long time. This option takes precedence over the MAX_K= option. This option also controls the number of topics that are extracted from the text corpus when the ROTATION= option is specified.

MAX_K=n
specifies the maximum value that the TEXTMINE procedure should return as the recommended value of \(k \) (the number of columns in the matrices U, V, and S) when the RESOLUTION= option is specified (to recommend the value of \(k \)). The TEXTMINE procedure attempts to calculate \(k \) dimensions (as opposed to recommending it) when it performs SVD. This option is ignored if the K= option has been specified. This option also controls the number of topics that are extracted from the text corpus when the ROTATION= option is specified.

NOCUTOFFS
uses all weights in the \(U \) matrix to form the document projections. When topics are requested, weights below the term cutoff (as calculated in the OUTTOPICS= data table) are set to 0 before the projection is formed.

NUMLABELS=n
specifies the number of terms to use in the descriptive label for each topic. The descriptive label provides a quick synopsis of the discovered topics. The labels are stored in the OUTTOPICS= data table. By default, NUMLABELS=5.

OUTDOCPRO=\texttt{CAS-libref.data-table \texttt{<KEEPVARIABLES=variable-list>}<NONORMDOC>}
OUTDOCPRO=\texttt{CAS-libref.data-table \texttt{<KEEPVARS=variable-list>}<NONORMDOC>}
specifies the output data table to contain the projections of the columns of the term-by-document matrix onto the columns of U. \texttt{CAS-libref.data-table} is a two-level name, where \texttt{CAS-libref} refers to the caslib and session identifier, and \texttt{data-table} specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253. Because each column of the term-by-document matrix corresponds to a document, the output forms a new representation of the input documents in a space that has much lower dimensionality.
You can copy the variables from the data table that is specified in the DATA= option in the PROC TEXTMINE statement to the data table that is specified in this option. You can specify the following suboptions:

KEEPVARIABLES=variable-list
attaches the content of the variables that are specified in the `variable-list` to the output. These variables must appear in the data table that is specified in the DATA= option in the PROC TEXTMINE statement.

NONORMDOC
suppresses normalization of the columns that contain the projections of documents to have a unit norm.

OUTTOPICS=CAS-libref.data-table
specifies the output data table to contain the topics that are discovered. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

RESOLUTION=LOW | MED | HIGH

specifies how to calculate the recommended number of dimensions (resolution) for the singular value decomposition. If you specify this option, you must also specify the MAX_K= option. A low-resolution singular value decomposition returns fewer dimensions than a high-resolution singular value decomposition. This option recommends the value of k (the number of columns in the matrices U, V, and S) heuristically based on the value specified in the MAX_K= option. Assume that the MAX_K= option is set to n and a singular value decomposition that has n dimensions accounts for t% of the total variance. You can specify the following values:

- **HIGH** always recommends the maximum number of dimensions; that is, k = n.
- **MED** recommends a k that explains \((5/6) \times t\%\) of the total variance.
- **LOW** recommends a k that explains \((2/3) \times t\%\) of the total variance.

By default, RESOLUTION=HIGH.

ROTATION=VARIMAX | PROMAX
specifies the type of rotation to be used in order to maximize the explanatory power of each topic. You can specify the following values:

- **PROMAX** does an oblique rotation on the original left singular vectors and generates topics that might be correlated.
- **VARIMAX** does an orthogonal rotation on the original left singular vectors and generates uncorrelated topics.

By default, ROTATION=VARIMAX.
ROW=variable

specifies the variable that contains the row indices of the term-by-document matrix. You must specify this option when you run PROC TEXTMINE in SVD-only mode (that is, when you specify the SVD statement but not the PARSE statement).

SVDS=CAS-libref.data-table

specifies the output data table to contain the calculated singular values. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

SVDU=CAS-libref.data-table

specifies the data table to contain the calculated left singular vectors. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

SVDV=CAS-libref.data-table

specifies the data table to contain the calculated right singular vectors. CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the output data table. For more information about this two-level name, see the DATA= option and the section “Using CAS Sessions and CAS Engine Librefs” on page 253.

TOL=\epsilon

specifies the maximum allowable tolerance for the singular value. Let \(A \) be a matrix. Suppose \(\lambda_i \) is the \(i \)th singular value of \(A \) and \(\xi_i \) is the corresponding right singular vector. The SVD computation terminates when for all \(i \in \{1, \ldots, k\} \), \(\lambda_i \) and \(\epsilon_i \) satisfy \(\| A^T A \xi_i - \lambda_i \xi_i \|^2 \leq \epsilon \). The default value of \(\epsilon \) is \(10^{-6} \), which is more than adequate for most text mining problems.

TARGET Statement

TARGET variable ;

This statement specifies the variable that contains the information about the category that a document belongs to. The target variable can be any nominal or ordinal variable; it is used in calculating mutual information term weighting.

VARIABLES Statement

VARIABLES variable ;

VAR variable ;

This statement specifies the variable that contains the text to be processed.
Details: TEXTMINE Procedure

Natural Language Processing

Natural language processing (NLP) techniques can be used to extracting meaningful information from natural language input. The following sections describe features from SAS linguistic technologies that the TEXTMINE procedure implements to support natural language processing.

Stemming

Stemming (a special case of morphological analysis) identifies the possible root form of an inflected word. For example, the word “talk” is the stem of the words “talk,” “talks,” “talking,” and “talked.” In this case “talk” is the parent, and “talk,” “talks,” “talking,” and “talked” are its children. The TEXTMINE procedure uses dictionary-based stemming (also known as lemmatization), which unlike tail-chopping stemmers, produces only valid words as stems. When part-of-speech tagging is on (that is, the NOTAGGING option is not specified), the stem selection process restricts the stem to be of the same part-of-speech as the original term.

Part-of-Speech Tagging

Part-of-speech tagging uses SAS linguistic technologies to identify or disambiguate the grammatical category of a word by analyzing it within its context. For example:

I like to bank at the local branch of my bank.

In this case, the first “bank” is tagged as a verb (V), and the second “bank” is tagged as a noun (N). Table 13.5 shows all possible part-of-speech tags.

Table 13.5 All Part-of-Speech Tags

<table>
<thead>
<tr>
<th>Part-of-Speech Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBR</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>ADJ</td>
<td>Adjective</td>
</tr>
<tr>
<td>ADV</td>
<td>Adverb</td>
</tr>
<tr>
<td>AUX</td>
<td>Auxiliary or modal term</td>
</tr>
<tr>
<td>CONJ</td>
<td>Conjunction</td>
</tr>
<tr>
<td>DET</td>
<td>Determiner</td>
</tr>
<tr>
<td>INTERJ</td>
<td>Interjection</td>
</tr>
<tr>
<td>NOUN</td>
<td>Noun</td>
</tr>
<tr>
<td>NUM</td>
<td>Number or numeric expression</td>
</tr>
<tr>
<td>PART</td>
<td>Infinitive marker, negative participle, or possessive marker</td>
</tr>
<tr>
<td>PREF (Korean only)</td>
<td>Prefix</td>
</tr>
<tr>
<td>PREP</td>
<td>Preposition</td>
</tr>
<tr>
<td>PRON</td>
<td>Pronoun</td>
</tr>
<tr>
<td>PROP</td>
<td>Proper noun</td>
</tr>
<tr>
<td>PUNCT</td>
<td>Punctuation</td>
</tr>
<tr>
<td>VERB</td>
<td>Verb</td>
</tr>
<tr>
<td>VERBADJ</td>
<td>Verbal adjective</td>
</tr>
</tbody>
</table>
Noun Group Extraction

Noun groups provide more relevant information than simple nouns. A noun group is defined as a sequence of nouns and their modifiers. Noun group extraction uses part-of-speech tagging to identify nouns and their adjacent noun and adjective modifiers that together form a noun group. Examples of noun groups are “weeklong cruises” and “Middle Eastern languages.”

Entity Identification

Entity identification uses SAS linguistic technologies to classify sequences of words into predefined classes. These classes are assigned as roles for the corresponding sequences. For example, “Person,” “Location,” “Company,” and “Measurement” are identified as classes for “George W. Bush,” “Boston,” “SAS Institute,” “2.5 inches,” respectively. Table 13.6 shows all valid entities for English. Not all languages support all entities. Table 13.7, Table 13.8, and Table 13.9 indicate the languages that are available for each entity.

Table 13.6 All Valid English Entities

<table>
<thead>
<tr>
<th>Entities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>Postal address or number and street name</td>
</tr>
<tr>
<td>COMPANY</td>
<td>Company name</td>
</tr>
<tr>
<td>CURRENCY</td>
<td>Currency or currency expression</td>
</tr>
<tr>
<td>INTERNET</td>
<td>Email address or URL</td>
</tr>
<tr>
<td>LOCATION</td>
<td>City, county, state, political, or geographical place or region</td>
</tr>
<tr>
<td>MEASURE</td>
<td>Measurement or measurement expression</td>
</tr>
<tr>
<td>NOUN_GROUP</td>
<td>Phrases that contain multiple words</td>
</tr>
<tr>
<td>ORGANIZATION</td>
<td>Government, legal, or service agency</td>
</tr>
<tr>
<td>PERCENT</td>
<td>Percentage or percentage expression</td>
</tr>
<tr>
<td>PERSON</td>
<td>Person’s name</td>
</tr>
<tr>
<td>PHONE</td>
<td>Telephone number</td>
</tr>
<tr>
<td>PROP_MISC</td>
<td>Proper noun with an ambiguous classification</td>
</tr>
<tr>
<td>SSN</td>
<td>Social Security number</td>
</tr>
<tr>
<td>TIME</td>
<td>Time or time expression</td>
</tr>
<tr>
<td>TIME_PERIOD</td>
<td>Measure of time expressions</td>
</tr>
<tr>
<td>TITLE</td>
<td>Person’s title or position</td>
</tr>
<tr>
<td>VEHICLE</td>
<td>Motor vehicle, including color, year, make, and model</td>
</tr>
</tbody>
</table>

Table 13.7 Supported Language-Entity Pairs, Part 1

<table>
<thead>
<tr>
<th>Language</th>
<th>Address</th>
<th>Company</th>
<th>Currency</th>
<th>Date</th>
<th>Internet</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dutch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>English</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Finnish</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>French</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>German</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Italian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 13.7
continued

<table>
<thead>
<tr>
<th>Language</th>
<th>Address</th>
<th>Company</th>
<th>Currency</th>
<th>Date</th>
<th>Internet</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Korean</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Portuguese</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Turkish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13.8
Supported Language-Entity Pairs, Part 2

<table>
<thead>
<tr>
<th>Language</th>
<th>Measure</th>
<th>Noun_Group</th>
<th>Organization</th>
<th>Percent</th>
<th>Person</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13.9
Supported Language-Entity Pairs, Part 3

<table>
<thead>
<tr>
<th>Language</th>
<th>Prop_Misc</th>
<th>SSN</th>
<th>Time</th>
<th>Time_Period</th>
<th>Title</th>
<th>Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italian</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiword Terms Handling

By default, SAS linguistic technologies tokenize the text to individual words and operate at the word level. Multiword terms provide a control that enables you to specify sequences of words to be interpreted as individual units. For example, “greater than,” “in spite of,” and “as well as” can be defined as multiword terms.

Language Support

Languages supported in the current release are Chinese, Dutch, English, Finnish, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. By turning off some of the advanced parsing functionality, you might be able to use PROC TEXTMINE effectively with other space-delimited languages.

Term and Cell Weighting

The TERMWGT= option and the CELLWGT= option control how to weight the frequencies in the compressed term-by-document matrix. The term weight is a positive number that is assigned to each term based on the distribution of that term in the document collection. This weight can be interpreted as an indication of the importance of that term to the document collection. The cell weight is a function that is applied to every entry in the term-by-document matrix; it moderates the effect of a term that is repeated within a document.

Let \(f_{i,j} \) be the entry in the \(i \)th row and \(j \)th column of the term-by-document matrix, which indicates the time of appearance of term \(i \) in document \(j \). Assuming that the term weight of term \(i \) is \(w_i \) and the cell weight function is \(g(x) \), the weighted frequency of each entry in the term-by-document matrix is given by \(w_i \times g(f_{i,j}) \).

When the CELLWGT=LOG option is specified, the following equation is used to weight cells:

\[
g(x) = \log_2(f_{i,j} + 1)
\]

The equation reduces the influence of highly frequent terms by applying the log function.

When the TERMWGT=ENTROPY option is specified, the following equation is used to weight terms:

\[
w_i = 1 + \sum_j p_{i,j} \frac{\log_2(p_{i,j})}{\log_2(n)}
\]

In this equation, \(n \) is the number of documents, and \(p_{i,j} \) is the probability that term \(i \) appears in document \(j \), which can be estimated by \(p_{i,j} = \frac{f_{i,j}}{g_i} \), where \(g_i \) is the global term frequency for term \(i \).

When the TERMWGT=MI option is specified, the following equation is used to weight terms:

\[
w_i = \max_{C_k} \left(\log \left(\frac{P(t_i, C_k)}{P(t_i) P(C_k)} \right) \right)
\]

In this equation, \(C_k \) is the set of documents that belong to category \(k \), \(P(C_k) \) is the percentage of documents that belong to category \(k \), and \(P(t_i, C_k) \) is the percentage of documents that contain term \(t_i \) and belong to category \(k \). Let \(d_i \) be the number of documents that term \(i \) appears in. Then \(P(t_i) = \frac{d_i}{n} \).
Sparse Format

A matrix is sparse when most of its elements are 0. The term-by-document matrix that the TEXTMINE procedure generates is a sparse matrix. To save storage space, the TEXTMINE procedure supports the COO format for storing a sparse matrix.

Coordinate List (COO) Format

The COO is also known as the transactional format. In this format, the matrix is represented as a set of triples \((i, j, x)\), where \(x\) is an entry in the matrix and \(i\) and \(j\) denote its row and column indices, respectively. When the transactional style is used, all 0 entries in the matrix are ignored in the output, thereby saving storing space when the matrix is sparse. The COO format is good for incremental matrix construction. For example, it is easy to add new rows and new columns to the matrix by inserting more tuples in the list.

Singular Value Decomposition

Singular value decomposition (SVD) of a matrix \(A\) factors \(A\) into three matrices such that \(A = U\Sigma V^T\). Singular value decomposition also requires that the columns of \(U\) and \(V\) be orthogonal and that \(\Sigma\) be a real-valued diagonal matrix that contains monotonically decreasing, nonnegative entries. The entries of \(\Sigma\) are called singular values. The columns of \(U\) and \(V\) are called left and right singular vectors, respectively. A truncated singular value decomposition calculates only the first \(k\) singular values and their corresponding left and right singular vectors. In information retrieval, singular value decomposition of a term-by-document matrix is also known as latent semantic indexing (LSI).

Applications in Text Mining

Let \(A \in \mathbb{R}^{m \times n}\) be a term-by-document matrix, where \(m\) is the number of terms and \(n\) is the number of documents. The SVD statement has two main functions: to calculate a truncated singular value decomposition (SVD) of \(A\), and to project the columns of \(A\) onto the left singular vectors to generate a new representation of the documents that has a much lower dimensionality. The output of the SVD statement is a truncated singular value decomposition of \(A\), for which the parameter \(k\) defines how many singular values and singular vectors to compute. Singular value decomposition reduces the dimension of the term-by-document matrix and reveals themes that are present in the document collection.

In general, the value of \(k\) must be large enough to capture the meaning of the document collection, yet small enough to ignore the noise. You can specify this value explicitly in the \(K=\) option or accept a value that is recommended by the TEXTMINE procedure. A value between 50 and 200 should work well for a document collection that contains thousands of documents.

An important purpose of singular value decomposition is to reduce a high-dimensional term-by-document matrix into a low-dimensional representation that reveals information about the document collection. The columns of the \(A\) form the coordinates of the document space, and the rows form the coordinates of the term space. Each document in the collection is represented as a vector in \(m\)-dimensional space and each term as a vector in \(n\)-dimensional space. The singular value decomposition captures this same information by using a smaller number of basis vectors than would be necessary if you analyzed \(A\) directly.

For example, consider the columns of \(A\), which represent the document space. By construction, the columns of \(U\) also reside in \(m\)-dimensional space. If \(U\) has only one column, the line between that vector and the
origin would form the best fit line, in a least squares sense, to the original document space. If \(U \) has two columns, then these columns would form the best fit plane to the original document space. In general, the first \(k \) columns of \(U \) form the best fit \(k \)-dimensional subspace for the document space. Thus, you can project the columns of \(A \) onto the first \(k \) columns of \(U \) in order to optimally reduce the dimension of the document space from \(m \) to \(k \).

The projection of a document \(d \) (one column of \(A \)) onto \(U \) results in \(k \) real numbers that are defined by the inner product \(d \cdot u_i \). That is, \(p_i = d^T u_i \). With this representation, each document forms a \(k \)-dimensional vector that can be considered a theme in the document collection. You can then calculate the Euclidean distance between each document and each column of \(U \) to determine the documents that are described by this theme.

In a similar fashion, you can repeat the previous process by using the rows of \(A \) and the first \(k \) columns of \(V \). This generates a best fit \(k \)-dimensional subspace for the term space. This representation is used to group terms into similar clusters. These clusters also represent concepts that are prevalent in the document collection. Thus, singular value decomposition can be used to cluster both the terms and the documents into meaningful representations of the entire document collection.

Computation

The computation of the singular vector decomposition is fully parallelized in PROC TEXTMINE via multithreading and distributed computing. In the current release, computing singular value decomposition requires the input data to contain at least 25 documents and at least as many documents as there are nodes in the grid. If \(p \) nodes are used for computing singular value decomposition in a distributed computing environment, then the input data must contain at least \(\max(p, 25) \) documents. Computing singular value decomposition is an iterative process that involves considerable communication among the computer nodes in a distributed computing environment. Therefore, adding more computer nodes for computing singular value decomposition might not always improve efficiency. Conversely, when the data size is not large enough, adding too many computer nodes for computation might lead to a noticeable increase in communication time and sometimes might even slow down the overall computation.

SVD-Only Mode

If you run PROC TEXTMINE without a PARSE statement (called SVD-only mode), PROC TEXTMINE directly takes the term-by-document matrix as input and computes singular value decomposition (SVD). This functionality enables you to parse documents and compute the SVD separately in two procedure calls. This approach is useful when you want to try different parameters for SVD computation after document parsing. When you run PROC TEXTMINE in SVD-only mode, the `DATA=` option in the PROC TEXTMINE statement names the data table that contains the term-by-document matrix.

Topic Discovery

You can use the TEXTMINE procedure to discover topics that exist in your collection. In PROC TEXTMINE, topics are calculated as a “rotation” of the SVD dimensions in order to maximize the sum of squares of the term loadings in the \(V \) matrix. This rotation preserves the spatial information that the SVD provides, but it also allows the newly rotated SVD dimensions to become semantically interpretable. Topics are characterized by a set of weighted terms. Documents that contain many of these weighted terms are highly associated with the topic, and documents that contain few of them are less associated with the topic. The term scores are found in the \(U \) matrix that has been rotated to maximize the explanatory power of each topic. The columns
of the V matrix characterize the strength of the association of each document with each topic. Finally, the TEXTMINE procedure can output a topic table that contains the best set of descriptor terms for each topic. Because topic discovery is derived from the U matrix of SVD (each column of the U matrix is rotated and corresponds to a topic), topic discovery options are specified in the SVD statement.

Output Data Tables

This section describes the output data tables that PROC TEXTMINE produces when you specify the corresponding option.

The OUTCHILD= Data Table

The OUTCHILD= option in the PARSE statement specifies the data table to contain a compressed representation of the sparse term-by-document matrix, which is usually very sparse. To save space, this matrix is stored in COO format.

If you do not specify the SHOWDROPPEDTERMS option in the PARSE statement, this data table saves only the kept terms.

The child frequencies are not attributed to their corresponding parent (as they are in the data table specified in the OUTPARENT= option). Using the example in the previous section, the data table that is generated by the OUTCHILD= option will have two entries:

```
t1  d1  8  
t2  d1  1  
```

The term count of “said” in $d1$ is not attributed to its parent, “say.” The data table that is specified in the OUTCHILD= option can be combined with the data table that is specified in the OUTTERMS= option to construct the data table that is specified in the OUTPARENT= option.

When you specify the SHOWDROPPEDTERMS option in the PARSE statement, the data table saves all the terms that appear in the data table that is specified in the OUTTERMS= option in the PARSE statement.

The OUTCONFIG= Data Table

The OUTCONFIG= option in the PARSE statement specifies a SAS data table to contain the configuration that PROC TEXTMINE uses in the current run. The primary purpose of this data table is to relay the configuration information from the TEXTMINE procedure to the TMSCORE procedure so that the TMSCORE procedure can use options that are consistent with the TEXTMINE procedure during scoring.

Table 13.10 shows the configuration information that is contained in this data table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Indicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>Source language of the documents</td>
</tr>
<tr>
<td>Stemming</td>
<td>Whether stemming is used: “Y” indicates that stemming is used, and “N” indicates that it is not used</td>
</tr>
</tbody>
</table>

1Kept terms are terms that are marked as kept in the data table specified in the OUTTERMS= option in the PARSE statement.
Table 13.10 continued

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagging</td>
<td>Whether tagging is used: “Y” indicates that tagging is used, and “N” indicates that it is not used</td>
</tr>
<tr>
<td>NG</td>
<td>Whether noun grouping is used: “Y” indicates that noun grouping is used, and “N” indicates that it is not used</td>
</tr>
<tr>
<td>Entities</td>
<td>Whether entities should be extracted: “STD” indicates that entities should be extracted, and “N” indicates that entities should not be extracted. When the SELECT statement is specified, “K” indicates that entities are kept, and “D” indicates that entities are ignored.</td>
</tr>
<tr>
<td>Multiterm</td>
<td>The name of the multiterm SAS data table</td>
</tr>
<tr>
<td>Cellwgt</td>
<td>How the cells of the term-by-document matrix are weighted</td>
</tr>
</tbody>
</table>

The contents of this data table are case-sensitive.

The OUTDOCPRO= Data Table

The OUTDOCPRO= option in the SVD statement specifies a SAS data table to contain the projections of the columns of the term-by-document matrix onto the columns of U. Because each column of the term-by-document matrix corresponds to a document, the output forms a new representation of the input documents in a space that has much lower dimensionality. If the K= option in the SVD statement is set to k and the input data table contains n documents, the output will have n rows and k + 1 columns. Each row of the output corresponds to a document. The first column of the output contains the ID of the documents, and the name of the column is the same as the variable that is specified in the DOC_ID statement. The remaining k columns are the projections and are named “COL1” to “COLk.”

The OUTPARENT= Data Table

The OUTPARENT= option in the PARSE statement specifies a SAS data table to contain a compressed representation of the sparse term-by-document matrix. The term-by-document matrix is usually very sparse. To save space, this matrix is stored in COO format.

This data table contains three columns: _TERMNUM_, _DOCUMENT_, and _COUNT_. The _TERMNUM_ column contains the ID of the terms (which corresponds to the “Key” column of the data table that is generated by the OUTTERMS= option), the _DOCUMENT_ column contains the ID of the documents, and the _COUNT_ column contains the term counts. For example, (t1 d1 k) means that term t1 appears k times in document d1.

The term counts can be weighted, if requested. The data table saves only the terms that are marked as kept in the data table that is specified in the OUTTERMS= option in the PARSE statement. In the data table, the child frequencies are attributed to the corresponding parent. For example, assume that “said” has term ID t1 and appears eight times in document d1, “say” has term ID t2 and appears one time in document d1, “say” is the parent of “said”, and neither cell weighting nor term weighting is applied. Then the data table that is specified in the OUTPARENT= option will contain the following entry:

```
t2    d1    9
```

Many elements of the matrix are 0.
The term count of “said” in d1 is attributed to its parent, “say.”

The OUTPOS= Data Table

The OUTPOS= option in the PARSE statement specifies a SAS data table to contain the position information about the child terms’ occurrences in the document collection. Table 13.11 shows the variables in this data table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>A lowercase version of the term</td>
</tr>
<tr>
<td>Role</td>
<td>The term’s part of speech (this variable is empty if the NOTAGGING option is specified in the PARSE statement)</td>
</tr>
<tr>
<td>Parent</td>
<td>A lowercase version of the parent term</td>
</tr>
<tr>
<td>Start</td>
<td>The starting position of the term’s occurrence (the first position is 0)</td>
</tr>
<tr>
<td>End</td>
<td>The ending position of the term’s occurrence</td>
</tr>
<tr>
<td>Sentence</td>
<td>The sentence where the occurrence appears</td>
</tr>
<tr>
<td>Paragraph</td>
<td>The paragraph where the occurrence appears (this has not been implemented in the current release, and the value is always set to 0)</td>
</tr>
<tr>
<td>Document</td>
<td>The ID of the document where the occurrence appears</td>
</tr>
<tr>
<td>Target</td>
<td>The value of the target variable that is associated with the document ID if a variable is specified in the TARGET statement</td>
</tr>
</tbody>
</table>

If you exclude terms by specifying the IGNORE option in the SELECT statement, then those terms are excluded from the OUTPOS= data table. No synonym lists, start lists, or stop lists are used when generating the OUTPOS= data table.

The OUTTERMS= Data Table

The OUTTERMS= option in the PARSE statement specifies a SAS data table to contain the summary information about the terms in the document collection. Table 13.12 shows the variables in this data table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>A lowercase version of the term</td>
</tr>
<tr>
<td>Role</td>
<td>The term’s part of speech (this variable is empty if the NOTAGGING option is specified in the PARSE statement)</td>
</tr>
</tbody>
</table>
Table 13.12

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| Attribute | An indication of the characters that compose the term. Possible attributes are as follows:
Alpha | only alphabetic characters
Mixed | a combination of attributes
Num | only numbers
Punct | punctuation characters
Entity | an identified entity
Freq | The frequency of a term in the entire document collection
Numdocs | The number of documents that contain the term
_keep | The keep status of the term: “Y” indicates that the term is kept for analysis, and “N” indicates that the term should be dropped in later stages of analysis. To ensure that the OUTTERMS= data table is of a reasonable size, only terms that have _keep=Y are kept in the OUTTERMS= data table by default.
Key | The assigned term number (each unique term in the parsed documents and each unique parent term has a unique Key value)
Parent | The Key value of the term’s parent or a “.” (period):
 - If a term has a parent, this variable contains the term number of that parent.
 - If a term does not have a parent, this value is a “.” (period).
 - If the values of Key, Parent, and Parent_id are identical, the parent occurs as itself.
 - If the values of Parent and Parent_id are identical but differ from Key, the observation is a child.
Parent_id | Another description of the term’s parent: Parent contains the parent’s term number if a term is a child, but Parent_id contains this value for all terms.
_ispar | An indication of term’s status as a parent, child, or neither:
 - A “+” (plus sign) indicates that the term is a parent.
 - A “.” (period) indicates that the term is a child.
 - A missing value indicates that the term is neither a parent nor a child.
Weight | The weights of the terms |
If you do not specify the SHOWDROPPEDTERMS option in the PARSE statement, this data table saves only the terms that have _keep=Y. This helps ensure that the OUTTERMS= data table is of a reasonable size. When you specify the SHOWDROPPEDTERMS option, the data table also saves terms that have _keep=N.

The OUTTOPICS= Data Table

If you specify the ROTATION= option in the SVD statement, the OUTTOPICS= option specifies the data table for storing the topics that have been discovered. This data table contains three columns: _topicid, _termCutoff, and _name. If the K= option in the SVD statement is set to k, the _topicid column contains the topic index, which is an integer from 1 to k. The _termCutoff column contains the cutoff value that is recommended in order to determine which terms actually belong to the topic. The weights for the terms and topics are contained in V matrix, which is stored in the data table that is specified in the SVDV= option in the SVD statement. The _name column contains the generated topic name, which is the descriptive label for each topic and provides a synopsis of the discovered topics. The generated topic name contains the terms that have the highest term loadings after the rotation has been performed. The number of terms that are used in the generated name is determined by the NUMLABELS= option in the SVD statement.

System Configuration

Prerequisites for Running PROC TEXTMINE

To use the TEXTMINE procedure, you must have a valid SAS Text Miner license, and the language binary files that are provided under that license must be available on the grid for parsing text.

Configuring for Language Binary Files

PROC TEXTMINE needs to find the grid location of the language binary files that are used in parsing text. These binary files must be deployed to the grid. The GRID_TEXTANALYTICS_BIN_LOC macro variable can be specified to indicate the location of the binary files on the grid. If the macro variable is not specified, then PROC TEXTMINE uses the default installation location.

Deploying Language Binary Files on the Grid

The language binary files must be deployed to the grid. The SAS grid installation script can automatically install the language binary files.

If you choose to manually deploy the binary files, you must copy the binary files from the $SASROOT folder to the grid either by placing the files in a location that is accessible by all nodes of the grid or by placing a copy of the files on each node of the grid. The binary files are very large, and a shared location requires less space to store them. However, using a shared location means that the files must be distributed to the grid when PROC TEXTMINE runs, and this can be time-consuming. Consult your grid administrator for a recommended binary location on the grid.

Language Binary Files

The language binary files are originally installed in the following location: $SASROOT/misc/tktg.

When you manually deploy the language binary files, you need to copy to the grid only the binary files that correspond to the language you plan to use. The following binary files are used for English processing:
If you have licensed SAS Text Miner languages other than English, you will see other files in your installation directory. The filenames begin with the corresponding two-letter language codes. For any language that you want to use on the grid, you need to copy its corresponding language binary files to the grid.

The GRID_TEXTANALYTICS_BIN_LOC Macro

You can use the GRID_TEXTANALYTICS_BIN_LOC macro to tell the TEXTMINE procedure where to find the language binary files. If the macro variable is not specified, then the default installation location will be used.

Assume that the grid administrator has installed the language binary files to a directory named /global_dir/tktg/misc, which is accessible to all nodes of the grid. To tell PROC TEXTMINE the location of the language binary files, insert the following statement before calling the procedure:

```
%let GRID_TEXTANALYTICS_BIN_LOC=/global_dir/tktg/misc;
```

When storage space permits, you can ensure optimal performance by placing a copy of the language binary files on each node and using a relative pathname for the GRID_TEXTANALYTICS_BIN_LOC macro variable. For example, the grid administrator can create a directory whose pathname is /local_dir/tktg/misc on each node and can store the language binary files in that directory. When the following statement is specified, the TEXTMINE procedure goes to the directory /local_dir/tktg/misc on each node to load the binary files:

```
%let GRID_TEXTANALYTICS_BIN_LOC=/local_dir/tktg/misc;
```
Examples: TEXTMINE Procedure

Example 13.1: Parsing with No Options Turned On

This example parses five documents, which are in a generated data table. The following DATA step generates the five documents:

```plaintext
/* 1) create data table */

data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;
```

The following statements run PROC TEXTMINE to parse the documents.

```plaintext
/* 2) starting code */
proc textmine data=mycas.CarNominations;
doc_id i;
var text;
parse
   nostemming notagging nonoungroups
termwgt = none
 cellwgt = none
 reducef = 1
 entities = none
 outparent = mycas.outparent
 outterms = mycas.outterms
 outchild = mycas.outchild
 outconfig = mycas.outconfig
;
run;

/* 3) print outterms data table */
data outterms; set mycas.outterms; run;
proc print data=outterms; run;
```
Output 13.1.1 shows the content of the mycas.outterms data table. In this example, stemming, part-of-speech tagging, and noun group extraction are suppressed and NONE is specified for entity identification, term and cell weighting, and term filtering. No synonym list, multiterm list, or stop list is specified. As a result of this configuration, there is no child term in the mycas.outterms data table. Also, the mycas.outparent data table and the mycas.outchild data table are exactly the same. The TEXTMINE procedure automatically drops punctuation and numbers.

Output 13.1.1 The mycas.outterms Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs</th>
<th>_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>all</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>toyota</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ford</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>tacoma</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>year</td>
<td>Alpha</td>
<td></td>
<td>3</td>
<td>Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>taurus</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>6</td>
<td>.</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>won</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>7</td>
<td>.</td>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>honda</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>bright</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>sold</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>colors</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>11</td>
<td>.</td>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>lime</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>except</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>hyundai</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>in</td>
<td>Alpha</td>
<td></td>
<td>3</td>
<td>Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>is</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>for</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>world</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>green</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>the</td>
<td>Alpha</td>
<td></td>
<td>8</td>
<td>Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>of</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>21</td>
<td>.</td>
<td>21</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>award</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>was</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>23</td>
<td>.</td>
<td>23</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>car</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>24</td>
<td>.</td>
<td>24</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>insight</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>25</td>
<td>.</td>
<td>25</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>last</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>26</td>
<td>.</td>
<td>26</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example 13.2: Parsing with Stemming

This example uses the data table that is generated in Example 13.1. The following statements run PROC TEXTMINE to parse the documents. Because the NOSTEMMING option is not specified in the PARSE statement, words are stemmed (the default).

```sas
/* create data table */
data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;

proc textmine data=mycas.CarNominations;
doc_id i;
var text;
parse
  notagging nonoungroups
termwgt = none
cellwgt = none
reducef = 1
entities = none
outparent= mycas.outparent
outterms = mycas.outterms
outchild = mycas.outchild
outconfig= mycas.outconfig
;
run;
data outterms; set mycas.outterms; run;
proc print data = outterms; run;
```

Output 13.2.1 shows the content of the mycas.outterms data table. In this example, words are stemmed. You can see that the term “sold” now stems to the parent term “sell.” Also, the mycas.outparent data table and the mycas.outchild data table are different. The parent term “sell” shows up in mycas.outparent (key=11), but not the child term “sold” (key=27). Only “sold” appears in the mycas.outchild data table, and “sell” does not appear.
Output 13.2.1 The mycas.outterms Data Table with Stemming

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq numdocs</th>
<th>_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>_ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>all</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>win</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>toyota</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ford</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>tacoma</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>year</td>
<td>Alpha</td>
<td></td>
<td>3</td>
<td>Y</td>
<td>6</td>
<td>.</td>
<td>6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>taurus</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>7</td>
<td>.</td>
<td>7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>won</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>26</td>
<td>2</td>
<td>2</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>honda</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>bright</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>be</td>
<td>Alpha</td>
<td></td>
<td>3</td>
<td>Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>sold</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>27</td>
<td>11</td>
<td>11</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>sell</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>11</td>
<td>.</td>
<td>11</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>colors</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>28</td>
<td>23</td>
<td>23</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>lime</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>except</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>hyundai</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>in</td>
<td>Alpha</td>
<td></td>
<td>3</td>
<td>Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>is</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>29</td>
<td>10</td>
<td>10</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>for</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>world</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>green</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>the</td>
<td>Alpha</td>
<td></td>
<td>8</td>
<td>Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>of</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>award</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>21</td>
<td>.</td>
<td>21</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>was</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>car</td>
<td>Alpha</td>
<td></td>
<td>2</td>
<td>Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>color</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>23</td>
<td>.</td>
<td>23</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>insight</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>24</td>
<td>.</td>
<td>24</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>last</td>
<td>Alpha</td>
<td></td>
<td>1</td>
<td>Y</td>
<td>25</td>
<td>.</td>
<td>25</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example 13.3: Adding Entities and Noun Groups

This example uses the data table that is generated in Example 13.1. The following statements run PROC TEXTMINE to parse the documents. Because the NONOUNGROUPS option is not specified in the PARSE statement, noun groups are extracted, and because the ENTITIES=STD option is specified, entities are identified.

```sas
/* create data table */
data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;

proc textmine data=mycas.CarNominations;
doc_id i;
var text i;
PARSE
notagging
termwgt = none
cellwgt = none
reducef = 1
entities = std
outparent = mycas.outparent
outterms = mycas.outterms
outchild = mycas.outchild
outconfig = mycas.outconfig
;
run;
data outterms; set mycas.outterms; run;
proc print data=outterms; run;
```

Output 13.3.1 shows the content of the mycas.outterms data table. Compared to Output 13.2.1, the mycas.outterms data table is longer, because it contains entities and noun groups. For example, “honda insight” is included in the mycas.outterms data table as an entity with Role=Vehicle, and “bright green” is also included in the mycas.outterms data table as a noun group.
Output 13.3.1 The mycas.outterms Data Table with Noun Group Extraction and Entity Identification

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>_ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>all</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>2</td>
<td>.</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>win</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>3</td>
<td>.</td>
<td></td>
<td>3 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>toyota</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>4</td>
<td>.</td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ford</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>5</td>
<td>.</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>toyota tacoma</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>6</td>
<td>.</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>tacoma</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>7</td>
<td>.</td>
<td></td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>year</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>8</td>
<td>.</td>
<td></td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>taurus</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>9</td>
<td>.</td>
<td></td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>won</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>33</td>
<td>3</td>
<td></td>
<td>3 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>honda</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>10</td>
<td>.</td>
<td></td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>bright</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>11</td>
<td>.</td>
<td></td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>be</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>12</td>
<td>.</td>
<td></td>
<td>12 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>sold</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>34</td>
<td>15</td>
<td>.</td>
<td>15 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>sell</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>15</td>
<td>.</td>
<td></td>
<td>15 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>colors</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>35</td>
<td>30</td>
<td>.</td>
<td>30 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>lime</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>17</td>
<td>.</td>
<td></td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>except</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>18</td>
<td>.</td>
<td></td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>in</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>20</td>
<td>.</td>
<td></td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>is</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>36</td>
<td>12</td>
<td>.</td>
<td>12 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>for</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>21</td>
<td>.</td>
<td></td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>toyota</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>world</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>23</td>
<td>.</td>
<td></td>
<td>23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>green</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>24</td>
<td>.</td>
<td></td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>the</td>
<td>Alpha</td>
<td>8</td>
<td>5 Y</td>
<td>25</td>
<td>.</td>
<td></td>
<td>25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>of</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>26</td>
<td>.</td>
<td></td>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>world car</td>
<td>PROP_MISC</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>27</td>
<td>.</td>
<td>27</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>award</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>28</td>
<td>.</td>
<td></td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>was</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>37</td>
<td>12</td>
<td>.</td>
<td>12 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>car</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>29</td>
<td>.</td>
<td></td>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>color</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>30</td>
<td>.</td>
<td></td>
<td>30 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>insight</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>31</td>
<td>.</td>
<td></td>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>last</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>32</td>
<td>.</td>
<td></td>
<td>32</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Example 13.4: Adding Part-of-Speech Tagging

This example uses the data table that is generated in Example 13.1. The following statements run PROC TEXTMINE to parse the documents. Because the NOTAGGING option is not specified in the PARSE statement, PROC TEXTMINE uses context clues to determine a term’s part of speech.

```sas
/* create data table */
data mycas.CarNominations;
  infile datalines delimiter='|' missover;
  length text $70 ;
  input text$ i;
  datalines;
  The Ford Taurus is the World Car of the Year. |1
  Hyundai won the award last year. |2
  Toyota sold the Toyota Tacoma in bright green. |3
  The Ford Taurus is sold in all colors except for lime green. |4
  The Honda Insight was World Car of the Year in 2008. |5
  ;
  run;

proc textmine data=mycas.CarNominations;
doc_id i;
var text;
parse
  termwgt = none
  cellwgt = none
  reducef = 1
  entities = std
  outparent = mycas.outparent
  outterms = mycas.outterms
  outchild = mycas.outchild
  outconfig = mycas.outconfig
  ;
  run;
data outterms; set mycas.outterms; run;
proc print data= outterms; run;
```

Output 13.4.1 shows the content of the mycas.outterms data table. Compared to Output 13.3.1, the mycas.outterms data table also contains the part-of-speech tag for the terms.
Output 13.4.1 The mycas.outterms Data Table with Part-of-Speech Tagging

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id_ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>car</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>insight</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>last</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>lime</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>sell</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>6</td>
<td>.</td>
<td>6 +</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>toyota tacoma</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>7</td>
<td>.</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>bright</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>honda</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>sold</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>34</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>colors</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>35</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>for</td>
<td>Prep</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>color</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>11</td>
<td>.</td>
<td>11 +</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>the</td>
<td>Det</td>
<td>Alpha</td>
<td>8</td>
<td>5 Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>is</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>36</td>
<td>23</td>
<td>23 .</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>toyota</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>except</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>in</td>
<td>Prep</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>was</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>37</td>
<td>23</td>
<td>23 .</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>won</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>38</td>
<td>27</td>
<td>27 .</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>is</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>39</td>
<td>26</td>
<td>26 .</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>ford</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>world</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>21</td>
<td>.</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>year</td>
<td>Noun</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>be</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>23</td>
<td>.</td>
<td>23 +</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>all</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>24</td>
<td>.</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>toyota</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>25</td>
<td>.</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>be</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>26</td>
<td>.</td>
<td>26 +</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>win</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>27</td>
<td>.</td>
<td>27 +</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>taurus</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>28</td>
<td>.</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>world car</td>
<td>PROP_MISC</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>29</td>
<td>.</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>of</td>
<td>Prep</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>30</td>
<td>.</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>award</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>31</td>
<td>.</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Tacoma</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>32</td>
<td>.</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>green</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>33</td>
<td>.</td>
<td>33</td>
<td>1</td>
</tr>
</tbody>
</table>
Example 13.5: Adding Synonyms

This example uses the data table that is generated in Example 13.1. So far, by looking at the mycas.outterms data tables that are generated by Example 13.1 to Example 13.4, you can see that the data are very “vehicle focused.” But suppose what you really care about are the companies. You can use a synonym list in parsing in order to map each vehicle to the company that produces it. The following DATA step generates the synonym list, and the following statements show this mapping:

```sas
/* create data table */
data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;

/* create synonym list */
data mycas.synds;
infile datalines delimiter=',';
length Term $13;
input Term $ TermRole $ Parent $ ParentRole$;
datalines;
honda insight, VEHICLE , honda, COMPANY,
ford taurus, VEHICLE, ford, COMPANY,
toyota tacoma, VEHICLE, toyota, COMPANY,
;
run;

proc textmine data=mycas.CarNominations;
doc_id i;
var text;
parse
  termwgt = none
  cellwgt = none
  reducef = 1
  entities = std
  synonym = mycas.synds
  outparent = mycas.outparent
  outterms = mycas.outterms
  outchild = mycas.outchild
  outconfig = mycas.outconfig
;
RUN;

data outterms; set mycas.outterms; run;
proc print data= outterms; run;
```
Output 13.5.1 shows the content of the mycas.outterms data table. You can see that the term “honda insight” (key=39) is assigned the parent term “honda” (key=6). Only the term “honda” appears in the mycas.outparent data table.

Output 13.5.1 The mycas.outterms Data Table with Synonym Mapping

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs</th>
<th>_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>_ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>car</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>insight</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>last</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>lime</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>honda</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>6</td>
<td>.</td>
<td>6 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>sell</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>7</td>
<td>.</td>
<td>7 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>toyota taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>33</td>
<td>23</td>
<td>23 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>bright</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>honda</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>sold</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>34</td>
<td>7</td>
<td>7 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>colors</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>35</td>
<td>11</td>
<td>11 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>for</td>
<td>Prep</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>color</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>11</td>
<td>.</td>
<td>11 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>the</td>
<td>Det</td>
<td>Alpha</td>
<td>8</td>
<td>5</td>
<td>Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>is</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>36</td>
<td>21</td>
<td>21 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>37</td>
<td>26</td>
<td>26 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>toyota</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>except</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>in</td>
<td>Prep</td>
<td>Alpha</td>
<td>3</td>
<td>3</td>
<td>Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>was</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>38</td>
<td>21</td>
<td>21 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>39</td>
<td>6</td>
<td>6 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>won</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>40</td>
<td>25</td>
<td>25 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>is</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>41</td>
<td>24</td>
<td>24 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>ford</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>world</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>year</td>
<td>Noun</td>
<td>Alpha</td>
<td>3</td>
<td>3</td>
<td>Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>be</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>21</td>
<td>.</td>
<td>21 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>all</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>toyota</td>
<td>COMPANY</td>
<td>Entity</td>
<td>2</td>
<td>1</td>
<td>Y</td>
<td>23</td>
<td>.</td>
<td>23 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>toyota</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>23</td>
<td>23</td>
<td>23 .</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>be</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>24</td>
<td>.</td>
<td>24 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>win</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>25</td>
<td>.</td>
<td>25 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>ford</td>
<td>COMPANY</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>26</td>
<td>.</td>
<td>26 +</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>taurus</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>27</td>
<td>.</td>
<td>27</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>world car</td>
<td>PROP_MISC</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>28</td>
<td>.</td>
<td>28</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>of</td>
<td>Prep</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>29</td>
<td>.</td>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>award</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>30</td>
<td>.</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>tahoma</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>31</td>
<td>.</td>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>green</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>32</td>
<td>.</td>
<td>32</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Example 13.6: Adding a Stop List

This example uses the data table that is generated in Example 13.1. If you want to eliminate the entity TOYOTA from the analysis, you can enter the parent term “Toyota” with role=COMPANY in a stop list. When this stop list is an input, PROC TEXTMINE drops the term “Toyota” (role=COMPANY) and all its children terms in the mycas.outterms data table by marking _keep=N for these terms. The following DATA steps generate the synonym list and the stop list:

```sas
/* create data table */
data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;

/* create synonym list */
data mycas.synds;
infile datalines delimiter=',';
length Term $13;
input Term $ TermRole $ Parent $ ParentRole$;
datalines;
honda insight, VEHICLE, honda, COMPANY,
ford taurus, VEHICLE, ford, COMPANY,
toyota tacoma, VEHICLE, toyota, COMPANY,
;
run;

/* create stop list */
data mycas.stopList;
infile datalines delimiter='|' missover;
length term $25 role $40;
input term$ role$ ;
datalines;
toyota| COMPANY
;
run;

proc textmine data=mycas.CarNominations;
doc_id i;
var text;
parse
termwgt = none
cellwgt = none
reducef = 1
entities = std
```
synonym = mycas.synds
stop = mycas.stopList
outparent = mycas.outparent
outterms = mycas.outterms
outchild = mycas.outchild
outconfig = mycas.outconfig
;
run;

data outterms; set mycas.outterms; run;
proc print data= outterms; run;

Output 13.6.1 shows the content of the mycas.outterms data table. You can see that the term “Toyota, COMPANY” and the term “Toyota Tacoma, VEHICLE” are removed from the mycas.outterms data table. However, the term “Toyota, Prop” remains in the data table because its role is not COMPANY. The mycas.outparent data table is shorter than the one generated in Example 13.5.
Output 13.6.1 The mycas.outterms Data Table Filtered Using Stop List

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs</th>
<th>_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>car</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>insight</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>last</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>lime</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>honda</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>6</td>
<td>.</td>
<td>6 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>sell</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>7</td>
<td>.</td>
<td>7 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>bright</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>honda</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>sold</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>32</td>
<td>7</td>
<td>7 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>colors</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>33</td>
<td>11</td>
<td>11 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>for</td>
<td>Prep</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>color</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>11</td>
<td>.</td>
<td>11 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>the</td>
<td>Det</td>
<td>Alpha</td>
<td>8</td>
<td>5</td>
<td>Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>is</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>34</td>
<td>21</td>
<td>21 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>35</td>
<td>25</td>
<td>25 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>toyota</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>except</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>in</td>
<td>Prep</td>
<td>Alpha</td>
<td>3</td>
<td>3</td>
<td>Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>was</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>36</td>
<td>21</td>
<td>21 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>37</td>
<td>6</td>
<td>6 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>won</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>38</td>
<td>24</td>
<td>24 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>is</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>39</td>
<td>23</td>
<td>23 .</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>ford</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>world</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>year</td>
<td>Noun</td>
<td>Alpha</td>
<td>3</td>
<td>3</td>
<td>Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>be</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>21</td>
<td>.</td>
<td>21 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>all</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>be</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>23</td>
<td>.</td>
<td>23 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>win</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>24</td>
<td>.</td>
<td>24 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>ford</td>
<td>COMPANY</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>25</td>
<td>.</td>
<td>25 +</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>taurus</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>26</td>
<td>.</td>
<td>26</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>world car</td>
<td>PROP_MISC</td>
<td>Entity</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>27</td>
<td>.</td>
<td>27</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>of</td>
<td>Prep</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>28</td>
<td>.</td>
<td>28</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>award</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>29</td>
<td>.</td>
<td>29</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>tacoma</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>30</td>
<td>.</td>
<td>30</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>green</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2</td>
<td>Y</td>
<td>31</td>
<td>.</td>
<td>31</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example 13.7: Adding a Multiterm List

You can specify a multiterm list to define terms that consist of multiple words. This example uses the data table that is generated in Example 13.1 to show how to use the MULTITERM= option. The following DATA steps generate a synonym list, a stop list, and a multiterm list:

```sas
/* create data table */
data mycas.CarNominations;
infile datalines delimiter='|' missover;
length text $70 ;
input text$ i;
datalines;
The Ford Taurus is the World Car of the Year. |1
Hyundai won the award last year. |2
Toyota sold the Toyota Tacoma in bright green. |3
The Ford Taurus is sold in all colors except for lime green. |4
The Honda Insight was World Car of the Year in 2008. |5
;
run;
/* create synonym list */
data mycas.synds;
infile datalines delimiter=',
length Term $13;
input Term $ TermRole $ Parent $ ParentRole$;
datalines;
honda insight, VEHICLE , honda, COMPANY,
ford taurus, VEHICLE, ford, COMPANY,
toyota tacoma, VEHICLE, toyota, COMPANY,
;
run;
/* create stop list */
data mycas.stopList;
infile datalines delimiter='|' missover;
length term $25 role $40;
input term$ role$ ;
datalines;
toyota| COMPANY
;
run;
/* create multiterm list */
data mycas.multiterms;
infile datalines delimiter='|';
length multiterm $64;
input multiterm$;
datalines;
except for :3:Prep
;
run;
proc textmine data=mycas.CarNominations;
doc_id i;
var text;
```
Example 13.7: Adding a Multiterm List

```
parse
  termwgt = none
  cellwgt = none
  reducef = 1
  entities = std
  synonym = mycas.synds
  stop = mycas.stopList
  multiterm = mycas.multiterms
  outparent = mycas.outparent
  outterms = mycas.outterms
  outchild = mycas.outhild
  outconfig = mycas.outconfig
;
run;
```

```
data outterms; set mycas.outterms; run;
proc print data= outterms; run;
```

Output 13.7.1 shows the content of the mycas.outterms data table. In the preceding statements, “except for” is defined as an individual term in the third DATA step. In the mycas.outterms data table, you can see that the two terms “except” and “for” have become one term, “except for.”
Output 13.7.1 The mycas.outterms Data Table Using a Multiterm List

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs</th>
<th>_keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>_ispar</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>car</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>insight</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>last</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>lime</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>honda</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>6</td>
<td>.</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>sell</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>7</td>
<td>.</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>bright</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>honda</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>sold</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>31</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>colors</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>32</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>except for</td>
<td>Prep</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>color</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>11</td>
<td>.</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>the</td>
<td>Det</td>
<td>Alpha</td>
<td>8</td>
<td>5 Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>is</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>33</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>34</td>
<td>24</td>
<td>24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>toyota</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>in</td>
<td>Prep</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>was</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>1 Y</td>
<td>36</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>won</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>37</td>
<td>23</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>is</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>38</td>
<td>22</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ford</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>world</td>
<td>Prop</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>year</td>
<td>Noun</td>
<td>Alpha</td>
<td>3</td>
<td>3 Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>be</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>20</td>
<td>.</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>all</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>21</td>
<td>.</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>be</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>22</td>
<td>.</td>
<td>22</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>win</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>23</td>
<td>.</td>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>ford</td>
<td>COMPANY</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>24</td>
<td>.</td>
<td>24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>taurus</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>25</td>
<td>.</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>world car</td>
<td>PROP_MISC</td>
<td>Entity</td>
<td>2</td>
<td>2 Y</td>
<td>26</td>
<td>.</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>of</td>
<td>Prep</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>27</td>
<td>.</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>award</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>28</td>
<td>.</td>
<td>28</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>tacoma</td>
<td>Prop</td>
<td>Alpha</td>
<td>1</td>
<td>1 Y</td>
<td>29</td>
<td>.</td>
<td>29</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>green</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>2 Y</td>
<td>30</td>
<td>.</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 13.8: Selecting Parts of Speech and Entities to Ignore

This example uses the data table that is generated in Example 13.1. If you want to eliminate prepositions, determiners, and proper nouns from your analysis, you can add a SELECT statement that lists these part-of-speech labels. If you also want to eliminate entities that are labeled “PROP_MISC,” you can add another SELECT statement that includes “PROP_MISC” in the label list.

 /* create data table */
 data mycas.CarNominations;
 infile datalines delimiter='|' missover;
 length text $70 ;
 input text$ i;
 datalines;
 The Ford Taurus is the World Car of the Year. |1
 Hyundai won the award last year. |2
 Toyota sold the Toyota Tacoma in bright green. |3
 The Ford Taurus is sold in all colors except for lime green. |4
 The Honda Insight was World Car of the Year in 2008. |5
 ;
 run;

 /* create synonym list */
 data mycas.synds;
 infile datalines delimiter=',';
 length Term $13;
 input Term $ TermRole $ Parent $ ParentRole$;
 datalines;
 honda insight, VEHICLE , honda, COMPANY,
 ford taurus, VEHICLE, ford, COMPANY,
 toyota tacoma, VEHICLE, toyota, COMPANY,
 ;
 run;

 /* create stop list*/
 data mycas.stopList;
 infile datalines delimiter='|' missover;
 length term $25 role $40;
 input term$ role$;
 datalines;
 toyota| COMPANY
 ;
 run;

 proc textmine data=mycas.CarNominations;
 doc_id i;
 var text;
 parse
 termwgt = none
 cellwgt = none
 reducef = 1
 entities = std
 synonym = mycas.synds
Chapter 13: The TEXTMINE Procedure

```plaintext
stop = mycas.stopList
outparent = mycas.outparent
outterms = mycas.outterms
outchild = mycas.outchild
outconfig = mycas.outconfig
;
select "prep" "det" "prop"/ignore;
select "prop_misc"/group="entities" ignore;
run;

data outterms; set mycas.outterms; run;
proc print data= outterms; run;
```

Output 13.8.1 shows the content of the mycas.outterms data table. You can see that prepositions, determiners, and proper nouns are excluded. Terms that are labeled “PROP_MISC” are also excluded.

Output 13.8.1 The mycas.outterms Data Table Ignoring Specified Parts of Speech and Entities

<table>
<thead>
<tr>
<th>Obs</th>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>numdocs</th>
<th>keep</th>
<th>Key</th>
<th>Parent</th>
<th>Parent_id</th>
<th>_ispars</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lime green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>1</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>last</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>2</td>
<td>.</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>lime</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>3</td>
<td>.</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>honda</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>Y</td>
<td>4</td>
<td>.</td>
<td>4</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>sell</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>Y</td>
<td>5</td>
<td>.</td>
<td>5</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>bright</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>6</td>
<td>.</td>
<td>6</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>sold</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>Y</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>colors</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>21</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>color</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>7</td>
<td>.</td>
<td>7</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>bright green</td>
<td>NOUN_GROUP</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>8</td>
<td>.</td>
<td>8</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>is</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>22</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>ford taurus</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>2</td>
<td>Y</td>
<td>23</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>hyundai</td>
<td>COMPANY</td>
<td>Entity</td>
<td>1</td>
<td>Y</td>
<td>9</td>
<td>.</td>
<td>9</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>except</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>10</td>
<td>.</td>
<td>10</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>was</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>honda insight</td>
<td>VEHICLE</td>
<td>Entity</td>
<td>1</td>
<td>Y</td>
<td>25</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>won</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>26</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>is</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>27</td>
<td>14</td>
<td>14</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>year</td>
<td>Noun</td>
<td>Alpha</td>
<td>3</td>
<td>Y</td>
<td>11</td>
<td>.</td>
<td>11</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>be</td>
<td>Verb</td>
<td>Alpha</td>
<td>2</td>
<td>Y</td>
<td>12</td>
<td>.</td>
<td>12</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>all</td>
<td>Adj</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>.</td>
<td>13</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>be</td>
<td>Aux</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>.</td>
<td>14</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>win</td>
<td>Verb</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>15</td>
<td>.</td>
<td>15</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>ford</td>
<td>COMPANY</td>
<td>Entity</td>
<td>2</td>
<td>Y</td>
<td>16</td>
<td>.</td>
<td>16</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>taurus</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>Y</td>
<td>17</td>
<td>.</td>
<td>17</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>award</td>
<td>Noun</td>
<td>Alpha</td>
<td>1</td>
<td>Y</td>
<td>18</td>
<td>.</td>
<td>18</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>green</td>
<td>Noun</td>
<td>Alpha</td>
<td>2</td>
<td>Y</td>
<td>19</td>
<td>.</td>
<td>19</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Overview: TMSCORE Procedure

The TMSCORE procedure scores textual data in SAS Viya. In text mining, scoring is the process of applying parsing and singular value decomposition (SVD) projections to new textual data. The TMSCORE procedure performs this scoring of new documents, and its primary outputs are the Outparent data table (which holds the parsing results of the term-by-document matrix) and the Outdocpro data table (which holds the reduced-dimensional representation of the score collection). PROC TMSCORE uses some of the output data tables of the TEXTMINE procedure as input data to ensure consistency between scoring and training. During scoring, the new textual data must be parsed using the same settings that the training data were parsed with, indexed using only the subset of terms that were used during training, and projected onto the reduced-dimensional subspace of the singular value decomposition that was derived from the training data. To facilitate this process, you specify the CONFIG=, TERMS=, and SVDU= options in PROC TEXTMINE to create three data tables (Outconfig, Outterms, and Svdu, respectively), and then you specify those three data tables as inputs to PROC TMSCORE. For more information about these data tables, see the CONFIG=, TERMS=, and SVDU= options, respectively, in the section “PROC TMSCORE Statement” on page 304.

PROC TMSCORE Features

The TMSCORE procedure processes large-scale textual data in parallel to achieve efficiency and scalability. The following list summarizes the basic features of PROC TMSCORE:
Functionalities that are related to document parsing, term-by-document matrix creation, and dimension reduction are integrated into one procedure to process data more efficiently.

- Parsing and term-by-document matrix creation are performed in parallel.
- Computation of document projection is performed in parallel.
- All phases of processing use a high degree of multithreading.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to the CAS session. It assumes that you have a CAS server already available; contact your system administrator if you need help starting and terminating a server. This CAS server is identified by specifying the host on which it runs and the port on which it listens for communications. To simplify your interactions with this CAS server, the host information and port information for the server are stored as SAS option values that are retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port values for the server at your site by using the following statements:

```sas
proc options option=(CASHOST CASPORT);
run;
```

In addition to starting a CAS server, your system administrator might also have created a CAS session and a CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the CAS server as shown in the following statements:

```sas
cas mysess;
libname mycas cas sessref=mysess;
```

The CAS statement creates the CAS session named `mysess`, and the LIBNAME statement creates the `mycas` CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from the corresponding SAS option values.

If you have created the `mysess` session, you can terminate it by using the TERMINATE option in the CAS statement as follows:

```sas
cas mysess terminate;
```

For more information about the CAS and LIBNAME statements, see the section “Introduction to Shared Concepts” on page 5 in Chapter 2, “Shared Concepts.”

Getting Started: TMSCORE Procedure

NOTE: Input data must be in a CAS table that is accessible in your CAS session. You must refer to this table by using a two-level name. The first level must be a CAS engine libref, and the second level must be the table
The following DATA steps generate two data tables: the mycas.getstart data table contains 36 observations, and the mycas.getstart_score data table contains 31 observations. Both data tables have two variables: the text variable contains the input documents, and the did variable contains the ID of the documents. Each row in each data table represents a “document” for analysis.

```sas
data mycas.getstart;
  infile datalines delimiter='|' missover;
  length text $150;
  input text$ did;
  datalines;
  High-performance analytics hold the key to |1 unlocking the unprecedented business value of big data.|2
  Organizations looking for optimal ways to gain insights|3 from big data in shorter reporting windows are turning to SAS.|4
  As the gold-standard leader in business analytics |5 for more than 36 years,|6
  SAS frees enterprises from the limitations of |7 traditional computing and enables them |8 to draw instant benefits from big data.|9
  Faster Time to Insight.|10
  From banking to retail to health care to insurance, |11 SAS is helping industries glean insights from data |12 that once took days or weeks in just hours, minutes or seconds.|13
  It's all about getting to and analyzing relevant data faster.|14
  Revealing previously unseen patterns, sentiments and relationships.|15
  Identifying unknown risks.|16
  And speeding the time to insights.|17
  High-Performance Analytics from SAS Combining industry-leading |18 analytics software with high-performance computing technologies|19 produces fast and precise answers to unsolvable problems|20 and enables our customers to gain greater competitive advantage.|21
  SAS In-Memory Analytics eliminate the need for disk-based processing|22 allowing for much faster analysis.|23
  SAS In-Database executes analytic logic into the database itself |24 for improved agility and governance.|25
  SAS Grid Computing creates a centrally managed,|26 shared environment for processing large jobs|27 and supporting a growing number of users efficiently.|28
  Together, the components of this integrated, |29 supercharged platform are changing the decision-making landscape|30 and redefining how the world solves big data business problems.|31
  Big data is a popular term used to describe the exponential growth,|32 availability and use of information,|33 both structured and unstructured.|34
  Much has been written on the big data trend and how it can |35 serve as the basis for innovation, differentiation and growth.|36
run;
```
data mycas.getstart_score;
 infile datalines delimiter='|' missover;
 length text $150;
 input text$ did;
 datalines;
 Big data according to SAS|1
 At SAS, consider two other dimensions|2
 when thinking about big data:|3
 Variability. In addition to the|4
 increasing velocities and varieties of data, data|5
 flows can be highly inconsistent with periodic peaks.|6
 Is something big trending in the social media?|7
 Perhaps there is a high-profile IPO looming.|8
 Maybe swimming with pigs in the Bahamas is suddenly|9
 the must-do vacation activity. Daily, seasonal and|10
 event-triggered peak data loads can be challenging|11
 to manage - especially with social media involved.|12
 Complexity. When you deal with huge volumes of data,|13
 it comes from multiple sources. It is quite an|14
 undertaking to link, match, cleanse and|15
 transform data across systems. However,|16
 it is necessary to connect and correlate|17
 relationships, hierarchies and multiple data|18
 linkages or your data can quickly spiral out of|19
 control. Data governance can help you determine|20
 how disparate data relates to common definitions|21
 and how to systematically integrate structured|22
 and unstructured data assets to produce|23
 high-quality information that is useful,|24
 appropriate and up-to-date.|25
 Ultimately, regardless of the factors involved,|26
 I believe that the term big data is relative|27
 it applies (per Gartner's assessment)|28
 whenever an organization's ability|29
 to handle, store and analyze data|30
 exceeds its current capacity.|31
run;

The following statements use PROC TEXTMINE for processing the input text data table mycas.getstart and create three data tables (mycas.outconfig, mycas.terms, and mycas.svdu), which can be used in PROC TMSCORE for scoring:

proc textmine data = mycas.getstart;
 doc_id did;
 variables text;
 parse
classification outterms = mycas.terms
 outconfig = mycas.outconfig
 reducef = 2;
svd
 k = 5
 svdu = mycas.svdu;
run;
The following statements then use PROC TMSCORE to score the input text data table mycas.getstart_score. The statements take the three data tables that are generated by PROC TEXTMINE as input and create a data table named mycas.docpro, which contains the projection of the documents in the input data table mycas.getstart_score.

```plaintext
proc tmscore
   data = mycas.getstart_score
terms = mycas.outterms
config = mycas.outconfig
svdu = mycas.svdu
svddocpro = mycas.docpro;
doc_id did;
variables text;
run;
```

The output from this analysis is presented in Figure 14.1.

The following statements use PROC PRINT to show the content of the first 10 rows of the sorted mycas.docpro data table, which is generated by the TMSCORE procedure:

```plaintext
data docpro;
   set mycas.docpro;
run;
proc sort data=docpro;
by did;
run;
proc print data = docpro (obs=10);
run;
```

Figure 14.1 shows the output of PROC PRINT.

Figure 14.1 The mycas.docpro Data Table

<table>
<thead>
<tr>
<th>Obs</th>
<th>did</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
<th>COL5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.9280580624</td>
<td>-0.043848965</td>
<td>-0.077471227</td>
<td>-0.360683352</td>
<td>-0.026291245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.3259183599</td>
<td>0.6571567366</td>
<td>-0.273359957</td>
<td>-0.604416498</td>
<td>0.1479096949</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.8689087288</td>
<td>-0.388837491</td>
<td>-0.218995849</td>
<td>-0.213995312</td>
<td>-0.007060509</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.7831588772</td>
<td>0.4746848982</td>
<td>-0.125847865</td>
<td>0.3183297653</td>
<td>-0.210154457</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.9593643947</td>
<td>-0.266314399</td>
<td>-0.046604482</td>
<td>-0.018296797</td>
<td>0.0786755893</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.4610220268</td>
<td>-0.305122518</td>
<td>0.5938700731</td>
<td>0.1055184168</td>
<td>0.5749288129</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.9098857961</td>
<td>-0.16682915</td>
<td>-0.106357858</td>
<td>0.219337846</td>
<td>0.2912984518</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.4410084796</td>
<td>-0.228192717</td>
<td>0.4283723777</td>
<td>0.0541313515</td>
<td>0.752998345</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.8220687177</td>
<td>0.0128745549</td>
<td>0.0229643883</td>
<td>0.3696414395</td>
<td>0.4322905415</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.7135136752</td>
<td>0.1341396731</td>
<td>0.1840439935</td>
<td>0.6287791541</td>
<td>0.2089721685</td>
</tr>
</tbody>
</table>
Syntax: TMSCORE Procedure

The following statements are available in the TMSCORE procedure:

```plaintext
PROC TMSCORE DATA=CAS-libref.data-table <options> ;
VARIABLES variable ;
DOC_ID variable ;
```

PROC TMSCORE Statement

```plaintext
PROC TMSCORE DATA=CAS-libref.data-table <options> ;
```

The PROC TMSCORE statement invokes the procedure. Table 14.1 summarizes the options in the statement by function. The options are then described fully in alphabetical order.

<table>
<thead>
<tr>
<th>Table 14.1</th>
<th>PROC TMSCORE Statement Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>option</td>
<td>Description</td>
</tr>
<tr>
<td>Basic Options</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>Specifies the input document data table</td>
</tr>
<tr>
<td>DOC=</td>
<td>Specifies the data table that contains the terms to be used for scoring</td>
</tr>
<tr>
<td>TERMS=</td>
<td>Specifies the data table that contains the configuration information</td>
</tr>
<tr>
<td>CONFIG=</td>
<td>Specifies the data table that contains the U matrix whose columns are the left singular vectors</td>
</tr>
<tr>
<td>SVDU=</td>
<td></td>
</tr>
<tr>
<td>Output Options</td>
<td></td>
</tr>
<tr>
<td>OUTPARENT=</td>
<td>Specifies the data table that contains the term-by-document frequency matrix that is used to model the document collection. In this matrix, the child terms are not represented and child terms’ frequencies are attributed to their corresponding parents.</td>
</tr>
<tr>
<td>SVDDOCPRO=</td>
<td>Specifies the data table that contains the projections of the documents</td>
</tr>
</tbody>
</table>

You must specify the following option:

DATA=CAS-libref.data-table

DOC=CAS-libref.data-table

names the input data table for PROC TMSCORE to use. _CAS-libref.data-table_ is a two-level name, where

- **CAS-libref** refers to a collection of information that is defined in the LIBNAME statement and includes the caslib, which includes a path to the data, and a session identifier, which defaults to the active session but which can be explicitly defined in the LIBNAME statement. For more information about _CAS-libref_, see the section “Using CAS Sessions and CAS Engine Librefs” on page 300.

- _data-table_ specifies the name of the input data table.
The input data table contains documents for PROC TMSCORE to score. Each row of the input data table must contain one text variable and one ID variable, which correspond to the text and the unique ID of a document, respectively.

You can also specify the following options:

CONFIG= `CAS-libref.data-table`

specifies the input data table that contains configuration information for PROC TMSCORE. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 300. Specify the table that was generated by the `OUTCONFIG=` option in the PARSE statement of the TEXTMINE procedure during training. For more information about this data table, see the section “The OUTCONFIG= Data Table” on page 275 of Chapter 13, “The TEXTMINE Procedure.”

OUTPARENT= `CAS-libref.data-table`

specifies the output data table to contain a compressed representation of the sparse term-by-document frequency matrix. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 300. The data table contains only the kept representative terms, and the child frequencies are attributed to the corresponding parent. For more information about the compressed representation of the sparse term-by-document frequency matrix, see the section “The OUTPARENT= Data Table” on page 276 of Chapter 13, “The TEXTMINE Procedure.”

SVDDOCPRO= `CAS-libref.data-table`

specifies the output data table to contain the reduced dimensional projections for each document. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the output data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 300. The contents of this data table are formed by multiplying the term-by-document frequency matrix by the input data table that is specified in the `SVDU=` option and then normalizing the result.

SVDU= `CAS-libref.data-table`

specifies the input data table that contains the U matrix, which is created during training by PROC TEXTMINE. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 300. The data table contains the information that is needed to project each document into the reduced dimensional space. For more information about the contents of this data table, see the `SVDU=` option in Chapter 13, “The TEXTMINE Procedure.”

TERMS= `CAS-libref.data-table`

specifies the input data table of terms to be used by PROC TMSCORE. `CAS-libref.data-table` is a two-level name, where `CAS-libref` refers to the caslib and session identifier, and `data-table` specifies the name of the input data table. For more information about this two-level name, see the `DATA=` option and the section “Using CAS Sessions and CAS Engine Librefs” on page 300. Specify the table that was generated by the `OUTTERMS=` option in the PARSE statement of the TEXTMINE procedure during training. This data table conveys to PROC TMSCORE which terms should be used in the analysis and whether they should be mapped to a parent. The data table also assigns to each term
a key that corresponds to the key that is used in the input data table that is specified by the SVDU= option. For more information about this data table, see the section “The OUTTERMS= Data Table” on page 277 of Chapter 13, “The TEXTMINE Procedure.”

DOC_ID Statement

DOC_ID *variable* ;

This statement specifies the *variable* that contains the ID of each document. The ID of each document must be unique; it can be either a number or a string of characters.

VARIABLES Statement

VARIABLES *variable* ;

VAR *variable* ;

This statement specifies the *variable* that contains the text to be processed.

Details: TMSCORE Procedure

For information about the techniques that are used for nature language processing, term processing, and singular value decomposition, see the section “Details: TEXTMINE Procedure” on page 269 of Chapter 13, “The TEXTMINE Procedure.”

System Configuration

Prerequisites for Running PROC TMSCORE

To use the TMSCORE procedure, the language binary files that are provided under that license must be available on the grid for parsing text.

Configuration for Language Binary Files

PROC TMSCORE needs to find the grid location of the language binary files that are used in parsing text. These binary files must be deployed to the grid. The GRID_TEXTANALYTICS_BIN_LOC macro can be specified to indicate the location of the binary files on your grid. If the macro variable is not set, then the default installation location $SASROOT/misc/tktg will be used. For more information, see the section “Configuring for Language Binary Files” on page 279 of Chapter 13, “The TEXTMINE Procedure.”
Subject Index

k-fold cross validation
- FOREST procedure, 104
- GRADBOOST procedure, 136
- NNET procedure, 178

active-set solver
- SVDD procedure, 223

ASTORE procedure
- computational method, 15
- hyperparameter tuning, 16
- input data tables, 25
- multithreading, 15
- output data tables, 25
- test data, 14
- validation, 14

autoencoder
- NNET procedure, 178

AUTOTUNE statement
- syntax (Shared Concepts), 8

bagging the data
- FOREST procedure, 98

best configuration
- FOREST procedure, 106
- GRADBOOST procedure, 137
- NNET procedure, 179

BOOLRULE procedure
- computational method, 15
- hyperparameter tuning, 16
- multithreading, 15
- test data, 14
- validation, 14

boosting
- GRADBOOST procedure, 132

CODE statement
- syntax (Shared Concepts), 12

comparison with existing methods
- SVDD procedure, 222

computational method
- ASTORE procedure, 15
- BOOLRULE procedure, 15
- FACTMAC procedure, 15
- FOREST procedure, 15
- GRADBOOST procedure, 15
- NNET procedure, 15, 177
- SVMACHINE procedure, 15
- TEXTMINE procedure, 15
- TMSCORE procedure, 15

convergence status
- NNET procedure, 179

cross validation results
- FOREST procedure, 106
- GRADBOOST procedure, 137
- NNET procedure, 180

details
- MWPCA procedure, 154
- RPCA procedure, 199

displayed output
- FACTMAC procedure, 74
- FOREST procedure, 105
- GRADBOOST procedure, 136
- NNET procedure, 178
- RPCA procedure, 201
- SVMACHINE procedure, 244

evaluation history
- FOREST procedure, 106, 138
- NNET procedure, 179

FACTMAC procedure, 63
- computational method, 15
- displayed output, 74
- final exact loss, 75
- hyperparameter tuning, 16
- input data tables, 67
- interval variables, 75
- iteration history, 74
- model information, 74
- multithreading, 15
- number of observations, 74
- ODS table names, 75
- output CAS tables, 75
- output data tables, 72, 75
- test data, 14
- validation, 14

final exact loss
- FACTMAC procedure, 75

fit statistics
- FOREST procedure, 105
- GRADBOOST procedure, 137

fit statistics table
- SVMACHINE procedure, 244

FitStat table
- NNET procedure, 180

FOREST procedure, 80
- k-fold cross validation, 104
bagging the data, 98
best configuration, 106
computational method, 15
cross validation results, 106
displayed output, 105
evaluation history, 106, 138
fit statistics, 105
handling missing values, 101
handling values that are absent from training data, 102
hyperparameter tuning, 16, 104
input data tables, 88
measuring variable importance, 102
model information, 105
multithreading, 15
number of observations, 105
ODS table names, 106
output data tables, 96
output table, 106
preselection, 99
splitting criteria, 95
test data, 14
training a decision tree, 99
tuner information, 105
tuner results, 106
tuner summary, 105
tuner timing, 106
validation, 14
variable importance, 105
fraction outlier parameter
SVDD procedure, 221

GRADBOOST procedure, 114
k-fold cross validation, 136
best configuration, 137
boosting, 132
computational method, 15
cross validation results, 137
displayed output, 136
fit statistics, 137
handling missing values, 133
hyperparameter tuning, 16, 136
input data tables, 121
measuring prediction error, 132
measuring variable importance, 134
model information, 136
multithreading, 15
number of observations, 136
ODS table names, 138
output data tables, 129
output table, 137
subsampling the data, 131
test data, 14
training a decision tree, 132
tuner information, 137
tuner results, 137
tuner summary, 137
tuner timing, 137
validation, 14
variable importance, 137

handling missing values
FOREST procedure, 101
GRADBOOST procedure, 133
handling values that are absent from training data
FOREST procedure, 102
hyperparameter tuning
ASTORE procedure, 16
BOOLRULE procedure, 16
FACTMAC procedure, 16
FOREST procedure, 16, 104
GRADBOOST procedure, 16, 136
NNET procedure, 16
SVMACHINE procedure, 16
TEXTMINE procedure, 16
TMSCORE procedure, 16
input variables
NNET procedure, 169
interval variables
FACTMAC procedure, 75
iteration history
NNET procedure, 179
iteration history table
SVMACHINE procedure, 244
iteration report table
SVMACHINE procedure, 244
linear kernels
SVDD procedure, 216
SVMACHINE procedure, 242
mathematical formulation
SVDD procedure, 216
measuring prediction error
GRADBOOST procedure, 132
measuring variable importance
FOREST procedure, 102
GRADBOOST procedure, 134
misclassification matrix table
SVMACHINE procedure, 244
model information
FOREST procedure, 105
GRADBOOST procedure, 136
NNET procedure, 179
model information table
SVMACHINE procedure, 244
multithreading
ASTORE procedure, 15
BOOLRULE procedure, 15
FACTMAC procedure, 15
FOREST procedure, 15
GRADBOOST procedure, 15
NNET procedure, 15
SVMACHINE procedure, 15
TEXTMINE procedure, 15
TMSCORE procedure, 15

MWPCA procedure
 details, 154
dimensions, 154
displayed output, 154
input data tables, 149
model information, 154
ODS table names, 155
output data tables, 152
results summary, 154

NNET procedure, 158
 k-fold cross validation, 178
 autoencoder, 178
 best configuration, 179
 computational method, 15, 177
 convergence status, 179
 cross validation results, 180
displayed output, 178
evaluation history, 179
FitStat table, 180
hyperparameter tuning, 16
input data tables, 161
iteration history, 179
model information, 179
multithreading, 15
ODS table names, 180
output data tables, 173
parameter tuning, 177
ROC curve, 179
score information, 179
test data, 14
tuner information, 179
tuner results, 179
tuner summary, 179
validation, 14

nonlinear kernels
 SVDD procedure, 216
 SVMACHINE procedure, 242

number of hidden neurons
 NNET procedure, 169

number of observations
 FOREST procedure, 105
 GRADBOOST procedure, 136

OPTIMIZATION
 SVMACHINE procedure, 243

options summary
 PARSE statement, 259
 PROC FACTMAC statement, 67
 PROC FOREST statement, 87
 PROC GRADBOOST statement, 120
 PROC MWPCA statement, 149
 PROC RPCA statement, 192
 PROC TEXTMINE statement, 257
 PROC TMSCORE statement, 304
 SELECT statement, 263
 SVD statement, 264

output CAS tables
 FACTMAC procedure, 75

output data tables
 FACTMAC procedure, 75
 RPCA procedure, 202

output table
 FOREST procedure, 106
 GRADBOOST procedure, 137

parameter tuning
 NNET procedure, 177
 PARTITION statement
 syntax (Shared Concepts), 13

preselection
 FOREST procedure, 99
 PROC ASTORE, 19
 PROC ASTORE features, 19
 PROC MWPCA, 143
 PROC MWPCA features, 144
 PROC RPCA, 187
 PROC RPCA features, 188
 PROC SVDD, 205
 PROC SVMACHINE, 231
 PROC SVMACHINE features, 232

radial basis function bandwidth parameter

ROC curve
 NNET procedure, 179
 RPCA procedure
details, 199
dimensions, 201
displayed output, 201
input data tables, 193
model information, 201
ODS table names, 201
output data tables, 202
results summary, 201

score information
 NNET procedure, 179

scoring process
SVMACHINE procedure, 243

Shared Concepts
- AUTOTUNE statement, 8
- CODE statement, 12
- PARTITION statement, 13

Solvers
- SVDD procedure, 223
- sparse matrix
 - TEXTMINE procedure, 276

Splitting Criteria
- FOREST procedure, 95

Stochastic Subset Solver
- SVDD procedure, 223

Subsampling the Data
- GRADBOOST procedure, 131

SVDD Formulation with Weight Variable
- SVDD procedure, 222

SVDD Procedure
- active-set solver, 223
- comparison with existing methods, 222
- fraction outlier parameter, 221
- input data tables, 212
- linear kernels, 216
- mathematical formulation, 216
- nonlinear kernels, 216
- ODS table names, 224
- radial basis function bandwidth parameter, 219
- solvers, 223
- stochastic subset solver, 223

SVDD Formulation with Weight Variable, 222

SVMACHINE procedure
- computational method, 15
- displayed output, 244
- fit statistics table, 244
- hyperparameter tuning, 16
- input data tables, 235
- iteration history table, 244
- iteration report table, 244
- linear kernels, 242
- misclassification matrix table, 244
- model information table, 244
- multithreading, 15
- nonlinear kernels, 242
- number of observations table, 244
- ODS table names, 244
- optimization, 243
- output data tables, 240
- scoring process, 243
- test data, 14
- training results table, 244
- validation, 14

target variables
- NNET procedure, 173

test data
- ASTORE procedure, 14
- BOOLRULE procedure, 14
- FACTMAC procedure, 14
- FOREST procedure, 14
- GRADBOOST procedure, 14
- NNET procedure, 14
- SVMACHINE procedure, 14
- TEXTMINE procedure, 14
- TMSCORE procedure, 14

TEXTMINE procedure, 252
- cell weight, 260
- computational method, 15
- coordinate list (COO) format, 273
- entity, 260
- filtering term by frequency, 262
- hyperparameter tuning, 16
- input data tables, 258
- language used by input data tables, 258
- multiterm words list, 260
- multithreading, 15
- noun groups, 260
- number of threads, 258
- show dropped terms, 262
- sparse format, 273
- sparse matrix, 276
- start list, 262
- stemming, 261
- stop list, 262
- SVD, singular value decomposition, 273
- synonym list, 262
- system configuration, 279
- tagging, 261
- term weight, 263
- test data, 14
- transactional style, 276
- validation, 14
- variable name style, 258

TMSCORE procedure, system configuration
- configuration for language binary files, 279
- deploying language binary files, 279
- GRID_TEXTANALYTICS_BIN_LOC macro, 280
- language binary files, 279
- prerequisite, 279

TMSCORE procedure, 299
- computational method, 15
- hyperparameter tuning, 16
- input data tables, 304
- multithreading, 15
- system configuration, 306
- test data, 14
- validation, 14

TMSCORE procedure, system configuration
configuration for language binary files, 306
prerequisite, 306

training a decision tree
 FOREST procedure, 99
 GRADBOOST procedure, 132

training results table
 SVMACHINE procedure, 244

transactional style
 TEXTMINE procedure, 276

tuner information
 FOREST procedure, 105
 GRADBOOST procedure, 137
 NNET procedure, 179

tuner results
 FOREST procedure, 106
 GRADBOOST procedure, 137
 NNET procedure, 179

tuner summary
 FOREST procedure, 105
 GRADBOOST procedure, 137
 NNET procedure, 179

tuner timing
 FOREST procedure, 106
 GRADBOOST procedure, 137
 NNET procedure, 179

validation
 ASTORE procedure, 14
 BOOLRULE procedure, 14
 FACTMAC procedure, 14
 FOREST procedure, 14
 GRADBOOST procedure, 14
 NNET procedure, 14
 SVMACHINE procedure, 14
 TEXTMINE procedure, 14
 TMSCORE procedure, 14

variable importance
 FOREST procedure, 105
 GRADBOOST procedure, 137

weight variable
 NNET procedure, 176
Syntax Index

ACT= option
 HIDDEN statement, 169
 TARGET statement, 174

ACTSET option
 SOLVER statement, 215

ALGORITHM= option
 OPTIMIZATION statement, 170

ANNEALINGRATE= option
 OPTIMIZATION statement, 170

ARCHITECTURE statement
 NNET procedure, 163

ASCENDING option
 TARGET statement, 242

ASSIGNMISSING= option
 PROC FOREST statement, 87
 PROC GRADBOOST statement, 120

ASTORE procedure
 PROC ASTORE statement, 23

ASTORE procedure, CODE statement
 COMMENT option, 12
 FILE= option, 12
 FORMATWIDTH= option, 12
 INDENTSIZE= option, 13
 LABELID= option, 13
 LINESIZE= option, 13
 NOTRIM option, 13
 PCATALL option, 13

ASTORE procedure, DESCRIBE statement, 23
 EPCODE= option, 24
 RSTORE= option, 24
 STORE= option, 24

ASTORE procedure, DOWNLOAD statement, 24
 RSTORE= option, 24
 STORE= option, 24

ASTORE procedure, OUTPUT statement
 OUT= option, 25

ASTORE procedure, PROC ASTORE statement, 23
 DATA= option, 25

ASTORE procedure, SCORE statement, 24

ASTORE procedure, syntax, 23

ASTORE procedure, UPLOAD statement, 25
 RSTORE= option, 25
 STORE= option, 26

AUTOTUNE statement
 ASTORE procedure, 8
 BOOLRULE procedure, 8
 FACTMAC procedure, 8
 FOREST procedure, 8, 90

GRADBOOST procedure, 8, 69, 123
 NNET procedure, 8, 163
 SVMACHINE procedure, 8, 163
 TEXTMINE procedure, 8
 TMSCORE procedure, 8

BOOLRULE procedure, 39
 DOCINFO statement, 42
 OUTPUT statement, 43
 PROC BOOLRULE statement, 39
 SCORE statement, 44
 syntax, 39
 TERMINFO statement, 44

BOOLRULE procedure, CODE statement
 COMMENT option, 12
 FILE= option, 12
 FORMATWIDTH= option, 12
 INDENTSIZE= option, 13
 LABELID= option, 13
 LINESIZE= option, 13
 NOTRIM option, 13
 PCATALL option, 13

BOOLRULE procedure, DOCINFO statement, 42
 EVENTS= option, 42
 ID= option, 42
 TARGET= option, 43
 TARGETTYPE= option, 43

BOOLRULE procedure, OUTPUT statement, 43
 CANDIDATETERMS= option, 43
 RULES= option, 43
 RULETERMS= option, 44

BOOLRULE procedure, PROC BOOLRULE
 statement, 39
 DATA= option, 40
 DOC= option, 40
 DOCID= option, 41
 DOCINFO= option, 41
 GNEG= option, 41
 GPOS= option, 41
 MAXCANDIDATES= option, 41
 MAXCANDS= option, 41
 MAXTRIESIN= option, 41
 MAXTRIESOUT= option, 41
 MINSUPPORTS= option, 41
 MNEG= option, 42
 MPOS= option, 42
 TERMID= option, 42
 TERMINFO= option, 42
BOOLRULE procedure, SCORE statement, 44
OUTMATCH= option, 44
RULETERMS= option, 44
BOOLRULE procedure, TERMINFO statement, 44
ID= option, 45
LABEL= option, 45
C= option
PROC SVMACHINE statement, 235
CANDIDATETERMS= option
OUTPUT statement, 43
CASESENSITIVE option
DISPLAY statement (MWPCA), 150
DISPLAY statement (RPCA), 196
CELLWGT= option
PARSE statement, 260
CENTER option
PROC MWPCA statement, 149
PROC RPCA statement, 193
CHAID option
GROW statement (FOREST), 95
CHISQUARE option
GROW statement (FOREST), 95
CODE statement
ASTORE procedure, 12, 23
BOOLRULE procedure, 12
FACTMAC procedure, 12, 71
FOREST procedure, 12, 94
GRADBOOST procedure, 12, 128
NNET procedure, 12, 168
RPCA procedure, 195
SVD statement, 265
SVDD procedure, 213
SVMACHINE procedure, 12, 238
TEXTMINE procedure, 12
TMSCORE procedure, 12
COL= option
SVD statement, 265
COLSTATISTICS= option
PROC RPCA statement, 193
COMB= option
HIDDEN statement, 169
TARGET statement, 174
COMMENT option
CODE statement (ASTORE), 12
CODE statement (BOOLRULE), 12
CODE statement (FACTMAC), 12
CODE statement (FOREST), 12
CODE statement (GRADBOOST), 12
CODE statement (NNET), 12
CODE statement (SVMACHINE), 12
CODE statement (TEXTMINE), 12
CODE statement (TMSCORE), 12
COMMFREQ=option
OPTIMIZATION statement, 171
CONFIG= option
TMSCORE statement, 305
COPYVARS= option
OUTPUT statement, 73, 97, 130, 173, 240
CROSSVALIDATION statement
FOREST procedure, 94
GRADBOOST procedure, 128
NNET procedure, 168
CTOL= option
SOLVER statement, 215
DATA= option
PROC ASTORE statement, 25
PROC BOOLRULE statement, 40
PROC FACTMAC statement, 67
PROC FOREST statement, 88
PROC GRADBOOST statement, 121
PROC MWPCA statement, 149
PROC NNET statement, 161
PROC RPCA statement, 193
PROC SVDD statement, 212
PROC SVMACHINE statement, 235
PROC TEXTMINE statement, 258
PROC TMSCORE statement, 304
DECOMP= option
PROC RPCA statement, 194
DESCENDING option
TARGET statement, 242
DISPLAY statement
MWPCA procedure, 150
RPCA procedure, 196
DISPLAYOUT statement
MWPCA procedure, 151
RPCA procedure, 197
DOC= option
PROC BOOLRULE statement, 40
PROC TMSCORE statement, 304
DOC_ID statement
TEXTMINE procedure, 258
TMSCORE procedure, 306
DOCID= option
PROC BOOLRULE statement, 41
DOCINFO statement
BOOLRULE procedure, 42
DOCINFO= option
PROC BOOLRULE statement, 41
DOWNLOAD statement
ASTORE procedure, 24
DROPOUTHIDDEN= option
TRAIN statement, 175
DROPOUTINPUT= option
TRAIN statement, 175
ENTITIES= option
PARSE statement, 260
ENTROPY option
GROW statement (FOREST), 95
ENTRY= option
SVD statement, 265
EPCODE= option
DESCRIBE statement, 24
ERROR= option
TARGET statement, 174
EVALHISTORY= option
AUTOTUNE statement, 8
EVENTS= option
DOCINFO statement, 42
EXACTWEIGHT option
SVD statement, 266
EXCLUDE option
DISPLAY statement (MWPCA), 150
DISPLAY statement (RPCA), 196
EXCLUDEALL option
DISPLAY statement (MWPCA), 150
DISPLAY statement (RPCA), 196
FACTMAC procedure, AUTOTUNE statement, 69
FACTMAC procedure, CODE statement, 71
COMMENT option, 12
FILE= option, 12
FORMATWIDTH= option, 12
INDENTSIZE= option, 13
LABELID= option, 13
LINESIZE= option, 13
NOTRIM option, 13
PCATALL option, 13
FACTMAC procedure, ID statement, 72
FACTMAC procedure, INPUT statement, 72
FACTMAC procedure, OUTPUT statement, 72
COPYVARS= option, 73
LEVEL= option, 73
OUT= option, 72
FACTMAC procedure, PROC FACTMAC statement, 67
DATA= option, 67
FILE= option, 71
LEARNSTEP= option, 68
LEVEL= option, 72
MAXITER= option, 68
NFACTORS= option, 68
NONNEGATIVE option, 68
NOPRINT, 68
NTHREADS= option, 68
OUTMODEL, 68
SEED= option, 68
FACTMAC procedure, SAVESTATE statement, 73
RSTORE= option, 73
FACTMAC procedure, syntax, 67
FACTMAC procedure, TARGET statement, 73
FILE= option
CODE statement, 168, 196, 213, 239
CODE statement (ASTORE), 12
CODE statement (BOOLRULE), 12
CODE statement (FACTMAC), 12
CODE statement (FOREST), 12
CODE statement (GRADBOOST), 12
CODE statement (NNET), 12
CODE statement (SVMACHINE), 12
CODE statement (TEXTMINE), 12
CODE statement (TMSCORE), 12
PROC FACTMAC statement, 71
FIXEDMU option
RPCA statement, 153
PROC RPCA statement, 194
FOREST procedure, AUTOTUNE statement, 90
TUNINGPARAMETERS= option, 91
FOREST procedure, CODE statement, 94
COMMENT option, 12
FILE= option, 12
FORMATWIDTH= option, 12
INDENTSIZE= option, 13
LABELID= option, 13
LINESIZE= option, 13
NOTRIM option, 13
PCATALL option, 13
FOREST procedure, CROSSVALIDATION statement, 94
KFOLD= option, 94
FOREST procedure, GROW statement, 95
CHAID option, 95
CHISQUARE option, 95
ENTROPY option, 95
FTEST option, 95
GINI option, 95
IGR option, 95
RSS option, 95
FOREST procedure, ID statement, 96
FOREST procedure, INPUT statement, 96
LEVEL= option, 96
FOREST procedure, OUTPUT statement, 96
COPYVARS= option, 97
OUT= option, 96
FOREST procedure, PARTITION statement
FRACTION option, 13, 97
ROLEVAR= option, 14, 97
FOREST procedure, PROC FOREST statement, 87
ASSIGNMISSING= option, 87
DATA= option, 88
INBAGFRACTION= option, 88
INMODEL= option, 88
LOH= option, 89
MAXBRANCH= option, 89
MAXDEPTH= option, 89
MINLEAFSIZE= option, 89
MINUSEINSEARCH= option, 89
NOPRINT option, 89
NTREES= option, 89
NUMBIN= option, 89
OUTMODEL= option, 89
RBAIMP option, 90
SEED= option, 90
VARS_TO_TRY= option, 90
VOTE= option, 90
FOREST procedure, SAVESTATE statement, 97
RSTORE= option, 97
FOREST procedure, syntax, 86
FOREST procedure, TARGET statement, 98
LEVEL= option, 98
FORMATWIDTH= option
 CODE statement (ASTORE), 12
 CODE statement (BOOLRULE), 12
 CODE statement (FACTMAC), 12
 CODE statement (FOREST), 12
 CODE statement (GRADBOOST), 12
 CODE statement (NNET), 12
 CODE statement (SVMACHINE), 12
 CODE statement (TEXTMINE), 12
 CODE statement (TMSCORE), 12
FRACTION option
 PARTITION statement, 172
 PARTITION statement (FOREST), 13, 97
 PARTITION statement (GRADBOOST), 13, 130
 PARTITION statement (SVMACHINE), 241
FRACTION= option
 AUTOTUNE statement, 9
FTEST option
 GROW statement (FOREST), 95
GINI option
 GROW statement (FOREST), 95
GLIM option
 ARCHITECTURE statement, 163
GNEG= option
 PROC BOOLRULE statement, 41
GPOS= option
 PROC BOOLRULE statement, 41
GRADBOOST procedure, AUTOTUNE statement, 123
 TUNINGPARAMETERS= option, 69, 124
GRADBOOST procedure, CODE statement, 128
 COMMENT option, 12
 FILE= option, 12
 FORMATWIDTH= option, 12
 INDENTSIZE= option, 13
 LABELID= option, 13
 LINESIZE= option, 13
 NOTRIM option, 13
 PCATALL option, 13
GRADBOOST procedure, CROSSVALIDATION statement, 128
 KFOLD= option, 129
GRADBOOST procedure, ID statement, 129
GRADBOOST procedure, INPUT statement, 129
 LEVEL= option, 129
GRADBOOST procedure, OUTPUT statement, 129
 COPYVARS= option, 130
 OUT= option, 129
GRADBOOST procedure, PARTITION statement
 FRACTION option, 13, 130
 ROLEVAR= option, 14, 130
GRADBOOST procedure, PROC GRADBOOST statement, 120
 ASSIGNMISSING= option, 120
 DATA= option, 121
 INMODEL= option, 121
 LASSO= option, 122
 LEARNINGRATE= option, 122
 MAXBRANCH= option, 122
 MAXDEPTH= option, 122
 MINLEAFSIZE= option, 122
 MINUSEINSEARCH= option, 122
 NOPRINT option, 122
 NTREES= option, 122
 NUMBIN= option, 122
 OUTMODEL option, 123
 RIDGE= option, 123
 SAMPLINGRATE option, 123
 SEED= option, 123
 VARS_TO_TRY= option, 123
GRADBOOST procedure, SAVESTATE statement, 130
 RSTORE= option, 131
GRADBOOST procedure, syntax, 119
GRADBOOST procedure, TARGET statement, 131
 LEVEL= option, 131
GROUP= option
 SELECT statement, 264
GROW statement
 FOREST procedure, 95
HIDDEN statement
 NNET procedure, 169
ID statement
 FACTMAC procedure, 72
 FOREST procedure, 96
 GRADBOOST procedure, 129
 MWPCA procedure, 151
 SVDD procedure, 213
 SVMACHINE procedure, 239
ID= option
 DOCINFO statement, 42
 TERMINFO statement, 45

IGNORE option
 SELECT statement, 264

IGR option
 GROW statement (FOREST), 95

IN_TERMS= option
 SVD statement, 266

INBAGFRACTION= option
 PROC FOREST statement, 88

INDENTSIZE= option
 CODE statement (ASTORE), 13
 CODE statement (BOOLRULE), 13
 CODE statement (FACTMAC), 13
 CODE statement (FOREST), 13
 CODE statement (GRADBOOST), 13
 CODE statement (NNET), 13
 CODE statement (SVMACHINE), 13
 CODE statement (TEXTMINE), 13
 CODE statement (TMSCORE), 13

INMODEL= option
 PROC FOREST statement, 88
 PROC GRADBOOST statement, 121
 PROC NNET statement, 162

INPUT statement
 FACTMAC procedure, 72
 FOREST procedure, 96
 GRADBOOST procedure, 129
 MWPCA procedure, 152
 NNET procedure, 169
 RPCA procedure, 197
 SVDDD procedure, 213
 SVMACHINE procedure, 239

ITERATIONREPORT option
 PROC SVMACHINE statement, 235

K= option
 SVD statement, 266

KEEP option
 SELECT statement, 264

KEEPVARS, KEEPVARIABLES
 SVD statement, 266

KERNEL statement
 SVDDD procedure, 214
 SVMACHINE procedure, 239

KFOLD= option
 AUTOTUNE statement, 9
 CROSSVALIDATION statement, 94, 129, 169

LABEL= option
 TERMINFO statement, 45

LABELID= option
 CODE statement (ASTORE), 13
 CODE statement (BOOLRULE), 13
 CODE statement (FACTMAC), 13
 CODE statement (FOREST), 13
 CODE statement (GRADBOOST), 13
 CODE statement (NNET), 13
 CODE statement (SVMACHINE), 13
 CODE statement (TEXTMINE), 13
 CODE statement (TMSCORE), 13

LABELS option
 SELECT statement, 264

LAMBDA= option
 RPCA statement, 153
 PROC RPCA statement, 194

LAMBDAWEIGHT= option
 RPCA statement, 153
 PROC RPCA statement, 194

LANGUAGE= option
 PROC TEXTMINE statement, 258

LASSO= option
 PROC GRADBOOST statement, 122

LEARNINGRATE= option
 PROC GRADBOOST statement, 122
 OPTIMIZATION statement, 171

LEARNINGSTEP= option
 PROC BOOLRULE statement, 41

LEVEL= option
 INPUT statement, 96, 129, 170, 213, 239
 OUTPUT statement, 73
 PROC FACTMAC statement, 72
 TARGET statement, 98, 131, 173

LINEAR option
 PROC SVMACHINE statement, 240

LINESIZE= option
 CODE statement (ASTORE), 13
 CODE statement (BOOLRULE), 13
 CODE statement (FACTMAC), 13
 CODE statement (FOREST), 13
 CODE statement (GRADBOOST), 13
 CODE statement (NNET), 13
 CODE statement (SVMACHINE), 13
 CODE statement (TEXTMINE), 13
 CODE statement (TMSCORE), 13

LOH= option
 PROC FOREST statement, 89

MAX_K= option
 SVD statement, 266

MAXBRANCH= option
 PROC FOREST statement, 89
 PROC GRADBOOST statement, 122

MAXCANDIDATES= option
 PROC BOOLRULE statement, 41

MAXCANDS= option
PROC BOOLRULE statement, 41
MAXDEPTH= option
PROC FOREST statement, 89
PROC GRADBOOST statement, 122
MAXEVALS= option
AUTOTUNE statement, 9
MAXITER= option
AUTOTUNE statement, 9
OPTIMIZATION statement, 171
PROC FACTMAC statement, 68
PROC RPCA statement, 194
PROC SVMACHINE statement, 236
RPCA statement, 153
SOLVER statement, 215
MAXRANK= option
SVD statement, 153, 199
MAXSV= option
SOLVER statement, 215
MAXTIME= option
AUTOTUNE statement, 9
OPTIMIZATION statement, 171
MAXTRIESIN= option
PROC BOOLRULE statement, 41
MAXTRIESOUT= option
PROC BOOLRULE statement, 41
METHOD= option
PROC RPCA statement, 194
RPCA statement, 153
SVD statement, 199
MINIBATCHSIZE= option
OPTIMIZATION statement, 171
MINLEAFSIZE= option
PROC FOREST statement, 89
PROC GRADBOOST statement, 122
MINSUPPORTS= option
PROC BOOLRULE statement, 41
MINUSEINSEARCH= option
PROC FOREST statement, 89
PROC GRADBOOST statement, 122
MISSING= option
PROC NNET statement, 162
MLP DIRECT option
ARCHITECTURE statement, 163
MLP option
ARCHITECTURE statement, 163
MNEG= option
PROC BOOLRULE statement, 42
MOMENTUM= option
OPTIMIZATION statement, 171
MPOS= option
PROC BOOLRULE statement, 42
MU= option
RPCA statement, 153
PROC RPCA statement, 194
MULTITERM= option
PARSE statement, 260
MWPCCA procedure, DISPLAY statement
CASESENSITIVE option, 150
EXCLUDE option, 150
EXCLUDEALL option, 150
TRACE option, 150
MWPCCA procedure, DISPLAYAYOUT statement
NOREPLACE option, 151
REPEATED option, 151
MWPCCA procedure, ID statement, 151
MWPCCA procedure, INPUT statement, 152
MWPCCA procedure, OUTPUT statement, 152
NPC= option, 152
OUT= option, 152
STANDARDPC= option, 152
MWPCCA procedure, PROC MWPCCA statement, 149
CENTER, 149
DATA= option, 149
NTHREADS= option, 149
ROBUST= option, 149
STEPSIZE= option, 150
WINDOWSIZ= option, 150
MWPCCA procedure, RPCA statement, 152
FIXEDMU option, 153
LAMDBA= option, 153
LAMDBAWEIGHT= option, 153
MAXITER= option, 153
METHOD= option, 153
MU= option, 153
TOLERANCE= option, 153
MWPCCA procedure, SVD statement, 153
MAXRANK= option, 153
MWPCCA procedure, syntax, 148
NEWVARNAMES
TEXTMINE statement, 258
NFACTORS= option
PROC FACTMAC statement, 68
NMATCH = option
SOLVER statement, 215
NNET procedure, ARCHITECTURE statement, 163
GLIM option, 163
MLP DIRECT option, 163
MLP option, 163
NNET procedure, AUTOTUNE statement, 163
TUNINGPARAMETERS= option, 164
NNET procedure, CODE statement, 168
COMMENT option, 12
FILE= option, 12, 168
FORMATWIDTH= option, 12
INDENTSIZE= option, 13
LABELID= option, 13
LINESIZE= option, 13
Syntax Index

<table>
<thead>
<tr>
<th>Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCOMPPGM</td>
<td>168</td>
</tr>
<tr>
<td>NOTRIM</td>
<td>13</td>
</tr>
<tr>
<td>PCATALL</td>
<td>13</td>
</tr>
<tr>
<td>NNET procedure, CROSSVALIDATION statement</td>
<td>168</td>
</tr>
<tr>
<td>KFOLD=</td>
<td>169</td>
</tr>
<tr>
<td>NNET procedure, HIDDEN statement</td>
<td>169</td>
</tr>
<tr>
<td>ACT=</td>
<td>169</td>
</tr>
<tr>
<td>COMB=</td>
<td>169</td>
</tr>
<tr>
<td>NNET procedure, INPUT statement</td>
<td>169</td>
</tr>
<tr>
<td>LEVEL=</td>
<td>170</td>
</tr>
<tr>
<td>NNET procedure, OPTIMIZATION statement</td>
<td>170</td>
</tr>
<tr>
<td>ALGORITHM=</td>
<td>170</td>
</tr>
<tr>
<td>ANNEALINGRATE=</td>
<td>170</td>
</tr>
<tr>
<td>COMMFFREQ=</td>
<td>171</td>
</tr>
<tr>
<td>LEARNINGRATE=</td>
<td>171</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>171</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>171</td>
</tr>
<tr>
<td>MINIBATCHSIZE=</td>
<td>171</td>
</tr>
<tr>
<td>MOMENTUM=</td>
<td>171</td>
</tr>
<tr>
<td>REGL1=</td>
<td>172</td>
</tr>
<tr>
<td>REGL2=</td>
<td>172</td>
</tr>
<tr>
<td>SEED=</td>
<td>171</td>
</tr>
<tr>
<td>USELOCKING=</td>
<td>171</td>
</tr>
<tr>
<td>NNET procedure, OUTPUT statement</td>
<td>173</td>
</tr>
<tr>
<td>COPYVARS=</td>
<td>173</td>
</tr>
<tr>
<td>OUT=</td>
<td>173</td>
</tr>
<tr>
<td>NNET procedure, PARTITION statement</td>
<td>172</td>
</tr>
<tr>
<td>FRACTION=</td>
<td>172</td>
</tr>
<tr>
<td>ROLEVAR=</td>
<td>172</td>
</tr>
<tr>
<td>NNET procedure, PROC NNET statement</td>
<td>161</td>
</tr>
<tr>
<td>DATA=</td>
<td>161</td>
</tr>
<tr>
<td>INMODEL=</td>
<td>162</td>
</tr>
<tr>
<td>MISSING=</td>
<td>162</td>
</tr>
<tr>
<td>NTTHREADS=</td>
<td>162</td>
</tr>
<tr>
<td>STANDARDIZE=</td>
<td>162</td>
</tr>
<tr>
<td>NNET procedure, SCORE statement</td>
<td>173</td>
</tr>
<tr>
<td>NNET procedure, syntax</td>
<td>161</td>
</tr>
<tr>
<td>ACT=</td>
<td>174</td>
</tr>
<tr>
<td>COMB=</td>
<td>174</td>
</tr>
<tr>
<td>ERROR=</td>
<td>174</td>
</tr>
<tr>
<td>LEVEL=</td>
<td>173</td>
</tr>
<tr>
<td>NNET procedure, TRAIN statement</td>
<td>175</td>
</tr>
<tr>
<td>DROPOUTHIDDEN=</td>
<td>175</td>
</tr>
<tr>
<td>DROPOUTINPUT=</td>
<td>175</td>
</tr>
<tr>
<td>NUMTREES=</td>
<td>176</td>
</tr>
<tr>
<td>OUTMODEL=</td>
<td>175</td>
</tr>
<tr>
<td>RESUME=</td>
<td>176</td>
</tr>
<tr>
<td>VALIDATION=</td>
<td>176</td>
</tr>
<tr>
<td>WSEED=</td>
<td>176</td>
</tr>
<tr>
<td>NNET procedure, WEIGHT statement</td>
<td>176</td>
</tr>
<tr>
<td>NOCOMPPGM option CODE statement</td>
<td>168</td>
</tr>
<tr>
<td>NOCUTOFFS option SVD statement</td>
<td>266</td>
</tr>
<tr>
<td>NONG option PARSE statement</td>
<td>260</td>
</tr>
<tr>
<td>NONNEGATIVE option PROC FACTMAC statement</td>
<td>68</td>
</tr>
<tr>
<td>NONOUNGROUPS option PARSE statement</td>
<td>260</td>
</tr>
<tr>
<td>NOPRINT option PROC FACTMAC statement</td>
<td>68</td>
</tr>
<tr>
<td>NOSTEMMING option PARSE statement</td>
<td>261</td>
</tr>
<tr>
<td>NOTAGGING option PARSE statement</td>
<td>261</td>
</tr>
<tr>
<td>NOTRIM option CODE statement (ASTORE)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (BOOLRULE)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (FACTMAC)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (FOREST)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (GRADBOOST)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (NNET)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (SVMACHINE)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (TEXTMINE)</td>
<td>13</td>
</tr>
<tr>
<td>CODE statement (TMSCORE)</td>
<td>13</td>
</tr>
<tr>
<td>NPC= option OUTPUT statement</td>
<td>152</td>
</tr>
<tr>
<td>NSAMP= option SOLVER statement</td>
<td>215</td>
</tr>
<tr>
<td>NTHREADS= option PROC FACTMAC statement</td>
<td>68</td>
</tr>
<tr>
<td>PROC MWPCA statement</td>
<td>149</td>
</tr>
<tr>
<td>PROC NNET statement</td>
<td>162</td>
</tr>
<tr>
<td>PROC RPCA statement</td>
<td>195</td>
</tr>
<tr>
<td>PROC SVDD statement</td>
<td>212</td>
</tr>
<tr>
<td>PROC SVMACHINE statement</td>
<td>236</td>
</tr>
<tr>
<td>PROC TEXTMINE statement</td>
<td>258</td>
</tr>
<tr>
<td>NTREES= option PROC FOREST statement</td>
<td>89</td>
</tr>
<tr>
<td>PROC GRADBOOST statement</td>
<td>122</td>
</tr>
<tr>
<td>NUMBIN= option PROC FOREST statement</td>
<td>89</td>
</tr>
<tr>
<td>PROC GRADBOOST statement</td>
<td>122</td>
</tr>
<tr>
<td>NUMLABELS= option SVD statement</td>
<td>266</td>
</tr>
</tbody>
</table>
NUMTRIES= option
 TRAIN statement, 176

OBJECTIVE= option
 AUTOTUNE statement, 10

OPTIMIZATION statement
 NNET procedure, 170

OUT= option
 OUTPUT statement (ASTORE), 25
 OUTPUT statement (FACTMAC), 72
 OUTPUT statement (FOREST), 96
 OUTPUT statement (GRADBOOST), 129
 OUTPUT statement (MWPCA), 152
 OUTPUT statement (NNET), 173
 OUTPUT statement (SVDD), 240

OUTCHILD= option
 PARSE statement, 261

OUTCONFIG= option
 PARSE statement, 261

OUTDECOMP statement
 RPCA procedure, 197

OUTDOCPRO= option
 SVD statement, 266

OUTERROR= option
 RPCA statement, 195

OUTLIER_FRACTION= option
 SVDD statement, 212

OUTLOWRANK= option
 RPCA statement, 195

OUTMATCH= option
 SCORE statement, 44

OUTMODEL
 PROC FACTMAC statement, 68

OUTMODEL option
 PROC GRADBOOST statement, 123

OUTMODEL= option
 PROC FOREST statement, 89
 TRAIN statement, 175

OUTPARENT= option
 PARSE statement, 261
 TMSCORE statement, 305

OUTPOS= option
 PARSE statement, 261

OUTPUT statement
 BOOLRULE procedure, 43
 FACTMAC procedure, 72
 FOREST procedure, 96
 GRADBOOST procedure, 129
 MWPCA procedure, 152
 SVMACHINE procedure, 240

OUTSPARSE= option
 RPCA statement, 195

OUTSV= option
 SVDD statement, 213

OUTTERMS= option
 PARSE statement, 262

OUTTOPICS= option
 SVD statement, 267

PARSE statement
 TEXTMINE procedure, 259

PARTITION statement
 ASTORE procedure, 13
 BOOLRULE procedure, 13
 FACTMAC procedure, 13
 FOREST procedure, 13, 97
 GRADBOOST procedure, 13, 130
 NNET procedure, 13, 172
 SVMACHINE procedure, 13, 240
 TEXTMINE procedure, 13
 TMSCORE procedure, 13

PCATALL option
 CODE statement (ASTORE), 13
 CODE statement (BOOLRULE), 13
 CODE statement (FACTMAC), 13
 CODE statement (FOREST), 13
 CODE statement (GRADBOOST), 13
 CODE statement (NNET), 13
 CODE statement (SVDD), 213
 CODE statement (SVDD), 213
 CODE statement (TEXTMINE), 13
 CODE statement (TMSCORE), 13

PCLOADINGS= option
 OUTDECOMP statement, 198

PCSORES= option
 OUTDECOMP statement, 198

POLYNOMIAL option
 PROC SVMACHINE statement, 240

POPSIZE= option
 AUTOTUNE statement, 10, 11

POWER= option
 SVD statement, 199

PROC ASTORE statement
 ASTORE procedure, 23

PROC BOOLRULE statement
 BOOLRULE procedure, 39

PROC FACTMAC statement, see FACTMAC procedure

PROC FOREST statement, see FOREST procedure

PROC GRADBOOST statement, see GRADBOOST procedure

PROC MWPCA statement, see MWPCA procedure

PROC NNET statement, see NNET procedure

PROC RPCA statement, see RPCA procedure

PROC SVDD statement, see SVDD procedure

PROC SVMACHINE statement, see SVMACHINE procedure

PROC TEXTMINE statement
 TEXTMINE procedure, 257
PROC TMSCORE statement
 TMSCORE procedure, 304

RBAIMP option
 PROC FOREST statement, 90

RBF option
 KERNEL statement, 214

REDUCEF= option
 PARSE statement, 262

REG1= option
 OPTIMIZATION statement, 172

REG2= option
 OPTIMIZATION statement, 172

REPEATED option
 DISPLAYOUT statement (MWPCA), 151
 DISPLAYOUT statement (RPCA), 197

RES= option
 SVD statement, 267

RESOLUTION= option
 SVD statement, 267

RESUME option
 TRAIN statement, 176

RIDGE= option
 PROC GRADBOOST statement, 123

ROBUST= option
 PROC MWPCA statement, 149

ROLEVAR= option
 PARTITION statement, 172
 PARTITION statement (FOREST), 14, 97
 PARTITION statement (GRADBOOST), 14, 130
 PARTITION statement (SVMACHINE), 241

ROTATION= option
 SVD statement, 267

ROW= option
 SVD statement, 268

ROWID statement
 RPCA procedure, 198

RPCA procedure, CODE statement, 195

FILE= option, 196

RPCA procedure, DISPLAY statement
 CASESENSITIVE option, 196
 EXCLUDE option, 196
 EXCLUDEALL option, 196
 TRACE option, 196

RPCA procedure, DISPLAYOUT statement
 NOREPLACE option, 197
 REPEATED option, 197

RPCA procedure, INPUT statement, 197

RPCA procedure, OUTDECOMP statement, 197
 PCLOADINGS= option, 198
 PCSCORES= option, 198
 SVDDIA= option, 197
 SVDLEFT= option, 198
 SVDRIGHT= option, 198

RPCA procedure, PROC RPCA statement, 192
 CENTER, 193
 COLSTATISTICS= option, 193
 DATA= option, 193
 DECOMP= option, 194
 FIXEDMU option, 194
 LAMBDA= option, 194
 LAMBDAWEIGHT= option, 194
 MAXITER= option, 194
 METHOD= option, 194
 MU= option, 194
 NTHREADS= option, 195
 OUTERROR= option, 195
 OUTLOWRANK= option, 195
 OUTSPARSE= option, 195
 SCALE, 195
 TOLERANCE= option, 195

RPCA procedure, ROWID statement, 198

RPCA procedure, SVD statement, 198
 METHOD= option, 199

RPCA procedure, syntax, 192

RPCA statement
 MWPCA procedure, 152

RSS option
 GROW statement (FOREST), 95

RSTORE= option
 DOWNLOAD statement, 24
 PROC SVDD statement, 214
 SAVESTATE statement, 73, 97, 131, 241, 263
 UPLOAD statement, 25

RSTORE= option
 DESCRIBE statement, 24

RTOL= option
 SOLVER statement, 215

RULES= option
 OUTPUT statement, 43

RULETERMS= option
 OUTPUT statement, 44
 SCORE statement, 44

SAMPLESIZE= option
 AUTOTUNE statement, 11

SAMPLINGRATE option
 PROC GRADBOOST statement, 123

SAVESTATE statement
 FACTMAC procedure, 73
 FOREST procedure, 97
 GRADBOOST procedure, 130
 SVDD procedure, 214
 SVMACHINE procedure, 241, 263

SCALE option
 PROC RPCA statement, 195
 PROC SVMACHINE statement, 236

SCORE statement
ASSIST procedure, 24
BORDER procedure, 44
NINET procedure, 173
SEARCHMETHOD= option
AUTOTUNE statement, 11
SEED= option
PROC FACTMAC statement, 68
PROC FOREST statement, 90
PROC GRADBOOST statement, 123
SOLVER statement, 215
SVD statement, 199
SEED= option
OPTIMIZATION statement, 171
SELECT statement
TEXTMINE procedure, 263
SHOWDROPPEDTERMS= option
PARSE statement, 262
SOLVER statement
SVD procedure, 214
STANDARDIZE= option
PROC NINET statement, 162
STANDARDPC= option
OUTPUT statement, 152
START= option
PARSE statement, 262
STEPSIZE= option
PROC MWPCA statement, 150
STOCHS option
PROC SVDD statement, 215
STOL= option
SOLVER statement, 215
STOP= option
PARSE statement, 262
STORE= option
DESCRIBE statement, 24
DOWNLOAD statement, 24
UPLOAD statement, 26
SVD statement
MWPCA procedure, 153
RPCA procedure, 198
TEXTMINE procedure, 264
SVDD procedure, CODE statement, 213
FILE= option, 213
SVDD procedure, ID statement, 213
SVDD procedure, INPUT statement, 213
LEVEL= option, 213
SVDD procedure, KERNEL Statement
RBF option, 214
SVDD procedure, KERNEL statement, 214
SVDD procedure, PROC SVDD statement, 212
DATA= option, 212
NPRINT, 212
NTHREADS= option, 212
OUTSV=, 213
RSTORE=, 214
SVDD procedure, PROC SVDD statement, SOLVER statement
CTOL= option, 215
MAXITER= option, 215
MAXSV= option, 215
NMATCH= option, 215
NSAMP= option, 215
RTOL= option, 215
SEED option, 215
STOL= option, 215
SVDD procedure, SOLVER statement, 214
ACTSET option, 215
STOCHS option, 215
SVDD procedure, syntax, 212
SVDD procedure, WEIGHT statement, 216
SVDD statement
OUTDECOMP statement, 197
SVDDOCPRO= option
PROC TMSCORE statement, 305
SVDLEFT= option
OUTDECOMP statement, 198
SVDRIGHT= option
OUTDECOMP statement, 198
SVDS= option
SVD statement, 268
SVDU= option
PROC TMSCORE statement, 305
SVD statement, 268
SVDV= option
SVD statement, 268
SVMACH procedure, AUTOTUNE statement, 236
TUNINGPARAMETERS= option, 237
SVMACH procedure, CODE statement, 238
COMMENT option, 12
FILE= option, 12, 239
FORMATWIDTH= option, 12
INDENTSIZE= option, 13
LABELID= option, 13
LINESIZE= option, 13
NOTRIM option, 13
PCATALL option, 13
SVMACH procedure, ID statement, 239
SVMACH procedure, INPUT statement, 239
LEVEL= option, 239
SVMACH procedure, KERNEL statement, 239
SVMACH procedure, OUTPUT statement, 240
COPYVARS= option, 240
OUT= option, 240
SVMACH procedure, PARTITION statement
FRACTION option, 241
ROLEVAR= option, 241
SVMACHINE procedure, PROC SVMACHINE
 statement, 235
 C= option, 235
 DATA= option, 235
 ITERATIONREPORT, 235
 LINEAR option, 240
 MAXITER= option, 236
 NOPRINT, 236
 NOSCALE, 236
 NTHREADS= option, 236
 POLYNOMIAL option, 240
 SCALE option, 236
 TOLERANCE option, 236
 USEMISS option, 236
SVMACHINE procedure, SAVESTATE statement,
 214, 241, 263
 RSTORE= option, 241, 263
SVMACHINE procedure, syntax, 235
SVMACHINE procedure, TARGET statement, 241
 ASCENDING option, 242
 DESCENDING option, 242
SYNONYM= option
 PARSE statement, 262

syntax
 BOOLRULE procedure, 39
 TEXTMINE procedure, 257
 TMSCORE procedure, 304

TARGET statement
 FACTMAC procedure, 73
 FOREST procedure, 98
 GRADBOOST procedure, 131
 NNET procedure, 173
 SVMACHINE procedure, 241
 TEXTMINE procedure, 268
TARGET= option
 DOCINFO statement, 43
TARGETEVENT= option
 AUTOTUNE statement, 11
TARGETTYPE= option
 DOCINFO statement, 43
TERMID= option
 PROC BOOLRULE statement, 42
TERMINFO statement
 BOOLRULE procedure, 44
TERMINFO= option
 PROC BOOLRULE statement, 42
TERMS= option
 PROC TMSCORE statement, 305
TERMWGT= option
 PARSE statement, 263
TEXTMINE procedure, 257
 PARSE statement, 259
 PROC TEXTMINE statement, 257
 SELECT statement, 263
 SVD statement, 264
 syntax, 257
TEXTMINE procedure, CODE statement
 COMMENT option, 12
 FILE= option, 12
 FORMATWIDTH= option, 12
 INDENTSIZE= option, 13
 LABELID= option, 13
 LINESIZE= option, 13
 NOTRIM option, 13
 PCATALL option, 13
TEXTMINE procedure, DOC_ID statement, 258
TEXTMINE procedure, PARSE statement, 259
 CELLWGT= option, 260
 ENTITIES= option, 260
 MULTITERM= option, 260
 NONG option, 260
 NONOUNGROUPS option, 260
 NOSTEMMING option, 261
 NOTAGGING option, 261
 OUTCHILD= option, 261
 OUTCONFIG= option, 261
 OUTPARENT= option, 261
 OUTPOS= option, 261
 OUTTERMS= option, 262
 REDUCEF= option, 262
 SHOWDROPPEDTERMS= option, 262
 START= option, 262
 STOP= option, 262
 SYNONYM= option, 262
 TERMWGT= option, 263
TEXTMINE procedure, PROC TEXTMINE statement,
 257
 DATA= option, 258
 LANGUAGE= option, 258
 NEWVARNAMES, 258
 NTHREADS= option, 258
TEXTMINE procedure, SELECT statement, 263
 GROUP= option, 264
 IGNORE option, 264
 KEEP option, 264
 LABELS option, 264
TEXTMINE procedure, SVD statement, 264
 COL= option, 265
 ENTRY= option, 265
 EXACTWEIGHT option, 266
 IN_TERMS= option, 266
 K= option, 266
 KEEPVARS, KEEPVARIABLES, 266
 MAX_K= option, 266
 NOCUTOFFS option, 266
 NUMLABELS= option, 266
 OUTDOCPRO= option, 266
OUTTOPICS= option, 267
RES= option, 267
RESOLUTION= option, 267
ROTATION= option, 267
ROW= option, 268
SVDS= option, 268
SVDU= option, 268
SVDV= option, 268
TOL= option, 268

TEXTMINE procedure, TARGET statement, 268
TEXTMINE procedure, VAR statement, 268

TMSCORE procedure, 304
 PROC TMSCORE statement, 304
 syntax, 304

TMSCORE procedure, CODE statement
 COMMENT option, 12
 FILE= option, 12
 FORMATWIDTH= option, 12
 INDENTSIZE= option, 13
 LABELID= option, 13
 LINESIZE= option, 13
 NOTRIM option, 13
 PCATALL option, 13

TMSCORE procedure, DOC_ID statement, 306
TMSCORE procedure, PROC TMSCORE statement, 304
 DATA= option, 304
 DOC= option, 304
 OUTPARENT= option, 305
 SVDDOCPRO= option, 305
 SVDU= option, 305
 TERMS= option, 305

TMSCORE procedure, TMSCORE statement
 CONFIG= option, 305
TMSCORE procedure, VAR statement, 306

TMSCORE procedure, VARIABLES statement, 306
TOL= option
 SVD statement, 268
TOLERANCE option
 PROC SVMACHINE statement, 236
TOLERANCE= option
 PROC RPCA statement, 195
 RPCA statement, 153
TRACE option
 DISPLAY statement (MWPCA), 150
 DISPLAY statement (RPCA), 196

TRAIN statement
 NNET procedure, 175
 TUNINGPARAMETERS= option
 AUTOTUNE statement, 11, 69, 91, 124, 164, 237

UPLOAD statement
 ASTORE procedure, 25
 USELOCKING option
 OPTIMIZATION statement, 171
USEMISS option
 PROC SVMACHINE statement, 236
USEPARAMETERS= option
 AUTOTUNE statement, 11

VALIDATION= option
 TRAIN statement, 176
VAR statement
 TEXTMINE procedure, 268
 TMSCORE procedure, 306

VARIABLES statement
 TEXTMINE procedure, 268
 TMSCORE procedure, 306

VARS_TO_TRY= option
 PROC FOREST statement, 90
 PROC GRADBOOST statement, 123
VOTE= option
 PROC FOREST statement, 90

WEIGHT statement
 FOREST procedure, 98
 GRADBOOST procedure, 131
 NNET procedure, 176
 SVDD procedure, 216

WINDOWSIZE= option
 PROC MWPCA statement, 150
WSEED= option
 TRAIN statement, 176
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.